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Management Summary

The main research problem in this thesis is that the optimal speed and the buffer levels when
machines should be switched on and off are unknown. The operators of the production line use
speed to control the buffer level and aim to produce as much as possible. The buffer levels at
which the machines can be switched on and off help with this objective, because they decide
what machines to stop to increase production speed of high prioritized products.

The production line central in this thesis is a packaging line where machines are packaging
chocolate products. There are in total six machines, and only the last machine has a buffer.
Products that could not be packaged in the end are wasted. Along the production line are
machine failures, which have stochastic moments and duration.

Operators take both decisions with as goal to produce as much products as possible. However,
when speed is too high, and with machines failing, the buffer might fill up. As soon as the
buffer is full, products can be produced to waste. This is also the case when too many machines
are switched off. When the speed is too low, the production quantity is not maximized, which
means that more products could have been produced.

At the moment, the buffer levels to decide what machines to switch on and off are summarized
in nine “scenarios”, which are pre-determined in advance. The scenario is chosen based on which
product type, and therefore which machine, is prioritized. The scenario is determined in advance
of production, the speed can be controlled by the operators during production. However, the
speed can range between XX and XX cuts per minute. Speed can be changed in the processing
department and is only noticed in the packaging department after 20 minutes.

Machine learning techniques can help to predict production output, in terms of amount of
products produced and wasted. However, to train this on a real life environment takes a lot of
time, and decisions made there are not always optimal, which may lead to increased amount of
wasted products. However taking these worse are needed to learn these effects on the production
line.

To overcome this issue, a simulation model can be used, which serves as replica of the real
life production line. This model helps in the creation of a dataset for training purposes of the
machine learning algorithm.

Training requires selection of different input samples. A sample is the real life state of the
production line at a certain point in time. Because of the simulation model, all possible input
scenarios could be selected and used to train the machine learning models. However, the large
amount of possibilities require that a selection should be made, to reduce the training time.
Per sample, multiple actions can be taken regarding speed and the buffer level when machines
can switch on and off. The model should decide which action and sample to run using the
simulation model, in order to observe the output value. This output value is a the difference
between production and waste, where each component has its own weight.

A training dataset can be obtained by using a simulation model. This simulation model will
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speed up the collection of data. With this dataset, a machine learning algorithm is trained to
predict this output.

The use of simulation improves the training time needed to create input data for the model.
Less observations are needed from the real production line, meaning the real production process
is not bothered when in the training stage. The results of the simulation model suffer from large
variation in the output. To overcome these issues, more simulation observations are combined
per sample. The mean objective value is calculated after 10 simulation runs, and given to the
machine learning model during training. This reduces the mean squared error and improves the
prediction accuracy of the ML model.

During validation, we notice that both machine learning models are able to predict the correct
speed, and follow the same pattern per predicted speed on two given input samples. The models
show that they are able to predict the correct speed on the given samples. However, when
calculating the mean squared error of both models, the Gradient Boosted Decision Trees work
better than the Neural Network. Also when we compare the running time, the gradient boosted
decision trees perform better in creating a fast advice, within a second, while the neural network
takes 10 seconds.

In case also the pre-determined line settings are removed, and are added to the agents’ decisions,
we notice that both the simulation model as well as the machine learning algorithm suffer from
small deviations in the results per action. This means that the model is not trained well enough
to be able to compare these different actions to a reliable advice.

However, when the model only advises on speed, the performance of the model is sufficient to
provide correct advice to the operators in 86% of the cases for the best working model. Before
implementation, a period should be used where the machine learning model and production line
are simultaneously running. Advice can then be calculated, and implemented by operators, or
rejected. When rejected, a reason can be logged to see how the model can be improved in the
future.

Table 1 shows the characteristics of the best performing model. The model with best performance
is the Gradient boosted decision trees. Its Mean squared error is 0.0013, and in 86% of the
samples during validation it predicted the optimal speed correctly. This means that this model
can help operators to take decisions regarding speed of the production line.

Aspect Performance

Prediction model Gradient boosted decision trees

Interval between advices 30 minutes

MSE 0.0013

Prediction correctness 86%

Table 1: Best model performance

Concluding, we created a model that provides operators with validated advice, where the pre-
diction is on average close to the real production output, as measured by the simulation model.
However, this advice is created within a second in the case of the gradient boosted decision trees,
instead of the long duration needed by the simulation model.
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Reader’s guide

This readers guide provides an overview of what can be read in each chapter.

Chapter 1: In Chapter 1 we provide an introduction to the problem that is central in this
thesis. We provide the research questions and plan of approach to solve the problem.

Chapter 2: In this chapter we provide an overview of the current situation, how the current
packaging process works and what the problem is in terms of determination of speed of the
packaging line.

Chapter 3: This chapter describes what is known in literature about control of an automated
production line, and how machine learning or artificial intelligence can help improving the perfor-
mance of the production line. This chapter describes some methods regarding this automation,
production and control, reinforcement learning and contextual, multi-armed bandits.

Chapter 4: In this chapter, we describe the methods of selecting samples with which the
machine learning algorithms will be trained.

Chapter 5: In this chapter we describe the simulation model, explain the working of the
simulation model and what assumptions are made to create an accurate model. We describe the
handling of products and selection of statistics.

Chapter 6: In this chapter, we describe the data preparation for the machine learning models,
we describe which models to select and we describe how to train these models effectively.

Chapter 7: This chapter describes the experiments that are performed using several methods,
and describes the results of these experiments.

Chapter 8: In this chapter, we conclude the performance of all models, give a recommendation
of implementation, describe the limitations and finally discuss methods of further research.

Appendix: In the appendix, an overview of machine failures can be found. Afterwards, we
describe the technical implementation of the simulation model in Plant Simulation and describe
the different sub-scenarios or linesettings that are used in the current situation.
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Chapter 1

Introduction

In this chapter, we introduce the company and the research goal. We identify the action problem
and core problem according to the procedure by Heerkens and Winden, 2017. Besides, we
construct the research questions and plan of approach of this research. In the end, this chapter
provides the scope and deliverables of this project.

Nowadays, real time decision making is becoming more and more important, as decisions re-
garding production processes are required to be taken in reaction to a frequently changing en-
vironment. Standard algorithms and methods, such as simulation and planning and scheduling,
do not cover this fast decision making (Tremblay et al., 2024). Therefore, new evolution’s in ma-
chine learning become more important in the decision making processes at different production
companies.

ErgoDesign B.V., an Industrial Engineering company located in Enschede, the Netherlands,
provides advice to different companies on their production processes. They operate in multiple
sectors, such as logistics by means of improving efficiency, smart scheduling and simulation.
Because of the ever-changing nature of production processes, a model or algorithm should be
able to provide instant advice to companies on their production process layout, design and on
what decisions should be made to operate the production line efficiently, such as production
speed.

First, Section 1.1 introduces and describes the problem that is central in this thesis. Then,
Section 1.2 identifies causes and relationships between underlying problems, resulting in the
formulation of a core problem. In Section 1.3, the research questions, plan of approach, scope
and deliverables

1.1 Problem Introduction

This section introduces the main problem and defines several causes. We construct a problem
cluster (Heerkens and Winden, 2017) to identify the causal relationships between these problems
and eventually define a core problem. We select the core problem as the eventual cause of the
action problem, and the following plan of approach describes how to solve this core problem.

A company, operating a production line producing candy bars, is facing challenges with the
adjustment of the production line to the real-time changing production environment. These
changes in the production environment are mainly caused by machine failures. This production
line runs through two departments: processing and packaging. The processing department pro-
duces the products. The conveyor belt then transports the products to the packaging department
where these products are packed before being shipped to a customer.

1



1.2. PROBLEM IDENTIFICATION

The packaging department consists of one production line, with multiple packaging machines.
These machines take products from the conveyor belt to pack these products. The buffer, placed
just in front of the last machine, catches all products that are not taken by any machine before.
However, if this buffer is full, products fall off the line and are wasted. The last machine on the
production line packages all products that are taken by the buffer.

The company aims to produce as many products as possible, however while keeping the waste
at an equal size. The company can increase production by adjusting the speed of the production
line at which products flow over the conveyor belt and adjusting the state of the machines. Not
all machines are running at the same time. Machines can be stopped to enable other machines
to catch more products. This is done when some products have a higher priority than others.
Machines that produce the products with lower priority can then be stopped.

There are multiple methods available for operators along the line to increase production output.
One of the factors that can be changed is the speed of the production line. This speed is measured
as cuts per minute made by the knife at the beginning of the conveyor belt. By decreasing this
speed, fewer products enter the packaging department, while increasing the speed results in
higher production.

The other method is the working of the machines. As soon as the buffer fills up, certain machines
that are stopped, due to lower priority, can be set to work again. This results in a higher number
of product rows that can be taken by any of the machines, therefore decreasing the fill rate of
the buffer. However, this also means that products that are to be picked by machines later in
the line are getting fewer products. This results in a delay in reaching the goal for a certain
product type and is therefore not always desirable.

1.2 Problem identification

The factory faces difficulty in determining the optimal speed and machine settings of their
production line. This results in a high number of production waste, due to the unavailability of
machines and buffers to handle these products. However, there is no optimal number of products
as output due to disruptions in the production, or no optimal chosen speed and machine settings.
The availability of machines differ throughout the time, meaning that at one instance, many
products are wasted, and at another instance of time, more products can be produced. This
leads to increasing costs and work for personnel and a longer time to process the needed amount
of products than actually needed. Some products have finished production, but cannot be
processed at the packaging machines, and are therefore lost as waste. On the other hand, a
higher amount of products can be produced when correctly adjusting the speed and machine
settings.

The buffer aims to catch products that other machines have not taken earlier in the process and
prevent them from becoming waste. The fact that other machines are not taking any products is
either due to failures of these machines or these machines already picked a row of other products,
and are therefore already processing items.

However, it can also be due to the settings of the production line. When some machines have
lower priority, these machines stop producing or produce at a slower pace, to give priority to
other machines, which use different packing materials and therefore deliver different products.
The final machine picks products that are left on the production line if there is space in the
buffer.

When the speed of the production line is too high, a larger amount of products end up un-
processed at the end of the production line as lost products, while a too-low speed means that
machines will produce fewer items than the capacity of the production line. Besides, a change in

2



1.2. PROBLEM IDENTIFICATION

the operating status of the different machines across the production line influences the fill rate of
the buffer and the amount of products wasted at the end. Therefore, the production line needs
a balance to improve the output, while maintaining the current level of waste, by adjusting the
configurations.

The action problem (Heerkens and Winden, 2017) therefore is that at the moment there is a
high number of lost products, and no optimal configurations are used at the production line.
The amount of waste should not increase, but the output should be as high as possible. The
description of the action problem is given below.

Action problem: The output of produced candy bars at the production line is not
maximized.

This action problem has several causes, which itself are caused by other factors. To visualize
these causal relationships, we construct the problem cluster, as can be seen in Figure 1.1. At
the top, the action problem is given in two boxes, as they are two individual problems and are
happening simultaneously. They are influenced by other factors as well. We define all causes
of this action problem below, resulting in a final cause, the core problem. This core problem
will be the main problem to solve during the remainder of this thesis. The action problem is
suffering at one side from waste of production, caused by wrong settings in the production line.
On the other side, the output of the production line can be increased in certain situations.

At several moments, the output of the production line is too low. The production line misses
a certain balance. This balance should aim to keep the current amount of waste equal while
optimizing production output. As these are two different problems, that are both noticed in the
production process, we consider the problems as independent, and add them separately to the
problem cluster in Figure 1.1.

Figure 1.1: Problem Cluster

3



1.2. PROBLEM IDENTIFICATION

In the problem cluster in Figure 1.1, the first part of the action problem is the waste of products.
This means, that of all products, there is waste that ends up at the end of the line. As these are
perfect products that could have been sold, this should not be too high, but production should
keep it at a certain threshold. The main cause of this product waste is the overflow of the buffer.
This buffer is located just before the last machine. This means that each product that comes
by this buffer and the machine therefore does not take, is lost as scrap and is not sold.

However, the products also go along the production line across other machines, which were
unable to take the products and process them. This could have as a reason that there is already
another product in that machine or the machine is failing, or is at lower priority, and therefore
switched off. To summarize these reasons, the main problem is that there is a wrong input in
the current state of the machines along the production line, which means that the machines
were unable to pick all the products, resulting eventually in waste.

Another part of the action problem is the fact that there is no optimal production output, or it
is unknown if the optimal production output has been reached. This means that the production
line could have processed more products, while also keeping the amount of waste in products
the same. Production is done according to a specific schedule, which is predetermined. This
schedule provides what machines should be producing and how many products.

For both the wrong input due to the current state of machines and the fact that there is no
optimal production output, we assign one factor as cause. This factor is that there is no optimal
input as a production scheme for the production line. Machines are currently standing still due
to certain, predetermined scenarios. This production scheme determines which machines are
working and which are standing still. Also, the production scheme determines the speed of each
packaging machine. This production scheme therefore has a major impact on the output that
is produced at the packaging line.

For an optimal output, the speed at which products are being processed should be as high as
possible, and as many machines as possible should be working, while to match the input of the
production line with the availability of the machines, the speed should be reduced. Therefore,
there is no optimal speed reached at the moment, what results in the occurrence of the action
problem. However, when there is a need for a specific type of product, some machines should stop
their production, to prioritize other machines. These prioritized machines should be producing.
However, when the buffer is reaching its capacity, it is desirable to have machines that were
stopped producing again, in order to prevent the buffer from completely filling up and producing
waste.

It is at the moment unknown what the optimal settings for speed and state of machines are at a
specific moment in time. This depends on several factors, with as cause that it is unknown what
speed should be optimal, when to change the production line to that speed, and what machines
should be running or standing still. This is caused by the fact that there is a long duration
before the change in speed is seen in the production line.

However, besides this duration in change, it is unknown when machines will fail, and at what
period in time they will be operative again. This determines to what extent the speed needs to
be changed, as well as the time when this decision needs to be made. Also, because of the long
duration of the effect of a speed change, not at every machine failure, a new decision needs to
be made. Therefore, there is at the moment no knowledge about the optimal time that a system
change should be made.

Multiple machines can work on different items. This means that several times, the production
line requires changeovers, to enable other production types. This results as well in a standstill of
a machine. The main part of the schedule is known, but the exact times when a changeover takes
place is depending on when the desired production goal is reached for a type of product. This is
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1.3. RESEARCH DESIGN

uncertain, due to machine failures. Each item has a certain goal of how many products should
be produced, according to demand and capacity, and when this goal is reached, a machine will
change to another product type. However, due to uncertainty in machine failures, it is unknown
when a machine exactly reaches this goal. Therefore, the time when a changeover will take place
is also unknown.

The changeover and uncertainty in machine failures and duration are related to the uncertainty of
the standstill of machines. The machines will keep failing, with duration and moment uncertain,
and changeovers are always necessary. Due to these combinations, there will always remain
uncertainty in the moment and duration of a machine that is standing still. Also, the fact that
the change in speed is only seen after a certain period is not changeable, because of the layout
of the production line. These factors are taken as input factors in this research, and we take
them into account as important properties for an eventual model.

In the process is much uncertainty. For example, the failure of the machines is stochastic. A
speed decision should be made very fast, to prevent products from becoming waste and keep
the output of the production line high. This means that a model should be constructed that
determines the output as speed and which machines should have priority of production, given
different states of the line, which depends on the availability of machines, state of the buffer,
current speed, and fulfilment level of goals per product item. The changes in variables throughout
the production line are frequent. This has an influence on the state of the buffer, which should
be taken into account in all decisions. Thus, we identify the core problem as follows:

Core problem: There is no policy to control the prediction speed depending on
the current state of the production line.

A policy should be created which determines the optimal speed to run at the production line.
By solving this core problem, a model or tool should provide an improved policy about the
optimal configurations of the production line at every point of time in which a decision should
be made, given the current state of the production line. These optimal input configurations
should take the balance of the action problem into account, where there is an optimal balance
between production output and keeping the waste equal to the current situation.

1.3 Research Design

In this section, we describe a plan of approach about how to solve the core problem which is
identified above. Also, we present the research questions for this research project. The research
design followed in this thesis is the design as described by Heerkens and Winden, 2017.

