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Self-Driving Challenge: Implementation of
Vision-Only Based Autonomous Driving in Karts

Raj Kumar Ashokan Gayathri Dhanapal

Abstract—This study is based on our participation in the
Self Driving Challenge 2023 edition, which was aimed at the
study of basic autonomous functionality behaviour in cars. The
purely vision-based, classical autonomous driving approaches
implemented during the challenge are discussed here. This in-
cludes an unsuccessfully attempted monocular visual odometry
based approach, in which relative localization was successfully
obtained using feature extraction, feature matching, and 2D-
2D motion estimation but absolute world scale could not be
successfully retrieved. A lane boundary marker detection based
approach was then successfully implemented and utilized at the
challenge. This approach enabled the provided electric go-kart
to autonomously traverse a distance of approximately 1 km.
The algorithm processing speed was 30 FPS in real-time. This
approach fetched us the runner-up position at the challenge. The
observed outcome at the challenge is presented including noted
undesirable behaviours. However, the behaviours could not be
analyzed or studied owing to the short development stint of the
challenge. The shortcomings at the challenge are also identified
for both the approaches along with the need for follow-up study.
A video of our demonstration of the autonomous driving at the
SDC finale event can be found at: https://tinyurl.com/4ycet5de.

Index Terms—self driving challenge, RDW, autonomous cars,
monocular visual odometry, relative localization, motion estima-
tion, lane boundary detection, steer estimation

I. INTRODUCTION

Self-driving car technology has been making great strides
towards becoming a reality and has been changing day to day
lives in terms of road safety [1], ease in mobility, increased
travel comfort, reduced emission and pollution levels [2],
improved transport inter-connectivity etc. since its advent.
Vehicles are increasingly equipped with advanced sensors,
vision and control systems, providing them with autonomous
capabilities [3] [4]. It has become inevitable to further probe
into this field and research into the latest advancements in
order to expand the knowledge in smart mobility.

In line with this, being the regulatory organization in ap-
proving cars for use on public roads, the Netherlands Vehicle
Authority (RDW) has been organizing an annual competition,
’Self Driving Challenge (SDC)’, since 2019. The RDW orga-
nizes this challenge with the futuristic goal of preparing itself
for expanding its knowledge about autonomous vehicles,
especially cars, and about the complex choices those vehicles
make [5]. SDC being an open challenge for the student teams
in The Netherlands, we participated in the SDC 2023 edition
as a part of the team from the University of Twente. The
main aim of this edition was to build a software stack to
autonomously drive a lap as fast as possible at the specified
track using an electric go-kart that is provided by the RDW.

Fig. 1: University of Twente team at SDC2023. Image credit:
RDW/Self Driving Challenge

Autonomous racing on karts provides a valuable testing
field for algorithmic approaches related to autonomous driv-
ing. As this field is emerging and relatively new, a direct
transfer of autonomous racing software to the autonomous
passenger cars has not yet been accomplished [6]. However,
increasingly, more autonomous racing challenges are orga-
nized using karts, such as the EV Grand Prix Autonomous
Challenge [7] and Formula Student Driverless competitions
[8]; these challenges induce valuable research that can be
scaled up to passenger cars. Therefore, study of basic au-
tonomous functionality behaviour using karts can be a good
starting point in the study of the same in cars, aligning with
the motive of the SDC [5].

Each participating team at the SDC had limited access
to two identical electric go-karts, equipped with the required
hardware, and thus the extent of the challenge differed only in
the development of the autonomous software and interfacing
with the hardware [9]. The whole challenge took place at
the TT-Junior track, at Assen in the Netherlands, which is
a racing circuit of 1 km length and varying width. Being
a single-lane circuit with boundary markers on both sides,
it also contained turns, intersections, splits, crossings, curbs
and inner loops.

A total of six teams participated in the edition and our team
secured the second prize. At the end of the challenge, our
developed code was able to provide autonomous functionality
to the provided go-kart, but extensive testing could not
be performed to evaluate its autonomous behaviour. This
extensive testing and evaluation was done as a follow-up

https://tinyurl.com/4ycet5de


study at the University of Twente, by using a rebuilt small-
scale kart. This follow-up study is not discussed in this paper.
The approaches we used for participating in the challenge
and the performance at the challenge is primarily discussed
here. Overall, the objective of this Master’s thesis work was
to implement and study the behaviour of basic autonomous
functionality in cars using karts and small-scale karts. Fig. 1
shows the SDC electric go-kart during one of its autonomous
manoeuvres demonstrated by the University of Twente team.

Fig. 2: Basic autonomous driving pipeline

The pipeline for a vehicle to drive itself autonomously
from a point A to point B includes three major modules
- perception, planning and control as in Fig. 2. Perception
is the ability of a vehicle to perceive its surroundings and
to know its own position in the environment using the data
from its sensors. Planning is the process of generating the
best path for the vehicle to traverse and reach its destination,
based on the perceived environment taking into account the
dynamic capabilities of the vehicle, presence of obstacles etc.
Control is the process of converting the intended decisions
into actions by sending commands to the actuators to obtain
the desired movement [10].

In the SDC kart, cameras were meant to be the primary
sensor setup, limiting the scope to visual perception based
systems. Obstacle avoidance was not included in the scope
and hence is not considered in the entirety of this work.
One of the challenging perception tasks for an autonomous
vehicle is estimating its current ego-pose or localization
[11] [12]. Visual-based localization systems can be broadly
based on traditional, learning or hybrid approaches. The
state-of-the-art learning-based or hybrid approaches require
a lot of data and processing power [6] [13] for considerable
performance. However, during the SDC, owing to the limited
processing capabilities of the kart, we could not rely on that
as the primary method. Nevertheless, two other members
of our team were trying to develop an end-to-end steering
prediction, which was not progressively fruitful during the

competition and, therefore, is not discussed here.
Considering traditional approaches, Visual Odometry

(VO), which is a process of estimating the translational
and rotational movements of the camera using images, is
often used for localization in autonomous vehicles [14] [15].
Therefore, we initially considered monocular visual odometry
for localization, as the kart did not include a stereo setup.
The involved steps are: feature extraction, feature matching,
outlier rejection, and relative pose estimation. Relative ego
localization was successfully obtained using this approach; to
integrate the absolute scale, an image retrieval-based method
was tried to be implemented, but in vain. This involved
constructing a database of compressed geo-tagged images
and fetching matched images using image retrieval. Thus, the
scale factor issue of the monocular camera could not be suc-
cessfully resolved utilizing any other additional information,
resulting in unsuccessful localization. For the planning and
control steps in the pipeline, a waypoint follower utilizing a
geometric lateral controller was planned to be implemented
in case of successful localization using odometry.

Therefore, in the later part of the challenge, we a adopted
lane boundary detection-based road following approach,
which is another commonly used approach; this was the
approach we used for the final race. The steps involved
in the perception module here includes feature extraction,
detection of lane boundary markers, and lateral localization
relative to the lane markings. In the planning module, steer
angle is calculated in order to generate the trajectory for lane
following, i.e., for the kart to be positioned at the center of
the lane. The lateral control module executes the movements,
including error handling process, to maintain the planned
path.

Traditionally, the study of related works would be carried
out at the beginning of the research. However, as this work
directly started with the development phase due to the
stringent schedule of the competition, the study of related
works was done at the beginning of the follow-up study and
is not elaborated in this paper. The contributions discussed in
this paper focuses on the design-development approach and
the implementations carried out to satisfy the requirements
of the challenge, which were primarily given by:

• The kart should begin from the start position and run
autonomously through the track. The teams would not
compete against each other at the same time, but one
after the other.

• Each team would get a time-slot of 15 minutes for
multiple trials. A trial would be immediately considered
disqualified if the kart either goes off-track or even
touches either of the lane boundary markers with one
of its tyres.

• After disqualification, a new trial would begin again
from the start position, only within the provided time-
slot.

• The kart should follow the right path at the intersections
or crossings.

The team that makes the most metres on the track in the
shortest lap time possible, satisfying the above requirements



Fig. 3: The SDC electric Go-Kart

would emerge as the winner. More details of the challenge
can be found at [9].

The paper is further structured as follows: Section II
describes the hardware used. Section III talks about the data
collection process. Section IV details the approaches used.
Section V discusses the results and the performance at the
challenge. Section VI concludes the work with highlights and
shortcomings at the challenge, and talks about the follow-up
study.

II. GO-KART

The parts of the electric go-kart relevant to the challenge,
as shown in Fig. 3, include the computing unit (a 16GB Intel
i5 processor with no GPU), actuators, and sensors, apart from
the chassis. The actuation of the go-kart is primarily made
via throttle, steering, and braking. The original version of
the go-kart consisted of interface modules such as steering
wheel and pedals which were human driven. For the sake
of autonomous driving, a servo motor (for steering) and
a linear actuator(replacing the braking module), which are
controlled via ECUs, were integrated in the provided kart.
Communication between the ECUs is carried out over a CAN
(Controller Area Network) bus, emulating the standard com-
munication system within a conventional car [16]. The kart
comes equipped with a 3.5 kW electric motor for longitudinal
actuation with maximum speed modes of either 5, 15, 30 or
60km/h. Apart from autonomous control capability, manual
control via a wired Xbox controller was also possible.

