
Master’s Thesis

Peg-In-Hole Task Using
Impedance Control For T-Flex
Demonstration

N.F.H. Jansen

Faculty
Department
Chair

Engineering Technology
Mechanics of Solids, Surfaces & Systems
Precision Engineering

Examination Committee:

Dr. Ir. W.B.J. Hakvoort
Dr. J. Dasdemir
Dr. I.S.M. Khalil

Ir. B. Gerlagh





Peg-In-Hole Task using Impedance Control for
T-Flex Demonstration

Master’s Thesis

Nathan Jansen

Presented on October 30, 2024

Examination Committee:

Dr. Ir. W.B.J. Hakvoort

Dr. J. Dasdemir

Dr. I.S.M. Khalil

Ir. B. Gerlagh

Faculty of Engineering Technology
Department of Mechanics of Solids, Surfaces and Systems

Chair of Precision Engineering





Abbreviations

Abbreviation Stands For

COR Coefficient of Restution

DOF Degree of Freedom

EOM Equation of Motion

LP Low-Pass

PE Precision Engineering

PKM Parallel Kinematic Manipulator

Notations

Notation Stands For

ẋ , d
dtx Time derivative of x

ΨA Reference frame A

ΨÂ Estimate for reference frame A

OB
A Origin of ΨA expressed in ΨB

OA Origin of ΨA expressed in the global reference frame

RB
A Rotation matrix mapping points in ΨA to ΨB

RA Rotation matrix mapping points in ΨA to global reference
frame

pA
p Point p expressed in ΨA

pp Point p expressed in global reference frame

p̂p Estimate of pp

pp,x x-component of pp

qB
A Unit quaternion representing orientation of ΨA in ΨB

qA Unit quaternion representing orientation of ΨA in global
reference frame

qA,0 Scalar part of unit quaternion qA

q̄A Vector part of unit quaternion qA

Υp =

[
pp

qp

]
Pose of Ψp expressed in ΨG, consisting of point pp and
unit quaternion qp

x̃ Skew-symmetric matrix associated with vector x
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Summary

In the recent past, the Precision Engineering group of the University of Twente developed the T-Flex; a fully
flexure-based, six degrees of freedom parallel kinematic manipulator with a large range of motion. The T-Flex
is the perfect showpiece to demonstrate the accomplishments of the PE group and the development of flexure-
based robotics on fairs and events. To showcase T-Flex’s force sensitivity, reproducibility and accelerations
through its workspace, a demonstration is developed around the peg-in-hole problem. As part of the setup, a
visually attractive peg and hole are designed and manufactured. The demonstration involves inserting the peg
and measuring the hole, followed by a dancing motion to show accelerations and the workspace, and finally
re-inserting the peg to display reproducibility. To solve the peg-in-hole problem, an impedance control-based
strategy without vision or force feedback is developed. The compliance of the controller varies throughout the
demonstration. During phases of interaction with the environment, a soft controller is implemented to limit
the interaction forces. To increase the bandwidth of the system during the dancing motion and to improve
accuracy during the re-insertion, a stiffer controller is implemented. The stiff controller has a bandwidth of
9 Hz and exhibits a maximum steady-state tracking error in the task space of 45 µm when the set of model
parameters is well-trained. Further increase of the controller stiffness is limited by destabilization of the first
parasitic eigenmode. The hole measurement procedure shows high reproducibility, and the peg-in-hole task is
performed successfully during the observed instances.
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1 Introduction

1.1 Background

In the recent past, the Precision Engineering (PE) group of the University of Twente developed the T-Flex [1];
a six degrees of freedom (DOF) parallel kinematic manipulator (PKM) with a large range of motion, shown in
Fig. 1. PKMs are renowned for achieving high accelerations and precision due to a low moving mass and high
rigidity [2]. Besides that, the T-Flex is fully flexure based. Flexures are ideal for high-precision applications
because they allow for high dynamic performance, repeatability and accuracy due to the absence of friction,
hysteresis and backlash [3]. However, the flexure’s limited range of motion generally constrains the workspace
of the flexure-based mechanism. The PE research group developed a set of flexure joints with a large range
of motion [4, 5] which facilitate the T-Flex with an unprecedented translational workspace of 5.5 dm3 [6] at a
repeatability of 0.35 µm RMS. Furthermore, the T-Flex allows for accelerations surpassing 10 g. This unique
combination of properties makes the T-Flex the perfect showpiece to demonstrate the accomplishments of the
PE group and the development of flexure-based robotics on fairs and events.

Figure 1: The T-Flex [1].

To show the potential of the T-Flex, previous efforts have been made towards a ball-bouncing demonstration with
the T-Flex [7, 8]. From this work, it was concluded that obtaining a working 3D ball-bouncing demonstration
still requires substantial effort. In order to have guarantee of a functional and appealing demonstration for the
T-Flex by the end of this graduation process, it was decided to first focus on a peg-in-hole demonstration before
continuing with the ball-bouncing demonstration.

The peg-in-hole task is a benchmark test in (assembly) robotics [9], and is deemed a suitable basis for showcasing
the T-Flex’s features. By inserting the peg in the hole, the force-transparency of the T-Flex is exploited. By
measuring the hole and re-inserting the peg later, the reproducibility of the T-Flex is displayed - a feature not
explicitly exposed in the ball-bouncing demonstration. In between the insertion and re-insertion of the peg, the
accelerations through the workspace can be demonstrated by implementing a little ”dancing” motion.

Developing the peg-in-hole demonstration required more effort than initially anticipated. As a result, the
project scope was shifted to focus solely on completing the peg-in-hole demonstration, rather than developing
a peg-in-hole demonstration and continuing with the work on the ball-bouncing demonstration.
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1.2 Previous Work

1.2.1 Ball-Bouncing Demonstration

Van der Werff investigated various options for a demonstration to show the potential of the T-Flex [7]. After
a comparative ranking, it was decided that a ball-bouncing demonstration offers the most appropriate demon-
stration of the T-Flex. The ball-bouncing demonstrates the T-Flex’s workspace and accelerations, and its
force-sensitivity is used to estimate the linear impulse of the ball.

In her efforts towards a ball-bouncing demonstration, Van der Werff developed a working 1-D demonstration.
Furthermore, she developed a 2-D bouncing algorithm and proved the feasibility of the 3-D ball-bouncing
demonstration. However, the method developed to estimate the linear impulse given to the ball proved to be
inaccurate due to the excitation of higher-order dynamics.

O’Sullivan managed to improve this estimate and investigated the options to obtain a better estimate for the
coefficient of restitution (COR) of the ball [8]. Obtaining a better estimate for the COR proved challenging,
and no straightforward relations were uncovered. Furthermore, the excitation of higher-order dynamics results
in vibrations causing the bolts in the joints of the T-Flex to loosen during operation. This, in combination
with other pending challenges, means that obtaining a working ball-bouncing demonstration in 3D still requires
substantial effort.

1.2.2 Peg-In-Hole Task

The peg-in-hole problem is well-studied in the field of robotics. The peg-in-hole operation forms the basis of
many automated assembly operations [9]. Applications in the industry range from mating splined axle assemblies
[10] to the joining of electrical connectors [11].

The peg-in-hole problem consists of two components: locating the hole and inserting the peg. Hole localization
can be achieved through vision-based systems or searching trajectories [12]. Given that previous work on the
T-Flex already supports trajectory-based hole localization, vision-based approaches are not considered to limit
the complexity of the system.

Common search trajectories are: spiral trajectories [10, 13–15], concentric circles [10], a random search [14–16],
and joining of discretized points in the search area [10, 16]. As will be discussed in section 2.2.3, the search area
for the designed setup consists of an annulus. To have a smooth searching trajectory and optimal coverage of
the searching area [13], the spiral trajectory is selected to localize the hole.

Following the localization of the hole is the insertion step. Due to the remaining positional uncertainty, inter-
action between the peg and the hole is inevitable and a form of compliance in the system is required to insert
the peg in the hole [12]. This can be achieved through passive compliant mechanisms [12, 15] or by compliant
control [12, 13, 15]. To limit system complexity, compliance is introduced in the system through control.

The remaining insertion strategies can be divided into model-based assembly strategies and learning-based
strategies [12]. Because the circular peg-in-hole problem is an extensively studied problem, many model-based
assembly strategies exist and the learning-based strategies are not further considered.

Model-based assembly strategies use either kinematic data or force and torque data about the interaction
between the peg and the hole. Strategies using kinematic data use the concept of attractive region in environment
[17]. In this method, the peg and hole are kept under a fixed relative orientation and the peg probes the surface
with the hole in it. The forward kinematics of the robot are used to calculate tip positions, resulting in a map
where the peg is partially inserted in the hole at the lowest point in the map. Based on the information in the
map, sensorless insertion is achieved by generating forces and moments accordingly.

Data regarding the interaction forces between the peg and hole are generally used in two ways. One common
approach uses a quasi-static contact model. In this approach, the peg speeds are kept low, and a force/torque
sensor is mounted between the peg and the robot. The measured interaction forces are used to apply corrective
actions for aligning the peg with the hole [18]. The corrective actions are based on the interaction model of the
peg and the hole. Because of the low speeds, this insertion method is relatively slow.

The other approach utilizing interaction forces and moments between the peg and the hole is to make a Force/-
Torque (FT) map [19, 20]. In this method, the search area is probed with the peg, while the interaction forces
and moments are stored in a map. When the map is complete, an additional model is used to interpret the
data and determine the pose of the hole. This approach proves to be sensitive to noise and does not guarantee
insertion of the peg in the hole [19, 20].
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Recent efforts focus on sensorless methods to insert the peg in the hole [13, 21, 22]. These methods require
a structured environment, but omit the need for additional F/T data and are generally faster than the other
aforementioned trajectory-based methods. To avoid the need for an extensive contact model, feedback of the
F/T data or model to interpret the measurement data, the method developed by H. Park et al. [13] is selected
to base the peg-in-hole assembly strategy on and ensure swift insertion.

The original approach by Park et al. is designed to be implemented on an 8-DOF industrial serial manipulator.
However, the problem is a 6-DOF problem, the two additional DOFs are not explicitly used. As a result, the
approach can be adjusted to be implemented on the T-Flex.

The original approach utilizes a coarse vision system to obtain an initial estimate of the pose of the hole.
This estimate is the starting point of the insertion procedure. The forward kinematics of the serial industrial
manipulator result in a positional uncertainty of the end-effector of several millimeters. The approach focuses
on the insertion of the peg in the face of this positional uncertainty. Since the setup for the demonstration with
the T-Flex will not be equipped with a vision system, the search trajectory will be adapted to localize the hole.

In the approach by Park et al., hybrid position/force control is used. In this control framework, the task space
is divided into two types of directions: directions where the position is controlled and directions where force
is controlled [23]. In the selected peg-in-hole assembly strategy, the force control exerts a downward force
perpendicular to the surface with the hole, while the peg is moved parallel to the surface by position control,
searching for the hole.

The position control is proportional only and allows for an error in the end-effector position, providing a
tuneable compliance of the manipulator. The force control is implemented as a constant feed-forward term. By
optimizing the compliance and force control parameters, the peg can be successfully inserted into the hole. Due
to the problem-specific tuning of the compliance and force parameters, the implementation is not universally
applicable to any peg-in-hole problem. This is not considered to be a problem, since the demonstration setup
forms a controlled environment.

1.3 Problem Statement

The goal of this thesis is to develop a peg-in-hole demonstration for the T-Flex, which is suitable to be shown at
fairs and events where the PE group is present. The demonstration should highlight the unique combination of
features of the T-Flex, being: high precision, accuracy and accelerations, large workspace and force transparency
due to absence of internal friction and backlash/play.

The desired sequence of the peg-in-hole demonstration is as follows:

• locate the hole and insert the peg exploiting the force transparency

• determine the pose of the hole

• extract the peg from the hole and perform a little dance to display the workspace and accelerations

• re-insert the peg in the hole exploiting the reproducibility

The required tolerances between the peg and the hole during the re-insertion processes depend on the attainable
accuracy of the controller. Therefore, understanding the limitations of the implemented control is essential in
determining the minimum clearance required between the peg and the hole.

1.4 Contribution

This thesis contains three contributions:

1. In this thesis, the peg-in-hole assembly strategy by Park et al. [13] is adapted and extended for the
demonstration with the T-Flex. The original strategy is designed for an 8-DOF serial manipulator and
uses a camera system to obtain an initial estimate of the position of the hole. The implementation is
adapted to the 6-DOF T-Flex, and the need for a camera system is omitted by implementing a trajectory-
based search for the hole.

2. This thesis shows the efficacy of the proposed method using a hardware implementation on the T-Flex.
The limits on the reproducibility of the system in free space are investigated, as well as the peg re-insertion
into the hole and the reproducibility of the hole measurement procedure.

3. This thesis illustrates how excellent force transparency from flexure-based design enables effective task
execution while interacting with an unknown environment. The force-transparency, precision, accuracy,
workspace and accelerations of the T-Flex are displayed, giving a practical representation of the PE group’s
research focus.
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1.5 Report Outline

Chapter 1 is the introductory chapter where the motivation for the presented work is given and an approach
for the peg-in-hole problem is selected. In Chapter 2 the various steps of the demonstration are discussed. The
mathematical steps involved in determining the trajectory and the pose of the hole are covered, and the control
framework is discussed. Chapter 3 concerns the derivation of application-specific control parameters and the
design of the peg and hole setup. Chapter 4 covers the experiments conducted to obtain the application-specific
parameters, and also includes an experimental validation of the methods presented. In Chapter 5 the conclusions
are drawn on the work performed, and Chapter 6 presents recommendations for future work. The appendices
provide additional information to substantiate some of the claims presented in the main chapters.
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2 Methodology

2.1 Compliance-Based Peg-In-Hole Assembly Strategy Without Force Feedback

To illustrate the idea of the compliance-based peg-in-hole assembly strategy proposed by Park et al. in [13], sec-
tions 2.1.1 – 2.1.3 will cover fundamental concepts of the approach, as well as the proposed control law. Starting
from section 2.2, the similarities and adaptations for the demonstration with the T-Flex will be discussed.