The core problem, that there is no policy about the speed the production line should have, should
be solved by creating a model, that would automatically advise about the best configurations,
based on available historical data. These decisions need to be fast, to adapt to the frequently
changing environment of a production line. The goal therefore is to create a model that could
make these decisions about optimal configurations of the processing line. It should take care
of all different considerations that play a role in the number of output and waste of the line.
This Section has the following structure. In Section 1.3.1 we construct the research questions.
Section 1.3.2 describes a way of solving the research questions. Section 1.3.3 describes the scope
and Section 1.3.4 the deliverables of this research.

1.3.1 Research questions

The research questions provide a structured way of finding a solution to the core problem. Each
research question comes with several sub-questions, which partly aim to answer the research
question. The main research question that is central to this research is as follows:
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How can decisions regarding speed of a packaging production line optimize the output
of production while the waste does not increase?

The following sub-questions aim to provide a structured approach to answer the main question.

1. How does the current production process work?

• What is the current process of the production line?

• How is the production schedule constructed?

• How are decisions in changes of production taken?

• What is the current output of the production line?

2. Resulting from a literature study, what solution methods exist to optimize and automate
the configurations of the production line?

• What methods do exist to optimize the output of a production line given uncertainty?

• What are the possibilities to intervene in production speed to optimize output?

• How can Machine Learning contribute to the optimization of a production process?

3. How can a tool be designed that is able to provide advice about the production line?

• What model does fit best with the available data?

• What ranges of input should be considered within the model?

• How can a set of training data be designed?

4. How can a simulation model be designed that evaluates the performance of the production
line?

• What assumptions are made during simulation modeling?

• What type of simulation model is needed?

• What factors should be considered in the simulation model?

5. How can production output and waste be predicted?

• How can functions be trained to predict output?

• How can decisions be made from the prediction?

6. How does the Machine Learning model perform?

• How does training influence the performance of the model?

• Can parameters be changed to increase performance?

• What is the effect of the model on measured output?

• How much impact does the model have on the production of waste?

7. What recommendations and conclusions can be made from the model and the experiments?

• What is the impact of the model to the processors across the line?

• How can the model be used alongside a production line?
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1.3.2 Plan of Approach

This subsection gives a plan of approach to answer the research questions as described in Section
1.3.1. To solve the action problem, first, the current situation is analyzed. The problems that
arise from the action problem resulting from the current way of working are analyzed, and with
that, the main causes for the core problem will become visible. Data analysis will be performed
to see the current amount of lost products at the current speed and will identify the status of the
machines and the buffer. A model will be constructed that should give, given the current state
of the machines, buffer, and speed of the production line, an optimal decision for configurations
on the production line, while not increasing the amount of produced waste.

1.3.3 Scope

The scope of this research is based only on the last part of the production line. The part of
the production line before the packaging line is not considered in this research. It is assumed
that the processing line before will never be a problem within this process, and the production
will give no constricted amount of supply for the machines while the production line is running.
Figure 1.2 shows the scope of this research visually.

Figure 1.2: Scope

1.3.4 Deliverables

The deliverables of this research are as follows:

• Model to create an advice about speed and change in production configuration.

• Balanced advice about speed and production configuration, considering production output
and waste. This decision can be about the speed, but also about the type of schedule and
what products to produce.

• Thesis to explain and elaborate on the deliverables above.

1.4 Outline

In this chapter, first, we described the problem identification, where we identified the action and
core problem. Research questions are constructed in order to provide a structured methodology
of solving this core problem. Also, the deliverables and a plan of approach how to solve the core
problem are given. The rest of this thesis has the following outline. In Chapter 2 an overview is
given of the production line, the relevant input and output of this packaging line and a short data
analysis of the machine failures. Also, the production process is described. In Chapter 3 a first
overview is given about what can be found in literature about this topic and research questions.
Chapter 4 provides an overview of the solution method and sampling strategy. Chapter 5 first
describes the simulation model, used to generate data. In Chapter 6 we construct the machine
learning algorithms. In Chapter 7 we test the model with a training dataset and a testing
set, to see the performance on several Key Performance Indicators of the different models,
and optimize the machine learning algorithm by conducting different experiments. Afterwards,
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conclusions and recommendations are given, together with a plan on implementation within a
real-life production line.
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Chapter 2

Context Analysis

This chapter describes the current situation of decision-making by the employees along the
production line, the operators. It provides an analysis of the data on the current functioning of
the production line. We explain the production process. This chapter answers the following set
of research questions, and the attached sub-questions as described in Section 1.3:

1. How does the current production process work?

• What is the current process of the production line?

• How is the production schedule constructed?

• How are decisions in changes of production taken?

• What is the current output of the production line?

This chapter aims to provide an overview of how decisions are made in the current situation, and
how this influences the performance of the production line. Therefore, the different decisions that
are made, and the different processes that are important regarding the output of the production
line are analysed. Section 2.1 describes the process of the production line and its logic towards
the packaging department. Section 2.2 describes the schedule of different products among the
different machines. Section 2.3 describes the behaviour of the machines and gives a data analysis
of the different types of failures. Section 2.4 provides insight into the behaviour of the buffer
level regarding different other settings. Section 2.5 then provides the decisions made by the
operators and the influence of machine failures and buffer level on the production line’s output.

2.1 Production line layout

The production line central in this thesis is a production line in a factory for the packaging
of candy bars. The packaging department is located after the processing department. This
processing department produces and transports the products in rows over the conveyor belt to
the packaging department. When they arrive there, the products are ready to be packed.

The packaging line consists of different machines along a conveyor belt. The conveyor belt runs
at a certain speed. This speed is an important factor for the total output of the production
line. The speed of the conveyor belt is measured in cuts per minute that the knife makes at
the entrance of the packaging line. This knife cuts a long line of semi-finished products into the
separate product bars. This speed determines the number of product rows entering the packaging
department per minute. Figure 2.1 shows the conceptual representation of the packaging line.

In the packaging department, the machines pick the products from the packaging line according
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2.1. PRODUCTION LINE LAYOUT

Figure 2.1: Conceptual representation of production line

to some logic. Figure 2.2 shows a flowchart of the logic of processing the bars in this processing
line up to the last moment before actual packaging the products. This flowchart describes the
process of how the machines select products for packaging after the products have entered the
packaging part of the production line.

Figure 2.2: Flowchart of product selection at packing machines

Figure 2.2 shows the logic of how the machines select rows of products. At the packaging section
of the production line, the chocolate bars enter in rows of 48 products, at a speed determined by
the knife at the entrance. Machines take these rows when this machine is available. A machine is
available for packaging a new row of products if the machine is both working, and the packaging
machine is empty, so no products are being packed in that machine at the moment. If a machine
is not available, the products continue on the conveyor belt, to be taken by another machine
later on the production line. A packaging machine can only process one row of bars at the same
time. Just in front of the last machine is a buffer, which catches off the remaining product rows.
This buffer can take up to 385 rows of products in total. When this buffer is filled, all products
that are not taken by any other machine previously in the process are thrown away as waste.
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Some parts of the waste are reproducible, while other parts are not.

There can be several reasons why a machine is not taking products from the production line,
besides when it is already packing other products. A machine standstill can either be planned
or unplanned. A planned machine stop can happen due to maintenance, or there is a scenario
where specific product types are prioritized. If a machine is not making these product types
with a high priority, and other machines along the line are, then a machine can be set at a
slower pace or is even stopped. However, this is depending on the fill level of the buffer. This
is further explained in Section 2.2. Another option of why a machine is not operating is that
the machine stops producing, but unplanned. In this case, there is a failure occurring in the
machine. This means that the machine should be repaired. Section 2.3 analyses the behaviour
of these machine failures.

The different machines along the production line can work with different packaging formats.
Not all machines can produce all the different types of products. The products are in principle
the same, but the packaging is different. This leads to the fact that a control method should
provide a policy about which machines should operate and which should be at a standstill or
run slower. This should provide a desired distribution of all different product packaging formats.
If all machines run at the highest pace, the last machines receive fewer products than the first.
This is not a desired situation when one of the last machines is producing packaging formats
with higher priority.

Table 2.1 shows the different types of machines and which product type can be packaged on
which machine. There are a lot of products that can only be produced on one single machine,
and several different products that can be produced on three machines. Machines 2, 4 and
6 are therefore the same in terms of what they can produce. The company created scenarios
to determine the product type that a machine is producing and at which pace. The planning
department determines which scenario to run, based on, among others, demand forecasts and
current stock levels. Section 2.2 explains these scenarios.

Product type 1 2 3 4 5 6 7 8 9 10 11 12 13

Machine 1 X X X X

Machine 2 X X X X

Machine 3 X X X X X X

Machine 4 X X X X

Machine 5 X X X

Machine 6 X X X X

Table 2.1: Production type per machine

2.2 Production schedule

The production line operates according to a specific production schedule, also referred to as a
scenario. The set of scenarios provides an overview of which machines should be working at
what moment, depending on among others the buffer level, and which packaging formats the
machines should produce. This is to make sure that for each product type and packaging type,
a certain specified goal is achieved. This means, that in this production schedule, machines can
be stopped to make sure that other machines will get sufficient products. However, this should
not lead to an overflow of the buffer due to a standstill of too many machines. The production
schedule therefore have to provide a moment that the different machines should be working
again. However, this can be uncertain due to machine failures and changes in the speed of the
production line.
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The production schedule is based on 9 different scenarios. Each scenario determines which
machines are switched off when this is allowed by the buffer level. The scenarios are used
to make sure that the desired quantity of required products is produced. Scenarios enable in
advance to give priority to specific product types, making sure that these are produced faster.
This can be done by switching machines off. However, in all cases, the level of the buffer should
be taken into account. This means that when the buffer is almost full, the scenarios also take
into account that machines should be operating again.

Each scenario is divided into different sub-scenarios. These sub-scenarios provide an overview
of when machines are switched on or off. These sub-scenarios are determined based on the fill
level of the buffer. To provide a method to prevent this buffer from filling up too much, the
speed and availability of the machines are adjusted within these scenarios. When the buffer
level is too high, machines that were on stand-by are switched on again. The four divisions of
the scenarios are mentioned below.

• Fill buffer: the buffer is empty and can be filled with products. Mainly the situation where
several machines are on standby.

• Buffer normal: buffer reached a certain level, no need for changes.

• Empty buffer: buffer is starting to reach its maximum capacity, so need to use more
capacity of machines to prevent this overflow.

• Empty buffer max: buffer is almost full, so extra capacity is needed to prevent it from
overflowing.

For each of the above-mentioned options, there are percentages of the fill level of the buffer
attached which regulate what machines to operate and at what speed. For each scenario this is
different, as each scenario aims to have a different type of output, and gives other machines more
priority, especially at lower buffer levels. As soon as the buffer fill level enters a new range, the
sub-scenario will change. Table 2.2 provides an overview of the buffer levels that are used per
subscenario. Table 2.3 describes what the changes are per scenario, given a standard scenario
where all machines are producing. This means that, for example in scenario 2, Machine three is
switched off in subscenarios “fill buffer” and “Normal”, but will be switched on as soon as the
buffer reaches the buffer level that belongs to subscenario “Empty”.

Scenario 1 2 3 4 5 6 7 8 9

Fill 0-5 0-20 0-20 0-20 0-20 0-20 0-5 0-20 0-5

Normal 5-10 20-30 20-30 20-30 20-30 20-30 5-20 20-30 5-15

Empty 10-40 40-50 40-50 40-50 40-50 40-50 20-30 40-50 40-50

Empty max 40-100 60-100 60-100 60-100 60-100 60-100 30-100 60-100 50-100

Table 2.2: Example of scenario (%)

As can be seen in Table 2.3 there are a few scenarios that are used during the collection period
of the used dataset. The average speed and relative share of running each scenario is measured
over data from one month in running the production line. Therefore, the average speed is highly
influenced by the number of machine failures and its failure duration. This table is constructed
from a dataset which provides data about which machine failed, how long the machine failed and
which scenario and speed the production line ran. The period in which this data is collected is
one month, November 2023. In this period, most of the time scenario 4 is used. Then Scenario
7 is sometimes used as an emergency scenario, where all machines are working. This is probably
because in scenario 4, machine 3 should get preference, so machine 2 will be switched off when
the buffer level is low. The scenario is chosen in advance, and per scenario, a decision is made
when machines are switched off or back on again.

12



2.3. MACHINE STANDSTILLS

Scenario Specific settings Average speed Share (%)

1 MC5 off N.A. 0

2 MC3 on from Empty N.A. 0

3 MC2 on from Empty XX 0.003

4 MC2 on from Normal XX 95.4

5 MC3 on from Empty, MC1 from Normal N.A. 0

6 MC3 on from Normal N.A. 0

7 XX 4.2

8 MC1 on from Normal XX 0.14

9 MC2 on from Empty N.A. 0

”Empty Buffer” XX 0.3

Table 2.3: Changes per scenario

2.3 Machine Standstills

This section describes the failure behaviour of the packaging machines, as well as the changeovers
that will occur. For each machine, several statistics are calculated to get insight into the failure
behaviour of each machine. For the buffer, no failures are taken into account, as this buffer is
rarely failing. The buffer is further analyzed in Section 2.4.

The machines can be in different states, depending on their ability to produce products or not.
There are five states which are distinguished regarding standstills. These are explained below.

• Running: The machine is operating and packaging products.

• Breakdown: There is a failure in the machine.

• Blocked: The machine cannot operate as intended, and is stopped.

• Operator stop: An operator has stopped the machine.

• Starved: The machine can produce, but has not taken any products.

• Changeover: The machine is changing its packaging material.

Within these states, there are three states where the machines are not operating. These are
breakdown, blocked and operator stop. In the other two cases (running and starved), the
machines are operating, whether they have a product that could be packaged or not. The
reasons behind these states are not always applied in the same manner. For example, operator
stops can have many different reasons. This means that we assume the status breakdown,
blocked and operator stop mean that the machine is in failure, and thus is not able to package
products. Also, because of the working of sub-scenarios, we distinguish another state. This is
“stand-by”. Stand-by means that the machine is not failed, but is not producing, in order to
give priority to other machines. To summarize, the final states are explained below.

• Running: Machine is working.

• Stand-by: Machine is working, but on standby due to sub-scenario.

• Failed: Machine is not working and needs repair.

• Changeover: The machine is changing its packaging material.

Figure 2.3 shows the level of the buffer, compared to the number of machines available then.
Each dot in the graph is the buffer level, given the number of machines at that point in time. A
new data point is logged as soon as the number of available, working, machines is changing. At
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that point in time, the buffer level is also logged. During the period of approximately 3.5 hours
on the same day, a constant level of XX cuts per minute was kept as speed. This figure shows
a relation between the level of the buffer and the number of available machines. When there
are fewer machines available, the buffer will likely be more filled than when there are more than
2 machines available. The case that the buffer was almost empty did not occur in the case of
two machines or less, while this occurred multiple times when there were more than 2 machines
available. Also, when there are more machines available, certainly with all machines available,
at this speed level, the buffer will be less likely to completely be filled.

The buffer reaches its capacity in some cases. When there are either five or six machines
available, the buffer hits 100% at some point in time. This means, that adjusting the speed
might be necessary to prevent the buffer from overflowing, and the number of available machines
is not the only influencing factor for the buffer level.

Figure 2.3: Buffer level compared to number of working machines

The number of machines available is thus changing often. However, it is not evenly distributed
how many machines are working. Table 2.4 shows the relative frequency of how many machines
are working at the same time, and therefore as well how many machines are failing at the same
time. This table shows that most often, one machine is failing, however, almost as often, two
machines are failing at the same time. For 16.9% of the time, there are no machines failing.

Nr. of machines Percentage of time working

1 machine 0.66

2 machines 3.81

3 machines 13.59

4 machines 29.67

5 machines 35.28

6 machines 16.93

Table 2.4: Number of machines working
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When a machine is failed, the duration before the machine is operating again is often unknown.
Section 2.3.1 describes an analysis of the duration of machine failures. One last possibility why
a machine can be at standstill is because of a changeover. A changeover occurs when a machine
needs to change from packaging type. Section 2.3.2 describes the working of these changeovers.

2.3.1 Machine failure duration

When a machine is failed, the operators along the line try to fix this machine as soon as possible,
to make it operating again. However, the time this takes is fluctuating among the different
machines, and is not known before. Most of the failures occur at most three minutes, as Figure
2.4 shows.

Figure 2.4: Machine failures

Graph 2.4 shows the number of failures, counted on frequency when grouped within bins. These
bins are approximately 60 seconds wide. The graph in Figure 2.4 shows the failures for Machine
1. However, all machines show a likewise pattern. Appendix A show the graphs of the failed
time for other machines.

