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Self-Driving Challenge: Implementation of
Vision-Only Based Autonomous Driving in Karts

Raj Kumar Ashokan Gayathri Dhanapal

Abstract—This study is based on our participation in the
Self Driving Challenge 2023 edition, which was aimed at the
study of basic autonomous functionality behaviour in cars. The
purely vision-based, classical autonomous driving approaches
implemented during the challenge are discussed here. This in-
cludes an unsuccessfully attempted monocular visual odometry
based approach, in which relative localization was successfully
obtained using feature extraction, feature matching, and 2D-
2D motion estimation but absolute world scale could not be
successfully retrieved. A lane boundary marker detection based
approach was then successfully implemented and utilized at the
challenge. This approach enabled the provided electric go-kart
to autonomously traverse a distance of approximately 1 km.
The algorithm processing speed was 30 FPS in real-time. This
approach fetched us the runner-up position at the challenge. The
observed outcome at the challenge is presented including noted
undesirable behaviours. However, the behaviours could not be
analyzed or studied owing to the short development stint of the
challenge. The shortcomings at the challenge are also identified
for both the approaches along with the need for follow-up study.
A video of our demonstration of the autonomous driving at the
SDC finale event can be found at: https://tinyurl.com/4ycet5de.

Index Terms—self driving challenge, RDW, autonomous cars,
monocular visual odometry, relative localization, motion estima-
tion, lane boundary detection, steer estimation

I. INTRODUCTION

Self-driving car technology has been making great strides
towards becoming a reality and has been changing day to day
lives in terms of road safety [1], ease in mobility, increased
travel comfort, reduced emission and pollution levels [2],
improved transport inter-connectivity etc. since its advent.
Vehicles are increasingly equipped with advanced sensors,
vision and control systems, providing them with autonomous
capabilities [3] [4]. It has become inevitable to further probe
into this field and research into the latest advancements in
order to expand the knowledge in smart mobility.

In line with this, being the regulatory organization in ap-
proving cars for use on public roads, the Netherlands Vehicle
Authority (RDW) has been organizing an annual competition,
’Self Driving Challenge (SDC)’, since 2019. The RDW orga-
nizes this challenge with the futuristic goal of preparing itself
for expanding its knowledge about autonomous vehicles,
especially cars, and about the complex choices those vehicles
make [5]. SDC being an open challenge for the student teams
in The Netherlands, we participated in the SDC 2023 edition
as a part of the team from the University of Twente. The
main aim of this edition was to build a software stack to
autonomously drive a lap as fast as possible at the specified
track using an electric go-kart that is provided by the RDW.

Fig. 1: University of Twente team at SDC2023. Image credit:
RDW/Self Driving Challenge

Autonomous racing on karts provides a valuable testing
field for algorithmic approaches related to autonomous driv-
ing. As this field is emerging and relatively new, a direct
transfer of autonomous racing software to the autonomous
passenger cars has not yet been accomplished [6]. However,
increasingly, more autonomous racing challenges are orga-
nized using karts, such as the EV Grand Prix Autonomous
Challenge [7] and Formula Student Driverless competitions
[8]; these challenges induce valuable research that can be
scaled up to passenger cars. Therefore, study of basic au-
tonomous functionality behaviour using karts can be a good
starting point in the study of the same in cars, aligning with
the motive of the SDC [5].

Each participating team at the SDC had limited access
to two identical electric go-karts, equipped with the required
hardware, and thus the extent of the challenge differed only in
the development of the autonomous software and interfacing
with the hardware [9]. The whole challenge took place at
the TT-Junior track, at Assen in the Netherlands, which is
a racing circuit of 1 km length and varying width. Being
a single-lane circuit with boundary markers on both sides,
it also contained turns, intersections, splits, crossings, curbs
and inner loops.

A total of six teams participated in the edition and our team
secured the second prize. At the end of the challenge, our
developed code was able to provide autonomous functionality
to the provided go-kart, but extensive testing could not
be performed to evaluate its autonomous behaviour. This
extensive testing and evaluation was done as a follow-up

https://tinyurl.com/4ycet5de


study at the University of Twente, by using a rebuilt small-
scale kart. This follow-up study is not discussed in this paper.
The approaches we used for participating in the challenge
and the performance at the challenge is primarily discussed
here. Overall, the objective of this Master’s thesis work was
to implement and study the behaviour of basic autonomous
functionality in cars using karts and small-scale karts. Fig. 1
shows the SDC electric go-kart during one of its autonomous
manoeuvres demonstrated by the University of Twente team.

Fig. 2: Basic autonomous driving pipeline

The pipeline for a vehicle to drive itself autonomously
from a point A to point B includes three major modules
- perception, planning and control as in Fig. 2. Perception
is the ability of a vehicle to perceive its surroundings and
to know its own position in the environment using the data
from its sensors. Planning is the process of generating the
best path for the vehicle to traverse and reach its destination,
based on the perceived environment taking into account the
dynamic capabilities of the vehicle, presence of obstacles etc.
Control is the process of converting the intended decisions
into actions by sending commands to the actuators to obtain
the desired movement [10].

In the SDC kart, cameras were meant to be the primary
sensor setup, limiting the scope to visual perception based
systems. Obstacle avoidance was not included in the scope
and hence is not considered in the entirety of this work.
One of the challenging perception tasks for an autonomous
vehicle is estimating its current ego-pose or localization
[11] [12]. Visual-based localization systems can be broadly
based on traditional, learning or hybrid approaches. The
state-of-the-art learning-based or hybrid approaches require
a lot of data and processing power [6] [13] for considerable
performance. However, during the SDC, owing to the limited
processing capabilities of the kart, we could not rely on that
as the primary method. Nevertheless, two other members
of our team were trying to develop an end-to-end steering
prediction, which was not progressively fruitful during the

competition and, therefore, is not discussed here.
Considering traditional approaches, Visual Odometry

(VO), which is a process of estimating the translational
and rotational movements of the camera using images, is
often used for localization in autonomous vehicles [14] [15].
Therefore, we initially considered monocular visual odometry
for localization, as the kart did not include a stereo setup.
The involved steps are: feature extraction, feature matching,
outlier rejection, and relative pose estimation. Relative ego
localization was successfully obtained using this approach; to
integrate the absolute scale, an image retrieval-based method
was tried to be implemented, but in vain. This involved
constructing a database of compressed geo-tagged images
and fetching matched images using image retrieval. Thus, the
scale factor issue of the monocular camera could not be suc-
cessfully resolved utilizing any other additional information,
resulting in unsuccessful localization. For the planning and
control steps in the pipeline, a waypoint follower utilizing a
geometric lateral controller was planned to be implemented
in case of successful localization using odometry.

Therefore, in the later part of the challenge, we a adopted
lane boundary detection-based road following approach,
which is another commonly used approach; this was the
approach we used for the final race. The steps involved
in the perception module here includes feature extraction,
detection of lane boundary markers, and lateral localization
relative to the lane markings. In the planning module, steer
angle is calculated in order to generate the trajectory for lane
following, i.e., for the kart to be positioned at the center of
the lane. The lateral control module executes the movements,
including error handling process, to maintain the planned
path.

Traditionally, the study of related works would be carried
out at the beginning of the research. However, as this work
directly started with the development phase due to the
stringent schedule of the competition, the study of related
works was done at the beginning of the follow-up study and
is not elaborated in this paper. The contributions discussed in
this paper focuses on the design-development approach and
the implementations carried out to satisfy the requirements
of the challenge, which were primarily given by:

• The kart should begin from the start position and run
autonomously through the track. The teams would not
compete against each other at the same time, but one
after the other.

• Each team would get a time-slot of 15 minutes for
multiple trials. A trial would be immediately considered
disqualified if the kart either goes off-track or even
touches either of the lane boundary markers with one
of its tyres.

• After disqualification, a new trial would begin again
from the start position, only within the provided time-
slot.

• The kart should follow the right path at the intersections
or crossings.

The team that makes the most metres on the track in the
shortest lap time possible, satisfying the above requirements



Fig. 3: The SDC electric Go-Kart

would emerge as the winner. More details of the challenge
can be found at [9].

The paper is further structured as follows: Section II
describes the hardware used. Section III talks about the data
collection process. Section IV details the approaches used.
Section V discusses the results and the performance at the
challenge. Section VI concludes the work with highlights and
shortcomings at the challenge, and talks about the follow-up
study.

II. GO-KART

The parts of the electric go-kart relevant to the challenge,
as shown in Fig. 3, include the computing unit (a 16GB Intel
i5 processor with no GPU), actuators, and sensors, apart from
the chassis. The actuation of the go-kart is primarily made
via throttle, steering, and braking. The original version of
the go-kart consisted of interface modules such as steering
wheel and pedals which were human driven. For the sake
of autonomous driving, a servo motor (for steering) and
a linear actuator(replacing the braking module), which are
controlled via ECUs, were integrated in the provided kart.
Communication between the ECUs is carried out over a CAN
(Controller Area Network) bus, emulating the standard com-
munication system within a conventional car [16]. The kart
comes equipped with a 3.5 kW electric motor for longitudinal
actuation with maximum speed modes of either 5, 15, 30 or
60km/h. Apart from autonomous control capability, manual
control via a wired Xbox controller was also possible.

Existing research works concerning autonomous driving
involve fusion of data from sophisticated sensors such as the
3D LiDAR, RADAR, GNSS, IMU, encoders, and cameras
in their perception module [17] [18]. In contrast to this,
the SDC kart was equipped with a basic sensor suite with
three regular USB web-cameras and a 2D planar LiDAR. The
cameras were clamped together at a height of 60 cm from
the ground in the front part of the kart and had negligible
overlap between their field of views. The 2D planar LiDAR,
also placed at the front part of the kart, primarily finds its
usage in obstacle avoidance task and hence was of little use
to us. For safety reasons, an emergency transmitter-receiver
pair was interfaced for easy manual intervention.