2.1.1 Peg and Hole contact Modes

During the insertion process, four contact modes between the peg and the hole can be distinguished. The
analysis of these four contact modes forms the basis for the insertion procedure and will be covered here briefly.
The distinct contact modes consist of: planar contact between the peg and surface, two-point contact between
the peg and the hole, three-point contact between the peg and the hole and insertion of the peg in the hole.
The four modes are depicted in Fig. 2.

Figure 2: Contact modes in the peg-in-hole problem, retrieved from [13]. (a) Planar contact. (b) Two-point
contact. (c) Three-point contact. (d) Insertion.

2.1.2 Assembly Strategy

To insert the peg into the hole, Park et al. divide the task into three actions. During every action a combination
of different unit motions is applied to the peg. These four motions are visualized in Fig. 3, and include: pushing,
rubbing, wiggling and screwing. The pushing motion is generated by applying a constant downward force in the
estimated z-direction of the hole (Fig. 3a). The rubbing motion is produced by generating a spiralling reference
trajectory in the estimated xy-plane of the hole (Fig. 3b). The wiggling motion is produced by rotating the
reference orientation about the x- and y-axis of the hole (Fig. 3c). And the screwing motion is generated by
rotating the reference orientation about the z-axis of the hole (Fig. 3d).

Figure 3: Unit motions for peg-in-hole assembly, retrieved from [13]. (a) Pushing. (b) Rubbing. (c) Wiggling.
(d) Screwing.

To guide the robot through the insertion process, the procedure has been divided into actions as shown in
Fig. 4: reaching, searching, and inserting. During every action, one or multiple unit motions are combined to
proceed with the insertion.
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Figure 4: Flowchart of the assembly strategy.

The process starts with reaching: the robot is provided with an approximate pose of the hole, which is provided
by the external camera system. The robot reaches for the hole by exerting the pushing motion. At some point,
the peg will be blocked by the surface or the hole. If the tip velocity of the peg in z-direction reaches below
a certain threshold for a prolonged period (∥ṗp,z(t)∥ < vth,reach ∀ t ∈ [ti, ti +∆Treach]), the robot identifies
contact and proceeds to the searching state.

In the searching state, pushing and rubbing are combined. This results in the spiral motion as shown in Fig.
3b. The details about the trajectory and control of the robot will be discussed in the methodology. Park et al
show that if the pushing force in the z-direction and the radial force resulting from the proportional action in
the xy-direction are well matched, the peg will be caught by the hole in the three-point contact state. The tip
velocity in the xy-plane is continuously monitored. If the magnitude of this velocity is below a threshold for a
prolonged time (∥ṗp,xy(t)∥ < vth,search ∀ t ∈ [ti, ti +∆Tsearch]), the robot recognizes that the hole is found.

After the searching state, the robot continues with inserting. During the inserting step, the unit motions of
pushing, wiggling and screwing are combined. The wiggling will cause the peg to slip into the hole. After the
peg has entered the hole, misalignment can cause the peg to jam in the hole. Applying a screwing motion helps
to alleviate vertical friction forces and fully inserts the peg into the hole [24]. When the peg is fully inserted in
the hole, the velocity in the z-direction does not change anymore and the robot recognizes that the peg is fully
inserted in the hole (∥ṗp,z(t)∥ < vth,insert ∀ t ∈ [ti, ti +∆Tinsert]).

2.1.3 Control for the Strategy

The dynamics of the 8-DOF manipulator in joint space can be described by the follwing equation:

M(q)q̈ + h(q, q̇) + f(q) + τfric(q̇) = τm + τext (1)

where q ∈ R8×1 denotes a vector in the joint space of the manipulator. M(q) ∈ R8×8 is the inertia matrix,
h(q, q̇) ∈ R8×1 contains the centrifugal and Coriolis terms and f(q) ∈ R8×1 contains the gravitational forces.
τfric(q̇) ∈ R8×1 represents the frictional torques in the actuated joints, τm ∈ R8×1 are the motor torques and
τext ∈ R8×1 is the torque in the joints resulting from externally applied forces and moments.

The proposed control law, which considers the pose of the end-effector, gravity compensation, frictional com-
pensation, and damping in joint space, is given by:

τm = −Dq̇ + JT

[
fm

mm

]
+ f̂(q) + τ̂fric(q̇) (2)

where f̂(q) and τ̂fric(q̇) form estimates of the gravitational and frictional torques. MatrixD ∈ R8×8 is a diagonal
damping matrix, providing absolute damping based on the joint velocities. The geometric Jacobian matrix

J ∈ R6×8 maps the joint velocities to end-effector velocities in ΨG. The control wrench
[
fT
m mT

m

]T ∈ R6×1

contains the hybrid position/force control action and is discussed below.

In the proposed assembly strategy, the robot is capable of separately generating force and position control along
the desired directions. The separation of force and position control is achieved by specifying fm as:

fm = kvΩ(p̂h − pp) + f∗ (3)

The first half of this equation acts as a proportional controller, acting on the error between the estimated
position of the hole p̂h and the position of the peg tip pp multiplied by a spring constant kv. Matrix Ω is a
so-called generalized task-specification matrix that is used to separate the position control from the force control
[25], and is discussed below. The additional force control input required to generate the unit motions is given
by f∗.
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Figure 5: Local frames of peg and hole, adapted
from [13].

Matrix Ω separates the position control from the force con-
trol. With the local frames of the peg and the hole specified
as in Fig. 5, Ω is specified as follows:

Ω = R̂hΣR̂T
h (4)

with Σ being a 3-by-3 force specification matrix. This force
specification matrix is used to specify the directions in the
local hole frame R̂h along which the proportional position
controller should act. For example, if it is desired to have
the positional control only acting in the xy-plane of the
hole, and not in the z-direction, Σ would be specified as:

Σ =

1 0 0
0 1 0
0 0 0

 (5)

When Ω is used to apply position control in the xy-plane, f∗ can be used to generate a force control input in
the z-direction of the hole. To generate a force fz that pushes in the z-direction of the hole, f∗ can be written
as:

f∗ = R̂h

 0
0
fz

 (6)

The moments mm in the wrench vector are calculated by:

mm = KωEr(R
∗R̂h,Rp) (7)

where Kω ∈ R3×3 is a diagonal matrix specifying an orientation control gain along the three axes. Rp is
the rotation matrix specifying the orientation of the peg in ΨG, and R∗ is the desired orientation of the peg
relative to the hole, expressed in local frame Ψh that aligns with the hole. The product R∗R̂h forms the desired
orientation of the peg in ΨG. Er(R

∗R̂h,Rp) is a 3-by-1 error vector that represents the error between the

orientation of matrices R∗R̂h and RB and specifies a metric for a misalignment in the three axes:

Er(RA,RB) = [RA(:,1) ×RB(:,1) +RA(:,2) ×RB(:,2) +RA(:,3) ×RB(:,3)] (8)

where RA(:,1) specifies the first column of RA, and so on. In Appendix C it is shown that mm does not
scale linearly with the rotational error, but that this is not problematic for sufficiently small rotations that are
centered about a neutral position.

2.2 Outline of T-Flex Demonstration

The peg-in-hole demonstration with the T-Flex is divided into six states: reaching, searching, inserting, mea-
suring, dancing and re-inserting. The reaching, searching and inserting states are used to localize the hole
and insert the peg similarly to the assembly strategy proposed in [13]. The key differences with the approach
presented in [13] will be highlighted in sections 2.2.2, 2.2.3 and 2.2.4 respectively.

In the first four states, the system will be controlled by a soft controller to allow for relatively large pose
errors without excessive force generated on the peg. During the demonstrating and re-inserting states a stiffer
controller is implemented to improve tracking of the reference. When the demonstration is finished, the position
of the hole can be altered to demonstrate that the location of the hole is not pre-determined. Fig. 6 shows the
flowchart of the total demonstration, the specific parameters mentioned in the flowchart will be covered later
in this chapter.
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Figure 6: Flowchart of the peg-in-hole demonstration with the T-Flex.

Section 2.2.1 will briefly introduce the hardware used, and sections 2.2.2 – 2.2.7 will define the actions of every
state of the demonstration. Chapter 3 will focus on determining the application-specific parameter values for
the parameters introduced in this chapter.

2.2.1 Peg and Hole Setup

The peg and hole are depicted in Fig. 7. Attached to the tip center of the peg is frame Ψp, as shown in Fig.
8. Attached to the top center of the tower is frame Ψt, as shown in Fig. 9. Fig. 10 shows the global reference
frame ΨG as well as the reference frame attached to the T-Flex’s end-effector ΨE .

Figure 7: CAD model of peg
and hole.

Figure 8: Location of Ψp on
peg.

Figure 9: Location of Ψt on tower.
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Figure 10: Frames ΨE and ΨG in the T-Flex (adapted from [26]).

The pose of Ψp in the global frame ΨG is expressed by Υp =
[
pT
p qT

p

]T
, where pp is a set of linear coordinates

(x-, y- and z-position) of the origin and qp is a unit quaternion representing the orientation. The pose of Ψt in
ΨG is expressed by Υt.

Fig. 11 shows how the tower and the peg are positioned in the T-Flex: the tower is placed in the center of
the T-Flex, and the peg is attached to the end-effector. The top and bottom sections of the tower are clamped
together using a quick-release clamp. The clamp can be released to rotate the hole about the longitudinal axis
of the tower. Further details of the peg and the hole will be covered in chapter 3.

2.2.2 Reaching

When the actuators of the T-Flex are off, the peg naturally rests on the surface of the tower as is shown in Fig.
11. When the T-Flex turns on and enters the reaching state, the peg is commanded to move to the center of
the tower and continually push down in the estimated z-direction of the tower. In this step, Ψt is assumed to
align with ΨG. Three seconds after entering the reaching state the state changes to searching. Before the state
transition, a measurement of the z-height of the tip is stored as the estimated height of the surface of the tower
(p̂t,z).

This reaching state differs from that of Park et al. in that the peg is commanded to a predefined position at
the center of the tower, whereas Park’s implementation uses input of an external camera system to estimate
the location of the hole and directly reaches for the hole. In this work, the hole is localized in the searchin
phase through a trajectory-based search. In the approach by Park et al., the z-velocity of the peg is monitored
to detect contact with the hole surface. However, in the T- Flex setup, the peg touches the surface of the
tower during the reaching state. Therefore, the z-velocity of the peg is zero during the entire reaching state.
Therefore, the state transitions after three seconds, as observations show that the system reaches equilibrium
within this time interval.

9



Figure 11: Setup of the peg and tower in the T-Flex.

2.2.3 Searching

During the searching state, the peg is continually pushed downward along the estimated z-direction of the tower.
During this state, the z-direction of the tower is estimated to be perpendicular to the z-direction of ΨG.

Since the hole location can be rotated around the longitudinal axis of the tower, it is known beforehand that
the hole must be located at a distance r from the origin of Ψt (Ot). The xy-coordinates of Ot and OG do

not coincide perfectly. Therefore, the xy-coordinates of Ot are estimated beforehand (
[
p̂t,x p̂t,y

]T
). The

spiral trajectory is generated around the estimate of this offset. The estimate includes an inherent degree of
uncertainty. This means that the center of the hole is situated somewhere between a minimum radius (rs−) and

a maximum radius (rs+) from
[
p̂t,x p̂t,y

]T
.

To start the searching procedure, the peg is moved in the x-direction by a distance rs− , and tilted about the
x-axis by an angle αtilt. The tilting of the peg with respect to the surface results in a single contact point
between the peg and the surface as shown in Fig. 13. In the method of Park et al. the peg is not explicitly
tilted. The tilt of the peg has been added because the single point of contact helps the peg to self-align with
the hole when the point of contact moves over the hole [13].

Next, the peg follows a spiralling trajectory that draws a spiral from rs− to rs+ . An example of such a trajectory
can be seen in Fig. 12. The incremental distance between every rotation of the spiral is given by ∆r. If ∆r is
chosen sufficiently small, the tip of the peg will eventually fully enter the hole due to the downward force and
the compliant behavior of the controller.
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Figure 12: Spiral trajectory generated between rs− and rs+ .

Fig. 14 depicts the searching trajectory. To generate the searching trajectory, a constant scalar velocity for
the peg is selected: vs. This velocity - in combination with the (current) radius of the spiral - dictates the
angular rate ωs of the spiral trajectory. For every timestep, the new radius ri and its angle with the z-axis θi is

calculated. Vector es is a unit vector specifying the direction of ri. From vs, the reference (Υd =
[
pT
d qT

d

]T
)

can be updated for every timestep (with sample time T ) as follows:

ωs,i =
vs
ri−1

θi = θi−1 + ωs,iT

ri = ri−1 +
(θi − θi−1)∆r

2π

es =
[
cos(θi) sin(θi) 0

]
pd = ries

qd =
[
cos

(
αtilt

2

)
sin

(
αtilt

2

)
es

]
(9)
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Figure 13: Pose of peg when scanning
surface.

Figure 14: Illustration of searching trajectory, adapted from [13].

Figure 15: Maximum peg tilt αmax [15]. Figure 16: Minimum peg tilt αmin [15].

αtilt is chosen such that the top of the peg can fully enter the hole when the center of the peg moves over the
center of the hole. If αtilt is too big, the peg will not enter the hole. The maximum tilt angle (αmax) that allows
the peg to enter the hole can be calculated as follows [15]:

αmax = arccos

(
d

D

)
(10)

where d is the diameter of the peg and D is the diameter of the hole.

During the searching state, the tip velocity of the peg in the z-direction (ṗp,z) is continuously monitored. When
the peg slips into the hole, a sharp peak in ṗp,z can be seen. When the peak is detected, the state transitions
to inserting.