The graph in Figure 2.4 shows that the range in which the failures can occur is large. The
graph in this case only shows failures up to 1 hour. Longer failures are left out of scope, as we
assume that when a failure takes longer than one hour, this is known upfront. The cause of
many failures is not known, as many of the failures are just labeled as operator stop, without
any further explanation of why this stop or failure occurred.

2.3.2 Changeovers

Another option of why machines are standing still is because the target level of production has
been met. In this case, the machine should be changed to another package format. This has to
be done manually by the operators, meaning that the machine should stand still for some period
in time. However, due to uncertainty when machines take products of the line, especially for
later products, it is not exactly known in advance when this changeover has to be made, making
it more uncertain for decisions such as speed to be made. When speed is changed, changeovers
in the near future should be considered, as these might have impact on the ability of the process
to produce at that pace.
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However, the decision of what the specific goal is per product package format, is determined in
advance by the planning department, in the same way as the scenario that is selected. Therefore,
the determination of these goals is out of scope, but the goals are considered themselves in the
decision making.

2.4 Analysis of the buffer

This section describes the working of the buffer. The buffer is in place to prevent all items from
being lost due to the unavailability of the packaging machines. Behind the buffer is one last
machine, number 6, which processes all items that are in the buffer.

The buffer expands its size depending on the number of items in this buffer to prevent items
from being longer than needed in the buffer. As soon as there are 15 rows in the buffer, the
buffer starts processing rows of items towards the machine. This happens as soon as there is a
new row of products entering the buffer. This means that a new row of bars is only proceeded to
the machine as soon as a new row of bars arrive at the buffer. This procedure happens to prevent
empty rows from occurring within the buffer, which eases the further process of operating the
buffer.

The maximum buffer level is 385. In that case, all rows of the buffer are occupied and new
products will be considered as waste, and will not be produced anymore. The logic of the buffer
can be found in Figure 2.5.

Figure 2.5: Flowchart of buffer

The buffer’s failures are not taken into account, as it fails rarely. However, the use of the
buffer is important to keep into account when deciding the input variables such as speed of
the production line. If the buffer level is too high, measures should make sure that this buffer
level is not increasing too much, while maintaining a high pace of production. Besides, the
sub-scenarios as described in Section 2.2 take these buffer levels into account to decide about
the desired input.

Figure 2.6a shows the effect of the speed on the buffer level. As can be seen in this graph is
that as soon as the buffer reaches almost 100%, the speed is decreased. From this graph can be
concluded that the speed is not the only factor that influences the buffer, but is a factor that
can be used with certainty to decrease the buffer level. This graph also shows that the effect of
a decrease in speed is not measured immediately, but will follow later. This is approximately 20
minutes before a change in speed will become visible in the buffer level.

Figure 2.6a shows the data from one day, between 04:00h and 11:00h, when the machine was
already running, so without an initialization period. This graph shows that speed should be
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chosen in such a way, that the buffer will not overflow, but also not be too low, because then a
higher speed could have been performed. Also, before reaching 100% buffer capacity, the speed
should have decreased already, to prevent the buffer from overflowing. However, the speed is
not the only influential factor, as availability of machines is also important for the fill level of
the buffer.

However, one point of discussion is that the speed is now decreasing with several steps, even
when the buffer level is decreasing. This means that the question arises whether these decisions
are optimal, or that the steps taken could increase, to get the buffer level down faster, or to
increase the speed already in the end, to make sure that the machines produce more products.

(a) Buffer level compared to chosen speed (b) Speed compared to machine availability

Figure 2.6: Speed, Machine availability and buffer level comparison

This means that the speed determination is dependent on the current state of the buffer, but
also the availability of the machines. Figure 2.6b shows the decisions taken by the operators
as soon as the availability of all machines goes down for a longer time. The speed immediately
decreases, and, as concluded from Figure 2.6a, the buffer fills at this moment in time. This
means, that the determination of the speed is based both on the availability of machines and
the current buffer level. So, as soon as the availability decreases, also the speed should decrease.

The data in Figure 2.6 is in both figures the same, and represents therefore the same time steps
and decisions made in speed. The buffer level grows to 100% as soon as only two machines are
available for a longer time. The speed is kept at a decreasing rate because after the time the
buffer hits 100% for the first time, it does not happen often that all machines are operating.
The operators along the line have therefore decided to keep the speed low, and not increase it
again.

2.5 Decision variables

This section provides an analysis of how and when the different types of input decisions are
determined, together with what factors should be taken into account when making these deci-
sions. These different types of input are the state of availability of the machines, the types of
packaging, the speed of the different packaging machines and the number of items in the buffer.
Also the progress towards goals is an important factor. All these factors have an impact on the
output of the production process, both in terms of the number of items wasted and in terms of
produced products.

Several factors determine the input characteristics of the production line. A specific speed should
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be determined, together with the decision of which machines are functioning from which buffer
level, and thus which machine or packaging material has priority. This depends on decisions
made in advance and on the state of inventory and expected demand. However, this is also
influenced by other variables as current speed and buffer level. The decisions on what scenario
to run, so what item to prioritize is not included in this research. However, it is possible to take
this scenario into account when making the decision on speed and processing sub-scenario. We
explain the variables that have influence on the decision below.

• Speed. This determines the amount of products processed per time unit, and can be
changed.

• Scenario. The scenario determines the priority and operating sub-scenario of the packaging
machines. This has impact on a future speed.

• Availability of machines. Machines can be in error or maintenance, and therefore not
working. This changes the behaviour of the processing line and the number of items to
process.

• The number of items in the buffer. The fill rate of the buffer should be taken into account
on how many products can be processed. Too many products in the buffer will mean a
too high amount of waste.

• Already failed time. It is important to know the time that the machine is in failure when
the operators will make a decision regarding speed. This time already failed has impact
on the expected time that the machine will be failing, which means it has impact on the
ability of the production process to keep up with a certain speed.

• Progress of goals. The progress of goals is the percentage of fulfilment in producing the
goals per product type. This should be taken into account to make a more dedicated
decision about future actions. For example, when one goal is almost reached, a changeover
can be expected, meaning that a machine will be switched off during a certain period.

At the moment, the decisions which machines to operate are based on the scenarios as described
in Section 2.2. However, employees working on this line are also able to make such a decision,
for example when a machine fails while the buffer is increasing in percentage filled. Current
decisions are both based on operators’ intuition, combined with the current status of the buffer
and machine availability.

The factors that the operators can have impact on are therefore the production line speed and
the scenario. We therefore aim to provide a tool that is able to advice the optimal speed and
buffer levels to increase production line output. The operators should not change the speed too
often.

2.6 Conclusion

This chapter provided an overview of the current way of working of the packaging line and the
way the buffer and machines are working. Also, an overview is given of the different scenarios
that can occur within the production line.

This chapter gives insight into the many manual decisions that are made along the production
line, which could be supported by the means of data. The determination of speed in comparison
with the buffer level is something that could be done automatically, instead of using a operators
intuition towards it. This provides a foundation for the literature review that is conducted in
Chapter 3. Also, the different states of the machines are taken into account and are sampled to
provide a clear structure between a machine that is unable to continue processing and a machine
that can continue its processing.

18



2.6. CONCLUSION

Moreover, there are different variables to take into account while modelling the current situation.
The availability of machines, number of items in the buffer, current speed and progress towards
goals are factors that could play an important role in providing a calculated and data-based
advice for the processing line.

For the speed, it is important to keep into account both the machine availability, as well as
the buffer level. Both have impact on what is the optimal speed to choose. This should be
considered, to decide on whether a speed change will be necessary in the future, or that the
current speed is already optimal and should be kept.

The model which will be constructed needs to take care of these decision variables, and has
to provide an accurate advice about this. Normally, the operators along the line take these
decisions. The model needs to make these decisions based on historical data, and need to take
into account the current states of machines, the current speed and current buffer level. It needs
to decide whether this buffer level is a threat to eventual waste, and thus needs to decrease, or
could fill up further, and thus a higher speed is possible.
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Chapter 3

Literature

In this chapter, we discuss different models and methods regarding constructing a model to
automate and optimize the real-time decisions that should be made regarding a production
environment. Due to the frequently changing states of the production process, currently sim-
ulation, in combination with intuitive decisions, is used to get the best solution possible given
an input state. This simulation model tries to copy the real characteristics of the production
line as good as possible, as a so-called digital twin (Olcott and Mullen, 2020). This model uses
real-world data, and provides advice for the real-life production line, which means that there is
a double sided connection between the real production line and the simulation model.

First, in Section 3.1 we introduce the concepts of simulation optimization, ranking and selection,
and multi armed bandits, in order to place this thesis within the literature. In Section 3.2 we
discuss several methods that can be used to optimize a production line in real time. Also, we
discuss control procedures for changing networks. Section 3.3 describes the concept of digital
twins, which are used to represent real-life situations. This is needed to create a digital model
which represents the real life production line. In Section 3.4 we discuss the principle of machine
learning (ML), and how this can be combined with the digital twin. Within Machine Learning,
many algorithms and methods exist that can be used. Section 3.5 describes some of these
algorithms. This section aims to answer the following set of research questions and sub-questions.

2. Resulting from a literature study, what solution methods exist to optimise the output of a
production line?

• What methods do exist to optimize the output of a production line given uncertainty?

• What are the possibilities to intervene in production speed to optimize output?

• How can Machine learning contribute to the optimization of the production process?

3.1 Background

In this section we introduce the concepts of Simulation Optimization, Ranking and Selection
and Multi-Armed Bandits. These concepts are needed to place this research within literature.
This research consists of a combination of these three concepts. We first discuss in Section 3.1.1
simulation optimization, before discussing the concept of Ranking and Selection in Section 3.1.2.
Section 3.1.3 describes multi-armed bandits.
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3.2. PRODUCTION LINE OPTIMIZATION

3.1.1 Simulation Optimization

Simulation Optimization approaches are used to improve efficiency of solving stochastic opti-
mization problems (Xiao et al., 2024). The aim of simulation based optimization is to find a
combination of the input factors that optimize an key performance indicator as output (M.,
2014). When there is a large number of possible alternatives, it could simply not be possible
to run and evaluate all the alternative configurations. There have been developed many proce-
dures for searching through the space of possible input factors, for example metaheuristics as
simulated annealing, random search procedures and gradient based procedures.

3.1.2 Ranking and Selection

In ranking and selection the aim is to select one of a certain number of alternative systems as
being the best one, while controlling the probability that the selected system is actually the best
system (M., 2014).

Ranking and Selection is used to identify the best design by using noisy simulation output (Wu
et al., 2024). There are many sources in literature about how to select the best design using
simulation estimates (Goodwin et al., 2021). An example of this is the probability of good
selection (PGS) (Hong et al., 2015). Methods regarding offline simulation in order to take real
time decisions are defined by Hong and Jiang, 2019, which uses context, in order to train a
machine learning algorithm which predicts the output. They call this Offline Simulation Online
Application. Shen et al., 2021 define this as Ranking and Selection with Covariates.

Ranking and selection with covariates, or contextual ranking and selection is further studied
by Cakmak et al., 2021. Cakmak et al., 2024 defines ranking and selection as the problem
where the best among a finite number of alternatives is selected, but the true performance is
only observed through noisy evaluations. They define the context-dependent decision making
in Ranking and selection methods when the best alternative can depend on this context. This
is further analyzed by, among others Gao et al., 2019 and Shen et al., 2021. The context here is
defined as covariates.

3.1.3 Multi-armed bandits

The multi-armed bandit problem is the online variant of Ranking and Selection. It is an issue
where a trade-off should be made between exploring unknown solutions and exploiting best
found solutions. It is stated as follows: there are K arms, which all have a fixed but unknown
distribution of rewards. An agent plays an arm at each step. It receives a reward, which is
independent of previous actions (Bouneffouf and Claeys, 2021).

Contextual multi-armed bandits, also sometimes referred to as bandits with side information
or bandits with covariates, are a form of standard multi-armed bandits, which are studied
by Lai and Robbins, 1985 and Auer et al., 1995, among others (Langford and Zhang, 2008).
Contextual multi armed bandits have many applications and are more suitable than a regular
bandit problem, because many settings do have context.

3.2 Production line optimization

Production lines are often dealing with many diverse problems, in different areas, different for
every individual production line. Mathematical or computational approaches can be adopted to
optimize the process of a production line as effectively and efficiently as possible. However, this
might not always be possible due to the needed expertise, time and high computational cost
(Kang et al., 2020).
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3.3. DIGITAL TWIN

Network optimization consists typically of two items: a network model and an optimization
algorithm. The model predicts the performance and the optimization algorithm tries to gen-
erate configurations to meet this performance. One of the possibilities for network modelling
is simulation. However, simulation requires high computational cost, making it often unable
to operate at short time scales (Ferriol-Galmés et al., 2022). Short decision times are essen-
tial in the production line environment, where new decisions should be generated as soon as
possible. Advances in Machine learning techniques have led to effective techniques for analyz-
ing complex environments and solving problems in manufacturing (Kang et al., 2020). These
models are trained on real-world data, which enables them to provide high accuracy predictions
(Ferriol-Galmés et al., 2022).

By making use of new technologies it became possible to use virtual product and process planning
(Kritzinger et al., 2018). This resulted in large amounts of data, which after being processed,
analysed and evaluated by simulation and optimization tools enabled planning in real-time
(Boschert and Rosen, 2016). Advances in Machine learning, Deep Learning (DL) for example,
can be used to train with real-world data and achieve accuracy by effectively modelling the
complex network (Ferriol-Galmés et al., 2022).

Production planning and control (PPC) is the activity for creating and keeping a flow of pro-
duction in manufacturing systems. It is about finding the optimal production quantity and
processing sequence. PPC involves managing uncertainty in production systems via stabilizing
production processes and proactive reacting on the needs of production. Dynamic performance
optimization aims to monitor, evaluate and optimize KPIs continuously (Chiurco et al., 2023).

Production lines are dynamic and can encounter several disruptions or unforeseen events (Ghaleb
et al., 2021). Dynamic real-time optimization (Daoutidis et al., 2018) becomes important in a
frequently changing production network, where production control plays an important role.
Decisions should be made based on current states and should provide the production line con-
figurations. Optimization of control should be able to make decisions and balance productivity,
sustainability, flexibility, and risk. This requires integration from various optimization and AI-
based techniques. Simulation and regular planning and scheduling methods are less suitable for
this real-time decision making (Tremblay et al., 2024) due to high computational cost. Therefore,
more advanced methods are necessary to make real-time decisions at the production line.

Different data-driven models are available to simulate, optimize, and control processes (Pet-
sagkourakis et al., 2020). Supervised learning models can predict behaviors and conduct process
control. Reinforcement learning, with the use of a policy gradient method, can work directly
with policies without the need for a model.

Artificial Intelligence (AI) and manufacturing systems can be combined to provide an accurate
prediction measurement and evaluation of KPIs (Nazabadi et al., 2024). Machine Learning can
be used to improve automation of manufacturing processes (Oriti et al., 2022). A challenge
in training these models is that labeled data should be available. To overcome this problem,
simulation models can be generated, which can generate data in an effective manner. These sim-
ulation models are used to create Digital Twin (DT), which can be used to improve predictions
of future states, combined with simulation models and real-life data (Oriti et al., 2022).

3.3 Digital Twin

Today many companies have challenges with quick and accurate decision making. A solution
to the time constraints often present in decision-making processes can be the use of Digital
Twins (DTs) (Benfer et al., 2021). A DT is defined as “a virtual representation of real-world
entities and processes, synchronized at a specified frequency and fidelity” by the Digital Twin
Consortium (Olcott and Mullen, 2020). The virtual representation are the digital models and
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their data, which provides the respective information. This definition of digital models is divided
into two categories.

The first model consists of information that represents the states, entities and/or processes. The
second is a computational model, a simulation model which consists of data, algorithms that
get input and output for the representational models.

Digital Twins can be used to improve predictions of future states, support decision making,
and optimize processes and operations (Oriti et al., 2022). There are four elements for digital
twin development to meet the standards as set by the Digital Twin Consortium (Biller et al.,
2022). These are data, domain, advanced analytics and outcomes. Data should be collected
from all necessary states and types. The domain element combines the subject with modeling.
Advanced analytics tools such as simulation can be used for performance prediction, data gen-
eration and analyses, by integrating this with machine learning and optimization. The outcome
element means that the digital twin should be able to enable decision making, by providing more
information, and automating the response at optimal settings.

