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Denoising Diffusion Planner: Learning Complex
Paths for Robot Control from Low-Quality

Demonstrations

Abstract—Denoising Diffusion Probabilistic Models (DDPMs)
are powerful generative deep learning models that have been
very successful at image generation. In this paper, we investigate
how to leverage the generalization and conditional-sampling
capabilities of DDPMs to generate complex paths for a robotic
end effector. We show that these paths can exhibit obstacle
avoidance, even when training the DDPM on synthetically gener-
ated low-quality demonstrations. The trained DDPM is deployed
in a receding-horizon control scheme to enhance its planning
capabilities. The Denoising Diffusion Planner is experimentally
validated through various experiments on a Franka Emika Panda
robot.

I. INTRODUCTION

Path planning is a fundamental aspect of almost any robotic
task. It can be defined as finding a collision-free trajectory
between a starting state and a goal state, such that the system
can be driven to the desired target by tracking this trajectory
using a low-level controller. Designing algorithms to find
these trajectories is difficult, because robotic environments are
typically high-dimensional, complex, and dynamic.

Traditionally, to address the task of path planning, combina-
torial algorithms have been developed. These algorithms are
complete, meaning that they will find a solution in a finite
amount of time, if a solution exists [1]. However, for complex
environments it is often preferable to trade completeness for
efficiency. To this end, sampling-based methods [2] have been
successfully developed. Examples of traditional sampling-
based methods are the probabilistic roadmap method (PRM)
[3] and rapidly exploring random trees (RRTs) [4].

More recently, advances in reinforcement learning (RL)
[5] have introduced a different approach to planning. RL
seeks to find the optimal control strategy that maximizes
the expected cumulative future rewards by interacting with
an unknown environment. Utilizing deep neural networks as
function approximators to solve RL problems is known as
deep reinforcement learning (DRL) [5], which has allowed
RL to scale to high-dimensional problems [6], [7]. Iteratively
executing the actions generated by the policy while updating
the current state estimates using observations from the envi-
ronment makes for a reactive planner [8], [9].

Despite their successful application in different path-
planning problems, the previously-mentioned traditional
sampling-based methods and DRL methods have several draw-
backs. For example, it is not obvious how to plan a complex
behavior that meets conditions other than obstacle avoidance
using traditional sampling-based planners. On the other hand,

DRL methods learn a richer model that may include system
dynamics and arbitrary reward functions. However, applying
these methods for planning requires autoregressively using
their model’s one-step predictions, which allows model im-
perfections to compound over time [10], [11].

Instead, the problem of path planning can be addressed
through the paradigm of planning as inference (PAI) [12],
[13]. Differently from explicit graph search or autoregres-
sive prediction, the future is modeled as a joint probability
distribution over states, actions and rewards. Sampling from
this distribution yields a sequence of states and actions that
represent a possible trajectory. Retrieving just any possible
trajectory is not very useful by itself, but if this trajectory is
known to meet certain conditions, like obstacle avoidance or
achieving certain rewards, this sample can be used as a plan. In
PAI, such plan can be sampled from a conditional probability
distribution of possible futures. This process of conditional
sampling is key for generating a plan that exhibits desirable
behavior.

A particularly recent class of models that fit the PAI view
is the Denoising Diffusion Probabilistic Model (DDPM) [14],
[15]. DDPMs are generative probabilistic models that have
been remarkably successful in image generation [16]. They
are trained by iteratively adding random noise to the training
data and learning the reverse process that iteratively denoises
the data to retrieve the original sample. In this way, one can
sample from the data distribution carrying the characteristics
of the training data by first sampling noise from a Gaussian
distribution and then applying the denoising process.

The generative capabilities of DDPMs can also be used
to generate plans. Janner et al. [17] trained DDPMs on an
offline collection of state-action sequences, with associated
rewards. In [17] it was shown that DDPMs exhibit good
generalization and long-horizon planning abilities, even for
sparse rewards. Furthermore, they showed that DDPMs can
generate novel trajectories by locally stitching together se-
quences from the training distribution. Moreover, Ajay et al.
[18] found that DDPMs can generate plans that meet multiple
conditions even though these conditions were never met si-
multaneously in the training data. These properties of DDPMs
make them potentially powerful and versatile planners. Real-
world demonstrations of using DDPMs for robot control have
shown promising results [19]–[21], which inspires this work
to further investigate the novel aspects of using DDPMs to
solve robotic planning problems.