III. DATASET

Data collection from all the three cameras was performed
in parallel, by manually driving the kart throughout the
track in lane-centered, lane-edged, and zig-zag manoeuvres.
Data was captured in three different speed modes, during
different times of the day, and by different drivers. Cam-
eras were calibrated to obtain the intrinsics. In addition to
the image recordings, the set of throttle, steer, and brake
commands given to the actuators via the CAN network
were also recorded in the form of a CSV file. Both the
CSV and image data are time synchronized utilizing the
concept of multi-threading. This is significant as it facilitates
better understanding and correspondence between images and
actuator commands, especially during algorithm development
and analyses.

IV. APPROACHES

A. Visual Odometry Based Approach

1) Feature Extraction: The overview of the processes
in the initial perception module for monocular VO based
approach is as shown in Fig. 4. In this module the center
camera images are utilized to obtain the kart’s localization.
Extraction of features or keypoints in the image is the primary
significant step in the process. Features can be extracted using
various methods like SURF, Harris corner detector, ORB,
FAST etc. ORB (Oriented FAST and Rotated BRIEF) [19]
can detect and describe (vectors of size 32) more features,
that are invariant to scale, rotation, and small affine changes,
quickly than many such feature detector-descriptors [12] [20].
Hence ORB was initially chosen for this step primarily
for the sake of efficient computation. An example image
with features extracted using ORB is as shown in Fig. 5a.
Later in the further stages of the pipeline, when the results
of the obtained motion estimation were not as expected
(discussed in the Results section), another detector-descriptor
known as SIFT (Scale Invariant Feature Transform) [21]
was finally used. SIFT is a more accurate method, which
detects stable features that are robustly invariant to scale,
rotations or small affine changes than ORB [17], and provides
descriptors (vectors of size 128). But this comes with a higher



Fig. 4: Processes in the perception module

computational cost [20]. Features extracted using SIFT for
the same example image are as shown in Fig. 5b.

(a) Using ORB (b) Using SIFT

Fig. 5: Sample outputs showing extracted features

2) Feature Matching: Secondly, feature matching between
the extracted SIFT features of two consecutive images was
performed using a Brute Force(BF) matcher. It considers a
descriptor in one image and tries to find a match among all
the descriptors in the other, based on the smallest distance.
For binary string-based descriptors like ORB, the Hamming
distance is considered, whereas for SIFT, the L2 Norm works
good [22].

For each feature, two best matches were retrieved and a
distance ratio thresholding based on [21] was performed, to
filter out unreliable matches. This requires the closest match
to be significantly better than the second closest match by
checking the ratio of their distances. This ratio threshold was

Fig. 6: Matched features between sample consecutive frames. Only
a few matches are shown for illustration

varied from 0.6 to 0.9 to see which threshold was more reli-
able. Feature matching using BF in two consecutive frames
is visualized as shown in Fig. 6. BF-based matcher is highly
accurate but requires high computation time. FLANN-based
matcher(Fast Library for Approximate Nearest Neighbors) is
another technique that finds matches by approximating the
nearest neighbours instead of computing them exactly. This
is optimized and quicker than BF for larger datasets [22] [23].
Therefore, for the sake of efficiency, this matching technique
was also attempted but the quantity of matches obtained were
significantly reduced and thus FLANN was not chosen over
BF.

Fig. 7: Estimated motion between sample consecutive frames

Another commonly used technique to improve efficiency
is to perform feature tracking instead of matching. Feature
tracking using Lucas-Kanade optical flow method was tried.
Features generated in a frame are searched for in the con-
secutive frame using search windows and a pyramid level
search approach. Features that are not successfully tracked
are dropped; new features are regenerated if the number of
retained features drops below a set limit. Again owing to
improper results (as discussed later), feature matching using
BF was the final chosen approach to find correspondences
between consecutive frames.

3) Relative Motion Estimation: From the obtained corre-
spondences or matches between the two consecutive frames
and the intrinsic parameters of the camera, 2D-to-2D camera
motion was estimated by computing the Essential matrix.
This step also incorporates additional outlier removals using
RANdom SAmple Consensus (RANSAC), as the filtered
matches might still contain outliers. RANSAC iteratively
selects random subsets of data and fits a model hypothe-
sis, identifying inliers that align with the model. Assuming
known intrinsics, the essential matrix encodes the epipolar



Fig. 8: Overview of the offline and the live processes for the monocular VO-based approach

geometry between two camera frames. This is further decom-
posed into the relative rotation (R) and translation (T) using
Singular Vector Decomposition(SVD) and chirality check,
resulting in relative pose between the consecutive frames
[24].

The estimated motion between features of two consecutive
frames is as depicted in Fig. 7. By accumulating this incre-
mental motion at each step, the trajectory followed by the
camera can be generated. Notably, this trajectory is not in
absolute scale i.e., real-world units. As the camera is rigidly
attached to the kart, the motion of the camera corresponds
to the motion of the kart. Resolving this scale issue using
any other additional information, trajectory in absolute scale
can be generated. By using the collected dataset, a reference
trajectory can be generated in this manner;during the live
run, a waypoint follower can be used to follow this trajectory
by estimating and accumulating the camera poses over time.
The overview of the offline and the live processes for the
monocular VO based approach with respect to the perception-
planning-control pipeline is as shown in Fig. 8.

4) Absolute world-scale estimation: Subsequently, for ob-
taining the absolute scale, we tried to apply a global lo-
calization method partly as in [11], wherein the authors try
to obtain the global pose using image retrieval method and
a mapping database of geo-tagged images.The purpose of
image retrieval is to fetch images similar to the query image
from the database. In order to reduce the computational cost
of this retrieval, it is necessary to have compact image repre-
sentations in the database. For creating this offline database,
the first essential step is to build a visual vocabulary from
the images. A complete set of approximately 14000 reference
dataset images was used for this purpose and their SIFT
feature descriptors were extracted. Using these descriptors
as input data, a k-means classifier was trained to partition
the descriptors into 64 clusters. The centres of these 64
clusters are representative feature descriptors and hence form
the visual vocabulary.

Secondly, a residual error was calculated between every
descriptor of the image assigned to the k-th cluster and the
center of that cluster. These residual errors were summed up,
giving a total residual error for each cluster. Computing this

(a) Query image (b) First closest match

(c) Second closest match (d) Third closest match

Fig. 9: Sample outputs of global localization module

for all the 64 clusters and stacking up, a 64× 128 matrix (as
the SIFT descriptor size is 128-dim) was obtained for each
image. This matrix was L2 normalized to obtain a Vector
of Locally Aggregated Descriptors(VLAD) matrix, which is
detailed in [25] and [26]. VLAD matrices of all the images
in the considered dataset was generated to form a mapped
database. During the live run, in order to fetch the best match
for a query image, a BallTree nearest neighbour algorithm
trained on this mapped database is used.

The image fetched with the lowest distance is chosen as the
best match. A sample query image of the Assen track, along
with its three closest matches retrieved via this method is as
shown in Fig. 9. Visibly, the retrieved matches are properly
indicative of the location despite the fact that majority part
of the image contained only the road surface, sky, and other
less distinctive information.

For tagging the location corresponding to the mapped
database images, in [11], a GPS is used in the offline process
and a 3D LiDAR is also used to obtain the 3D coordinates
of the features. Using this information and a particle filter,
the relative world position of the query image, with respect
to the retrieved three best matches can be obtained. In our
case, we tried to use a constant velocity assumption or to



Fig. 10: Steps involved in perception, planning and control modules of lane boundary detection based road following approach

(a) Input (b) After Canny & ROI

(c) After SHT (d) After Positional Filter

Fig. 11: Sample outputs at intermediate steps

tag the location using any other independent positioning
device. However, unfortunately, we could not succeed with
this step, owing to cancellation of some of the track days and
unforeseen practical hindrances during the test slots.

Furthermore, as only a couple of track days were pending
then, which would not be sufficient to do the testing and
to implement the following adaptations required for this
approach, this approach was dropped; an alternative lane
detection-based approach, was attempted to be implemented
in the remaining days to the challenge, which is detailed as
follows.

B. Lane Boundary Detection Based Approach

This approach builds on the detection of the lane bound-
aries, using the center camera images as the primary feed.
Based on this, the steering angle for lateral control is calcu-
lated.

1) Pre-Processing and Feature Extraction: Initially, as the
first step in perception, we tried to project the input images
using Inverse Perspective Mapping to correct for the perspec-
tive distortion [27]. However, in our case, the transformed
image did not contain meaningful lane information as the
road was very wide. The other option was to perceive using
the camera perspective view.

For line detection, grayscale conversion and Gaussian
blurring were typically carried out on the input feed to
reduce the computation costs and the noise resulting from low
camera height [2] [28]. Following this, lane boundary features
were detected using Canny edge detector, as it preserves
necessary structural information while removing unwanted

intense data. In the resulting image, geometric model fitting
Standard Hough Transform(SHT) was applied on a chosen
Region of Interest(ROI) to characterize the line segments
belonging to the road boundaries. The obtained detected lines
often included irrelevant lines or false positives as in Fig. 11c;
for removing these, a series of line filtering and refinement
steps were applied next.

2) Feature Filtering and Localization: Consequently, lines
that could be a potential left boundary but present in the
right half of the image and vice versa were removed, using
a positional filtering that checks the sign of the slope and
the image co-ordinates, as in Fig. 11d. This was based on
the analysis that unless the kart is off-track, at least one-
third portion of the left boundary falls in the left half of the
image and similarly for the right boundary. Filtering based on
the geometric properties like slope thresholding and intercept
thresholding was performed next. Different sample images
showing the impact of the above steps are shown in Fig. 12a
- Fig. 12d.

