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Abstract

The growing interest in improving soil quality and conducting detailed analyses necessitates
robust soil sampling methodologies. However, an increased interest in the role of microbes
in soil ecosystems, and DNA analysis of soil becoming cheaper, has introduced questions
about how to best sample soil. This thesis presents BLOSSOM (BioLOgical Simulation in
SOil Model), a spatiotemporal Agent-Based Model (ABM) designed to simulate organism
interactions in 3D. BLOSSOM is used to explore the effects of different soil sampling
parameters on data quality and analysis. These simulations indicate that larger sample
radii and intra-plot pooling can greatly impact data analysis, whereas sampling locations
play a minor role.

BLOSSOM and all other code used in this thesis can be found at: https://github.com/
timovdk/BLOSSOM

Keywords: Computer Science, Ecology, ABM, Co-Occurrence, Modeling, Soil Sampling,
Simulation
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Chapter 1

Introduction

Soil sample analysis is a major part of soil research, and the sheer quantity and diversity of
organisms in soil make this a complex topic. There are thousands of different species and
billions of individual organisms in a single handful of soil. These organisms vary greatly
in scale; from microscopic bacteria and fungi to earthworms and ants [8, 96]. Therefore,
various methods to analyze soil are employed: earthworms are counted by hand, but
as organisms get smaller, counting by hand becomes impossible and ecologists rely on
DNA sequencing for identification, and molecular and chemical measurements to quantify
biomass [9]. However, before ecologists can count organisms and do further analysis, soil
has to be sampled. This sampling process is the first step in Figure 1.1, and a general
approach looks as follows: suppose the illustrated cube is a 2x2 meter plot of grassland
that contains billions of organisms at various scales; from bacteria (1-2 µm in width) and
fungi (2-80 µm in width), to earthworms (2-32 mm in width). This plot is sampled by
taking cores, with each core having the same diameter and depth. Sometimes, these cores
are combined, or pooled, to form a representative average of the entire plot. These cores
are then analyzed in a lab, such that the soil can be digitized by counting the organisms
and analyzing the physical and chemical composition of the soil. These digitized cores
combined form a dataset, where a row represents a sample and the columns represent the
digitized value (e.g., number of individual bacteria). This dataset forms the input for many
analysis techniques like differential analysis and network analysis.

Diameter

Depth

Samples

Digitization Dataset Data analysesSampling Core

- Counting
- Metagenomic
  analysis

- Differential analysis
- Network analysis

1-2 μm

2-80 μm

0.1-2 mm

2-32 mm

Sample

Count

Species

Figure 1.1: The flow from sampling to data analysis.

However, whilst analysis options increased greatly in the past two decades because DNA
sequencing became cheaper and faster [9], the impact that the sampling methodology has
on the output of these new analysis methods has not been studied carefully and is currently
far from fully understood according to Li et al. [68]. They also found that soil sample size
has an impact on detected microbial richness, community composition, and co-occurrence
patterns. Older studies on plant communities have shown this trend as well, where the
species diversity increases the larger the sample area is. This idea is called the Species-

1



area Relationship (SAR) and it has been widely studied in relation to plants and animals
that are visible to the naked eye [82]. However, this is not a linear relation, and at some
point, this increasing trend slows until it plateaus. The trick when doing diversity research
back then was to find the plateau value, and only sample until you reach that to reduce
cost and time. Besides varying sample sizes, there is also the practice of combining soil
samples of the same plot into one and doing the digitization on these combined samples.
In Figure 1.1 this would mean that the three cores that were taken in step one are mixed
before the digitization step. Depending on the scale of what the researcher is interested in,
this does not have to be a problem and can even be helpful. However, according to Ettema
and Wardle [28], spatial variability often has a predictable spatial structure. These spatial
structures appear at various scales from centimeters to micrometers [2, 13, 44, 60]. This
raises several questions like what sample size should be used, and whether datasets that
use these combined samples can be used for understanding the microbiome in soil.

One of the main drivers in these new analysis techniques is the EU Soil Strategy for
2030 [92]. It provides a framework to protect and restore soil and to ensure soil is used
sustainably. Furthermore, the EU Soil Health Law [93] that is currently being proposed
would see the implementation of a monitoring framework for soil quality, make sustainable
soil management the norm, and identify and address toxic soils. The Soil Strategy and
the Soil Health Law aim to improve soil health in the EU, help achieve climate neutrality
(soil is a big carbon sink), move towards a clean circular economy, and stop desertification
and land degradation. In turn, this would also address biodiversity loss, provide healthy
food, and safeguard human health. For EU countries to implement key legislation to reach
these goals, several questions must be answered about soil: what is healthy soil, how to
restore unhealthy soil, and what are sustainable usages for different soils? These questions
rely at least partially on ecologists analyzing the microbiome in soil, for which soil samples
are needed. The conclusions drawn in these studies will form the basis for policy changes,
so they must be thorough. Therefore, it is vital to understand the impact of sampling
methodologies on data, and how it can impact downstream data analysis.

Researchers have attempted to model the behavior of organisms mathematically for
close to a century. One of the most well-known models is the Lotka-Volterra model [70, 100].
This is a predator-prey model where two differential equations represent the predator
and the prey, respectively. However, to model soil, many more interactions need to be
considered. Soil is the most complex biomaterial on earth, with organisms interacting with
each other, but also with the chemical and physical properties of soil [6].

The ability to model these complex interactions forms the basis for a spatiotemporal
model of soil, on which several large-scale experiments can be conducted that would be
very costly and/or destructive when done in the physical domain. This hypothetical spa-
tiotemporal soil model could help to find out whether current sampling techniques and
the pooling of soil cores are sufficient for analyzing different scale kingdoms. Moreover, it
could help shed light on how to improve current sampling methodologies.

In summary, this thesis proposes the development of a spatiotemporal model of soil
that can be used to investigate the impact of sampling methodologies on conclusions drawn
from data analysis such as counting abundances and diversity, and co-occurrence network
analysis. This is highly relevant because soil studies are becoming increasingly important
for increasing soil biodiversity and carbon storage capabilities. Moreover, soil is not nearly
fully understood, with many species and interactions left to uncover. Therefore, having
a sound foundation when sampling physical soil could prevent problems when drawing
conclusions based on this data. It also opens up the possibility of standardization and in
turn improved cooperation between ecology and different sectors, such as data science.
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1.1 Research Questions

The main question of this thesis is as follows:

How does the soil sampling methodology affect data analysis, such as counting
species abundances and diversity, and co-occurrence network analysis when
analyzing synthetic data from a spatiotemporal soil model?

This main question can be divided into two research questions:

1. How to develop a spatiotemporal soil model that models soil, soil organic matter,
and soil biota in 3D in a realistic manner?

2. What is the effect of soil sampling methodologies, such as varying sample diameter,
sample locations, and pooling of soil samples, on the results of data analysis?

The first question is subdivided into four subquestions, which are:

1. How to model soil organic matter in 3D?

2. What organism traits should be modeled?

3. What organisms or organism groups should be modeled?

4. What are the dynamics between species and soil organic matter, and how to model
these?

1.2 Thesis Outline

This thesis is organized into seven chapters. The Introduction outlines the research prob-
lem, objectives, and scope of the study, providing an overview of the RQs that are answered
in this thesis. The Background chapter introduces key concepts in ecology and modeling,
which form the basis for understanding the focus. The Related Work section reviews
existing literature and previous studies in the field of modeling in ecology, providing an
overview of some models and highlighting the difficulty of parameterizing soil organisms
and the gaps in these models. Moreover, it introduces research on co-occurrence networks
in ecology. Following this, the Methods section explains the design choices of the model,
and how the model was parameterized. This essentially answers RQ1. It also introduces
how data was gathered from the model and the analysis techniques that are used to an-
swer RQ2 in the Results section. This section presents the findings of the thesis, which are
further explored in the Discussion section, where the interpretations and implications are
covered. Finally, the Conclusion summarizes the main insights and contributions of the
research and suggests directions for future work.
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Chapter 2

Background

This chapter covers the necessary background information for this thesis. Soil properties
have a big impact on soil biota, and the above-belowground interactions form the basis for
modeling these interactions. Understanding these properties of soil is vital for developing
the spatiotemporal soil model for the first research question. Soil sampling itself is also
covered since this is key to the second research question.

2.1 Soil Properties

Several properties greatly influence soil on a physical and chemical level, these in turn
influence the soil biota and the ecosystem. Moreover, the physical properties of soil have
a big impact on how water moves through the soil. This section provides the necessary
background knowledge on key soil properties and how they influence soil biota and ecosys-
tems.

2.1.1 Soil Types

There are two widely used standards to classify soil: the Soil Taxonomy (ST) [91] and the
World Reference Base for soil resources (WRB) [51]. Research has shown that soil types
have a big influence on soil biota and ecosystems. Girvan et al. have even found that soil
type is the primary determinant for total and active bacterial colonies [42]. It is apparent
that soil type is an important topic in soil sciences, so it is important to understand how
soil types compare with each other. Soil can differ in several ways, but the most important
ones are texture and structure, which will be covered in this section.

Texture Texture refers to the proportions of sand, silt, and clay in an area. The three
texture classes are classified based on the particle size: sand has particles between 0.05
and 2.0 mm, silt between 0.002 and 0.05 mm, and clay < 0.002 mm. Proportions of these
three types of particles create different types of soil, which are shown in Figure 2.1. The
proportions of these classes have a large influence on the ability of the soil to retain water
and nutrients. Since clay has the highest surface area to volume ratio, clay-rich soils are
very good at retaining water and nutrients like Ca2+, Mg2+, and NH+

4 .

Structure Structure refers to the binding between the proportions of sand, silt, and
clay into aggregates. The binding of these particles can happen in several ways [7]:
1. Freeze-thaw cycles help to mold particles into aggregates 2. Rain and plowing disturb
the arrangement of particles 3. Burrowing animals like earthworms mix soil 4. Feces can
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Figure 2.1: The soil composition matrix. Adapted from [7]

help aggregate formation 5. Roots and microbes produce glues that hold particles together
6. Fungi help to hold aggregates together This shows that the soil structure impacts biota,
but biota also impact the soil structure. The aggregates that form determine how pores
are distributed in the soil. These pores play a big part in how water moves through the
soil, but also in how biota move through the soil. If pores are small, let’s say <30µm,
organisms like nematodes with a diameter of approximately 30µm will have a hard time
moving around. In other words, different pore sizes and distributions have a big impact
on how ecosystems function.

2.1.2 Soil Organic Material

Soil organic matter (SOM) is defined as the organic part of the soil, such as dead particulate
matter (detritus) from plants and animals in any stage of decomposition, soil microbes,
and matter synthesized by microbes [104]. Between 1% and 6% of all topsoil is SOM, but it
fluctuates drastically: deserts can have SOM percentages of <1%, whilst wet areas can have
SOM percentages as high as 90% [97]. SOM is vital for soil quality due to its complex role in
water retention, nutrient and pollutant storage, and promoting biodiversity. [10]. Moreover,
SOM is considered a carbon sink, with C contents of SOM estimated at around 58%. This
is why soil is one of the largest carbon sinks on Earth, and why understanding how it works
plays a vital role in mitigating climate change. Furthermore, SOM plays an important role
in the fertility of soil. It acts as a storage for nutrients like nitrogen, phosphorus, potassium,
and sulfur, and for minerals like boron, chlorine, and several metals [53]. In addition to
influencing soil structure and water retention, SOM also plays a pivotal role in nutrient
availability, a key factor in soil fertility, as outlined below.
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2.1.3 Soil Nutrients

Without water and nutrients, there would be no life possible in the soil. Water has many
dissolved nutrients in it, and it provides a way for soil biota to move around in the soil.
Nematodes, protozoa, and the bacteria that they eat all live in the water in the soil. Con-
sequently, most fauna will move to other places when soil becomes too dry for them, so
water is an important part of where and how fauna develops [7]. Some of the most impor-
tant nutrients are nitrogen (N), phosphorus (P), and potassium (K), and are commonly
referred to as NPK.

Nitrogen One of the most important nutrient for plants is nitrogen, which is key to
plant growth. Moreover, a shortage of nitrogen is the most frequent cause of reduced plant
growth [84]. Nitrogen distribution in the soil is highly affected by human activity, which
makes it difficult to model [103].

Phosphorus The second most frequent cause of reduced plant growth is phosphorous.
In nature, phosphorous usually comes from weathered minerals, but in agricultural areas,
it is artificially added in the form of fertilizers [20].

Potassium Unlike nitrogen and phosphorous, potassium helps activate enzymes and
regulates drought tolerance and water use [21]. The weathering of minerals in the soil
causes potassium to be released into the soil. Many minerals contain potassium, so it is
highly uncommon for potassium to run out [48].

2.2 Soil Biota

This section explores the diversity and ecological roles of soil biota, showing their essential
functions in soil health, nutrient cycling, and ecosystem services. Biota in soil can be
grouped into several functional groups, for example, recycling organic matter from above-
ground food webs and aerating soil. The biggest groups within the soil food web are the
bacteria and fungi, but these are far from the only species. Soil biota can be divided into
three groups based on their body width: microfauna with a body width <0.1 mm (e.g.,
nematodes and protozoa), mesofauna with a body width between 0.1 and 2.0 mm (e.g.,
enchytraeids and microarthropods), and macrofauna with a body width >2.0 mm (e.g.,
termites and earthworms). These three groups are visualized in Figure 2.2.

All soil biota depend on each other for food and can be grouped in trophic (food) levels.
This is helpful to illustrate the dependencies of various biota groups, and this food web
will be used to explain the different roles these biota have. Figure 2.3 shows this food web,
and the following sections explain the connections between the organism groups.

2.2.1 Decomposers

Microbes are the decomposers in the soil food web and are shown in blue in Figure 2.3. This
group is made up of bacteria, fungi, and actinomycetes. There are thousands of microbial
species, of which bacteria and fungi are the most abundant. Fungi grow filamentous hyphae
that can explore the soil that they live in. Bacteria rely on either their flagella if they have
one, or on passive transport to move around in soil. Generally, there are fewer individual
bacteria than fungi. But, when considering the biomass of both of these groups, it becomes
clear that fungi are the bigger group: in temperate forests, there is, on average, 260 mg
kg−1 of fungal hyphae, and 53 mg kg−1 of bacteria in topsoil [47].
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Figure 2.2: Illustration of the scale of soil biota. Taken from [7]
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Figure 2.3: Structure of the soil food web. Adapted from [46]
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Fungi help redistribute nutrients within the soil, transferring them from areas rich in
organic matter to nutrient-poor zones. Moreover, fungi can act as pathogens, as mentioned
previously they can help bind soil particles together, and they are food for fungi-eating
fauna. Just like fungi, bacteria play an important role in nutrient availability. Bacteria
degrade organic compounds into useful nutrients, nitrifiers, a specific type of bacteria,
can for example oxidize ammonia into nitrate. However, bacteria come in a wide variety,
some can degrade compounds that are toxic to most other organisms. Another significant
part of the microbial diet consists of living plant roots, where mycorrhizae are a highly
interesting example. Mycorrhizae refers to the symbiotic interaction between plant roots
and fungi, where fungi attach to a plant’s living roots and exchange nutrients. The plants
provide a constant stream of glucose to the fungi, which is produced in the leaves by
photosynthesis and transported to the roots. In return, the fungi provide the plant with
water and nutrients that would otherwise be unreachable for the plant [87].

There is also the concept of microbial hotspots, which are areas in the soil that see much
higher process rates and usually have more intense interactions than in average soil. These
hotspots have different spatial and temporal scales that depend on the soil properties, but
spatially vary between 1 µm and 10 mm [63]. Furthermore, Rønn et al. [85] found that
hotspots develop in root litter, but that these hotspots could not be measured in bulk
soil >1.8 mm from the litter patch. From these examples, it becomes clear that taking
samples at different scales e.g., millimeters and centimeters, or aggregating samples could
easily lead to wrong conclusions and spurious correlations. While decomposers break down
organic matter and release nutrients into the soil, higher-level consumers play a crucial role
in regulating microbial populations and further fragmenting organic material.

2.2.2 Higher Level Consumers

Soil has a great variety of animals that feed on the primary consumers and each other.
They differ in many ways and are not easy to classify into subgroups. One classification
that is used a lot in ecology is body width. This leads to the following three groups which
are also shown in Figure 2.2: microfauna with a body width <0.1 mm (e.g., nematodes
and protozoa), mesofauna with a body width between 0.1 and 2.0 mm (e.g., enchytraeids
and microarthropods), and macrofauna with a body width >2.0 mm (e.g., termites and
earthworms). These groups will be used to explain the importance of the higher-order
consumers in soil.

