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Summary

Train rails are highly susceptible to surface damage and surface defects such as wear
and rolling contact fatigue (RCF). Because of this damage, it is of great importance
to maintain rails before critical defects arise. The Whole Life Rail Model (WLRM) is
a model that could be used as a tool to predict maintenance needs for rails. In this
model, the wear number is used as an indicator to predict the number of cycles a
train can run over the rail before critical damage arises. This wear number is based
on the shear forces exerted by the train wheel and the creepage, the relative velocity
between the wheel and the rail. The vertical axis of the WLRM shows the Damage
Index, the inverse of the number of cycles until critical damage.

Because the existing WLRM is completely built upon field results at specific loca-
tions, it is not possible to use it for all locations and cases. In this study, it is tried to
design an approach that can describe the RCF function of the WLRM. Together with
already existing wear models, WLRMs can be developed for each location.

To construct this approach, the fatigue crack formation is divided into crack initi-
ation and crack propagation. In this study, the focus was mainly on propagation. An
XFEM model was used to determine the Stress Intensity Factors (SIFs) in a crack tip,
when a train wheel is crossing the rail. These SIFs could be used to obtain the crack
growth rate. By using a critical crack length of 10 mm, the number of cycles until
critical crack length, and thus the Damage Index could be determined.

The obtained Damage Indices were used to reconstruct the RCF curve of the existing
WLRM. It was found that operational parameters have an important contribution
to the determination of the wear number and Damage Index. By keeping these pa-
rameters close to the values from the field locations, the existing RCF curve could be
reconstructed.

As these operational parameters proved to be influential, it was analysed how these
different parameters influence the formation of the RCF function. For this, the verti-
cal wear depth, curve radius, rail cant, friction coefficient, train speed, longitudinal
suspension stiffness, lateral suspension stiffness and axle load were used, as these
have proven to be important parameters for wear. The size of these parameters was
varied such that the change in Damage Index and wear number could be obtained.
For parameters such as the load, speed and curvature, significant changes in either
wear number or Damage Index were found. On the other hand, both stiffnesses
proved to be of little significance.

After showing the influence of different parameters, a regression formula was set up
and trained. Using this formula, it became possible to estimate the Damage Index
if the values for the eight mentioned parameters are known. The Damage Indices
found by the XFEM model were compared with the ones found by the formula. In
this way, it was shown that the formula is able to predict Damage Indices with less
than 10 % error. Using this formula, the Damage Index was plotted against the size of
the operational parameter. These plots generally showed comparable results to the
earlier performed analysis on these parameters. It was shown that most parameters
have a strong linear relation with the Damage Index. For some parameters, the rail
cant and the axle load, the curve is not totally straight and thus, also some quadratic
influence is expected. The vertical wear depth showed parabolic behaviour. This pa-
rameter showed to be more difficult to explain, higher order terms could be involved
for the wear depth.



iv Summary

Using the XFEM model, it was tried if to analyse a theoretical case where a rail was
simulated with a fixed wear depth, radius and cant. It was assumed that multiple
different trains would make use of the rail, and thus the axle load, stiffnesses, speed
and coefficient of friction were varied. For multiple of these situations, Damage In-
dices and wear numbers were obtained. These results did not form a straight line
and thus the construction of an RCF function was not possible. As the parameter
influence is the cause for this, it is not expected that other cases where multiple pa-
rameters are varied do form a straight RCF curve.

To be able to use the propagation model to predict the Damage Index, it was pro-
posed to determine the Damage Index for wear and for RCF. Both can be determined
using their own prediction model. By comparing both Indices with each other, it can
be determined which failure is most dominant and if it necessary to take the other
failure mechanism into account. This method could be used to give an indication of
the important failure mechanism and the number of cycles before critical damage.

It has not been possible to construct the WLRM for different situations in this study.
Some important parts of the model are still missing to get a full view of the crack
growth in rails. The initiation phase is still missing, and will increase the number of
cycles until critical damage when it is included. In the propagation model, the crack
growth rate is kept at a constant rate. As this rate can change depending on the ge-
ometry of the crack (which will change when the crack grows), changing growth rate
should also be included in some way in the prediction model.

Although construction of the WLRM was not possible, it has been shown that crack
propagation in rails can be predicted and used to predict the number of cycles until
critical damage.
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1 | Introduction

Railway traffic, passenger trains as well as freight trains, have significantly increased
over the years. This, as well as the introduction of new trains, new materials for
wheels and rails, has led to higher maintenance costs and downtime. Rail surface de-
fects cause a large part of these costs and downtime. Rail surface defects are caused
by a combination of wear and Rolling Contact Fatigue (RCF). One of the most oc-
curring RCF defect types is head checks, surface defects formed on top of the rail. If
these are not removed in time, they will grow to fatal crack sizes and eventually lead
to broken rails. To prevent this from happening, the currently existing corrective and
preventive maintenance strategies should be adjusted. The chosen strategy should
be more based on predictive approaches, as this will help to forecast certain defects
on the rail. By using predictive maintenance strategies, the degradation of the track
can be estimated and the length of maintenance intervals can be based on this. To
be able to predict the degradation of the rails, models have been developed which
predict the damage rate due to RCF and wear. The Whole Life Rail Model (WLRM)
is one of these models and can predict the damage rate based on the relative wear on
the rails. The drawback of this model however is that it is based on field data from
some specific locations with specific properties. Therefore, the WLRM as set up by
Burstow [1] is not representative for different scenarios and cannot be used for other
pieces of railway track.

Because of this, a generic framework will be developed during this study. This
framework should make it possible to construct a WLRM for most of the possible
scenarios. As the WLRM is based on an RCF model and a wear model, both should
be determined to be able to construct a complete WLRM. In this thesis, the focus will
be on the RCF model and its accompanying damage function. The wear function and
associated wear rates have already been derived by Meghoe [2] from analytical ex-
pressions of several physics-based models. The RCF part of the WLRM however still
has to be derived, preferably by a nonlinear fracture mechanics approach. Therefore,
this research will analyse different models available to describe RCF damage and use
one of these to reconstruct the RCF part of the WLRM. This chapter will further de-
scribe the background of the study, the research problem, the aim, objective, research
questions, and the research hypothesis.

1.1 Background

As discussed before, the combination of wear and RCF can cause severe problems
for railway safety. RCF on railway tracks is known to cause multiple types of de-
fects, from which head checks are one of the most common and severe, but also
best-known defects of surface-initiated RCF. A visual example of these head checks
is shown in Figure 1.1 [3]. Head checks commonly occur on curved tracks with
radii less than 3000 m and in switches and crossings, because lateral contact forces
and relative spin are generally high at these locations. They are primarily located
around the gauge corner of the outer rail and are mostly found with multiple cracks
together clustered at equal distances from each other. These cracks will initiate by
forming short cracks at a shallow angle with the rail surface. When the crack grows,
these angles can become steeper. These cracks grow to a length of approximately 30
mm after which the probability of failure becomes very high [3]. In this research, the
focus will be on the initiation and propagation of these head checks.

1
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(a) severe Head Checks on rail surface
(b) Head checks in gauge corner of high rail. Traffic in
x-direction

Figure 1.1: Examples of head checks [3].

Because head checks can cause severe problems, prediction models should be used
to understand and predict when damage occurs on the tracks and to forecast when
maintenance needs to be performed. As mentioned in the introduction, one of these
models to predict damage is the Whole Life Rail model (WLRM), developed by
Burstow [1, 4]. The WLRM is a damage function set up to predict the damage of
a rail. For a specific rail material and coefficient of friction, the WLRM is depicted
in Figure 1.2. The Damage Index depends on the wear number, Tγ which can be
calculated for specific wheel-rail contact as;

Tγ = Txγx + Tyγy (1.1)

In this Tx and Ty represent the tangential or shear forces, γx and γy represent the lon-
gitudinal and lateral creepage. This creepage is known as a dimensionless quantity
describing the relative velocity of the train wheel moving over the rail, normalised
by the rolling velocity. The x-axis is aligned with the track, and the y-axis is perpen-
dicular to the track. It should be noted that this equation does not take into account
spin creepage in the wear number, which can play a significant role in the formation
of head checks. In a guide to calculate Tγ values, Burstow however writes that in-
clusion of spin creepage in the equation is possible and done for some cases [5].

Figure 1.2: Wear and RCF as competing mechanisms of rail surface degradation [6]

The WLRM is based on the influence of Rolling Contact Fatigue (RCF) and wear on
the rail. Therefore, the WLRM is determined with individual wear and RCF func-
tions. In Figure 1.2 the combination of these models can be seen. In the WLRM in
Figure 1.2 a clear distinction can be made between the regions a, b, c and d. In Re-
gion a, fatigue nor wear has a serious impact. This is followed by region b, where fa-
tigue is dominant. A fatigue threshold is reached such that this mechanism becomes
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important. Once this threshold is reached, the crack growth becomes detectable. Fa-
tigue cracks are formed and the wear is not high enough to remove the layers with
these cracks off the track. In region c fatigue crack initiation still happens, but wear
removes (part of) these defects. Finally, in region d, wear is so dominant that fatigue
cracks have no time to form or grow, the track however wears heavily.

By using the WLRM, for a certain contact condition with a value for Tγ, the Damage
Index for that contact condition can be found. Based on that, the number of cycles
to failure can be determined. The total damage of the rail track can be calculated by
the summation of the damage done by the different contact conditions, as is given in
the Palmgren-miner rule:

D =

k∑
i=1

Di (1.2)

with
Di =

ni

Ni
(1.3)

In this equation it is stated that there are k different scenarios (contact conditions)
and the Damage Index value Di for each scenario is the ratio between the number
of cycles ni with contact condition k and the number of cycles to failure Ni for that
condition. The specific contact condition is represented by wear number Tγ which
is plotted on the horizontal axis in the WLRM. In the end, failure happens if the ac-
cumulated damage index D reaches a value of 1.