Integrating DTs within information systems can offer the potential for problem-solving and
decision-making support in manufacturing contexts (Chiurco et al., 2023). In this research, we
collect data using a digital model, which takes its input statistics from the real life production
line, and it is therefore important regarding the reliability of the collected data. Therefore it is
important to see how a digital twin can play a role in the collection of the data.

3.4 Machine Learning

This section describes the concept of Machine Learning and its general algorithm division. With
advances in computer technology, the ability occurred to process and store large amounts of data.
Machine learning makes use of these large datasets, to process large amount of data, and take
something valuable from it. This combined with Artificial Intelligence (AI), makes it possible
for a system or environment to learn, to be intelligent (Alpaydin, 2010).

Machine Learning techniques are designed to gain knowledge from existing data (Alpaydin,
2010). A lot of different ML algorithms are available to implement in manufacturing processes
(Wuest et al., 2016). One of the challenges is what ML technique or algorithm to select. The
following approach can be followed (Wuest et al., 2016):

• Analyze how the available data is described, for example, whether it is labelled or not, to
choose between supervised, unsupervised or reinforcement learning.

• Then, the applicability of the algorithms needs to be analyzed. For this, the structure,
data type and amount of data that is available is important to take into account.

• Afterwards, the application of the algorithms to other problems has to be researched to
identify if the chosen algorithm is suitable for the problem.

There are different types of machine learning algorithms, which can be used for different purposes
(Kang et al., 2020). For the first step of the plan provided above, it is important to distinguish
the different methods. These are as follows (Ayodele, 2010):

• Supervised learning: Deriving a function based on labels within data. An algorithm maps
input to desired outputs. In a classification problem, a learner needs to map a function
into several classes by looking at input-output examples of the function.

• Unsupervised learning: This type of machine learning does not require labeled data, but
is used when relationships among data are not known. It does not receive an evaluation
of the action that is performed (Monostori and Prohaszka, 1993).
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3.4. MACHINE LEARNING

• Semi-supervised learning: makes both use of labelled and unlabeled data.

• Reinforcement learning: observe the environment and perform a set of actions on this
current environment. This produces a reward and the model is updated accordingly.

Machine learning has been used often to improve the quality of a production line, while the
aspects of availability and especially performance are less researched (Kang et al., 2020). The
following subsections describe supervised machine learning and reinforcement learning, as these
are most applicable to the problem at hand.

3.4.1 Reinforcement learning

Reinforcement learning (RL) (Sutton and Barto, 2018) is a method that learns to maximize a
numerical reward signal. The learner must decide which actions to take and must find out by
himself which result to get from that. An agent takes an action at ∈ A, which is based on state
st ∈ S, of the environment at time t (Overbeck et al., 2021). Here, the action space A describes
the set of all possible actions to take, and S is the set of states. From an action, a reward rt is
received which leads to the next state st+1 ∈ S.

Reinforcement learning has strength in learning actions based on data when there is no clear
supervisor. An agent needs to learn by itself and from interaction with a system (Sutton and
Barto, 2018). There is a trade-off between exploitation and exploration (Wuest et al., 2016).
An agent has to exploit actions it learned to prefer. To identify those actions, the agent has to
explore by trying new actions.

In the Multi-Armed Bandit problem, the decision maker selects an action from a given set (Balef
and Maghsudi, 2023). After this selection, the player receives a reward. The player decides which
action to take in a sequence of trials, to maximize its reward.

A subset of these problems are Contextual Bandit problems, where before the performance of an
action, a context or state is observed. Based on this, the agent performs an action and receives
its reward (Balef and Maghsudi, 2023).

Important for bandit problems is the selection of actions within a state. There are multiple
strategies that can be followed. These strategies often balance exploration and exploitation.
Besides the pure exploitation and pure exploration strategies, there is ϵ-greedy. With a small
probability ϵ the agent selects a new action, that is not known to be best (Sutton and Barto,
2018). Other methods are upper confidence bound, where a confidence interval around the
mean reward is constructed. Then, the action with the highest value of expected reward and
confidence upper bound is selected as next action (Letard et al., 2024). Thompson sampling
(Thompson, 1933), selects the next action to take using a beta distribution, which is based upon
success and failures in previous iterations (Letard et al., 2024).

3.4.2 Supervised Machine Learning

Supervised Machine Learning is learning from examples that are provided by an external su-
pervisor (Sutton and Barto, 2018). Within Supervised Machine Learning, there are again many
possible algorithms to process the data. To select such an appropriate algorithm, it is important
to analyse suitable ML algorithms on research problems that are similar to the current (Wuest
et al., 2016).

A more mathematical representation is as follows (Hastie et al., 2009). There is an input variable
X, with output variable Y . Observed values wil be referred to with lowercase i. Learning means
that given the input vector X, a prediction should be made of the output Y . This prediction
is denoted by Ŷ . Prediction rules should be established. For this, a set of training data is
constructed, consisting of measurements (xi, yi), i = 1, ..., N .
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3.5. MACHINE LEARNING ALGORITHMS

Supervised Machine Learning techniques can be divided into classification or regression algo-
rithms. At classification tasks, the output is predicted within classes, it is a boolean output,
yes or no answer (Alpaydin, 2010). In regression, the answer is a numeric value. The output
is selected by a function. This function is not known, but a training set with examples of this
function is. The aim here is to generate right output for a sample of input which is not included
in training data.

For prediction in production process and control, common algorithms are the Artificial Neural
Network (ANN), Support Vector Machine (SVM), Decision Trees (DT), K-nearest neighbour
(KNN) or symbolic regression (Chiurco et al., 2023).

3.4.3 Model evaluation

Depending on the type of model, there are different methods to evaluate the performance of the
ML algorithm (Chiurco et al., 2023). This section describes different methods and their uses.

• Mean Absolute Errors (MAE): This represents the mean of the absolute errors. If the
value is lower, the accuracy is better.

MEA =

∑n
i=1 |yi − xi|

n
(3.1)

where yi is the predicted value of observation i and xi the actual value of observation i

• Mean Squared Error (MSE): MSE is a measurement that lowers as the error becomes
smaller. The formula is:

MSE =

∑n
i=1(yi − xi)

2

n
(3.2)

• Pearson’s R2: A model is more accurate when its R2 value approaches 1. The possible
values are between 0 and 1.

3.5 Machine learning algorithms

In this section, we describe the various prediction algorithms that can be used on regression
datasets. Due to the many applications of a deep neural network in multi-armed bandit problems,
we choose this algorithm. Besides, we choose to take a form of decision trees, the Gradient
Boosted Decision Tree algorithm. These algorithms are chosen because they have proven their
ability to provide high accuracy in prediction (Jiménez-Gutiérrez et al., 2024). These methods
will be explained in more detail below.

3.5.1 Gradient boosted decision trees

Gradient boosted decision tree (GBDT) is a machine learning tool which is widely used in
classification, modeling and prediction (Zhang and Jung, 2021). The fact that this model is
accurate, efficient and more easily to interpret makes it a suited model. It sums predictions of
individual decision trees, which are the base learner of the method.

Gradient boosted decision trees produce robust procedures for regression problems (Friedman,
2001). It consists of separate individual decision trees. A decision tree is a model where the
region or sample space is identified as a sequence of splits in a smaller number of steps (Alpaydin,
2010). A decision tree consists of internal nodes, places where decisions are made, and leafs at
the end, where the prediction is made.

A decision node m consists of a function fm(x), which has discrete outcomes. When input is
given, at each node, the function is evaluated and a branch is taken, depending on the outcome

25



3.5. MACHINE LEARNING ALGORITHMS

of this function fm(x). This process, starting at the root, is continued up to the moment that
a leaf node is reached. This consists of the output of the tree.

When a regression tree is constructed, the goodness of a split in a node is measured by the
impurity measure (Alpaydin, 2010). This is defined as follows. For node m,χm consists of the
subset of χ, which reaches node m. This is the set of all x ∈ χ satisfying the condition in the
decision node on the path from the root until m. Then

bm(x) =

{
1 if x ∈ χm : x reaches node m

0 otherwise
(3.3)

The goodness of a split is measured by the mean squared error from the estimated value. If gm
is this estimated value in node m, then Em = 1/Nm

∑
t(r

t − gm)2bm(xt), where Nm = |χm| =∑
t bm(xt).

If the error remaining in a node is acceptable, so Em < θr, the splitting stops and a decision (leaf
node) is created. Otherwise, this process continues and the node is split further, to minimize
the errors. A split is made with as goal that the difference in error, between not splitting and
splitting in a branch, is maximized.

These individual trees can be used for boosting. Trees are sequentially added to the boosted
model. For this, a loss function Ly(f(x)) determines how well a process is working at each step
(Unpingco, 2019).

In gradient boosting, the loss function is defined as:

L(f) =

N∑
i=1

L(yi, f(xi)) (3.4)

This can be used to optimize the following vector:

f̂ = argmin
f

L(f)

Then, the sum of component vectors can be optimized for f:

fM =
M∑

m=0

hm

With this result, a boosted decision tree ensemble is created, which is able to predict output on
the given input.

3.5.2 Artificial Neural Networks

Neural Networks in general are models that are based on the central nervous system of a brain
(Anzai, 1992). It can be represented as a distribution of neurons’ states over the network.

A Neural Network is defined as follows (Anzai, 1992): U represents a set of processing units
U = {u1, ..., un}. L is the set of links between two units. L = {(i, j)|ui ∈ U, uj ∈ U} ⊆ U × U .
All units are linked to other units by a link or from a node outside the network and send output
to other links or the output side of the network. This can be defined, using output function gi
and state transition fi, by output function as oj(t) = gj(aj(t) and state transition function as
aj(t+ 1) = fj(

∑
iwjioi(t)). Here wji represents the weight of link from unit i to j.
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Artificial Neural Networks (ANN) are part of machine learning. They are comprised of several
layers consisting of nodes. There is an input layer, an output layer, and in between some hidden
layers. Each node is connected to another.

The process of decision-making within ANNs can be separated into four phases (Jäger, 2021):

1. Initialization

2. Experience

3. Training

4. Application

First, the initialization defines the features of the agents and their environment. In the second
phase, random decisions are experienced upon which decisions should be made. In this phase, a
pool of information is gathered. In the training phase, the network is trained upon a part of the
dataset. The other part is used afterwards for validation. Finally, in the last phase, the ANN is
used for the decision making.

Neural Networks can learn dependencies and exploit experiences already gained (Panzer et al.,
2022). Learning is done by storing experiences and updating the strength of the connections.
Inputs are processed and transformed into outputs that are immediately derived from recom-
mendations, classifications or others.

Pairs of input data and their output are given to the neural network. By changing the weights of
the links in the network, the preferred output of the model can come close to the actual output
(Anzai, 1992).

3.6 Conclusion

From this literature review, we can conclude that there are many possibilities to create an online
operational control procedure, that responds fast on frequently changing networks. A simulation
model can be used as digital model that represents the real life production line. This digital
model is constructed using data from the real production line. The use of Machine Learning
methods can be beneficial to improve prediction accuracy, and use simulation data to be trained.
Also, the time constraint, that solutions should be found as soon as possible, can be solved by
implementing a machine-learning model. This will improve responsiveness to the problem and
has the potential to create solutions faster than a regular digital twin, made in a simulation
model.

Both the Neural Network and Gradient Boosted Decision Trees are applicable for pattern recog-
nition and can handle large multidimensional datasets. This means that the algorithms can
handle both multiple input as well as output variables. The ultimate decision about the perfor-
mance of the models, besides the accuracy, is the run time. Neural networks have as advantage
to be able to include difficult non-linear relationships in data.

This makes that both methods are well applicable in the problem presented in this thesis.
Therefore, both the Neural Network as well as the Gradient boosted decision trees will be
elaborated on with real data in the following chapters.

The problem central in this thesis is unconstrained in the training time, and can use a simu-
lation model as long as possible and needed to optimize the performance. No assumptions are
made about a linear relationship between input and reward, so more advanced machine learning
algorithms will be needed. Another problem, present in literature, is the selection of samples to
add to the training set. The entire possible dataset is too large for full observation, which means
that selections need to be made in order to create a dataset using training time as efficient as
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possible, resulting in a simulation optimization approach, where uncertain observations are used
to optimize the functioning of a machine learning function.
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Chapter 4

Solution method

In this chapter, we describe the solution method that is used to solve the core problem. First we
describe multiple methods that can be used to solve the problem. Thereafter, we describe the
chosen solution method. This chapter, together with Chapter 5 and Chapter 6 aims to answer
the following set of research questions:

3. How can a model be designed that fits best with the environment of the production line?

• Which model does fit best with the available data?

• What input ranges should be considered within the model?

• How can we create a set of training data?

This Chapter describes the three different parts of the model: training, testing and using.
Section 4.1 explains the procedure of training the machine learning regression function. Section
4.2 describes the approach of the testing and evaluation of this ML algorithm. In the end, we
describe the idea of how to use the model in practice in Section 4.3.

4.1 Training

Figure 4.1: Training process

Figure 4.1 depicts the flow of the training process of the model. We train offline, because this
speeds up the collection of data and this prevents making bad decisions with huge impact along
the real production line. Taking an action that is not good is required for training, but in the
real situation in the factory can cause large disruptions or waste production. This is not desired.
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We start by initializing the machine learning regression function to make sure it can predict
output on a given input. We initialize using a collection of 10 random samples. We run the
simulation model on these samples, and train the machine learning algorithm on these input-
output pairs.

We train the machine learning algorithm with contexts upon which this algorithm should predict
the performance. A context consists of information about the state of the production line.
Feedback, in the form of the real reward, is only given on the action that is selected. Therefore,
the algorithm should be trained using methods that select these actions efficiently.

We train towards a policy. The algorithm selects according to this policy the best action given
a context for training. This requires a balance between exploration and exploitation. During
exploitation, sample selection should lead to choosing the action with the best expected reward,
while in exploration should choose actions that potentially have a high expected reward. Ex-
ploration and exploitation therefore are both needed to improve the prediction function, and
to find other actions that might improve the performance, while also the best known action is
sometimes chosen to improve the policy.

The simulation model is finally used to run this sample with the chosen action. We observe what
the simulation model gives as output, and use this information to retrain the machine learning
model. We continue this process up to the moment that a stopping criterion is met, for example
we used all training time or have reached a determined number of iterations.

To prevent the retraining of the Machine Learning algorithm to take too long, we limit this
retraining as much as possible. This means that the Machine Learning algorithm is updated with
the newest information once every ten iterations. This reduces the time needed for retraining,
which means that more samples can be evaluated during training.

The following subsections describe the actions that can be selected and the way of selecting
these actions. Section 4.1.1 describes the algorithm for selecting which action to simulate. The
actions that can be taken is explained in Section 4.1.2.

4.1.1 Contextual bandit

We describe the mathematical model of the contextual bandit. Define X as the set of input
data, represented as a matrix, consisting of different samples of vector xi where i = 1, ..., n.
Each individual input variable within a sample is the variable xij , where j = 1, ...,m. So, there
are in total n samples in the dataset and m variables which represent the production line state
within a sample. The target output is defined by Yi, corresponding to input sample xi.

We also define the set of all decisions that the agent can take, where decisions range from
k = 1, ...,K. We define a function f(xi|k, Yi) that predicts the output to the given input. This
means, the function should predict the output on sample xi when decision k is taken. The
objective then can be defined as taking the optimal decision k∗ under a given context xi, which
is defined in the following equation:

k∗(Yi) = argmax
k∈{1,...,K}

f(xi|k, Yi) (4.1)

which is the optimal action k∗ under context vector xi|k. This is the optimal action, given a
specific sample as input. In this equation, k are the possible values of speed that the system can
take. The context xi is a sample observed by the real line. By training the function f(xi|k, Yi)
the agent should be able to provide correct decisions on the speed of the production line.
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In the model described above, not all contexts can be observed by the decision maker during
training. Based upon historical information, the decision maker should be able to take decisions
which are as good as possible. Contextual multi-armed bandits provide a method of training
that makes the machine learning algorithm able to provide decisions regarding these unseen
contexts. The method of selecting the action given the objective above is modelled as follows.

A context x arrives at the moment the decision should be made. An agent, the entity that
should provide advice about the next step to take, decides to take action k ∈ {k1, ..., kK}, where
K is the number of actions the agent can take. With action k in context x, the agent will receive
a reward r(k,x; Θ), where Θ corresponds to the randomness that is represented in the achieved
reward. The objective of the agent is to create a policy π that maximizes reward r(A,C; Θ) for
taking action k in context x while observing some randomness Θ.