Fig. 1: Overview of the pipeline from dataset to real-world tasks.

Related work can be found in [19], [21], [22]. Carvalho et al.
[21] propose a motion planner in the joint space using DDPMs.
They use expert examples produced by an optimal motion
planning algorithm to train a DDPM. During inference, they
use the gradients of a cost function to bias the samples towards
regions of low cost at every denoising step. Saha et al. [22]
expand on this work by using an ensemble of cost functions to
create a planner that can generate collision-free trajectories in
a variety of environments. In order to investigate the DDPM’s
generalization capabilities, we train the model using only
synthetically generated low-quality demonstrations and we
avoid using a dynamic model for the robot. This is a key
difference from [21], [22], which use expert demonstrations
to train the DDPM. Chi et al. [19] use DDPMs to directly
learn a policy that takes visual observations as its input and
produces an action sequence as an output. In their work, they
introduce closed-loop planning with DDPMs by implementing
a receding-horizon control scheme. Inspired by their work,
we include closed-loop planning to enhance the planning
capabilities of the DDPMs.

This work investigates how to use a DDPM to create a
path planner for an end effector of a robotic arm. Figure
1 shows the four stages of this process, from generating
low-quality demonstrations to using the DDPM to control a
robot. Furthermore, the ability of the DDPM to generalize
and produce useful trajectories through conditional sampling
is explored. The main contributions of this work are:

1) Propose a general approach to designing a path planner
for an end effector using a DDPM, without using a
dynamic robot model and using only low-quality demon-
strations for training data.

2) Experimentally validate the proposed path planner using
real-world experiments.

II. BACKGROUND

A. Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models (DDPM) [14],
[15] are a class of generative deep learning models that can
learn data distributions according to a given training dataset in
a way that allows for sampling from the learned distribution.
DDPMs are characterized by a forward process and a reverse
process. In the forward process, Gaussian noise is added
to the training data iteratively. The forward process is a
discrete Markov chain, i.e., a memoryless process in which

the previous state of the chain xk−1 is sufficient to determine
the current state xk. In general, given a noise-free sample
x0 from dataset D, the forward process can be expressed as
follows:

q
(︁
xK

⃓⃓
x0

)︁
=

K∏︂
k=1

q
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xk
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xk−1

)︁
, (1)

where k = 0, 1, ...,K is the index of the diffusion step and
q
(︁
xk

⃓⃓
xk−1

)︁
the Markov diffusion kernel. This kernel is a

probability distribution describing the probability of xk for
a given xk−1. The kernel is chosen such that its repeated
application will transform the initial data distribution q
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)︁
into a Gaussian distribution N (0, I):
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where βk ∈ (0, 1) is the variance in the forward process.
Assuming that q

(︁
τ 0

)︁
has been normalized to unit variance,

scaling the mean of the Gaussian kernel by
√︁
1− βk will keep

the variance of q
(︁
τ k|τ 0

)︁
unity. Hence, q
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τK

)︁
will resemble

a standard normal distribution for sufficiently large number of
diffusion steps K.

The reverse process is again a Markov chain, parameterized
by a parameter vector θ, that can be written in as:
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(3)

where µθ

(︁
xk, k

)︁
is learned from data, using a deep neural

network with parameters indicated by θ, and the covariance is
fixed to a cosine schedule, i.e., Σθ

(︁
xk, k

)︁
= σkI , as proposed

by Nichol and Dhariwal [23].
Ho et al. [15] found that the Gaussian noise kernel allows

for a closed-form description of the forward process:

q
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(︂√
ᾱkx0,

(︁
1− ᾱk

)︁
I
)︂
, (4)

where ᾱk =
∏︁k

s=1 1 − βs. The reverse process can also be
written in closed-form, expressing the probability of xk−1



Fig. 2: Forward process and reverse process for paths. The paths are sequences of poses that start at the star (subscript 0) and
end at the diamond (subscript T ). Noise is added iteratively to each pose in the forward process until all structure is destroyed
(superscipt K). The reverse process iteratively removes noise until a noiseless path remains (superscript 0).

when xk and x0 are given:
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Equation (4) can be rewritten as a function of the added noise
ϵ to xk (x0, ϵ) =

√
ᾱkx0 +

√
1− ᾱkϵ, where ϵ ∼ N (0, I).