As mentioned before, in this study, the RCF function of the WLRM will be researched.
Region b in the WLRM is the most important for this. The fatigue part of the model
is of interest as there are different ways to represent RCF and the crack formation
and growth on rails. A model has to be found that is relatively easy to use while
giving accurate results. In the WLRM, the fatigue life is described as the number of
cycles as a function of the wear number. It is assumed that the fatigue life Nf can be
described by the sum of the crack initiation life Nin and the crack propagation life
Nprop [7]:

Nf = Nin +Nprop (1.4)

By using this equation, the distinction between crack initiation and crack propaga-
tion becomes evident. To be able to predict the lifetime of a rail with sufficient detail,
models for both of these stages should be found. This means that either one model
should be used that can describe Nin as well as Nprop or multiple models have to be
used to describe both instances separately.

1.2 Research problem

The WLRM is based on empirical results and established by using field observations
from a total of six different sites over a time period of approximately two years.
With these results, Burstow [1, 4] developed the WLRM for locations with similar
conditions, and with identical steel grade (R220). Hiensch and Steenbergen [6] per-
formed similar research, setting up the WLRM for steel grades R260Mn and pre-
mium R370CrHT, by using field observations on different sites. For these cases stud-
ied by Burstow, Hiensch and Steenbergen, WLRMs are thus identified. The difficulty
is that for other locations, steel grades, roughness and other parameters, such as rail
radii, cant, train types and weather conditions are different. Because of this, a new
WLRM should be developed for each location. As data gathering from field ob-
servation is a time-consuming business, it can be seen as a major disadvantage for
using the WLRM. Next to this, in the analyses of Burstow, Hiensch and Steenber-
gen [1, 4, 6], the coefficient of friction was set to be constant. It is however known
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that parameters such as the friction coefficient have a significant influence on fatigue
life [8], while they can also vary significantly. In order to improve the WLRM, the
coefficient of friction, but also other parameters, such as rail radii, axle loading and
train speed, should be considered. Their effects on the damage function when these
parameters change have to be analysed. Important for these analysed parameters
is that they are easily retractable from operational data by the end user, the asset
owner. That is why more complex variables such as material properties are not anal-
ysed. Because of these reasons, it would be beneficial to be able to construct the
WLRM using analytical expressions and numerical models. If this is possible, the
time needed to construct a WLRM could be reduced and changing parameters such
as the coefficient of friction could more easily be included in the calculations.

Once it becomes possible to numerically describe the WLRM, it also becomes possi-
ble to develop WLRMs for different situations, wheel-rail configurations, steel grades
and rail dimensions. It would thus become more easy to describe the WLRM for vir-
tually every piece of track in all situations. An advancement like this will lead to
easier maintenance as it would become possible to predict maintenance needs for all
possible rail tracks. As this improvement will facilitate railway maintenance, this is
the main reason to perform this research.

1.3 Research aim, objectives and questions

1.3.1 Research aim

In the current knowledge, there is a theoretical gap between the experimental results
from which the WLRM is constructed and a sufficiently detailed analytical model
able to describe such WLRMs. As the wear model has been derived before, this study
aims to develop and implement a model which is able to describe crack initiation and
propagation using fracture mechanics. In the end, the aim of the research is to be able
to construct a WLRM using the developed RCF damage function.

1.3.2 Research question

To get a better view of the importance of this study and the main reason why this
study is performed, the following main research question is set:

How can the RCF part of the Whole Life Rail Model be reconstructed using a
nonlinear local Rolling Contact Fatigue approach?

To answer this question, the research question was split up into multiple sub-questions:

• Which models are available for predicting and modelling rail crack initiation?

• Which models are available for predicting and modelling rail crack propaga-
tion?

• Which crack initiation model and which crack propagation model can best be
used for reconstructing the WLRM?

• How can the RCF damage function be constructed using the selected initiation
and propagation model?

• Which input parameters are most influential for the RCF damage function?
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1.3.3 Approach

To perform this study in an organised manner, a strategic approach has been devel-
oped. The result of this thesis depends on being able to describe the results from
the experimental field data using analytical and numerical models for crack initia-
tion and propagation. In the end, this study aims to reconstruct the WLRM using
only analytical and numerical models. The end goal is to come up with a function
that can describe the damage of the rail based on rolling contact fatigue. To come to
this result, a top-down approach is taken. To begin at the top, a literature review is
performed to get acquainted with crack formation on rails. The general mechanics
behind cracks formed by RCF should be known, such that the cause of the problem
is clear. This will be followed by literature review to accomplish the first research
objectives. Different models that are able to describe the formation of head checks
on railway tracks will be reviewed during this step. In this review, a distinction will
be made between crack initiation models and crack propagation models. Because
head checks form primarily at the surface [3], special attention is being laid on mod-
els describing surface-initiated cracks.

Once suitable models are found, these are compared and the best ones are chosen
to research more in-depth. To choose which models will be used, literature will be
used to see which are most commonly used for rail damage purposes. The chosen
models should be able to predict fatigue life and thus the output should be in fa-
tigue life (number of cycles to failure). Next to that, the chosen models should have
the right level of detail such that they can evaluate changing parameters in the RCF
models with precision.

The first step with these chosen models will be to check if they can describe rail
fatigue similarly as observed by Burstow [1]. Data from existing VI-Rail simulations
will be compared to the field data obtained by Burstow, in order to get similar simu-
lation values. If similar damage values and a comparable RCF function can be found
using the model, further steps can be taken involving different parameters. Using
VI-Rail, simulations with different variable parameters such as steel grades, surface
roughness and, maybe most importantly, coefficient of friction, will be performed.
The outputs from these simulations will be used in Abaqus where crack growth is
simulated and stresses are measured using a FEM analysis. Using these new simula-
tions, it is expected that an RCF function can be set up. If this function can be found,
it will show the effects of the changing parameters on the fatigue life of the railway
track. By finding this, the fifth objective can be accomplished. Eventually, the dam-
age function should be integrated into the WLRM with the existing wear damage
function. The end goal is reached if a function can be found that can describe RCF
damage for different parameters, and can fit into the WLRM, such that damage by
wear also can be considered. In Figure 1.3, a schematic overview of the different
steps and chapters for this thesis is shown.
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Figure 1.3: Outline of the thesis with chapters.



2 | Theoretical Framework

In this chapter, the theory behind crack initiation and propagation will be discussed.
First, the theory behind crack formation will be explained. The difference between
initiation and propagation will be discussed and the boundary between these phases
will be explained. This will be followed up by explaining Fracture mechanics. A ba-
sic understanding of the mechanisms involved in crack formation will be formed.
The differences between Linear Elastic Fracture Mechanics (LEFM) and Elastic Plas-
tic Fracture Mechanics (EPFM) are laid out. Once this theory is clear, an overview of
different possible models for crack initiation and propagation will be given. The aim
of creating this overview is to find suitable models which can be used to predict the
lifetime of rails based on fatigue life.

2.1 Crack formation

A fatigue crack is not simply formed. Multiple phases will have occurred before a
crack becomes visible, and even more before the crack gets to critical lengths. Schi-
jve uses Figure 2.1 to show the different phases and to make distinctions between
them [9]. According to Schijve, fatigue cracks nuclei start as invisible microcracks
in slipbands. This nucleation of cracks occurs as soon as a cyclic stress above the
fatigue limit (limit below which fatigue does not happen) is applied. After nucle-
ation of the microcrack, the growth rate can still be slow, due to grain boundaries
and other microstructure effects. Once the crack has grown away from the nucle-
ation site, usually a more regular growth is observed. This will start the process of
crack growth. Microcracks become macro cracks and eventually the material will fail
due to the cracks becoming too large. Schijve divides the different phases into two
periods; the crack initiation period and the crack growth period. As both periods
have different variables influencing their behaviour, it is important to differentiate
between these two periods. For example surface conditions can have significant ef-
fect on the initiation phase, but will not change the growth period significantly. As
shown in Figure 2.1 both periods also have different parameters for the prediction
of formation and growth. The stress concentration factor Kt is used to predict crack
initiation, while the stress intensity factor K is used to predict the growth. The frac-
ture toughness Kic is the maximum value for the stress intensity factor, if that is
reached, the crack will grow fast and unstable. The rail will fail. Both the stress
concentration and the stress intensity factor will be discussed later in this chapter.
The boundary between these two different phases is important to mention. Crack
initiation is mainly determined by the material surface phenomenon, where crack
propagation depends on the material as a bulk property and is not influenced by
the surface phenomenon. One can thus say that if the microcrack growth no longer
depends on surface phenomena, then crack initiation becomes propagation [9].

Figure 2.1: Different phases of fatigue crack formation [9].

7
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For rails, these phenomena mainly come down to very localized stress concentra-
tions due to irregularities in the material. In general, the boundary between crack
initiation and crack growth is placed at the point where the crack becomes visible to
the naked eye.

2.2 Crack initiation

During the crack initiation phase, the nuclei of the crack is formed. A microcrack
slowly finds its way in the material until a sizable crack is developed and steady
crack growth is occurring (propagation). Crack initiation starts with cyclic slip, oth-
erwise known as cyclic plastic deformation. As the cyclic stress is generally below
the yield stress, this plastic deformation takes place at only a small number of grains
in the material. As the grains on the surface of the material are less constrained com-
pared to grains in the material, (less surrounding material) lower stress levels are
needed to let slip occur in the grains. If this happens, a slip step will be created (the
new fresh surface in Figure 2.2a). Some strain hardening in the slip band will also
be developed. Because of this, if the stress during the cycle decreases, a negative
shear stress will generate another slip step in adjacent parallel slip planes. This phe-
nomenon is shown schematically in Figure 2.2. When the cyclic stress is applied (a),
slip will occur. This will be followed by the stress decreasing with negative shear
stress in the material forming another parallel slip band (b). More cycles will repeat
this process (c,d,e) with crack initiation as a result [9].