Figure 4.2: Solution approach training

Figure 4.2 shows how the contextual bandit and simulation model work together in more detail.
As mentioned before, it is not possible to train the algorithm on all samples, so a selection
needs to be made. In order to review an as large as possible part of the complete sample space,
we provide random selected input samples. On these samples, the machine learning algorithm
predicts the reward on each action. The action that is selected is provided to the simulation
model, which presents the output back to the Machine Learning algorithm. With this iteration,
we keep training.

Per sample, the agent should take an action. Which action to take, is determined by a sampling
strategy. This strategy takes care of the exploration/exploitation trade-off. Examples of these
strategies are ϵ-greedy, Upper confidence bound or Thompson Sampling. The agent will only
receive the real reward of the combination of the sample and the action selected to evaluate.

We provide the algorithm for the selection of actions in Algorithm 1. This algorithm has as goal
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to only add samples to the set of training data that provides valuable information to the agent.
It not only receives feedback on actions that are expected to give a high return, but also take
actions that are possible to receive a high reward, and therefore can influence the performance
of the agents predictions. This means that only the most uncertain samples and actions are
added to the training set, or actions and samples that are expected to perform good. Which
action and sample is added to the training set is determined by the strategy that balances the
exploration/exploitation dilemma.

Algorithm 1 Contextual Bandit

Initialize model, determine batch size and number of actions “NumActions”
while KeepRunning = True do

for i := 1 to BatchSize do
observe context Xi

for j := 1 to NumActions do
if Algorithm = “Neural Network” then

for l := 1 to 30 do
yl := f(xi, kj ; θ)

end for
µi,j :=

∑30
l=1 yl

σi,j :=
∑30

l=1(yl−µi)
30−1

else if Algorithm = “GBDT” then
Calculate prediction interval
Calculate mean prediction µi,j

end if
end for
Select action based on sampling strategy ▷ ϵ-greedy or softmax
Add sample with selected action to training set

end for
Evaluate sample batch using simulation model
Retrain prediction function

end while

Algorithm 1 shows the general idea of how the agent selects a sample and is updated. First,
some initial samples are provided to the prediction function, with their real rewards. Based
upon these samples, the agent is initialized. Then, a batch size is determined. This batch size is
the number of samples that are selected to add to the training set, before the model is retrained.
This batch size is used to speed up the process of updating a prediction function. For each
selected sample and action, the reward is predicted, and the uncertainty of the model on this
prediction is determined. Based upon a selected strategy, for example ϵ-greedy, samples are
added to the set with training data.

It is important to take uncertainty within predictions into account, and not just select the action
with the highest expected reward. Actions that are uncertain might produce high reward, and
are therefore valuable to evaluate as well. For this, a balance should exist between exploration
and exploitation. There are several strategies to balance these two. Common strategies are
ϵ-greedy, where with a probability of 1− ϵ the best expected predicted action is taken, and with
a probability of ϵ another sample is selected. Another is Thompson Sampling, which provides
a way to select, based on randomness, a promising action that not necessarily has the highest
expected reward. Another way to overcome randomness in observations and to incorporate the
ranking and selection method is using the Boltzmann equation (Powell and Frazier, 2008). For
each action, a probability, P (ai|x) is calculated that this action could be picked, based upon
the required exploration/exploitation trade-off, and the promising expected value. We use the
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following formula, where ŷ is the expected value, and ρ is a tuneable parameter which following
a cooling scheme.

P (ai|x) =
exp (ŷ · ρ)∑j
k=1 exp (ŷ · ρ)

(4.2)

When ρ is small and reaches 0, the probabilities tend towards the highest rewards, increas-
ing probability that those will be selected. In case when ρ increases and becomes large, the
probabilities become more uniform, leading to larger exploration.

The strategy used for this is to explore in the beginning, to let the Machine Learning algorithm
get a good image of the sample space and interactions of the speed actions and rewards. When
training time has elapsed, the probability of exploitation will increase, to provide more informa-
tion about the real rewards of the best predicted actions to the machine learning algorithm.

4.1.2 Actions

We use the contextual bandit algorithm to select actions that can be taken on the current state
of the production line. We present the contextual bandit with a random selected sample. On
each sample, we use the machine learning algorithm to predict the output of all different actions
that can be taken.

Then, based on a strategy that we choose to handle the exploration-exploitation trade-off, the
contextual bandit selects one action. This action is either the best action, and will provide the
machine learning algorithm with more information about the performance of this action, or is
an action that is more unknown, and will therefore provide the machine learning algorithm with
a new opportunity about the reward, and may improve the policy of selecting actions.

The actions that the agent can take are the speed of the production line, together with the buffer
level ranges when machines should be switched on and off. The operators along the line are able
to change this speed and buffer level ranges. The speed can range between XX cuts per minute
and XX cuts per minute. To reduce the total amount of options, only step size 2 in speed is
considered. The buffer level ranges can lay between 1 and 100%. However, the buffer level when
machines should be switched on should be higher than the buffer level when machines should be
switched off. This action type is to make sure that the buffer does not overflow, but increases
the flexibility to actually produce the needed products. Table 4.1 provides an overview of the
actions that can be taken.

Action speed Action machines ON/OFF

1 XX Buffer level 0-100

2 XX

... ...

11 XX

12 XX

13 XX

Table 4.1: Actions to take

The actions are categorized into two groups. The first action the agent should take is about
the line speed. This ranges between XX and XX . The second action the agent can take
consists of the buffer level when machines can be switched on and off. The buffer levels replace
the “scenarios” which determine when machines should be switched on and off. Instead of a
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predetermined schedule, the agent should decide at which occupancy level of the buffer it is
possible to switch machines off, or back on again. For this, we choose 1 level of buffer fill rate,
which provides the switch. In order to prevent from switching on and back off again, we make
this a region of 10 %, which will be the trigger levels.

4.2 Testing

Figure 4.3: Testing process

As soon as the training phase is over, we go to the testing phase. Figure 4.3 shows the elements
of this process. Testing is still done in the offline phase, because the real production line is not
available. In testing, we use again the simulation model to run a sample, which is evaluated
over all actions. However, now we use the simulation model to provide the best advice on a
production line state. The simulation model calculates for all actions the production output and
waste, and determines the best action to take.

We then use our machine learning algorithm to predict the performance of each speed and
evaluate the results. We use two types of validation. The aim is to create a tool that can predict
as accurately as possible the required speed. We evaluate the performance of the machine
learning algorithm on different samples, and measure the amount of times the prediction is done
correctly.

Advice can be generated upon request of the operators, or each pre-determined time period. In
order to make sure the production line is not running on the wrong speed, the time intervals
between two consecutive advises cannot be too long. However, the time after which the speed
change is observed is 20 minutes. So, making more speed changes in between is not desired. We
will provide experiments that determine the optimal time interval that is required to determine
the optimal speed.

4.3 Using

When training and testing is over, and the model works as desired, we are able to implement
the model at the real production line. Figure 4.4 shows the process over time of this process.
The real production line shows the real state of the line. With this state, we use our machine
learning model to predict the performance of each action to take. We select the action that is
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Figure 4.4: Advising process

predicted to be best. In this phase, the model is fully trained, so there is no need anymore for
exploration of new solutions. We therefore select only the action that is predicted to receive the
highest production reward.

4.4 Conclusion

In this chapter we described alternative methods to solve the core problem. We chose one
solution method, which is based on the idea of contextual multi-armed bandits. This is a
procedure, which uses rewards to determine the next action to take. This sampling strategy
is based on a trade-off between exploration and exploitation. We use the simulation model to
evaluate the selected context and action. Because of the large action space, not every context
can be evaluated by the decision-making agent. This means that a smart sampling strategy
should be used, where samples are added to the training set based on a exploration-exploitation
trade-off.
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Chapter 5

Simulation modelling

In this chapter we describe the conceptual simulation model. As mentioned in Chapter 4 the
simulation model is used to evaluate given scenarios for an agent that provides advice to the
operators along the production line. A technical description of the flow of products through the
simulation model and procedure of modelling can be found in Appendix B. In this chapter we
answer the following set of research questions:

4. How can a simulation model be designed that evaluates the performance of the production
line?

• What assumptions are made during simulation modeling?

• What type of simulation model is needed?

• What factors should be considered in the simulation model?

The simulation model consists of a conveyor belt. We show the visual representation of this
simulation model in Figure 5.1. Products enter this conveyor belt from the process department,
and are packed by the machines. Products are transported across the conveyor belt, starting
from processing. Machines take these products, and pack them. If that is not the case, then
products end up in the buffer. If this buffer is also filled, the products are thrown away as waste.

Figure 5.1: Simulation model lay-out

The simulation model is a model with transient behaviour. We are interested in the performance
after an initial starting state. We also treat the simulation as terminating, because we are only
interested in the behaviour of the simulation model after the start state up to a certain moment
in the future.

The following subsections describe the different elements of the simulation model. We start
with the modelling assumptions in Section 5.1. In Section 5.2 we describe the input variables
which are used to create a sample, in Section 5.3 we describe how the model is initialized with
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5.1. MODELLING ASSUMPTIONS

these input variables. In Section 5.4 we describe the objective function which is calculated per
simulation run and given as output of the simulation model.

5.1 Modelling assumptions

In this section we describe the assumptions made during modelling. The assumptions are listed
below. Because the model is designed as a digital twin of the real-life production line, not many
assumptions are taken into account.

• There is always input of products. There is a constant flow of input from the processing
department.

• We expect that the buffer does never fail.

• Waste is only considered when the buffer is full, other types of waste along the line is not
taken into account.

• Only the first wrapping action is taken into account, as this is the process that keeps the
machine occupied.

• Machines fail up to 30 minutes. If a machine is already failed for 30 minutes or longer,
the machine will be switched off for the entire simulation run.

5.2 Input

The simulation model uses several variables and parameters as input. In the following sections,
we describe this input data, and the way it is used in the simulation model. Table 5.1 shows
the input variables, their ranges and datatype. It also shows whether the variable or parameter
is changeable during the process or fixed in advance.

Input Variable Range Datatype Comment

Speed XX - XX Cuts/min Fixed by operator

Current buffer level 0-100 Percentage Measured during process

Current state machines Working, failed Categorial Measured during process

Current Scenario 1-9 Integer Fixed by operator

Current Item ProductItem PackFormat Fixed in advance

Time already failed 0-3600 Seconds Fixed in advance

Progress to goal 0-100 Percentage Measured during process

Next item ProductItem Packformat Fixed in advance

Table 5.1: Input variables Model

We provide input to the simulation model in terms of variables. We refer to this set of input
as a sample or context. A sample serves as the starting state of the simulation model. It is
the state of the production line which is seen at a specific moment in time, when a decision
should be made. The simulation model only observes the current situation, and evaluates what
will happen in terms of production and waste. This output is in terms of an objective function,
which takes into account the waste and production per product type that is produced in the
hour following the begin state. This means that for each starting situation, a sample, that is
given as input in the simulation model, an output is created in terms of the objective value.

The input variables in Table 5.1 describe the starting state of the simulation model. The current
speed is determined by the operators and can be changed when the production line is operating.
The current buffer level is observed during process, and cannot be changed directly. The same
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holds for the state of the machines. This variable represents whether the machines are working,
failed or in standby.

Whether machines are in standby is determined by the scenario. This scenario is a specific
processing schedule, that determines what machines can be switched off temporarily, and at
what buffer level this should be done. It also determines at what buffer levels these machines
should be switched on again, to prevent the buffer from overflowing. Scenarios are predetermined
by the planning department.

Each machine packs a current item. Items are distinguished by the packaging material. Each
item has a specific goal for the number of items to produce, which is according to the pre-
determined production schedule. When this goal is reached, there occurs a changeover of pack-
aging material within a machine. Then the machine will start producing the next item on the
production schedule. When the packaging materials are different, the changeover takes longer.
This means that the machine at which the changeover takes place is switched off for a longer
period. If packaging materials are not different, changeovers take a shorter time.

If the machine is failed, the variable “Time already failed” consists of the time that the machine
has failed already. This is important for the prediction of how long the machine will remain
failed in the simulation run. Otherwise this is 0. There are, as we described in Section 2.3,
machine failures at random moments.

For the failure times of machines we use the mean time between failures (MTBF) and assume
this at 11 minutes and 31 seconds for all machines. It follows an exponential distribution. In
the starting state, we provide a failure time, which is the time that the machine is failed up
to the moment that the starting state is measured. Historical data is used to determine the
time that the machine will remain failing. This data consists of failure times up to 30 minutes.
When a machine is failing 30 minutes or longer, we assume that the machine will be failed for
the complete duration of the simulation run. Most failure times are, as we explained in Chapter
2 shorter than 30 minutes. We consider the failure behaviour of all machines the same.

We calculate he machines failure time from this list of historic failure times. First, we sort the
list and remove all times shorter than the time the machine is failing. From the remaining failure
times, one is randomly selected for the machine. The difference between this selected failure
time and the time the machine is already failed is the time of the remainder of the failure.

5.3 Production process

The output of the simulation model will be evaluated based on the starting state. The simulation
model predicts what will happen during production. The products flow over the production line,
and are packed by the packaging machines. As in the real situation, the products are taken from
the line if the machine is empty and working. Otherwise, products will be left on the production
line.

In Figure 5.2 we visualize the logic of when a product is picked by a machine, and when this
is kept on the conveyor belt. This flowchart starts as soon as the product enters the conveyor
belt and reaches the exit to a machine. It determines whether a machine should be packed by
that machine, or needs to stay on the conveyor belt. Each time a product transports along a
machine entry, this flowchart is followed to see whether the machine can pack these products.

If products on the conveyor belt come across a machine, and this machine is available, the
machine picks the products. Only if the machine is the last machine, the products are entering
the buffer. If the machines are not available, the products remain on the conveyor belt. If the
buffer is also not available, the products end up at the waste bin.
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Figure 5.2: Machine logic

Depending on the buffer level, machines can be switched off. If the buffer level is sufficiently
low, the machine with the lowest priority can be set to standby. This machine will start working
again if the buffer level is reaching an upper bound. These values depend on the scenario, which
is an input variable.

The subscenarios, which determine at which buffer levels the machines are switched off and on
are given in Appendix C, where the tables provide these buffer levels and the machine statuses
that correspond to these buffer levels. Scenario 7 provides the situation where each machine
keeps running, which means that no changes are made depending on the buffer levels.

However, when these scenarios are omitted, the simulation model determines itself which ma-
chine to set standby. The simulation model calculates a priority for each machine. We use the
following formulas to calculate the priority per machine. The time to target is calculated per
machine, which determines which machine will take the longest in the coming period for finishing
its production schedule. Then, based on this time to target, the product with the highest time
to target given the expected end time of total production is given the highest priority. When a
machine is done producing very fast, then this item gets a low priority.

TimeToTargeti =
TonsToGoi
SpeedMachinei

SOCi

∀i ∈ Machines (5.1)

where SOC is the standard operating capacity, which is assumed to be the availability of the
machines in this situation, which is assumed to be 85% for each machine, meaning that 85%
of the time, the machines are working. Failure duration is determined randomly, based upon
historic data of failures.

Priorityj =
TimeToTargeti∈j

ExpectedEndT imeOfProduction
∀i ∈ Machines (5.2)

where the expected end time of production is determined by the sum of all times that machines
will be working on their current product type.

The machine with the highest priority will be left running, where the item with the lowest
priority is evaluated to be switched off. This means that each time the buffer reaches a certain
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Figure 5.3: Flowchart determining new subscenario

lower bound, this machine will be stopped. Each time the buffer exceeds a maximum value, the
machine starts operating again, to prevent the value of waste to increase.

5.4 Objective

After an experiment is performed, the output of the simulation consists of the number of prod-
ucts, measured in tons, that are produced. Also, the items that are wasted are counted. This is
combined into a single value, depending on how the company values waste and production. This
might change per production batch, due to for example demand expectations, current inventory
levels and production deadline.

Per experiment, an objective value is calculated. Formula 5.3 provides the mathematical repre-
sentation of the objective function. This formula consists of the weighted amount of produced
products, minus the weighted amount of waste that is produced.

The product types (multipack and showcase) are separated in this objective function. These two
product types are produced on different machines, which means that the itemcodes that belong
to these product types are grouped in two groups. Machines 1, 3 and 9 produce showcases, while
machine 2, 4 and 6 produce multipacks. Because of the same nature of these product types, we
select them as being evenly important in production for demand. Therefore, we only consider
these two groups of product formats in the calculation of the objective function.