Existing research works concerning autonomous driving
involve fusion of data from sophisticated sensors such as the
3D LiDAR, RADAR, GNSS, IMU, encoders, and cameras
in their perception module [17] [18]. In contrast to this,
the SDC kart was equipped with a basic sensor suite with
three regular USB web-cameras and a 2D planar LiDAR. The
cameras were clamped together at a height of 60 cm from
the ground in the front part of the kart and had negligible
overlap between their field of views. The 2D planar LiDAR,
also placed at the front part of the kart, primarily finds its
usage in obstacle avoidance task and hence was of little use
to us. For safety reasons, an emergency transmitter-receiver
pair was interfaced for easy manual intervention.

III. DATASET

Data collection from all the three cameras was performed
in parallel, by manually driving the kart throughout the
track in lane-centered, lane-edged, and zig-zag manoeuvres.
Data was captured in three different speed modes, during
different times of the day, and by different drivers. Cam-
eras were calibrated to obtain the intrinsics. In addition to
the image recordings, the set of throttle, steer, and brake
commands given to the actuators via the CAN network
were also recorded in the form of a CSV file. Both the
CSV and image data are time synchronized utilizing the
concept of multi-threading. This is significant as it facilitates
better understanding and correspondence between images and
actuator commands, especially during algorithm development
and analyses.

IV. APPROACHES

A. Visual Odometry Based Approach

1) Feature Extraction: The overview of the processes
in the initial perception module for monocular VO based
approach is as shown in Fig. 4. In this module the center
camera images are utilized to obtain the kart’s localization.
Extraction of features or keypoints in the image is the primary
significant step in the process. Features can be extracted using
various methods like SURF, Harris corner detector, ORB,
FAST etc. ORB (Oriented FAST and Rotated BRIEF) [19]
can detect and describe (vectors of size 32) more features,
that are invariant to scale, rotation, and small affine changes,
quickly than many such feature detector-descriptors [12] [20].
Hence ORB was initially chosen for this step primarily
for the sake of efficient computation. An example image
with features extracted using ORB is as shown in Fig. 5a.
Later in the further stages of the pipeline, when the results
of the obtained motion estimation were not as expected
(discussed in the Results section), another detector-descriptor
known as SIFT (Scale Invariant Feature Transform) [21]
was finally used. SIFT is a more accurate method, which
detects stable features that are robustly invariant to scale,
rotations or small affine changes than ORB [17], and provides
descriptors (vectors of size 128). But this comes with a higher



Fig. 4: Processes in the perception module

computational cost [20]. Features extracted using SIFT for
the same example image are as shown in Fig. 5b.

(a) Using ORB (b) Using SIFT

Fig. 5: Sample outputs showing extracted features

2) Feature Matching: Secondly, feature matching between
the extracted SIFT features of two consecutive images was
performed using a Brute Force(BF) matcher. It considers a
descriptor in one image and tries to find a match among all
the descriptors in the other, based on the smallest distance.
For binary string-based descriptors like ORB, the Hamming
distance is considered, whereas for SIFT, the L2 Norm works
good [22].

For each feature, two best matches were retrieved and a
distance ratio thresholding based on [21] was performed, to
filter out unreliable matches. This requires the closest match
to be significantly better than the second closest match by
checking the ratio of their distances. This ratio threshold was

Fig. 6: Matched features between sample consecutive frames. Only
a few matches are shown for illustration

varied from 0.6 to 0.9 to see which threshold was more reli-
able. Feature matching using BF in two consecutive frames
is visualized as shown in Fig. 6. BF-based matcher is highly
accurate but requires high computation time. FLANN-based
matcher(Fast Library for Approximate Nearest Neighbors) is
another technique that finds matches by approximating the
nearest neighbours instead of computing them exactly. This
is optimized and quicker than BF for larger datasets [22] [23].
Therefore, for the sake of efficiency, this matching technique
was also attempted but the quantity of matches obtained were
significantly reduced and thus FLANN was not chosen over
BF.

Fig. 7: Estimated motion between sample consecutive frames

Another commonly used technique to improve efficiency
is to perform feature tracking instead of matching. Feature
tracking using Lucas-Kanade optical flow method was tried.
Features generated in a frame are searched for in the con-
secutive frame using search windows and a pyramid level
search approach. Features that are not successfully tracked
are dropped; new features are regenerated if the number of
retained features drops below a set limit. Again owing to
improper results (as discussed later), feature matching using
BF was the final chosen approach to find correspondences
between consecutive frames.

3) Relative Motion Estimation: From the obtained corre-
spondences or matches between the two consecutive frames
and the intrinsic parameters of the camera, 2D-to-2D camera
motion was estimated by computing the Essential matrix.
This step also incorporates additional outlier removals using
RANdom SAmple Consensus (RANSAC), as the filtered
matches might still contain outliers. RANSAC iteratively
selects random subsets of data and fits a model hypothe-
sis, identifying inliers that align with the model. Assuming
known intrinsics, the essential matrix encodes the epipolar



Fig. 8: Overview of the offline and the live processes for the monocular VO-based approach

geometry between two camera frames. This is further decom-
posed into the relative rotation (R) and translation (T) using
Singular Vector Decomposition(SVD) and chirality check,
resulting in relative pose between the consecutive frames
[24].

The estimated motion between features of two consecutive
frames is as depicted in Fig. 7. By accumulating this incre-
mental motion at each step, the trajectory followed by the
camera can be generated. Notably, this trajectory is not in
absolute scale i.e., real-world units. As the camera is rigidly
attached to the kart, the motion of the camera corresponds
to the motion of the kart. Resolving this scale issue using
any other additional information, trajectory in absolute scale
can be generated. By using the collected dataset, a reference
trajectory can be generated in this manner;during the live
run, a waypoint follower can be used to follow this trajectory
by estimating and accumulating the camera poses over time.
The overview of the offline and the live processes for the
monocular VO based approach with respect to the perception-
planning-control pipeline is as shown in Fig. 8.

4) Absolute world-scale estimation: Subsequently, for ob-
taining the absolute scale, we tried to apply a global lo-
calization method partly as in [11], wherein the authors try
to obtain the global pose using image retrieval method and
a mapping database of geo-tagged images.The purpose of
image retrieval is to fetch images similar to the query image
from the database. In order to reduce the computational cost
of this retrieval, it is necessary to have compact image repre-
sentations in the database. For creating this offline database,
the first essential step is to build a visual vocabulary from
the images. A complete set of approximately 14000 reference
dataset images was used for this purpose and their SIFT
feature descriptors were extracted. Using these descriptors
as input data, a k-means classifier was trained to partition
the descriptors into 64 clusters. The centres of these 64
clusters are representative feature descriptors and hence form
the visual vocabulary.

Secondly, a residual error was calculated between every
descriptor of the image assigned to the k-th cluster and the
center of that cluster. These residual errors were summed up,
giving a total residual error for each cluster. Computing this

(a) Query image (b) First closest match

(c) Second closest match (d) Third closest match

Fig. 9: Sample outputs of global localization module

for all the 64 clusters and stacking up, a 64× 128 matrix (as
the SIFT descriptor size is 128-dim) was obtained for each
image. This matrix was L2 normalized to obtain a Vector
of Locally Aggregated Descriptors(VLAD) matrix, which is
detailed in [25] and [26]. VLAD matrices of all the images
in the considered dataset was generated to form a mapped
database. During the live run, in order to fetch the best match
for a query image, a BallTree nearest neighbour algorithm
trained on this mapped database is used.

The image fetched with the lowest distance is chosen as the
best match. A sample query image of the Assen track, along
with its three closest matches retrieved via this method is as
shown in Fig. 9. Visibly, the retrieved matches are properly
indicative of the location despite the fact that majority part
of the image contained only the road surface, sky, and other
less distinctive information.

For tagging the location corresponding to the mapped
database images, in [11], a GPS is used in the offline process
and a 3D LiDAR is also used to obtain the 3D coordinates
of the features. Using this information and a particle filter,
the relative world position of the query image, with respect
to the retrieved three best matches can be obtained. In our
case, we tried to use a constant velocity assumption or to



Fig. 10: Steps involved in perception, planning and control modules of lane boundary detection based road following approach

(a) Input (b) After Canny & ROI

(c) After SHT (d) After Positional Filter

Fig. 11: Sample outputs at intermediate steps

tag the location using any other independent positioning
device. However, unfortunately, we could not succeed with
this step, owing to cancellation of some of the track days and
unforeseen practical hindrances during the test slots.

Furthermore, as only a couple of track days were pending
then, which would not be sufficient to do the testing and
to implement the following adaptations required for this
approach, this approach was dropped; an alternative lane
detection-based approach, was attempted to be implemented
in the remaining days to the challenge, which is detailed as
follows.

B. Lane Boundary Detection Based Approach

This approach builds on the detection of the lane bound-
aries, using the center camera images as the primary feed.
Based on this, the steering angle for lateral control is calcu-
lated.

1) Pre-Processing and Feature Extraction: Initially, as the
first step in perception, we tried to project the input images
using Inverse Perspective Mapping to correct for the perspec-
tive distortion [27]. However, in our case, the transformed
image did not contain meaningful lane information as the
road was very wide. The other option was to perceive using
the camera perspective view.