Microfauna The two most common groups of the microfauna group are the protozoa and
the nematodes, which are shown in orange in Figure 2.3. As can be seen from the figure,
there are many types of nematodes that all have different feeding behavior. Nematodes
as a group eat roots, bacteria, fungi, and even on other nematodes. They rely on the
continuity of soil water films for movement. Protozoa usually eat bacteria, but some
predatory protozoa also eat other protozoa or nematodes [7].

Mesofauna Microarthropods are the biggest non-aquatic group in the soils of most
ecosystems. They can be subdivided into the collembola, small wingless insects, and
the acari, or mites. These arthropods are shown in purple in Figure 2.3. Arthropods
are thought to be omnivorous and feed on bacteria, fungi, nematodes, and algae. Some
organisms in the arthropods group are known as shredders, organisms that fragment or-
ganic material which increases its surface-to-volume ratio, and in turn, increases microbial
activity [39].
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Macrofauna The reason that macrofauna is not represented in Figure 2.3 is that these
organisms show up in any of these trophic levels. For example, woodlice eat detritus,
larvae eat roots, and centipedes predate on other organisms. Another well-known example
of macrofauna is ants, which feed on microbes but can also be predators. However, the
best-known macrofauna type is earthworms, which play an important role in the fertility
of soil. They eat almost all organisms shown in Figure 2.3: detritus, bacteria, fungi,
nematodes, and protozoa. Earthworms create rich humus from organic matter that is rich
in nitrogen, phosphates, and potassium. Moreover, the burrows that they dig promote soil
aeration and water drainage [7].

2.3 Soil Investigation

Sampling is the first step in understanding soil properties and biota, as it forms the foun-
dation for subsequent analysis and data interpretation. Soil investigation is normally done
by taking samples and analyzing these samples partially in the field, and partially in a
laboratory. Things like counting earthworms can easily be done in the field, but analyzing
microbes is only possible in lab environments. Many parameters of the soil are analyzed,
and the results are put in a tabular format as data for further analysis [66].

Sampling Sampling is done through a strict procedure set out at the start of a study.
Usually, this procedure defines the plot size, the core size, the core depth, and a sam-
pling strategy. Sampling strategies are designed to provide representative data from a field
without the need to analyze every square meter, optimizing both time and resource use.
However, soil investigations are not without challenges. Heterogeneity in soil composition
across different locations or seasons can affect the samples, making it vital to follow stan-
dardized procedures and consider multiple samples. An example of the sampling process
based on the research by Lauber et al. [65] looks as follows: Suppose a 100m2 plot where
10 individual soil samples are taken using a stratified sampling approach. Each of these
samples is a core 8 cm in diameter and has a depth of 7.5 cm. Then, the 10 samples are
sieved and homogenized by hand. These homogenized samples are sent to the laboratory
for further analysis. Besides stratified sampling, there are several other sampling strategies
such as systematic regular and random, and various combinations of the three.

Analysis Analysis of soil samples is done for many parameters that cover characteristics
like topography, stoniness, texture, moisture, pH, salinity, and the biota [66]. Many of
these characteristics need different analysis methods, from counting by hand to rRNA
analysis.

For microscopic organisms, gene sequencing methods, such as those used in the MiSeq
machine, are employed to identify and count them. Until the 1990s, before these DNA
sequencing techniques existed, the microbiome was a black box that was almost impossible
to analyze. The main reason for this is that only 1.4-14.1% of bacteria are culturable [52].
The MiSeq machine counts amplicon sequence variants (ASVs), which represent unique
gene sequences within each sample. The unique gene sequences are then compared to a
library of known organisms to find out what organism has been counted. After sequencing,
the data can be normalized to ensure comparability between different samples. Normaliza-
tion ensures that the results are comparable between samples by adjusting for differences
in sample size or sequencing depth, providing more accurate insight into the relative abun-
dance of organisms [16]. Therefore, any downstream analysis of this data needs to tread
carefully around the different scales of these organisms [69]. The analysis of soil biota
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and their interactions with soil properties provides important insights into soil health,
ecosystem functioning, and the potential impact of environmental changes.

Larger organisms like mites or nematodes are counted by hand or microscope, as these
organisms are too large for genetic sequencing. The physical properties of soil ask for addi-
tional analysis techniques. For example, soil moisture can be measured using gravimetric
methods, while pH can be determined using pH meters or litmus tests. Texture analysis
can be done by particle size distribution tests using sieving or sedimentation techniques.
Through these sampling and analysis methods, researchers can gain a deep understanding
of soil properties, soil biota, and the impact of environmental factors on the ecosystem.

2.4 System Modeling

It has long been known that for complex problems, models can be a great help in under-
standing these complex systems. This can in turn lead to more effective decision-making
and policy [11, 12, 17, 33]. However, there are several approaches to modeling complex
problems, and each has its strengths and weaknesses. Table 2.1 summarizes five modeling
approaches that can be considered the most relevant [56]. Choosing between these ap-
proaches can be difficult, but by systematically comparing modeling approaches by clearly
defining the problem, one can choose the most appropriate modeling approach for the
problem at hand. In this process, it is important to consider three questions: What is the
purpose of the model? What types of data are available? And, who are the model users,
and what are their requirements?

There are five main purposes for modeling, where models can be developed to cover
one or more of these purposes. These are, in no particular order, prediction, forecasting,
management and decision-making, social learning, developing system understanding, and
experimentation. The available data refers to quantitative and qualitative data. Most
models rely on both data types, but some models explicitly use qualitative data in cali-
bration and parameterization. Finally, the requirements of the user are considered; how
is space treated (non-spatial, discrete, continuous), how is time treated (discrete, contin-
uous), and how are entities and structure treated (aggregated, individual). The modeling
approaches summarized in Table 2.1 are covered in more detail in the following paragraphs.
How the modeling approach for this thesis was chosen out of these five is covered below in
Section 4.1.

Table 2.1: Five most relevant modeling approaches summarized. Adapted
from [56]

Approach Applications Data Space Time Uncertainty

System dynamics System understanding Quantitative Non-spatial Any Monte Carlo
Experimentation Discrete
Social learning

Bayesian networks Decision-making Both Non-spatial Non-temporal Links have
Social learning Discrete Discrete probabilities
System understanding
Experimentation
Prediction

Coupled component models Prediction Quantitative Any Any Monte Carlo
Forecasting Opt. Qualitative
System understanding
Experimentation
Decision-making

Agent-based models Social learning Quantitative Limited Any Monte Carlo
System understanding
Experimentation

Knowledge-based models Decision-making Both Non-spatial Non-temporal Explicit
Prediction Discrete
Forecasting
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System Dynamics System Dynamics (SD) modeling consists of several conceptual and
numerical methods that help to understand the structure and behavior of complex systems.
SDs are systems of ordinary differential equations [36]. A prime example of SD modeling
is the Lotka-Volterra model, which is widely used to describe the dynamics of biological
systems where two species, one prey and one predator, interact. [70, 100]. The basic form
of this SD model looks as follows:

∂x

∂t
= αx− βxy

∂y

∂t
= δxy − γy

Where x represents the population of the prey, and y is the density of the predator. The
∂x
∂t and ∂y

∂t represent the growth rates, and t time. α and β are the parameters that control
the growth rate and impact of predators on the growth rate of the prey. δ and γ control
the death rate and impact of the presence of prey on the growth rate of the predators.
This system leads to a deterministic and continuous solution.

Bayesian Networks Bayesian Networks (BNs) use probabilistic relationships to de-
scribe connections between the model’s variables. Variables are represented by nodes, and
these nodes are connected by arrows that represent a causal dependency with a conditional
probability distribution. They are mostly used in decision-making environments, such as
risk analysis in environmental management, because of their clear cause-effect structure
that breaks down a system into clear, addressable, components [12]. However, the prob-
abilities of the connecting arrows represent parameterization uncertainty, not structure
uncertainty. Therefore, the structure has to be known fairly well before it can be modeled.
There is also no option to adequately implement and consider feedback loops. Most of the
BNs use a discrete representation of variables [11].

Coupled Component Models Coupled component models (CCMs) combine models
from different disciplines to find new insights, such as system dynamics, Bayesian networks,
agent-based models, and knowledge-based models. An example of this is a hybrid version
of economic and environmental models as used in climate change research. There are two
ways to combine these models; loose and tight. Loosely coupled models involve manually
linking the output of one model to the input of another, while tightly coupled models are
designed to work together directly, sharing input and output data. Nodes represent these
specific models and edges the data flowing between them. The capabilities and limitations
are inherited from the modeling approaches that are being coupled. This also raises a
problem, because the interactions between different models are not straightforward, and
behavior has to be evaluated extensively. It is one of the more complex, but also most
widely used modeling approach discussed in this section [99].

Agent-based Modeling Agent-based models (ABMs) attempt to represent interactions
between entities that behave autonomously. Often they represent humans, such as in be-
havioral models in urban planning or epidemiology, but they can also be used to represent
animals, groups, and entities such as water. These entities all interact with the same en-
vironment and each other to satisfy the entity’s defined objective [33]. ABMs are unique
in the way they allow researchers to find emergent behavior from these simple entity in-
teractions. The representation of entities can be as simple as a couple of rules, but also as
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complex as entire mental models. This gives ABMs the unique capability to study individ-
ual interactions, but also the links they create and the behavior they develop. However,
this does mean that the modeled individuals require detailed information for them to be
modeled correctly. Including lesser-known entities or processes could limit the accuracy of
ABMs [56].

Knowledge-based models Knowledge-based models (KBMs) are usually used in expert
systems and exist in two types: rule-based models which can be seen as a set of “if-then-else”
rules, and logic-based models which can be seen as a series of logic statements. Experts
in the field form the input for these systems, and they attempt to capture the experience
and expertise in a model to help in decision-making. For example, KBMs are used in
medical diagnosis systems that rely on expert knowledge-based decision-making. However,
this knowledge has to be kept up to date over time, which might impact a set of rules that
already exist in the model. This can cause conflicts in rule-based systems or could require
constant revisions [17].

In Summary Each modeling method has its strengths, and choosing between them is
an important task. System Dynamics models are often used for continuous, determinis-
tic systems like population models. Agent-based models are better for studying individ-
ual interactions and emergent behaviors in complex systems. Coupled Component Mod-
els can integrate multiple disciplines but require careful evaluation of interactions, while
Bayesian Networks offer clear, explainable decision-making with probabilistic structures.
Knowledge-based models are good at explaining decisions, but need constant updates that
can cause conflicts elsewhere in the model.
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Chapter 3

Related Work

3.1 Modeling in Ecology

Modeling is a very common topic in ecology, but these models either focus on global
trends [40, 75], or very small-scale interactions of only a few variables [64, 102, 105]. In this
thesis, we propose a model that models organisms from the smallest scale, such as bacteria
and fungi, to some of the largest, such as mites. This requires careful consideration of
how to group these organisms and how to represent them in silica. This section focuses on
previous models in ecology to learn from their strengths and understand what organism
groups can be formed such that the model is expressive enough for the goal of this paper,
yet still manageable for a computer to run. A clear line can be drawn between the entities
that are alive and the entities that form the environment. Therefore, these two topics
are discussed separately with regard to modeling them. The environment refers to the
physical and chemical properties of soil, and the living entities refer to the soil biota and
their interaction network. A summary of the models that are discussed throughout this
section is given in Table 3.1.

3.1.1 Soil Modeling Approaches

Soil is made up of many physical and chemical properties, such as pore size, water content,
nitrogen content, etc. In ecosystem modeling, there is not a clear best way to model soil; it
is highly dependent on the modeling goal and available resources [98]. For example, a lot
of studies focus on the interaction between soil nutrients and microbes, which means there
is a need to look at very small-scale interactions in a small area of only a few millimeters.
Limiting the spatial scale makes it possible to model each bacterial cell individually. On
larger spatial scales, it becomes increasingly difficult to model at cell level; one gram of soil
can contain one to ten billion bacteria. Moreover, the spatial scale where soil shows spatial
variation ranges from kilometer scale patchiness in soil types to micrometer patchiness in
soil grains; soil covers 9 (!) orders of magnitude.

An example of such a microbe nutrient model is by Ginovart et al. [41], where there are
only two organism groups; bacterial ammonifiers and nitrifiers. Soil is represented as a 2D
grid with polymerized organic C and N, labile organic C and N, mineral compounds like
NH4 and NO3, CO2, and O2 were all modeled separately. Kim et al. [57] use an Individual-
based Model (IBM), which is similar to an ABM, to model the microbial dynamics on rough
soil surfaces. These varying soil surfaces were modeled as 2D patches with roughness
properties and hydration physics. This way of representation makes the model scale-
invariant, and these soil patches can cover micrometer to meter scale. The only limiting
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Table 3.1: An incomplete overview of soil ecological models. A model approach
(Appr. column) is determined to be an Agent-Based Model (ABM) if there are
agents with individual behavior and interactions. A model approach is determined
to be System Dynamics (SD) if the behavior is governed by equations that describe
the entire system, without explicit individual behavior. The number of dimensions
(Dims. column) refers to the dimensionality of the environment. To make a compar-
ison between models possible, the organisms were grouped into functional groups.

Ref. Appr. Year Dims. Scale Func. Groups Environment Agents

[61] ABM 1998 2 1-5 µm 1 Bacteria Glucose 500
[41] ABM 2005 2 1-50 µm 2 Bacteria Carbon 100

Nitrogen
[71] ABM 2007 3 1-50 µm 1 Microbes Carbon 500

Nitrogen
[54] ABM 2014 2 1-10 µm 2 Bacteria Plant Material 3000

1 Fungi C-Rich remains
N-Rich remains

[57] ABM 2016 2 1-5 µm 2 Bacteria Nutrient substrate 100
Pore Surfaces

[27] ABM 2016 3 1-5 µm 2 Bacteria Nutrient substrate 2000
Pore networks

[22] ABM 2021 2 10-50 µm 3 Nematodes Nutrient substrate 60
[49] SD 2002 1 1-5000 µm 1 Bacteria 2 Nutrient substrates -

2 Fungi Roots
5 Nematodes
4 Mites
1 Flagellates
1 Amoebae
1 Collembola

[30] SD 2005 2 5-10 µm 2 Fungi Nutrient substrate -
[77] SD 2011 1 5-10 µm 1 Bacteria Carbon pool -

2 Fungi Nitrogen pool
2 Nems/Mites Phosphorous pool

[102] SD 2013 1 1-50 µm 1 Microbes Soil Organic Carbon -
[105] SD 2014 1 1-50 µm 2 Microbes Soil Organic Matter -
[64] SD 2020 1 1-50 µm 2 Microbes Soil Organic Matter -

factor would be the number of modeled individuals.
However, when modeling soil at the microbe level, it can be challenging to incorporate

the impact that larger-scale organisms have on soil nutrients. Soon et al. even argue that
in SOM modeling the entire organism group of microarthropods is rarely considered, even
though microarthropods do influence SOM formation [90]. This shortcoming of current
models also highlights the interconnected nature of soil, SOM, and organisms that live
there. It has also been shown that these micrometer-sized pores have a significant impact on
how fungi develop [78]. This was modeled using a system dynamics approach to analyze the
impact the nutrient environment has on different phenotypes of fungi [30]. Hunt et al. [49]
attempted to reduce the focus on physical soil attributes and focus solely on the nutrient
contents that play a role in the trophic network by generalizing soil to a single equation that
models nutrient content at a certain location. This approach meant that fewer resources
were spent on modeling soil in detail, which meant that there were more resources to spend
on several organism groups at different scales. Another focus of microbial soil modeling
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is the way soil can act as a carbon sink. This is becoming increasingly more important
due to the focus of research on mitigating climate change. These interactions are modeled
using both system dynamics [27, 77] and ABM [71].

Some models model soil nutrient cycling from more of a top-down view, where models
have a temporal scale of months or even years. These models simulate values for an entire
soil layer, instead of micrometer grid cells, as is common in the microbe soil models. An
example of this is CENTURY [74], a system dynamics type model that simulates soil
nutrients over months or even years. A later version, DayCent, was built on CENTURY,
but time was on a scale of days instead of months. Adaptations of CENTURY and DayCent
are very common, with models like ForCent with a focus on forests, and PhotoCent with
a focus on photosynthesis being developed.

3.1.2 Organism Modeling Approaches

Similar to soil, organisms in soil span wildly varying scales, from centimeters to microme-
ters, so four orders of magnitude. Whilst this scale difference is less dramatic compared to
spatial variation in soil, the interactions, and sheer number of organisms pose whole new
challenges. Many of the interactions between the different organisms and their environ-
ment are not fully understood yet. Therefore, when modeling organisms, it is often chosen
to only model a few species of the same phylum to get to the bottom of the interactions
between them. An example of this is the ABM developed by Daly et al. [22]. Here, they
investigate co-occurrence dynamics and dispersal dynamics of three nematode species in
an environment that is modeled as a Petri dish with homogeneous nutrient distribution
across all grid sites. They found that different dispersal behavior between the three ne-
matode species was very important in determining co-occurrence dynamics. The system
dynamics model by Hunt et al. was previously discussed in the context of reducing soil
complexity in favor of modeling more complex organism interactions. In their model, they
chose to model organisms in 15 groups that represent all in-soil trophic levels and provide
a representative view of soil biodiversity. It showed to correctly model microbial biomass
over time, and changing the microbial and faunal compositions had the expected effects
on the model [49].