Using this reparameterization, Ho et al. [15] derived a simpli-
fied training objective for a neural network ϵθ that estimates
the noise ϵ:

L (θ) = Ek,ϵ,x0

[︁
∥ϵ− ϵθ

(︁
xk, k

)︁
∥2
]︁
. (6)

1) Conditional sampling with DDPMs: In general, the
reverse process is trained to turn samples from a standard
normal distribution into samples that resemble those in the
training dataset. Oftentimes, we have additional demands to
the samples that are generated, i.e., the samples need to
meet certain conditions. This is achieved through conditional
sampling. A condition vector c ∈ Rn encodes a property of the
samples, for example, a class. Different techniques have been
proposed for condition sampling, such as classifier guidance
[16] and classifier-free guidance [24]. In this work, we opt
to use classifier-free guidance rather than classifier guidance,
since the latter involves training an additional classifier model,
which increases the training cost and complexity.

Classifier-free guidance guides the reverse process to pro-
duce samples that meet the condition using an additional input
to the DDPM. The condition c is added to ϵθ

(︁
xk, k

)︁
in

Equation (6) and the noise prediction is subsequently rewritten
as:

ϵ̃θ
(︁
xk, k, c

)︁
=ϵθ

(︁
xk, k,∅

)︁
+

w
(︁
ϵθ

(︁
xk, k, c

)︁
− ϵθ

(︁
xk, k,∅

)︁)︁
,

(7)

where w is a weight factor to balance unconditional and
conditional generation and ∅ is a null-token used as the
unconditional embedding. To train the neural network, a

random binary mask is applied to the condition embedding
that is passed to the network at each training step. In this
way, the network cannot use the conditional information for
every prediction. Therefore, the DDPM simultaneously learns
the conditional and unconditional relation.

Additionally, DDPMs are capable of inpainting. Fixing a
component of xk to a desired value by setting xk

i = x̂i at
every diffusion step k = K,K − 1, ..., 0 causes the DDPM to
inpaint about the desired component.

III. PATH PLANNING WITH DDPMS

Path planning is defined as finding a collision-free motion
from a starting configuration to a goal configuration [25]. In
this work, the path is discretized into a sequence of poses
assumed to be equidistant in time, although we are not limited
to that. We indicate a path as: τ = (H0, H1, ...,HT ), where H
is an element of the Lie-group SE(3) [26] which encodes the
position and orientation of a frame with respect to a reference
frame.
Note: There are two indices to keep track of; the time index

and the diffusion index. We use the convention of
Janner et al. [17] to use subscripts to denote the
time index and superscripts to denote the index of the
diffusion process. For example, a pose at time step t
and noise step k is hence written as Hk

t .
To enable DDPMs to generate paths, the diffusion process

is defined for the state trajectory τ , giving q
(︁
τK

⃓⃓
τ 0

)︁
for the

forward process and pθ
(︁
τ 0

)︁
for the reverse process. Figure

2 depicts the diffusion process for a path. This is achieved
by choosing coordinates for Ht and stacking all entries of τ
along the time dimension. The path τ is then represented by a
matrix to which all equations in Section II-A apply by setting
xk =

[︁
Hk

0 , H
k
1 , ...,H

k
T

]︁
.

A. Path planning through conditional sampling

Sampling Gaussian noise and applying the reverse process
yields entire paths that match the distribution of the data
that the DDPM is trained on, without requiring autoregression
along the time dimension. To ensure that the generated paths



go from the starting pose to the goal pose, inpainting is used.
That is, Hk

0 and Hk
T are fixed for all k, as is displayed in

Figure 3. To sample paths that avoid obstacles, two conditional

Fig. 3: Inpainting is used to set the start and goal poses of a
generated path. By fixing the start and goal poses (with red
rims) for all k = K,K − 1, ..., 0, the DDPM adapts the other
poses in order to match the training data distribution at k = 0.

sampling techniques are investigated. Firstly, we use classifier-
free guidance. We use as condition the return of a path given
by the sum of discounted rewards:

c =

T∑︂
t=0

γtrt(Ht) , (8)

where γ is the discount factor and rt(Ht) a reward based
on the distance to the obstacles, see Equation (12) and (13).
Conditioning only one these rewards results in the condition
vector c in Equation (7) to be reduced to a scalar: c = c.
Classifier-free guidance, allows sampling paths with high
returns and which should, therefore, steer clear of obstacles.