Z = argmax
k∈{K}

2∑
i=1

(xi · Pi)− TW · CTW (5.3)

where

• K = set of possible speeds

• xi = production in tons of product type i.
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• Pi = weight of product type i.

• TW = Total waste of production, in tons.

• CTW = Penalty cost of producing waste, per ton waste.

• i = {0, 1} where i = 0 if multipack, i = 1 otherwise.

The objective balances waste with production. As long as the benefit of producing an extra
item is larger than the cost of wasting another item, speeding up the production process will be
beneficial. The objective calculates the maximum value of the output of the simulation model,
given the input parameters. The output parameters that are changed in order to evaluate the
best performance are the future speed and the fact whether machines should standstill or be
producing.

The simulation model has as aim to evaluate the objective value given the input variables as
described before. The main collected variable is the production output and waste, which the
model observes given an input situation. Together with all the input data, this is collected into
one dataset. For each sample that is given as input, the simulation model provides an estimate
for the output. As mentioned before, the output is not deterministic, because of the stochastic
behaviour of machine failures.

Due to randomness in the simulation model, where machines behave in a random manner re-
garding failures and failure duration, the output given by the simulation model is stochastic.
The simulation model uses a random number stream, which means that each time the simu-
lation is started using a different random number stream, the results of the run are different.
However, when this random number stream stays the same, the random events also stays the
same. The objective value is therefore depending on the randomness that is incorporated by
the simulation model. This means that the output given by the simulation model after just one
run is not necessarily what will be seen in the real situation. Therefore it is important to take
some uncertainty with these values into account. It cannot be set as optimal or deterministic
value, because each time a context is evaluated, some other types of failures can occur, which
changes the output of the simulation model. To overcome this randomness, we can repeat the
same experiment multiple times. This can provide a confidence interval around the mean, which
enables us to provide the final solution.

5.5 Conclusion

This chapter described the working of the simulation model. This simulation model creates data,
that should represent the real life production line as good as possible. For this, we described
the input that will be given to the simulation model, which variables are important to take
into account when deciding on the best speed and machine functions for the next period. We
described an objective function which calculates a balance of waste and production, and takes
into account which type of products are produced. It takes weights, which influences the relative
importance of waste and production, and the product types among each other.

The input is given to the simulation model. This input represent the status of the line, from
which it will start the simulation run. We defined an objective value that calculates a value based
on the amount of production and waste, based upon weight and importance of production.
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Chapter 6

Machine learning algorithm

This chapter describes the design of the machine learning algorithm, using data that we collected
via a discrete event simulation model. This chapter provides an overview of the solution method
that is used to eventually provide advice to the operators along the production line to improve
the production line performance. This chapter answers the following set of research questions:

5. How can production output and waste be predicted?

• How can functions be trained to predict output?

• How can decisions be made from the prediction?

In this chapter, we first describe the data preparation techniques for the prediction functions
in Section 6.2. Then, we describe the methods of cross-validation and preventing over-fitting in
Section 6.3. Next, we describe the two different machine learning methods in Section 6.4.

6.1 Data analysis

In this section, we discuss the data that is available and run a tool that determines which machine
learning algorithms are most applicable for this type of data. Based upon a selection of random
data samples, where input is randomly selected, and evaluated by a discrete event simulation
model on the number of production and waste, RapidMiner, a data analysis tool, (“Altair
RapidMiner”, n.d.) can determine which models fits best with this data. This program models
different algorithms automatically, and optimizes the models. Table 6.1 shows the performance
of several chosen machine learning methods on the mean squared error and their running time.

Model Root MSE training time

Generalized linear model 0.022 81 ms

Deep learning 0.021 458 ms

Decision tree 0.023 17 ms

Random forest 0.027 19 ms

Gradient boosted trees 0.017 261 ms

Support vector machine 0.024 397 s

Table 6.1: Performance of algorithms

From this table we can conclude that the Gradient boosted trees perform best, but is also a
model that requires longer time before optimizing and training. This time is however not a
constraint, while performance is more important. We will train a model offline, which means
that there is no constraint in how long it may take to train a model. This means that we will
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train both a neural network, which is denoted as deep learning in the table above, and the
gradient boosted decision trees based upon the strategies that are outlined in Chapter 4.

6.2 Data preparation

This section describes the preparation of data for the machine learning algorithm. The algorithm
takes input as the life state of the production line, and predicts the output value. As we described
in Chapter 5, the output consists of the production and weight revenues.

Data is prepared for the machine learning algorithms. This means, that all numerical data is
transformed to a value between 0 and 1. The following formula normalizes the variables.

ScaledV alue =
CurrentV alue−min

max−min
(6.1)

This way, the values of the numerical variables are scaled, while keeping its proportional rela-
tionships. As a second step, the categorical variables are one-hot encoded. For example, item
codes are transformed to numerical values in this way. One-hot encoding (“OneHotEncoder”,
n.d.) is the process of transforming categorical data to numerical values. Table 6.2 shows how
the result of one-hot encoding. This is done for all categorical variables, which are the current
item, next item and scenario number.

SampleID Product1 Product2 Product3

Sample1 1 0 0
Sample2 0 1 0
Sample3 0 0 1

Table 6.2: one-hot encoding

6.3 Cross-validation

In order to prevent overfitting, a further process is cross-validation. This is done using a split
of the trainings dataset. The model is trained on each different trainingset and evaluated on
the remaining dataset, the test set. This is done multiple times, to prevent the model from
overfitting.

In cross validation (“3.1. Cross-validation: evaluating estimator performance”, n.d.), the dataset
is divided into multiple groups. In each iteration, each group is used once for testing, while the
remaining will be used for training. Each iteration, another group of data is used for testing. In
this case, the performance of the model over data that is not seen during training is evaluated.
This prevents overfitting and makes use of all available data. Using this method, the MSE is
calculated. The following table shows the working of this cross validation when a dataset is split
into 4 subsets.

Set Set1 Set 2 Set 3 Set 4

Iteration 1 Testing Training Training Training

Iteration 2 Training Testing Training Training

Iteration 3 Training Training Testing Training

Iteration 4 Training Training Training Testing

Table 6.3: Cross validation
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6.4 Prediction functions

The algorithm we describe in this thesis uses prediction functions. These prediction functions
calculate the expected reward, and are therefore important in both selecting the next context
to evaluate as well as the action to evaluate based on this context. Also, these functions should
be able to provide correct advice after the training phase. As also mentioned before, this is not
always possible with a simple representation, but may require a more extensive function. The
selected methods are a neural network and the gradient boosted decision trees. We explain the
working of these functions in the following subsections.

Both models take the current state of the line as input. For both models, we normalize the
variables, and hot-one encode the categorical variables. The input variables are provided to the
prediction function after data preparation. This means that the input consists of the following
variables:

variable Type Variable Type Variable Type

Speed Num. MC1 failure time Num. MC4 curr. item Cat.

Buffer level Num. MC2 failure time Num. MC5 curr. item Cat.

Scenario Cat. MC3 failure time Num. MC6 curr. item Cat.

MC1 tons to go Num. MC4 failure time Num. MC1 next item Cat.

MC2 tons to go Num. MC5 failure time Num. MC2 next item Cat.

MC3 tons to go Num. MC6 failure time Num. MC3 next item Cat.

MC4 tons to go Num. MC1 curr. item Cat. MC4 next item Cat.

MC5 tons to go Num. MC2 curr. item Cat. MC5 next item Cat.

MC6 tons to go Num. MC3 curr. item Cat. MC6 next item Cat.

Table 6.4: Sample input

During both the training and the usage of the tool, the prediction functions take the sample
of Table 6.4 as input, and provides a prediction of the output as value of the trained objective
value, which consists of the value of production minus penalty costs of waste.

Each model is trained using a part of the training set. Validation is done after training is
completed. In order to test the performance of both models, we use the remainder of the
training set as test set. We follow the cross validation procedure as explained in Section 6.3.

During training we optimize the parameters within the model to be able to provide the best
prediction performance on the training set. We calculate the mean squared error using cross-
validation. The mean squared error in this case means the deviation between prediction and the
target value. We use the mean squared error to compare the different models and strategies.

Section 6.4.1 describes the working of the gradient boosted trees. This was the algorithm that
performed best in terms of error of prediction in the data analysis in Section 6.1. As mentioned
in Section 3.5.2, a neural network has been proven to be a good function in learning non-linear
data relationships. Therefore, Section 6.4.2 describes the working of a neural network in the
contextual, multi-armed bandit problem definition.

6.4.1 Gradient boosted decision trees

This section describes the training and set-up of the predictive function by using a gradient
boosted decision tree regression function to make predictions of the target value given an input
sample xi.

Each time a batch of samples is collected and presented to the machine learning algorithm,
the algorithm is retrained, based on some hyper-parameters. The hyper-parameters are the
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number of estimators, maximum depth, minimum samples per split, minimum samples per leaf,
maximum number of features, sub-sample and learning rate. We tune these parameters to
achieve the best performance. These hyper-parameters are kept the same during training, and
are tuned in the end to achieve the best performance possible.

6.4.2 Neural Network

This section describes the construction of a neural network as algorithm for predictive machine
learning.

The neural network consists of multiple layers, and each layer consists of a certain amount of
nodes. By using dropout, some uncertainty is measured within the decisions made by the neural
network. This can be used to accommodate the sampling method, which will try to decide on
the best action to take. Because of the uncertain behaviour of the simulation model, not all
decisions are trustworthy, meaning that some randomness should be incorporated in the neural
network. By using dropout, some neurons are switched off. This enables the neural network
during training to overcome over fitting and incorporate some uncertainty. This will help in
sampling the best action to take.

The output of the neural network is one prediction. However, due to the use of dropout, this is
different each time. Therefore, the neural network can make multiple predictions on each sample.
This results in a mean and standard deviation which can be calculated per sample. Using the
Central Limit Theorem (CLT) (Ganti, 2022), when there are enough observation of the same
sample, the distribution of the mean will be assumed to be normally distributed. Using this fact,
a confidence interval can be constructed. Using this confidence interval, the upper confidence
bound can be calculated. The prediction with the highest mean will be selected as the best
action to take, and the tool will give that as advice to the operators along the line.

The layers of the neural network are created where the deep layers have “relu” activation func-
tions, and the input and output layer have linear functions. The relu activation function is the
rectified linear unit, and has the following formula:

f(x) = max{0, x} (6.2)

The neural network consists of several layers, an input layer, an output layer and, possibly,
hidden layers. Each layer consists of a number of nodes. These nodes are the number of items
given as input to a layer. In this case, the input layer has 55 nodes, intermediate layers have 50
nodes, and one output node is given. The network only needs to provide one prediction.

6.5 Conclusion

In this chapter, we discussed the preparation of data in combination with the use of the predictive
functions.

Data is first prepared using techniques as one-hot encoding and normalization. This will help
the model to improve prediction accuracy. Both models take a sample as input, and provide
one prediction as output.

The GBDT algorithm uses for this the individual trees as estimators, while the Neural Network
consists of multiple layers, with nodes that are input and output to the model.

Due to the uncertainty in the machine learning models, both calculate the best action by taking
multiple samples. In the case of GBDT, all estimators make a prediction, and the mean of those
predictions is given as final prediction. In case of a neural network, the nodes in the layers are
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trained, and using dropout, uncertainty is handled in the model. After enough predictions of
the Neural Network, we calculate the mean of these predictions and take the highest as advice
to the operators for implementing along the real line.
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Chapter 7

Experiments

In the previous chapters, we constructed an algorithm and described methods to train a model
that provides advice to operators. The model provides requested advice for line speed and buffer
level ranges, where machines should switch on or off. In this chapter we describe experiments
on this models, and evaluate the performance of the different settings and strategies. Therefore,
this chapter aims to answer the following set of research questions:

6. How does the model perform?

• How does training influence the performance of the model?

• Can parameters be changed to increase performance?

• What is the effect of the model on measured output?

• How much impact does the model have on the production of waste?

This chapter further describes alternative designs. We explain the setup of experiments in
Section 7.1. We explain the results of the experiments in Section 7.2.

7.1 Experimental setup

In this section we explain the experiment setup. This consists of a description of the implemen-
tation of the prediction functions, implementation of the sampling strategy and the validation
procedure. In Section 7.1.1 we explain how the gradient boosted decision tree ensemble is
constructed. In Section 7.1.2 we explain the construction of the neural network.

There are several input parameters that define the simulation run. The settings of the amount
simulation runs and total run length can be found in Table 7.1.

The run length is taken as 1 hour because then the simulation shows what is the immediate effect
of a speed change in a short period. A longer period would mean that the state has changed
too much, resulting in the fact that other decisions should be taken during this evaluation time.
A shorter period would be less desirable as well. The effect of a speed change is only measured
after 20 minutes. In order to get a representative evaluation of the production line, some time
after these 20 minutes is needed. Therefore, we take a runtime of one hour in simulation time.

In Table 7.1 we provide an overview of some settings which are relevant for the experiments. The
run length is used for the simulation model. This represents the time over which the simulation
calculates the amount of products produced and wasted. The number of replications is the
amount of similar replications are repeated. To be able to calculate the objective value, the
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revenue of production and cost of waste per ton are fixed to the values that producing a ton of
waste costs three times as much as the production of a ton of production.

Because running time plays an important role in the performance of the model, besides accuracy
of the predictions, we provide the settings of the neural network libraries and the type of laptop
that we used to run the experiments.

Total Run Length 1:00:00.00

Number of replications 10

Revenue of production € XX

Cost of waste € XX

Laptop CPU Intel Core i7-7500U

Neural Network library Tensorflow.keras

GBDT library sklearn

Table 7.1: experiment configurations

We distinguish different experiments. First of all, the algorithms we explained before are both
tested. We train both a Neural Network and a gradient boosted decision tree algorithm. For
this training, we consider two strategies for sampling trainingdata, ϵ-greedy and the softmax
method. Both we test and compare for both algorithms.

We test the reaction of the machine learning algorithms when multiple simulation runs are used
to get a more reliable result of one observation. We experiment with both 1 and 10 simulation
runs per sample.

We validate the models against the simulation model where time is no constraint. We run the
simulation model with more replications per speed for a predetermined sample, and compare
the outputs of both the machine learning algorithms and the simulation model.

We validate also against using line settings or not. These line settings, so-called scenarios,
determine at which buffer level the machines should be switched on and off. In the setting with
line settings, we use an equal weight between the different types of products produced, showcases
and multipacks. In the situation without line settings, these weights become more important,
because the products with higher priority are assigned higher weights.

The following subsections describe the setup of the machine learning algorithms. Section 7.1.1
describes the GBDT and Section 7.1.2 describes the Neural network.

7.1.1 Gradient boosted decision trees

The gradient boosted decision trees are implemented in Python. The library used for this
algorithm is sci-kit learn (Pedregosa et al., 2011). It uses the gradient boosting regressor package.
It takes as parameters a loss function, which is set to “negative mean squared error”, and a
number of estimators. Because of the negative mean squared error, the aim is to maximize this
error and get it as close to zero as possible.

The other estimators are the number of trees that are constructed. The gradient boosted decision
trees are trained using a dataset that is collected by the contextual bandit method. The hyper
parameters are fitted according to a grid search on an initial model, where the performance of
each parameter is evaluated, and the best is chosen. This resulted in the parameters that we
show in Table 7.2.
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Hyperparameter Value (incl.linesettings) Value (excl. linesettings)

Nr. of estimators 90 90

Learning rate 0.05 0.05

max depth 15 9

min samples split 50 190

min samples leaf 20 10

max features 39 49

subsample 0.85 0.75

Table 7.2: Hyperparameters GBDT

7.1.2 Neural network

The neural network uses the library tensorflow (Mart́ın Abadi et al., 2015). From tensorflow,
keras is imported as package to python. There are 2 hidden layers, 1 input layer and 1 output
layer. The input layer has the size of the number of variables that is given as input, which is 56
in total. The hidden layers have each 50 nodes, and the output layer has 1 node. This output
layer provides the prediction of the neural network. Here, the loss function is “mean squared
error” as well, while the optimizer is “SGD” (stochastic gradient descent). Dropout is used to
switch neurons off during training, which helps prevent the model from over fitting. Dropout is
fitted on the second and third layer, with a percentage provided in Table 7.3.