Subsequently, the obtained lines were classified into po-
tential left and right boundaries using the sign of the slope.
Owing to the camera’s perspective and the wide roads, to
avoid false detections of the close-by road edges and baseline
of tyre barrier walls, a clustering operation was then carried
out by selecting only the lines with a intercept value greater
than the mean intercept value on each side as in Fig. 12e.
Merging the resulting individual line segments together, their
end coordinates were averaged on each side to form the final
left and right lane boundaries. If no lines were present during
filtering process, next frame was grabbed and processed.

3) Lane Following: Next, in the planning module, steer
value was computed for the kart to run in the lane’s center.
This was calculated using the point of intersection of the
detected lane boundaries [13] [28]; this point of intersection
denotes the desired heading as shown in Fig. 12f, and is used
in the steer(ϕ) computation as given by:

θ = tan−1(
y1 − y2
x1 − x2

)− 90◦ (1)

ϕ =
θ

Smax

{
> 1 → right steer

< 1 → left steer
(2)

where (x1, y1) and (x2, y2) are the coordinates of the
image base centre point and the point of intersection of the
detected lane boundaries respectively; (θ) denotes the devi-
ation of the vehicle’s heading, Smax denotes the maximum
possible steer of the kart.



(a) After Positional Filter (b) After Slope Thresholding (c) After Intercept Thresholding

(d) After Intercept Thresholding (e) After Clustering (f) After Merge & Steer Calculation

Fig. 12: Sample outputs at intermediate steps (cont.) for two scenarios (First scenario - Row 1; Second scenario - Row 2)

Crucially, in cases where either the left or right boundary
was not present or not detected, we considered the extreme
column of the image in that particular side as the detected
boundary. Mostly such cases were encountered in wide turns,
where this manner of handling seemed to work. When both
boundaries remain undetected, after a few frames of reusing
the previous steer value, the kart comes to a halt. The steering
values obtained thus and the fixed throttle values are provided
to the actuators in the control module. With the intention to
avoid abrupt turns of the kart, we used a slower throttle value
during the turns.

(a) Perceived from center camera (b) Perceived from right camera

Fig. 13: Need for off-track avoidance

4) Off-Track Avoidance: Nevertheless, due to unforeseen
issues, the kart might run off-track. As seen in Fig. 13,
despite all the filtering, presence of curbs generates a critical
undesired steer at the boundary. Hence we introduce a
significant fail-safe ’off-track avoidance’ module using the
left and right feed. For this, the zig-zag and lane-edged
run images were analyzed to identify an optimal Region
of Search(RoS), each in the left and right feed, in which
boundary lines will appear only when the kart nears it. During
live runs, this RoS will be checked for presence of lines
and a steer calculation is proportionally derived based on
the closeness to the boundary. Line detection was performed
using the same steps as the center camera. As these two
cameras were downward facing and close to the boundary,
strong noiseless edges were detected thereby eliminating the

need for major filtering operations.

(a) From left camera (b) From right camera

Fig. 14: Sample outputs from off-track avoidance module

The point of intersection of this resulting final left or
right lane boundary line with the inner vertical boundary
of the RoS is found. As this point moves from the top to
the bottom of the vertical boundary, in case of left camera
feed, a positive steer value SRight (ranging from 0 to 1) is
proportionally devised to move the kart away from the left
boundary; similarly a negative steer SLeft is devised for the
right camera feed, demonstrated clearly as shown in Fig. 14.
If no left or right boundary line is detected, then SRight or
SLeft value is zero respectively. This module simultaneously
performs the check in both the cameras and outputs both
SLeft and SRight.

Combining this module along with the center camera
module in a uni-modal sensor fusion, this module’s outputs
receive the highest priority. In case of non-zero values of
either SLeft or SRight, it is directly given to the kart to
immediately steer it away from the boundary. If both SLeft

and SRight are zero, the steer from the center camera module
is passed to the kart. If both are non-zero, we considered the
SRight to be given to the kart, specifically because of the rare
false-positive scenarios that we faced due to the tire-markings
on the tarmac on one side of the lane.

V. RESULTS & DISCUSSION

The results of the offline processes performed for both the
VO and the lane boundary detection-based approaches are



(a) SIFT+BF

(b) Original track from google maps

Fig. 15: Comparison of reference trajectory generated using
SIFT+BF and the original track

discussed here in addition to the real-time performance of
the kart at the challenge.

A. Visual Odometry Based Approach

For this approach, the offline reference trajectory generated
utilizing SIFT+BF, for a distance ratio threshold of 0.7, is as
shown in Fig. 15a. Though this trajectory is scale ambiguous,
the shape retrieved exhibits similarity with the original track
as shown in Fig. 15b. However, it failed to achieve loop
closure with slight drifts over time; this is consistent with the
classic characteristic of VO process and is usually corrected
using batch corrective techniques such as bundle adjustment
[29]. For the sake of comparison, trajectories for half the
track were generated using SIFT+BF, ORB+BF, SIFT+KLT
(feature tracking) as shown in Fig. 16. ORB failed to perform,
even for varying thresholds. This is presumably because SIFT
features are generally detected across the entire image in a
scattered manner, whereas, ORB features tend to concentrate
more around corners, which is less applicable in our images
as ground plane dominates the scene; this also resonates with
the feature extraction step shown in Fig. 5a - Fig. 5b. In the
shown sample image, the number of initial features extracted
using ORB and SIFT were 499 and 903 respectively, and after
distance ratio thresholding, the number of obtained features
were 178 and 302 respectively.

In contrast to the ORB+BF method, SIFT+KLT method did
not completely fail, but rather showed a drift accumulated at
some parts of the trajectory. This is mainly due to build up

(a) Using SIFT+BF

(b) Using ORB+BF

(c) Using SIFT+KLT

Fig. 16: Comparison of reference trajectories generated for first half
of the racing track

of minor errors that occur while continuously re-estimating
the position of the features. This is more significant when
tracking is to be done for long sequences as in our case [30].

Thus, SIFT+BF performs better compared to using
ORB+BF and SIFT+KLT. While tuning the optimal distance
ratio threshold using SIFT, a lesser value of 0.5 or 0.6
filtered out too many features including inliers, resulting in
a improper trajectory. On the contrary, a high value of 0.9
retained too many outliers in the matches, which largely
remained even after applying RANSAC; this was again
indicated by the improper shape of the trajectory obtained.

B. Lane Boundary Detection Based Approach

For lane boundary detection based approach, the final
predicted steer results for some of the different scenarios are
shown in Fig. 17. Owing to very short development span,



(a) Both lane boundaries visible (b) Only left lane boundary visible (c) Only right lane boundary visble

Fig. 17: Sample steer outputs for different scenarios

testing was initially carried out fully offline by assuming the
possible problematic scenarios at different parts of the track.
Possibility of simulation was ruled out due to rendering issues
with the provided server and incorrect simulation map config-
uration. Real-time testing was performed directly at the pre-
qualification and finale events. During the pre-qualification,
in the initial runs, the kart drove autonomously but crossed
weak-edged lane boundaries at two places. Tweaking the line
detection parameters, the kart ran autonomously twice in the
following runs, traversing the entire length in approximately
15 minutes at an execution speed of 30 FPS. However, it was
exhibiting oscillating movements with left/right drags at some
places of the track, specifically, at the turns. Notably, the kart
also did not follow the path along the center of the lane in
some segments of the track. Another significant point is that
the off-track avoidance module seemed to work perfectly,
with the kart staying on the track. On places where the kart
neared the boundaries, a notable push was observed which
steered the kart inwards, away from the boundary, right in
time. Including such a fail-safe module is often overlooked by
many, which was also noteworthy during most other teams’
performance at the challenge.

At the finale slot, unfortunately, due to a malfunction, the
initial version of the program (before the tweaking of the line
detection parameters) had to be run, which made the kart to
cross the weak-edged lane boundary at the same place as
witnessed during the pre-qualification. As the slot duration
was only 15 minutes, this was the only run that the kart made.
Later the same day, when the malfunction was rectified and
the correct program versions were used, the kart managed
to run throughout the track twice autonomously in the first
two speed modes. The kart exhibited the same behaviour
as exhibited during the full autonomous runs performed at
the pre-qualification. Since these runs were made outside the
finale slot, our team won the second position.