In related work, Carvalho et al. [21] introduced a different
way of conditional sampling, inspired by classifier-guided
sampling [16]. They define a cost function J

(︁
τ k

)︁
, containing

different terms to penalize collisions and promote smooth
trajectories towards the target. During inference, they optimize
this cost function by offsetting the mean of the reverse process
in Equation (3) using the gradients of the cost function as
follows:

µ̃θ

(︁
τ k, k

)︁
= µθ

(︁
τ k, k

)︁
−∇τkJ(τ k)|τk=µθ(τ

k,k). (9)

This method will hereinafter be referred to as ”cost-guided
sampling”, or simply ”cost guidance”. We will also investi-
gate this method of conditional sampling to achieve obstacle
avoidance, as well as the combined application of classifier-
free guidance and cost guidance.

Furthermore, the probabilistic nature of DDPMs allows for
a Monte Carlo approach to further optimize the paths. Instead
of sampling a single path, DDPMs can be used to sample n
different paths using the same conditions and selecting the
path in the batch that minimizes a cost function C

(︁
τ k

)︁
:

τ ∗ = argmin
τ

(C(τ )). (10)

B. Closed-loop planning

Although DDPMs do not have an inherent sense of temporal
ordening, the quality of a path may still degrade along the time

dimension due to discounting of the rewards, in the sense that
future poses carry less weight in the reward structure. This
issue can be addressed with a closed-loop approach to path
planning. Rather than sampling a path and tracking it entirely,
one can sample a path, track it for m steps, and then resample
to update the rest of the path. Upon resampling, the planning
horizon is shifted to achieve receding-horizon control, like Chi
et al. [19] did. A block diagram of the process is shown in
Figure 4. This approach resembles Model Predictive Control
in the sense that we have a model that predicts future states
and optimizes some cost function over a finite horizon.

C. Training data

In this work, we aim to create a path planner that is not
robot-specific, nor requires expert examples, while still being
able to produce useful paths. To showcase the generalization
capabilities of the DDPM, the training dataset is synthetic and
consists only out of straight lines with associated returns. To
create a path in the training dataset, two random poses are
sampled uniformly from a three-dimensional workspace. The
other poses are obtained through separately interpolating the
positions and orientations between the two initial poses, such
that all positions are on a straight line. Note that these paths
can be anywhere in the workspace, even in collision with
obstacles. The dataset contains 60,000 paths.

In order to train the network to be able to avoid obstacles,
the paths are associated with a return value (Equation (8)).
We consider two options for rt (Ht). The first one will be
referred to as dense rewards. It penalizes not only the collisions
themselves, but also the distance towards the nearest obstacle.
A pose Ht can be described by a matrix that can separated
into a rotation matrix Rt that encodes its orientation and a
vector pt that encodes its position [26];

Ht =

[︃
Rt pt

0⊤ 1

]︃
, (11)

where ⊤ refers to the transpose operator and 0 is a column
vector of three zeros. Using the position of the nearest point
of the nearest obstacle pobst, the reward is then:

rtdense (Ht) =

{︄
−1 when in collision
−e−a·∥pobst−pt∥2 otherwise,

(12)

where a ∈ R is a scaling parameter and ∥pobst − pt∥2 is the
Euclidean norm of pobst − pt. In the following experiments,
we consider static obstacles, a discount factor γ = 0.99 and
a = 46.

The second option will be referred to as sparse rewards and
it penalizes only the collisions themselves:

rtsparse (Ht) =

{︄
−1 when in collision,
0 otherwise.

(13)

IV. EXPERIMENTS AND RESULTS

The following section describes various simulations and ex-
periments performed with the DDPM. Training and inference
settings that are fixed throughout this work are in Table I.



Fig. 4: Block diagram of a closed-loop control configuration for a DDPM planner

TABLE I: Model settings kept fixed throughout the experi-
ments.

Setting Value

Number of diffusion steps K 200
Path length in training T 32
Classifier-free guidance scale w 1.2
End effector loss weight wee 10−3

Collision loss weight wc 10−3

Neural network architecture Convolutional U-Net
Number of model parameters ∼60M
Optimizer Adam
Learning rate 2 · 10−4

Batch size 32
Number of training steps 200k

A. Impact of horizon and returns on classifier-free sampling

Since the training dataset contains paths in the entire
workspace, even inside obstacles, the avoidance of obstacles
is entirely achieved through conditional sampling. When using
classifier-free guidance, these conditions are learned from
the training data, which only consists out of straight lines.
The extent to which the planner can generate paths that
avoid an obstacle in between the start pose and goal pose
depends on the DDPM’s generalization capabilities, but also
on the hyperparameters used in inference. Two important
hyperparameters are the planning horizon and the returns on
which the sample is conditioned. To investigate these, a simple
scenario is considered in which the DDPM is used in open-
loop configuration to inpaint a path between a starting pose and
a goal pose, while an obstacle is positioned in between. Figure
5 shows simulations of the paths for various combinations of
these parameters. For the model trained on sparse rewards,
only a returns value of zero is considered, since this is the
only value that represents a collision-free path.