Figure 2.2: Phases of cyclic slip crack nucleation [9]

To predict where these cracks will initiate, the stress concentration factor Kt can be
an important factor. This dimensionless factor is defined as the ratio between a peak
stress due to a discontinuity and the nominal stress [10]. In geometries with holes,
flanges, fillets or other features, the stress in the material could be disrupted, creat-
ing a high stress concentration around those features and thus a high Kt. For crack
initiation, this factor is useful as the location of the stress concentration could predict
the location where cracks are formed. As for this research, mainly crack formation
on the top of the rail is observed, it can be assumed that geometry does not play an
important role in determining the role of the initiation. As high, concentrated loads
are placed on the rail when a train axle crosses the rail, it is evident that stress con-
centrations are highest in the area surrounding the contact area, where thus Kt is
high.
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Especially when train axles cross the rail at exactly the same points continuously,
there is a high chance that micro defects in the material will grow out to become
cracks. In Section 2.4 an overview of potential models to predict this crack initiation
is given.

2.3 Crack Growth

Once the crack is initiated and has grown to visible lengths, the crack gets into the
growth phase. This transition length is assumed to be in the order 1-3 mm. As crack
growth prediction is primarily dependent on the sort of fracture mechanics theory
used, some more explanation about this will be given.

2.3.1 Fracture Mechanics

In fracture mechanics [11], fracture-dominant failure is the main source of inter-
est [12]. In 1920, Griffith was the first to study the propagation of brittle cracks in
glass. He stated the concept that if the energy release rate G of a body per unit new
crack area, which would occur for infinitesimal crack extension, is equal to or greater
than twice the increase in surface energy γ, a crack will grow [13]. This concept is
described as G ≥ 2γ → crack growth possible. After this first step in fracture mechan-
ics, Irwin [12] made major advances in this field by introducing a stress intensity
approach. He showed that stresses in the vicinity of a crack tip take the form

σij =
K√
2πr

fij(θ) +H.O.T., (2.1)

where r, θ are cylindrical polar coordinates of a point close to the crack tip (see Fig-
ure 2.3). fij(θ) is a dimensionless expression dependent on θ only. K gives the mag-
nitude of the elastic stress field. This parameter is called the stress intensity factor.
Dimensional analysis suggests that K is linearly related to stress σ and directly to the
square root of the crack length a. From this, the general form of the stress intensity
factor is given;

K = σ
√
πa (2.2)

Griffiths Energy release theory can be combined with this stress intensity factor and
the Youngg’s Modulus E given by the relation;

G =
K2

E
(2.3)

Figure 2.3: Stress at a point near the crack tip [12]
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Using Equation (2.2) and a critical value for the stress intensity KC , the fracture
toughness, it can be said that if K > KC then crack growth will occur. This statement
has become one of the fundamental principles of Fracture mechanics, specifically for
Linear Elastic Fracture Mechanics (LEFM), from which Elastic Plastic Fracture Me-
chanics (EPFM) is a successor. These will be discussed in the next chapter.

2.3.2 Linear Elastic Fracture Mechanics

For LEFM, the use of the stress intensity factor to determine crack growth is the
fundamental principle. Equation (2.2) is the base for this approach. For LEFM, the
assumption is made that material under load acts primarily in an elastic way. The
stresses on the crack are generally divided into three different loading modes with
each having an individual stress intensity factor (SIF). In Figure 2.4 an overview of
these modes is shown.

Figure 2.4: Basic loading modes for cracks (a) opening, (b) in-plane shear, (c) out-of-plane shear [14]

As for most cases, opening displacement is the most significant loading condition,
and this phenomenon is studied the most. In 1968 Paris and Erdogan [15] came
up with an expression to express the crack growth rate (da/dN ) using the stress
intensity factor.

da
dN

= C(∆K)n (2.4)

In this equation, C and n are empirical constants. Using this formula and further ex-
periments, they were able to come up with a graph showing the overall development
of a crack, see Figure 2.5. In region 1 the crack is formed and initiated. At a certain
threshold value for K, the crack starts to grow. This is ∆Kth. When moving to region
2, the crack growth starts to increase in a linear matter. The Paris law, Equation (2.4)
describes this slope. Eventually the crack growth rate increases faster compared to
the derived slope. Once this starts happening, region 3 is reached and only limited
number of cycles are needed before the fracture toughness KC is reached and the
crack will fail. Although the Paris Law does not describe the full crack propagation
phase, it is used extensively to describe and predict the stable growth (part 2) of the
crack formation.

2.3.3 Elastic-Plastic Fracture Mechanics

Because LEFM is only applicable to elastic materials, it is not always possible to de-
scribe crack propagation using this method. When relatively large parts of a material
are plastically deformed before crack propagation occurs, LEFM is no longer valid.
Therefore, Elastic-Plastic Fracture Mechanics (EPFM) approaches have been devel-
oped to analyse elastic-plastic materials. To analyse crack growth in these materials,
generally two approaches are used; the J integral and the Crack Tip Opening Dis-
placement (CTOD).
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Figure 2.5: Typical fatigue crack growth curve [16].

The J integral is defined as the contour line integral which is independent of the
integration path. If the critical Value JIc is reached, cracks start to form. J can be
described as follows;

J = − 1

B

dU

da
(2.5)

where B is the material thickness, U potential energy and a crack length [17].

The resistance of a material to the propagation of a crack is analysed using CTOD.
It is calculated by using the geometry of the crack with crack length a, width of the
specimen b, dimensionless rotational factor ρ and the crack opening CTODm [18].

CTOD =
ρb

a+ ρb
(2.6)

To accurately describe the ductile behaviour of the railway tracks, a crack growth
model based on these kinds of parameters could thus be used. In this report, the
primary focus will be on using LEFM approaches, but for some models EPFM factors
are used.

2.4 Crack prediction models

In previous sections, an understanding of the crack formation is given and a distinc-
tion is made between the crack initiation and crack growth phase. To predict when
a crack initiates and grows, models should be used. Although it is possible to get an
idea of crack growth by performing experimental results, it is chosen to use numeri-
cal models. As numerical models are faster and more easily to implement compared
to experimental methods, these are beneficial. Therefore, an overview of possible
numerical models regarding initiation and propagation are given in this section.

2.4.1 Crack initiation models

For crack initiation models, it is important to find the location where the crack ini-
tiates, as well as the number of cycles until a certain threshold is reached, and thus,
the crack is initiated. Where cracks exactly initiate is a factor that is difficult to pre-
dict, as it is an inherently stochastic process. From the experiments from Burstow [4],
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it is known that cracks predominantly exist at +/- 20 mm from the railhead center
laterally, but longitudinally it can not be precisely said where the cracks will grow.
From metal microcracks it is known that they generally initiate at peaks of surface
roughness or at microstructural inhomogeneities [19]. Because of this pronounced
influence of the microstructure, crack initiation can be considered as a stochastic
process. An initiation probability could be used to characterize the number of cracks
initiated after a given number of load cycles. Multiple researches have tried to come
up with a stochastic model describing crack initiation in steel. Such a model could
be derived by simple empirical investigations of crack development on a specimen,
as Goto [20] did. Ihara and Tanaka [21] did analytical research and came up with a
model to calculate the number of cycles up to crack initiation based on the formation
of slip bands. This happens if accumulated energy in the material exceeds a specified
value. This model takes parameters as dislocation density, grain size and some other
microscopic and macroscopic parameters into account. For rails specifically, these
models are somewhat more scarce. One of the most promising in this matter is the
Brick model, explained in more detail later.

In his thesis, Krishna [22] describes and compares multiple crack initiation mod-
els. He divides rolling contact fatigue models into three different kinds of models;
Energy dissipation-based, Stress-based and Shear strain-based models. Next to these
distinctions, Krishna quantifies the different models utilizing system complexity and
damage model complexity (See Figure 2.6). The system complexity relates to how
detailed the wheel-rail system is portrayed. If variables like vehicle suspensions,
wheel profiles or curve radii are not taken into account, the system complexity be-
comes far less complex. For rails, it is beneficial to quantify damage by the tonnage
passing, that is the amount and weight of trains passing. If the damage complexity
is relatively low, the assumption is made that the model is only valid for a limited
number of loading cycles or tonnage passing, as the model will not evolve. If the
model becomes more complex, effects from material removal are intertwined in the
model, making it valid for a larger number of tonnage passing. Finally, if the model is
also able to include intermediate maintenance effects, the full operational life can be
described, making the model the most complex. The damage model complexity de-
picts how detailed the physical phenomena behind RCF can be modelled. Relatively
simple models see the contact area between the wheel and rail, the contact patch, as
a whole. More elaborate models discretize this contact area into more smaller areas
to analyse. Finally, the most complex damage models also discretize the material
beneath the contact surface, such that sub-surface stresses can be taken into account.
Most of the models can be expanded to become complex for either damage or sys-
tem, however, that would increase calculation lengths and difficulties.

In Figure 2.6 the Whole Life Rail Model has a low damage model complexity but
a high possible system complexity [23]. This means that the WLRM is able to de-
scribe cases with a broad spectrum of different varying parameters (friction coeffi-
cient, wheel profile, axle load, etc.) but only looks at the whole contact patch and
is not able to very precisely predict where cracks will initiate. The WLRM is an en-
ergy dissipation-based model. The contact energy dissipation is used to determine
the damage increment per loading cycle (∆Di) for the whole contact patch. As the
whole contact patch is seen as one part, it is considered a relatively simple ‘global
contact’ damage model. On the other hand, all kinds of different possible cases can
theoretically be studied with this model. An ideal WLRM would be able to include
multiple variables and parameters (friction coefficient, rail curvature, etc). Once the
WLRM is made, it is straightforward to determine the damage values.
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Figure 2.6: RCF damage model quantification based on model and system complexity[23] .