VI. CONCLUSION

Overall, the VO based approach was unsuccessful because
it could not obtain localization in absolute world scale, as
no additional information could be employed; hence this
approach could not be utilized for the challenge. On the
other hand, the lane boundary detection based approach
was implemented and succeeded at the challenge, despite
the shorter development span. The kart managed to au-
tonomously run a distance of approximately 1 km with a

processing speed of 30 FPS. Still, no quantitative evaluation
or analysis could be carried out, except for observing the
kart’s behaviour during the run, as no data was recorded for
the sake of efficiency during the challenge. The reasoning
behind the kart’s observed oscillating behaviour could not
be figured out. The reason for the the kart to follow a
path which was deviated from the lane center could not
be identified. Whether it was the center camera or the left-
right pair that influenced the kart’s behaviour could not be
ascertained either, highlighting these as the shortcomings at
the challenge. Despite the shortcomings, the approach shows
potential to work. Similarly, if successfully implemented,
VO based approach can be a more generalized one. Thus,
the follow-up studies focus on overcoming the shortcomings
arising from both the approaches used at the challenge and
studying the autonomous behaviour in more detail.
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Study of Self-Driving Functionality: Lane
Boundary Detection-Based Implementation in

Small-Scale Karts
Raj Kumar Ashokan

Abstract—This paper presents the study carried out using
lane boundary detection-based self driving functionality in
small-scale karts using traditional approaches. This study was
carried out as a follow-up study addressing the shortcomings of
this approach implemented at the Self-Driving Challenge(SDC)
2023 edition. This implementation is adapted to be applicable to
challenges pertaining to outdoor small-scale kart environments.
A small-scale test kart set up is rebuilt including a simple CAN-
communication network as in conventional cars. A complete
vision-based autonomous pipeline is explored along with the
suitable lateral control approaches based on the detected lane
boundaries, for lane-center following. We also identify a sig-
nificant discrepancy in a commonly used steer approach that
claims to maintain the kart at the center of the lane. Unlike most
other related works, real-time testing of the kart on a running
track is demonstrated successfully under varying environmental
conditions. Comprehensive discussion and extensive evaluation
is done. Precision, Recall, and F1-scores of 0.97, 0.99 and 0.97
are achieved for the lane detection and a value of 1.395 pixels
is achieved as a newly adapted Mean-Average-Perpendicular-
Distance (MAPD) that indicate closeness to the ground truth.
A mean deviation as low as 2-3 cm from the lane center towards
the left is achieved throughout the runs. The algorithm achieves
processing speeds of 30 FPS during the real-time autonomous
runs. A supplementary video showcasing a demonstration of
autonomous driving using the implemented pipeline can be
found on https://tinyurl.com/5n7a9k3a

Index Terms—self driving challenge, autonomous cars, small-
scale karts, lane boundary detection, lateral control, steer
estimation, lane center-following

I. INTRODUCTION

Self-driving car technology has been making great strides
towards becoming a reality and has been changing day to day
lives in terms of road safety [1], ease in mobility, increased
travel comfort, reduced emission and pollution levels [2],
improved transport inter-connectivity etc. since its advent.
Vehicles are increasingly equipped with advanced sensors,
vision and control systems, providing them with autonomous
capabilities [3] [4]. It has become inevitable to further probe
into this field and research into the latest advancements in
order to expand the knowledge in smart mobility.

In line with this, the Netherlands Vehicle Authority (RDW)
has been organizing an annual competition, ’Self Driving
Challenge (SDC)’, since 2019. The RDW organizes this chal-
lenge with the futuristic goal of preparing itself for expanding
its knowledge about autonomous vehicles, especially cars,
and about the complex choices those vehicles make [5]. We
participated in the SDC 2023 edition as a part of the team
from the University of Twente. The main aim of this edition
was to build a software stack to autonomously drive a lap as

fast as possible at the specified track using an electric go-kart
that is provided by the RDW.

Fig. 1: Small-scale kart during an autonomous manoeuvre at the
UTrack

Autonomous racing on karts provides a valuable testing
field for algorithmic approaches related to autonomous driv-
ing. As this field is emerging and relatively new, a direct
transfer of autonomous racing software to the autonomous
passenger cars has not yet been accomplished [6]. However,
increasingly, more autonomous racing challenges are orga-
nized using karts, such as the EV Grand Prix Autonomous
Challenge [7] and Formula Student Driverless competitions
[8]; these challenges induce valuable research that can be
scaled up to passenger cars. Therefore, study of basic au-
tonomous functionality behaviour using karts and small-scale
karts can be a good starting point in the study of the same
in cars, aligning with the motive of the SDC [5].

A total of six teams participated in the edition and our team
secured the second prize. At the end of the challenge, our
developed code was able to provide autonomous functionality
to the provided go-kart but extensive testing was necessary in
order to evaluate its autonomous behaviour. As the challenge
was of a short stint, and as the kart was inaccessible after
the challenge, in order to study this further, a small-scale
kart, mimicking the basic functionalities of the SDC go-
kart, was re-built at our university and the autonomous func-
tionality was further developed, deployed and its behaviour
was studied. The approaches we used for participating in
the challenge is discussed in a separate preliminary paper
included in the first part of this Master’s thesis work. The
follow-up comprehensive study using the small-scale kart
was carried out as the second part of this Master’s thesis
work, which is primarily discussed in this paper. Overall,
the objective of this Master’s thesis work was to implement

https://tinyurl.com/5n7a9k3a


and study the behaviour of basic autonomous functionality
in cars using karts and small-scale karts. Fig. 1 shows the
small-scale kart during one of its autonomous manoeuvres.

Fig. 2: Basic autonomous driving pipeline

The pipeline for a vehicle to drive itself autonomously
from a point A to point B includes three major modules:
perception, planning and control as in Fig. 2. Perception is
the ability of a vehicle to perceive its surroundings and to
know its own position in the environment using the data
from its sensors. Planning is the process of generating the
best path for the vehicle to traverse and reach its destination,
based on the perceived environment taking into account the
dynamic capabilities of the vehicle, presence of obstacles etc.
Control is the process of converting the intended decisions
into actions by sending commands to the actuators to obtain
the desired movement [9].

In the SDC kart, cameras were meant to be the primary
sensor setup, limiting the scope to visual perception based
systems. Obstacle avoidance is also not considered in the
scope of this work. One of the challenging perception tasks
for an autonomous vehicle is estimating its current ego-pose
or localization [10] [11]. Visual-based localization systems
can be broadly based on traditional, learning or hybrid
approaches. The state-of-the-art learning-based or hybrid
approaches require a lot of data and processing power [6]
[12] for considerable performance. However, during the SDC,
owing to the limited processing capabilities of the kart, we
resorted to using only traditional approaches.

Considering traditional approaches, Visual Odometry
(VO), which is a process of estimating the translational
and rotational movements of the camera using images, is
often used for localization in autonomous vehicles [13] [14].
At the SDC, we attempted a monocular visual odometry-
based approach due to the lack of a stereo setup. Relative
localization was obtained using this approach but integrating
the absolute scale could not be successfully performed due
to lack of any other additional information. Therefore, in

the later part of the challenge, we adopted a lane boundary
detection-based road following approach, which is another
commonly used approach; we successfully utilized this ap-
proach at the SDC to make the kart autonomously drive a
distance of 1 km. However, the exhibited behaviours of the
kart could not be studied including significant oscillations of
the kart, unintended deviations from the center of the lane
etc., highlighting these as the shortcomings at the challenge.
Despite the shortcomings, this approach has potential to
work reliably. Thus, in the follow-up study, this approach
was adapted and used to study the autonomous functionality
behaviour, aligning with the primary aim of this work. More
details about the approaches used at the challenge, the results
obtained and the discussions of our work can be found in the
preliminary paper included in the first part of this Master’s
thesis work.

In order to serve as the test platform for the follow-
up study, re-build of a small-scale kart was carried out
incorporating the same basic functionalities as the SDC
kart. The small-scale or reduced scale vehicles are normally
derived from RC cars with modified additional hardware and
are developed mainly for the purpose of testing autonomous
software. They can be comparable to racing go-karts as they
reach high speeds and accelerations for their size [6]. The
autonomous functionality implementation was adapted con-
sidering the limitations of the small-scale kart environment.
Especially, the low-camera heights introduce more challenges
and the suitability of the techniques and the overall process
were investigated.

Nevertheless, the basic steps involved in the modules
remained the same. The perception module includes feature
extraction, detection of lane boundary markers, and lateral
localization relative to the lane markings. In the planning
module, steer angle is calculated in order to generate the
trajectory for lane following, i.e., for the kart to be positioned
at the center of the lane. The lateral control module executes
the movements, including error handling process, to maintain
the planned path.

Finally, extensive real-time tests and quantitative evalua-
tion were carried out to analyze the behaviour. Understanding
of the behaviour of the runs carried out at the SDC challenge
was a secondary outcome of this study. A methodological
flaw was also identified in an existing steer computation
technique that claims to keep the vehicle in the center of
the lane, adding to the novel contributions of this study.

Therefore, this research and analysis revolves around the
implementation of vision-only-based lane boundary detection
and lateral control in small-scale karts, especially relevant
to low camera heights and for positioning the kart at the
center of the lane. Building on the adaptations from the SDC
implementation, we primarily focus on the following research
questions:

1) How can existing lane boundary detection algorithms
be optimized for use with small-scale karts?

2) How can lateral control be applied using the detected
lane boundaries for directing a small-scale kart’s move-
ment?



3) How can the derived steering angle be quantitatively
evaluated?

4) Can utilizing the input feed from multi-cameras impact
the behaviour of the autonomous functionality?

The remainder of this work is organized as follows:
Section II reviews the related literature with a focus on
the research questions. Section III outlines the re-build of
the small-scale kart. Section IV provides an overview of
the data collection process. Section V describes in detail
the methods applied in this study. Section VI presents the
achieved results and discusses the findings. Section VII
summarizes the findings of the study and concludes the work
with scope for future enhancements.

II. RELATED WORKS

Relevant to the RQs, we have summarized our findings
of the reviewed work in three categories: vision-based lane
boundary detection, steer calculation methods based on the
detected boundaries to keep the kart in the lane center, and
evaluation of the generated real-time steer values. Fewer
works specifically focus on small-scale karts and go-karts;
therefore, our search is confined not only to karts but also
includes cars, as both are comparable to an extent. Further-
more, the discussions here are limited to classical approaches
and do not include learning based approaches.

Work by Uma et al [2] employs a Euclidean distance
and trigonometry-based approach for boundary detection
and steer computation. Alternatively, in cases of non-linear,
uneven contrast, and irregularly intense input data it uses
SHT-based and lane-midpoint-based methods respectively.
The work claims to achieve successful testing in collected
real-time day and night video samples including cases of
shadow and irregular contrast, but no real time testing is
shown. For evaluation, it mentions visual analysis, but misses
to discuss any validation criteria or quantitative evaluation.