For line detection, grayscale conversion and Gaussian
blurring were typically carried out on the input feed to
reduce the computation costs and the noise resulting from low
camera height [2] [28]. Following this, lane boundary features
were detected using Canny edge detector, as it preserves
necessary structural information while removing unwanted

intense data. In the resulting image, geometric model fitting
Standard Hough Transform(SHT) was applied on a chosen
Region of Interest(ROI) to characterize the line segments
belonging to the road boundaries. The obtained detected lines
often included irrelevant lines or false positives as in Fig. 11c;
for removing these, a series of line filtering and refinement
steps were applied next.

2) Feature Filtering and Localization: Consequently, lines
that could be a potential left boundary but present in the
right half of the image and vice versa were removed, using
a positional filtering that checks the sign of the slope and
the image co-ordinates, as in Fig. 11d. This was based on
the analysis that unless the kart is off-track, at least one-
third portion of the left boundary falls in the left half of the
image and similarly for the right boundary. Filtering based on
the geometric properties like slope thresholding and intercept
thresholding was performed next. Different sample images
showing the impact of the above steps are shown in Fig. 12a
- Fig. 12d.

Subsequently, the obtained lines were classified into po-
tential left and right boundaries using the sign of the slope.
Owing to the camera’s perspective and the wide roads, to
avoid false detections of the close-by road edges and baseline
of tyre barrier walls, a clustering operation was then carried
out by selecting only the lines with a intercept value greater
than the mean intercept value on each side as in Fig. 12e.
Merging the resulting individual line segments together, their
end coordinates were averaged on each side to form the final
left and right lane boundaries. If no lines were present during
filtering process, next frame was grabbed and processed.

3) Lane Following: Next, in the planning module, steer
value was computed for the kart to run in the lane’s center.
This was calculated using the point of intersection of the
detected lane boundaries [13] [28]; this point of intersection
denotes the desired heading as shown in Fig. 12f, and is used
in the steer(ϕ) computation as given by:

θ = tan−1(
y1 − y2
x1 − x2

)− 90◦ (1)

ϕ =
θ

Smax

{
> 1 → right steer

< 1 → left steer
(2)

where (x1, y1) and (x2, y2) are the coordinates of the
image base centre point and the point of intersection of the
detected lane boundaries respectively; (θ) denotes the devi-
ation of the vehicle’s heading, Smax denotes the maximum
possible steer of the kart.



(a) After Positional Filter (b) After Slope Thresholding (c) After Intercept Thresholding

(d) After Intercept Thresholding (e) After Clustering (f) After Merge & Steer Calculation

Fig. 12: Sample outputs at intermediate steps (cont.) for two scenarios (First scenario - Row 1; Second scenario - Row 2)

Crucially, in cases where either the left or right boundary
was not present or not detected, we considered the extreme
column of the image in that particular side as the detected
boundary. Mostly such cases were encountered in wide turns,
where this manner of handling seemed to work. When both
boundaries remain undetected, after a few frames of reusing
the previous steer value, the kart comes to a halt. The steering
values obtained thus and the fixed throttle values are provided
to the actuators in the control module. With the intention to
avoid abrupt turns of the kart, we used a slower throttle value
during the turns.

(a) Perceived from center camera (b) Perceived from right camera

Fig. 13: Need for off-track avoidance

4) Off-Track Avoidance: Nevertheless, due to unforeseen
issues, the kart might run off-track. As seen in Fig. 13,
despite all the filtering, presence of curbs generates a critical
undesired steer at the boundary. Hence we introduce a
significant fail-safe ’off-track avoidance’ module using the
left and right feed. For this, the zig-zag and lane-edged
run images were analyzed to identify an optimal Region
of Search(RoS), each in the left and right feed, in which
boundary lines will appear only when the kart nears it. During
live runs, this RoS will be checked for presence of lines
and a steer calculation is proportionally derived based on
the closeness to the boundary. Line detection was performed
using the same steps as the center camera. As these two
cameras were downward facing and close to the boundary,
strong noiseless edges were detected thereby eliminating the

need for major filtering operations.

(a) From left camera (b) From right camera

Fig. 14: Sample outputs from off-track avoidance module

The point of intersection of this resulting final left or
right lane boundary line with the inner vertical boundary
of the RoS is found. As this point moves from the top to
the bottom of the vertical boundary, in case of left camera
feed, a positive steer value SRight (ranging from 0 to 1) is
proportionally devised to move the kart away from the left
boundary; similarly a negative steer SLeft is devised for the
right camera feed, demonstrated clearly as shown in Fig. 14.
If no left or right boundary line is detected, then SRight or
SLeft value is zero respectively. This module simultaneously
performs the check in both the cameras and outputs both
SLeft and SRight.

Combining this module along with the center camera
module in a uni-modal sensor fusion, this module’s outputs
receive the highest priority. In case of non-zero values of
either SLeft or SRight, it is directly given to the kart to
immediately steer it away from the boundary. If both SLeft

and SRight are zero, the steer from the center camera module
is passed to the kart. If both are non-zero, we considered the
SRight to be given to the kart, specifically because of the rare
false-positive scenarios that we faced due to the tire-markings
on the tarmac on one side of the lane.

V. RESULTS & DISCUSSION

The results of the offline processes performed for both the
VO and the lane boundary detection-based approaches are



(a) SIFT+BF

(b) Original track from google maps

Fig. 15: Comparison of reference trajectory generated using
SIFT+BF and the original track

discussed here in addition to the real-time performance of
the kart at the challenge.

A. Visual Odometry Based Approach

For this approach, the offline reference trajectory generated
utilizing SIFT+BF, for a distance ratio threshold of 0.7, is as
shown in Fig. 15a. Though this trajectory is scale ambiguous,
the shape retrieved exhibits similarity with the original track
as shown in Fig. 15b. However, it failed to achieve loop
closure with slight drifts over time; this is consistent with the
classic characteristic of VO process and is usually corrected
using batch corrective techniques such as bundle adjustment
[29]. For the sake of comparison, trajectories for half the
track were generated using SIFT+BF, ORB+BF, SIFT+KLT
(feature tracking) as shown in Fig. 16. ORB failed to perform,
even for varying thresholds. This is presumably because SIFT
features are generally detected across the entire image in a
scattered manner, whereas, ORB features tend to concentrate
more around corners, which is less applicable in our images
as ground plane dominates the scene; this also resonates with
the feature extraction step shown in Fig. 5a - Fig. 5b. In the
shown sample image, the number of initial features extracted
using ORB and SIFT were 499 and 903 respectively, and after
distance ratio thresholding, the number of obtained features
were 178 and 302 respectively.

In contrast to the ORB+BF method, SIFT+KLT method did
not completely fail, but rather showed a drift accumulated at
some parts of the trajectory. This is mainly due to build up

(a) Using SIFT+BF

(b) Using ORB+BF

(c) Using SIFT+KLT

Fig. 16: Comparison of reference trajectories generated for first half
of the racing track

of minor errors that occur while continuously re-estimating
the position of the features. This is more significant when
tracking is to be done for long sequences as in our case [30].

Thus, SIFT+BF performs better compared to using
ORB+BF and SIFT+KLT. While tuning the optimal distance
ratio threshold using SIFT, a lesser value of 0.5 or 0.6
filtered out too many features including inliers, resulting in
a improper trajectory. On the contrary, a high value of 0.9
retained too many outliers in the matches, which largely
remained even after applying RANSAC; this was again
indicated by the improper shape of the trajectory obtained.

B. Lane Boundary Detection Based Approach

For lane boundary detection based approach, the final
predicted steer results for some of the different scenarios are
shown in Fig. 17. Owing to very short development span,



(a) Both lane boundaries visible (b) Only left lane boundary visible (c) Only right lane boundary visble

Fig. 17: Sample steer outputs for different scenarios

testing was initially carried out fully offline by assuming the
possible problematic scenarios at different parts of the track.
Possibility of simulation was ruled out due to rendering issues
with the provided server and incorrect simulation map config-
uration. Real-time testing was performed directly at the pre-
qualification and finale events. During the pre-qualification,
in the initial runs, the kart drove autonomously but crossed
weak-edged lane boundaries at two places. Tweaking the line
detection parameters, the kart ran autonomously twice in the
following runs, traversing the entire length in approximately
15 minutes at an execution speed of 30 FPS. However, it was
exhibiting oscillating movements with left/right drags at some
places of the track, specifically, at the turns. Notably, the kart
also did not follow the path along the center of the lane in
some segments of the track. Another significant point is that
the off-track avoidance module seemed to work perfectly,
with the kart staying on the track. On places where the kart
neared the boundaries, a notable push was observed which
steered the kart inwards, away from the boundary, right in
time. Including such a fail-safe module is often overlooked by
many, which was also noteworthy during most other teams’
performance at the challenge.

At the finale slot, unfortunately, due to a malfunction, the
initial version of the program (before the tweaking of the line
detection parameters) had to be run, which made the kart to
cross the weak-edged lane boundary at the same place as
witnessed during the pre-qualification. As the slot duration
was only 15 minutes, this was the only run that the kart made.
Later the same day, when the malfunction was rectified and
the correct program versions were used, the kart managed
to run throughout the track twice autonomously in the first
two speed modes. The kart exhibited the same behaviour
as exhibited during the full autonomous runs performed at
the pre-qualification. Since these runs were made outside the
finale slot, our team won the second position.