Under the stress-based models, methods relating to the shakedown theory are con-
sidered. The Surface Fatigue Index model (FIsurf ) from Ekberg et al. [24] is one
of these methods. A working point WP is identified for a given contact load on a
shakedown diagram in this model, see Figure 2.7. The Fatigue Index FIsurf is de-
scribed as the shortest distance between working point WP and the boundary curve
BC. If this distance is greater than 0, fatigue is expected. FIsurf is expressed as

FIsurf = µ− 1

λ
⇒

√
F 2
x + F 2

y

Fz
− 2πabk

3Fz
(2.7)

It is important to mention that the fatigue life is not calculated with this method.
In order to get an indication of the fatigue life, a power law could be adopted to
describe Damage D, where δDi is the damage increment per loading cycle. By curve
fitting of test results from three bench tests the following estimation was found [24];

δDi =
1

10
FI4surf ∀ FIsurf > 0 (2.8)

Instead of a Fatigue Index, one could also consider using the Stress Index SI as a
possible approach [25]. This stress index is denoted as:

SI(x, y) =
√

τzx(x, y)2 + τzy(x, y)2 − k (2.9)

The advantage of using the Stress Index is that stress is calculated for each element
instead of considering the contact patch as a whole. Similar to the Fatigue Index, for
the Stress Index, a power law relationship is assumed to estimate the damage per
loading cycle:

∆Di = α′(SImax)
β′

(2.10)

where α′, β′ are material parameters.
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Figure 2.7: Shakedown diagram used for surface fatigue index model [23].

For the last type of models, shear strain-based models, critical strain is calculated,
such that sub-surface damage can be taken into account. One of these models is the
brick model, developed by Franklin et al. [26]. For this model, the cross-section of a
rail is modelled as a mesh of elements or bricks. For each individual brick the shear
stress fields can be calculated for each loading cycle. In this way the incremental
strain can be calculated for each cycle, such that it can be determined when the shear
strain of a brick reaches a certain critical threshold and fails. Based on surrounding
bricks, the failed brick is either removed as wear or stays and cracks are formed.

Finally, the wedge model, which uses the ‘effective stress’ σA as a damage indicator
[27], can be used. This stress is determined with a similarity parameter fa, traction
parameter fT and maximum principal stress σ′;

σA = max(σ′)fafT (2.11)

Again, a power law is used to estimate damage increment;

δDi =

(
σA

σf

) 1
b

(2.12)

where σf and b are material dependent constants.

2.4.2 Crack propagation models

To predict the crack growth and the number of cycles until critical crack lengths are
reached, crack growth models should be used. Most of these models are based on
the Paris law (Equation (2.4)). This equation shows that if the stress intensity factor
of a crack can be found, then the crack growth rate can be determined. Once the
growth rate is known, the fatigue life can be calculated, assuming the critical crack
length is known. Important to mention here is that the crack growth rate changes
during crack growth, as shown in Figure 2.5. The Paris law only takes region 2 of
this graph into account. It only looks at the linear growth of the crack. To take into
account also (part of) the other regions, it could be considered to use modified crack
growth laws such as for example the Nasgro equation [28]. These equations will also
include (part of) Region 1 and/or 3 of the growth rate, and will thus give a more
detailed prediction.
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Another point of consideration is that in the Paris law only the stress intensity fac-
tor for crack opening displacement is taken into account. The other two modes, in
plane shear and out of plane shear, could also be of importance and thus have to be
included somehow.

By integrating the Paris Law (Equation (2.4)) the number of load cycles until fail-
ure can be estimated. By using an analytical solution, an estimation of the propa-
gation life can be made. The problem however is that the stress intensity factor K
depends on the crack length and geometry of the structure. For more complicated
geometries, such as rail profiles, analytical integration is not viable. Therefore, crack
propagation problems are often solved using computational methods [16]. Methods
such as the boundary element method (BEM), the finite element method (FEM), the
extended finite element method (XFEM), the element-free Galerkin method (EFGM)
and combinations of these have been developed to model and simulate fatigue crack
growth [29]. Using these methods, the crack propagation is solved step-wise. For
each step, the crack is advanced in a small length, whereafter the number of cycles
for the next increment is estimated using a crack propagation law (Paris law). This
process is repeated until a critical crack length or a critical stress intensity factor is
reached.

The use of FEM for fracture mechanics and the analysis of stress fields for crack
growth is well known. For crack growth in rail profiles, Bogdanski et al. [30] de-
veloped a 2D FEM model to obtain stress intensity factors and investigate the in-
fluence of different friction coefficients, traction loads and residual stresses. They
found the traction to be of little influence while the growth rate would decrease for
larger friction. Nejad et al. [31, 32] used FEM to analyze wheel-rail interaction and
the stress distribution in the rail. They obtained the stress intensity factor K and
used a modified Paris law to obtain the crack growth rate. To use FEM for crack
growth modelling, 2D or 3D models of the rail are developed and discretized by
meshing the model. Pre-defined material properties, forces and constraints on the
rail are given as input for the model. Next to that, to allow crack growth, an initial
crack location and length are given. Typically for FEM crack modelling, a rosette
pattern mesh (see Figure 2.8) is modelled around the crack tip. Around the crack tip,
wedge elements (singular elements) are used to model the crack tip singularity and
improve the accuracy of the FE results [33]. These results can be used to obtain the
stress intensity factors. Generally, two numerical methods are used to extract these,
known as displacement matching methods and energy-based methods. Alshoabi
and Fageehi [34, 35] made use of a displacement model for describing crack growth
in a 2D compact tension specimen (no rail steel). The stress intensity factors could
be described as:

KI =
E

3(1 + ν)(1 + κ)

√
2π

L

(
4(v′b − v′d)−

(v′c − v′e)

2

)
(2.13a)

KII =
E

3(1 + ν)(1 + κ)

√
2π

L

(
4(u′

b − u′
d)−

(u′
c − u′

e)

2

)
(2.13b)

where E is the modus of Elasticity, ν the Poisson’s ratio, L the quarter-point element
length and κ the elastic parameter defined by

κ =

{
3− 4ν for plane strain
(3−ν)
(1+ν) for plane stress

(2.14)

The u′ and v′ are displacement components in the x′ and y′ direction respectively.
The subscriptions represent their position, as shown in Figure 2.8.
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Figure 2.8: Quarter-point singular elements around crack tip [35].

When using an energy method, it is common to identify the energy release rate, G, or
a similar output. The energy release rate is defined as the potential energy decrease
per unit crack advance.

Although FEM is a popular method to analyse these kinds of structural problems,
it is a challenging process to perform for crack propagation. This challenge lies in
the fact that for each step when the crack is advanced, the finite element mesh has to
be updated. To overcome this issue, other methods, such as BEM, EFGM and XFEM
were developed [16]. In general, for these methods, a basis lies in finding the energy
release rate. For 2D problems, Rice [36] showed that the energy release rate can be
computed by a path-independent line integral given by:

J =

∫
Γ

W (x, y)dy −
∫
Γ

T · ∂u
∂x

ds (2.15)

where Γ is the curve surrounding the crack tip, W (x, y) is the strain energy density
field and x, y are the cartesian coordinates being parallel and normal to the crack
tip, respectively. T is the traction vector outward, normal to Γ, u is the displacement
vector and ds is the incremental arc length along Γ. To compute the stress intensity
factors, this equation can be evaluated numerically for the FEM solution over an
arbitrary path around the crack tip. For LEFM problems, it can be said that J = G.
The stress intensity factors can thus be related to the energy release rate by:

KI =
√
GE =

√
JE (2.16)

Because this method is based on a path around the crack tip, in 3D it is difficult to
perform the same routine as the integral then becomes a surface integral. Because
of this, a domain integral method was developed by Shih et al. [37]. They used a
divergence theorem to compute the J integral. In this, the three-dimensional surface
integral is transformed into a volume domain integral, which is evaluated by Gaus-
sian quadrature. To be able to extract the stress intensity factors for all three crack
modes, Equation (2.16) does not suffice. When all three SIFS are taken into account,
an equation with three unknowns would arise, which is not solvable. A technique
involving an interaction integral was developed by Yau et al. [38], which avoids this
problem. In words, this technique comes down extending Equation (2.16) such that
all Stress intensity factors are involved. The J integral is calculated for multiple aux-
iliary stress fields, such that a system of multiple equations arises that is able to solve
for the stress intensity factors.
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Once the stress intensity factors have been found, the Paris law can be used to ob-
tain the crack growth rate. As explained before, the crack propagation is solved
step-wise with small crack size increases. The difficulty with using FEM for crack
growth lies in this step, as for each increment, the mesh around the crack has to be
removed and replaced such that the rosette pattern mesh is once again around the
tip. This is a time-consuming job and therefore XFEM has been used in certain in-
stances to predict crack growth. XFEM can predict crack growth independent of the
mesh and re-meshing is not necessary. While XFEM still computes the displacement
and stress fields of the given model, it can include crack growth in this calculation.
By enriching the finite elements that are cut by the crack, the discontinuity of and
singularity around the crack is taken into account. In the displacement field calcu-
lation for XFEM, one can therefore see an extra term added to the equation, which
takes into consideration these enriched nodes.[39]

After the XFEM solution is found, the stress intensity factors are found in a sim-
ilar way to the FEM model, by employing the domain form of the interaction in-
tegral. For crack propagation in railway tracks, Rodriguez-Arana et al. [40] have
used XFEM to obtain shear stresses and stress intensity factors of tracks with semi-
elliptical pre-cracks. Bobis et al. [41, 42] have done similar research with 2D and
later 3D models to estimate lifetime based on the Paris’ law. Because of the added
advancements of XFEM compared to FEM, it is proposed to model the crack growth
in this paper using XFEM.