An ABM by Kaiser et al. showed that modeling microbes as individuals has the ca-
pability of showing well-known global dynamics, even though the microbes are defined
using rules of how individuals should behave. In other words, ABMs can accurately model
individual organism interactions, whilst at the same time showing the well-known global
behavior of these organisms [54]. Kreft et al. [61] already showed in 1998 that bacterial
colony growth can be accurately modeled by using ABM. Individuals are described using
properties such as nutrient uptake, growth rate, dispersal dynamics, trophic interactions,
and influence of the environment. Each of these properties is modeled using submodels,
such as Monod’s equation for nutrient uptake. Moreover, ABMs provide the ability to
define more complex, non-linear feeding relationships by defining a trophic interaction net-
work, combined with Monod’s equation to determine what organism eats what amount
of each available resource. It has been shown that these top-down networks in combi-
nation with individual-level interactions provide a better model to simulate the complex
mechanism of nutrition uptake. [14]

On the other hand, using recent omics advances, microbe population dynamics can be
deciphered from these genomes by looking at protein expression. This leads to a trait-based
understanding of what a specific microbe species can and cannot do. This also leads to the
idea of trait-based modeling, where heterogeneous species can be easily modeled based on
their traits [89].
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3.2 Sampling and Scale

There have been several studies on the spatial variation of organisms in soil. For example,
Grundmann and Debouzie [44] have shown that bacteria can have a spatial structure on the
millimeter level. Likewise, analysis of biological soil crusts using microsensors by Kratz et
al. [60] showed spatial variability of photoautotrophic organisms, chitin, cellulose, and the
cyanobacterial extracellular polymeric substances (EPS) on a scale of tens of micrometers.
Moreover, soil nitrogen availability also has this spatial structure. Soil nitrogen availability
in two plots in Black Rock Forest in New York shows large variability at the centimeter
scale, and soil samples showed poor prediction performance for nitrogen content of neigh-
boring cores, which indicates high heterogeneity of the soil [2]. Furthermore, aggregation,
or pooling, of samples can also have important implications. This is shown in research by
Bradford et al. [13] that found that local scale factors are highly important in explaining
variation in wood decomposition by analyzing aggregated and disaggregated data. Li et
al. [68] also found that sample size has little effect on determining microbial abundance.
However, soil sample size does impact the analysis of microbe diversity, and co-occurrence
patterns.

3.3 Co-Occurrence Networks

There are several ways to determine co-occurrence patterns that have evolved in recent
years. The most basic method uses Pearson correlation to uncover pair-wise correlations
between samples and organism counts [25]. However, the abundance counts are usually nor-
malized to address bias induced by sampling depth, which means the data is compositional.
Using traditional correlation analysis on compositional data may result in spurious corre-
lations [1]. This shortcoming led to the introduction of several methods that first deal with
compositionality, and then perform correlation analysis. Examples of these methods are
Compositionally Corrected by REnormalization and PErmutation (CCREPE) [32], Sparse
Correlations for Compositional data (SparCC) [37], and Correlation inference for Compo-
sitional data through Lasso (CCLasso) [31]. However, these previously mentioned methods
all use pairwise interaction estimation, which leads to issues when trying to detect multi-
organism interactions. SParse InversE Covariance Estimation for Ecological ASsociation
Inference (SPIEC-EASI, pronounced speakeasy) [62] was proposed to solve this problem by
looking at all interactions between organisms at the same time. This allows SPIEC-EASI
to differentiate between multi-organism interactions and pairwise interactions, and select
only the connections that best explain the correlation.
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Chapter 4

Method

The first research question, How to develop a spatiotemporal soil model that models
soil, soil organic matter, and soil biota in 3D in a realistic manner?, results in
a multidimensional spatiotemporal model of soil and its biota, which is used to answer the
second research question, What is the effect of soil sampling methodologies, such
as varying sample diameter, sample locations, and pooling of soil samples, on
the results of data analysis?. These two questions follow a sequential pattern, where
first RQ1 must be answered before RQ2 can be answered. Sections 4.1 and 4.2 form the
answer for RQ1, and Section 4.3 introduces the method for answering RQ2.

Model implementation Experiments Data analysisModeling approach

Figure 4.1: The topics in this chapter. The modeling approach is covered in
Section 4.1, the implementation in Section 4.2, the experiments in Section 4.3, and
analysis in Section 4.3.3.

Figure 4.1 shows the four steps necessary to obtain the results that are needed to answer
the research questions. The first step, covered in Section 4.1, is to decide on a modeling
approach by using a decision framework by Kelly et al. [56], after which a programming
language and tooling are selected. Section 4.2 describes the implementation of the model
and how the submodels work in detail. After the implementation of the model, the focus
moves to experiments, which are described in Section 4.3. It starts by describing the model
setups and experiments, followed by Section 4.3.3 which explains the data analysis steps
and how this forms the basis for the results for Chapter 5 and the answers to the research
questions.

4.1 Modeling Approach

The basis of this thesis is the spatiotemporal soil model, but as with any model, choosing
an approach that can answer the RQs is vital. The first part of this section covers the
functional requirements and selection of the modeling approach. After an approach is
chosen, the implementation method, such as programming language and libraries, and
other details can be defined. The second part of this section covers how the programming
language and main libraries were chosen.
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4.1.1 Model Selection

When choosing a modeling approach there are several considerations to keep in mind, such
as the purpose of the model, the data that is available, and how space, time, and structure
are handled. Therefore, the first step is to formalize what exactly the needs of the model
are. This is done in the form of functional requirements, which were determined based
on related work from Chapter 3 and opinions from ecologists who work on the SoilProS
project. These requirements are shown in Appendix A. Then, based on the capabilities
of various models that are explained in detail in Section 2.4, a decision is made using the
modeling approach decision framework by Kelly et al.

The relevant criteria from this decision framework are shown in bold in Table 4.1. Going
through the criteria from top to bottom we see first, the reason for modeling in this thesis is
quite straightforward: system understanding. Secondly, the available data, as mentioned
before, is predominantly quantitative. Thirdly, since we are interested in co-occurrence
network analysis, we are more interested in the depth of interactions. Fourthly, because the
question this thesis answers is purely based on synthetic data, there is no need for explicit
information on uncertainty caused by assumptions. Lastly, RQ1 is focused on modeling the
interactions between individuals, but the analysis for RQ2 focuses on aggregated effects.
Based on these criteria, we see that system dynamics and coupled component models both
have four corresponding criteria, and agent-based models has five. The criterion in which
they differ is whether the interest is in individual or aggregated effects, and since this is
exactly the interest in this thesis, the choice of Agent-Based Models (ABMs) makes the
most sense.

Table 4.1: Appropriate use of modeling approaches, with items in bold for
relevant answers for this thesis (X = common feature, * = possible feature).
Adapted from [56]

System Bayesian Coupled Agent based Knowledge
dynamics networks component models based models

models

Reason for modeling Prediction * X X * X
Forecasting X X
Decision-making * X * * X
System understanding X X X X
Social X X X

Type of available data Mixed * X * * X
Quantitative X X X

Focus on depth or breadth Depth * X X X
of interactions? Breadth X X X * X

Explicit information about Yes X
uncertainty caused No X X X X
by assumptions?

Interest in interactions Individuals X
between individuals or Aggregated X X X * X
aggregated effects?

4.1.2 Programming Language and Libraries

A comparison was made between the seven most popular ABM libraries, spanning five
programming languages. The option of developing an ABM from scratch was also con-
sidered. Table 4.2 shows these libraries and six categories on which they are compared.
Two libraries come out on top feature-wise, however, Agents.jl is implemented for Julia
which would mean learning a new programming language, which was deemed infeasible
for the duration of this project. Therefore, the decision is made to use Repast4Py for
implementing the ABM.
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Table 4.2: Features of ABM implementation frameworks, with items in bold
for relevant answers for this thesis (X = common feature, * = possible feature).
Adapted from [5, 23]

Cppyabm Mesa Mason Repast Agents.jl Krabmaga Agentpy Scratch
[76] [55] [29] [19] [23] [4] [35]

Language C++ Java Java C++ Julia Rust Py Any
Py Py

Java
GitHub Stars 8 2.1k 154 146 658 143 278 -
Last Update 2021 2024 2019 2024 2023 2019 2021 -
3D Grid X X X X X X
Visualization * X * X
Distributed X X * X

Repast4Py does not include visualization tools, so to visualize the model output Mat-
plotlib [50] is used. Moreover, for the trophic and co-occurrence networks used in this
project, the networkx [45] library is used.

4.1.3 Hardware

The High-Performance Cluster (HPC) from the University of Twente is used to make use of
Repast4Py’s distributed execution capabilities. Message Passing Interface (MPI) is used to
run Repast4Py in distributed mode, which works by splitting the environment into several
processes. For example, if the environment is a 2-dimensional square grid of 400×400 and
the number of processes is 4, the environment is split up into 4 square grids of 200× 200.
Additionally, to minimize the synchronization between processes, a buffer size can be set.
For example, if the buffer size is set to 10, the 4 square grids will be of sizes 110 × 110,
basically extending 10 cells in the directions where the next square would be. This is
illustrated in Figure 4.2, where the blue squares represent the 4 processes and the orange
rectangles the buffer zone. MPI ensures communication between the processes, such that
agents can disperse from one 100× 100 grid to another. Dividing the environment across
multiple processes can speed up the execution of the model dramatically.

400

40
0

200

20
0

20

1 2

3 4

Figure 4.2: A 400 × 400 2D grid, divided into four equal squares of 200 × 200
(blue), corresponding to processes 1 through 4. The orange rectangles illustrate the
buffer zone of 100 × 10 on each side that borders a process. This results in four
environments of 110× 110 across four processes
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4.2 Model Description

The goal of this thesis is to investigate the effect different sampling methodologies have
on the ability to uncover underlying co-occurrence patterns and estimate abundances and
diversity. The model developed to investigate this is called BLOSSOM1 (BioLOgical
Simulation in SOil Model). BLOSSOM is a spatially and temporally discrete ABM with
the goal of simulating interactions between various organism types in a 3D grid. The
discrete temporal dimension is represented as equal intervals, referred to as time steps.
The discrete 3D grid is represented as a grid of equal cubes that are referred to as cells.
BLOSSOM considers two types of entities:

1. Environment: BLOSSOM models the environment as a 2D grid with equal cells.
These cells are modelled to have one type of nutrient, called Soil Organic Matter
(SOM). More details on the choice and definition of SOM are given in Section 4.2.2.

2. Agents: BLOSSOM models nine different organism types, which were selected for
their unique trophic interactions and varying average body sizes. The decision for
these nine agents and how their behavior is parameterized is described below in
Section 4.2.3.

To model these two types of entities, four inputs are required: a trophic network, the
initial locations, environment parameters, and agent parameters:

1. Trophic Network: To model the feeding behavior of the agents, a trophic network
based on literature is used. Details on the trophic network can be found in Sec-
tion 4.2.1

2. Initial Agent Locations: To determine where the agents should be placed at the start
of the simulation, a list of initial locations for each agent type is used. Details on the
initial locations and how they are determined can be found in Section 4.2.1.

3. Environment Parameters: The parameters that determine the size of the environment
and the nutrient availability at initialization.

4. Agent Parameters: All the parameters necessary to model the different agent types,
such as reproduction age and maximum biomass.

Figure 4.3 visualizes 6 × 6 a 2D top view where each cell contains SOM, represented
by the shades of brown, and multiple agents, represented by the illustrations. Figure 4.4
provides an overview of the flow of BLOSSOM and how the input data ties in. A detailed
description of the submodels of a single time step is given in Section 4.2.4 and a detailed
description of running the model in full is given in Section 4.2.5.

1https://github.com/timovdk/BLOSSOM
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Figure 4.3: A 6 × 6 example of the ABM where the nutrient availability is rep-
resented by the shade of brown, where darker means higher. The illustrations
represent some example agents such as bacteria and mites.

Start

Initialize Model

Trophic
Network

Initial Agent
Locations

Time Step

Yes

No
End of 
Run?

Output Data

End

Environment 
Parameters

Agent 
Parameters

Figure 4.4: Overview of BLOSSOM. The model is first initialized using the en-
vironment and agent parameters, trophic network, and initial agent locations as
inputs. After initialization, the time step loop starts until the end condition is
satisfied. After each time step, the model state is written to a file, which forms the
full output data after a run is completed. The steps that agents go through during
one time step are detailed in Section 4.2.3.

4.2.1 Input Data

There are four main inputs for this model, as shown in Figure 4.4:

1. Trophic Network

2. Initial Agent Locations

3. Environment Parameters

4. Agent Parameters
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This section discusses how the trophic network is defined, how the initial agent locations are
determined, and how they are used in the model. The other two model inputs, environment
and agent parameters, are discussed in Sections 4.2.2 and 4.2.3, respectively.

Trophic Network

The trophic network that is used by default is based on work by De Ruiter et al. [24]. They
use four trophic networks that are all based on real-world data from four different soil types
to model nitrogen mineralization. For BLOSSOM, these four networks are combined into
one with help from ecologists at NIOO. First, for each trophic network, functionally similar
organism types and their connections are combined. The four resulting networks each have
nine organism types (more on these nine organism types in Section 4.2.3) and several edges.
The graph union of these four networks is taken, which is defined as the union of the nodes
and edges.

The resulting trophic network that is used by BLOSSOM is shown in Figure 4.5. The
four colors represent the four energy streams: Root (green), Fungal (blue), Bacterial (or-
ange), and Multiple (purple). These colors help identify the building blocks of the diet of
higher-level organisms, such as nematodes and mites. The arrows represent the trophic
connections between organism types and SOM. The originating node of an edge is the prey,
and the destination of an edge is the predator.
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Figure 4.5: Trophic network for the nine agent types and SOM

Initial Agent Locations

Another input for the model is the initial locations for each of the agents. There are
two types of initial locations defined: complete random and clustered random. Complete
random is used to prevent the introduction of spatial bias, which could lead to more
generalizable model runs. It also provides the opportunity to analyze patterns that emerge
from agent’s interactions. Clustered random is used to introduce spatial bias that attempts
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to resemble groups of the same organism that live close together. Examples of the two
types of initial locations are shown in Figure 4.6.

Complete random simply samples a random location from the defined space for each
agent, whereas clustered random clusters agents of the same type in random locations in
the defined space. To determine these clusters, the make_blobs function from Scikit-learn
is used [79]. This function works by creating one or more Gaussian-distributed clusters of
points, where the number of clusters, the center of these clusters, the number of points per
cluster, the standard deviation of the clusters, and the dimensions of the clusters can be
defined. By definition of the Gaussian distribution, approximately 95% of the generated
points will be within two standard deviations of the mean, and 99.7% within three standard
deviations. For each agent type the steps below are repeated until the number of initial
agents, as defined in Section 4.2.3, all have a location assigned to them:

1. Randomly choose the location of the center of the cluster.

2. Randomly choose the size of the cluster from the domain [#agents
1000 , #agents

50 ]. This
means that the cluster size is proportional to the number of agents of a certain type.
This is intuitive because, in BLOSSOM, smaller organisms such as bacteria have a
higher number of initial agents than larger organisms such as mites. In real life,
smaller organisms generally form larger clusters, or colonies, than larger organisms.
Moreover, smaller organisms tend to reproduce faster than larger organisms, also
forming larger clusters. To reflect this difference, the division values 1000 and 50 are
calculated by BLOSSOM so that the cluster size for the smallest organism is between
30 and 600 and for the largest organism is between 1 and 20.

3. Set the standard deviation, or σ, to a value such that approximately 95% of the
generated points lie in the circle with an area in number of cells of approximately the
cluster size. We can estimate the number of cells a circle encompasses by calculating
the area of a circle and rounding to the nearest integer using A = π × R2. Since all
cluster sizes lie between [1, 600] we can fit an equation to several (cluster_size, σ)
pairs: (1, 0.6), (10, 1), (50, 2), (100, 3), (200, 4), (300, 5), (450, 6), (600, 7).
The line that approximately goes through these points is described by the equation
−0.000013574x2 + 0.0180034x+ 0.920899 where x is the cluster size. This equation
is used to set the σ for each cluster that is generated.