B. Inpainting with repeated goal states

In Figure 5 it is clear that the generated paths generally do
not connect well to the goal pose. We hypothesize that the
long horizon makes the single goal state have relatively little
weight in the reverse process, causing the gap at the end of
the path. To assess this, we used a DDPM trained with dense
rewards to inpaint a path with a horizon length of T = 256
and conditioned on a return value of c = −0.001, which are
the same parameters as used in the bottom-right of Figure 5a.

However, instead of fixing only the final state to be the goal
state, we fixed the final i states to be the goal state. Simulations
of the resulting paths are shown in Figure 6.

C. Real-world experiments

To validate the path planner, path planning tasks are per-
formed with a Franka Emika Panda robot. Two different
environments were created for validating the planner. For both
environments, we define a cuboidal region in which some
objects are placed. All training data is generated within this
region. The first environment is the same as used in the previ-
ously presented simulations and contains one cuboid obstacle.
The second environment contains two cuboid obstacles; a big
cuboid and a small cube placed on top of it. The obstacles
are visible in Figure 7 and 8. The starting and goal poses are
chosen such that no collision-free straight path exists between
the start and the goal.

Different methods of conditional sampling are tested.
Firstly, we perform experiments using classifier-free guidance,
using planners that were trained with dense rewards and plan-
ners trained with sparse rewards. Secondly, in order to make
comparisons, we use the cost-guided conditional sampling
approach put forward in [21]. The cost function used in the
experiments is the sum of two relevant cost terms used in [21];
the end-effector cost and the collision cost. The end effector
cost is given by:

gee (Ht) = dSE(3) (Ht, Hg) , (14)

where dSE(3) (Ht, Hg) = ∥pt−pg∥22+∥LogMap
(︁
RT

t Rg

)︁
∥22.

The LogMap() is a function from Lie Theory [26] that can
be used to quantify the difference between two orientations.
The collision cost is given by:

gc (Ht) =

{︄
−d(pt) if d(pt) ≤ 0

0 if d(pt) > 0
(15)

where d (pt) is a differentiable signed distance function from
the position pt to the surface of the nearest obstacle, defined
to be positive when pt is outside the obstacle. The total cost
function is J (τ ) =

∑︁T−1
t=1 weegee (Ht) + wcgc (Ht), with

the weighting factors wee and wc. Thirdly, we experiment
with a novel way of sampling through combining classifier-
free sampling with cost-guided sampling. In total, this results



(a) (b)

Fig. 5: Open-loop path generation with classifier-free guidance from the star to the diamond for various horizons T and
conditioned on various returns c. In (a), dense rewards are used and the returns are varied. In (b) sparse rewards are used and
the returns are set to c = 0. The mean position of thirty generated paths is indicated by the blue line.

(a) (b) (c) (d)

Fig. 6: Open-loop path generation with classifier-free guidance with a varying number of repetitions of goal state inpainting. The
number of repetitions are 1, 2, 5, and 10, for (a), (b), (c), and (d), respectively. Conditioning on dense rewards of c = −0.001
with a horizon of T = 256 were used. The mean position of thirty generated paths is indicated by the blue line.

in five combinations for conditional sampling; i) classifier-
free guidance with dense rewards; ii) classifier-free guidance
with sparse rewards; iii) cost guidance; iv) classifier-free
guidance with dense rewards combined with cost guidance;
v) classifier-free guidance with sparse rewards combined with
cost guidance.