This state transition differs from [13], where the peg velocity is monitored during the searching state and the
transition occurs when the peg velocity is below a threshold for 0.3 s. Because the searching state in [13] starts
from the estimated hole position, the peg might already be caught in the hole. Consequently, observing the
z-velocity as presented in this work is not applicable. In this work, the peg starts the searching state from the
center of the tower surface, and thus the z-velocity of the peg is a reliable indicator to detect insertion in the
hole.
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Initial tests showed that the peak in z-velocity is more distinct and reliable for detecting insertion than the
reduction in velocity when the peg sticks in the hole. This difference can be explained by comparing the two
searching trajectories. In the approach by Park et al., the searching trajectory is centered around the hole, and
the peg is more likely to stick in the hole for an extended period. In the searching trajectory used in this work,
the peg passes the hole as part of the spiral trajectory that centered around the middle of the tower. As a result
the peg is pulled out of the hole sooner than in [13].

2.2.4 Inserting

The maximum possible angle between the peg and the hole that allows for full insertion is defined by αmin, as
illustrated in Fig. 16. Angle αmin is defined in the following relation [15]:

D = d cos(αmin) + h tan(αmin) (11)

where h is the depth of the hole.

Upon entering the inserting state, the peg is partially inserted in the hole under the angle αtilt. Since αtilt >
αmin, the peg is jammed in the hole under the constant downward force. To have a better alignment between the
peg and the hole, the reference orientation qd is changed to match the orientation of ΨG. When the change of
reference orientation is complete, pp is measured and set as the reference position pd. This results in decreased
interaction forces between the peg and the hole.

The possibility exists that when qd ̸= qG, the peg does not drop in the hole promptly. This can have two
causes: the orientation of tower and global frame do not match (qt ̸= qG) and/or the orientation of the peg
and T-Flex’s end-effector are unequal (qp ̸= qE) as illustrated in Fig. 17. To overcome the misalignment that
is unknown a priori, the peg is commanded to exert a wiggling motion around the neutral orientation. Due to
the downward force and the wiggling motion, the peg is fully inserted in the hole. The only difference with [13]
in this regard is that the additional screwing motion is not generated. The peg is reliably inserted without this
additional motion, and is therefore left out.

During the inserting state, pp,z is continuously monitored. The state transitions to the measuring state when
pp,z is below the estimated height of the tower minus an insertion depth dinsert (p̂p,z < p̂t,z − dinsert). In their
method, Park et al. monitor the z-velocity during insertion and mark the task complete when the z-velocity is
below a threshold for 0.3 s. In contrast, this work monitors the insertion depth directly. Since the tower height
is known from the measurement in the reaching state, this provides a direct measure for the insertion depth,
opposed to relying on a velocity-based observation.
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Figure 17: Demonstrative representation of misalignments in frames ΨE , Ψp, Ψt and ΨG.
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2.2.5 Measuring

In the measuring state, the peg scans the hole at two heights. During these scans, three measurements are
taken inside the hole. One measurement is done to determine the qp that matches the orientation of the hole
(qh). The other two measurements estimate two points (ph1 and ph2) that are central to the hole. These two
points define a line along which the peg can be re-inserted. By measuring this way, there is no need to exactly
determine the pose of Ψp with respect to ΨE (ΨE

p ) and of ΨG
t . Fig. 18 illustrates qh, ph1 and ph2.

Figure 18: Schematic of hole with qh, ph1

and ph2.

Trajectory

Hole

Figure 19: Top-view of scanning trajectory (trajectory
is expanded to make for a clearer picture).

Upon entering the measuring state, the current peg pose Υ̂p0 is measured and passed as the reference. The

scanning trajectories are generated around Υ̂p0. The set of measured orientations will be denoted with Qh,
and the set of measured points for ph1 and ph2 will be denoted with Ph1 and Ph2 respectively.

The first measurement aims to determine qh and ph2 and is conducted at the insertion height. The peg is
commanded to scan the hole. During the scan, the peg is tilted in the hole so that the peg is always in contact
with the hole as depicted in Fig. 20, and the tip is pointing radially outward. Fig. 19 shows how the reference
for the scan is generated: by drawing a circle around p̂p0 and tilting the peg around the axis ed that is parallel
to the vector spanned from p̂p0 to pd.

Figure 20: Interaction between peg and hole
during first measurement.

Figure 21: Interaction between peg and hole during
second measurement.
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The maximum angle between the peg and the hole after insertion is given by αmin. Because it is unknown
beforehand where the center of the hole is with respect to p̂p,0, the trajectory must draw a circle with a minimum
radius rm− to make sure pd is always pointing radially outward from the center of the hole as in Fig. 19. The
trajectory pd must be pointing radially outward to prevent the controller’s linear and angular spring actions
from counteracting each other. To ensure this, rm− must be twice the distance from p̂p,0 to the center of the
hole. The maximum distance from p̂p,0 to the center of the hole can be found by inspecting the following figure:

Figure 22: Representation of peg in the bottom of the hole, indicating distance rm− .

Following Fig. 22 the minimum radius of the scanning trajectory is given by the following equation:

rm− = D − d cos(αmin) (12)

The position reference can now be calculated by drawing the circle with radius rm− around p̂p,0 as follows:

pd = p̂p0 +

rm− cos(ωst+ π)
rm− sin(ωst+ π)

0

 (13)

where ωs is the rotational frequency of the scanning trajectory and t is the time.

In the measurements of ph1 and ph2, it was observed that the measurement points are distributed nonuniformly
around the center of the hole. This can be explained by looking at Fig. 19. Because the measurement trajectory
is centered around p̂p,0 (and not centered around the middle of the hole), the peg tends to stay near the side of
p̂p,0 disproportionally long during the scan of the hole. Therefore, taking the average value of the set Ph2 will
give an estimate for ph2 that is biased towards p̂p,0. To mitigate this, the maximum values recorded in x- and
y- direction are recorded, and ph2 is estimated by averaging these maxima:

p̂h2 =
min (Ph2) + max (Ph2)

2
(14)

To keep the tip point pointing radially outward and touching the top of the hole as in Fig. 20, the peg can
be rotated by a unit quaternion qs1. A unit quaternion is defined by a scalar and a vector part: q =

[
q0 q̄

]
and has a norm equal to 1. The unit quaternion is related to the angle-axis representation of an orientation
(
[
φ e

]
) as follows: q =

[
q0 q̄

]
=

[
cos

(
1
2φ

)
sin

(
1
2φ

)
e
]
.

Rotation qs1 is a rotation relative to q̂p0. The angle of this rotation must be at least 2αmin to ensure the
contact between the peg and the hole is as in Fig. 20. The axis of rotation of qs1 must be perpendicular to the
vector spanned by (pd − p̂p0), and is indicated with ed in Fig. 19. To calculate the resulting qd the quaternion
product of qs1 with q̂p0 is calculated. The quaternion product between two quaternions qa and qb is given by
[27, Chapter 4.1]:

qa ◦ qb = (qa,0qb,0 − qT
aqb , qa,0q̄b + qb,0q̄a + q̄a × q̄b) (15)
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Following equation (15), qd can be calculated by:

qd = q̂p0 ◦ qs1 (16) with:
q̄s1 = sin(αmin)ed
qs1,0 =

√
1− |q̄s1|2

(17) with: eTd =

cos (ωst+
1
2π

)
sin

(
ωst+

1
2π

)
0

 (18)

where ed is the axis of rotation of qs1 as illustrated in Fig. 19.

Due to the nonuniform distribution of measurement points, the quaternion average - covered in a later section
- of set Qh will also result in a biased estimate for qh. Therefore, a similar min/max approach is developed for
determining qh, which will be explained using an example.

Fig. 23 shows a set of generated orientations. The magenta arrow can be compared to qh. The translucent
magenta lines represent the orientations of the peg as it would perform the scan of the hole. The red, green and
blue arrows correspond to the peg frame Ψp. The translucent red, green and blue lines represent Ψp during
the hole measurement.

Figure 23: Generated data displaying orientations of
Ψp as a hole is scanned.

Figure 24: Maximum orientations in basis vector ex

The min/max approach operates by monitoring the basis vectors of Ψp. The orientations that result in maxima
in the x-, y- and z-directions for each basis vector are stored in the set Qh+ , and the quaternion average of
Qh+ will be the estimate for qh. The black dots in Fig. 24, 25 and 26 represent the stored maxima of the basis
vectors of Ψp.

Figure 25: Maximum orientations in basis vector ey Figure 26: Maximum orientations in basis vector ez
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As a result, 18 quaternions are stored in Qh+ : the quaternions corresponding to the minimum and maximum
values in the x-, y-, and z-directions for each of the three basis vectors. When the peg makes the circular
motion, the basis vectors of Ψp draw ellipses. An ellipse has at most 4, and at least 2 unique points for the
minima and maxima in x-, y- and z-direction in R3. For example, the ellipse of ex in Fig. 24 has a relatively
low eccentricity and shows 4 unique points. The ellipse of ey in Fig. 25 has a high eccentricity, which results
in 2 unique points in combination with its orientation in R3.

To calculate the the basis vectors (
[
ex,qi ey,qi ez,qi

]
) of an orientation Qhi

in ΨG, the rotation matrix

corresponding to Qhi
(Rqi

) can be multiplied with one of the unit axes (
[
ex ey ez

]
):

ex,qi = Rqi
ex , ey,qi = Rqi

ey , ez,qi = Rqi
ez (19)

The rotation matrix R corresponding to a unit quaternion q is given by [27, Chapter 4.1]:

R(q) = ΛΛ̄T (20) where:
Λ =

[
−q̄ q0I + q̃

]
(21)

Λ̄ =
[
−q̄ q0I − q̃

]
(22)

where q̃ ∈ R3×3 represents the skew-symmetric matrix associated with the vector part of q.

The average quaternion ⟨q⟩ of a set of n quaternionsQ ∈ Rn×4 can be found by solving the following optimization
problem [28]:

⟨q⟩ = argmax
q∈S3

qTAq (23) where: A = QTQ (24)

where S3 denotes the unit 3-sphere. The solution of the maximization problem in equation (23) is given by the
eigenvector of A that corresponds to the maximum eigenvalue of A [28].

Fig. 27 shows how the average quaternions of Qh+ and Qh compare. The yellow arrows indicate the estimate
for qh based on averaging the complete set of measurement points Qh, whereas the black arrows indicate the
estimate for qh based on averaging the set of maxima Qh+ . It can be seen that the estimate of qh based on
Qh+ gives the better estimate.

Figure 27: Estimated central orientation in black, compared to the average of the measured set in yellow.

When the scan for ph2 and qh is finished, the orientation of the peg is changed to q̂h and the peg is partially
extracted from the hole. The same scanning motion is performed but now the circle of the trajectory is centered
around the x and y of p̂h2 and the orientation around q̂h. The scan results in the set of measurements Ph1.
p̂h1 is obtained equivalent to p̂h2 in equation (14).
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2.2.6 Dancing

For the demonstration of the workspace, a common industrial motion trajectory is selected: the pick-and-place
movement. Fig. 28 depicts the dancing trajectory. During the dancing motion qd is constantly matching qG,
and therefore the dancing motion displays a part of the translational workspace of the T-Flex only.

0
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Start

End

Figure 28: Pick and Place trajectory.

To have a smooth trajectory with limited jerk and acceleration of the manipulator, a 7th order polynomial is

selected to generate the point-to-point motions. The trajectory between two points in the xy-plane (
[
x1 y1

]T
and

[
x2 y2

]T
) is generated as follows [29]:

[
xd

yd

]
=

[
x1
y1

]
+

([
x2
y2

]
−
[
x1
y1

])
s(τ) (25) where

s(τ) = −20τ7 + 70τ6 − 84τ5 + 35τ4 (26)

τ =
(t− T1)

(T2− T1)
(27)

where t is the actual time, and T1 and T2 denote the starting and ending time of the trajectory respectively.

In the same time that the peg moves from
[
x1 y1

]T
to

[
x2 y2

]T
, the peg must move up and down again in

the z-direction. Therefore the the reference in z-direction is generated as follows:

zd =

{
z1 + (z2 − z1)s(τ+), if t < T2− 1

2 (T2− T1)

z2 + (z1 − z2)s(τ−), if t > T2− 1
2 (T2− T1)

(28)

where

τ+ =
(t− T1)

1
2 (T2− T1)

(29) τ− =
(t− T1− 1

2 (T2− T1))
1
2 (T2− T1)

(30)

where z1 is the lowest height of the trajectory, and z2 is the highest point of the trajectory. The desired points
for the trajectory and the trajectory time will be discussed in chapter 3.

19



2.2.7 Re-Inserting

To re-insert the peg into the hole, p̂h1, p̂h2 and q̂h are used. During the insertion, the peg is continuously kept
at the orientation q̂h. The peg is inserted along the line that is spanned by p̂h2 and p̂h1. The desired reference
position for every height h can be calculated as follows:

pd = p̂h2 +
h− p̂h2,z

p̂h1,z − p̂h2,z
(p̂h1 − p̂h2) (31)

By varying h from a height above p̂t,z to p̂h2,z, the peg can enter the hole without touching the walls.

2.3 Control Structure

2.3.1 Dynamic model of the T-Flex

In developing the control for the peg-in-hole demonstration, the work done by Seinhorst in [26] is extensively
used. Seinhorst developed an adaptive feedforward control (AFFC) algorithm based on an implicit model for
equations of motion (EOMs) of the T-Flex. The EOMs derived by Seinhorst are based on the exactly constrained
6-RUS configuration for the T-Flex. In this configuration, every arm of the T-Flex contains a rotational shoulder
joint, a universal elbow joint, and a spherical wrist joint. The current configuration of the T-Flex is 6-RSS. As
a result, every lower arm of the T-Flex contains an internal DOF. In [1] it is shown that actuator torques do
not induce significant forces in the underconstrained DOFs, resulting in small excitations only. Consequently,
parasitic motion in the internal DOFs does not result in significant error motions at either the actuators or the
end-effector. Therefore, the model developed by Seinhorst can is here used for the 6-RSS configuration.