Parameter Model incl. line settings Model excl. line settings

Optimizer Stochastic Gradient Descent Stochastic Gradient Descent

Dropout 0.25 0.25

Layer nr. Nr. of nodes

Layer 1 50 45

Layer 2 40 35

Layer 3 40 35

Layer 4 1 1

Table 7.3: Neural Network settings

7.2 Results

In this section we present the results of the experiments that are defined in the previous Section.
In Section 7.2.1 we describe the performance of all experiments in terms of Means Squared Error.
In Section 7.2.2 we discuss the results of the different methods of sample selection to create a
training set, while we discuss the difference in input in the simulation model in Section 7.2.3.

7.2.1 Machine Learning algorithm performance

To be able to calculate the performances of the individual models, the training set is divided into
a training set and a test set. The models are trained using this training set, and the performance
is evaluated using the predictions of the model on the test set. The difference between these
predictions and the true results are calculated in terms of the Mean squared error (MSE). Also,
the number of samples and strategy of sampling is given.

We used the experimental settings in Table 7.1 to perform these experiments. Per algorithm,
we trained usng the number of samples as mentioned in Table 7.4, based on a sampling strategy.
Also, we took different amounts of replications from the simulation model to calculate the
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reward which is given as input to the Machine Learning algorithm. We stopped training after
the number of samples that is given in the table.

ML algorithm Strategy MSE # Samples Sim. replications

Softmax 0.0091 5500 1
Neural Network Softmax 0.0061 2300 10

e-greedy 0.0024 2500 10

Softmax 0.0027 5200 1
GBDT Softmax 0.0013 5500 10

e-greedy 0.0013 3000 10

Table 7.4: Results of experiments

We notice that the Mean squared error in case of the Gradient boosted decision tree is always
lower than its corresponding Neural Network variant. Also, we see that increasing the sample
size does not improve the performance of the GBDT after a while. Also, for the Neural network
we do not see an improvement when the number of samples increase.

We also tested on the calculation time, where we took the average of the prediction over 100
random created samples. The results are that the GBDT took on average 0.0044 seconds per
sample, while for the Neural Network, this took 10.71 seconds. For both models, this is a allowed
calculation time, but we notice that the prediction time for the GBDT is faster.

7.2.2 Sample selection

In this section we describe the experiments regarding sample selection. We use two strategies,
which are explained before in Chapter 4.

We compare the performance of the Boltzmann function to select samples, together with the
ϵ-greedy function. For both sampling strategies we use a scheme that adjusts a temperature
according to the desired exploring or exploiting strategy. In the case of Boltzmann function,
we update rho towards a higher value. When rho becomes high, the probability of exploitation
increases. For e-greedy, we use alpha. Alpha is adjusted from 1 towards zero, where alpha
represents the probability of exploration. In the beginning, this is large, and decreases as the
number of samples increases. This results in more exploitation when training time increases,
but also makes sure that in the beginning exploration is used to get more insight about the true
value of the samples.
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Figure 7.1: Cooling scheme

Figure 7.1 presents both values of ρ and α per iteration. For this cooling scheme we used the
following updating formulas.

αt = αt−1 ∗ 0.999

where t > 0 and α0 = 0.99 and

ρt = ρ0 + 0.001 ∗ t

where t > 0 and ρ0 = 0.001.

We compare the performance of both strategies for both Neural Network and Gradient Boosted
Decision Trees, where we compare the mean squared error over the number of samples in the
training set. Figure 7.2 and Figure 7.3 compare the strategies for the GBDT and NN respectively.

Figure 7.2: GBDT strategy comparison
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We see in Figure 7.2 that both models MSE decreases when the number of samples in the
training dataset increases. However, the ϵ-greedy is lower for all sizes of the training set. As we
saw in the final MSE in Table 7.4, both MSEs converge to the same value as soon as the number
of samples keep increasing. This means that for the GBDT, taking ϵ-greedy in the selection of
samples is better when there is a short time available for training, but does not really improve
the model when more training time is available.

Figure 7.3: NN Strategy comparison

Figure 7.3 shows the performance of the Neural network over time when sample sizes increase.
We show the performance in terms of the Mean Squared Error per size of the training set. We
notice that the size of the training set is not important for the neural networks performance
in terms of the MSE. This remains stable as soon as the training set reaches a value of 1000
samples. The 500 sample estimate here is not a reliable result, because the training set and
validation set has equal size.

The strategy of using ϵ-greedy in this case is better for smaller training durations than the
Softmax duration. This can be due to the cooling scheme used in both scenarios.

For smaller trainingsets, we see that using ϵ-greedy is a better strategy to get a smaller mean
squared error. When there is more training time available, the difference between both strategies
becomes smaller.

7.2.3 Simulation

In this section we describe the experiments that are performed with changes in the simulation
model. We perform experiments where one replication of a sample is used, and with 10 repli-
cation. This section describes the results of both algorithms with this input. We compare the
results in terms of mean squared error on the training set, and view the difference between 1
and 10 iterations of the same sample by the simulation model.
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Figure 7.4: MSE to sample size comparison GBDT

Figure 7.4 shows that the MSE for ten samples is in every point of estimations lower than the
MSE for 1 observation per sample. This would mean that the performance of 10 replications is
outperforming one replication per sample in every case.

In the case of the GBDT, the MSE does not decrease anymore from 1500 samples onwards when
only one replication is used. In the case of 10 replications, the MSE keeps getting lower as more
samples are added to the trainingset. This means that using 10 replications per sample, and
taking the average as input for the trainingdata, increases the model performance.

Figure 7.5: MSE to sample size comparison NN

In the case of the Neural Network we observe that the MSE stays stable, does not decrease with
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more samples, but seems to be lower with 10 replications than with 1 replication. This would
mean that also in this case the use of 10 replications is better than 1 replication, especially when
the training time is limited.

We notice that using more replications of the simulation model in the training period is helping
both models to overcome the uncertainty. This can be due to the large variation in performance
of the production line. This means that this randomness is a little less using more replications.
This means that using more replications for the same sample, and taking the average as output
of the simulation model improves performance of the machine learning algorithms. However,
the trainings time increases significantly. Instead of 5500 times running one replication, now we
run 5500 times 10 replications. Training is done offline, so this is not really an issue, but this is
a point of consideration.

During training we notice that the variation of one sample can have a large variation between
two random observations. This means that in one replication, lots of waste can be produced,
while in another replication, with the same settings, a high reward is observed. To overcome this
problem, and to help the machine learning algorithms better understand the dynamics of the
input variables against the output variable, we run the simulation model with 10 replications,
and take the average of this. We provide this value as result to the machine learning algorithm.
In this case, the performance of of both algorithms increase, and training the algorithms takes
less time.

7.2.4 Advice creation

The next experiment we perform is about the time between two advises. We know that the time
to fully notice the change of speed is 20 minutes, which means that changing the speed faster is
not really desired. We set up this experiment with an 8 hour run. This run is performed for 100
replications. During each interval of 15, 30, 45 or 60 minutes, the simulation stops and requests
advice to the machine learning algorithm for implementing a new speed. This advice is created
and implemented in the simulation model. We measure the average over all replications, and
depict the results in Figure 7.6.

Figure 7.6: Comparison of time between advice
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Figure 7.6 shows the results of implementing advice in certain intervals, based on the best
working GBDT model. This model is trained with ϵ-greedy strategy on 5500 samples. We
see that implementing advice each 30 minutes creates a higher reward than both shorter and
longer. This results show that implementing advice for a shorter time interval is not necessary,
and does not add more value, while waiting a longer period of time might mean that the buffer
will overflow, due to a too high speed, or that there is more opportunity to increase speed,
which means that more revenue can be obtained from changing the speed. This means, that
implementing advice each 30 minutes is most valuable for the production line.

7.3 Validation

In this section we provide an analysis of the performance of the machine learning algorithms
compared to the simulation model. We select two samples that have a different best speed in
output. We run the simulation model on all speed possibilities. In this validation, we assume
that time is no constraint, meaning that the simulation model can run as long as necessary such
that we are able to calculate a significant result.

The aim of this research is to create a tool that can predict accurately the next optimal settings.
This section aims to validate the performance of the functions regarding this goal. We compare
our experiments to the samples, and review the differences between the simulation output and
the output of the machine learning models. Table 7.5 and Table 7.6 show the two samples that
we provide to the simulation model to calculate the objective value. We only test on two samples
because of the long running time of the simulation model on one sample.

Speed XX Scenario 4

CurrItem status failure time buffer nextitem progress

Mc1 24x3 Failed 178 18x6 30

Mc2 5x32 Running 0 5x32 8

Mc3 18x4 Running 0 26x10 30

Mc4 1x32 Running 0 1x30 15

MC5 18x12 Running 0 24x7 68

Mc6 1x30 Failed 234 38 10x25 20

Table 7.5: Test sample 1 with linesettings

Table 7.5 shows a sample where two machines are failing, but the failure time is not very high.
Also, there is not much progress left at every machine. The buffer is also not filled very much.
This means that the expected value of the optimal speed is around XX . We use this sample to
see if the machine learning algorithms can provide a good advice when not much is happening
at the production line, and should therefore recognize these situations to provide advice that is
corresponding to this situation.
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Speed XX Scenario 7

CurrItem status failure time buffer nextitem progress

Mc1 24x3 Running 0 12x7 93

Mc2 5x32 Failed 882 1x32 78

Mc3 18x6 Failed 1800 18x6 28

Mc4 5x32 Failed 3600 1x32 66

MC5 18x12 Failed 3600 24x7 57

Mc6 1x32 Running 0 90 10x25 5

Table 7.6: Test sample 2 with linesettings

Table 7.6 shows the second test sample we use to validate the machine learning models with
the simulation model. In this situation, more machines have already failed, and for a longer
time period. This means that probably, these machines will be in failure for a longer time. This
means that the speed needs to be adjusted to that, and this will result in a lower speed. The
aim of this sample is to see how the machine learning algorithms cope with this situation and
will provide advice on a situation where adjustments are needed to prevent too much waste
production.

speed Sample 1 Sample 2

XX XX XX

XX XX XX

XX XX XX

XX XX XX

XX XX XX

XX XX XX

XX XX XX

XX XX XX

XX XX XX

XX XX XX

XX XX XX

XX XX XX

XX XX XX

Table 7.7: Simulation results Sample 1 + 2

From Table 7.7 we see that in case of sample 1, the optimal speed is XX cuts per minute, while
in sample 2, the optimal speed is XX cuts per minute. The value of production minus waste
is highest at these speeds. For this calculation we constructed a 95% confidence interval. The
results of this confidence interval is added to Appendix D. We compare the models of the neural
network and the gradient boosted decision trees with the results of the simulation model.
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Figure 7.7: Results Validation Sample 1

From Figure 7.7 we see that the GBDT has been better able to predict the output for every
speed. We see that the GBDT model follows the pattern that is also found in the simulation
model. We notice however that the Neural Network has less been able to follow this pattern.
However, both algorithms predict XX as optimal speed. We see that the Neural network has
more deviation from this real predicted value than the GBDT.

Figure 7.8: Results Validation Sample 2

In Figure 7.8 we see that again the GBDT follows the pattern of the simulation model, while the
Neural Network also recognizes XX as optimal speed, but does at all times predict the output
too high. The GBDT however predicts too low on performance as soon as the speed increases to
XX . We see that both algorithms were able to predict the correct speed, however the GBDT
algorithm was more close to the real prediction output, especially around the optimal speed
selection than the Neural Network.

We see from this part of the validation that the model is able to perform good on the prediction
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in two instances. However, this is not reliable for the total sample space. In order to test this, we
run 50 samples. The simulation model provides a solution on bigger step sizes of each of these
50 samples. To reduce the running time of the simulation model, we take 100 replications of
stepsize XX , which means that only for speeds divided by XX are evaluated. Table 7.8 shows
the ranges of speed evaluated by the simulation model. When the machine learning model
predicts the speed within the range corresponding to this speed, we consider the prediction
correct.

We use only 50 samples due to the long calculation time needed for the simulation model to
evaluate all these samples and provide a correct output after sufficient amount of iterations.
For the same reason, we use a step size of 5. With these settings, we can construct confidence
intervals that provide statistically significant results about the true mean.

Simulation speed Correct range

XX XX - XX

XX XX - XX

XX XX - XX

XX XX - XX

XX XX - XX

Table 7.8: Validation speed ranges

We let the machine learning model calculate the optimal speed for each of the 50 samples.
When the prediction is within the ranges of Table 7.8, we count it as a correct prediction.
Otherwise, we count it as a wrong prediction. Table 7.9 show the results in terms of percentage
of correct selection for each model. We see that the GBDTmodel performs better in this selection
procedure, with overall higher percentages than the Neural Network. It shows a confirmation
of the results we have seen before, where the GBDT model is more capable of recognizing the
correct situation.

GBDT Percentage NN Percentage

egreedy (5500) 78 egreedy (5500) 74

softmax (5500) 86 softmax (5500) 76

egreedy (3000) 76 softmax (3000) 76

softmax (3000) 86 softmax (1rep) 66

softmax (1rep) 72

Table 7.9: Validation results

From the best performing model, we analyze what would happen when every variable remains
the same, but the buffer levels increase, or the machine failures change. Both variables have
impact on the advice that is given by the model, and therefore we want to see what values of
these variables have impact on the speed advice.

We show the effect of the buffer level in Figure 7.9. We change the fill rate of the buffer, but
keep the rest of the input the same. We request advice on each of these buffer levels regarding
speed. We analyze two scenarios, one where there is no machine failure yet, and one where
machines are failing. We see that the optimal speed remains XX , independent of the buffer
level, when no machines are failing at the moment of decision making. However, we also see
that when machines are failing, the speed is reduced in the beginning, and further reduced as
soon as the buffer is filled more. This means that the chance of producing waste is increasing,
and the speed should be reduced.
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Figure 7.9: Analysis buffer level vs speed

Figure 7.10 show the predicted optimal speed given the machine failures. The graph shows the
failure times of machines in seconds, with the optimal speed corresponding to the total failure
time. The buffer is almost empty, to leave out its influence on the decision. We see that as the
machines’ failure times increases, the speed should be reduced. As soon as multiple machines
are failing a longer time, the speed is drastically reduced. In sample 14 for example, only 1
machine is failing, which means that the speed can be increased again. We see that as soon as
two machines are failing for a longer period, the speed reduces to the minimum speed possible.

Figure 7.10: Analysis speed vs machine failure time

When running without linesettings, we run the simulation model once more, on the sample
in Table 7.10. We compare the performance of this simulation model and machine learning
algorithms.
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Speed XX

CurrItem status failure time buffer nextitem progress

Mc1 18x5 Running 0 18x5 14

Mc2 1x32 Failed 402 1x30 3

Mc3 26x10 Failed 130 36x3 20

Mc4 1x32 Running 0 1x30 55

MC5 24x7 Running 0 24x7 28

Mc6 5x32 Running 0 6 5x32 30

Table 7.10: Test sample without line settings

Figure 7.11: Validation sample without line settings (speed= XX )

Figure 7.11 shows the validation of the GBDT model and the simulation model. The objective
is changed to optimize the value where either multipacks or showcases are prioritized. The
machine with the lowest priority, calculated based on the formulas in Chapter 5, are used to
determine at the begin of the run which machine to switch off. The goal of the machine learning
model is to provide an optimal speed, and an optimal buffer level which should determine when
these machine should be switched off.

The results are summarized in Figure 7.11, where we see that a small buffer level is optimal, but
that the real values do not change that much in the simulation model. We see that the machine
learning algorithm failed to notice the change between the buffer levels. This could either be
due to more randomness in the simulation model, or a small change in output given this buffer
level.

7.4 Conclusion

This chapter describes the experiment setup and results. We trained two machine learning
algorithms using a simulation model. We tried different experiments regarding sampling strategy
and simulation observations, and validated the model against this simulation model as if time
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were no constraint.

We conclude that the epsilon greedy method works better in all cases where less training time is
available. When more training time is available this has a smaller effect, meaning no difference
is seen between the two strategies. For both models this holds. We also see that using one
simulation observation, variation in the machine learning model increases significantly, ensuring
that using more simulation observations, and taking the mean increases model performance.

We validated against the simulation model, where the simulation model received enough time
to calculate a good result. We compared the models against two samples. In both scenarios we
saw a good performance, where all models predicted the output correctly. The GBDT seems to
predict more accurate around the real value.