Dev et al [15] utilize a series of pre-processing steps
followed by Canny edge detection and SHT for lane boundary
detection. Steer value is computed based on the vanishing
point. They claim that their work performs well in terms
of accuracy, computation time, and fault detections, but
utilize only visual evaluation based on collected real-time day
and night video samples, without mentioning any validation
criteria or metrics.

Kittithuch et al [16] use a small indoor RPi robot and
explore a similar boundary detection approach as [2] [15].
However, they compute an initial reference of the slope and
angles of the lane boundaries; then they detect only either
boundary to compare its parameters with this reference to
calculate the steer. On a indoor test setup, navigation of
the kart within the lane is reported, although with a lateral
swinging behaviour. Lane boundary or steer evaluations are
not shown but the kart’s traversing behaviour is plotted along
with the offset.

In the work by Ranjith et al [12], Gaussian Mixture
Model and Expectation Maximization algorithm is used to
extract the lane boundaries followed by a vanishing point
based steer computation. Simulation testing is performed

and steering evaluation is carried out on the Udacity dataset
resulting in a high RMSE. Again, no real-time testing is
shown on hardware. Mahersatillah et al [17] also propose
a segmentation based boundary detection to check the offset
of the car from the lane’s center, only to produce a lane
departure warning but not a corrective steering; it also works
on the assumption that the car can maintain its position
around the center.

Karouach and Ivanov [18] present their work on lane
detection and lane following by adapting a miniature indoor
car for the Carlo Cup competition. Their improved algorithm
focuses on the lane detection part using contours and utilizes
the vanishing point to keep the 1:10 car within the lane.
However their algorithm was tested under controlled settings
of the competition and not under outdoor or different settings.

Khanh et al [19] explore autonomous navigation in small
and narrow indoor environments using a robot prototype. The
conventional approach used in their work utilizes only the
near field regions necessary for the lane detection and applies
Inverse Perspective Mapping for easier processing. The work
then employs Canny edge detection and SHT for boundary
detection and uses linear average of the detected lines for
steer computation. Testing is carried out on a 2m indoor setup
with controlled lighting conditions, and also on a Udacity
dataset of bright sunny images in outdoor environments. Steer
evaluation using MAE and R-squared and computation time
is also discussed.

In the work by Mohamed et al [20], again the standard
edge detection and SHT techniques are applied, using Inverse
Perspective Mapping. They consider the lateral and the yaw
error for computing the steer angle and minimize both
individually using implementation of controllers respectively.
However, they do not perform any real-time testing and rather
work with simulation images, for which statistical analysis of
steer value and lateral offset is presented. In Jose et al [21],
similarly, Inverse Perspective Mapping view is used. They
use histogram distribution of white areas followed by point
grouping for lane detection and then fitting of polynomial
regression for lane boundary detection, and steer is computed
using road curvature. They perform indoor tests and present
the RMSE and MAE for line detection.

Summing up, though more works are focused on the lane
boundary detection, the relevancy to outdoor small-scale karts
is limited; even the fewer works that are relevant are explored
in controlled optimal conditions with less noise. Therefore,
the suitability to outdoor noisy environments as in our case is
to be investigated. Concerning steer computation, excluding
IPM techniques, four of the works claim to maintain the kart
running in the lane center. These rely on vanishing point and
intercept-angle relationship techniques. We utilize these two
and investigate the suitability. Moving on to real-time testing
and evaluation, this seems to be the least addressed topic.
Most of the works state only visual evaluation of the lane
boundary detection, derived steer, and performance of the
run but fail to discuss any evaluation criteria or quantitative
analysis.

Testing is mostly carried out using collected data or sim-



Fig. 3: Rebuilt small-scale kart

Fig. 4: Block diagram of the communication network of the kart

ulation dataset or on indoor (miniature) set ups. This cannot
effectively translate to real world testing as the real-world
environment is complex and deals with differing conditions,
unforeseen scenarios, hardware compatibility issues, and
performance constraints. Therefore, we focus on real-world
testing using a rebuilt small-scale kart along with quantitative
evaluation of the detected lane boundaries, computed steer
and its reliability.

III. RE-BUILD OF SMALL-SCALE KART

We considered a 1:8 scale RC HIMOTO kart for the rebuild
framework. For better control, the original brushless DC
motor was replaced with a new one to reduce the speed from
80 km/hr to approximately 23 km/hr. Servo motor for steering
and electronic speed control for braking is used. A Four-
Wheel-Drive (4WD) mechanism drives the kart. Separated
power supplies for the motors and the computing unit were
used. Intel i5 Processor 16GB RAM was chosen, which is
the same as the one used in the SDC kart. Unlike the RDW
kart, here, only a single ECU controls both the throttle ESC

Fig. 5: UTrack with four segments used for autonomous driving

and the steer servo. A CAN based communication network
was built connecting the computing unit and the ECU(s) via



Fig. 6: Perception module with focus on pre-processing and feature extraction steps illustrated using sample outputs

CAN bus trans-receiver interfaces, enabling the units to both
listen for inputs from and to send feedback on the CAN bus.
The kart was made controllable by using either RC mode
(2.4GHz) or program control mode (either autonomous or
keyboard commands). Programs on the computing unit are
executed by a ground station (typically a laptop or a mobile
device) connected via a mobile hotspot network. Notably, an
emergency stop mechanism that can be activated by using
a RC channel was also incorporated in the communication
network, considering safety aspects.

The algorithm that is programmed in the ECU decodes
and filters the received CAN messages based on the message
identifiers and data payloads, to execute a specific task
(including any of the above functionalities). The chassis was
remodeled with newly designed suspension plates to increase
load capacity and to accommodate two platforms, one for the
power supply and the communication circuit and the other
for the cameras and the computing unit. Initially left, center,
right cameras were mounted directly on the top platform.
However, this resulted in image instabilities due to lack of
rigidity. Hence, an encapsulation setup was designed to house
the cameras and this setup was attached to the platform with
the center of the camera at a height of 19 cm from the ground.
The final rebuilt kart and the block diagram of the entire
communication circuit which was built incorporating all these
mechanisms are as shown in Fig. 3 and Fig. 4 respectively.

IV. DATA COLLECTION

The UTrack athletic track, at the University of Twente,
consisting of multiple lanes of width 120cm and length 400m
was chosen as the test field. As wide as a normal road
is for a full-sized kart, similarly proportioned is each lane
of the UTrack for our small-scale kart with low camera
height. The track is in the form of a loop with two straight
segments(S1,S3) and two semicircle segments(S2,S4), as
shown in Fig. 5. Data collection was performed at this track
in real-time by running the kart manually using RC and
keyboard command modes in both clockwise (S1,S4,S3,S2)
and anticlockwise (S1,S2,S3,S4) directions. Images were
captured at a resolution of 848x480 in different natural light-
ing conditions and seasons. Additionally, data was recorded
on both the asphalt and synthetic lanes (red-colored lanes) of
the UTrack, and also by driving the kart in opposite directions
and zig-zag manoeuvres and in varying speed modes. Similar

to the SDC kart, CSV files containing throttle and steer
data were additionally recorded using the concept of multi-
threading.

V. METHODOLOGIES

Aligning with our primary aim of evaluating the basic au-
tonomous functionality that was implemented already during
the SDC, re-usability of the code is primarily considered here,
maintaining the basic pipeline. Only the adaptations that were
made to the code for it to work on the small-scale kart are
discussed here.

1) Pre-Processing and Feature Extraction: In the per-
ception module, in order to accommodate for the changes
in the vision system arrangement and the road dimensions,
tuning all the parameters in the lane detection step was at-
tempted by utilizing the center camera data subsets. However,
issues like sun glare, shadow effects, noisy textures, and
weak edges were encountered. These were not mostly faced
during the challenge due to the favourable conditions that
comes along with racetrack environments, such as absence
of trees or shadows and the comparatively higher placement
of cameras. Consequently, a series of pre-processing steps
were necessary after initial grayscale conversion. The applied
steps are as shown in the block diagram in Fig. 6. Contrast
Limited Adaptive Histogram Equalization (CLAHE), which
is a technique that enhances image contrast by applying
histogram equalization to small regions while limiting noise
amplification, was used to mitigate the shadow and sun glare
effects. This was followed by Gaussian blur to reduce noise
and then a dilation operation to strengthen the weak edges.
After these pre-processing steps, the feature extraction steps
(Canny edge detector, Region of Interest selection, Standard
Hough Transforn) were performed to extract the possible
lines.

2) Feature Filtering and Localization: The same set of
line filtering and refinement steps as used in the SDC
implementation were applied next with the following modi-
fications. Preponing the process of classifying the potential
lines into left and right line categories based on the sign of the
slope was performed; this simplifies the process and helps in
choosing better and robust threshold parameters. Positional
filtering was applied next followed by slope and intercept
thresholding. An important issue encountered in these steps
in the SDC implementation was that narrow threshold ranges



Fig. 7: Perception module with focus on filtering steps

(a) After SHT (b) After Positional Filter (c) After Slope Thresholding

(d) After Intercept Thresholding (e) After Clustering (f) After Merge & Steer Calculation

Fig. 8: Sample outputs at intermediate steps (cont. from Fig. 6)

could not be chosen for these values; narrow ranges resulted
in valid lines being filtered out in the images belonging to
different parts of the track as the track width varied. On the
other hand, having a broader range resulted in irrelevant lines
still being present in the image.

In order to resolve this, we performed an iterative threshold
refinement process. For this, we start with a narrow range of
threshold that suits major parts of the track and try applying
this for the remaining parts of the track. If no lines are
detected, the range is slowly increased until a maximum
value, to check for lines. If no lines are still found, the
frame is dropped and the algorithm grabs the next image.
Whereas, if lines are found, intercept thresholding is tuned
next, using the same iterative refinement method, until a
maximum value, after which the frame is dropped and the

entire process re-begins by fetching the next frame. The rest
of the steps to result in the final boundary lines remained the
same. The overview of the perception module with a focus
on the filtering steps is as shown in Fig. 7.