VI. CONCLUSION

Overall, the VO based approach was unsuccessful because
it could not obtain localization in absolute world scale, as
no additional information could be employed; hence this
approach could not be utilized for the challenge. On the
other hand, the lane boundary detection based approach
was implemented and succeeded at the challenge, despite
the shorter development span. The kart managed to au-
tonomously run a distance of approximately 1 km with a

processing speed of 30 FPS. Still, no quantitative evaluation
or analysis could be carried out, except for observing the
kart’s behaviour during the run, as no data was recorded for
the sake of efficiency during the challenge. The reasoning
behind the kart’s observed oscillating behaviour could not
be figured out. The reason for the the kart to follow a
path which was deviated from the lane center could not
be identified. Whether it was the center camera or the left-
right pair that influenced the kart’s behaviour could not be
ascertained either, highlighting these as the shortcomings at
the challenge. Despite the shortcomings, the approach shows
potential to work. Similarly, if successfully implemented,
VO based approach can be a more generalized one. Thus,
the follow-up studies focus on overcoming the shortcomings
arising from both the approaches used at the challenge and
studying the autonomous behaviour in more detail.
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[27] J. Á. B. Palma, M. N. I. Bonilla, and R. E. Grande, “Lane line
detection computer vision system applied to a scale autonomos car:
Automodelcar,” in Proceedings of the IEEE 17th International Con-
ference on Electrical Engineering, Computing Science and Automatic
Control (CCE), 2020, pp. 1–6.

[28] V. S. Dev, V. S. Variyar, and K. Soman, “Steering angle estimation for
autonomous vehicle,” in Proceedings of the IEEE International Con-
ference on Advances in Computing, Communications and Informatics
(ICACCI), 2017, pp. 871–876.

[29] A. Howard, “Real-time stereo visual odometry for autonomous ground
vehicles,” in Proceedings of the IEEE/RSJ international conference on
intelligent robots and systems, 2008, pp. 3946–3952.

[30] H. Halmaoui and A. Haqiq, “Feature detection and tracking for visual
effects: Augmented reality and video stabilization,” in Artificial In-
telligence and Industrial Applications: Smart Operation Management.
Springer, 2021, pp. 291–311.

https://doi.org/10.48550/arXiv.2109.06296
https://doi.org/10.48550/arXiv.2312.00951
https://docs.opencv.org/4.x/dc/dc3/tutorial_py_matcher.html
https://docs.opencv.org/4.x/dc/dc3/tutorial_py_matcher.html
https://pyflowopencv.readthedocs.io/en/latest/tutorial04.html
https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html
https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html


Study of Self-Driving Functionality: Stereo Visual
Odometry-Based Implementation in Small-Scale

Karts
Gayathri Dhanapal

Abstract—In this paper, we present a basic study of au-
tonomous driving functionality using implementation of pure
stereo-vision-based traditional approaches in small-scale karts.
This is performed as a follow-up study based on our partic-
ipation in the Self Driving Challenge (SDC) 2023 edition. A
small-scale kart is rebuilt and is used as the test platform.
A complete autonomous driving pipeline is explored including
localization using stereo-based triangulation, path planning
using a waypoint follower and lateral control using a geometric
Stanley controller. The suitability of various techniques are
checked for this. The influence of the distribution of features,
presence of noise or outliers, and handling them pertinent to the
challenges that arise from a very small stereo baseline coupled
with low camera heights are investigated and discussed. In this
regard, analysis is done by placing traffic cones along the track
at regular gaps and using these features to check the feasibility
of 2D-3D motion estimation. Autonomous driving is achieved in
real-time, for distances of 10-20 metres outdoors at a processing
speed of 12-13 FPS. The autonomous behaviour exhibited
during the runs are presented, and the results are analyzed
and discussed. A sample video showcasing the autonomous run
performed using the work implemented in this study can be
accessed at https://tinyurl.com/bksnf2ku.

Index Terms—self driving challenge, autonomous cars, stereo
visual odometry, stereo triangulation, 2D-3D motion, Stanley
controller, small-scale outdoor karts, world-scale localization

I. INTRODUCTION

Self-driving car technology has been making great strides
towards becoming a reality and has been changing day to day
lives in terms of road safety [1], ease in mobility, increased
travel comfort, reduced emission and pollution levels [2],
improved transport inter-connectivity etc. since its advent.
Vehicles are increasingly equipped with advanced sensors,
vision and control systems, providing them with autonomous
capabilities [3] [4]. It has become inevitable to further probe
into this field and research into the latest advancements in
order to expand the knowledge in smart mobility.

In line with this, the Netherlands Vehicle Authority (RDW)
has been organizing an annual competition, ’Self Driving
Challenge (SDC)’, since 2019. The RDW organizes this chal-
lenge with the futuristic goal of preparing itself for expanding
its knowledge about autonomous vehicles, especially cars,
and about the complex choices those vehicles make [5]. We
participated in the SDC 2023 edition as a part of the team
from the University of Twente. The main aim of this edition
was to build a software stack to autonomously drive a lap as
fast as possible at the specified track using an electric go-kart
that is provided by the RDW.

Fig. 1: Small-scale kart during an autonomous manoeuvre at the
UTrack

Autonomous racing on karts provides a valuable testing
field for algorithmic approaches related to autonomous driv-
ing. As this field is emerging and relatively new, a direct
transfer of autonomous racing software to the autonomous
passenger cars has not yet been accomplished [6]. However,
increasingly, more autonomous racing challenges are orga-
nized using karts, such as the EV Grand Prix Autonomous
Challenge [7] and Formula Student Driverless competitions
[8]; these challenges induce valuable research that can be
scaled up to passenger cars. Therefore, study of basic au-
tonomous functionality behaviour using karts and small-scale
karts can be a good starting point in the study of the same
in cars, aligning with the motive of the SDC [5].

A total of six teams participated in the edition and our team
secured the second prize. At the end of the challenge, our
developed code was able to provide autonomous functionality
to the provided go-kart but extensive testing was necessary in
order to evaluate its autonomous behaviour. As the challenge
was of a short stint, and as the kart was inaccessible after the
challenge, in order to study this further, a small-scale kart,
mimicking the basic functionalities of the SDC go-kart, was
re-built at our niversity and the autonomous functionality was
further developed, deployed, and its behaviour was studied.
The approaches we used for participating in the challenge
is discussed in a separate preliminary paper included in
the first part of this Master’s thesis work. The follow-up
comprehensive study using the small-scale kart was carried
out as the second part of this Master’s thesis work, which
is primarily discussed in this paper. Overall, the objective of
this Master’s thesis work was to implement and study the
behaviour of basic autonomous functionality in cars using

https://tinyurl.com/bksnf2ku


karts and small-scale karts. Fig. 1 shows the small-scale kart
during one of its autonomous runs.

Fig. 2: Basic autonomous driving pipeline

The pipeline for a vehicle to drive itself autonomously
from a point A to point B includes three major modules:
perception, planning and control as in Fig. 2. Perception is
the ability of a vehicle to perceive its surroundings and to
know its own position in the environment using the data
from its sensors. Planning is the process of generating the
best path for the vehicle to traverse and reach its destination,
based on the perceived environment taking into account the
dynamic capabilities of the vehicle, presence of obstacles etc.
Control is the process of converting the intended decisions
into actions by sending commands to the actuators to obtain
the desired movement [9].

In the SDC kart, cameras were meant to be the primary
sensor setup, limiting the scope to visual perception based
systems. Obstacle avoidance is also not considered in the
scope of this work. One of the challenging perception tasks
for an autonomous vehicle is estimating its current ego-pose
or localization [10] [11]. Visual-based localization systems
can be broadly based on traditional, learning or hybrid
approaches. The state-of-the-art learning-based or hybrid
approaches require a lot of data and processing power [6]
[12] for considerable performance. However, during the SDC,
owing to the limited processing capabilities of the kart, we
resorted to using only traditional approaches.

Considering traditional approaches, Visual Odometry
(VO), which is a process of estimating the translational and
rotational movements of the camera using images, is often
used for localization in autonomous vehicles [13] [14]. At the
SDC, we attempted a monocular visual odometry-based ap-
proach due to the lack of a stereo setup. Relative localization
was obtained using this approach but integrating the absolute
scale could not be successfully performed due to lack of
any other additional information. Therefore, in the later part
of the challenge, we adopted a lane boundary detection-

based road following approach, which is another commonly
used approach; we successfully utilized this approach at the
SDC to make the kart autonomously drive a distance of 1
km. Although, the exhibited behaviours of the kart could
not be studied including significant oscillations of the kart,
unintended deviations from the center of the lane etc. More
details about the approaches used, the results obtained, and
the highlights and shortcomings of our work at the challenge
can be found in the preliminary paper included in the first
part of this Master’s thesis work.

After the challenge, in this follow-up study, the VO-based
localization approach was considered to study further and
evaluate, the behaviour of the basic autonomous functionality,
in line with the primary goal of this work. Addressing the
limitations of this approach, it was decided to have a stereo
camera setup to deal with lack of additional information when
using monocular cameras. To act as the test platform, we re-
built a small-scale kart with the same basic capabilities as
the RDW kart, slightly adapting the camera setup to be a
stereo pair. For small-scale kart build purposes, RC cars are
generally adapted with necessary hardware alterations. These
can be likened to go-karts, as they achieve high speeds and
rapid accelerations for their size. [6].