In the dynamic model for the T-Flex, the rigid body equations of motion are extended to include actuator-
induced cogging and hysteresis effects, as well as joint reaction forces due to elastic deformations of the flexure
joints. The dynamic equations for the T-Flex as derived by Seinhorst are given by:

Jxa(x)
T
(
M(x)ẍ+ h(x, ẋ)− f(x)− g(x)

)
− χ(θ, z) = τm + τext (32)

where

χi(θi, zi) = cizi +

9∑
j=1

aij cos(jωθ) + bij sin(jωθ) (33) with żi =
θ̇i
σ

(
1− sign(θ̇)z

)
(34)

In equation (32), x ∈ R37×1 represents the generalized coordinates (ẋ and ẍ its derivatives with respect to time),
M(x) ∈ R37×37 is the inertia matrix, h(x, ẋ) contains the centrifugal and Coriolis terms, f(x) the gravitational
forces and g(x) contains the joint reaction forces. The Jacobian matrix Jxa(x) ∈ R37×6 maps the velocity of
the generalized coordinates ẋ to actuator velocities θ̇. The vector τm ∈ R6×1 represents the actuator torques,
and τext are the torques induced on the actuators resulting from external forces applied to the end-effector.

Vector χ(θ, z) ∈ R6×1 represents the cogging and hysteresis torques of the actuators, with θ being the actuator
angles and z is an additional state used in the Dahl hysteresis model of the actuator which behaves following
equation (34).

The implicit constraints of the kinematic model derived by Seinhorst are combined in the set of equations:

D(x) = D(θ,d) = 0 (35)

where d are the dependent coordinates. Every timestep, θ is updated by the encoder measurements. The vector
of dependent coordinates d is updated after every measurement of θ by a single step of the Newton-Raphson
(NR) procedure as follows [27, Chapter 2.3.5]:

∆di = −
[
Dd(θi,di−1)

]−1
D(θi,di−1) (36) s.t. xi =

[
θi
di

]
=

[
θi

di−1 +∆di

]
(37)

where Dd contains the partial derivatives of D with respect to d.
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With the generalized coordinates calculated, the generalized velocities are obtained as follows:

ẋ = Jxa(x)θ̇ where Jxa(x) =

[
I

−
[
Dd(x)

]−1
Dθ(x)

]
(38)

where Jxa(x) ∈ R37×6 is a Jacobian matrix, Dθ contains the partial derivatives of D with respect to θ and I is
a 6-by-6 identity matrix.

Finally, the generalized accelerations are calculated as follows:

ẍ = Jxa(x)θ̈ + γ(x, ẋ) where γ(x, ẋ) =

[
0

−
[
Dd(x)

]−1 ∑
j,k

2D
xjxk

ẋj ẋk

]
(39)

The solution to the kinematics problem can then be substituted into the parametric functions Seinhorst derived
for the components of equation (32) to calculate the corresponding dynamics of the T-Flex. The model parame-
ters can be trained by running Seinhorst’s AFFC algorithm with a trajectory that covers the relevant workspace,
velocities and accelerations for the desired task. Because the peg is mounted to the T-Flex’s end-effector, the
parameters had to be re-trained after mounting the peg.

The actuator angles θ, and the end-effector coordinates ΥE (defining the pose of ΨE in Fig. 10) are both part
of the set of generalized coordinates, and are given by:

θ = x(1:6) (40) ΥE = x(31:37) (41)

The controller - which will be covered in the nex section - requires two additional Jacobian matrices: Jea(x),
which maps actuator velocities to end-effector velocities, and Jxe(x), which maps end-effector velocities to
generalized velocities. These matrices are defined by the following equations:

ẋ = Jxe(x)

[
ṗE

˙̄qE

]
(42)

[
ṗE

˙̄qE

]
= Jea(x)θ̇ (43)

where Jxe(x) ∈ R37×6 and Jea(x) ∈ R6×6. Matrices Jea(x) and Jxe(x) can be calculated after solving the
kinematics. Appendix E covers the derivation of these matrices.

2.3.2 Controller

Controller Overview
The controller implemented on the T-Flex is derived from the controller presented in [13]. Several adaptations
have been made to make it more suitable for the T-Flex and the problem at hand. In the following section, the
controller for the T-Flex, as well as the similarities and differences with the controller of [13], will be discussed.

Similarly to [13], the controller for the T-Flex is designed to compensate for a part of the internal manipulator
dynamics. Alike [13], the gravitational forces are compensated. However, internal friction is not compensated
since this is virtually absent. On the other hand, the joint reaction forces and motor cogging/hysteresis are
compensated because they can be calculated with the model presented in [26] (see section 2.3.1). Including
these compensational terms will improve both tracking and steady-state performance.

The gyroscopic terms are not compensated for since this allows for proof of the system’s passivity when given a
stationary setpoint as elaborated in Appendix B. Moreover, the gyroscopic terms are typically low due to low
velocities. Including compensation for the gyroscopic forces can improve tracking, but will not influence the
steady-state performance of the system.

Furthermore, the controller creates a virtual spring-damper at the tip of the peg (see Fig. 29). The control
action resulting from the virtual spring is similar to the proportional action in [13].
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(a) Virtual Cartesian spring-damper acting on Ψp. (b) Virtual rotational spring-damper acting on Ψp.

Figure 29: Virtual spring-damper system acting on Ψp, split into two images for clarity.

While the virtual spring action follows a similar approach to that of Park et al., the implementation of damping
differs on two points. First of all, Park et al. apply damping in the joint space (see equation (2)), whereas the
damping on the T-Flex is implemented in the cartesian task space. Because Park et al. work with an 8-DOF
manipulator, cartesian damping on the end-effector would leave the internal motion in the nullspace undamped.
Consequently, the damping must be introduced in the joint space to damp all motions. Since the T-Flex is
considered a 6-DOF manipulator, the damping can be introduced in the task space while damping all motions.

Furthermore, Park et al. use absolute damping (see equation (2)), whereas the controller on the T-Flex is
designed to provide relative damping. Since both the virtual spring and damper of the T-Flex act on relative
errors, the virtual spring and damper can be tuned using a mass-spring-damper approach as discussed in section
3.3. Additionally, relative damping contributes to better reference tracking during the dancing motion.

It must be noted that a relative damping action will generate a force on the peg when it is blocked in its path.
Specifically, when the peg is caught in the hole during the searching phase, this damping force acts to extract
it. In practice, this does not lead to problems with locating the hole because the contact can be observed before
the contribution of the damping force is large enough to extract the peg from the hole.

Finally, in contrast with [13], a pose-dependent feed-forward term regarding the desired accelerations is added.
This term is added to have better dynamic performance during the dancing motion.

Mathematical Formulation
The spring, damper, and additional force control input are combined in the vector

[
fT
m mT

m

]T
. This geometric

wrench, which is expressed in the global frame, acts on the peg tip, and is calculated as follows:

[
fm

mm

]
= K

[
Ω(pd − pp)

1
2Er(R

∗Rd,Rp)

]
+

[
f∗

0

]
+D

[
ṗd − ṗp

ωd − ωp

]
(44)

where K and D are the full spring and damping matrices. Determining K and D will be covered in section
3, just like the generation of the additional forces f∗ and moments due to varying R∗. Matrix Ω is the task-
specification matrix as used by Park et al, defined as in equation (4). This matrix varies per insertion step,
as will be discussed in section 3. Vector Er is the rotational error vector as used by Park et al, defined as in
equation (8). However, here the vector is multiplied with 1

2 because of the geometric inconsistency as discussed
in Appendix C.

Tensors pp and Rp can be calculated using
[
pT
E qT

E

]T
(which is part of the output of the Newton-Raphson

procedure), under the assumption that Ψp and ΨE have matching orientations:

Rp = RE(qE) (45) pp = pE +REdpeg (46)

where dpeg specifies the origin of Ψp expressed in ΨE . As indicated in Fig. 29, the origin of Ψp is projected
along the z-direction of ΨE , such that dpeg =

[
0 0 −ℓpeg

]
.
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The peg-tip velocity ṗp can be obtained by taking the time derivative of equation (46):

ṗp = ṗE + ṘEdpeg +REḋpeg ⇒ ṗp = ṗE + ω̃EREdpeg + 0 (47)

where ω̃E is the skew-symmetric matrix associated with the angular end-effector rate ωE . The end-effector
velocity ṗE can be obtained by equation (43). Obtaining ωE will be discussed later (see equation (51)).

To be able to map the control wrench
[
fT
m mT

m

]T
that acts on Ψp to the corresponding torques in the

actuator space,
[
fT
m mT

m

]T
must first be mapped from Ψp to ΨE . The wrench imposed on the end-effector by[

fT
m mT

m

]T
will be denoted by

[
fT
c mT

c

]T
. The following equations present the calculation of

[
fT
c mT

c

]T
.

An explanation of its components will be provided below:

[
fc

mc

]
=

[
RE O
O RE

]
JEp

[
RT

E O
O RT

E

] [
fm

mm

]
(48) with JEp defined as: JEp =

[
I O

d̃peg I

]
(49)

Equation (48) can be interpreted as follows: RT
E (which equals RT

p ) transforms the globally expressed wrench[
fT
m mT

m

]T
to a wrench expressed in Ψp. The Jacobian matrix JEp maps the local wrench in Ψp to a local

wrench in ΨE . Finally, RE transforms the locally expressed wrench in ΨE back to the globally expressed

wrench
[
fT
c mT

c

]T
.

When
[
fT
c mT

c

]T
is combined with the terms for the compensation of the internal dynamics and the acceler-

ative feed-forward term, the control for the T-Flex is expressed by:

τm = Jea,ω(x)
T

[
fc

mc

]
+ Jea(x)

T

(
Jxe(x)

TM(x)Jxe(x)

[
p̈d,E

¨̄qd,E

]
− Jxe(x)

T (f(x) + g(x))

)
− χ(θ, z) (50)

with the Jacobian Jea,ω defined by:

[
ṗE

ωE

]
= Jea,ω(x)θ̇ (51)

and the Jacobian Jea defined by:

[
ṗE

˙̄qE

]
= Jea(x)θ̇ (52)

where f(x), g(x) and χ(θ, z) are the compensational terms for the gravity, elastic joint reaction forces and
the cogging plus hysteresis forces respectively. The Jacobian matrix JT

xe maps generalized end-effector forces

to generalized forces (see equation (42)), and
[
p̈T
d,E

¨̄q
T
d,E

]T
is part of the post-dependent feed-forward term,

specifying the desired accelerations of the end-effector. Special attention must be paid to Jea and Jea,ω, as will
elaborated on next.

As previously discussed,
[
fT
c mT

c

]T
is a geometric wrench imposed on ΨE . This geometric wrench is dual

to the linear and angular velocity of ΨE , and can be mapped to the actuator space using Jea,ω (see equation
(51)). Jacobian matrix Jea (see equation (52)) differs from Jea,ω in that it maps actuator velocity to generalized
end-effector velocity instead of cartesian and angular velocity. Consequently, JT

ea maps generalized end-effector
forces to actuator torques, and JT

ea,ω maps the geometric end-effector wrench to actuator torques. Appendix D
covers the derivation of Jea, whereas the derivation Jea,ω is discuscussed in Appendix E.

Since Ψp and ΨE have a fixed relative orientation, ¨̄qd,E = ¨̄qd. The desired cartesian accelerations p̈d,E is
derived from the reference signal in the following steps:

pd,E = pd −Rddpeg (53)

ṗd,E = ṗd − ω̃dRddpeg (54)

p̈d,E = p̈d − ˙̃ωdRddpeg − ω̃dω̃dRddpeg (55)

where ω̃d is the skew-symmetric matrix associated with the angular rate of the trajectory, and ˙̃ωd its derivative
with respect to time.
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The angular rate and angular acceleration of the trajectory can be obtained from the reference signal as follows
[27, Chapter 4.1]:

ωd = 2Λ

[
q̇d,0
˙̄qd

]
(56) ω̇d = 2Λ

[
q̈d,0
¨̄qd

]
(57)

where matrix Λ is defined as in equation (21).

The control framework defined in equation (50) can be visually represented in a block diagram as shown in Fig.
30. Fig. 30 also shows a notch filter and a second order low-pass filter, which will be discussed in the following
sections.

T-Flex

Inverse Dynamics Kinematics  order LP filter

Impedance / Force
Control

+

+

Accelerative
FF Forces +

 

Notch filter

Figure 30: Block diagram of control structure.

2.3.3 Filtering

2.3.3.1 LP Filter

For the NR-scheme to solve for the kinematics of the generalized coordinates x, estimates of θ, θ̇ and θ̈ are
required. A second order low-pass (LP) filter is implemented. This filter attenuates high frequency noise in
θ, and provides the estimates for θ̇ and θ̈. The estimates for θ̇ and θ̈ are also filtered by the same filter as
θ. Another important function of the LP filter is to create high frequency rol-off in the feedback control. The
implemented controller acts as a PD controller. Without the roll-off provided by the LP filter, the system suffers
from amplified high-frequency noise, and increased gain in the frequency region of the parasitic eigenfrequency.

The transfer function of a second order LP filter is given by:

HLP(s) =
ω2
n

s2 + 2ζωns+ ω2
n

(58)

where ωn is the filter’s natural frequency, and ζ is the damping ratio.
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To obtain estimates for the θ̇ and θ̈ the filter can be structured as follows:

+

- -

+

Figure 31: LP filter to obtain θ̂, ˙̂θ and ¨̂θ

where in the implementation in Simulink, the analog integrator blocks are replaced by discrete-time integrators.

The gain crossover frequency ωc of the LP filter is given by [30]:

ωc = ωn

√√
4ζ4 + 1− 2ζ2 (59)

The filter coefficients will be discussed in section 3.

2.3.3.2 Notch Filter

During the implementation of the controller, it was noticed that even for low stiffnesses (in the order of 300
Nm−1 for the Cartesian stiffness) oscillations would occur at the critical parasitic eigenfrequency. This is the
result of the PD control action applied to the tip. Some of the flexible modes are stabilized and others can be
destabilized due to non-minimum phase behavior [27, Chapter 7.2.1]. Even for low feedback gains the vibrational
modes can destabilize, because the rate feedback is non-collocated and the damping in the vibrational modes
is small.