3) Lane Following: Next, in the planning module, the
steer computation was the same as used in the SDC imple-
mentation, intended to keep the kart at the center. However,
owing to results analyzed during the real-time tests (as
discussed later in the Results section), we decided that this
is not the appropriate method for the intended purpose.
Subsequently, we opted for a different method based on
adaptations to the work in [2]. The ratio of the y-intercepts
of the obtained lines is considered for this purpose. As can
be seen in the image in Fig. 9, yleft and yright denote the
intercept values of the obtained lines with the y-axis; xleft



Fig. 9: Notations used for steer angle calculation. Here, yleft,
yright, xleft, xright are intercept values the lane boundary lines
make with image x and y axis, and θ1, θ2 denotes the deviations of
the boundary lines from the positions corresponding to the center
of lane

and xright are pixel distances equalling half the image width.
These values are computed and based on that, the angles θ1
and θ2 representing the deviations of the boundary lines, from
the ideal positions corresponding to the center of the lane,
are obtained. The steer value (ϕ) is thus calculated as:

ϕ =


θ2 − θ1
Smax

, when both lane boundaries are detected

θ1 − θ2
Smax

, when only one lane boundary is detected

(1)

The steer directions based on the possible θ1 and θ2 values
are represented in Table I.

Theta
Values
(θ)

Steer Direction

When both
lane

boundaries
visible

ϕ = θ2 − θ1

When only right
lane boundary

visible (θ1 = 0)
ϕ = θ1 − θ2

When only left
lane boundary

visible (θ2 = 0)
ϕ = θ1 − θ2

θ1 > θ2 Left Left Right

θ1 < θ2 Right Left Right

θ1 = θ2 No Steer No Steer No Steer

TABLE I: Steer directions based on θ1 and θ2 values

4) Off-Track Avoidance: Off-track avoidance module uti-
lizing the left and right camera images (as designed in the
SDC implementation) is incorporated here with adaptations.
For both the left and right camera feed, the Region of Search
(RoS) was redefined after analyses. The parameters for the
line detection steps were tuned. Using these tuned param-
eters, line detection was performed. After this, no further
filtering steps were necessary in the SDC implementation.
On the contrary, here, owing to the very close proximity
of the cameras to the road, more noise was included; this
necessitated the use of line filtering steps to obtain the final
detected line. The flow of the processes in the off-track
avoidance module is as shown in Fig. 10. For the proportional
computation of the steer value, as can be seen in Fig. 11,
this detected line’s x-intercept with the image was considered

Fig. 10: Off-track avoidance module utilizing left camera

rather than considering the intersection of the line with the
RoS boundary. This increases stability.

(a) From left camera

(b) From right camera

Fig. 11: Sample outputs from off-track avoidance module

The concept of uni-modal fusion is also followed here,
combining the off-track avoidance in the decision-making
module. The overview of this module is as shown in Fig. 12.
Consequently, the final steer values are passed as control
commands via the CAN network to the actuators.



Fig. 12: Decision-making module involving uni-modal fusion

A. Evaluation Metrics

In line with the research motive, evaluation and metrics
are discussed for the detected lane boundaries, the derived
steer values and the kart’s behaviour in real-time.

1) Lane boundaries: The detected lines are initially eval-
uated by assessing the closeness to the ground truth. The
ground truth and detected lines can be non-parallel, non-
overlapping and of different lengths. Because of this, stan-
dard metrics like MAE, MSE and RMSE are not directly
applicable. Therefore, we use a new metric, ’Mean Absolute
Perpendicular Distance (MAPD)’, by adapting the standard
MAE to the context of lane detection. If Ax+By + C and
Mp+Nq+O represents the ground truth (G) and the detected
(D) line equations respectively, then:

MAPDG→D =
1

2a

a∑
k=1

∑
i=1,2

|Mkxk,i +Nkyk,i +O|√
M2

k +N2
k

(2)

MAPDD→G =
1

2a

a∑
l=1

∑
j=1,2

|Alpl,j +Blql,j + C|√
A2

l +B2
l

(3)

MAPD =
MAPDG→D +MAPDD→G

2
(4)

where (xi,yi) and (pj ,qj) denote the end point coordinates
of the ground truth and the detected line, a is the number
of images considered. Computing for both G → D and
D → G ensures robustness against asymmetries. Based on
the MAPD values that are separately calculated for the left
and right lines, a threshold based criteria classifies the lines
into a true or a false detection. We use a confusion matrix
to sum this up for all the images, providing a comprehensive
view which can be useful to pinpoint specific type of errors.

2) Derived steering angle: The steer values recorded from
manual driving cannot be considered as the ideal ground
truth values to follow a known path, as manual driving
is prone to errors and imperfections, and the control can
vary widely depending on the driver. Rather, an appropriate
way is to create a model of the vehicle and to define its
motion. A vehicle can be modeled using either kinematic
or dynamic modelling. We consider the kinematic bicycle
model that is typically used in low-speed scenarios. This

Fig. 13: Front axle kinematic bicycle model [22]. Here ICR is
instantaneous center of rotation, R is radius of curvature, L is length
of kart (between wheel centers), θ is heading angle, δ is desired steer
and (xf , yf ) is reference point taken at the front axle center

model is a simplified representation of a vehicle’s motion
that approximates the vehicle with a single front and rear
wheel per axle and focuses on the geometric aspects [23],
as shown in Fig. 13. Here ICR is instantaneous center of
rotation, R is radius of curvature, L is length of kart (between
wheel centers), θ is heading angle, δ is desired steer and the
reference point is taken at the front axle center. The ideal
steer value can thus be computed as:

δ = sin−1(
L

R
) (5)

Fig. 14: Notations used for calculating the deviation of the kart

3) Behaviour of the kart: In order to analyze how well
the kart maintains itself at the center of the lane during the
run, the offset of the kart from the center of the lane needs to
be evaluated. For this we utilize the detected lane boundaries



in the image. As can be seen in the Fig. 14, we compute the
lane width in pixels and the center of the lane in pixels and
utilize these to calculate the deviation in centimetres as given
in the below set of equations:

lane center x =
x interleft + x interright

2
(6)

lane width px = |x interleft|+ |x interright| (7)

px cm convert =
lane width cm

lane width px
(8)

deviation px = kart position x− lane center x (9)

where kart position x is the bottom center of the image
and denotes the current position of the car.

deviation cm = deviation px× px cm convert (10)

The mean deviation in centimeters for an entire run can
be given by:

MAEdeviation =
1

n

n∑
i=1

|yi − yi| (11)

where yi is the ideal deviation/offset, yi is the actual
deviation/offset from the center of the lane and n is the
number of images considered.

VI. RESULTS AND DISCUSSIONS

The outcome of the real-time tests at the UTrack are dis-
cussed here initially using the first steer method followed by
the new one. Using the first method, while excluding the off-
track avoidance module, the kart ran straight autonomously
in the straight segments but exhibited a strong oscillating
behaviour around a boundary, throughout the turns, exiting
and entering back the lane repeatedly. Such behaviour was
observed in both the semi-circle segments, in all the runs.
When including the off-track module, the same behaviour
was observed except that the oscillations stayed within the
lane space and the kart didn’t cross the boundaries, proving
the impact of the off-track module. On analyzing, this pattern
was attributed to the following reasons:

i) Primarily, we found that this steer approach is capable
of handling only the heading angle error and not the cross-
track (lateral) error as can be seen in Fig. 15. This enabled a
continuous excessive unidirectional steer in the direction of
the turn making the kart go out of the lane.

ii) Mismatch between the periodic CAN sending speed and
the algorithm processing speed resulting in delayed messages
or unintentional repeat of steer values.

iii) As the kart exited the lane, making only one boundary
visible, the extreme column of the image considered in place
of the missing boundary made the kart to enter back into the
lane.

As both the heading and lateral errors need to be addressed
for the kart to be at the center of the lane, we inferred that
this steer approach is not suitable for the purpose, even in
straight segments; in these segments, the runs performed with
near-edge start positions showed that the kart maintained the
same straight offset, though without wobbling, proving our
inference. To address both the heading and lateral errors,
this steer method was replaced by a different one as in
Eq. 1. Additionally, tuning of CAN sending speed as close
as possible to the processing speed was performed.

On testing this new method with and without the off-track
module, the kart was observed to run autonomously at the
lane center throughout the track, forming a complete loop,
without any oscillating behaviour. The same was achieved in
multiple lanes, in both directions and with different starting
positions and locations. Hence the off-track module was not
seemingly utilized as the center camera did not fail in any
of the places.

Old method New method

Fig. 15: Output comparison between different steer approach in
S1(first row) and S2(second row) segments of the track

TABLE II: Confusion Matrix - Lane Detection

Predicted Positive Predicted Negative

Actual Positive 476 4

Actual Negative 10 470

1) Lane boundaries: In terms of evaluation, for lane
boundary detection, the resulting confusion matrix is as
shown in Table II. For calculating this confusion matrix, a
dataset of 960 images was considered. This included images
collected from both manual and autonomous driving. Since
this evaluation was intended to assess only the lane boundary
detection and not the autonomous driving, we considered
images collected from manual driving as well, in order
to include images from inconsistent driving scenarios. In
addition to this, the dataset also contained images from
clockwise and anticlockwise drives, so as to incorporate both
left and right turns. The images spanned different lighting
conditions taken at different times of the day and seasons,
making the dataset diverse.