In case the line settings are removed, and the model should evaluate which buffer levels should
be used to switch machines off and on, we notice that the difference between the options is very
small. This could have a couple of reasons. A reason can be that the dataset of training is too
small, or that the differences between the options is too small. The machine learning algorithm
cannot decide between the difference of two options.
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Chapter 8

Conclusion and Recommendations

8.1 Conclusion

In this thesis, we described the problem that the speed and line settings of the production
lines are unknown. Operators along the production line do not know the correct and optimal
speed. The speed determines the rate at which products enter the machines, while line settings
determine which machines can be switched on and off. The factor that impacted this were the
unknown cause of machine standstill, which is caused by machine failures and changeovers of
packaging materials.

In order to solve this problem of no optimal policy of line configurations, we created a decision
making tool, to help the operators along the line in adjusting their line configurations. Literature
showed that for short-term line adjustments, machine learning could help, in combination with a
digital twin. Contextual bandits can be used to train a predictive algorithm, which can provide
advice to the operators. Using this digital twin simulation model can increase training speed,
and provides more flexibility in the creation of training data.

For training, the real line cannot be used. During training, also the effects of non-optimal speeds
could be advised, which means that this disrupts the production. As alternative, a replacement
should be created. For this, the digital twin in the form of a simulation model is used to predict
the performance of the real-life production line. With this prediction, data can be gathered to
train the predictive algorithms.

Therefore, the chosen solution method is making use of the contextual bandit approach. This
approach selects what action to take in order to learn as much as possible. This action selection
is based on a sampling strategy. This sampling strategy provides the policy which action to
select, and feed to the simulation model to get a reward.

The simulation model looks one hour ahead, to predict production quantities and waste quan-
tities per sample. Per line configuration, the simulation model provides a value of the objective
function, which is a weighted difference between production and waste.

Using these different sampling strategies, the training set is created as efficiently as possible.
Only samples where the potential reward is high are added to the training set and the real
reward is asked from the simulation model.

After normalization and other data preparation techniques, the predictive functions are trained.
From both literature and data analysis, we created a Gradient Boosted Decision tree regressor
and a Neural Network regressor. Both models are trained on input data, and we aimed to let
them predict the reward of this input data.
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Based on the mean squared error, which is calculated on a part of the trainingset, we see that
the gradient boosted decision trees in general performs better. In all situations, the MSE is
lower than the neural network. This means that the predictions of the GBDT is closer to the
real expected values of the simulation model than the esimates of the neural network.

When comparing the sampling strategies, the ϵ greedy sampling strategy performs better than
using the Boltzmann function. This difference is more noticeable when the training set is
smaller. So, when less training time is available, the ϵ-greedy function is a better strategy than
the Boltzmann. As soon as the training time is no constrained anymore, both strategies seem
to work equally well.

In validation with the simulation model, we see again that the GBDT is better able to predict
the real performance. On both samples where line speed is high and where line speed is low,
the algorithm provides good predictions towards the optimal speed. The Neural Network seems
to suffer with these predictions a bit more. This is also reflected in the Mean Squared Error.
The Neural Network overestimates in both samples the performance, resulting in a too high
prediction over all speeds.

However, both models achieve to predict the correct speed in both situations. This means
that we would be able to use this model to predict the speed and advice operators along the
production line about the best speed to run for the next period.

When we include the line settings in the action set of the agent, we see that there is no difference
between the Mean Squared error which is calculated. We notice a good prediction performance
over the validation set. We however also conclude that there is no large difference noticeable in
the simulation model between the different options, making it difficult to create a good advice.
This also is reflected in the performance of the machine learning model, making it impossible to
train this properly.

The tool eventually can provide advice about speed to the operators, which results in better
performance regarding waste and production balance. The speed is predicted such that this
balance is optimal, regarding the values of producing waste and revenues of producing products.
We saw that in 86% of all situations, the prediction was close enough to the real value in the
best performing model. This means that when only advising about the speed, Table 8.1 shows
what model has the best configurations.

Setting value

Advice interval 30 minutes

Algorithm GBDT

Sampling strategy ϵ-greedy
Nr. of samples training 5500

Table 8.1: Best model

8.2 Recommendations

This section describes the recommendations for the implementation of the model at the produc-
tion line. Also it provides recommendations regarding the results and conclusion.

We concluded in the results section that the models, with only predicting the impact of future
speed of the model, are validated and follow the patterns of the simulation model. The first step
should then be to validate this model with the real life production line. The aim should be to
see if the model is trained on the correct data. This means that this model provides accurate
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results, with a fast runtime, which helps the operators along the production line in improving
the performance of the production line.

In case of further optimization without the line settings, more research is needed to see how
to increase the effect of the buffer levels. We concluded that the current way of working with
different scenarios is best for now, but can be improved by dynamically adjusting these buffer
levels. This should be done by analyzing the priorities of the different products. However, the
difference between buffer levels should be made more important, through which the machine
learning function can better estimate the impact of priority of the products.

Regarding implementation, the following plan can be followed to make sure that the tool is used
accordingly. In the first stage, the tool should be run alongside the real line, where it provides
advice based on the input when requested by operators. The operators should take into account
the advice and accept or reject the advice. When rejected, a reason should be logged, in order
to gain insight in reasons why the advice is not followed.

After this phase, the company should look, together with the operators, to the cases when the
advice was rejected. The model can be retrained on these situations to improve the performance.
When this works better, the advice can be followed more often by the operators, and the model
is able to help the operators in deciding the next state of the production line. This means
that the operators get insight in how the production line performance can be improved, and get
augmented advice about how the production line settings should be changed. However, this tool
is an advisory tool, and operators will still have to make the decision.

In the end, this should result towards the situation where operators receive advice from the
machine learning tool. It is therefore important to take into account the operators which have
to work with this tool, and review the reasons of not implementing the advice created by the
tool. This should prevent that the advice is followed without reasoning, and prevents situations
in which the tool does not provide the best advice.

8.3 Limitations and future research

In this section, we describe the ideas for future research and limitations of this thesis. There
were some assumptions made that make the model less realistic for use in combination with
the real production line, and some could be incorporated for future research. The following list
provides some ideas that might be usable for either the company or a further research project
to take into account and improving the corresponding decision-making tool.

First, we will discuss the limitations of this research, afterwards we discuss the points of future
research.

The main limitation of this research is that the data used for training is simulation data. This
means, that there is no certainty that the real production line is reacting in the same manner
as the simulation model. In order to overcome this, either the simulation model should be
evaluated along the production line, and if that is evaluated then the machine learning model
can be evaluated. Also, if something happens to be different along the real line, the model
should be retrained. Therefore, a limitation is that the simulation model should be evaluated
along the real line, and reflect the performance of the real production line, in order to achieve
a good performance of the model.

Another limitation of this research is that the validation is only done on two samples. On these
two samples, the performance was good. However, this does not promise to be towards other
samples. The reason for only validating with two samples is the large duration of the simulation
model to create significant different outputs in advice. This is a limitation in the testing and
validation phases of the model. In order to see how the model reacts on other samples, more
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testing should be done. In order to keep running time short, we only used two samples in this
research.

The following points describe the elements for future research.

1. In this thesis, we use a simulation model to train the machine learning algorithm. However,
it is time costly to construct such a model, which should be validated along the real-
life production line. Therefore, it might be beneficial to spend research on whether an
algorithm can be trained using real life data, which tries to learn the behaviour of the
production line in an as optimal as possible way.

2. The failures of the machines along the packaging line is taken, due to limited available
data, as a single variable, where no relation between different types of failures is taken
into account. When this is researched further, the prediction of the model might improve,
because the prediction of failures and failure duration can improve.

3. The current decision is made for one hour. This is done based upon the assumption
that for reality this is the most practical. For less time, there would be too much speed
changes, while providing advice for a longer time horizon might mean that a change in
settings might be beneficial. Therefore further research can be conducted in the direction
of dynamically determining how long the current settings are beneficial, and when a new
change in settings, and new advice should be provided.

4. The current model takes the production schedule as taken, which might not be the most
optimal schedule. Therefore future researchers can conduct research on scheduling items
on machines, to even speed up the process of producing certain product types.

5. In order to be able to compete with the machine learning model, the simulation model
requires further research, in how the computing budget can be optimally assigned. Certain
scenarios are more beneficial for the result to create more certainty about the result, and
might require more calculation time.

6. Failure prevention can be a topic of future research. By creating a model that predicts
failures more accurately, by checking the products before entering the packaging line,
failures can be prevented. This can improve the performance of the production line.

7. Finally, the regulating of waste can be a topic for conducting further research. Waste is
now taken as one cost on production output, but not all waste has the same cost. This
might change the decisions made by the tool, and might change the way decisions are
made. This can also take into account the relative amount of waste through the whole
production process.
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Appendix A

Machine failures

This appendix shows the graphs of the machine failures of machines two, three, four, nine and
six.

(a) Machine 2 Failures (b) Machine 3 Failures

(c) Machine 4 Failures (d) Machine 9 Failures

(e) Machine 6 Failures

Figure A.1: Machine failures
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Appendix B

Technical simulation description

This appendix describes the technical aspects of the simulation model, used to create a database,
consisting of all data that is necessary to create a machine learning model. This machine-learning
model should eventually predict the output that is given by the simulation model.

The simulation model provides output regarding given input. It evaluates what will happen in
a coming time period, when the input is the starting state of the production line. It provides
output in terms of number of items produced and wasted. Following an objective function, the
simulation provides the expected output, given some random events. This means, that each
time the simulation model is repeated, and the random number stream within the program is
changed, then the output of the simulation model is different.

The next sections describe the process of the simulation model. First, the initialization, then the
process of products along the simulation model and at last the calculation of several statistics.

B.1 Initialization

Before the start of a run, the real time data is initialized. This is done based on a table,
RealTimeData, which consists of all variables that determine the current state of the line. These
variables are the current line speed, buffer level and scenario that is used. But also the state of
machines, the duration of failure, current item and its goal towards the full production of this
item, and the item that is produced after this goal is reached. The simulation model initializes
using these data, and continues its process from this items. This means that the conveyor belt
is also filled with products. There is no warm-up period taken into account.

B.2 Process

The simulation model starts with products entering the factory through processing. Processing
pushes products through to the packaging part of the production line, after which the products
enter the line. At each entry to a machine, a check is build. This checks whether a row of
products can enter to the machine. If this is possible, the row goes through two wrapping
stations, before leaving the model. If this is not possible, the product remains on the conveyor
belt.

When a product arrives at the last machine, there is first a buffer. The check that is built here,
first checks whether there is room left in the buffer. If that is the case, the buffer will forward a
product to the machine and takes a new row. If it is not possible to forward a row of products
to the machine, the buffer will fill further.
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If there is no space left in the buffer, the products will remain on the belt. These products will,
at the end of the belt, leave the simulation model as waste products.

All products that are produced also leave the simulation model, but as produced, packed prod-
ucts.

The scenario, which is given as input, determines which machines can be switched off temporarily
to accommodate faster production of other prioritized products. This is also checked each time
a product enters the buffer. When the buffer levels exceeds the value given in Appendix C, a
machine should be switched on again. However, when the buffer level decreases below a certain
level, some scenarios enable machines to be switched off.

B.3 Statistics

At the end of a run, the simulation model calculates the amount of products produced and
wasted. It also determines with this information the value of the objective function. We defined
this objective function in Chapter 5. This objective value is corresponding to the input variables,
which are defined in RealTimeData. With this data, the machine learning model is retrained.
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Appendix C

Subscenarios

Sub Scenario Buffer LB Buffer UB mc6 MC5 mc4 mc3 mc2 mc1

Fill Buffer 0 0.05 on off on on on on

Norm. 0.05 0.1 on off on on on on

Empty Buffer 0.1 0.4 on off on on on on

Empty Max 0.4 1 on off on on on on

Table C.1: Scenario 1

Sub Scenario Buffer LB Buffer UB mc6 MC5 mc4 mc3 mc2 mc1

Fill Buffer 0 0.2 on on on standby on on

Norm. 0.2 0.3 on on on standby on on

Empty Buffer 0.4 0.5 on on on on on on

Empty Max 0.6 1 on on on on on on

Table C.2: Scenario 2

Sub Scenario Buffer LB Buffer UB mc6 MC5 mc4 mc3 mc2 mc1

Fill Buffer 0 0.2 on off on standby on on

Norm. 0.2 0.3 on off on standby on on

Empty Buffer 0.4 0.5 on off on on on on

Empty Max 0.6 1 on off on on on on

Table C.3: Scenario 3
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Sub Scenario Buffer LB Buffer UB mc6 MC5 mc4 mc3 mc2 mc1

Fill Buffer 0 0.2 on on on on standby on

Norm. 0.2 0.3 on on on on on on

Empty Buffer 0.4 0.5 on on on on on on

Empty Max 0.6 1 on on on on on on

Table C.4: Scenario 4

Sub Scenario Buffer LB Buffer UB mc6 MC5 mc4 mc3 mc2 mc1

Fill Buffer 0 0.2 on on on standby on standby

Norm. 0.2 0.3 on on on standby on on

Empty Buffer 0.4 0.5 on on on on on on

Empty Max 0.6 1 on on on on on on

Table C.5: Scenario 5

Sub Scenario Buffer LB Buffer UB mc6 MC5 mc4 mc3 mc2 mc1

Fill Buffer 0 0.2 on on on standby on on

Norm. 0.2 0.3 on on on on on on

Empty Buffer 0.4 0.5 on on on on on on

Empty Max 0.6 1 on on on on on on

Table C.6: Scenario 6

Sub Scenario Buffer LB Buffer UB mc6 MC5 mc4 mc3 mc2 mc1

Fill Buffer 0 0.05 on on on on on on

Norm. 0.05 0.2 on on on on on on

Empty Buffer 0.2 0.3 on on on on on on

Empty Max 0.5 1 on on on on on on

Table C.7: Scenario 7

Sub Scenario Buffer LB Buffer UB mc6 MC5 mc4 mc3 mc2 mc1

Fill Buffer 0 0.2 on on on on on standby

Norm. 0.2 0.3 on on on on on on

Empty Buffer 0.4 0.5 on on on on on on

Empty Max 0.6 1 on on on on on on

Table C.8: Scenario 8

Sub Scenario Buffer LB Buffer UB mc6 MC5 mc4 mc3 mc2 mc1

Fill Buffer 0 0.05 on on on on standby on

Norm. 0.05 0.15 on on on on standby on

Empty Buffer 0.4 0.5 on on on on on on

Empty Max 0.5 1 on on on on on on

Table C.9: Scenario 9
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Appendix D

Simulation results

Speed LB Mean UB

XX XX XX XX

XX XX XX XX

XX XX XX XX

XX XX XX XX

XX XX XX XX

XX XX XX XX

XX XX XX XX

XX XX XX XX

XX XX XX XX

XX XX XX XX

XX XX XX XX

XX XX XX XX

XX XX XX XX

Table D.1: Sim results Validation sample 1

Speed LB Mean UB

XX XX XX XX

XX XX XX XX

XX XX XX XX

XX XX XX XX

XX XX XX XX

XX XX XX XX

XX XX XX XX

XX XX XX XX

XX XX XX XX

XX XX XX XX

XX XX XX XX

XX XX XX XX

XX XX XX XX

Table D.2: Sim results Validation sample 2
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Machine TimeToTarget fraction

MC1 11:47:04.2424 0.09
MC2 2:31:30.9091 0.02
MC3 16:50:06.0606 0.14
MC4 1:22:17:46.6667 0.37
MC5 23:34:08.4848 0.19
MC6 1:01:15:09.0909 0.20

Table D.3: Priority + time to target calculations

Bufferlevel mean

10 XX

20 XX

30 XX

40 XX

50 XX

60 XX

70 XX

80 XX

90 XX

100 XX

Table D.4: Sim results Validation sample no-linesettings

MC1 MC2 MC3 MC4 MC5 MC6 Speed

0 0 0 0 0 0 XX

900 0 0 0 0 0 XX

900 900 0 0 0 0 XX

900 900 900 0 0 0 XX

900 900 900 900 0 0 XX

900 900 900 900 900 0 XX

900 900 900 900 900 900 XX

1800 0 0 0 0 0 XX

1800 1800 0 0 0 0 XX

1800 1800 1800 0 0 0 XX

1800 1800 1800 1800 0 0 XX

1800 1800 1800 1800 1800 0 XX

1800 1800 1800 1800 1800 1800 XX

3600 0 0 0 0 0 XX

3600 3600 0 0 0 0 XX

3600 3600 3600 0 0 0 XX

3600 3600 3600 3600 0 0 XX

3600 3600 3600 3600 3600 0 XX

3600 3600 3600 3600 3600 3600 XX

Table D.5: Machine failures experiments
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