4. Generate the cluster using make_blobs and store the locations. Repeat until all
agent locations are determined.

4.2.2 Environment

The environment of BLOSSOM is made up of a 3D grid of V cells given by multiplying
the three sides L1 ×L2 ×L3 = V . Each cell represents a cube of soil that is 5× 5× 5mm,
which translates to approximately 0.125 g of soil assuming the density of sandy soil is on
average 1.0–1.1 g/cm3 as found in [83]. These dimensions were chosen to be large enough
to still be able to realistically model all nine agent types based on their average body
sizes (Section 4.2.3), and small enough to facilitate the different soil sampling simulations
(Section 4.3.2). To determine the values of L1, L2, L3, the soil sampling procedure of
SoilProS was used. This procedure asks for a plot of soil of 2 × 2 m, which is easily
transformed into an integer value of cells for BLOSSOM: L1, L2 =

2m
5mm = 400 cells. This

procedure also gives a sampling depth of 15 cm, which would mean L3 =
15 cm
5mm = 30. But,

the complexity of the model, the number of agents necessary for a larger grid, and the
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Figure 4.6: Full random and clustered random initial locations, where the color
represents the agent type.

available computing resources mean that for RQ2 it is infeasible to use the model in 3D
mode, which means that L3 = 1. Therefore, for this thesis, BLOSSOM uses 400×400×1 =
160.000 cells to model a real-world 2× 2m soil plot. These cells are identified throughout
this thesis by their (x, y) coordinates, since z = 0 for all cells.

Moreover, throughout this thesis, there are several references to the neighborhood of
a cell. This neighborhood is defined as the 3D von Neumann neighborhood, first used
by John von Neumann in his von Neumann Cellular Automata [95], also known as the
Manhattan distance of 1 including the center cell. Nowadays, it is one of two widely used
neighborhood definitions, the other one being the Moore neighborhood, also known as the
Chebyshev distance of 1. The von Neumann neighborhood is defined in 2D as a central
cell and the four cells that touch this central cell’s edges. This definition can be extended
by defining a range r that determines the maximum distance to the center cell, which is
also known as the Manhattan distance of r. This is shown for r = 0, r = 1, and r = 2 in
Figure 4.7.

Figure 4.7: The von Neumann neighborhoods for r = 0, r = 1, and r = 2.

Figure 4.8 shows the relations between the various pieces of the model. The bottom
left shows the 2D grid which contains L1×L2 cells each containing SOM, described below
in Section 4.2.2. Each cell can contain any number of agents, where one agent is assigned
one type, and one state that keeps track of an agent’s location, age, and biomass. More
details on agents can be found in Section 4.2.3.
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Figure 4.8: The relationship between the 2D grid, cells, agents, and agent types.

SOM

Section 2.1 shows that there are two main categories to consider when attempting to
model soil: physical soil conditions and the nutrients in the soil. It was decided to not
model soil conditions such as grain and pore size, since this thesis focuses on only one
soil type. Many of the models discussed in Section 3.1 also make this simplification since
modeling soil conditions is deemed unnecessary, with a notable exception to Kim and
Or [57] who specifically model microbial growth on soil surfaces with varying roughness.
The ABM architecture and BLOSSOM itself do allow for future extensions to also include
soil conditions.

In contrast, nutrients in soil are modeled, since agents need a source of nutrients to
carry out their interactions. Each cell has a nutrient level Sx,y that simulates the SOM
content in that cell. For a description of what SOM is, see Section 2.1.2. Some models
that were discussed in Section 3.1 model SOM as one variable, whereas others model the
separate contents of SOM, such as carbon and nitrogen, separately. Since BLOSSOM
focuses on agent-agent interactions rather than agent-nutrient interactions, similar to the
model by Daly et al. [22], it was decided to reduce the number of variables and model SOM
as a single variable.

BLOSSOM supports two methods of initializing the SOM values for each cell. The first
method is to use a uniform random distribution with the domain [0.0, 2×SOMmax] which
results in a mean initial SOM value of SOMmax by definition of the uniform random
distribution: E(U(x, y)) = x+y

2 = 0+2×SOMmax
2 = SOMmax. By default, SOMmax =

0.0075 g which follows from a study by Knotters et al. [58] where they report a mean SOM
percentage of 6% in Dutch topsoil in 2018 based on 1152 sampling locations. The second
method is to uniformly distribute SOM across all cells. This is done by assigning 0.0075 g
to each cell. The SOM value at each cell is updated every time step based on the consumed
SOM and whether an agent died at this cell.

Summary of Environment Parameters

The environment variables and their values which were introduced in this section are
summarized in Table 4.3.
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Table 4.3: The values of the environment parameters.

Parameter Value Unit

L1 400 cells
L2 400 cells
L3 1 cells
SOMmax 0.0075 grams
Sx,y 1: U(0, 2× SOMmax) grams

2: SOMmax

4.2.3 Agents

ABMs have the unique ability to capture interactions between agents, such as compe-
tition for resources and other trophic dependencies. These trophic interactions between
agents could give rise to the emergence of spatial and functional patterns [57]. Implement-
ing different agents that represent organism species necessitates parameterization of their
physiological properties. Moreover, the trophic interactions between these agents and their
environment should be defined. What agent types are modeled, why they are modeled,
and how they are parameterized are discussed in this section.

Agent Types

Employing the literature review in Sections 2 and 3, it was decided to use the groupings
from a study by Hunt et al. [49] as inspiration for determining BLOSSOM’s agent types.
In this study, they chose to group species based on their trophic functional group, i.e.,
bacterivorous, fungivorous, and omnivorous, and their size, i.e., bacteria, fungi, nematodes,
and mites. By using these groupings, Hunt et al. defined fifteen unique groups, which were
reduced to nine for BLOSSOM with guidance from ecologists from NIOO. Table 4.4 shows
how the fifteen types from Hunt et al. were combined into the nine types that BLOSSOM
uses. The fungi were combined because mycorrhizal fungi live on plant roots, which are
not modeled separately in BLOSSOM, but are part of SOM. Therefore, both fungi types
would have the same diet. Flagellates and amoebae are both unicellular organisms with
similar diets. However, combining them would not lead to a unique diet either, so they are
removed. Cryptostigmatid and mesostigmatid mites have similar diets and behavior, so
they are combined. Omnivorous and predatory mites are combined for the same reason.

Parameterization

These nine agent types must be parameterized for BLOSSOM to model their behavior. This
parameterization should provide enough granularity to differentiate between the behaviors
of these agent types, whilst at the same time ensuring that calibration of the parameters
does not become an impossible task within the time frame of this thesis because of the
number of parameters that need calibration for each agent type. The main philosophy
behind parameterization for BLOSSOM is to let the potential emergence of spatial and
functional patterns based on the interactions between individual agents be the main goal.
Therefore, a balance must be found to not make these patterns show up by stringent rules
to force the agents into a specific pattern but to let these patterns emerge as a result of
the difference in the behavior of agents.

Inspiration for parameterization variables came from a study by Daly et al. that looks
at the coexistence of nematode species [22], and the study by Kreft et al. that modeled the
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Table 4.4: The 9 agent types that are modeled and their relation to the agent
types defined by Hunt et al. [49].

Hunt et al. Type [49] BLOSSOM Type Reason

Bacteria Bacteria -

Saprophytic Fungi Fungi Plant roots are not modelled
Mycorrhizal Fungi Fungi separately, so similar diet

Flagellates - Combining would still not lead
Amoebae - to a unique group

Root-Feeding Nematodes Root-Feeding Nematodes -

Fungivorous Nematodes Fungivorous Nematodes -

Bacterivorous Nematodes Bacterivorous Nematodes -

Omnivorous Nematodes Omnivorous Nematodes Similar diet
Predatory Nematodes Omnivorous Nematodes

Collembola Collembola -

Cryptostigmatid Mites Fungivorous Mites Similar diet
Mesostigmatid Mites Fungivorous Mites

Nematode-Feeding Mites Omnivorous Mites Similar diet
Predatory Mites Omnivorous Mites

growth of bacterial colonies [61]. Whereas these models only cover organisms at a single
scale, BLOSSOM covers nine agent types at different scales. Therefore, some variables were
added to better account for this difference in scale, such as the definition of a dispersal range
that decides how many cells an agent type can move in one time step. Moreover, since the
agent types span several magnitudes of scale, it is decided to let agents represent multiple
individuals of that agent type. E.g., one bacteria agent represents a group of 100.000
individual bacteria. It would be infeasible to model each bacterium as an individual at
this scale since one gram of soil can already contain between one and ten billion individual
bacteria.

Table 4.5 shows the symbol, the description, and the unit of the variables that are
modeled for each of the nine agent types. Each variable is unique per agent type, which
is indicated by the i. N i

0 describes the number of agents that are placed in the 3D grid
during the initialization of a model run. Ii describes how many individual organisms are
represented by one agent. The dispersal range dirange governs the range of the von Neu-
mann neighborhood in which an agent can move during one time step. ageirepr defines the
minimum age when an agent can start reproduction in number of time steps, and ageimax

defines the maximum age of an agent in number of time steps. Likewise, birepr defines
the minimum biomass of an agent for them to reproduce in grams, and bimax defines the
maximum amount of biomass that an agent can accrue. Finally, Ki

s is the half-saturation
constant which governs how fast an agent can increase its biomass through the Monod
equation.

Because BLOSSOM uses nine agent types based on functional groups, it is not straight-
forward to find exact values for these variables in the literature. Even for a single bacteria
species like E. Coli, it is difficult to determine exact values for each of these variables. For
example, reported values for Ki

s range from 0.015 to 0.25 [15]. Therefore, a different ap-
proach for inferring values for each of the variables is necessary. Inspiration was taken from
Mulder and Hendriks [73] who show that the Monod equation variables µi

max and Ki
s cor-
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Table 4.5: The parameters that are modeled for each agent type.

Parameter Description Unit

N i
0 Initial population agents

Ii Number of individuals represented by this agent individuals
dirange Dispersal range cells
ageirepr Reproduction age time step
ageimax Maximum age time step
birepr Reproduction biomass grams
bimax Maximum biomass grams
Ki

s Monod half-saturation constant grams per time step

relate with body size. They also provide three methods of inferring these variables: finding
species-specific data empirically, using the averaged values that they found in literature, or
estimating them as a function of body size. Moreover, Anderson and Fahimipour [3] show
that dispersal ability is highly dependent on body size and trophic level as well. Together
with ecologists from NIOO a method for inferring values for each of the variables listed
in Table 4.5 was created. This method is based on the average body size, the average
number of individuals per gram of soil, and an agent type’s trophic level. All of these are
well-understood and known, average, measurements, which are given in Table 4.6.

For several parameters, a logarithmic relation is used between the value and average
body width. Such a general relationship can be used because the agent types encompass
quite large groups of organism species. However, these general relationships are unable to
capture the outliers within the agent type groupings [43]. The ranges for all the variables
from Table 4.5 are given in Tables 4.7 - 4.11 combined with their respective detailed
description of methods for inferring these value ranges for each agent type. A summary of
all value ranges is given at the end of this section. These values are determined as ranges
since calibration of BLOSSOM warrants a little flexibility to ensure the agent types indeed
behave as they are meant to. The calibration method and the narrowed-down default
values are given in Section 4.2.6.

Table 4.6: Data necessary for determining values for the agent variables.

Agent Type Average Body Width Average # Individuals/g

Bacteria 1.5± 0.5 µm [7] 2.6× 1010 ± 1.9× 1010 [59]
Fungi 6± 4 µm [7] 2.8× 109 ± 1.6× 109 [59]
Root-feeding Nematodes 35± 15 µm [34] 8± 4 [106]
Bacterivorous Nematodes 12.5± 7.5 µm [34] 22± 2 [106]
Fungivorous Nematodes 35± 15 µm [34] 10± 2 [106]
Omnivorous Nematodes 75± 25 µm [34] 7± 1 [106]
Fungivorous Mites 0.5± 0.2 mm [101] 0.5± 0.5 [18]
Omnivorous Mites 1± 0.4 mm [101] 0.5± 0.5 [18]
Collembolans 1.05± 0.95 mm [7] 10± 3 [18]

Ni
0 and Ii To determine the number of agents per agent type at time step 0, the average

body width, shown in Table 4.6, is used to determine the values for the various types.
Since we set the number of agents at t = 0 to 80.000, which means a 50% density, we can
determine the number of agents per agent type using an inverse logarithmic relation so
that the smallest agent type has the most agents at t = 0. The goal is to normalize the
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number of agents so that they sum up to 80.000 by dividing the inverse logarithm of the
body width by the sum of all inverse logarithms, and multiplying this by 80.000:

inverse_logi =
1

ln (avg_body_widthi)

total_inverse_logs =
9∑︂

i=1

inverse_logi

N i
0 =

inverse_logi
total_inverse_logs

× 80.000

The values for each agent type are first rounded to the nearest 100 and then ensured to
still sum up to 80.000 by adding or subtracting 100 to the agent types that were closest to
be rounded up or down.

A shortcoming of this method is that the values are distributed fairly, without ac-
counting for the different trophic roles such as bacterivores, fungivores, and omnivores.
Therefore, the values are adjusted manually to reflect the trophic roles better. This pro-
cess led to decreasing the omnivorous and higher level agent type values, such as the mites,
and increasing the bacterivore and fungivore values for lower level agent types, such as the
nematodes and fungi. The resulting values are shown in Table 4.7. These values have a
range of 25% to calibrate BLOSSOM, which follows from the standard deviations reported
in Table 4.6.

The value I represents the number of organisms that one agent corresponds to in the
model. Determining I requires considering the simulated cell size since the agents should
fit inside one cell. We can multiply the average number of individuals per gram of soil
from Table 4.6 with the weight of one cell, 0.125 g, as calculated earlier in Section 4.2.2,
and round to the nearest non-zero integer:

I = max(1, ⌊avg_#_individuals× 0.125⌉)

The resulting values are given in Table 4.6 without a calibration range because I is the
input for various other variables which are covered below.

Table 4.7: Ranges of Ni
0 and Ii for each agent type.

Bact Fungi RF Nem B Nem F Nem O Nem F Mites O Mites Coll

Ni
0 ± 25% 40000 15000 5500 7500 5500 4000 1000 500 1000

Ii 3.25× 109 3.5× 108 3 1 1 1 1 1 1

di
range Based on the work by Anderson and Fahimipour [3], we can employ Table 4.6 to

use the body sizes to infer the dispersal range. The range for bacteria is set to 1 cell, and
that of mites to 6 cells, which translates to 3 cm, which aligns with the distance mites
can travel in a day [67]. The remaining values are determined using the relation between
body size and dispersal range in the form of a logarithmic function that goes through
two points P, Q, where both points are a pair off (body_size mm, dispersal_range) of
bacteria and omnivorous mites. Filling in the values gives: P (0.0015mm, 1), Q(1mm, 6).
Since the standard deviations for the average body widths are fairly large, the values that
are sampled from the function have a range of 25% for calibration. The ranges of values,
rounded to the nearest integer, can be found in Table 4.8, with a special case for fungi,

29



which disperse through reproduction rather than movement. The logarithmic function that
is used looks as follows:

dirange = ⌊a ln (body_widthi) + b⌉

Where a and b are determined using the earlier defined points P and Q:

a =
q2 − p2
ln q1

p1

=
6− 1

ln 1
0.0015

= 0.7689

b = p2 −
q2 − p2
ln q1

p1

ln p1 = 1− 6− 1

ln 1
0.0015

ln 0.0015 = 6

Filling a and b in into the logarithmic function gives:

dirange = ⌊0.7689 ln (body_widthi) + 6⌉

Table 4.8: Ranges of di
range for each agent type.

Bact Fungi RF Nem B Nem F Nem O Nem F Mites O Mites Coll

di
range ± 25% 1 0 3 3 3 4 5 6 6

bi
max and bi

repr Since the maximum biomass bimax of an organism is closely correlated
with the body size [81], it can be scaled using the average body widths from Table 4.6 and
a logarithmic relation. This is done since it is impossible to find an average biomass for
each agent type group. We use the same method as used when determining the dispersal
range, by fitting a logarithmic function to two points. First, the weight per individual is
determined, after which it is multiplied by the corresponding I of that agent. We fit a
logarithmic function to the average body width and weight of a bacterium agent and a
collembolan agent. This is calculated by multiplying the respective not rounded I with
the average weight of a bacterium, 3× 10−13 g [86], or a collembolan 0.00085 g [94]:

bbacteriamax = 3.25× 109 ∗ 3× 10−13 = 0.000975 g

bcollembolans
max = 1.25 ∗ 0.00085 = 0.001063 g

This gives the two points P (0.0015 mm, 0.000975 g) and Q(1.05 mm, 0.001063 g). The
logarithmic function that is used looks as follows:

bimax = a ln (body_widthi) + b

Where a and b are determined using the earlier defined points P and Q:

a =
q2 − p2
ln q1

p1

=
0.001063− 0.000975

ln 1.05
0.0015

= 0.00000994...

b = p2 −
q2 − p2
ln q1

p1

ln p1 = 3× 10−13 − 0.001063− 0.000975

ln 1.05
0.0015

ln 0.0015 = 0.00106252...