To suppress the parasitic oscillations, a notch filter is introduced. The notch filter can be applied on several
positions in the system; on the feedback signal θ, on the input of the NR-scheme, on the torque signal, or on[
fT
m mT

m

]T
. To have minimum interference with the estimation of θ and the NR-scheme, the notch filter is

applied on the torque signal. This way, the filter will have a minimum interference with solving the system’s
kinematics and inverse dynamics, while still mitigating the parasitic oscillations.

The notch filter implemented is a second-order digital notch filter. The digital transfer function of the notch
filter is given by [31]:

HN (z) = Kn
(z − eiϕN )(z − e−iϕN )

(z − aeiϕN )(z − ae−iϕN )
⇒ Kn

z2 − 2z cos(ϕN ) + 1

z2 − 2a cos(ϕN ) + a2
(60) with: ϕN =

fN
fs

2π (61)

where fN is the desired notch frequency in Hz, and fs is the sampling frequency in Hz. a is the radius at which
the poles of the filter are placed, and should be placed on the interval [0, 1]. A value of a close to 1 yields a
sharp notch, while a value of a close to 0 yields a wide notch.

Kn is a scaling factor to normalize the magnitude response at a desired frequency. For the re-insertion, the DC
response of the filter is most important. Therefore Kn is determined such that the filter has unit magnitude at
0 Hz (z = 1):

Kn =
1− 2a cos(ϕN ) + a2

2− 2 cos(ϕN )
(62)
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The filter is implemented in the direct form 2:

+ +

+

+

+

+

+

+

Figure 32: Implementation of HN (z) in direct 2 form.

with the filter coefficients:
na = 2a cos(ϕN )
nb = −2 cos(ϕN )
nc = −a2

nd = 1

(63)
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3 Implementation & System-Specific Adaptations

3.1 Control Setup Hardware and Software

The control scheme is implemented in Simulink Real-Time 2018 and is executed on a Speadgoat baseline target
pc. The Speadgoat pc has bidirectional EtherCAT communication with the Kollmorgon AKD-P00306 motor
drives. The motor drives run in current control mode and form the interface with the Tecnotion QTR-A-133-
60-N motors and Heidenhain’s LIC 4119 encoders. For more details about the hardware of the T-Flex, please
consult [1].

3.2 Filter coefficients

3.2.1 LP Filter Coefficients

The cutoff frequency ωc of the LP filter has influence on the maximum controller bandwidth. The cutoff
frequency of the LP filter is taken to be at least 5 times the bandwidth of the controller, which is slightly more
conservative than the rule of thumb of 3 times the controller bandwidth. As will be shown in section 3.3, the
controller will be tuned such that the system behaves as a mass-spring-damper system, where the spring and
damping forces are provided by the controller. When the stiff controller is implemented, the virtual system is
tuned to a natural frequency (fn) of 9 Hz. To have some extra margin, the 9 Hz is increased to 10 Hz and ωc

is given by:

ωc = 5 · 2π · fn = 314 rad s−1 (64)

Equation (59) can be rewritten to obtain the filter’s natural frequency ωn:

ωn = ωc(
√
4ζ4 + 1− 2ζ2)−

1
2 (65)

The damping ratio is chosen to be 1
2

√
2 to have a maximally flat magnitude response. By filling in the numbers,

the following filter coefficients are found:

ωn

2ζ
= 345.16 (66) 2ζωn = 690.32 (67)

3.2.2 Notch Filter Coefficients

In [1] it is shown that the first parasitic eigenfrequency of the T-Flex is pose dependent. With the peg installed,
the first parasitic eigenfrequency is found to be 63.5 Hz at the center of the workspace. Since it is known that
the center of the hole is located somewhere in a radius of 3 cm from the workspace center, the first parasitic
eigenfrequency is also evaluated at this radius. At a radius of 3 cm, the first parasitic eigenfrequency is found
to be 59.1 Hz. Therefore, the notch frequency ϕN is taken to be the average of (59.1 + 63.5)/2 = 61.3 Hz. The
width of the rejection band is determined by the radius a of the filter poles in the z-plane. Based on empirical
tuning, a = 0.9 was found to effectively reduce oscillations. The error due to the oscillations is reduced to 2
µm peak-to-peak. Decreasing the pole radius a further does not contribute substantially to the reduction in
oscillation magnitude to justify the increased phase lag.

na = 1.6677
nb = −1.853
nc = −0.81
nd = 1

(68)
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3.3 Control Stiffness and Damping Matrices

3.3.1 Effective Mass at Peg Tip

By determining the natural frequency of the real effective end-effector mass with the virtual spring-damper
acting on it, the system’s closed-loop bandwidth can be estimated. To evaluate the natural frequency of the
closed-loop system, the effective mass at the tip Mp(x) is required. A first step in obtaining Mp(x) is to obtain
the effective mass at the end-effector ME(x). The matrix ME(x) can be derived from the fact that the system’s
kinetic energy Ekin must be equal in both the configuration space and the task space. The kinetic energy of the
system is expressed in the configuration space as follows:

Ekin =
1

2
ẋTM(x)ẋ (69)

where ẋ are the velocities of the generalized coordinates, and M(x) is the system’s mass matrix. Equation (69)
can be rewritten to the task space as follows:

Ekin =
1

2

[[
ṗE

ωE

]T
Jxe,ω(x)

T

]
M(x)

[
Jxe,ω(x)

[
ṗE

ωE

]]
(70)

consequently, ME is defined as: ME(x) = Jxe,ω(x)
TM(x)Jxe,ω(x) (71)

where the Jacobian matrix Jxe,ω maps the end-effectors linear and angular velocities to the generalized velocities.
Jacobian matrix Jxe,ω is derived in Appendix D.

To find Mp(x) from ME(x), the Jacobian matrix mapping
[
ṗT
p ωT

p

]T
to

[
ṗT
E ωT

E

]T
is required. Equation

(48) already shows how the forces on the peg tip can be mapped to the end-effector. Following equation (48),[
ṗT
p ωT

p

]T
transforms to

[
ṗT
E ωT

E

]T
as follows:

[
ṗE

ωE

]
=

[
RE O
O RE

]
J−T
Ep

[
RT

E O
O RT

E

] [
ṗp

ωp

]
(72)

In neutral position, RE = I, and thus equation (72) simplifies to:[
ṗE

ωE

]
= J−T

Ep

[
ṗp

ωp

]
(73)

The effective mass at the peg tip can now be found by combining the results of equation (70), (71) and (73):

Ekin =
1

2

[[
ṗp

ωp

]T
J−1
Ep

]
ME(x)

[
J−T
Ep

[
ṗp

ωp

]]
⇒ Mp(x) =

[
J−1
EpME(x)J

−T
Ep

]
(74)

The stiffness and damping matrices of the controller will be based on the values for Mp(x) in its central position
in the workspace, denoted simply by Mp. When filling in the numbers for equation (74), Mp is found to be:

Mp =


6.3982 −0.0037 −0.0517 −0.0055 1.4797 −0.0004
−0.0037 6.4074 −0.0112 −1.4945 −0.0046 −0.0031
−0.0517 −0.0112 7.0082 0.0039 −0.0086 0.0100
−0.0055 −1.4945 0.0039 0.5417 0.0013 −0.0053
1.4797 −0.0046 −0.0086 0.0013 0.5311 −0.0080
−0.0004 −0.0031 0.0100 −0.0053 −0.0080 0.5966

 (75)

3.3.2 Calculating the Stiffness Matrix

During the implementation of the controller, it was observed that a diagonal stiffness matrix leads to large
variations in the natural frequencies of the system. This can be explained by the strong coupling in Mp:
linearly independent restoring forces will induce accelerations in unintended directions due to the coupling of
the inertias. Therefore, it is decided to base the stiffness on the desired eigenfrequencies of the system. To do
so, a solution to the inverse eigenvalue problem must be obtained. The inverse eigenvalue problem consists of
finding the stiffness matrix K based on Mp and the desired eigenfrequencies.
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Constructing K involves several constraints on the shape of the matrix that follow from eigenvalue analysis:
K should be symmetric and real to yield real eigenvalues and eigenvectors [32, Chapter 8]. Furthermore, by
specifying K to be positive definite, the eigenvalues will be positive [32, Chapter 10].

For an undamped system, the homogeneous equation of motion is of the standard form:

Mdẍ+Kx = 0 (76)

To find an expression for K that meets the requirements, a transformation can be applied to the homogeneous
equation so that [33]:

x = M
− 1

2

d z (77) such that:

MdM
− 1

2

d z̈ +KM
− 1

2

d z = 0

M
− 1

2

d MdM
− 1

2

d z̈ +M
− 1

2

d KM
− 1

2

d z = 0

z̈ +M
− 1

2

d KM
− 1

2

d z = 0

(78)

By applying a coordinate transformation, the eigenvalues of the system do not change. Therefore, the eigenvalues
of the system in equation (78) are equal to equation (76). The result of equation (78) is another standard form,
with the solution to the homogeneous equation:

M
− 1

2

d KM
− 1

2

d = Ω2
n (79)

where Ω2
n is a diagonal matrix with the squared eigenvalues of the system. This equation can be rewritten to

find an expression for K:

K = M
1
2

d Ω2
nM

1
2

d (80)

By selecting positive and real eigenvalues for Ω2
n, the product of the matrices will yield a matrixK that is positive

definite as required. By selecting 6 distinct eigenvalues (that can be centered around a desired frequency), the
system will have 6 orthogonal natural modes. Further determining values used for K will be discussed in section
4.

3.3.3 Calculating the Damping Matrix

The damping matrix of the system is defined by the relation:

V TDV = 2ζΩn (81)

where ζ is the damping ratio and V is the scaled modal matrix of the system such that:

V TMpV = I (82) and V TKV = Ω2
n (83)

The damping matrix is then calculated as:

D = V −T 2ζΩnV
−1 (84)

ζ is taken to be 0.8 to have balanced trade-off between rise time and overshoot.

3.4 Peg and Hole Design

3.4.1 Dimensions and Tolerancing

The peg and hole must be clearly visible as they form the primary components of the demonstration. The length
of the peg and height of the tower are selected such that the insertion process is clearly visible for spectators.

The nominal diameter of the peg tip is selected to be 2 cm to strike a balance between spectator visibility
and increased mass on the end-effector. The hole is finished with a H7 tolerance (20.000 − 20.021mm). This
tolerance can be obtained using a reamer, which makes producing the part cheaper compared to tolerancing it
with the CNC machine. An air channel is machined to the bottom of the hole to allow air to escape during peg
insertion, preventing the generation of significant damping forces. Fig. 33 shows a technical drawing of the top
section of the tower.
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Figure 33: Technical drawing of the tower’s top section

To determine the tolerance of the peg tip, the peg tip’s steady-state tracking error reconstructed from the
actuator positions is used. During preliminary testing (covered in more detail in section 4.3) the tracking error
in the xy-plane was found to be ≈ 30 µm at maximum, and the error in the z-direction ≈ 100 µm. To investigate
the influence of the error in the z-direction on the error in the xy-plane (∆xy(ez)), the error can be projected
on the xy-plane as follows:

∆xy(ez) = ez sin(θt) (85)

where θt is the angle between Ψt and ΨG and ez the error in z-direction. To obtain a maximum for ∆xy(ez),
θt is assumed to be 1° at maximum. In practice, it is measured to be less than 1°. When the numbers are filled
in into equation (85), ez does contribute to an error in the xy-plane with 2µm at maximum. This gives a total
of ≈ 32 µm error in the xy-plane in the task space of the T-Flex.

The T-Flex is currently situated on a cart with supports that can be mounted on the floor. This means that floor
vibrations can enter the system and will contribute to the tracking error. In the laboratory environment, these
vibrations have a magnitude of approximately 10 µm. Because the demonstration might be given at places with
floor vibrations that are larger, the total desired clearance between the peg and hole is increased to a minimum
50 µm (0.05mm). Therefore, this peg tip is toleranced at 19, 94 ± 0, 01mm. The total clearance interval is
therefore given by 0.05− 0.09mm.

Because the tracking error of the system depends on the inverse dynamics model, the performance of the system
might deteriorate if something in the system changes without an update of the dynamic model’s parameters.
This can happen if the peg, or another component of the T-Flex, is re-mounted or if the cart is not leveled
properly. Therefore, a second peg tip is designed with a smaller nominal diameter and less tight tolerancing to
reduce costs. The second tip is toleranced at 19, 80± 0, 05mm, providing a clearance interval of 0.15− 0.27mm.

The peg tips have an internal M10 thread that can be used to exchange on the peg. Furthermore, the peg tips
have a flat side on their top, so that a 22mm open-end wrench can be used to tighten them. Fig. 34 shows a
part of the technical drawings of both pegs, indicating the tolerances.
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Figure 34: Cutout of techincal drawings of both peg tips.

3.4.2 Materials

Peg
The peg is manufactured of aluminium. Aluminum is selected because it can be machined relatively easy, and
it keeps the weight of the peg down. The aluminium is anodized red. The red anodization matches the red
anodization in the T-Flex’s joints and aims to draw the eye of the spectator to the peg. Moreover, anodizing
hardens the surface and consequently decreases wear caused by the friction between the peg and the hole.

As mentioned before, the peg tip is connected to the peg’s body through a section of stainless steel M10 thread.
This is done to ease the swapping of peg tips. The peg’s body is hollow to reduce weight further. The peg is
connected to the T-Flex through a 3mm stainless steel plate.

Tower
The tower is also manufactured out of aluminium, and is anodized silver to increase the contrast with the peg.
The center of the hole is positioned at a 2 cm radius from the center. The top part of the tower can be rotated
with respect to the bottom part to alter the location of the hole. The top is clamped to the bottom part by a
DN-100 quick-release clamp, which is typically used to fasten the lid on a reaction vessel.