Thus, stereo-based VO was performed following the basic
odometry steps of feature extraction, feature matching, noise
filtering, and motion estimation; however, for obtaining the
absolute scale, stereo-based triangulation is performed. For
minimising the outliers, stereo range-based and epipolar
correspondence-based filtering are applied in addition to
the RANSAC scheme. Absolute ego-motion estimation is
then obtained by minimising the re-projection error for the
triangulated features.

Notably, as the cameras are at very low heights in the
small-scale kart, presence of distinctive features in the ob-
tained images is very crucial for the success of odometry
and this was investigated by placement of traffic cones on
the track. Impact of noisy features at such lower camera
heights is also an influencing factor especially in real-time
autonomous driving and was explored. For planning and
control, a waypoint follower using Stanley lateral geometric
controller was implemented. Other than in a few works
like [15], [16], to our knowledge, approaches based solely
on VO for localization in autonomous driving or racing,
especially with applicability to small-scale karts are less
studied. Even works that do mostly use simulation datasets
rather than performing real-time testing. Additionally, most
of the works deal with only a part of the pipeline. In our
work, we present the entire pipeline along with real-time
results. The combination of these factors can be attributed as
the novel contributions of this work. Therefore, this research
and analysis explores the implementation of stereo VO-based
lateral control in small-scale karts, especially relevant to
low camera heights, with a focus on the following research
questions:

1) What techniques can estimate localization in world
units, using only stereo vision, for small-scale karts?

2) What is the impact of presence or lack of distinctive



features on stereo visual odometry for small-scale
karts?

3) What effect does the presence of noise or errors has on
the performance of the stereo based visual localization
and what are the ways to mitigate them?

The paper is further structured as follows: Section II
discusses the related works that are relevant to the research
questions. Section III describes the re-build of the small-
scale kart. Section IV talks about the data collection process
and Section V details the methods used in this research.
Section VI presents the results obtained and discusses the
relevancy to the research questions. Section VII concludes
the study along with suggestions for improvements.

II. RELATED WORKS

Works concerning classical stereo VO for autonomous
driving with a relevancy to the above research questions are
discussed here. Most of the works in this category solely
deal with the perception module, with a special focus on
localization.

Hernandez-Gutierrez et al. [16] focus on a egomotion
estimation system in their work, solely using a stereo head
camera, and based on feature detection and tracking between
consecutive video frames. They present a comparison be-
tween two algorithms - one that applies triangulation but
states that the localization was seriously affected by the
non-isotropic noise in the process and hence a second one
that directly works in the disparity space. They also quickly
mention the impact of features’ distribution but do not discuss
any experimentation related to it. For mitigating the effect of
noise, a refinement process is performed by utilizing either
all the feature points or only a random sample of 7 points
or using disparity space homography. They perform testing
on video sequences collected using a full-size car in urban
environments but do not mention any real-time autonomous
driving tests on the vehicle.

In the work by Agarwal and Konolige [17], a real-time
system to localize a mobile robot is presented. This work uti-
lizes a pair of stereo cameras with 12cm baseline and camera
height of 0.5m but complements it with inertial sensor suite in
cases of failures, and an inexpensive GPS. Relative motion is
estimated using feature tracking; and stereo correspondences
are triangulated to estimate absolute motion. Disparity space
homography is made use of to evaluate the inliers. A Kalman
filter fuses the GPS measurements with the global pose to
avoid long term drifts. Here, only three points are used
here to generate a motion hypothesis; and notably this work
discusses the need to ensure that these three points are equally
spaced out to avoid bad estimates. Feature locations in the
image are divided into equally spaced bins and each feature
point is selected from a different bin. Testing is performed
on several outdoor terrains in closed loops of over 50-100
metres. Percentage errors in localization and trajectory results
are presented in their work. Also, integration with GPS is
shown to outperform vehicle odometry or raw VO, for loop
closures.

Kitt et al. [18] employ stereo based motion estimation
based on trifocal geometry between triples, solely relying
on visual inputs. They use feature matching between con-
secutive frames as feature tracking requires re-initialization
procedures. To handle outliers, they utilize a RANSAC based
outlier rejection and couple it with a Iterated Sigma Point
Kalman Filter to cope with measurement non-linearities.
They focus on the distribution of features using a bucketing
procedure. They divide the image into non-overlapping rect-
angles and keep a maximal number of points in every bucket.
This is done to have a good distribution of the features along
the roll-axis of the vehicle in order to utilize both near and
far features. Bucketing ensures having a uniform distribution
over the image, guaranteeing that majority of the features
lie on the static backgrounds. Owing to this, they claim to
observe reduced drift rates, on experiments with simulated
data.

Gates et al. [11] build a feature-based simple stereo VO
system based on feature matching and linear triangulation.
For validation, they propose checking the plausible scenarios
depending on the vehicle and the environment that the
vehicle is in i.e., given these scenarios and the corresponding
conditions, translation between any two time steps cannot
exceed a limit and similarly rotation cannot be above a
degree threshold. Their overall system is evaluated on a
KITTI public odometry dataset but report less accuracy than
other such systems; although they report improved speed
performance as a plus.

Howard [15] describes a near-pure stereo VO using com-
bination of stereo ranging and consecutive stereo pairs. This
work utilizes feature matching for consecutive frames and
constructs disparity images for stereo matching. For noisy
features or error removal, the author proposes a inlier de-
tection rather than a outlier rejection scheme; the matched
points are iteratively analyzed to form cliques, where clique
is a subset of mutually consistent matches. A pair of matches
is consistent if the distance(world-units) between the two
features is identical in the consecutive frames. Practically, at
least ten points are needed in the clique for proper ego motion
estimation. The author discusses that this approach can easily
cope with frames containing 90% outliers but the general-
ization of the same to handle triangulation is beyond the
scope of the work. Also, significance is given to the feature
spread in the image. Co-linearity of the features is validated
by computing the eigenvalues of the feature distribution and
computing the maximal ratio. The algorithm in this work has
been tested on many platforms including the DARPA LAGR
and Biodynotics BigDog and the same has been discussed
in the work. The LAGR vehicle equips two unsynchronized
stereo pairs but falls back on wheel encoder and IMU in
case of VO failure. One of the limitations highlighted is that
VO will work only in environments where stereo works. The
work also concludes that the pure VO algorithm is intended
to augment some form of proprioceptive sensing rather than
be a standalone.

In summary, for motion estimation, most of the approaches
utilize either feature matching or tracking for the initial



Fig. 3: Rebuilt small-scale kart

steps and then proceed with either triangulation or to operate
directly in disparity space. For outlier rejection, RANSAC
based scheme is mostly used; for noisy features or error
removal, each work focuses on a different validation method,
depending on the application and the environment. Works
that focus on feature distribution re-iterate the significance of
feature spread. However, there are relatively few works that
focus on classical, vision-only stereo odometry approaches
with an emphasis on real-time testing and that also present
a complete pipeline for autonomous driving. The applica-
bility to small-scale karts and lower heights is even more
limited. Hence we further investigate the feasibility of these
techniques in the following sections, addressing the research
questions.

III. RE-BUILD OF SMALL-SCALE KART

We considered a 1:8 scale RC HIMOTO kart for the rebuild
framework. For better control, the original brushless DC
motor was replaced with a new one to reduce the speed from
80 km/hr to approximately 23 km/hr. Servo motor for steering
and electronic speed control for braking is used. A Four-
Wheel-Drive (4WD) mechanism drives the kart. Separated
power supplies for the motors and the computing unit were
used. Intel i5 Processor 16GB RAM was chosen, which is
the same as the one used in the SDC kart.

A CAN communication network was used with single
ECU control for both the throttle ESC and the steer servo.
The kart was made controllable using RC mode (2.4GHz fre-
quencies) or command mode (either autonomous or keyboard
commands from a mobile device connected via hotspot) and
included an emergency stop mechanism considering safety
aspects.

The chassis was remodeled with newly designed suspen-
sion plates and increased load capacity, to accommodate two
platforms, one for the power supply and the communication
circuit and the other for the cameras and the computing unit.
Initially left, center, right cameras (Logitech Streamcam)

were mounted directly on the top platform in a stereo
arrangement with baseline between the left-right cameras as
14cm and that from the center to left/right cameras as 7
cm. However, the less rigidity of the setups caused image
instability and inconsistency in calibrated stereo parameters;
due to this, an encapsulation setup was designed to house
the cameras making the extrinsic calibrations between the
cameras as constant. This setup was attached to the platform
with the center of the camera at a height of 19 cm from the
ground. The final rebuilt kart is as shown in Fig. 3.

IV. DATA COLLECTION

The UTrack athletic track at the University of Twente
was chosen as the test field. Data was collected using RC
or keyboard control commands. Additionally, traffic cones
and compact plastic cups resembling traffic cones were
placed along the lane boundaries at regular gaps and data
was captured. The captured data also included CSV files
containing throttle and steer data. The left-right stereo pairs
were calibrated to obtain the the extrinsic and the intrinsic
parameters. Data was collected during different times of the
day at different lighting conditions, for which, the camera
settings were adjusted to avoid motion artifacts. Velocity
values were measured using manual distance measurements
and timers, when needed.