In this chapter, the crack formation was divided into initiation and propagation.
For both, the theory behind their occurrence was explained. Eventually, multiple
initiation and propagation models were discussed. For the initiation, models such
as the Fatigue Index and the Stress Index were discussed. Both are relatively easily
calculated if forces or stresses are known. The disadvantage of these models is their
relative simplicity. an exact crack location is not found and coupling these models to
location-specific parameters such as the cof or the train speed is difficult. The brick
model is seen as a more promising model, as the exact location of the crack in the
rail is analysed. Even though this model takes more time to calculate the crack ini-
tiation, more precise results can be obtained. The number of cycles before a certain
bricks fails could then be used as Nin. To analyse the propagation of cracks, FEM
models are shown to be valuable. Especially XFEM models are promising due to
their advantage of modelling a propagating crack without having to remesh. For
these models, the number of cycles until a certain critical crack length can be used to
determine Nprop.

After discussing initiation, propagation and their possible prediction models, it was
decided to focus on propagation first. Because it is expected that propagation has
the highest influence on the RCF curve of the WLRM, this phase of the crack growth
is seen as the most important. From the Initiation phase, it is expected that this will
mainly influence the threshold value of the RCF curve, where the propagation phase
will also influence the slope. In the next chapter, the propagation modelling using
XFEM will be discussed.
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3 | Methodology

In the methodology, the steps taken to reach the research objectives are explained.
In Chapter 2, crack formation is described and a distinction has been made between
crack initiation and crack propagation. In the last chapter, the choice is made to focus
on crack propagation first. Therefore, the model describing this propagation will be
discussed in this chapter.

3.1 Crack propagation model

In the literature review, a few propagation models have been discussed. As ex-
plained, XFEM is commonly used and a proper method to asses crack propaga-
tion in steel. Even though only limited studies are performed using XFEM for rail
cracks, the ability of fast crack propagation analysis was the reason why it was cho-
sen to continue using XFEM. As rails are made of steel, it is presumed that the XFEM
method will be applicable to rail cracks. The XFEM capabilities of Abaqus are used
to perform this research. Abaqus describes XFEM as an analysis which makes it
possible to study crack growth along an arbitrary, solution-dependent path without
needing to remesh the model. In this Abaqus XFEM implementation model, it is pos-
sible to either specify the crack location yourself or let Abaqus determine the crack
location based on maximum principle stress or strain [39]. To perform this analysis,
the user has to define the crack domain. For a three-dimensional part, this domain is
defined as the cells in which the crack could propagate. The user also defines if the
crack can propagate or if it stays stationary. Finally, if the user chooses to define an
initial crack location, a face has to be selected. This can be a face of the solid model,
a face created by partition or a face from another planar part instance [39].

Figure 3.1: Crack domain and location for Abaqus XFEM [39].

Once the part model and the crack have been defined, the fracture mechanics theory
is used to evaluate stress and strain fields ahead of the crack tip. By default, the
stress/strain at the element centroid ahead of the crack tip is computed. If a pre-
defined maximum stress or strain is exceeded, the crack grows and its direction is
determined. For this method, a sufficiently refined mesh around the crack tip is nec-
essary, as otherwise the approximation of the stress and strain field at the element
centroid compared to the crack tip may not be sufficient [43]. Using these stress/
strain components, crack growth and propagation can be determined.

19
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3.2 Model Development

An Abaqus XFEM model was build which is used to validate the model and show
the possibilities of this model. A piece of rail was modelled in Abaqus based on the
work of Rodriquez et al. [40]. Rodriquez showed that, for a vertical load of 100 kN,
the piece of rail in the model needed to be at least 6000 mm. With shorter lengths,
the numerical results would be influenced by the length of the rail. Because of this,
a rail of the same length was taken as input for this model. At the underside, the rail
was constrained by elastic foundations with a stiffness of 75 kN/mm, which is sim-
ilar to the stiffness used by Rodriquez and the average stiffness of a sleeper taking
into consideration concrete and composite sleepers [44] (wooden sleepers generally
have stiffnesses similar to composite sleepers). These foundations were placed with
600 mm distance between each other to model the sleepers. apart from the vertical
direction, the rail was constrained in all other directions. At the top of the rail, lat-
erally in the middle, a semi-elliptical crack was placed, as this is a commonly used
crack shape in XFEM modelling. According to Mai et al. [45], it has no significant
influence on the second Stress Intensity Factor (in-plane-shear) if the crack is placed
between sleepers or on top of sleepers. Because of this, the crack could be placed
anywhere. In the developed model no significant difference was found either. For
convenience, the crack was placed in the middle of the model, between two sleep-
ers. A simplified drawing of the model with its sleepers and the predefined crack
is shown in Figure 3.2. In this Figure, the orange half-circle is modelling the train
wheel running over the rail. In the Abaqus model, this is a combination of a normal
pressure and a shear stress moving over the rail. Figure 3.3 shows the middle part
of the track with the circular crack in red.

Figure 3.2: simplified model.

In order to validate the model and check if similar results are found, the model was
compared against the work of Mai et al. [45] and the work of Rodriquez et al. [40].
The load, contact patch and crack are described in Table 3.1. The normal load is de-
scribed as a semi-ellipsoid with maximum pressure Po in the middle. The traction
load is given by T = Poµ. A visualisation of both loads is given in Figure 3.4.

Table 3.1: Load and crack parameters.

Normal Load
Po (MPa)

Friction
Coefficient µ

Semi-axis
Long. a (mm)

Lat.
b (mm)

Crack Length
A (mm)

Width
B (mm)

Angle
θ (deg)

1570 0.1 7 4 6 6.6 75
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Figure 3.3: Abaqus FEM model with crack situated at the center.

Figure 3.4: visualised normal (L) and traction load (R).

To compare this model with previous work from Rodiquez and Mai [40, 45], the
stress intensity factor at the crack tip has to be found. These are calculated by Abaqus
and used as the output of the model. To be able to get these results, the crack has to
be kept stationary. This means that, during the load cycle, the stresses at the crack
are computed but no growth is occurring. An interaction integral approach is used
to find the J integral in Abaqus. This integral is then used to obtain the SIFs for
mixed-mode loading. This approach is explained in more detail in the next section.
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(a)
(b)

(c) (d)

Figure 3.5: Comparison of SIF at point F (a), at point F1 (b) and point F2 (c) around the crack tip (d).

Using this model, the Stress Intensity Factors at the crack tip were calculated and
compared with the other works. Three points in the semi-elliptical crack were used
to compare SIFs of this research model with the model from Rodriquez and the
model from Mai. The three measurement points are shown in Figure 3.5a. As the
locations where the SIFs can be measured are dependent on the used mesh, it was
not possible to coincide exactly with the locations from Rodriquez and Mai. Espe-
cially for point F2 there is a small offset. In Figures 3.5b to 3.5d, SIFs K2 and K3 for
the three models are compared to each other. At contact position 0 mm, the load is
exactly on top of the crack. For point F and F1, the similarities between the three
different models are considered small enough to be viable. For point F2 the value of
K3 is higher after crossing the crack. This small deviation is expected to be the case
because of the offset from the measuring points.

3.3 Model setup

Once the Abaqus model has proven to show similar results compared to previous
research, the theory can be used to set up the system to be able to calculate the Dam-
age index for the WLRM by using VI-Rail simulation results as input. Multiple steps
have to be taken to transform VI-Rail data to usable results for the RCF function.
In Figure 3.6 an overview of these steps is given. The data from the VI-Rail simu-
lations is used in Matlab to determine pressure and traction fields. Using Fortran,
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these loads are placed in the Abaqus model. This Abaqus model will simulate a cycle
and determine stresses and corresponding SIFs in the crack tip. These SIFs are used
to determine crack growth rate, and eventually, a damage index based on a critical
crack length. On the other side, a wear number has to be obtained, which can be
calculated using VI-Rail data. By following all steps, it should be possible to find
points in the WLRM for RCF damage. All steps will be discussed in the following
sections.

Figure 3.6: Overview of the steps in the model.
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3.3.1 VI-Rail input

The first step in the model is the input of the VI-Rail data into the model. To be able
to calculate the load and traction in the next step, the contact area, normal force, lon-
gitudinal creepage, lateral creepage, spin creepage and friction coefficient have to be
obtained. In the model, the assumption is made that the crack will form precisely
below the contact patch. The lateral position of the contact patch relative to the rail
can differ. As the train is pushed to the outside with a certain centrifugal force, the
lateral displacement of the wheels relative to the rail can be different for different
simulations. Because of this, this displacement is also taken as input for the model.
The initial crack will be placed at the lateral position where the wheel passes the rail.
Figure 3.7a schematically shows the rail with a red arrow pointing to the contact
patch and a green arrow showing the possible movement of this contact patch. The
VI-Rail simulation data generally exists out of 10 to 30 seconds of simulation data
with time increments of 0.01 seconds. In the simulations used for this research, the
simulation generally exists out of a train running over a straight piece of track which
changes gradually to an arch with a certain radius. Because crack formation com-
monly takes place in arches, it is chosen to take data from one of the last data points
of the simulation data. Here, the train is still in the arch but has settled to relatively
stable contact properties. In Figure 3.7b a schematic overview of the track geometry
is shown

(a)

(b)

Figure 3.7: Lateral and longitudinal placement of location of interest.