3.5 Trajectory & Control Parameters

3.5.1 Generation of Additional Forces and Moments

The vector f∗ is the force control input used to generate additional forces. In the reaching, searching and
inserting states, f∗ is nonzero. In these three states, f∗ generates a continuous downward force. In these states
the exact orientation of the tower is not known yet, and therefore it is assumed that qt = qG. To generate a
downward force, f∗ is defined as fd similar to the approach in [13]:

fd = R̂h

 0
0

−fd

 (86)

Since the hole’s orientation qh (which is assumed to match qt) is estimated to align with the global frame,
R̂h = I and equation (86) simplifies to:

fd =

 0
0

−fd

 (87)
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The matrix R∗ is used in the control framework to generate an additional deviation of the desired orientation
Rd (see equations (7) and (44)). When R∗ = I, the reference Rd is not altered. Except for the inserting
state, R∗ is always set equal to I. In the inserting state, R∗ is used to generate the wiggling motion that helps
inserting the peg as in Fig. 3c. Due to the wiggling, the friction is overcome and the peg is inserted. R∗ during
the insertion state is defined as Rins:

Rins = R(qins) (88) with:
q̄ins = sin(αins)ed
qins,0 =

√
1− |q̄ins|2

(89) with: eTd =

cos (ωinst)
sin (ωinst)

0

 (90)

where the angle of rotation αins is taken to be 1◦ ( 1
180π rad), and the wiggling frequency of 1 Hz (ωins =

2π rad s−1). The angle αins is taken to be 1 ◦ because the error angle between Ψt and ΨG is established to be
less than this, and thus this angle will produce an effective wiggling motion in the hole.

3.5.2 Dancing motion

The dancing motion displays the translational workspace of the T-Flex. In the work of Plettenburgh [6] it is
established that a sphere with a radius of 93.8mm can fit inside the translational workspace when placed at
the center of the workspace. To fit the pick-and-place movement inside this sphere, the trajectory is plotted
inside the sphere. The trajectory height hdance and radius rdance are increased to the point where the trajectory
just fits in the sphere. Trajectory height hdance is eventually set to 8 cm, and rdance = 8 cm. The trajectory is
plotted in the sphere in the following figure:
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Figure 35: Dancing motion fits within translational workspace.

The maximum motor current is presently limited to 1A, resulting in a maximum actuator torque of 5.57Nm. In
a simulation, the trajectory time is decreased while monitoring the corresponding actuator torques. Eventually,
the trajectory time for every pick-place movement is set to 0.6 s, which is expected to require a maximum
actuator torque of 5.15Nm. In section 4 the trajectory and the corresponding accelerations and torques will
be evaluated.
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3.5.3 Parameters per State

To create an overview of all parameter values used in the demonstration, the following table presents the relevant
trajectory and controller parameters per state. As mentioned, the controller’s stiffness and damping matrices
are changed during the demonstration. In section 4 the values for the stiff and the soft controller will be derived.

The parameters per state are:

Parameter Reaching Searching Inserting Measuring Dancing Re-
Inserting

K soft soft soft soft stiff stiff

D soft soft soft soft stiff stiff

Ω diag(1,1,0) diag(1,1,0) diag(1,1,0) I I I

f∗ fd fd fd 0 0 0

R∗ I I Rins I I I

∆r - 1mm - - - -

rs− - 19mm - - - -

rs+ - 21mm - - - -

vs - 0.05m s−1 - - - -

αmax - 4◦ - - - -

αtilt - 3◦ - - - -

ṗp,z - 0.02m s−1 - - - -

dinsert - - 2.3 cm - - -

αins - - 1◦ - - -

rm− - - - 1mm - -

αmin - - - 2◦ - -

hdance - - - - 8 cm -

rdance - - - - 8 cm -

T2− T1 - - - - 0.6 s -

Table 1: Relevant trajectory and control parameters per state.
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4 Experimental Tuning & Validation

4.1 Tuning of Stiffness & Damping Matrices

Soft Controller
During the reaching, searching, inserting and measuring states a controller with a relatively low stiffness is
implemented. However, initial testing showed that during the measuring phase, the peg did not properly scan
the walls of the hole when the stiffness was too low. Instead of smoothly rotating and contacting the hole’s
inner surface, the peg would become stuck at one or two points, preventing a full scan of the hole’s interior. A
corrupted scan during this process will also result in a poor estimate of the hole’s pose.

This issue can be attributed to the static friction forces between the peg and the hole. To overcome the static
friction, the actuator stiffness is increased. By gradually increasing the stiffness, it was found that a stiffness
matrix with the natural frequencies of the virtual system centered around 2 Hz yields a smooth scan of the hole.

The stiffness of the soft controller can now be calculated by filling in equation (80):

Ksoft = M
1
2
p Ω2

nM
1
2
p where Ωn = (2 · 2π)I +

1

10
diag(−3,−2,−2, 1, 2, 3) (91)

where matrix Mp specifies the effective mass at the peg tip, as specified in equation (75). The diagonal matrix
is added in Ωn to create 6 unique eigenvalues with orthogonal natural modes, as discussed in section 3.3.2.

To estimate the interaction forces between the peg and the hole, errors were monitored during the scanning,
inserting, and measuring phases. The results showed that the spring forces did not exceed 6N and 2Nm,
which is within safe limits, ensuring no damage is caused to the setup [13]. Due to the low velocities during
these phases, the contribution of accelerative and damping forces to the overall interaction force was minimal.
Consequently, these forces were disregarded in the estimation.

Once the stiffness matrix is determined, the system’s modal matrix V can be calculated. The system’s modal
matrix, containing the system’s natural modes, is found by solving the eigenvalue problem defined by Mp and
Ksoft. After normalizing the modal matrix to satisfy equation (82), values found for V and Ωn can be substituted
into equation (84) to compute the damping matrix for the soft controller, Dsoft.

Stiff Controller
Since the controller lacks integral action, the steady-state error depends entirely on the model for the compen-
sation of the static forces and the stiffness of the controller. The compensational forces are calculated with
the model developed by Seinhorst. How well this model compensates for static forces in the T-Flex depends
on the model parameters. To obtain maximum accuracy, the model parameters should be trained with the
peg installed. Moreover, the training trajectory must be sufficiently exciting, covering the relevant workspace,
velocities and accelerations for the considered motion.

To establish the maximum controller stiffness, the stiffness is increased gradually, which effectively raises the
system’s natural frequencies. The stiffness matrix Ksoft can be scaled by a scalar c, and the corresponding
damping matrix Dsoft with

√
c. The scalar c scales the system’s natural frequencies proportionally to the

square root of c. Upon increasing c, the oscillations at the critical frequencies are monitored. Eventually, the
oscillations begin to grow for the scalar value of cmax = 40 1

2 . To build in a safety margin, the stiffness is reduced
by 50 % so that c = 0.5cmax. This effectively reduces the magnitude response by ≈ 6 dB. The stiffness and
damping matrices for the stiff controller are given by:

Kstiff = 0.5cmaxKsoft (92) Dstiff =
√
0.5cmaxDsoft (93)

With this stiffness, natural frequencies for the virtual mass-spring-damper are roughly centered around 9 Hz.

4.2 Tuning of Downward Force

As mentioned in Section 4.1, a minimum stiffness is required for accurate measurement of the hole. This stiffness
(Ksoft) is therefore maintained throughout the reaching, searching, inserting, and measuring phases.

During the reaching, searching and inserting states, the peg exerts a constant downward force. The balance
between the downward force and the controller stiffness largely determines how well the peg slides into the top
of the hole: too little downward force and the peg easily slips over the hole, too much downward force and the
peg can not follow the trajectory accurately. Furthermore, excessive downward force can potentially damage
the peg and the hole and is thus to be avoided.

34



To find a suitable downward force for the insertion, fd in equation (86) is increased by steps of 0.5N, starting
at 1N. For a value of fd = 4.5N, the peg is found to slip into the hole consistently.

Increasing the downward force results in higher friction forces between the peg and the scanning surface and
consequently a larger tracking error. To check if the resulting error is acceptable, the reference trajectory is
compared to the position of the peg tip as reconstructed from the actuator angles. Upon plotting, it can be
seen that the error does not exceed 0.5mm when the peg follows the spiral trajectory. The result is plotted in
the following figure:

Figure 36: Comparison of reconstructed peg position (pp) with reference pd during spiral scanning motion.

Fig. 36 shows that a relatively large tracking error occurs when the trajectory shifts from moving radially
outward to following the spiral path, leading to some overshoot at the top of the figure. A smoother transition
between the outward and spiral movements could potentially reduce this tracking error during the scanning
motion.

4.3 Measurements for Peg & Hole Clearance

The minimum tracking error of the system is influenced by both the controller stiffness and the accuracy of
the inverse dynamics model. The accuracy of the inverse dynamics model depends on the parameter set that
is found for the model. To maximize the accuracy of the estimated parameter set, it must be trained using a
sufficiently exciting trajectory with the peg installed, as it would be in the final setup. Obtaining maximum
stiffness is discussed in section 4.1.

The minimum tolerances between the peg and the hole follow from the attainable accuracy of the system. To
determine the desired tolerances on the peg and the hole, the steady-state tracking errors reconstructed from
the actuator angles are investigated. Because these steady-state errors can vary slightly with the position of the
peg in the workspace, the steady-state error is investigated at the center of the workspace and at four points
at a distance of r = 3 cm from the workspace center. The errors were measured at a radius of 3 cm from the
center of the task space, since the center of the hole will be positioned somewhere between this radius and the
center of the workspace.

The steady-state tracking errors reconstructed from the actuator angles are measured at the following positions:[
r 0 0

]T
,
[
0 r 0

]T
,
[
−r 0 0

]T
and

[
0 −r 0

]T
. Fig. 37 shows the measured steady-state error for

setpoint
[
r 0 0

]T
. Upon analyzing the measurements of all four positions, it is found that the error in z-

direction is always the largest, with a maximum of ≈ 100 µm RMS. The RMS error in the xy-plane does not
exceed ≈ 30 µm.
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Figure 37: Steady-state tip errors for
[
r 0 0

]T
.

4.3.1 Validating Insertion Recognition

In the searching state, the partial insertion of the peg into the hole is recognized by monitoring the tip’s z-
velocity, reconstructed from the encoder readings. To ensure that the software correctly detects partial insertion
at different hole positions, the top section of the tower was rotated around its longitudinal axis with increments
of 1/4 rad. The robot successfully detected the partial insertion at all 8 positions tested. Fig. 43 illustrates
the approximate locations during these verification experiments. The colors of the dots are not relevant for this
context and will be addressed in a later section.

Fig. 38 shows the tip velocities that correspond to the trajectory plotted in Fig. 36. Between 19 and 20 s, the
peg is moved outward along the x-axis. From 20 to 22.1 s, the peg is searching for the hole, and at 22.1 s the
hole is recognized. As mentioned in section 4.2, the tracking error during searching could be further improved
by having a smoother transition at 20 s.
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Figure 38: Reconstructed tip-velocities during searching. Dashed black line is the threshold of −0.02m s−1, and
the red dot indicates the recognition of partial insertion. A sharp peak in z-velocity is observed when the peg
slips into the hole.
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4.3.2 Validating Hole Measurement

To see if the measurement of the hole yields a reproducible estimate of the hole position, the measurement
procedure is performed 5 times without moving the hole. The measurements are performed with the low-
clearance peg tip installed.

The measurement data of one of these measurements is plotted in the following figures:

(a) Measurement of ph1. (b) Measurement of ph2.

Figure 39: Plot of estimated peg tip position during measurement of ph1 and ph2.

The results of the measurements are represented in the tables below:

Measurement No. x (mm) y (mm) z (mm)

1 -7.481 -14.596 66.936
2 -7.481 -14.593 66.945
3 -7.481 -14.592 66.933
4 -7.481 -14.594 66.925
5 -7.477 -14.596 66.930

∆max 4 µm 3 µm 20µm

Table 2: Measurement Data for ph1

Measurement No. x (mm) y (mm) z (mm)

1 -7.669 -14.655 50.461
2 -7.668 -14.655 50.462
3 -7.670 -14.654 50.461
4 -7.669 -14.654 50.461
5 -7.667 -14.655 50.461

∆max 3 µm 1 µm 1µm

Table 3: Measurement Data for ph2

As can be seen in the tables, the measurements generate reproducible estimates for the points inside the hole.

For the measurement of ph2 it can be seen that the diameter of the trajectory is roughly 0.45mm. This
estimated diameter will be denoted with d̂d. The value of 0.45mm must be incorrect, because the clearance
between the large peg and the hole is at most 0.09mm as discussed in section 3.4. Since d̂d is larger than the
clearance of the peg and the hole, the length of the peg ℓpeg must be overestimated. However, this does not
lead to problems for re-inserting as will be discussed later. First the error in ℓpeg will be calculated.

If Ψt and ΨG align perfectly, the errors in the estimated peg position p̂p should cancel out when estimating
ph2. But when Ψt and ΨG have a relative rotation θt ̸= 0, the error in p̂p will generate a bias in ph2 as shown
in Fig. 40a:
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(a) Top view of hole measurement withΨt andΨG

aligned.
(b) Top view of hole measurement with Ψt and ΨG mis-
aligned by θt.

Figure 40: Contribution of error in ℓpeg to error in estimation of ph2.

To find the error in peg length ∆ℓpeg, the difference between the diameter that is measured during the scan d̂d
can be compared to the diameter that can be calculated from the tolerances dd. The maximum diameter for dd
that follows from the tolerances can be calculated with the equation that is previously introduced for rm− in
equation (12):

dd = rm− = D − d cos(αmin) (94)

where D is the hole’s diameter and d is the peg’s diameter. Angle αmin can be calculated from equation (11),
by filling in the insertion depth of h = 2.3 cm and the minimum and maximum values for D and d. Angle
αmin ≈ 2.1mrad at minimum and αmin ≈ 3.8mrad at maximum. With these values known, equation (94) can
be evaluated to find that dd ≈ 0.05mm at minimum and dd ≈ 0.09mm at maximum.