Filling a and b in into the logarithmic function gives:

bimax = Ii × (0.00000994... ln (body_widthi) + 0.00106252...)
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This results in the values shown in Table 4.9, with a calibration range of 25%.
The reproduction biomass is the minimum biomass necessary for an agent to repro-

duce. This variable is used to ensure that an agent only reproduces if they have eaten
at least birepr g of nutrients. This variable is used to model the minimum cost for agents
to reproduce. This varies per agent type, since some types replicate themselves, whilst
others reproduce through laying eggs. Therefore, this variable does not necessarily scale
with body width alone, but it is also not a known value, so defining it poses some prob-
lems. Since this value has big implications on the behavior of agent types, it is decided
to do most of the adjustments during calibration such that the behavior for each type can
emerge. The initial values are naively set at 1

2 × biomassimax with a calibration range of
50%, as is shown in Table 4.9.

Table 4.9: Ranges of bi
max and bi

repr for each agent type.

Bact Fungi RF Nem B Nem F Nem O Nem F Mites O Mites Coll

bi
max ± 25% 0.000975 0.001012 0.001029 0.001019 0.001029 0.001037 0.001056 0.001056 0.001063

bi
repr ± 50% 0.000488 0.000506 0.000515 0.00051 0.000515 0.000519 0.000528 0.000528 0.000532

ageimax and ageirepr The maximum and reproductive ages of these functional groups of
organisms vary dramatically. For nematodes, the maximum life span ranges from three
days up to fifteen years [38]. Moreover, one family of mites, the Laelapidae, consists of
approximately 1500 distinct species for which the life span ranges from 2 days to 500
days [107]. Therefore, together with ecologists from NIOO, it was decided to scale the
maximum age and reproduction age with the average body sizes in Table 4.6 by hand.
This relation was chosen to be more or less linear within the nematode and mite groups,
with bigger jumps between these groups and bacteria, fungi, and collembolans. This results
in the rows ageimax and ageirepr in Table 4.10. Since these values were set by hand, the
values have a calibration range of 50%.

Table 4.10: Ranges of ageimax and ageirepr for each agent type.

Bact Fungi RF Nem B Nem F Nem O Nem F Mites O Mites Coll

ageimax ± 50% 1 10 12 18 20 19 50 60 20
ageirepr ± 50% 0 2 10 15 15 14 35 35 15

Ki
s The maximum feeding rate µi

max is determined to represent the relative maturing
speed between agent types by governing how much biomass can be added maximally per
time step. For example, for bacteria, the maximum feeding rate is such that they can eat
enough biomass in one time step if there is enough SOM at the cell the bacteria is at. The
half-saturation constant Ki

s determines how efficiently an agent type handles low SOM
content.

To determine these values to reflect the nine agent types, it is important to look more
closely at the Monod equation [72] which is used in BLOSSOM as the nutrient uptake
model. The Monod equation determines the uptake rate based on the available nutrient
concentration:

µi
x,y = µi

max

Sx,y

Ki
s + Sx,y

Where µi
x,y is the uptake rate of nutrients in cell (x, y) for agent i, µi

max is the maximum
uptake rate for agent i. Sx,y is the nutrient concentration at cell (x, y), and Ki

s the half-
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saturation constant for agent i. The half saturation constant is the nutrient level Sx,y

necessary to satisfy 0.5× µi
max in one time step.

The Monod equation has three regimes, as shown in Figure 4.9:

1. Sx,y ≪ Ki
s, this means that the equation can be approximated by µi

x,y = µi
max

Sx,y

Ki
s

.
So, for very low nutrient availability, the nutrient uptake will be highly efficient, and
µi
x,y will be close to Sx,y.

2. Center region where the Monod equation balances availability and need.

3. Sx,y ≫ Ki
s, this means that the equation can be approximated by µi

x,y = µi
max. So,

for very high nutrient availability, the nutrient uptake is approximately µi
max.
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Figure 4.9: The three regimes in the Monod equation, separated by vertical black
lines.

Since the Monod equation is normally used to calculate the uptake rate in weight per
time step based on nutrient concentration in weight per volume, the function is slightly
adapted for it to return the nutrient uptake in grams. µi

max is set to the maximum biomass
of an agent type bimax, which ensures that the result from the Monod equation is never
larger than the maximum biomass of an agent. Another step is to ensure that the uptake
is not larger than the available nutrients. The resulting equation looks as follows:

µi
x,y = min(Sx,y, b

i
max

Sx,y

Ki
s + Sx,y

)

Figure 4.10 shows the effect that changing the value for Ki
s value has on the curve of

the Monod equation. A low Ki
s leads to a steeper slope and an early plateau, whereas a

high Ki
s leads to a shallower slope and a plateau that is outside the plotted domain. The

ecological effects of this slope can have big implications for the reproduction speed of an
agent type: for a low Ki

s, food uptake is highly efficient at low nutrient levels and plateaus
fast at bimax. For a high Ki

s the uptake approaches an almost linear regime, which means
that uptake efficiency is not impacted by the available nutrient level Sx,y.

These three unique regimes are used to translate ecological uptake behavior to BLOS-
SOM. Figure 4.11 shows the curves for each of the agent types, and the value ranges
for Ks are given in Table 4.11. For example, the maximum biomass of a bacteria agent
bimax = 0.000975, they only live maximally 2 time steps, and they can replicate very quickly.
Therefore, the slope should be steep enough that bacteria can uptake enough nutrients to
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Figure 4.10: The effect of changing the half-saturation constant Ks for agent type
bacteria.

replicate, but they should not replicate at an unrealistic pace. With the default SOM avail-
ability in mind, Ks is set such that bacteria replicate every two ticks. If more nutrients are
available, some bacteria will be able to replicate in just a single time step. This process is
done for all agent types, keeping in mind their respective bmax, brepr, agemax, andagerepr,
and ecological behavior:

• Fungi have a shallow slope since they live quite long and feed on SOM which is
abundant.

• Root-feeding nematodes follow a similar pattern, but live even longer, and therefore
their slope is even shallower.

• Bactivorous nematodes are predators that hunt for bacteria. When they catch one,
they eat it in full and leave behind barely any remains, which is reflected in the steep
slope.

• Fungivorous nematodes have an even steeper slope because they eat very efficiently.
Moreover, fungi tend to cluster, which means that fungivorous nematodes can spend
a lot of their life looking for a fungi cluster. When they eventually find one, they
must eat efficiently to reproduce before reaching agemax.

• Omnivorous nematodes have a varied diet, so they have a higher chance of finding
a prey when compared to bacterivorous and fungivorous nematodes. Therefore, the
slope is less steep than the bacterivorous and fungivorous nematodes.

• Fungivorous mites live relatively long, so they have more time to find a cluster of
fungi. Therefore, their slope is much shallower than the fungivorous nematodes’
slope. Mites are also known to shred their preys in smaller pieces, and they leave
behind a lot of nutrients for other agents in the form of SOM.

• Omnivorous mites live long, but they need to roam the soil more than fungivorous
mites because no other agent clusters so much as fungi. Therefore, when an omniv-
orous mite finds a prey, it eats it a little more efficiently than the fungivorous mites.
However, the slope is not too steep, since omnivorous mites also leave behind a lot
of nutrients.
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• Lastly, the collembolans have similar parameters when compared to fungivorous ne-
matodes, but there is one important difference: collembolans have a much higher
dispersal range. This means that collembolans are better able to find fungi clusters,
and therefore have a slope that is less steep than fungivorous nematodes.

Figure 4.11: The Monod curves for each agent type.

Table 4.11: Ranges of Ki
s for each agent type.

Bact Fungi RF Nem B Nem F Nem O Nem F Mites O Mites Coll

Ki
s ± 25% 0.03 0.05 0.15 0.003 0.002 0.01 0.05 0.025 0.02

Summary of Agent Parameters

The agent variables and their value ranges which were introduced in this section are sum-
marized in Table 4.12.

Table 4.12: The ranges of parameter values for each agent type.

Bact Fungi RF Nem B Nem F Nem O Nem F Mites O Mites Coll

Ni
0 ± 25% 40000 15000 5500 7500 5500 4000 1000 500 1000

Ii 3.25 × 109 3.5 × 108 3 1 1 1 1 1 1

di
range ± 25% 1 0 3 3 3 4 5 6 6

bi
max ± 25% 0.000975 0.001012 0.001029 0.001019 0.001029 0.001037 0.001056 0.001056 0.001063

bi
repr ± 50% 0.000488 0.000506 0.000515 0.00051 0.000515 0.000519 0.000528 0.000528 0.000532

ageimax ± 50% 1 10 12 18 20 19 50 60 20

ageirepr ± 50% 0 2 10 15 15 14 35 35 15

Ki
s ± 25% 0.03 0.05 0.15 0.003 0.002 0.01 0.05 0.025 0.02

4.2.4 Submodels

SOM Uptake

SOM uptake is only relevant for those agents that, according to the input trophic network,
feed on SOM. With the default input network, this means that only bacteria, fungi, and
root-feeding nematodes feed on SOM. For all SOM-eating agents, the Monod equation is
used to determine the amount of nutrients that are eaten during this time step. The input
value is the SOM amount at the location of the agent Sx,y, and the values for Ki

s and bimax

as they are defined for a specific agent type. All the SOM that is not eaten this time step
simply stays in that cell, available for other agents.
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Dispersal

As shown in Section 2.2, dispersal behavior highly depends on the agent type; most types
actively roam the soil at different speeds in search of nutrients, whilst fungi and bacteria
show different behavior. Bacteria do not move a lot by themselves but travel around
passively using water films in the soil. Hence, it is defined in BLOSSOM that bacteria
move randomly to a location in its von Neumann neighborhood of 1 which also includes
the cell it is already at. On the other hand, fungi spread solely by reproduction to mimic
the growth of hyphae. The dirange variable that is defined for all agent types represents the
mobility of that agent. The 3D von Neumann neighborhood with range r = dirange is used
to decide the potential cells that an agent can disperse to in one time step. The choice of
which cell the agent will disperse to is based on two things in a maximization problem:

1. Are there nutrients at a potential new cell? (SOM for agent types that feed on SOM,
preys for the other agent types)

2. Are there predators at a potential new cell?

RF
Nematode

SOM=0
Pred=NO

SOM=1
Pred=YES

SOM=1
Pred=NO

SOM=0
Pred=YES

RF
Nematode

Score=
0.000001

Score=
0.000001

Score=
1

Score=
0.000001

Start Scoring End

RF
Nematode

Figure 4.12: An example of a dispersal step. Start: The location of the root-
feeding nematode agent and the states of the surrounding cells are given. Scoring:
The cell states are scored. End: The agent uses this score to disperse to the best
cell.

Consider the example shown in Figure 4.12. Suppose the agent that lives in the center
cell is of agent type root feeding nematode. This means that it has several predators, as
shown in the trophic network that was introduced in Figure 4.5, and that this agent feeds
on SOM. Each cell in the von Neumann neighborhood of r = dirange gets assigned an initial
score of 0.01. After that, each cell gets scored based on the contents of that cell. To prevent
a division by 0 later in the submodel, a probability is ensured to never be 0. If the SOM
availability at a cell is 0, and the agent feeds on SOM, the score of that cell is penalized
and set to 0.00001. The same happens if there is a predator in a cell, regardless of the
preys and SOM content. However, if Sx,y > 0, and the agent feeds on SOM, the score of
that cell is set to the respective SOM value. The score is also increased when there is a
prey at a cell, for each prey at a cell that the agent feeds on, the score gets increased by 1.
E.g., if there are five preys in one cell that an agent feeds on, that cell’s score is increased
by 5. After each cell has a score, all the scores are normalized so that they sum up to 1 by
dividing each score by the sum of all scores. This is done to be able to use the scores as
probabilities in a probabilistic random choice algorithm. This method ensures that each
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agent does not always behave in a fully optimal way, and it resolves the cases where several
cells have received the same score. The full algorithm is shown in Algorithm 1

Algorithm 1 Dispersal

1: neighbouring_cells = von Neumann neighborhood with r = dirange
2: Set all cell scores to 0.01
3: for all neighbouring_cells do
4: if Agent eats SOM then
5: Set probability to max(0.00001, Sx,y)
6: end if
7: for all agents in current cell do
8: if agent in agent_preys then
9: Increase probability by 1

10: end if
11: if agent in agent_predators then
12: Set probability to 0.00001 and continue to next cell
13: end if
14: end for
15: end for
16: Normalize probabilities to sum up to 1
17: Choose a location based on probabilities
18: Move to the chosen location

Agent-Agent Feeding

The agent-agent feeding submodel uses the trophic network, as defined in Section 4.2.1, to
determine potential preys in the same cell as the predator agent. Once a prey is selected,
the prey is killed and part of its biomass is transferred to the predator based on the Monod
equation. The remaining biomass is added to the SOM level at that cell. If there are no
potential preys in the cell, nothing will happen during that time step. The full algorithm
is shown in Algorithm 2.

Algorithm 2 Agent-Agent Feeding
1: Determine the current agent’s preys
2: for all agents at current cell do
3: if prey in agent_preys then
4: add prey and its biomass to food_options
5: end if
6: end for
7: Choose target from available targets in food_options based on the prey’s biomass
8: Nutrient uptake using the Monod equation
9: Remaining target biomass added to SOM at cell

10: Prey removed from the model

Reproduction

Reproduction occurs when an agent has reached reproduction age ageirepr and has accrued
enough biomass birepr. If reproduction is not possible, this step is skipped. When an
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agent is fit to reproduce, a new agent of the same agent type will be created by halving the
biomass of the parent agent and assigning the other half of the biomass to the newly created
agent. These new agents are usually created in the same cell as their parents, however, an
exception is made for the agent type fungi. They do not disperse by themselves, but they
grow hyphae. To mimic this behavior, it was decided to let fungi offspring be created in
the von Neumann neighborhood with r = 1.

Death

The lifespan for all agent types is implemented as a maximum age ageimax defined in
number of time steps. If an agent’s age is greater or equal than ageimax, it is removed from
the model. The biomass of this agent is added to the SOM level at this cell.

4.2.5 Running the Model

This section covers the initialization of BLOSSOM in detail, after which all the previous
steps are combined to give a full overview of how BLOSSOM runs and how to use it.

Initialization

The model is initialized using the environment and agent parameters that were covered
earlier. Initialization consists of three steps:

1. Create the spatial grid based on the environment parameters

2. Create the SOM grid based on the environment parameters

3. Populate the model with agents

The first step is fairly straightforward: Repast4Py is used to create a spatial grid, with the
buffer between processes set to the highest value for dirange. The next step is to initialize the
SOM grid using the method described in 4.2.2. The final initialization step is to populate
BLOSSOM with 80.000 agents across the nine agent types. These agents must be placed
in the spatial grid, which is done using the predetermined initial locations as described in
Section 4.2.1.

Scheduling

The main flow of BLOSSOM was already introduced in Section 4.2, Figure 4.4, but the full
algorithm flow is visualized in Appendix B and detailed in Algorithm 3. The first three
steps represent the initialization phase, which was already covered in the previous section.
After the initialization phase, the time step loop starts. During one time step, the order of
the agents is shuffled, and each agent will sequentially go through six steps. First, there is
a check whether the current agent has been killed by a previous agent; the killed agents are
only removed from the model after finishing looping through all agents, since the iterator
over all agents in the model can not be modified whilst looping through it. Then, there
is a check whether the dispersal submodel should be used for the current agent. If yes,
run the submodel, if no, continue to the next check. This is also done for the following
submodels: SOM, agent-agent feeding, Reproduction, and Death of agents. After running
all the submodels, the age of the agent is increased. After the for loop finishes, the model
state is synchronized across all threads and is written to a file, and a check is run to see
whether another time step should be started or not. If not, the model stops execution.
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Algorithm 3 Model algorithm
1: Create a 2D grid and SOM matrix and populate the model with agents
2: Synchronize across threads and log model state
3: while T < Tmax do
4: for all agents do
5: if agent == killed then
6: Continue, skip this agent
7: end if
8: if dirange > 0 then
9: Run Dispersal submodel (Algorithm 1)

10: end if
11: if SOM feeder and biomass < bimax then
12: Run SOM uptake submodel (Section 4.2.4)
13: end if
14: if Not SOM feeder then
15: Run Competition submodel (Algorithm 2)
16: end if
17: if age ≥ ageirepr and biomass ≥ birepr then
18: Run Reproduction submodel (Section 4.2.4)
19: end if
20: end for
21: for all agents do
22: if age > ageimax then
23: Run Death submodel (Section 4.2.4)
24: end if
25: Increase agent age
26: end for
27: Synchronize across threads and log model state
28: end while

4.2.6 Calibrating the Model

The value ranges that were determined in Section 4.2.3 and are summarized in Table 4.12
need to be adjusted to ensure that the agent types are balanced between each other. Since
BLOSSOM uses stochastic decisions in some areas, several random seeds are tested to
ensure the calibration is generalizable across several input values. Essentially, calibration
of BLOSSOM means running the model several times with different random seeds and
inputs and making sure that parameters are adjusted such that at least five out of nine, or
more than 50%, of agent types survive until tmax. Each agent type has seven adjustable
parameters, which means 56 parameters define the agents’ behavior. Moreover, calibrating
ABMs and the effect of the parameters on the stability of the model are poorly understood,
and specially prepared initial conditions are often necessary [80]. Therefore, calibration
is a long and complex process of trial and error to, in the case of BLOSSOM, maximize
survivability of the most agent types.