3.3.2 Matlab FASTSIM

Once the input values are clear, these have to be translated to contact parameters that
can be used in the Abaqus model. To find the pressure and traction field, the FAST-
SIM algorithm is used [46]. The theory behind this algorithm is based on Kalker’s
simplified theory, who used the strip theory to come to his conclusions. This strip
theory assumes an elliptical contact patch with half-axes a and b. In this theory,
there is a slip and a stick zone, and in the stick zone the tangential stress distribution
is changed compared to simple parabolic behaviour.
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For 3D cases, the contact patch is divided into strips parallel to the rolling direc-
tion and treated individually. Figure 3.8 shows an overview of the strip theory. The
yellow strip is one strip with half length of the contact patch a(y) and half length of
the slip zone d(y).

Figure 3.8: Overview of the strip theory.

Based on the strip theory, Kalker made up his complete theory of rolling contact,
which eventually led to the simplified theory (due to the high computational efforts
of the complete theory). In the simplified theory, a linear relationship between sur-
face deformation and traction is assumed:

u = Lτ (3.1)

with u = (ux, uy, uz) being the deformation vector τ = (qx, qy, p) is the traction vec-
tor described by the longitudinal and lateral stress and the normal pressure respec-
tively. Finally, L is a flexibility parameter. Because deformation in the normal direc-
tion can be found more accurately by the Hertzian contact stress, the part uz = Lp is
omitted. Surface deformations ux, uy are found using the spin and creepage φ, υx, υy .
By adding arbitrary functions f and g as integration constants, ux and uy are calcu-
lated as:

ux = υxx− φxy + f(y) (3.2a)

uy = υyx− φ
x2

2
+ g(y) (3.2b)
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for full adhesion in steady state rolling. By using ux = Lqx and uy,= Lqy and
assuming the boundary conditions to be qx(a(y), y) = 0 and qy(a(y), y) = 0 at the
leading contact edges, the traction distribution can be written as:

qx = [υx(x− a(y))− φ(x− a(y))y]/L (3.3a)

qy = [υy(x− a(y))− φ(x2 − a2(y))/2]/L (3.3b)

with a(y) being the half length of the contact patch at y. By integrating these expres-
sions over the contact patch, the total force for both can be described as:

Fx =
−8a2bυx

3L
(3.4a)

Fy =
−8a2bυy

3L
− πa3bφ

4L
(3.4b)

To find an expression for the flexibility parameter L, the linear theory of Kalker [47]
could be used. In this, he assumed that no slip is happening. In that case, the creep
forces and spin moment can be described as:

Fx = −C11Gc2υx (3.5a)

Fy = −C22Gc2υy − C23Gc3φ (3.5b)

Mz = −C23Gc3υy − C33Gc4φ (3.5c)

with c =
√
ab and Cij being Kalker coefficients. These coefficients depend on the

Poisson’s ratio and the ratio between the contact ellipse axes a/b. A table with these
coefficients can be found in the work of Kalker [48]. As it is impossible to find a
single flexibility parameter for all three equations, three different parameters are set
up to apply to each corresponding equation,

Lx =
8a

3GC11
Ly =

8a

3GC22
Lφ =

πa2

4GcC23

(3.6)

Instead of using these three different parameters, one could also consider to use a
single weighted parameter:

L =
Lx|υx|+ Ly|υy|+ Lφ|φ|c√

υ2
x + υ2

y + (φc)2
(3.7)

Knowing how the traction distribution is calculated, only the traction bound is still
important. This can be found either by using the Hertzian contact pressure distribu-
tion times the friction coefficient:

µp(x, y) = µp0

√
1−

(x
a

)2

−
(y
b

)2

(3.8)

with p0 being the maximum pressure at the contact patch described by the contact
force N and contact axes (a, b) as:

p0 =
3N

2πab
(3.9)

Instead of using the Hertzian contact pressure, this could also be replaced by a dis-
tribution based on the simplified theory in normal direction:

µp′(x, y) = µp′0

(
1−

(x
a

)2

−
(y
b

)2
)

(3.10)
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with
p′0 =

2N

πab
(3.11)

Where the Hertzian distribution is elliptic, the simplified distribution is parabolic,
which proved to result in more accurate stick-slip boundaries [46]. However, an
algorithm is needed when spin is present to use this simplified theory. One algorithm
that can handle this is known as FASTSIM [48]. In this algorithm, the contact patch
is discretized into strips parallel to the running direction. Each strip is discretized
further into rectangular elements. Figure 3.9 shows such a discretized strip in the
contact patch. Shear stress along a strip is calculated as

qn+1
x = qnx −

(
υx
Lx

− φy

Lφ

)
dx (3.12)

qn+1
y = qny −

(
υy
Ly

+
φx

Lφ

)
dx (3.13)

with n indicating the sequence of elements in the strip. The total shear stress can be
described as

qt =
√

q2x + q2y (3.14)

for each element. If this is found to be greater than the parabolic traction bound
µp′(x, y) the shear stresses have to be recalculated by scaling them to the normal
pressure as:

qn+1
x = qn+1

x

µp′(x, y)

qt
(3.15)

qn+1
y = qn+1

y

µp′(x, y)

qt
(3.16)

Figure 3.9: discretized strip for FASTSIM.

This theory has been implemented in Matlab to calculate the shear stresses at the
contact patch. The normal pressure finally is calculated for each element assuming
that maximum contact pressure is placed at the centre of the contact area. Pressure
at the middle of each element is then calculated as

pij = p0

√
1−

(xij

a

)2

−
(yij

b

)2

(3.17)

with (xij , yij) being the coordinates of the midpoint of the element.
To summarize this step, the contact patch axes (a, b), the normal force N , creepages
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and spin (υx, υy, φ) are taken from the VI-Rail simulations. Using Equation (3.17) the
pressure distribution is calculated. The FASTSIM algorithm is used to calculate the
traction distribution. These two distributions will be used in the next steps.

3.3.3 Fortran

Once the pressure distributions are known, a static simulation in Abaqus could be
done in which the distribution stays stationary. As the idea of the simulation is to
simulate a wheel running over the rail and obtaining the stress variations due to this
movement, it would be favourable to perform an Abaqus simulation in which the
pressures are moving over the rail. To do this, subroutines have to be used, which
have to be written separately from the Abaqus environment and using Fortran lan-
guage. In reality, this comes down to a separate file which receives the pressure and
traction distribution. The centre of the contact patch is taken and a velocity is given
to this point. The Fortran code then makes sure that after each time step, the cen-
tre point of the contact patch is moved according to the velocity. The contact patch
around this node is kept stationary relative to the centre node, such that the con-
tact patch moves in the same manner as the middle node. In Figure 3.10, a visual
overview of the Fortran routine is given. The input into Fortran is coordinates for
each cell, as well as pressure and traction for each cell. For the center, the coordinate
is also given and cell coordinates are related to that such that they stay at the same
distance. For each timestep, the x coordinate of the center is calculated by adding
the old coordinate to the travelled distance (velocity multiplied by time). The cell co-
ordinates are then updated accordingly. For this research, the velocity is always kept
as 0.06 m/s, and one simulation is taken over one second, so 0.06 m is travelled. As
the only interest for the simulation is the maximum Stress Intensity Factors, which
are occurring when the contact patch is right above the crack, having a longer travel
distance is not necessary. The velocity is chosen to be low as this increases the accu-
racy of the SIF extraction. If higher speeds would be used, smaller time increments
and thus more calculation steps would be needed to find similar results. Finally, The
crack is always placed in the middle of this travel distance, such that the SIFS during
entering, crossing and leaving the crack can be obtained.

Figure 3.10: Visual overview of the Fortran routine.

3.3.4 Abaqus

Once all forces and contacts are defined, these are loaded into the Abaqus model
and a static, general step of one second with fixed increments of 0.01s is performed.
Smaller timesteps would increase the calculation time significantly while the results
would be similar. During this timestep, the loads move over the rail and the stresses
at the crack tip are monitored. In order to retrieve the stress intensity factors, Abaqus
makes use of an interaction integral method. According to the Abaqus documenta-
tion [49], Abaqus first calculates the J-integral such that the energy release rate can
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be found and associated to the crack advance. For a two-dimensional case, the J
integral can be defined as

J = lim
Γ→0

∫
Γ

n ·H · qdΓ (3.18)

with Γ being a contour beginning at the one side of the crack surfaces and ending at
the other. With the limit Γ → 0 it is indicated that Γ shrinks into the crack tip. q is a
unit vector in the virtual crack extension direction, n the outward normal vector to
Γ and H is given as:

H = (WI − σ · ∂u
∂x

) (3.19)

For elastic materials W is the elastic strain energy. Otherwise W represents the elastic
strain energy density plus the plastic dissipation. In Figure 3.11, a crack with contour
is shown. Abaqus defines multiple contours by making contours of elements farther
from the crack tip with each additional contour. The length of the contour Γ is thus
changed for each contour.

Figure 3.11: crack with contour Γ.

For three-dimensional cases, the J integral is more difficult to calculate as the 2D
contour becomes a 3D cylinder around the crack. Abaqus nevertheless is able to
calculate the J integral for these situations. In this research however, that step is
seen as a black box. The next step, the conversion from J-integral to Stress Intensity
Factors, is assumed to be in the same black box. In case of plane strain with only
Mode 1 loading (crack opening), there is a simple relation between the J-integral
and K1 [16] being;

J = KI =
√
JE (3.20)

With E the Youngs modulus. For mixed mode loading, an interaction integral method
is used to find the SIFs. As explained in section 2.4.2, the J integral is calculated for
multiple auxiliary stress fields. This leads to a system of equations, which is able to
solve for the stress intensity factors. The Abaqus documentation [50] gives a com-
plete overview of this method.

The SIFs for a crack front are calculated in Abaqus for each element the crack face
goes through. In Figure 3.12 a closeup of a crack formation for a certain simulation
is shown. Only the part of the crack going through the rail material is taken into
account. For this crack there are 14 elements crossed and thus 14 points where the
SIFs are obtained. These points are shown in Figure 3.13. By default, for an even
number of points, the point with index x/2 is chosen, for an odd number x/2 + 0.5.
This point is assumed to be the middle of the crack tip where most crack growth is
expected. The SIF values from this middle point are taken as input to calculate the
growth rates.
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Figure 3.12: close-up of crack with meshed rail.