To find the contribution of ∆ℓpeg to the measured scan diameter d̂d, the following figure shows how the extension
of the peg length contributes to a larger radius projected on the xy-plane when the angle between ΨG and Ψt

is θt:

Figure 41: Contribution of ∆ℓpeg to diameter of hole scan.
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From Fig. 41 it can be seen how ∆ℓpeg is related to d̂d, dd, αmin and θt:

(
d̂d − dd cos(θt)

)
= ∆ℓpeg (sin(αmin + θt) + sin(αmin − θt)) (95)

During the measurement, the orientation of the hole measured, denoted by qh. The angle between qh and qG
is taken as the estimate for θt, and is found to equal 0.0088 rad (or 0.5◦). The error in estimated peg lentgth,
∆ℓpeg, can then be found by rewriting equation (95):

∆ℓpeg =

(
d̂d − dd cos(θt)

)
(sin(αmin + θt) + sin(αmin − θt))

(96)

Because the angles αmin and θt are small, this equation can be simplified to:

∆ℓpeg =
1

2

(
d̂d − dd

)
αmin

(97)

where d̂d is obtained by the measurement, dd follows from the peg and hole’s geometries and θt is estimated
based on the measurement. When the minimum and maximum values for dd and αmin are filled in, it is found
that ∆ℓpeg has a value ranging from 5.2 – 8.6 cm.

Although the peg is estimated to be longer by ∆ℓpeg, this does not cause any issues during re-insertion. The
estimated contact location of ph2 lies below the actual point ph2, but since both points are located along the
centerline of the hole, the alignment is maintained. Because the peg is re-inserted along the line spanned by
the estimates for ph1 and ph2, the peg will enter the hole along its centerline. This will be illustrated in
the following figure. As a result, the re-insertion process proceeds without any complications from the length
estimation error.

centerline of hole

Figure 42: Estimate of ph2 projected along centerline of the hole.

39



4.3.3 Validating Re-Insertion

To validate whether the peg can be re-inserted into the hole without making contact, the demonstration proce-
dure was performed at eight different positions. The top section of the tower was rotated around its longitudinal
axis in increments of 1

4 rad. The testing points are shown in the following figure, where green dots indicate con-
tactless re-insertion and red dots indicate insertion with some contact. It was observed that the peg was
successfully re-inserted in all tested cases, but not always without touching the hole.

1

5 7
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84
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Figure 43: Top view of tower, with appproximate hole locations for validating re-insertion step.

To determine whether the peg is re-inserted into the hole without making contact, the translational error signals
are analyzed. If the peg touches the hole, a sharp spike can be observed. The following figures show the tracking
errors while re-inserting at position 1 and at position 5:
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10-5 Translational tracking errors while re-inserting at 1 

(a) Translational tracking errors while re-inserting at lo-
cation 1 without touching.

43 43.5 44 44.5 45 45.5 46 46.5 47 47.5 48

time [s]

-4

-3

-2

-1

0

1

2

3

4

5

6

tr
an

sl
at

io
na

l e
rr

or
 [m

]

10-5 Translational tracking errors while re-inserting at 5 

(b) Translational tracking errors while re-inserting at lo-
cation 5 with touching.

Figure 44: Comparison of re-insertion with and without touching the hole.
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At positions 4 – 8, the peg makes contact with the hole during re-insertion. The tracking error signals at
positions 4 and 6–8 exhibit behavior similar to the signal shown in Fig. 44b, characterized by a sudden jump
in the error signal when the peg contacts the hole, reducing the tracking error in the x- and y-directions. The
reduction in tracking error upon contact suggests that the method used to estimate ph1, ph2, and qd for re-
inserting the peg provides accurate estimates for the hole’s centerline and orientation. Therefore, touching the
hole during re-insertion is mainly attributed to the control system’s tracking error.

To assess the steady-state tracking errors as reconstructed from the actuator angles, the experiment of section
4.3 is repeated with the final setup. The steady-state tracking errors reconstructed from the actuator angles are

measured at the following positions:
[
r 0 0

]T
,
[
0 r 0

]T
,
[
−r 0 0

]T
and

[
0 −r 0

]T
, where r = 3 cm.

For every position, the RMS error in the xy-plane is calculated.
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(a) Steady-state error at
[
r 0 0

]T
,

xy-error ≈ 15µm.
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(b) Steady-state error at
[
−r 0 0

]T
,

xy-error ≈ 45 µm.
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(c) Steady-state error at
[
0 r 0

]T
,

xy-error ≈ 30µm.
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(d) Steady-state error at
[
0 −r 0

]T
,

xy-error ≈ 30 µm.

Figure 45: Steady-state tracking errors reconstructed from actuator angles at points 8, 2, 4 and 6 of Fig. 43.

The maximum steady-state tracking error is found to be 45 µm, which is significantly larger than the 30 µm
recorded in the preliminary experiment discussed in section 4.3. Figure 44b shows that the tracking error
increases further during the re-insertion motion, indicating that contact with the hole is - in some cases -
inevitable with the current controller. The system could benefit from introducing an integrator in the stiff
modus to reduce the tracking error, as will be discussed further in the recommendations.
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To obtain an estimate of the additional force on the end-effector required to achieve zero steady-state tracking
error, the errors measured in Fig. 45 are multiplied with the stiffness matrix Kstiff. The norm of the additional
forces required for zero steady-state tracking error, based on the measurements in Fig. 45, ranges from 0.6N to
1N.

4.3.4 Validating Maximum Motor Torque during Dancing

To ensure that the controller does not demand torque beyond the presently implemented torque limits of the
actuators, the motor torques were measured during the execution of the dancing motion. The results are
presented in the following figure:
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Figure 46: Actuator torques measured during dancing motion.

A maximum torque magnitude of 5.4Nm is measured, which is within the presently implemented torque limit
of 5.57Nm. For dancing motion, the velocities in x-, y- and z-direction vary between 5m s−1 and −5m s−1.
The highest accelerations occur in the z-directions, at ±6m s−2. The accelerations in the x- and y-directions
range between 3.5m s−2 and −3.5m s−2.
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5 Conclusions

The primary goal of this thesis was to create a peg-in-hole demonstration suitable for showcasing the T-Flex’s
capabilities. The compliance-based peg-in-hole strategy presented by Park et al. in [13] was selected as the basis
for the task and is successfully adapted for implementation on the T-Flex. The hole is consistently located,
measured and re-entered, with an appealing demonstration of the translational workspace in between.

The peg and hole have been designed based on the attainable accuracy of the system. Two versions of the
peg tip were manufactured, which can be conveniently exchanged by an open-end spanner. The tip with the
tight tolerance offers a clearance interval with the hole of 0.05 − 0.09mm, and can be used in combination
with a well-trained parameter set. The peg with the smaller radius offers 0.15− 0.27mm clearance, suitable for
situations when the parameter set is expected to be suboptimal, for example after moving the cart the T-Flex
is situated on.

To demonstrate that the peg motion is not pre-programmed, the top section of the tower can rotate. A quick-
release clamp is used to make rotating the hole convenient.

To locate the hole, a searching trajectory is developed that is based on the geometric properties of the setup.
The approach is based on the assumption that the peg can slip into the top of the hole under the tilting angle
αtilt of the searching trajectory.

A measurement procedure was developed to scan the inside of the hole. The data collected during the scan is
processed in an algorithm to determine the peg orientation central to the hole, and to determine a centerline
along which to re-insert the peg. The maximum deviation observed across all measurements is 4 µm in the
x-direction, 3µm in the y-direction, and 20 µm in the z-direction for ph1, with similarly small deviations for
ph2. These values indicate a high reproducibility of the measurement procedure.

In between insertion and re-insertion of the peg, the translational workspace of the T-Flex is displayed by means
of a pick-and-place trajectory. The trajectory time is reduced so that the maximum torque ocurring during
the motion is 5.4Nm, for which the T-Flex exhibits a maximum z-acceleration of 6m s−2, and 3.5m s−2 in the
xy-plane. Further increasing the accelerations is restricted by the limit on the motor current, which is presently
set to 1A (resulting in maximum torque of 5.57Nm).

The control framework developed for the task utilizes hybrid position/force control, where position control
is achieved through an impedance controller consisting of a virtual spring-damper attached to the peg tip,
with static forces continuously compensated using the inverse dynamics model presented in [26]. Based on the
effective mass experienced on the tip, the stiffness and damping matrices are calculated so that the system
behaves approximately like a mass-spring-damper with a pre-defined natural frequency. The stiffness of the
system is increased to limit steady-state errors resulting from dynamic motion. This results in an eigenfrequency
of the virtual system of 9 Hz for the stiff configuration.

As a result of the non-collocated tip-feedback, the critical parasitic frequency is excited. To suppress the
resulting oscillations, a notch filter is implemented. The notch frequency is placed on the average frequency of
the first parasitic eigenfrequency throughout the task space, at 61.3Hz.

During testing, it was observed that the attainable accuracy of the system is sensitive to the parameter set for
the inverse dynamic model. With a well-trained parameter set, the controller achieves an accuracy of 45µm in
the plane of the hole. This accuracy is lower than the 32µm obtained during preliminary testing, likely due to
the increased mass of the end-effector caused by the addition of the peg. An additional force of ≈ 1N would be
required to mitigate the steady-state tracking error.

Re-insertion testing was performed at eight positions, with the peg successfully re-entering the hole without
contact at three of the tested positions. In the remaining five positions, the peg made slight contact with the
hole during re-insertion.

In conclusion, this thesis presents the development of a peg-in-hole task designed to showcase the key features
of the T-Flex system. The developed demonstration displays the system’s reproducibility, shown by re-inserting
the peg in the hole, and its force sensitivity, which allows for precise control of the peg’s insertion dynamics.
The dancing motion illustrates the T-Flex’s accelerations through the translational workspace.
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6 Recommendations

A smaller clearance between the peg and the hole, combined with re-insertion without contact, makes for a
more impressive demonstration of the T-Flex’s reproducibility. The required clearance between the peg and
the hole is determined by the system’s tracking error. In this work, the tracking error is reduced by increasing
the controller stiffness. The stiffness of the controller is currently limited by critical parasitic oscillations,
which cause instability when the stiffness is increased further. Presently, the notch filter that suppresses the
parasitic oscillations is placed at a constant frequency, while it is known that the first parasitic frequency is
position-dependent. Therefore, the oscillations could be suppressed more effectively by making the notch filter
position-dependent. The first parasitic frequency could be mapped for the task space, and the notch filter can
be dynamically changed accordingly, allowing increased controller stiffness.

However, using a notch filter to suppress parasitic oscillations is a form of symptom treatment. Instead of
suppressing the oscillations, active damping could be used in the form of collocated rate feedback [27, Chap-
ter 7.2.1]. In collocated rate feedback, an additional torque is generated opposing the angular rate of the
actuators. In [27, Chapter 7.2.1] it is established that a closed-loop bandwidth of approximately 0.25 times the
parasitic frequency of interest can be obtained. The parasitic frequencies are approximately 60 Hz, so in theory
a closed-loop bandwidth of 15 Hz should be obtainable.

Furthermore, the control currently implemented is relatively sensitive to errors in the model parameters. If the
low-clearance peg is installed, not levelling the car properly or moving the peg potentially requires re-training
of the parameters. The peg is typically inserted in the hole, but touching the hole while inserting makes the
demonstration less appealing. One solution is to install the peg tip with the larger clearance or to re-train the
parameters on the spot. Another option is to investigate if better accuracy can be obtained with a different
controller. For the reaching, searching, inserting and measuring the current impedance controller can still be
used. For the dancing motion the stiff controller is also sufficient.

For re-insertion, an integrator could be added to the PD action of the controller. The integral action will
reduce the tracking error, making the controller less sensitive to variations in the model parameter set. An
anti-windup scheme can be used to prevent unbounded growth of the integral in case the peg does touch the
hole. As demonstrated in this work, an additional force of approximately 1N would suffice to eliminate the
steady-state tracking error.

While further increasing the accelerations would enhance wow-factor of the demonstration, it was observed
during testing that the magnetic couplings in the elbow joints begin to decouple under certain trajectories.
Therefore, careful consideration should be given to the design of these trajectories to ensure that the system
can handle the increased accelerations. To further increase the accelerations, the limits on the motor currents
must be increased as well.

In the current demosntration, only a part of the translational workspace of the T-Flex is showcased. For
completeness, a trajectory displaying a part of the rotational workspace of the T-Flex can be included.
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Appendix A - Statement Regarding Use of AI Tools

• During the preparation of this work the author used OpenAI’s GPT-3.5 generative AI language model in
order to restructure and enhance readibility of the content created by the author. After using this tool,
the author reviewed and edited the content as needed and takes full responsibility for the content of the
work.

• During the preparation of this work the author used Grammarly’s free writing assistant to perform spelling
checks. After using this tool, the author reviewed and edited the content as needed and takes full respon-
sibility for the content of the work.
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Appendix B - Passivity of Implemented Control

By proving the passivity of the system, stability can be guaranteed when it interacts with another passive
system [34]. In the case of this peg-in-hole task, the metal cylinder that contains the hole is passive since it a
passive mechanical system. Therefore, stability during the peg-in-hole task can be guaranteed by proving that
the control of the T-Flex yields a passive system.

Properties of equation of motion in robotics in joint and operation space:

To prove the passivity of the controlled system, a property of the standard equation in robotics can be used.
The standard equation in robotics is given by:

M(q)q̈ + C(q, q̇)q̇ +N(q) = τ (B.1)

where q is the vector of joint coordinates, M(q) is the inertia tensor, C(q, q̇)q̇ is the vector containing Coriolis
and centrifugal forces, and N(q) contains the remaining forces such as gravity and other forces acting on the
system and τ represents the joint torques.

The matrices in this equation possess the following property:

(Ṁ − 2C)T = −(Ṁ − 2C) ⇒ qT (Ṁ − 2C)q = 0 (B.2)

In other words, (Ṁ − 2C) is skew-symmetric, and pre- and post-multiplication with a vector and its transpose
will result in a scalar value of zero.

If the Jacobian matrix mapping from actuator space to end-effector space is nonsingular, as is the case with the
T-Flex, the dynamics of the system can uniquely be represented in the operational space. It is important to
note that this assumes the T-Flex behaves as a rigid body system with stiffness in the joints, meaning it does
not exhibit degrees of freedom due to the finite stiffness of the links and the finite support stiffness of the joints.