Out of the 960, the dataset included 480 images where both
the boundary lines were present (with ground truth label as
”Lines Present”) and 480 images where both the boundary
lines were absent (with ground truth label as ”Lines Not
Present”). An image selection script was used to choose the
images in a distributed manner for the evaluation dataset. This
ensures a balanced dataset and forbids bias. The images were
selected from the runs that fall under the operating domain
conditions of the implemented autonomous functionality i.e.,
the scenarios that the algorithm was not designed to handle
were not included.

Fig. 16: Sample outputs showing false negatives (FN) represented
as yellow lines

Fig. 17: Sample outputs showing false positives (FP) represented
as yellow and red lines

For classifying a detected line in an image into a True
Positive (TP) or a False Negative (FN), a pre-defined range
of MAPD values was set as the threshold range. Detected
lines that also have an MAPD value within this range would
be considered a TP, whereas, a detected line with a MAPD
value outside this range would be still considered a FN. A
line is classified as False Positive (FP) when it is actually
not present in the image but is detected by the algorithm.
Accordingly, an image was classified as TP when both the
detected lines were correctly classified under the TP category,

and an image with no lines was classified as True Negative
(TN) when no lines were detected in the image. An image
was categorized as FP when either or both the lines was
classified as FP and similarly for a FN category. Sample
image outputs showcasing scenarios of lines classified as FP
and FN are as shown in Fig. 16 and Fig. 17. The images
in the entire dataset were classified accordingly resulting in
the shown confusion matrix. The metrics Precision, Recall,
and F1-score were computed from the confusion matrix. In
our context, Precision gives the proportion of the correctly
identified lane lines among all the detected lines and this
is important to reduce the False Positives that occur, as it
may lead to sudden unintended steer values in the wrong
direction. On the other hand, Recall gives the proportion of
the actual lines that were correctly identified. This is crucial
in avoiding False Negatives. F1-score considers a harmonic
mean of Precision and Recall to provide a balanced measure
when both the FPs and FNs need to be minimized. Precision,
Recall and F1-score were computed to be 0.97, 0.99 and 0.97
respectively on the chosen balanced dataset. This indicates
that the algorithm is good at reducing ”False” scenarios
increasing the reliability of lane line detections.

(a) Low light (b) Other lane markers

(c) Rainy days (d) Synthetic lane

(e) Sun glare & road reflection (f) Tree shadow & weak left lane bound-
ary

Fig. 18: Sample outputs for other challenging scenarios

In the images categorized as True Positive, MAPD was
computed for the left and the right lane lines separately.
In our considered evaluation dataset, for the left lines, the
MAPDleft was obtained as 1.450 pixels with a variance of
0.779 and a standard deviation of 0.853 pixels; this indicates
the closeness of the detected left lines to the ground truth
in the entire dataset. Similarly, for the right lane lines, the
obtained MAPDright value was 1.340 pixels with a variance
of 0.588 and standard deviation of 0.745 pixels. This resulted



(a) (b)

Row 1: Autonomous run - Anticlockwise direction

(c) (d)

Row 2: Autonomous run - Clockwise direction

(e) (f)

Row 3: Manual run - Anticlockwise direction

Fig. 19: Left column: Comparison between ideal steer values and derived steer values; Right column: Comparison between ideal deviations
and actual deviations

in an average MAPD value of 1.395 pixels.

As shown in Fig. 18 runs were also performed in different
scenarios. As can be seen, the problems of sun glare, road
refection, shadows, different colored lanes, and weak lane
boundaries were also mitigated. In addition to these, though
not intended to specifically address different weather con-
ditions, low lighting, and presence of other lane markers,
the algorithm seemed to handle them to a certain extent,
indicating the robustness of the implemented system.

2) Derived steering angle: For evaluating the obtained
derived steer values, two autonomous runs made in clock-
wise direction and anticlockwise direction of the track were
considered. To facilitate comparison with manual driving, a
manual run was also considered. These runs were made in a
synthetic lane (red-coloured) of known radius, of curvature,
and of known length, and having the mid of the S1 segment
as the start and the end point. The steer values were recorded
in all the three runs. Substituting the known dimensions of



the track and of the kart in Eq. 5, the ideal steer values
corresponding to the synthetic lane were computed as zero for
the straight segments (S1, S3), -0.0092 for the left turns (S2,
S4), and for +0.0092 for the right turns (S4,S2). This ideal
steer values were plotted against the recorded derived steer
values of the three runs as shown in Fig. 19a, Fig. 19c and
Fig. 19e. The rolling mean in the plots are approximations
of the derived steer values for understanding the pattern of
the curves.

First considering the anticlockwise run vs the ideal values,
for S1, the ideal steer is zero; whereas, the derived steer
values revolve around 0.05. On analysing, there is a consid-
erable misalignment in the kart’s front wheels which drags
the kart towards the left side. Additionally, the track has a
inward slant as it is an athletic running track. Given these two
factors combined, the kart kept significantly moving to the
left, and in turn, the algorithm kept producing a right steer to
maintain the kart in the center of the lane. This is the constant
positive steer observed in the plot for the first segment (half
of the S1). Then the steer revolves around ’zero’ during the
S2 segment. Though this is a left turn segment, given the
natural drag of the kart and the inward slant, it was already
moving left, hence the algorithm produced minimal left steer.
The same pattern repeats in the next straight and the left turn
segments S3 and S4 followed by the remaining half of the
S1 segment.

In the second plot of the clockwise vs the ideal values, the
pattern is the opposite. In the initial half of the S1 segment,
the natural left drag of the kart was partly compensated by
the inward slant of the lane. For the remaining drag, the
algorithm kept on producing a slight right steer around 0.01
as can be seen. This is lesser than what was required for
the S1 segment of the anticlockwise run. Whereas in the
right turn segment S4, the kart was pulling leftwards but the
algorithm needed to give right steer to take a right turn in
addition to the compensation. Hence a comparatively larger
positive steer is seen throughout that segment. After that,
again in the following straight and right turn segments S3
and S2 and the remaining half of S1, the pattern repeats.

Additionally, the kart has an independent suspension sys-
tem due to which vertical vibrations occur, causing in turn
slight vertical vibrations and asymmetric rotations of the
camera. Due to this, oscillations keep occurring in the derived
steer values as can also be seen in Fig. 19a and Fig. 19c.
Simultaneous recording of the data during the autonomous
runs is also an important cause for these oscillations as
it reduces the responsiveness of the control system. The
red dots in the Fig. 19a and Fig. 19c indicate the samples
corresponding to the False Negatives discussed as in Fig. 16.

The third plot of the manual drive vs the ideal values is
similar to the pattern in the first plot, as the manual drive was
run in the anticlockwise direction. However, the magnitude
of the steer values is comparatively larger and irregular than
that of the autonomous run. Steer values of alternating left
and right are seen to occur very often, typically indicative of
a manual drive.

3) Behaviour of the kart: The same three runs considered
for the derived steer evaluation were considered to evaluate
the behaviour of the kart during the autonomous test runs.
Primarily, the kart ran autonomously throughout the track
but the deviation of the kart from the center of the lane
needed to be analyzed to check how effective the steer
computation technique is in maintaining the kart at the lane
center. This was computed using Eq. 9 for the three runs and
are plotted against the ideal deviation as in Fig. 19b, Fig. 19d
and Fig. 19f. The plots represent the actual deviation in
centimeters from the lane center and hence the ideal deviation
is always zero in our case. The rolling mean of the actual
deviations represent the approximation of the values.

Comparing the mean deviations for the anticlockwise and
the clockwise runs in the Fig. 19b and Fig. 19d respectively,
the mean deviation for the clockwise run is slightly lesser
than that of the anticlockwise. This is because in the anti-
clockwise run, both the kart wheel misalignment drag and
the inward slant deviates the kart continuously away from
the center towards the left; whereas in the clockwise run, the
misalignment drag and the inward slant partly compensates
each other and hence the actual deviation is comparatively
less. However, comparing the manual run in Fig. 19f with
Fig. 19b and Fig. 19d, the deviations in the manual run is
significantly higher compared to both the autonomous runs.
These inferences are also evident from the MAE deviation
values computed using Eq. 11 for the three runs. For the anti-
clockwise run, it was 3.216 cm, for the clockwise run, it was
2.370 cm; whereas, for the manual run the MAE deviation
was calculated as 5.944cm. During the autonomous runs, this
deviation was not visible; however, during the manual runs,
the deviations were evidently visible.

4) Performance of the kart: Multiple test runs were
performed to check the repeatability of the autonomous
behaviour. In all the runs, the kart demonstrated the same
autonomous capability driving at the center of the lane with
minimal deviations, indicating the reliability of the system
both qualitatively and quantitatively. The kart did not run off-
track in any of the scenarios that the algorithm is designed
to handle. In cases of extremely low lighting conditions and
sharp shadows, failures were noted; however, the algorithm
is not intended to handle these. The algorithm comfortably
operated at 30Hz in all the runs, because of the utilized multi-
threading, helping to mitigate erroneous steer generation. The
kart demonstrated autonomous driving at varying velocities,
still exhibiting the same behaviour.

A notable point of improvement in the algorithm that
can improve the performance is the manner in which the
algorithm handles a missing lane boundary. For a fixed
height of the cameras and a given width of the lane, the
sum of θ1 and θ2 as seen in the Fig. 9 would remain a
constant. Utilizing this, even if only either of the boundaries
is detected, a steer value can be estimated. Another way of
handling missing boundaries is to utilize a Kalman filter to
predict estimates. However, due to time constraints, neither
could be implemented in the algorithm and rather the same
way of handling as in the SDC implementation was used.