V. METHODOLOGIES

In this approach, the perception module involves estimat-
ing the pose of the kart in absolute (world) scale, the planning
module generates a reference trajectory denoted by waypoints
in terms of 3D coordinates and velocities, and the control
module implements a controller to utilize the obtained pose
and generates actuator commands for the kart to follow the
reference trajectory.

1) Pre-Processing and Stereo Rectification: For percep-
tion, a stereo camera has the advantage of depth information
retrieval over monocular cameras. This helps in the absolute



motion estimation in real world distances [11]. We couple this
stereo depth information with VO for the motion estimation.

We utilize the left and right camera images from the kart as
the stereo pair. Even though the stereo setup is encapsulated,
it is not an industrial depth camera which would be more
perfectly aligned. Therefore, for real-time stereo algorithms,
the initial significant step after grayscale conversion is to
perform stereo rectification by warping the left-right images,
so that the epipolar lines are aligned with the image rows.
These rectified images correspond to images obtained from
a virtual pair of perfectly aligned stereo cameras and all the
further processing steps are performed using these rectified
images [15].

2) Disparity and Depth Estimation: For performing
odometry, the 3D co-ordinate values (X,Y,Z) of the features
need to be estimated i.e., depth values need to be estimated
first. For stereo pairs, disparity and depth computation using
stereo matching algorithms are often used for this purpose.
Disparity at each pixel in the left image is the difference in
X value between the pixel and the corresponding matching
pixel in the right image; disparity is hence proportional to
the inverse of the depth. The epipolar constraint makes this
disparity estimation efficient.

Stereo matching algorithms such as StereoBM (Block
Matching) and StereoSGBM (Semi-Global Block Match-
ing) were attempted. These produce a disparity map output
based on a scoring method such as SAD (Sum of Absolute
Differences) which considers a small window around the
pixel of interest and computes the score [15]. StereoBM
is computationally less intensive, while stereoSGBM offers
higher accuracy by considering global context but at the
cost of increased computational complexity [19]. Parameters,
including the window size and the disparity range considered
for the search, require extensive tuning to find the optimal
combination of values suitable for the application. For in-
stance, a larger block size gives a less accurate but smoother
map, while a smaller block size provides more details but the
chances for the algorithm to find a wrong correspondence is
higher.

Depth maps are obtained from disparity maps using the
formula:

Depth =
(f ∗B)

Disparity
(1)

where f is the focal length of the camera in pixels and B
is the stereo baseline in world units.

However, the obtained disparity and depth maps contained
too much noise and less useful information. To improve
the disparity maps, before disparity computation, edge-aware
Gaussian filtering process was applied on the rectified images
to smoothen out noise but this resulted in no significant
improvement. An important aspect behind this is that owing
to a short baseline, the depth range is small. Computing using
Eq. 1, for a baseline of 0.14m and a (rectified) focal length of
743 pixels, the depth is ∼100m only when the disparity is as
less as 1 pixel, ∼50 m for 2 pixels and ∼35m for 3.5 pixels.
A disparity of 1 pixel cannot be considered reliable due to

(a) Stereo BM disparity

(b) Stereo SGBM disparity

Fig. 4: Comparison of disparity map generated using BM and
SGBM matchers

noise sensitivity and sub-pixel inaccuracies. Therefore, we
considered the practical maximum reliable depth range to be
around 50 metres. Owing to the lower height of the camera,
this is a shorter range given that most of the pixels captured
are from road surfaces and not many distinctive features can
be obtained from this perspective. Hence, in order to tackle
this, traffic cones were placed along the lane boundaries
of the track at gaps of 1 metre or 2 metres, as a way of
introducing more features. Resolution was also increased
from 848×480 to 960×540. After this, disparity was again
computed using StereoBM and StereoSGBM, which are as
shown in Fig. 4a and Fig. 4b respectively. The corresponding
depth maps were also computed.

As can be seen, the resulting images were still notably
noisy overall but retrieved the structure of the cones properly.
The estimated depth values corresponding to the cones were
closely matching with the ground truth values that were
approximated based on the placement arrangement, in terms
of meter level precision but the centimeter precision for the
ground truth is unknown. Nevertheless, filtering only the
valid pixels and avoiding the noisy values in these images,
would be a daunting task. A commonly used disparity post
processing filter is the Weighted Least Squares filter; this
removes noise and small errors, while performing edge-
preserving smoothing, using gradient information [19] and
a original guided source image. This filter was also tried to



Fig. 5: Processes in the perception module

be implemented but in vain.
3) Features Extraction and Matching: Alternatively, in-

stead of these block based matchers, another way of finding
the 3D coordinates from a stereo pair is to focus on prominent
features and perform feature based triangulation. Triangula-
tion determines a point in 3D space given its projections in
two or more images. Feature points of the left-right stereo
images are utilized for this process only after being validated
through a series of filtering steps. A complete overview of the
processes in the perception module we implemented utilizing
stereo triangulation is as shown in Fig. 5.

Consequently, for feature extraction, SIFT extractor is
considered. Based on experimentation, we choose the number
of features per image to be 1500, in order to balance perfor-
mance and real-time computation. As the placement of the
cones introduces additional corner features, ORB extractor is
also tried [20]. At each step let Il,k, Ir,k, Il,k−1, Ir,k−1 denote
the current and previous left-right rectified pair of images

(a) Using ORB (b) Using SIFT

Fig. 6: Sample extracted features in UTrack images in the absence
of cones

(a) Using ORB (b) Using SIFT

Fig. 7: Sample extracted features in UTrack images with cones
placed at 1m gaps

respectively and let (xi,yi) denote the 2D coordinates of the
ith feature point extracted in the images. Features extracted
using SIFT and ORB in sample left images with and without
cones is as shown in Fig. 6 and Fig. 7. It can be seen that
the ORB also fetches more meaningful features due to the
placement of cones.

(a) Before epipolar filter(2-pixel). Only a few matches are shown for illustration

(b) After epipolar filter(2-pixel)

Fig. 8: Matched features

At each estimation step, the 3D coordinate values of the
feature points in Il,k−1 are needed. For this, correspondences
between the features of the stereo pair Il,k−1 and Ir,k−1 are
obtained by using Brute force feature matching technique,
utilizing a distance threshold ratio of 0.7 (chosen via ex-
perimentation). In order to further remove outliers among
these matches, validation is performed both before and after
triangulation.

4) Filtering and Triangulation: For this, utilizing the
property of epipolar geometry, we define a pixel-based filter
that removes matches that do not adhere to the property. This
is performed by checking that the y values of each pair of
the matches do not differ by more than 1 pixel or 2 pixels;



(a) After triangulation

(b) After depth range-based filter

(c) Final selected points

Fig. 9: Comparison of the obtained 3D points using ORB at stages
of filtering

this difference is considered acceptable because practically,
epipolar correspondences would still have slight flaws due to
imperfections in rectification. Results of the epipolar filtering
process is as shown in Fig. 8. By making use of these filtered
matches and the projection matrices of the left and right
cameras Pl and Pr, linear triangulation step is performed and
3D coordinates of the feature points in Il,k−1 are obtained.

The output of this step is as shown in Fig. 9a. For evalua-
tion, no ground truth 3D values are available for the features
due to lack of additional sensors like 3D Lidar. However, the
cone features obtained were randomly chosen and evaluated
using the approximate ground truth (considered from the cone
placement arrangement as mentioned previously).

These triangulated feature points are validated next based
on the obtained depth range. Per the computed reliable depth
range of 1m-50m, features with depth outside this range are
filtered out to increase the reliability of the motion estimation.
The output of this step for the sample image is shown in
Fig. 9b. Ranges were varied between a maximum value of
30m and 50m to check for changes in performance and 45m
was chosen as the suitable range.

5) Motion Estimation in World-Scale: Now, to estimate
the motion using odometry, the 2D features in iml,k cor-
responding to the these triangulated points in iml,k−1 are
obtained by feature matching with distance ratio threshold
of 0.7 i.e., features are matched between the consecutive left
frames iml,k and iml,k−1, and finally only the triangulated
3D points in iml,k−1 which also have a corresponding 2D
match in iml,k are chosen. The final chosen triangulated
feature points using ORB (range 45m max) are as shown
in Fig. 9c. The frame-to-frame motion can be estimated by
minimizing the image re-projection error between the ob-
tained 2D-3D correspondences. The translation and rotation
can be solved for using the standard Levenberg-Marquardt
minimization (least-squares) algorithm [21] [22]. RANSAC
[23] based scheme is used to further tolerate outliers in the
estimation process.

We set another validation criteria for this step. Theoreti-
cally, at least 6 points are needed to generate a unique motion
estimation [24] but practically we set at least 8 or 10 points
as needed for the estimation.

This gives the estimated motion (X, Y, Z) between each
step in terms of absolute world scale. By accumulating this
incremental motion at each step, the trajectory followed by
the left camera can be generated. As the camera setup is
rigidly attached to the kart, camera’s motion equates to
the kart’s motion. We have considered the origin of the
left camera coordinate system as the origin of the world
coordinate system.