By introducing the following Jacobian matrix J(q):

ṗ = J(q)q̇ , τ = J(q)TFee (B.3)

which maps joint velocity to operational space velocity of the end-effector ṗ, the equation of motion in the
operational space can be derived from the equation of motion in the joint space. The resulting equation of
motion in the operational space is given by [35]:

J−TMJ−1p̈+ (J−TCJ−1 − J−TMJ−1J̇J−1)ṗ+ J−TN = Fee (B.4)

To improve readability, the equation can be displayed as:

M̃(q)p̈+ C̃(q, q̇)ṗ+ Ñ(q, q̇) = Fee (B.5)

Equation (B.5) shares the property of equation (B.1), namely that:

( ˙̃M − 2C̃)T = −( ˙̃M − 2C̃) ⇒ pT ( ˙̃M − 2C̃)p = 0 (B.6)

T-Flex equations of motion and control in operational space:

The implemented control is in the operational space of the T-Flex. Therefore, a first step in proving passivity of
the system is expressing the equations of motion in the operational space. To do so, three analytical Jacobian
matrices are used:

ẋ = Jxa(x)θ̇

τ = Jxa(x)
TF

Jxa ∈ R37×6

(B.7)

ṗ = Jea(x)θ̇

τ = Jea(x)
TFee

Jea ∈ R6×6

(B.8)

ẋ = Jxe(x)ṗ

Fee = Jxe(x)
TF

Jxe ∈ R37×6

(B.9)

Jxa(x) = Jxe(x)Jea(x) (B.10)
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where:

• The Jacobian matrix Jxa maps the actuator joint velocities θ̇ (dual to the acutator torques τ ) to the
velocities of the generalized coordinates ẋ (dual to the generalized forces F ).

• The Jacobian matrix Jea maps θ̇ to the end-effector’s linear and angular velocities ṗ, which are dual to
the wrench applied at the end-effector.

• Fee is the equivalent wrench applied at the end-effector resulting from the actuator torques τ

• The Jacobian matrix Jxe maps ṗ to ẋ

The dynamics of the T-Flex in the actuator space are given by [26]:

Jxa(x)
T
(
M(x)ẍ+ h(x, ẋ)− f(x)− g(x)

)
− χ = τ + τext (B.11)

where M(x) is the inertia matrix, h(x, ẋ) is a vector containing Coriolis and centrifugal forces, f(x) is the
gravity vector, g(x) are the elastic joint reaction forces, χ are the cogging forces and τext are the torques
experienced by the actuator due to the externally applied forces. The forces resulting from hysteresis in the
actuators are omitted, as hysteresis acts as a passive system on its own.

Equation (B.11) can be represented shorter as:

JT
xa

(
M ẍ+ h− f − g

)
− χ = τ + τext

JT
eaJ

T
xe

(
M ẍ+ h− f − g

)
− χ = τ + τext

(B.12)

The dynamics can be expressed in the operational space as follows:

JT
xe

(
M ẍ+ h− f − g

)
− J−T

ea χ = J−T
ea τ + J−T

ea τext

JT
xe

(
M

(
Jxep̈+ J̇xeṗ

)
+ h− f − g

)
− J−T

ea χ = Fee + J−T
ea τext

(B.13)

The equation of motion of the T-Flex in operational space (equation (B.13)) can now be compared to the
standard equations of robotics in operational space (equation (B.5)) to find which tensors are equivalent. The
following is found:

M̃(q) ≡ JT
xeMJxe (B.14) C̃(q, q̇)ṗ ≡ JT

xeMJ̇xeṗ+ JT
xeh (B.15)

Proof of passivity

For the analysis, the control implemented on the T-Flex can be represented as:

Fee = JT
xeMJxe

[
p̈d

¨̄qd

]
+D

[
(ṗd − ṗ)
(ωd − ω)

]
+K

[
(pd − p)

1
2Er

]
+ JT

xe (−f − g)− J−T
ea χ (B.16)

The error vector Er, used to calculate the virtual spring moments of the controller, is nonlinear. However, Er

is continuous and shows a positive rotation-moment relationship. Therefore, the rotational part of the control
is not expected to have different passivity characteristics than the translational part of the control. To simplify
the notation, only the linear forces will be considered for the analysis:

Fee = JT
xeMJxep̈d +D(ṗd − ṗ) +K(pd − p) + JT

xe (−f − g)− J−T
ea χ

Fee = JT
xeMJxep̈d +Dė+Ke+ JT

xe (−f − g)− J−T
ea χ

(B.17)

The energy storage function of the system can be presented as the sum of the kinetic energy in the manipulator
and the potential energy in the controller:

V (x,p, ṗ) =
1

2
ṗT

(
JT
xe(x)M(x)Jxe(x)

)
ṗ+

1

2
eTKe

V =
1

2
ṗT (JT

xeMJxe)ṗ+
1

2
eTKe

(B.18)
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In this equation, the potential gravitational (f), joint reaction (g) and cogging (χ) energy are left out because
they are continuously compensated by the controller.

The time derivative of the energy storage function is given by:

V̇ =
1

2
ṗT

( d

dt
(JT

xeMJxe)
)
ṗ+ ṗT (JT

xeMJxe)p̈+ eTKė (B.19)

By rewriting the equation of motion (B.13), and filling in the control action of equation (B.17) the following
expression can be found:

JT
xeMJxep̈ =JT

xe

(
−MJ̇xeṗ− h+ f + g

)
+J−T

ea χ+ Fee + J−T
ea τext

JT
xeMJxep̈ =JT

xe

(
−MJ̇xeṗ− h+ f + g

)
+J−T

ea χ+

(JT
xeMJxep̈d +Dė+Ke+ JT

xe (−f − g)− J−T
ea χ) + J−T

ea τext

JT
xeMJxep̈ =− JT

xeMJ̇xeṗ− JT
xeh+ JT

xeMJxep̈d +Dė+Ke+ J−T
ea τext

(B.20)

The result of this substitution can be substituted into equation (B.19) to obtain the following:

V̇ =
1

2
ṗT

( d

dt
(JT

xeMJxe)
)
ṗ− ṗT (JT

xeJ̇xeṗ+ JT
xeh) + ṗT

(
JT
xeMJxep̈d +Dė+Ke+ J−T

ea τext

)
+ eTKė (B.21)

By combining equations (B.6), (B.14) and (B.15) the following can be concluded about the sum of the first two
components of equation (B.21):

1

2
ṗT

( d

dt
(JT

xeMJxe)
)
ṗ− ṗT (JT

xeMJ̇xeṗ+ JT
xeh) ≡ ṗT

(
˙̃M − 2C̃

)
ṗ = 0 (B.22)

With this result, equation (B.21) can be simplified to:

V̇ = ṗT
(
JT
xeMJxep̈d +Dė+Ke+ J−T

ea τext

)
+ eTKė

V̇ = ṗT
(
JT
xeMJxep̈d +D(ṗd − ṗ) +K(pd − p) + J−T

ea τext

)
+ (pd − p)TK(ṗd − ṗ)

(B.23)

In case the reference is stationary: ṗd = 0, equation (B.23) simplifies to:

V̇ = ṗT
(
−Dṗ−Kp+ J−T

ea τext

)
+ pTKṗ

V̇ = −ṗTDṗ+ ṗTJ−T
ea τext ≤ ṗTJ−T

ea τext

(B.24)

Since D is positive definite, the first term in equation (B.24) is negative definite. Consequently, the power flow
into the system’s power storage is smaller than the power provided to the system (ṗTJ−T

ea τext), and the system
is thus passive during regulation.

Furthermore, it can be concluded that for a non-stationary reference temporary energy storage may occur.
Practice has shown that this does not lead to problems when the peg interacts with the hole because the power
input is finite due to finite time of the non-stationary references. This is in line with the expectation because the
system is designed to imitate a damped mass-sping-damper. Because the reference signal is always C2 (twice
differentiable) and stationary after a finite time, no excessive energy is generated by changes in pd and the
energy generated in the system is limited.
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Appendix C - Geometric Inconsistency of Rotational Error Vector
Er

The error vector specifying the angular misalignment between two frames ΨA and ΨB is specified as:

Er(RA,RB) = [RA(:,1) ×RB(:,1) +RA(:,2) ×RB(:,2) +RA(:,3) ×RB(:,3)] (C.1)

whereRA(:,1) specifies the first column ofRA, and so on. RA is the rotation matrix that specifies the orientation
of frame ΨA in the global reference frame. Therefore, RA(:,1) specifies the basis vector ex of ΨA (ex,A) in ΨG,
etc.

Figure C.1: Visualization of cross product [36]. Figure C.2: Rotation of two frames relative to each
other with z-axes aligned.

The cross product of two vectors a and b is specified as:

a× b = ∥a∥∥b∥ sin(θ)n̂ (C.2)

where n̂ is the unit vector perpendicular to the plane defined by a and b (see Fig. C.1), and θ is the angle
between a and b.

Every column in a rotation matrix is a vector with unit length. As a result, every cross product in Er boils
down to:

RA(:,i) ×RB(:,i) = sin(θ)n̂ (C.3)

Due to this definition of Er, the norm of the error vector does not scale linearly with angle of the relative
rotation θ. To illustrate this, Fig. C.2 can be inspected: ΨA and ΨB are rotated with an angle φ = θx = θy,
resulting in ∥Er∥ = 2 sin(∥φ∥). This relation is displayed in Fig. C.3. In fact, the relation ∥Er∥ = 2 sin(∥φ∥)
holds for any arbitrary axis of rotation. As a result, small angles φ will lead to ∥Er∥ ≈ 2φ. This must be
considered when multiplying Er with the stiffness matrix. Therefore, Er is scaled with 1

2 when calculating the
spring moment on the peg in equation (44).

Because the angle of rotation of ΨE in ΨG will always be relatively small in the considered application (and the
error in rotation even smaller), this geometric inconsistency and the corresponding nonlinearity is not considered
an issue.
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Figure C.3: Ratio of ∥Er∥/φ.
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Appendix D - Jacobian Conversion from Generalized
to Translational and Angular End-Effector Velocities

The Jacobian matrix Jxe(x) ∈ R37×6 maps the generalized end-effector velocities to the complete set of gener-
alized velocities, and is defined by:

ẋ = Jxe(x)

[
ṗE

˙̄qE

]
(D.1)

where ṗE is the cartesian velocity of the T-Flex’s end-effector in the global frame ΨG, and ˙̄qE is the time
derivative of the vector part of the quaternion specifying the orientation of the end-effector in ΨG.

The forces and moments due to the virtual spring and damper form a geometric wrench
[
fT
c mT

c

]T
, as specified

in equation (48) in section 2.3.2. The geometric wrench is dual to the cartesian and angular velocities of the

end-effector
[
ṗT
E ωT

E

]T
, and not to the generalized end-effector velocities in

[
ṗT
E

˙̄q
T
E

]T
. Consequently, Jxe(x)

must be adapted to find the mapping between the geometric wrench and the generalized forces. This resulting
Jacobian matrix will be denoted with Jee,ω(x), and is specified by the following relation:

ẋ = Jee,ω(x)

[
ṗE

ωE

]
(D.2)

The angular rate can be transformed to the time derivative of a unit quaternion as follows [27, Chapter 4.1]:

˙̄q =
1

2

[
q0I − ˜̄q

]
ω (D.3)

And thus equation (D.3) can be substituted into equation (D.1) to find:

ẋ = Jxe(x)

[
I O
O 1

2

[
qE,0I − ˜̄qE

]] [ṗE

ωE

]
(D.4)

Comparing this result to equation (D.2) the result is:

Jxe,ω(x) = Jxe(x)

[
I O
O 1

2

[
qE,0I − ˜̄qE

]] (D.5)

As discussed in Appendix E, Jea is the inverse of a partition of Jxe. Consequently, Jea,ω can be calculated as
the inverse of the following partition of Jacobian Jxe,ω:

Jea,ω(x) =
[
Jxe,ω(x)([1:6],:)

]−1
(D.6)

where Jxe,ω(x)([1:6],:) stands for rows 1 – 6 of Jacobian matrix Jxe,ω.

53



Appendix E - Calculation of Jacobian Matrices Jxe and Jea

Jacobian Matrix Jxe(x)

Jacobian matrix Jxe(x) ∈ R37×6 maps generalized end-effector velocities to the complete set of generalized
coordinates, and is defined by the equation:

ẋ = Jxe(x)

[
ṗE

˙̄qE

]
(E.1)

For ease of notation,
[
pT
E q̄T

E

]T
will be denoted as Ē for the remainder of this appendix. The generalized

end-effector coordinates are a subset of the total set of generalized coordinates, and thus Ē is a subset of x:

Ē =

[
pE

q̄E

]
= x(31:33,35:37) (E.2)

The kinematic model of the T-Flex is developed for the 6-RUS configuration, which is exactly constrained.
Therefore, the independent coordinates can be re-defined as Ē, and the dependent coordinates as d = x\Ē;
the set difference of x and Ē. Consequently, the implicit constraints of the kinematic model can be written as:

D(x) = D(Ē,d) = 0 (E.3)

Following equation (38), the rows of Jxe(x) that correspond to d are given by:

Jxe(x)([1:30,34],:) = −
[
Dd(x)

]−1
DĒ(x) (E.4)

where Dd are the partial derivatives of D with respect to d, and DĒ are the partial derivatives with respect Ē.

The rows of Jxe(x) corresponding to Ē are just an identity matrix of 6-by-6:

Jxe(x)([31:33,35:37],:) = I (E.5)

Jacobian Matrix Jea(x)

Jacobian matrix Jea(x) ∈ R6×6 maps actuator velocities to generalized end-effector velocities, and is defined by
the equation:

[
ṗE

˙̄qE

]
= Jea(x)θ̇ (E.6)

Vector θ is a subset of x:

θ = x(1:6) (E.7)

Consequently, Jxe(x) of the section above can be partitioned as follows:

θ̇ = Jxe(x)([1:6],:)

[
ṗE

˙̄qE

]
(E.8)

Since Jxe(x)([1:6],:) is square and nonsingular in the task space, it can be inverted to find:

Jea(x) =
[
Jxe(x)([1:6],:)

]−1
(E.9)
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