5) Relevance to the RQs: Relevant to the first RQ of this
study, the processes and the adaptations implemented in the
lane detection techniques showed suitability to the small-
scale karts, though this required iterative tuning to make it
more generalized. This is a classic disadvantage of traditional
real-time approaches.

Considering the second RQ, a steer computation technique
as in [12] [15] was used at the SDC and during the initial
phases of this follow-up study. The mentioned works claim
to maintain the kart at the center of the lane and this
technique is used in many literature works. However, real-
time demonstration of this technique on a kart or a vehicle
is not shown yet. Meanwhile, our study showed that this
technique handles only the heading angle error and does
not address the cross-track or the lateral error; hence, this
technique is not suitable to keep the kart at the center of
the lane, contrary to what is claimed. This is an important
finding previously not discussed in any of the works that use
this technique. This also explains the reason why the kart
exhibited oscillating behaviour from the lane center during
the SDC challenge, as mentioned in the Results section of
the preliminary paper. Therefore, another steer approach as
in [2] was adapted and used in our study, which made the
kart run in the center of the lane. Even when the kart was
placed near either of the boundaries as the start position, the
technique was capable of steering the kart to the center of
the lane, implying that both the heading and the cross-track
errors were handled.

Addressing the third RQ, extensive evaluation was per-
formed for each module of the pipeline which helped relate
to the exhibited behaviour of the kart. Proper quantitative
evaluation is a gap in the related works, as identified during
the literature review. Regarding the fourth RQ, combining the
input from multiple cameras was very helpful to augment in
case of failures. Though it was used less during this study
after the adaptation of the new steer computation technique,
this can act as a fail-safe method to keep the kart inside the
lane as all the three cameras cannot fail at the same time
unless there is a hardware failure or physical occlusions. We
also reason that because of this module, the kart managed to
stay within the lane during the SDC, despite the deviations
from the lane center, implying the significance of this module.

VII. CONCLUSION

The results presented and elaborated in this follow-up
study show that the overall implemented pipeline using tra-
ditional lane boundary detection-based approaches is capable
of autonomous driving using lane center-following in various
driving environments of a small-scale kart. For this purpose,
a small-scale kart was successfully adapted and used as the
test platform, incorporating a CAN-based communication
network and other basic functionalities as the SDC kart.
To our knowledge, in no other similar works comprising
small scale karts, a communication network similar to that
in conventional cars is built or used. Suitability of the pure
vision based techniques were investigated and the research
questions were answered using this kart. Importantly, a steer

computation technique based on the detected lane boundaries,
as in a previous work, was identified to be not suitable to
maintain the karts in the center of the lane, in contrast to what
the work claims. The reason behind the lack of suitability was
also identified with experimentation. and this also enabled un-
derstanding the reason behind the kart’s behaviour during the
SDC run. Alternative suitable techniques were also identified,
adapted and used to maintain the kart running at the center
of the lane. An execution speed of 30 FPS was achieved in
real-time tests utilizing multi-threading. Proper quantitative
methods for evaluation were identified for each module and
the outputs were evaluated using the same. The implemented
lane detection techniques achieved Precision, Recall and F1-
scores of 0.97, 0.99 and 0.97 respectively, and a value of
1.395 pixels for a newly adapted metric, Mean Average
Perpendicular Distance (MAPD), denoting high detection
capabilities and closeness of the detections to the ground
truth. The derived steer values and the performance of the
runs suggest that the autonomous runs outperform the manual
runs in running the kart autonomously at the lane center, with
a Mean Absolute Error (MAE) of the deviation from the lane
center to be around 2-3 cm (towards the left), despite issues
with the kart mechanics. Incorporating a PID controller and
a model to integrate the discrepancies in the kart mechanics
can be a good future improvement to further smoothen the
behaviour.

Overall, this traditional approach is fast, reliable and highly
suitable for simple applications involving lane lines and can
work even with limited processing capabilities. However, this
technique works only under the discussed operating domain
conditions and does not work when lane lines are not present.
Nevertheless, if the processing capabilities are increased,
use of AI-based techniques can further expand the working
abilities of the approach. To aid in real-time driving scenarios,
this technique can very well augment VO-based techniques
to adapt autonomous driving to a wider range of operating
conditions.

REFERENCES

[1] I. Kostavelis, E. Boukas, L. Nalpantidis, and A. Gasteratos, “Stereo-
based visual odometry for autonomous robot navigation,” International
Journal of Advanced Robotic Systems, vol. 13, 2016. [Online].
Available: https://api.semanticscholar.org/CorpusID:62266727

[2] V. Umamaheswari, S. Amarjyoti, T. Bakshi, and A. Singh, “Steering
angle estimation for autonomous vehicle navigation using hough
and euclidean transform,” in Proceedings of the IEEE International
Conference on Signal Processing, Informatics, Communication and
Energy Systems (SPICES), 2015, pp. 1–5.

[3] A. rose Harman, “The environmental benefits of self-
driving cars,” https://greenerideal.com/news/vehicles/
driverless-cars-environmental-benefits/, 2024, accessed: 2024-08-
22.

[4] “Self-driving vehicles,” https://www.government.nl/topics/
mobility-public-transport-and-road-safety/self-driving-vehicles,
Government of the Netherlands, 2024, accessed: 2024-08-22.

[5] About RDW. RDW. Accessed: 2024-08-22. [Online]. Available:
https://www.selfdrivingchallenge.nl/about-rdw

[6] J. Betz, H. Zheng, A. Liniger, U. Rosolia, P. Karle, M. Behl, V. Krovi,
and R. Mangharam, “Autonomous vehicles on the edge: A survey
on autonomous vehicle racing,” IEEE Open Journal of Intelligent
Transportation Systems, vol. 3, pp. 458–488, 2022.

[7] evGrandPrix. Purdue University. [Online]. Available: https:
//engineering.purdue.edu/evGrandPrix/autonomous

https://api.semanticscholar.org/CorpusID:62266727
https://greenerideal.com/news/vehicles/driverless-cars-environmental-benefits/
https://greenerideal.com/news/vehicles/driverless-cars-environmental-benefits/
https://www.government.nl/topics/mobility-public-transport-and-road-safety/self-driving-vehicles
https://www.government.nl/topics/mobility-public-transport-and-road-safety/self-driving-vehicles
https://www.selfdrivingchallenge.nl/about-rdw
https://engineering.purdue.edu/evGrandPrix/autonomous
https://engineering.purdue.edu/evGrandPrix/autonomous


[8] Formula Student Driverless. SAE International. Accessed: 2024-08-22.
[Online]. Available: https://www.fsaeonline.com/

[9] S. Pendleton, H. Andersen, X. Du, X. Shen, M. Meghjani, Y. H.
Eng, D. Rus, and M. H. Ang, “Perception, planning, control,
and coordination for autonomous vehicles,” Machines, vol. 1,6,
2017. [Online]. Available: https://api.semanticscholar.org/CorpusID:
114862052

[10] E. Joa, Y. Sun, and F. Borrelli, “Monocular camera localization
for automated vehicles using image retrieval,” 2021, arXiv preprint.
[Online]. Available: https://doi.org/10.48550/arXiv.2109.06296

[11] W. Gates, G. Jati, M. Pratama, W. Jatmiko et al., “A modest system of
feature-based stereo visual odometry,” in Proceedings of the IEEE 6th
International Workshop on Big Data and Information Security (IWBIS),
2021, pp. 47–52.

[12] J. Sujatha et al., “Computer vision based novel steering angle cal-
culation for autonomous vehicles,” in Proceedings of the IEEE 2nd
International Conference on Robotic Computing (IRC), 2018, pp. 143–
146.

[13] M. Aladem and S. A. Rawashdeh, “Lightweight visual odometry for
autonomous mobile robots,” Sensors, vol. 18, no. 9, pp. 2837–2851,
2018.

[14] Y. Tanaka, A. Semmyo, Y. Nishida, S. Yasukawa, J. Ahn, and K. Ishii,
“Evaluation of underwater vehicle’s self-localization based on visual
odometry or sensor odometry,” in Proceedings of the IEEE 14th
Conference on Industrial and Information Systems (ICIIS), 2019, pp.
384–389.

[15] V. S. Dev, V. S. Variyar, and K. Soman, “Steering angle estimation for
autonomous vehicle,” in Proceedings of the IEEE International Con-
ference on Advances in Computing, Communications and Informatics
(ICACCI), 2017, pp. 871–876.

[16] K. Paponpen, K. Sucharitpongpan, N. Termsaithong, and P. Chaipunya,
“The implementation of steering angle estimation on miniature rasp-
berry pi-based autonomous car,” in Proceedings of the IEEE 17th
Conference on Industrial Electronics and Applications (ICIEA), 2022,
pp. 1037–1042.

[17] A. Mahersatillah, Z. Zainuddin, and Y. Yusran, “Unstructured road
detection and steering assist based on hsv color space segmentation
for autonomous car,” in Proceedings of the IEEE 3rd International
Seminar on Research of Information Technology and Intelligent Sys-
tems (ISRITI), 2020, pp. 688–693.

[18] I. Karouach and S. Ivanov, “Lane detection and following approach
in self-driving miniature vehicles,” 2016. [Online]. Available:
https://gupea.ub.gu.se/handle/2077/44673

[19] K. D. N. Tu, H. D. Nguyen, and T. H. Tran, “Vision based steering
angle estimation for autonomous vehicles,” in Proceedings of the In-
ternational Conference on Advanced Technologies for Communications
(ATC), 2020, pp. 187–192.

[20] M. K. Diab, H. H. Ammar, and R. E. Shalaby, “Self-driving car lane-
keeping assist using pid and pure pursuit control,” in Proceedings
of the international conference on innovation and intelligence for
informatics, computing and technologies (3ICT), 2020, pp. 1–6.
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