Fig. 10: Stanley controller for a simple kinematic vehicle model.
Here δ is the steering angle, θe is the heading error, e is the lateral
error, v is the vehicle’s speed and (xc, yc) is reference point taken
at the front axle center

6) Path Planning and Control: Performing this localiza-
tion and trajectory generation process offline on a collected
dataset, a list of waypoints that corresponds to the trajectory



Fig. 11: Overview of the offline and the live processes for the stereo VO-based approach

of the driven path can be generated. This waypoints list
usually consists of entries of ((X,Y,Z), velocity, orientation)
accumulated at each step from source to destination. In
our case, we assume constant velocity and for the sake of
simplicity coupled with the lack of additional sensors, we
construct each waypoint as (X,Y,Z).

During the live run, this reference waypoint list was used
as the intended global reference path in the planning module.
Local path planning was not necessary in our case as obstacle
avoidance is not considered in the scope. At each step in
the live run, the actual location of the kart outputted by
the perception module is used to find the nearest reference
waypoint in the list. A waypoint follower then calculates the
lateral and heading error between the actual and the reference
locations (waypoints). In the control module, for minimizing
this lateral and heading error, a lateral control law stated by
a commonly used Stanley controller [25] was chosen. As
shown in Fig. 10, this relies on the geometric relationship
between the vehicle’s heading and the path to provide a steer
value in the form of :

δ = (kh · θe) + arctan

(
ke · e
v

)
(2)

where δ is the steering angle, kh is a gain parameter for the
heading error, θe is the heading error, ke is a gain parameter
for the lateral error, e is the lateral error, v is the vehicle’s
speed.

Pure pursuit controller is another often used geometric
controller but Stanley is computationally efficient for less
complex real-time situations [26]. No longitudinal controller
was implemented and instead a constant throttle was pro-
vided. The final throttle and steer commands are passed to
the actuators via the CAN network. The basic architecture of
the implemented overall pipeline is as shown in Fig. 11.

VI. RESULTS AND DISCUSSIONS

The results primarily obtained from each module during
the offline and the live processes and the performance of the
kart during real-time tests are discussed here, along with the
findings and discussion of the research questions.

(a) SIFT vs ORB (b) Using ORB runs (c) Using SIFT runs

Fig. 12: Generated offline trajectories

1) Offline Processes: Using the methods discussed above,
the offline reference trajectories were generated using both
ORB and SIFT as shown in Fig. 12. Data collected using
manual runs in straight segments of the track lanes, for a
distance of 30m, and with cones placed along the track
was used for this. Fig. 13 shows the placement of the
cones on the track. The obtained trajectories could not be
validated quantitatively as exact ground truth could not be
determined owing to the absence of an IMU or even a basic
velocity sensor in the kart. Therefore, manually measured
longitudinal distance and the known shape of the trajectory
were considered for comparison. Fig. 12a shows comparison
between the trajectories generated using the ORB and SIFT
feature detectors. It can be seen that ORB gave a closer
longitudinal distance match (approximately 29m) compared
to SIFT (approximately 32m), though both the trajectories
retained almost the same shape in this case, except for
orientation errors at some regions. In the absence of precise
ground truth, another way to validate is to test using data from



Fig. 13: Traffic cones placement

different runs. The offline trajectories generated for different
runs using ORB and SIFT can be seen in Fig. 12b and
Fig. 12c respectively and ORB showed better repeatability
than SIFT.

Notably, the shape of the trajectories obtained using both
the methods did not result in a straight path (compared to
the manual ground truth). Rather, both resulted in curved
trajectories with significant lateral shifts (3-4 meters). Accu-
mulation of drifts over time, especially lateral drifts, is a nat-
ural characteristic of VO processes. However, in the manual
drives, as the kart was approximately driven throughout in the
center of the lane (relative to the lane) and as the total width
of the lane itself was only 1.2 m, this drift was perceived
as impossible. Despite checking for errors in the localization
process and improvements in the algorithm, similar shapes
of trajectory were retrieved in numerous runs at different
places of the track and for different distances. On probing,
we determined that this is attributed to combination of the
following reasons:

1) The kart is originally a hobby-purpose RC car and
has been rebuilt. It suffers from significant wheel
misalignment of the front wheels, owing to which it
has a natural drag towards left side.

2) The Utrack is an athletic track and the lanes of the
track are slightly slanted inwards at varying degrees.
This was informally tested by placing spirit levels and
fluid-filled containers on the track.

3) Naturally occurring accumulation of drifts using the
VO processes without any adjustment techniques.

This reasoning was confirmed by driving the kart in the
track using absolute zero steer and giving only throttle values.
Though placed at approximately zero degree start-orientation
relative to the lane, instead of running straight in the lane,
the kart ran significantly left. This can be seen as in Fig. 14,
where the red dotted line denotes the expected run of the
kart and the yellow dotted line denotes the actual run of the
kart. However, while driving manually, the driver controls
the kart by giving right steer then and there, to keep the

Fig. 14: Zoom-in map showing the slant direction (black arrow),
absolute zero steer run (yellow dotted) and expected run (red dotted)

kart in the center of the lane. These right steers cause
the odometry algorithm to believe that the kart is taking
a turn as the algorithm checks for the relative motion of
the features only between the consecutive frames. When
accumulated, this causes the perceived lateral drift shown in
the generated trajectories. This left drag and slant was tried
to be compensated by giving a constant right steer, but this
value could not be pre-defined as the drag was varying each
time.

Nevertheless, this does not denote any failures with the
odometry process and the localization output of the percep-
tion module itself. Additionally, considering only the offline
processes of the perception module, ORB was able to process
the frames at around 15 FPS whereas, using SIFT, the FPS
was reduced to approximately 8. Hence, ORB was chosen to
be used for real-time tests.

2) Real-time runs: Using the offline trajectories generated
as above (using ORB) as reference trajectories, real-time
autonomous live runs were tested. For the real-time runs
to work, all the three modules in the pipeline should work
successfully. The perception module choices were retained
the same as that of the offline trajectory generation process,
including feature detection and matching, triangulation and
motion estimation, filtering steps, and the constant param-
eters. Traffic cones were placed on both sides along the
track at gaps of 1 meter. For the planning and control
modules, velocity of the kart is an important input parameter
as can be seen in Eq. 2 of the Stanley controller. Incorrect
velocity values lead to erroneous steer commands. Therefore,
manual measurements of the kart’s velocity had to be taken
frequently during the experiments, as even small changes
in battery levels resulted in noticeable drops in speed. The
exposure of the cameras was manually set before each run
depending on the lighting conditions at the moment.

During the tests, owing to lack of ground truth data,
each step of the live run could not be precisely validated.
However, at each step, the obtained ego-localization was
checked to see if the values were sensible according to the



visual evaluation of the kart’s movement. In the initial tests,
the processing speed of the algorithm seemed too low for the
kart to run. Hence, the efficiency of the processes were partly
improved by enhancements in the implementation. In the
proceeding runs, the processing speed was slightly improved
and the kart’s velocity was set to the minimum possible
(approximately 62 cm/s) in accordance with the processing
speed. However, the kart ran a distance of only 2 m, and
then curved towards the left or right, and bombarded with the
cones. On analyzing the data, the localization estimates were
good, implying that the perception processes were working
fine. The closest waypoint estimates fetched by the planning
module were checked for correctness too.

However, the controller module did not seem to produce
the required steer commands. The parameters ke was set as
0.5 and kh was set as 1 during these runs. Tuning these
parameters according to the vehicle and the environment
was extensively carried out. Despite this, owing to frequent
heading angle changes in the considered reference trajectory,
the heading error changed at a high frequency during the live
run; as a result, the controller produced frequent and sudden
steer oscillations. To reduce this impact, the weightage of
the heading error (kh) had to be lowered. On the contrary,
the weightage of the cross-track error had to be increased,
due to the very small lane width (120 cm). As the kart
was 40 cm wide, it had less than 40 cm movable lateral
space on each side before it would hit the cones placed
on the lane boundaries. This space was practically reduced
to approximately 15-20 cm on each side when the kart
diagonally nears the cones, because the Field of View of
the cameras used enables information capture only from 50
cm ahead. Due to this, as the kart nears the cones, there will
be no information except unidentifiable blur or plain cone
surfaces; this causes the odometry to fail and consequently
the motion estimation and the control fails. Ultimately, only
when the k h was set as 0.5 and the k e was set as 1.2, the
kart was able to carry out autonomous manoeuvres.

3) Performance of the kart: Runs were performed for dis-
tances upto 10 m and 20 m. The same set of tuned parameters
enabled the kart to traverse these distances autonomously.
The trajectories generated from the data collected during
these live runs along with the reference trajectory are as
shown in Fig. 15a and Fig. 15b.

It can be seen that the kart exhibited oscillating behaviour
although it successfully traversed the distance. The behaviour
was also visible during the runs on the track. On analyzing,
one of the primary reasons is that though the controller does
not produce a left steer the kart moves to the left due to its
natural left drag as discussed earlier. The controller module
does not incorporate this information about the mechanics
and the consequent further left drag, and hence produces a
small right steer to compensate. However as the left drag
increases, the controller produces a higher or continuous right
steer to compensate, which explains the drift to the right.
The pattern repeats again resulting in oscillating behaviour.
This is also caused by the impact of the oscillations in the
heading errors despite reducing it by a weightage factor of

(a) For a straight segment
of ∼20 m distance

(b) For a straight segment
of ∼10 m distance

(c) For a different seg-
ment of distance ∼ 10 m

Fig. 15: Live runs vs reference trajectories

0.5. As seen in Fig. 15a, the oscillations begin in the live
run when the reference trajectory shows significant changes
in the heading direction. The processing power and in turn
the execution speed also influences the reaction time of the
controller. The entire pipeline was capable of live execution
at ∼ 12-13 FPS.