Calibration starts by adding pairs of prey-predator agent types, starting with the bac-
teria and the bacterivorous nematodes. This is done to be able to fine-tune the prey agent
type since the predator feeds on this prey. The goal is to ensure that, across 5 seeds and
4 input location sets, the prey shows somewhat stable behavior. This is followed by agent
types that feed on bacterivorous nematodes, such as omnivorous nematodes, and so on.
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After the bacterial food chain is calibrated, the fungi are added, followed by the agent
types that feed on fungi. After this, the omnivorous mites are added since they feed on
most of the lower-level agent types, and they are not a prey for any of the agent types.
The result is shown in Figure 4.13 which shows a plot of the counts per agent type for
600 time steps. The values shown in Table 4.13 are the fine-tuned values that are used by
default by BLOSSOM, together with the changes that were made in percentages rounded
to the nearest integer. Bold changes fell within the set margin in the previous section, and
changes in red fell outside this margin. As can be seen in Table 4.13, one value falls outside
the set calibration margin. For the fungi, the reproduction biomass is changed to the same
value as the maximum biomass because fungi are very good at forming dense clusters of
agents. Making the threshold for reproduction higher means that there are fewer nutrients
to go around, hence limiting the exponential growth somewhat. This exponential growth
of fungi clusters proved to be the most difficult calibration problem, and in the end, it was
decided to move outside the calibration range to form a somewhat stable system.
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Figure 4.13: The counts for each agent type at each time step. The colors repre-
sent the different agent types.

Table 4.13: The default agent parameters for BLOSSOM after calibration.

Bact Fungi RF Nem B Nem F Nem O Nem F Mites O Mites Coll

Ni
0 40000 15000 5500 7500 5500 4000 1000 500 1000

±25%

Ii 3.25 × 109 3.5 × 108 3 1 1 1 1 1 1

di
range 1 0 3 3 3 4 5 6 6

±25%

bi
max 0.000975 0.001112 0.001129 0.001019 0.000829 0.001037 0.001056 0.00132 0.001063

±25% (+10%) (+10%) (-19%) (+25%)
bi
repr 0.0005 0.001112 0.0006 0.00051 0.00035 0.000519 0.000528 0.000728 0.000582

±50% (+2%) (+120%) (+17%) (-32%) (+38%) (+9%)
ageimax 1 9 10 15 21 22 60 70 17
±50% (-10%) (-17%) (-17%) (+5%) (+16%) (+20%) (+17%) (-15%)
ageirepr 0 1 8 10 19 16 40 35 15

±50% (-50%) (-20%) (-33%) (+27%) (+14%) (+14%)
Ki

s 0.026 0.047 0.15 0.00295 0.0025 0.009 0.048 0.025 0.02
±25% (-13%) (-6%) (-2%) (+25%) (-10%) (-4%)
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4.3 Experiment Design and Analysis

With the model implemented, the focus switches to data collection through experiments
and analyzing the resulting data. Figure 4.14 shows the steps that are followed to get the
results. The first step, illustrated by the black timeline, is to run the simulation using the
input parameters and initial locations discussed in the previous sections. The next step
is to decide when to stop the model, so how many time steps are executed in between t0
and tsample. This is determined by finding the most stable simulated period, the process of
which is described in detail below in Section 4.3.1. Once sample time has been determined,
the model state can be summarized at this time step into the baseline that will later be used
as a comparison, which is described in Section 4.3.3. This is also the time step at which
the sampling simulations are carried out, which is described in Section 4.3.2 and attempts
to mimic taking physical samples in the field using different strategies. The resulting data
forms the basis for the next and final section of this chapter, Section 4.3.3.
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Figure 4.14: An overview of the steps from model initialization to output data.
BLOSSOM is initialized and runs until time step Tmax. Sample time is determined,
soil sampling simulations are done, and the baseline and estimates are calculated.

4.3.1 Simulation Setup

Since some steps in BLOSSOM use a seeded random choice, several runs with the same
input but a different seed must be run. To determine how many, a preliminary analysis
was done to quantify the effect that changing the seed or input locations has on the model
runs. Comparing four different seeds for four sets of initial locations (2× random and 2×
clustered) shows that BLOSSOM gives quite similar results for different seeds. However,
whilst the two random initial location sets behave very similarly, just like the two clustered
initial location sets, the difference between random and clustered is fairly significant. This
is shown in Figure 4.15, which shows a selection of four line plots, for four agent types, for
eight runs of the same agent parameters, but different initial locations and seeds.

Considering the effect that the seed and initial locations have on the model runs, it is
decided to use 20 different seeds for one set of both random and clustered initial locations.
This means that, in total, there are 40 combinations of input variables, which means there
will be 40 model outputs. Each of these model runs will run for 600 time steps, which
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Figure 4.15: Four line plots comparing the 8 combinations of 2 random and 2
clustered initial locations, and 4 random seeds. The green and orange lines represent
fully random initial locations, and the blue and pink lines represent the clustered
random initial locations. The 2 line styles represent the 2 seeds.

means that the longest living agents are at least in their 10th generation. Ideally, the model
runs even longer, but due to resource limitations, this is not possible currently.

4.3.2 Soil Sampling Simulations

To prevent inducing sampling bias, we sample from 7 time steps: 0, 100, 200, 300, 400, 500, 600.
Besides ensuring that sampling is less biased, this also means that temporal pooling and
analysis can be carried out, more on this below.

From Section 3.2 it follows that several parameters can be varied when sampling soil
and that varying these parameters can impact the conclusions that are drawn from these
samples. A questionnaire was sent to several ecologists at NIOO, the answers to which
formed the baseline of the options used in the simulations. The questionnaire and an-
swers can be found in Appendix C. Figure 4.16 shows the options that are used for the
soil simulations. The five core sizes are centered around r = 3 (marked in bold) which
represents the default core size with a diameter of 30mm that the ecologists regularly use.
In the center column, the spatial distributions of the cores are shown. Each blue square
represents one core of size r. Two spatial distributions are tested, systematic regular and
the Wageningen ‘W’ (marked in bold), which is the method the ecologists use by default.
In the right column, the three pooling strategies are shown: No pooling, intra-plot pooling
by combining all the cores of one plot, and temporal pooling by combining all samples
across all sample times of one plot. This last pooling option is impossible to do in the real
world since taking a soil sample is destructive, the core cannot be returned after analysis
to check back on it later. Temporal pooling of the same locations is, for now, only possible
in simulations. The ecologists who responded to the questionnaire typically used intra-plot
pooling (marked in bold).
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Figure 4.16: An overview of the options for all soil sampling simulations.

These parameters are used to simulate taking cores from each of the 40 model runs.
These samples are turned into tabular data by summing the agents per agent type that
are found in a simulated sample, for each sample. In this dataset, each row represents
a simulated sample, and each column is an agent type. The cells contain the count of
agents of a specific type in a sample. Each sample also has an identifier to trace it back to
the model run and soil simulation parameters. Note that the pooling parameter does not
affect the sampling simulations themselves, but only the analysis after the data has been
gathered. More on this in Section 4.3.3

The soil simulation parameters that are used for each of the 40 model runs are shown
in Table 4.14. The rows represent the experiments, and the columns the variables that are
changed between sampling simulations. The results of these experiments form the basis
for the data analysis, the method of which is described in the following section.

Table 4.14: Soil Sampling experiments.

# Core Locations Core Radius in Cells # of Cores

1.1 W 1 12
1.2 W 2 12
1.3 W 3 12
1.4 W 4 12
1.5 W 5 12
2.1 Sys. Regular 1 16
2.2 Sys. Regular 2 16
2.3 Sys. Regular 3 16
2.4 Sys. Regular 4 16
2.5 Sys. Regular 5 16
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4.3.3 Data Analysis

Analysis of the simulation results consists of two pipelines, one to calculate the baseline
values and one for the estimates, as shown in Figure 4.17. The input for both pipelines
is the model state at sample time. The estimates pipeline has the added step of the soil
sample simulations with the various options that were discussed previously. The values
that are calculated for both pipelines flow directly from RQ2 and are: (1) Diversity of
agent types, (2) Abundance per agent type, and (3) Co-Occurrence between agent types.
How these are determined is explained later in this section. After both the baselines and
estimates are known, they can be compared using MAE and MdAE, the process of which
is described in more detail below.
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- MAE
- MdAE
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Sample Simulations
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Comparison

Figure 4.17: An overview of the steps of analysis for RQ2.

Pooling

Before the baselines and estimates can be calculated, the pooling methods need to be
defined for the baseline and estimate pipelines. As mentioned earlier (Figure 4.16), three
ways of pooling are considered, and they are implemented as shown in Figure 4.18. For the
first pooling method, the baselines are calculated for the entire plot, and the estimates for
all the cores separately. For the second pooling method, the baselines are again calculated
for the entire plot, whilst the estimates are calculated for the combined cores from the plot.
For the third pooling method, the mean of the baselines for each sample time is taken,
whilst estimates are calculated for the combined samples of the plot for all sample times.

Determining and Estimating Abundance

The unit used to express the population of an organism in soil analysis for larger organisms
is the number of individuals of that organism per kilogram, and for smaller organisms
the biomass per kilogram. Since each agent is countable in this simulation, just like the
larger organisms in the real world, the former method is the unit that is used in this
thesis. Figure 4.19 illustrates the process of counting the types and agents per type. First,
the baseline abundances are determined by counting all agents that are alive at sample
time per agent type. Then, the same is done for the soil sample simulations and pooling
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Figure 4.18: An overview of the pooling methods.

methods. The agent types are counted, and the agents are summed up per agent type.
Both abundances are then normalized to count per kg to compare them. For the baselines,
this is done by dividing the counts by the total weight of the plot in grams to get the count
per gram and then multiplying by 1000 to get the count per kg. For the estimates, this is
done by dividing the counts by the weight of the core or cores, and again multiplying by
1000.

Estimates

Baselines
23x
52x

2x

3 Types

2x
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0x

2 Types

Figure 4.19: Diversity and abundance calculation for baselines and estimates.
The colored circles represent agent types which are counted for the baselines and
estimates and used to determine abundance and diversity.

Determining and Estimating Population Diversity

Population diversity is commonly quantified using the Shannon Diversity Index (H ′) [88]
The Shannon index is widely used in ecology and focuses on quantifying species diversity
and evenness in a community, and is determined using the formula:

H ′ = −ΣS
i=1pi ln pi

Where pi represents the proportion of individuals belonging to the i-th species, and S is
the total number of species in the community. Community, in this case, is defined as, for
the baseline, the full plot, and for the sample simulations as the individual samples for no
pooling, and the pooled samples for intra-plot pooling.

The Shannon index combines the number of species, or richness, with the distribution of
individuals among these species, or evenness. The Shannon index ranges from 0, meaning
no diversity, to lnS, meaning maximum diversity and evenness). In the case of this thesis
with 9 species, the Shannon index will range from [0, ln 9].

44



Determining and Estimating Co-Occurrence Coefficients

To quantify the impact of the various soil sampling methods on co-occurrence coefficients,
the baseline needs to be determined. This is done using the dissimilarity index D, in-
troduced by Duncan and Duncan [26]. D is widely used in social sciences to measure the
evenness with which two groups are distributed across spatial units. The index ranges from
0 to 1, where low values suggest that the two types are spatially integrated, meaning they
tend to occupy the same or nearby spatial units more frequently than would be expected
by chance. High values indicate spatial segregation, meaning the two types are less likely
to co-occur within the same neighborhoods. It offers a robust and interpretable metric
that can be extended to work across nine types, by comparing each type pairwise with all
other types. D is calculated as follows:

D =
1

2

∑︂
i

⃓⃓⃓⃓
pi,k
pk

−
pi,l
pl

⃓⃓⃓⃓
Where i is the index of a sliding von Neumann neighborhood, k and l refer to the agent
type. pk, pl are the total count of agents of that type in the entire simulated environment
and pi,k, pi,l the number of agents at spatial unit i.

This D index is first calculated for the entire plot, as shown by the baselines row in
Figure 4.20, using a sliding von Neumann neighborhood with r = 1. The result is a 9x9
matrix of D indices that describe the pairwise segregation for each combination of agent
types. After that, the D index is determined for the various sampling simulations and
pooling strategies, shown by the estimates row in Figure 4.20. The D index is calculated
for each (combined) soil sample, using the von Neumann neighborhood of r = rsample.
This means that the von Neumann neighborhood is the same radius as the simulated soil
sample to simulate how soil cores are analyzed in real life.

Estimates

Baselines

0.70.2 0.4
0.7

...

...

0.4

...

0.60.2 0.4
0.6

...

...

0.4

...

Figure 4.20: Example co-occurrence calculation for baselines and estimates.

Comparing Known Values with Estimates

Abundance, diversity, and D index estimates are compared using Mean Absolute Error
(MAE) and Median Absolute Error (MdAE). Since MAE and MdAE for abundances are
not bound by the definition, count per gram of soil for each agent type, they can range
from [0, ...]. Therefore, each MAE and MdAE is divided by the total population size
of that type at sampling time to create an absolute error per agent. This results in an
error percentage relative to the population size, such that they can be compared fairly,
and interpretable. First, the two metrics are discussed, after which the process for visual
comparison is explained.
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The first of the two metrics used is MAE, which is a measure of the average magnitude
of errors between two lists or matrices of values. It is calculated by taking the average of
the absolute difference between each value. The best possible score is 0.0, so smaller values
are better. It is defined by the following function:

MAE(y, ŷ) =
∑︁N−1

i=0 | y1 − ŷ1 |
N

The second metric is MdAE, which differs from MAE by determining the median of
the absolute errors. It is more robust to outliers, the best score is 0.0, and it is defined as:

MdAE(y, ŷ) = median(| y1 − ŷ1 |, . . . , | yn − ŷn |)
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Chapter 5

Results

The results are split across three sections for the three estimated values: Abundance,
Diversity, and D index. Each of these sections covers all three pooling strategies, with an
emphasis on highlighting the impact of pooling strategies (No pooling, intra-plot pooling,
Temporal pooling), the core radius (1, ..., 5), and the sample locations (Wageningen ‘W’,
Systematic Regular). Each section is split into three subsections corresponding to the three
pooling setups.

Each subsection presents a box plot and line plot for MAE and MdAE. The box plot
shows the distribution of MAE and MdAE values, and the line plot shows the trend of
MAE and MdAE for increasing sample radius. Moreover, for the no pooling and plot
pooling, an additional line plot is given which shows the trend of MAE and MdAE for the
different sample times. This gives an insight into the impact of the sample time on the
analysis results.

5.1 Abundance

This section presents the results for the abundance estimates. To recap: abundances are
estimated by counting all agents per type for the full plot or the samples, and then dividing
this by the weight of the full plot or the sample, respectively, and then multiplying this
by 1000 resulting in the number of agents per kg of soil, or count/kg. However, to make
the comparison fair between the agent types, the absolute errors are first divided by their
respective population counts that sample time. After this, the mean and median are taken,
resulting in the MAE and MdAE presented in this section. This means that the MAE and
MdAE in this section do not have a defined upper bound, only a lower: 0.

5.1.1 No Pooling

The first abundance estimate analysis, shown in Figures 5.1 and 5.2, covers the no pooling
setup. In other words, the abundance is estimated for each sample separately, for all model
runs and experiment setups. The MAE and MdAE values are the errors between these
estimates and the baseline. This shows how well a single sample can estimate the baseline,
and how this is impacted by varying the radius of the sample, the sample locations, and
the initial distribution of agents.

Figure 5.1 shows that MAE has quite many large outliers, but that most errors are
clustered between 0 and 0.5. The large outliers could be due to one agent type being
highly over-represented in a sample. The MAE decreases for larger radii, especially for
random initial locations. On the other hand, MdAE sees fewer outliers than MAE, which
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can be explained by the median’s lower sensitivity to outliers. The MdAE also consistently
decreases for larger radii, for each combination of variables. Figure 5.2 shows the trend of
MAE and MdAE across the 7 sample times. This shows again that larger radii perform
better, but also that MAE and MdAE are fairly stable over time. The decreasing MAE
from time step 300 onwards could be explained by some agent types going extinct, making
their AEs 0, since an extinct agent type cannot show up in a sample. In summary:

• Increasing the sample radius improves estimation performance.

• Random initial locations yield better performance.