Figure 3.13: Obtained SIF locations and used location (red).

3.3.5 Matlab Growth Rate

Once the stress intensity factors are calculated, these have to be translated to a growth
rate in order to obtain the damage index. From the Abaqus results, a datafile with
obtained SIFs for each timestep is gathered. Abaqus calculates these SIFs for each
element on which the crack front is running. Depending on the crack and mesh size,
the number of obtained points can thus change. In all simulations, the point most in
the middle of the crack is used for calculation of the growth rate.

In order to calculate the growth rate per cycle, the modified Paris law as used by
Rodriguez et al. [40] is employed,

da

dN
= 0.000507(∆K3.74

eq −∆K3.74
th ) (3.21)

with,

∆Keq =

√
∆K2

I +

[(
614

507

)
·∆K3.21

II

] 2
3.74

(3.22)

In these, the constants are from literature [51]. ∆Kth is an intrinsic threshold value
of 4 MPa

√
m according to Bogdanski et al. [52]. As crack opening and in-plane shear

are assumed to be the most prominent modes, only these are taken into considera-
tion for calculating the crack growth.
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In the end, the crack growth and changing growth rate is analysed. As the Abaqus
model only calculates SIFs for static cracks, changing crack growth rate is difficult to
include. Another way has to be found to analyse growth rate. Two approaches were
used to show this changing growth. For the first approach, a number of simulations
were chosen and an elliptical crack of 1 mm was taken as initial crack. By running
the model for these simulations, the SIFs for these were obtained. After that, the
crack size was manually increased with either 0.5 mm or 0.25 mm. With this new
setup, the model was run again to obtain the new SIFs and corresponding growth
rates. This was done until a 10 mm crack size was reached. In this way the growth
rate depending on the crack size could be determined. For the other approach, it was
tried to get an idea of crack growth and how its geometry changes. For this, an initial
simulation with a predefined 1 mm elliptical crack was used. Instead of manually
increasing the crack size, the SIFs were taken after each simulation at the bottom of
the crack and at the side of the crack. From this, the crack growth rate at the tip and
the side could be calculated for that cycle. Then the assumption was made that for
10000 cycles this growth rate would be fixed. Using the growth rate, the crack size
after these 10000 cycles could be calculated. From this, an updated crack geometry
was obtained and placed in the model again. The model was then run with the up-
dated crack size again. This cycle was done several times to see how the geometry
of the crack changes and how the length and width of the crack act upon each other.
As this was a time consuming analysis, only limited data is collected.

3.3.6 Damage Index

The final step for finding the needed data for the WLRM is to get a damage index
from the growth rate. The damage index is defined as the inverse of the number of
cycles to failure, DI = 1/Nc. The number of cycles after which critical crack length
is reached (Nc), is approximately 10 mm according to Burstow [4]. Next to that,
the assumption is made that growth rate is constant. The growth rate is calculated
for one crack length in the previous steps. For calculations it is presumed that this
stays constant until 10 mm crack length is reached. This will however be tested
by running simulations with increasing crack sizes to measure change of growth
rated. The critical crack length (10mm) is divided by growth rate in order to find the
number of cycles to failure Nc. From this the Damage index is obtained and filled in
into the WLRM curves.

3.3.7 Wear number

To be able to construct the x-axis of the WLRM, also the wear number has to be
calculated. This can be done relatively easily. The wear number is defined as

Tγ = Txγx + Tyγy (3.23)

The tangential and shear forces Tx, Ty can be described by the shear forces Fx, Fy

found in Equation (3.4). The spin creepage is included in these equations. The longi-
tudinal, lateral and spin creepages (relative velocity between wheel and rail normal-
ized by the rolling velocity) can be obtained from the VI-Rail simulation data.



32 Chapter 3. Methodology

3.4 Numerical Experiments

Once the model is built, each step is tested and the Abaqus model is validated against
earlier research, the objective is to reconstruct an RCF function with this model. This
will be done in a few steps. First, from VI-Rail simulations already performed, a se-
lection will be taken which will be fed into the designed model in order to get points
in the WLRM graph. In two different manners, it is tried to get points which follow
the line. For the first approach, only the coefficient of friction and the wear number
obtained directly from VI-Rail are taken as simulation boundaries. As the coefficient
of friction is assumed to be one of the most influential parameters, this value is kept
at a constant of 0.43 for all researched simulations. This is done as Burstow obtained
similar friction coefficients. This boundary was used to filter VI-Rail simulations
from which 45 were taken to try and form the WLRM line. These points are shown
in blue in Figure 3.14. It proved that this approach led to many points far from the
Burstow line. To reduce the offset, another approach is tried.

Figure 3.14: Simulation results of both approaches and simulations with µ = 0.4.

The possible reason for the high number of offsets could be the low similarity of the
used simulations with the field data from Burstow. Therefore, the input parameters
of Burstow are analysed and compared to the simulations parameters.

By studying the parameters of Burstows field results, simulations with more similar-
ities can be filtered. In Burstows work [1], five main force and contact patch parame-
ters are shown which can be compared for the different test results. An overview of
the field results of Burstows work can be found in Appendix A. The wear number,
the shear force, contact stress, shear force coefficient and the contact patch area are
analysed. Table 3.2 shows these load parameters and their ranges. Finally, only sim-
ulations with wear numbers between 15 and 65 N were taken as this is the range in
which RCF is dominant.
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Table 3.2: Load parameter boundaries.

Parameter Wear number Vector Sum
Shear Force Contact Stress Shear Force

Coefficient
Contact Patch
Area

Variable Tγ = Txγx + Tyγy Fs =
√

T 2
x + T 2

y Pm = 3Fn
2πab µ = Tx

Fn A = πab

Range 15 - 65 N 10 - 20 kN 600 - 1500 MPa 0.1 - 0.45 40 - 110 mm2

For the second approach, the simulations performed for the first approach are fil-
tered, such that only the ones with load parameters within the given boundaries
remain. Apart from that, the wear number is not taken directly from VI-Rail results
anymore, but is calculated as described in Section 3.3.7. This is done as there some-
times is a significant difference between the calculated wear number and the one
found in VI-Rail. Because VI-Rail does not take into account spin, these differences
in wear numbers are mainly seen when spin is larger. With this different approach,
the number of points that can be compared to Burstow decreases significantly. Nev-
ertheless, points closer to the Burstow RCF line are obtained with this approach.
Even though, there are still some outliers are present. In Figure 3.14 the red points
show the results of using this approach.

Finally, the second approach is once more repeated for another set of simulations,
this time with the coefficient of friction being 0.4. As this is still in the range of the
Burstow results, similar points were expected and obtained. The wear numbers were
calculated again. The results are shown in Figure 3.14 as the green points. These
points are found to have only little offset with the Burstow line.

Once it is shown that the RCF model is able to deliver results similar to Burstows
field results, the model is used to show the influence of different parameters on the
RCF function. Meghoe [53] identified 8 parameters having significant influence on
rail wear. These parameters are chosen to be operational condition parameters, pa-
rameters easily obtainable from real cases. As Meghoe has performed VI-Rail sim-
ulations with these parameters, these are used again for this thesis. In Table 3.3 an
overview of these parameters and their ranges is given. It is assumed that these
parameters not only have a significant impact on wear, but also on RCF. It will be
analysed if these really have an impact on the RCF model.

Table 3.3: Input Parameters and ranges.

Parameter Symbol Unit Range Base Value
Vertical wear depth h mm 0 - 12.5 6
Curve Radius R m 1400 - 2600 2000
Rail cant Ea mm 70 - 130 100
Coefficient of friction µ - 0.28 - 0.52 0.4
Vehicle speed V m/s 23.33 - 43.33 33.33
Longitudinal stiffness
(primary suspension) kx N/m 4.32 ∗ 105 − 8.00 ∗ 105 6.17 ∗ 105

Lateral stiffness
(primary suspension) ky N/m 4.32 ∗ 105 − 8.00 ∗ 105 6.17 ∗ 105

Axle load m N 22400 -41600 30000

To analyse the influence of these parameters on the RCF curve, multiple existing sim-
ulations with input parameters in the defined ranges are taken and the point on the
WLRM is determined with the model. After that, the input parameters are changed
one after another to find points on the WLRM for variable parameters. By doing this
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for enough simulations, trends should be found in the movement of points based on
parameter changes. It is expected that the slope of the RCF curve will change based
on the parameter changes. The magnitude of this change will indicate the parameter
influence.

To find a final RCF function, the idea is to set up a meta-model which is described
using the points found in the WLRM with the different parameters. To do this, a
quadratic regression formula based on Response Surface Methodology is used [54].
This methodology is based on data fitting on either a linear or quadratic function, us-
ing regression techniques. Meghoe [53] proved the quadratic formula for this theory
to be valid for the wear function of the WLRM. For RCF, the same parameters except
material hardness were used. as only one material was analysed, hardness was not
included. Because of these similarities with the wear function, it is also tried to fit an
RCF function using this quadratic formula. This quadratic formula is described as:

y(x) = β0 +

k∑
i=1

βixi +

k∑
i=1

ϵix
2
i +

k−1∑
i=1

k∑
j>i

ζijxixj (3.24)

This equation is built with the idea that a certain model contains k input variables.
The ith input variable is denoted as xi with regression estimations βi, ϵi and ζij for
that variable. The last term in the equation is there to cover the correlation between
the different variables. In order to estimate the coefficients in this equation, the num-
ber of simulations n must satisfy n ≥ k+ k+

(
k
2

)
+ 1 [54]. In this case, where 8 input

parameters are used, at least 45 simulations are needed. These parameters are chosen
as an One-Factor-At-a–Time (OFAT) analysis was performed by Meghoe [53] to find
the most influential parameters on wear damage on rails. These eight were found to
be most significant. Because of this, it was decided to cover fatigue with the same
parameters. To be covered, at least 300 simulations are run to find these estimates
and set up a function to declare the RCF propagation phase. Before this function
really could be used, it is validated by comparing the Damage Index output of the
equation with the Damage Index output from the FEM model.
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In the methodology a framework was set up to find the damage Index and wear
number for different rail situations. By using the right parameter settings, results
similar to Burstow could be obtained. In this section, the parameters influencing
the Damage Index and wear number are further analysed. It will be studied how
the parameters in Table 3.3 change the RCF WLRM line. Two approaches are tried
to visualise the influence of these parameters. Eventually, a regression function is
set up that is used to plot the parameter influence on the Damage Index. Finally, a
test case is set up to see if an RCF function could be constructed for a specific rail
situation. In the end, it is tried to show if a straight RCF line could be drawn for a
specific case.