Nevertheless, despite the oscillations and a stringent lat-
eral space on each side, the kart was able to achieve the
autonomous runs. Repeatability was tested by performing the
live runs at a different straight segment of the track and on
different days. The trajectories generated corresponding to
two different runs in this segment compared until a distance
of 10 m are plotted as shown in Fig. 15c. along with
the reference trajectory. The longitudinal error for the run
considered in Fig. 15a was found to be ∼1.9 m. The average
longitudinal error for all the autonomous runs performed
was ∼ 1.5 m; it is important to note again that all the
measurements are completely manual.

The lateral error was considered to be the ∼40 cm lateral
space as mentioned above. However, in the plotted trajecto-
ries, the lateral drifts are calculated to be higher which is not
possible as the kart did not go out of the lane of a total width
of 120 cm. The shown lateral error is again perceived due to
the accumulation of drift because of frequent changes in the
heading.

The tests failed at around 10 meters in case of notable
changes in the natural lighting conditions; this is because
as the lighting varied, the exposure of the cameras had to
be adjusted and more exposure introduces motion artifacts
and affects the frame rates. A varied frame rate alters



(a) Final selected 3D points for a sample image with cones (b) Final selected 3D points for a sample image without cones

(c) Average features distribution for a live run with cones (d) Average features distribution for a run without cones

(e) Average histogram distribution for a live run with cones (f) Average histogram distribution for a run without cones

Fig. 16: Comparison of the obtained 3D points using ORB at stages of filtering

the available information and impacts the feature matching
process. Another trouble faced was the vertical vibrations of
the kart as it is a simple, small-scale, non-industrial grade
vehicle, and not equipped with robust mechanics. This also
highly influences the process as visual odomtery is dependent
on the change in information between the frames.

4) RQ1: Addressing the primary research question, the
techniques that work for implementing the autonomous driv-
ing using only vision-based odometry can be inferred from
the elaborate discussion of the results presented above. The
heading error oscillations and its effect can be mitigated by
the use of a look-ahead distance using the fetched reference
waypoints while computing the heading error. This takes into
account the heading of the global trajectory that is further

ahead and reduces the impact of the local oscillations. A
Kalman filter can also be used to smoothen the heading error
oscillations.

Failures were reported in the localization process in a
few frames. A failure is reported when there are no valid
points available to estimate the motion after all the filtering
processes. For such cases, constant velocity assumption can
be used to compute the motion. However, we could not
attempt it in our implementation because the velocity of our
kart changes non-linearly with decline in battery levels.

The reaction time of the controller can also be improved
by improving the performance of the algorithm. Feature
extraction is one of the steps that occupy a lot of the
processing power. This step was performed sequentially for



the left and right camera images. Performing this in parallel
using multi-threading can further fasten the performance.
Similarly the implementation of the step where the common
features are selected from the left image of the stereo pair
and the consecutive left frame was computationally expensive
and can be made efficient. These improvements can possibly
increase the execution speed to 15 FPS.

5) RQ2: For analyzing the impact of the presence of
features in the obtained runs, we have utilized two visual-
ization forms: dividing the image into grids and mapping the
number of features per grid in a bar graph, and considering
the chosen depth filter range and checking the distribution
of the features across this range via a histogram. For this
analysis, we consider the run corresponding to the trajectory
in Fig. 15a. Fig. 16a denotes the final 3D points obtained
using ORB, in a sample image segmented into grids. Fig. 16c
denotes the distribution of these 3D points across the grids
computed for the data of the whole run, considering the top
left grid as start and moving right; whereas Fig. 16e shows
the chosen depth range (1m-45m) and the spread of the 3D
points across these continuous ranges as computed for the
data of the whole run. These histogram distributions were
computed for all the autonomous runs performed and similar
patterns were observed for the different runs. Whereas, the
Fig. 16b shows a sample image from a manual run in the
absence of cones and Fig. 16d shows the average feature
distribution across grids for data collected from the images
of the manual run. Fig. 16f shows the average histogram
distribution for the same run. Similar patterns were observed
in other runs carried out in the absence of cones as well.
Comparing these average histogram distributions, it can be
seen that there is a stark difference in the form of peaks in
the near-depth ranges around 2-3 metres in the autonomous
runs that succeeded. However, in the runs without cones, the
distribution of features in the near-depth ranges is too scarce.
This explains the reason why the runs succeeded only in the
presence of cones and failed drastically in their absence. The
availability of distinctive features in the near-depth ranges has
a high impact on the motion estimation process, especially in
the translation estimation. The average feature distributions
of the runs with and without cones also show that presence of
distinctive features distributed in the grids corresponding to
the near-depth ranges is crucial for the success of the runs.
The far-depth ranges should also contain at-least a part of
the distribution, though not high peaks as in the near-depth
range. This assists in the rotation computation in the motion
estimation process.

6) RQ3: Considering the impact of the outlier or noise
filtering steps on the overall process, the epipolar filter was
found to have a greater impact for better motion estimation.
Before the introduction of this filter in the process, a signif-
icant number of features were having erroneously estimated
3D values; this was removed by the introduction of this filter.
Having the pixel-difference as ’2’ was ideal for this filter; as
1-pixel difference retained only too less features. The next
impactful process was the depth range filter. Consideration
of the optimal range that the cameras can handle helped

in removing outliers and unreliable features belonging to
the far ranges, as can be seen in Fig. 9b. Finally removing
out the features that were not commonly present in the left
consecutive frame pairs, was necessitated by the process. The
combination of these filters drastically reduced the number
of final points obtained, especially the unreliable features
belonging to the noisy road textures or the distant trees, and
increased the selection of valid features as that of the cones.
Without this, autonomous runs could not have been achieved.

Overall, combining the appropriate filtering steps along
with the discussed suitable techniques, is highly essential
to achieve autonomous driving using ”pure” stereo visual
odometry on small-scale karts under constrained operating
conditions. No other related work demonstrates classical
approaches for real-time autonomous driving in small-scale
karts using only a single-stereo pair and a camera setup height
as low as 19cm from the ground. All works explore camera-
based driving augmented with any other basic or advanced
sensors or using learning-based approaches. Only the works
such as in [15] explore nearly pure stereo autonomous driving
which was applied in the DARPA LAGR and the BigDog
applications. But in the work, two stereo pairs are coupled
to explore the autonomous driving. Nevertheless, stereo vi-
sual odometry coupled with an IMU is more powerful and
fail-safe. Considering that our implemented techniques can
achieve camera-only-based autonomous driving under strin-
gent operating conditions as discussed, it has the potential
to perform well in improved hardware and better operating
domain conditions.

Relevant to the SDC, if the SDC kart were equipped with
a stereo pair instead of multi-cameras with no overlap, this
approach would have worked better than with the small-
scale kart, owing to the comparative high camera placements
and more stability of the go-kart. This has the potential to
explore more techniques in the study of autonomous driving
behaviour when coupled with a basic IMU. The organizers
of the SDC can take this study into account as the findings
align with the motive of the challenge.

VII. CONCLUSION

As a part of the follow-up study addressing the shortcom-
ings of the monocular VO approach after the SDC, real-
time autonomous driving using a single stereo-pair placed
at a very low height on a small-scale kart was achieved
in this work. Incorporating the basic functionalities of the
SDC kart, this small-scale kart was re-built successfully
as the intended test platform to implement and study the
autonomous behaviour. The study was focused on the in-
vestigation of the techniques that can be relevant to small-
scale karts, with analyses about the impact of the presence
and distribution of distinctive features and the ways to
mitigate outliers throughout the processes. In accordance
with this, a complete pipeline including ego-localization in
the perception module, waypoint follower in the planning
module, and a geometric Stanley controller in the control
module is presented. In order to study the impact of features,
traffic cones were placed along the lanes at regular gaps



and the autonomous runs were made using this data. Ego-
localization was achieved using feature extraction, matching,
and filtering coupled with stereo-based triangulation. Depth
and disparity-based stereo block matching techniques were
also initially attempted instead of triangulation process, but
these techniques failed due to the noisy environments arising
from the low camera heights. A series of filtering steps was
incorporated to include only valid points for the 3D points
estimation. 2D-3D correspondences were used to estimate the
kart’s motion. Autonomous runs were achieved for distances
of 10-20 meters with an average longitudinal error of 1.5
meters and a execution speed of 12-13 FPS. No other sensors
were used in the runs. The exhibited oscillating behaviour
during the autonomous runs were studied and suggestions for
improvements were proposed. Possible failure cases of the
VO approach were also discussed with techniques to handle
the failures. Future works can focus on an advanced im-
plementation of the control module, additionally taking into
consideration the mechanics and dynamics of the kart. VO
is a more generalized process for vision-based autonomous
driving and can work in scenarios where even IMUs fail.
However, VO is intended to augment other sensors; in case
of VO failures, fusing the data from other sensors such as a
basic IMU, if available, can make the algorithm more reliable
and this would be the most suitable approach for real-time
driving.
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