• There is no significant difference between the two sample locations.

• Performance for each sample time is quite stable per radius and sample time, but
there is a clear downward trend from sample time 300.
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Figure 5.1: Comparison of MAE and MdAE for abundance estimates without
pooling, with varying radii, sample locations, and initial locations.
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Figure 5.2: Comparison of MAE and MdAE for each sample time per radius.

5.1.2 Intra-Plot Pooling

The second setup that is covered, shown in Figures 5.3 and 5.4, is intra-plot pooling,
which refers to combining all the samples for one file and one radius before estimating the
abundances. This shows how well the pooled samples can estimate the baseline, and how
this is impacted by varying the radius of the sample, the sample locations, and the initial
distribution of agents.
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Figure 5.3 shows that MAE for intra-plot pooling has much smaller and fewer outliers
when compared to no pooling. Again, MAE consistently decreases for larger radii, for all
four combinations of initial and sample locations. Furthermore, compared to no pooling,
the MAE is much lower for each radius. This big decrease in MAE could be due to
the estimates being less vulnerable to outliers when compared to the no pooling setup.
Since there are fewer and less extreme outliers, MdAE is closer to MAE, but it is still
lower. Moreover, MdAE also decreases consistently for larger radii, for each combination.
Figure 5.4 shows the trend of MAE and MdAE across the 7 sample times. This shows that
the estimates are quite stable across sample times, with the lowest values for MAE and
MdAE consistently for the largest radius, r = 5. The dip starting from sample time 300
onward is also visible here. In summary:

• Intra-plot pooling approximately halves the errors compared to the no pooling setup.

• Increasing the sample radius consistently improves estimation performance.

• Clustered initial locations yield better MdAE performance, but only slightly

• Systematic Regular sample locations yield better MAE performance, but only slightly.

• Performance for each sample time is quite stable per radius and sample time, but
the differences between the radii are bigger than no pooling. The downward trend
from sample time 300 is still present.
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Figure 5.3: Comparison of MAE and MdAE for abundance estimates with intra-
plot pooling, varying radii, sample locations, and initial locations.
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Figure 5.4: Comparison of MAE and MdAE for each sample time per radius.
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5.1.3 Temporal Pooling

The third setup that is covered, shown in Figure 5.5, is temporal pooling, which refers to
combining all the samples for one file, one radius, and all sample times, before estimating
the abundances. These estimates are compared with the mean of the baselines at each
sample time of the respective file, so a mean of 7 baselines. This shows how well the
pooled samples can estimate the baseline, and how this is impacted by varying the radius
of the sample, the sample locations, and the initial distribution of agents.

Figure 5.5 shows that MAE for temporal pooling has a clear downward trend for larger
radii. In general, each of the 4 combinations shows similar performance, especially for
larger radii, suggesting that temporal pooling evens out outliers even more than intra-plot
pooling does. In summary:

• Temporal pooling shows better performance than no pooling and intra-plot pooling.

• Increasing the sample radius consistently improves performance.

• Both initial locations have similar performance

• Systematic Regular sample locations appear to improve performance slightly, but
this improvement is lost for larger radii.
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Figure 5.5: Comparison of MAE and MdAE for abundance estimates with tem-
poral pooling, varying radii, sample locations, and initial locations.

5.2 Diversity

This section presents the results for the diversity estimates. To recap: diversity is estimated
using the Shannon index, which is calculated for three types of pooling: No pooling, intra-
plot pooling, and temporal pooling. For the no pooling setup, the Shannon index is
calculated per sample for each sample time, for intra-plot pooling it is calculated per plot
and per sample time, and for temporal pooling it is calculated per plot. The Shannon index
is in the range of [0, ln 9 ≈ 2.2], where 0 means no diversity, and 2.2 means high diversity.
The estimated Shannon indices are then compared to the baseline Shannon indices for the
corresponding file and sample time(s). This results in the MAE and MdAE values that
are presented in the following three sections.
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5.2.1 No Pooling

The first diversity estimate analysis, shown in Figures 5.6 and 5.7, covers the no pooling
setup. In other words, the diversity is estimated for each sample separately, for all model
runs and radii. The MAE and MdAE values are the errors between these estimates and
the baseline. This shows how well a single sample can estimate the baseline, and how
this is impacted by varying the radius of the sample, the sample locations, and the initial
distribution of agents.

Figure 5.6 shows that MAE and MdAE are not clustered, and do not vary a lot between
the four combinations of initial and sample locations. MAE does decrease for larger radii,
but not significantly. Random initial locations have a higher MAE for smaller radii, but
as the radius increases, this difference with clustered initial locations disappears. MdAE
shows a very similar picture. Figure 5.7 shows the trend of MAE and MdAE across the
7 sample times. This shows that, for no pooling, the estimates are quite stable after an
initial ’startup’ phase. In summary:

• Increasing the sample radius improves estimation performance slightly.

• Both initial locations perform very similarly for larger radii, but for smaller radii,
clustered initial locations show higher performance.

• Both sample locations perform very similarly.

• Performance for each sample time is quite stable per radius and sample time, except
for a ‘start-up’ phase.
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Figure 5.6: Comparison of accuracy for diversity estimates without pooling, with
varying radii, sample locations, and initial locations.
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Figure 5.7: Comparison of MAE and MdAE for each sample time per radius.
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5.2.2 Intra-Plot Pooling

The second setup that is covered, shown in Figures 5.8 and 5.9, is intra-plot pooling,
which refers to combining all the samples for one file and one radius before estimating the
diversity. The plots show how MAE and MdAE are impacted by varying the radius of the
sample, the sample locations, and the initial distribution of agents.

Figure 5.8 shows that MAE for intra-plot pooling is much more clustered when com-
pared to no pooling. Moreover, MAE again decreases for larger radii for all four combi-
nations of initial and sample locations, but this effect appears to plateau. Interestingly,
random initial locations are unable to match the performance of clustered initial locations
for larger radii, unlike no pooling. The plots for MdAE are again very similar. Figure 5.9
shows the trend of MAE and MdAE across the 7 sample times. This shows that, for intra-
plot pooling, the estimates are quite stable after an initial ’startup’ phase. In summary:

• Pooling significantly improves diversity estimation.

• Increasing the sample radius improves estimation performance, but this effect appears
to plateau.

• Clustered initial locations result in slightly lower MAE and MdAE.

• Systematic regular outperforms Wageningen ‘W’, but only slightly.

• Performance for each sample time is quite stable per radius and sample time, except
for a ‘start-up’ phase.
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Figure 5.8: Comparison of MAE and MdAE for diversity estimates with intra-
plot pooling, varying radii, sample locations, and initial locations.
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Figure 5.9: Comparison of MAE and MdAE for each sample time per radius.
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5.2.3 Temporal Pooling

The third setup that is covered, shown in Figure 5.10, is temporal pooling, which refers to
combining all the samples for one file, one radius, and all sample times, before estimating
the diversity. These estimates are compared with the mean of the baselines at each sample
time of the respective file, so a mean of 7 baselines. This shows how well the pooled samples
can estimate the baseline, and how this is impacted by varying the radius of the sample,
the sample locations, and the initial distribution of agents.

Figure 5.10 shows that MAE for temporal pooling gets more clustered for larger radii,
especially for clustered initial locations. Surprisingly, larger radii do not result in lower
MAE, and in the case of clustered initial locations MAE even increases. The MdAE plots
again show a very similar image as the MAE plots.

• Temporal pooling shows better performance for random initial locations than the
other two pooling methods.

• Increasing the sample radius has little to no positive effect on MAE and MdAE. In
the case of clustered initial locations, the errors even increase.

• Random initial locations show better performance.

• Systematic regular slightly outperforms Wageningen ‘W’
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Figure 5.10: Comparison of MAE and MdAE for diversity indices estimates with
temporal pooling, varying radii, sample locations, and initial locations.

5.3 D Index

This section presents the results for the D index estimates. The D indices are estimated
for three types of pooling: No pooling, intra-plot pooling, and temporal pooling. For the
no pooling setup, the D index is calculated per sample for each sample time, for intra-
plot pooling it is calculated per plot and per sample time, and for temporal pooling it is
calculated per plot. The D index is in the range of [0, 1], where 0 means that the pairwise
compared agent types are spatially integrated, and 1 means that the pairwise compared
agent types are spatially segregated. The estimated D indices are then compared to the
baseline D indices for the corresponding agent type, file, and sample time(s). This results
in MAE and MdAE values that are presented in the following three sections.
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5.3.1 No Pooling

The first D index estimate analysis, shown in Figures 5.11 and 5.12, covers the no pooling
setup. In other words, the pairwise D index is estimated for each sample separately, for all
files, sample times, and radii. The MAE and MdAE values are the errors between these
estimates and the baseline. This shows how well a single sample can estimate the baseline,
and how this is impacted by varying the radius of the sample, the sample locations, and
the initial distribution of agents.

Figure 5.11 shows that MAE for the no pooling setup is not clustered at all and has
many outliers. The trend shows that, on average, the two clustered initial locations out-
perform the two random initial locations. Moreover, the sample locations do not appear
to impact the MAE since the lines are almost perfectly on top of each other. MdAE looks
very similar, except that the gap between the clustered and random initial locations is
larger than that for MAE. Figure 5.12 shows the trend of MAE and MdAE across the 7
sample times. It shows that from the sample time 300 the MAE and MdAE start to decline
significantly. In summary:

• Increasing the sample radius only yields minor improvements.

• Clustered initial locations slightly outperform random.

• Both sample locations perform similarly.

• Performance for each sample time is quite stable per radius and sample time, but
there is a clear downward trend from sample time 300.

Figure 5.11: Comparison of MAE and MdAE for D index estimates without
pooling, with varying radii, sample locations, and initial locations.
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Figure 5.12: Comparison of MAE and MdAE for each sample time per radius.
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5.3.2 Intra-Plot Pooling

The second setup that is covered, shown in Figures 5.13 and 5.14, is intra-plot pooling,
which refers to combining all the samples for one file and one radius before estimating the
D indices. This shows how well the pooled samples can estimate the baseline, and how
this is impacted by varying the radius of the sample, the sample locations, and the initial
distribution of agents.

Figure 5.13 shows that MAE for intra-plot pooling has a similar distribution as no
pooling. However, larger radii have a bigger impact on improving performance than no
pooling. Moreover, the sample locations have a slight impact on the results: systematic
regular slightly outperforms Wageningen ‘W’. The plots for MdAE are very similar. Fig-
ure 5.14 shows the trend of MAE and MdAE across the 7 sample times. It shows that
from sample time 300 the MAE and MdAE start to decline significantly. In summary:

• Intra-plot pooling improves estimation performance, but the performance remains
relatively poor, with average MAE values around 0.35 at best, and 0.6 at worst.

• Increasing the sample radius consistently improves performance and has a bigger
impact compared with no pooling.

• Clustered initial locations outperform random

• Systematic regular outperforms Wageningen ‘W’ for larger radii, but only slightly.

• Performance for each sample time is quite stable per radius and sample time, but
the differences between the radii are bigger than no pooling. The downward trend
from sample time 300 is still present.
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Figure 5.13: Comparison of MAE and MdAE for D index estimates with intra-
plot pooling, varying radii, sample locations, and initial locations.
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Figure 5.14: Comparison of MAE and MdAE for each sample time per radius.
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5.3.3 Temporal Pooling

The third setup that is covered, shown in Figure 5.15, is temporal pooling, which refers to
combining all the samples for one file, one radius, and all sample times, before estimating
the diversity. These estimates are compared with the mean of the baselines at each sample
time of the respective file, so a mean of 7 baselines. This shows how well the pooled samples
can estimate the baseline, and how this is impacted by varying the radius of the sample,
the sample locations, and the initial distribution of agents.

Figure 5.15 shows that MAE for temporal pooling has better clustering compared to
no pooling and intra-plot pooling. The MAE also steadily decreases for larger radii. The
MdAE plots show a very similar image as the MAE plots, but with a bit less clustering.

• Temporal pooling shows similar performance as intra-plot pooling.

• Increasing the sample radius consistently decreases the MAE and MdAE.

• Clustered initial locations show better performance.

• Both sample locations perform very similarly.
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Figure 5.15: Comparison of MAE and MdAE for D index estimates with temporal
pooling, varying radii, sample locations, and initial locations.
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Chapter 6

Discussion

6.1 Interpretation of Results

In this section, we summarize and interpret the key insights from the analyses of the three
estimation setups: abundance, diversity, and D index. The interpretation is structured
according to the second research question, which focuses on the impact of sample radius,
sample location, and pooling strategies. Additionally, the effect of sample time is discussed
in the fourth section, an interpretation of the many outliers by looking at individual agent
types is given in the fifth section, and finally, an exploration of combining data from studies
that potentially use different sampling methodologies is presented in the sixth section.

6.1.1 Effect of Sample Radius

Across all three estimation tasks (abundance, diversity, and D index), the sample radius
showed a generally positive impact on the estimate performance. Whereas this section
focuses on the global effect of radius on estimation, a discussion focused on the impact
of radius on individual outliers and agent size and abundance can be found below in
Section 6.1.5, where the influence of agent type and sample radius is explored. The global
effect can be summarized per estimation task as follows:

• Abundance: Larger sample radii consistently improved the estimation performance
and lowered MAE and MdAE values. However, performance appears to plateau for
the largest radii.

• Diversity: Larger sample radii also improve diversity estimate accuracy, except for
temporal pooling. The plateauing effect seen for abundance estimates can also be
observed.

• D Index: Larger sample radii also show improved performance for all types of
pooling.

A possible explanation for this difference in effect is visualized in Figure 6.1. This plot
shows a 20x20 slice of a BLOSSOM run, with an overlay of the five sample radii. The
brown agent is only counted for the sample with radius r = 4 and 5, whereas the purple
and red agents are only counted for the sample with radius r = 5. This means that, for
larger radii, there is a higher likelihood of an agent being present in a sample.

For diversity, this looks very similar to the Species-area Relationship (SAR), where
species diversity increases the larger the sample area is, but flattens off after a while,
because at some point most or all of the species are included in the sample [82]. This same
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phenomenon can be seen in the results for diversity and sample radius, where even the
flattening effect is visible, especially for intra-plot pooling.

A reason for the radius having less of an effect on D index estimates could stem from
the way the D index is determined for the baseline: the D index is calculated for von
Neumann neighborhoods of r = 1. So, as the sample radius becomes larger, the estimates
might improve for some agent types, but it could also find agent types that appear to live
close together but do not show up like that in the baseline: a false positive.
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Figure 6.1: A 20x20 slice of a BLOSSOM run, with the von Neumann neighbor-
hood of r = 1, ..., 5 overlaid.

6.1.2 Effect of Sample Location

The two sample locations, Wageningen ‘W’ and Systematic Regular, had a varied impact
across the three setups. Overall, systematic regular outperformed Wageningen ‘W’ slightly,
or both showed similar performance. However, the degree varies between the three setups:

• Abundance: Systematic Regular outperforms Wageningen ‘W’ for intra-plot pool-
ing, but only slightly. For the other pooling types, there is no significant difference.

• Diversity: Systematic Regular outperforms Wageningen ‘W’ slightly for intra-plot
pooling and temporal pooling. For the no-pooling setup, there was no significant
difference.

• D Index: Systematic regular again slightly outperformed Wageningen ‘W’ for intra-
plot pooling. For the other pooling types, there is no significant difference.

A reason for this similar and slightly better performance of systematic regular when
compared to Wageningen ‘W’ could be explained by the fact that systematic regular takes
4 more cores per plot when compared to Wageningen ‘W’. Moreover, the spacing of Sys-
tematic regular is more evenly distributed across the plot, which is shown in Figure 6.2.
Therefore, when using intra-plot pooling, systematic regular has a clear benefit. This ben-
efit disappears for no pooling because each sample is analyzed separately, and for temporal
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pooling, the difference might even out because of the large number of samples that are
pooled. To determine whether the actual spacing or the number of cores is the deciding
factor, more sample location setups should be compared.
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Figure 6.2: A density map of one BLOSSOM run, with the two sampling location
types overlaid.

6.1.3 Effect of Pooling

Pooling is the most influential factor, together with sample radius, for improving estimation
performance for all three setups. Intra-plot pooling consistently outperformed the no-
pooling approach, and for the D index task, temporal pooling performs similarly to intra-
plot pooling.

• Abundance: Intra-plot pooling showed a reduction in MAE and MdAE compared
to no pooling, and temporal pooling reduced the MAE and MdAE even more. This
reduction holds for all sample radii and sample locations.

• Diversity: Intra-plot pooling showed an increase in performance, and temporal
pooling showed even further improvement for random initial locations. This improve-
ment again holds for all sample radii and sample locations. The diversity estimates
are much more accurate when samples are pooled.