The path planner was deployed in a receding-horizon
configuration as explained in Section III-B. The following
hyperparameters were chosen; the planning horizon h = 128,
number of steps tracked per execution m = 64, number of

paths produced per batch n = 5, returns condition with dense
rewards cdense = −0.01, returns condition with sparse rewards
csparse = 0. In inpainting, the goal state was repeated five times
at the end of the path. Of the five paths generated per batch, the
path with the lowest returns calculated with dense rewards was
selected for tracking, regardless of the conditional sampling
method that was used. The generated paths were tracked using
cartesian impedance control. A limitation of this experiment is
that the orientation of the end effector is kept fixed to prevent
the robot arm from twisting itself into a configuration in which



it cannot track the planned path anymore due to joint limits.
Figures 7 and 8 show video frames from recordings of the

experiment of the scene with one obstacle and two obstacles,
respectively. The only conditional sampling methods that did
not result in any collision-free paths for a particular scenario
are cost guidance (combination iii) ) and using classifier-free
guidance with sparse rewards combined with cost guidance
(combination v) ), both in the environment with a single obsta-
cle. All other conditional sampling methods could repeatedly
generate collision-free paths in both scenarios. Sparse rewards
resulted in paths much closer to the obstacles compared to
dense rewards, regardless of the inclusion of cost guidance.
In the scenario with two obstacles, using only classifier-free
guidance with dense rewards (combination i) ) often resulted in
lingering before crossing from one side of the smaller obstacle
to the other.

V. DISCUSSION

The parameter sweep in Figure 5 shows the impact of the
horizon and returns on the generated paths with classifier-
free guidance. Firstly, it is evident that in all configurations,
coherent paths are generated that start at the intended starting
pose and tend towards the goal pose, even for horizons that
are much longer than seen in training. The paths that were
generated using sparse rewards are close to the obstacles,
whereas for dense rewards, the distance to the obstacle is
strongly influenced by the rewards. For the model trained
with dense rewards, collisions are avoided when conditioning
on high rewards, but choosing them too high can lead to
overly conservative paths. However, with sparse rewards, there
is no control over the trade-off between generating a path
that closely approaches the goal state and steering clear of
the obstacle, which leads to many paths slightly violating the
condition of obstacle avoidance. For both types of rewards, the
model is able to generate paths that are not in collision with
the obstacle, when using a sufficiently long horizon. However,
the consistent gap between the final planned state and the goal
state prevents them from being directly useful for tracking.
This is not merely an issue of the horizon being too short, as
even doubling the horizon from 128 to 256 hardly improves
this connection.

When it comes to closing the gap between the final planned
state and the goal state, Figure 6 shows that repeating the goal
state in inpainting may be a useful trick. Even adding a single
additional goal state to the reverse process already made the
paths approach the goal more closely. However, there appears
to be a limit, as inpainting with ten copies of the goal state
yields no further improvement compared to using five states.

The real-world experiments validate that a capable path
planner can be made using various configurations of condi-
tional sampling. However, using only cost guidance or using
classifier-free guidance with sparse rewards in combination
with cost guidance did not result in collision-free paths for the
scenario with one obstacle. This shows that the optimization
procedure carried out in cost guidance benefits from a good

prior that can be provided by a DDPM that uses classifier-
free guidance with dense rewards. With the cost function
used here, cost-guided sampling on its own or in combination
with classifier-free guidance with sparse rewards may fail
because there is no term that promotes to keep a distance
to the obstacles beyond the edge of the obstacle, which opens
the possibility of the end-effector cost bringing the path into
collision. On the other hand, we observed that path planning
with classifier-free guidance with dense rewards could be
improved by using the cost function guidance. In particular in
the scenario with two obstacles, the path planner without cost
function guidance would often linger in place to avoid moving
closer to the obstacles, even though that was required to reach
the goal pose. Adding cost function guidance pushes poses to
be close to the goal pose, which resolved this shortcoming.

A. Future work

Future research could further investigate the trade-off that
exists between returns conditioning, goal state inpainting and
the planning horizon for planning with DDPMs, since selecting
the right hyperparameters for inference is crucial for generat-
ing high-quality paths. Furthermore, the line of research con-
cerned with training DDPMs with low-quality demonstrations
could be continued by exploiting the structure that the context
of robotic path planning provides. For example, kinematic path
constraints, like large distances between consecutive poses
may also be enforceable through methods similar to those used
in physics-informed diffusion models [27], [28]. The inclusion
of the robotic context can be further aided by using models
that diffuse directly on SE(3), like [29], [30], in order to obtain
a geometric description of the diffusion process.

VI. CONCLUSION

In this work, we proposed an approach to designing a path
planner for a robotic end effector using DDPMs that does not
use expert demonstrations. Instead, using only straight lines as
training data, the path planner can produce complex paths that
avoid obstacles by utilizing the generalization capabilities of
the DDPM and various options of conditional sampling. De-
ploying the DDPM in a closed-loop receding-horizon control
scheme in order to continuously update the plan allowed the
path planner to reach targets that it could not effectively reach
in an open-loop configuration.
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