• D Index: Intra-plot pooling again showed improved performance and lower MAE
and MdAE with temporal pooling performing very similarly. This effect was most
visible when combined with higher sample radii. However, even with pooling, D
index estimates show relatively high errors. This indicates that D index estimation
requires further optimization.

Pooling is the most influential factor could be explained by the fact that a single location
does not say much about spatial variability [2]. Since the baselines are determined for the
full soil plot, a single sample must somehow contain a summary of the full plot. This
happened by chance in some cases, but pooling the samples from a plot proves a much
more robust way of estimating the abundance, diversity, and D index of a soil plot.
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6.1.4 Effect of Sample Time

Something that stood out for almost all results in the plots that show the MAE and MdAE
per radius and sample time is the downward trend starting from the sample time 300. To
understand the underlying reason for this effect, the Absolute Errors (AEs) per agent type
per sample time for the abundance analysis are shown in Figure 6.3. This shows that, for
most agent types, the AE is fairly stable. However, for four organisms, the AE starts a
downward trend around 300. These are Fungi, Fungivorous Nematodes, Fungivorous Mites,
and Collembolans. This means that the entire fungal channel is showing this behavior. If
we then look at how these agent types develop over time by plotting the number of agents
per type per time step for one of the runs, shown in Figure 6.4, it is clear what is happening:
the fungi start to go extinct, so the agent types that feed on fungi slowly go extinct as well.
After higher-level agents die out, fungi make a comeback. The heatmaps in Figure 6.5 show
the distribution of these four agent types in space for the same BLOSSOM run. They also
show that this comeback of fungi is at only one location, which means a simpler estimation
task if a sample is taken in that area.
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Figure 6.3: A line plot that shows the AE per agent type per sample time.
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Figure 6.4: A line plot that shows the AE per agent type per sample time.

Figure 6.5: Heatmaps highlighting the fungal energy channel for three time steps.
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6.1.5 Interpretation of Outliers

A commonality between the results is the large number of outliers, especially for no pooling
and intra-plot pooling. To investigate these outliers, the results for abundance estimates
for each pooling setup are redone using the Mean Signed Error (MSEr). Unlike MAE,
MSEr can show the sign of the mean error, or in ecological terms, whether the abundances
are under- or overestimated. Figure 6.6 shows that most of the extreme outliers for no
pooling and intra-plot pooling are overestimations for smaller radii.

Looking more closely at the 20 largest outliers per pooling setup shows that all of these
are due to a large overestimation of a singular organism: fungivorous mites, omnivorous
mites, or collembolans. A commonality between these organisms is that they occur in small
numbers in soil. Therefore, if one or more agents of these types occur in a sample with a
small radius, the estimated number of agents of that type per kg of soil will be much higher
than the baseline. This is supported by the outliers becoming smaller for larger sample
radii. Another contributor to these outliers are the fungi, but these overestimations likely
have to do with the clustering nature of fungi agents. Therefore, if a sample with a small
radius exactly hits such a cluster, the estimate will be much higher than the baseline.
Interestingly, smaller, more abundant organisms such as bacteria and nematodes rarely
contribute to these large outliers.

This means that the sample size must be appropriate for the organism one is interested
in. Whilst larger, less abundant organisms require samples of larger radii to improve the
abundance estimates, smaller, less abundant organisms can be estimated using samples of
smaller radii. This also follows literature discussed in Section 3.2, which shows that sample
size has little effect on abundance estimation of bacteria [68], which have spatial structures
on the millimeter scale [44]. However, sample size does affect properties that show spatial
patterns on the centimeter scale [2].
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Figure 6.6: Box plots showing the MSEr per pooling type and radius, and swarm
plots showing the absolute error of the 20 largest outliers.
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6.1.6 Possibility of Combining Data from Different Sources

A big question for ecologists is whether data from studies that use different sampling
methodologies can be combined into one larger dataset. To investigate the effect of pooling
setup and sample radius on the data to determine whether this practice is sound, the
estimates are visualized per pooling setup and sample radius. The simulated data estimates
are first combined across initial locations (random and clustered), across sample locations
(Wageningen ‘W’ and Systematic Regular), and across sample times (0, 100, ..., 600).
However, ecologists do not have the luxury of sampling a plot multiple times with different
methodologies, since sampling is destructive. Moreover, sample locations can vary between
studies, or within studies if a physical object such as a tree blocks one or more of the sample
locations. To simulate this, a 50/50 split is used where half of the plots are sampled using
Wageningen ‘W’ sample locations, and the other half is sampled using Systematic Regular
sample locations. This allows us to analyze the impact of pooling and radius on estimations
using this combined data set.

Figure 6.7 shows the mean values of the estimates for each of the three estimation tasks
per pooling setup and sample radius, together with the mean baseline. This shows that for
abundance estimation, the pooling setup does not have a big impact. However, for diversity
and D-index estimation, the pooling setup clearly affects the results after combining data
with varying sample locations and initial locations. Looking at the radius, each estimation
task and each pooling setup shows a clear upward trend with a smoothing effect for larger
radii, except for diversity estimation using temporal pooling. It also again shows that
radius plays a smaller role in abundance estimation compared to diversity and D-index, or
co-occurrence, estimation, as shown by Li et al. [68]. This means that ecologists should not
combine data from different studies without a thorough review of the sample methodologies
that are used. Moreover, these reviews are especially important when combining diversity
or co-occurrence estimates.
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Figure 6.7: Estimates of abundance, diversity, and D-index compared to the
baseline for pooling and radius.

6.2 Limitations and Improvements

There are several limitations to this thesis, which are presented together with possible
improvements. These are split into two sections, the first section covers BLOSSOM and
the other covers the sampling simulations and data analysis.

6.2.1 BLOSSOM

The model has some obvious limitations, which all stem from the need to parameterize and
simplify organism behavior so that they can be modeled, and so that BLOSSOM can run in
a reasonable time for the available resources. The list below follows from these limitations

62



and focuses on how BLOSSOM’s capabilities and user experience can be improved, and
the reasoning for these improvements.

• From scratch An obvious first limitation is performance for the available resources.
BLOSSOM uses the Repast4Py library in Python mostly for the built-in MPI sup-
port, but using Python means there is an immediate performance penalty. Rewriting
BLOSSOM in a high-performance language such as RUST or C++ is an obvious first
step to improving the performance of BLOSSOM. This increase in performance means
the possibility of adding additional organisms, which could mean a fined grid and a
more detailed simulation. Moreover, submodels can be made more complex to more
accurately represent and distinguish between agent type behaviors.

• Checkpoints By logging the full model state, BLOSSOM could start from a previous
run, forming the basis for many model setups. One could create a stable run that runs
for x time steps, to then introduce several treatments from that endpoint to analyze
the impact of these treatments on a stable system. This could also dramatically
increase the calibration of BLOSSOM since one could calibrate in steps of 50 time
steps, and simply continue from the next stable checkpoint.

• Random repopulation of extinct species This improves BLOSSOM’s ecological
dynamics since it introduces the possibility of species recovery after extinction. This
follows ecological behavior where organisms move by other means than soil and water,
such as wind, animals, or human activity.

• Random colonization Since BLOSSOM models only a soil cube, organisms cannot
migrate into the simulated cube. By adding random colonizations, BLOSSOM could
model the natural dispersal of colonies into new habitats. It could also form the basis
of experiments that analyze the effect of an invasive species being introduced into a
stable system.

• Artificial barriers And the ability to set, remove, and move them. This feature
can be used to simulate geographical or environmental changes, such as rivers, moun-
tains, or human-made structures. This can be used to analyze species’ adaptation to
changing environments

• Nutrient logging This feature also allows analyzing SOM patterns over time. This
can be used to analyze the impact of SOM availability on species behavior.

• Passive SOM dispersal Due to water in the soil and rain, SOM can flow from cell
to cell. This can be modeled using literature.

• More advanced dispersal simulation BLOSSOM models dispersal behavior fairly
naively. This is done for performance reasons, since this code runs for every agent,
every time step. However, this also means that species-specific nuances cannot be
modeled accurately. Ideally, there are options such as memory of past locations,
movement patterns, and future path planning, that can be used (or not) for certain
species to add more nuance to dispersal.

• Improved clustered initial locations Currently, the initial cluster size is depen-
dent on some hard-coded values and the initial population of that species. To use
BLOSSOM for additional experiments, it could be helpful to be able to change this
cluster size per treatment.
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• Memory efficient logging Currently, each agent’s location is written to a CSV file
for each time step. This is manageable for the current settings (80.000 initial agents
and 600 modeled time steps), but the output file size is already approaching 1 GB.
For longer runs with more agents, the file size will become a problem.

6.2.2 Sampling Simulations and Data Analysis

Besides improvements to BLOSSOM, there are several limitations and improvements for
the soil sampling simulations and data analysis. Many of these improvements stem from the
limitation of parameterization because all results are based on the 40 BLOSSOM runs, each
of which used the set of parameters that were described in Section 4.2.6 for BLOSSOM,
and Section 4.3.2 for the soil sample simulations. Appendix D shows the spatial patterns
of two BLOSSOM runs, highlighting the high spatial variation across time and model runs.
Therefore, many of the possible improvements focus on understanding these parameters in
more detail. The following list provides an overview of these improvements.

• Longer runs An obvious first improvement to analysis is longer model runs. It is
widely known that longer runs are more representative of ecological models. With
the performance improvements in BLOSSOM from the previous chapter, and better
compute resources, this is a very achievable improvement for future work.

• More sample times This follows from the previous point, where longer runs also
mean more sample times to cover the entire length of the model run.

• More sample locations Analyzing more variations of sample locations could lead
to a further understanding of the impact of sample locations on data analysis.

• More initial locations With finer control over initial locations in BLOSSOM men-
tioned in the previous section, a next step could be to test more initial location setups
to analyze the impact of the initial distribution of agents on data analysis. This in
combination with longer runs could be highly interesting, because these effects might
or might not even be out in the long term.

• More initial population densities Another improvement would be to analyze
varying initial population densities to better understand the effect of this parameter.
Calibration and general experimentation with BLOSSOM showed that population
density can have a big impact on the model runs.

• Varying parameterization Parameters such as maximum age are set and cali-
brated relatively naively because of limitations when grouping many species with
different characteristics. However, analyzing the impact of these parameters could
improve the calibration process and help explain the patterns observed in BLOSSOM
model runs.

• More co-occurrence metrics This thesis focuses on the D index, but as discussed
in Section 3, there are many more ways of determining the co-occurrence of organisms.
An ecological model provides the ultimate testbed for comparing these methods and
finding out why they do or do not work.
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Chapter 7

Conclusion

Whilst this thesis is just a first step in simulating soil sampling using BLOSSOM, there
are several interesting findings. Moreover, there is a lot of possibility for future work
that includes BLOSSOM with a selection of the improvements mentioned in the previous
section. The first section summarizes this thesis and its findings, and the last section
provides ideas and inspiration for future work.

7.1 Summary

This thesis attempted to answer the question: How does the soil sampling method-
ology affect data analysis, such as counting species richness and abundances,
and co-occurrence network analysis when analyzing synthetic data from a spa-
tiotemporal soil model?. This was done by first answering the question: How to
develop a spatiotemporal soil model that models soil, soil organic matter and
soil biota in 3D in a realistic manner?. The result is BLOSSOM, a spatiotemporal soil
model that can model SOM and soil biota. Parameterization proved to be a difficult prob-
lem to solve, and there are many improvements possible, as was discussed in Section 6.2.1.
The second research question: What is the effect of soil sampling methodologies,
such as varying sample radius, spatial distribution, and pooling of soil samples,
on the results of data analysis? was answered by carrying out data analysis on soil
sample simulations on BLOSSOM outputs. Both of these research questions together form
the answer to the main research question:

• Larger sample radii consistently improve estimation performance

• Systematic Regular sample locations perform slightly better or similar to
Wageningen ‘W’

• Pooling significantly improves estimation performance

An important note on these three points is that, before ecologists should change their
sampling strategies, these results should first be validated through real-life experiments.
The goal of BLOSSOM is to find potential improvements fast and cheap, such that only the
most promising results have to be validated. But, these three points do give clear directions
for potential validation. Another important finding regarding the potential problems of
combining datasets with different pooling setups or sampling radii is presented, but this
requires more research before it can be turned into a set of guidelines that ecologists can
use when combining soil sample data from different studies. Moreover, further research
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is necessary for co-occurrence metrics, because these results are less conclusive than the
abundance and diversity estimation.

Whilst there are many improvements possible to this thesis as mentioned before, this is
a first step in modeling soil in an ABM of which the future possibilities are almost endless.
All design choices were made with limited time and computing resources in mind, which
led to constraints for BLOSSOM and further data analysis. Moreover, ecological modeling
is a proven difficult topic, and the parameterization of organisms is not fully understood.
Despite these constraints, the results show clear trends and offer a great starting point
for further research. BLOSSOM offers a new step in ecological ABMs, allowing for new
levels of initial organism counts, an unseen diversity of organisms, and flexibility in initial
conditions. It also highlights the difficulties of modeling complex systems that are not fully
understood yet.

7.2 Future Work

There are many possibilities for future work, both for BLOSSOM itself and for the sampling
simulations and data analysis. The first step for BLOSSOM is to find a method to verify the
simulation, such that the results from the underlying analysis can be directly transferred to
the field. However, this is not a straightforward task. Therefore, most of the opportunities
are in the sampling simulations and data analysis area. The list below is a compilation of
the possible future work with the BLOSSOM model:

• 3D BLOSSOM already supports 3D simulations, but the available resources were
insufficient to make use of this feature. In future research, this would be an easy first
step, if BLOSSOM is optimized and resources are available.

• Close Ecology Collaboration Whilst this thesis is a first step in developing a
model and using it for soil sample simulations, now that the model is there, close
cooperation with ecologists is an interesting path to pursue. Ecologists can help to
set up experiments that are highly relevant to their field, and the results of this thesis
could lead to ecologists asking more data science questions. Maybe there is even a
possibility to validate BLOSSOM through real-world trials.

• Downsizing plots By downsizing plots and using a future, more optimized, version
of BLOSSOM one can model microbes in more detail, maybe even model different
bacteria species. This could further the understanding of the effect of sampling on
the data analysis of the smallest organisms in the soil.

• Influence of invasive species By letting an invasive species enter several combina-
tions of stable simulations, one can analyze how the native species handle the sudden
extreme change in the simulated space.

• Influence of (human-made) barriers By putting up barriers, moving them around,
making them permeable by only some types of species, etc. one can analyze the effect
of (human-made) barriers on species populations.

• Influence of initial SOM distributions In this thesis, SOM was distributed uni-
formly. However, BLOSSOM also supports random uniform distribution, and other
distributions are not difficult to implement. This could be interesting when interested
in the influence of SOM on the model runs.
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• Influence of disasters Modeling sudden extinction events could reveal the impact
of disasters on organism populations. E.g., SOM stocks could dramatically lower,
mimicking a flood washing away nutrients. One could also model forest fires where
during the fire organisms are vulnerable, to analyze the recovery of organisms as the
soil becomes more nutritious again after the fire.

• Different co-occurrence metrics Another topic could be to look at the impact of
soil sampling on various co-occurrence metrics.
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Appendix A

Functional Requirements

Table A.1: Functional requirements for the to-be-developed model.

ID Description

1 The system must model a multidimensional soil structure that can realistically
represent the average Dutch soil type.

2 The system must model SOM as a variable that incorporates its carbon content,
nitrogen content, and decomposition rate.

3 The system must support to model SOM in two ways: uniform random distribution
and uniform distribution.

4 The system must minimally model 8 types of types that each represent an abun-
dance of one of these organism groups.

5 The system must realistically model each entity’s abundance, growth rate, dispersal
ability, trophic interactions, and responses to changing environmental conditions
by parameterization based on real-world data.

6 The system must model the trophic dependency network of these organism groups
and SOM by parameterization based on real-world data.

7 The system must allow users to adapt the parameters that are defined for soil,
SOM, the organism groups, and the food dependency network.

8 The system must allow users to simulate various sampling methodologies that vary
spatially (locations and diameter), and obtain synthetic data of all the modeled
variables.

9 The system must allow users to simulate various pooling strategies such as no
pooling, intra-plot pooling, and temporal pooling.

10 The system must allow users to retrieve the baseline i.e., simulated values and the
trophic dependency network, from the underlying model, to determine the impact
of the simulated sampling methodologies on reproducing the baseline using data
analysis.

11 The system must visualize the synthetic data clearly and attractively, in 2D.
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Appendix B

Full Flow of BLOSSOM
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Figure B.1: The complete flow of the BLOSSOM model.
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Appendix C

Sampling Methodologies
Questionnaire
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Appendix D

Spatial Patterns of Several
BLOSSOM Runs

(Continued on the next page)
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Figure D.1: The agent counts per tick and scatter plots for 7 time steps for run
clustered_13.
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Figure D.2: The agent counts per tick and scatter plots for 7 time steps for run
random_20.
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