4.1 Parameter influence

The RCF damage function depends on different track situations. The influence of op-
erational input parameters is analysed to see how the function changes. The input
parameters introduced in Table 3.3 are used for this. Existing VI-Rail simulations are
taken as a starting point. For four of the parameters, there are 10-20 simulations that
are used. In these simulations, the analysed parameter is kept at a fixed value, while
the other parameters are variable for the different simulations. For the selected sim-
ulations, the Damage Index and wear number were obtained. The results are shown
in Figure 4.1. When the coefficient of friction is constant (0.4), the points are close to
the Burstow line. With only speed or mass being fixed, the results do not coincide
with the existing line. There is no clear trend for these points. Because 7 parameters
are variable, one cannot say which parameter(s) exactly cause this randomness. Fur-
thermore, the points for friction coefficient and radius are overlapping for all cases.
In the data, it was found that in the fixed radius simulations, the coefficient of friction
was also kept constant. It can be seen that it does not matter if the radius is constant
or variable, as both give similar results (green and black points). As the black and
green points are on the same spots, and are almost similar, the black points are less
visible.

Figure 4.1: Simulations with one fixed input parameter.

35
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Because Figure Figure 4.1 does not show clear trends in the parameter influence,
another approach was used. To get a more precise idea of the influence of each
input parameter independently, only one parameter should be variable while the
others stay constant. VI-Rail simulations for this approach were performed for this
study. Multiple simulations from an existing batch were taken as original simula-
tions. From these simulations, the input parameters were, one-by-one, changed to
the minimum value, the maximum value and a value in the middle of the range
(values in Table 3.3). The damage Indices and wear numbers were determined using
the set-up framework, with the XFEM model and wear number calculated from own
results. To get a clear view of the changes on the RCF function, 3 original simula-
tions were taken as input. These three simulations were chosen as their point in the
WLRM was lying on or close to the original RCF function. In Figures 4.2 to 4.9 the
results are shown. In each of these graphs, each simulation has its own shape and
colour. The star in the corresponding colour shows the original simulation. The size
of the shape determines the size of the analysed parameter. Referring back to Table
3.3, the small shape is for the minimum value, the middle shape for the base value
and the large shape is for the maximum value. The orange dotted line is drawn into
the graph to show how the function changes based on the changing parameter. The
black arrow shows the direction in which the RCF function changes if the analysed
parameter increases.

Figure 4.2 shows the influence of rail cant on the wear number and Damage In-
dex. For all simulations, a clear increase in wear number can be seen when the cant
is increased. By tracing the wear number back to Equation (3.23), the wear num-
ber can be changed by a variation in either creep force or creepage. For increasing
rail cant, generally the longitudinal creepage, perpendicular to the rail, is increased.
Apart from the maximum point of the black simulation, the Damage Index decreases
slightly for increasing cant. Due to the increased cant, the stresses in the crack tip are
decreased, which explains the decreased Damage Index. The points of these simu-
lations seem to show that the RCF function would not change in slope, but it would
move sideways depending on cant changes.

Figure 4.2: Simulations with variable rail cant.

For the coefficient of friction, Figure 4.3 shows the results. All simulations show a
slight decrease in wear number for increasing COF. As more friction generally gives
higher wear rates and thus a higher wear number, this result was not expected. The
simulation data showed that, due to the increased friction, the creepage is decreased.
There is less slip between the wheel and the rail, which decreases the wear number.
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The Damage Index is increased, as the shear stresses in the contact area are larger for
larger friction. Although the trend is not the most clear, the expectation is made that,
for increasing COF, the slope of the RCF function increases. The black simulation is
less clear in showing this. Because the black simulation is relatively low in the graph
and therefore less distinctive, the trend could be less clear.

Figure 4.3: Simulations with variable coefficient of friction.

In Figure 4.4 the changes due to curve radius variation are shown. All simulations
clearly show a significant decrease in wear number for increasing curve radius. The
Damage Index however stays constant. The creepage parallel to the rail decreases for
increasing curve radii, causing a decreasing wear number. As cracks mainly form in
curves [3], it was expected that the Damage Index would also decrease if the curve
radius was increased. This is however not the case. The SIFs in the crack tip stay
reasonably similar. With sharper curves, the shear stresses are a bit lower, but these
results show that this small decrease has no significant effect on the Damage Index.
In the WLRM, the RCF function seems to increase the slope and moves to the right
for increasing radii.

Figure 4.4: Simulations with variable curvature.
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The lateral stiffness shown in Figure 4.5 shows to have very little impact on the place-
ment of the simulation results on the WLRM. From these results, it seems that lateral
stiffness does not contribute significantly to the wear number or Damage Index. The
RCF function does not change significantly from different lateral stiffness.

Figure 4.5: Simulations with variable lateral stiffness.

In Figure 4.6 The axle load variation is shown. The wear number for this parameter
seems to stay relatively stable for smaller loads but for larger loads, the wear number
will decrease. With heavier loads, more wear would be expected and thus a higher
wear number. Nevertheless, Due to the heavier loads, there is less slip and thus the
creepage is decreased. This causes the wear number to decrease. The Damage Index
is increased for higher loads. This is expected as higher loads cause higher stresses
and thus larger SIFs. These points in the graph show that the slope of the RCF curve
would change for changing loads.

Figure 4.6: Simulations with variable axle load.

The influence of longitudinal stiffness on the simulation results can be seen in Fig-
ure 4.7. The damage index is not influenced significantly by changing the longi-
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tudinal stiffness. The wear number slightly increases with higher stiffness. As the
stiffness is higher, the tangential shear force is increased slightly. This change will
increase the wear number. Because of this, a small movement of the RCF function is
expected from changing the longitudinal stiffness.

Figure 4.7: Simulations with variable longitudinal stiffness.

Figure 4.8 shows the influence of speed. With increasing speed, the wear number de-
creases significantly whereas the Damage Index stays almost constant. The increased
speed causes a decrease in slip and thus the creepages are lower. This explains the
decreasing wear number. As expected, increased speeds would cause more damage.
For the simulations with the higher wear number, it can be seen that the Damage In-
dex is indeed increased. For the simulations with a lower wear number, this increase
is less visible. For increasing speed, The RCF curve moves and changes the slope
according to these results.

Figure 4.8: Simulations with variable train speed.
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Finally, in Figure 4.9 the influence of the vertical wear depth is shown. The mini-
mal value is not visible as these are too high to be in the scope of the plot. The wear
number for changing vertical wear depth does decrease a little for increasing depth.
A small decrease in creepage is the cause for this; there is less slip. The Damage In-
dex significantly decreases for increasing vertical wear depth. When the wear depth
is 0, crack growth is the main contributor to failure. Cracks grow faster in that case
and the Damage Index is higher. If the wear depth is high, cracks have no physical
place to grow and the Damage Index for RCF is low. Because of this, the expected
change in the RFC curve is a lower slope for higher wear depths.

Figure 4.9: Simulations with variable vertical wear depth.

Important to see from these graphs is that for the most influential parameters, the
RCF line is either moved along the x-axis or rotated around the fatigue threshold
value. When the line is rotated, the fatigue threshold value stays constant. In this
case, the number of cycles until fatigue cracks appear does not change. Depending
on the direction of the rotation, the Damage Index is either increased or decreased.
For clockwise rotations, The Damage Index generally gets lower for cases with sim-
ilar wear numbers. It would thus take more cycles until critical crack lengths are
obtained. Anti-clockwise rotation would result in higher Damage Indices and faster
crack growth. Instead of rotating the line, it can also be moved along the x-axis of
the graph. This would change the fatigue threshold value. If the line is moved to the
right, the fatigue threshold is increased. The wear number, and thus the creep force
or creepage, needs to be higher to form cracks. Despite this movement, the slope of
the line would not change. This means that for cases with similar wear numbers, the
Damage Indices would be smaller. The number of cycles until critical crack length
would be larger. In Figure 4.10 an example is given for a rotating and a moving
RCF function. For a fictional case with a wear number of 30 N, the damage Index
would be higher for anti-clockwise rotation and negative movement. For clockwise
rotations and positive movement, the Damage Index would decrease.
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(a) (b)

Figure 4.10: Example rotation and translation of RCF function.

4.2 Regression Function

The previous results have shown the estimated influence of the different input pa-
rameters. These results are used to set up a regression formula from Equation (3.24).
This formula could be used to quickly find a Damage Index for a certain case with-
out having to run the complete framework from Figure 3.6. The three simulations
analysed in the last section did not generate enough results to train the formula ap-
propriately, as a minimum of 45 results are needed. Multiple other simulations were
used to overcome this shortcoming. 15 random simulations were taken and their pa-
rameters were changed in the same way as shown in Section 4.1. In total, 375 results
were found and used to form the regression formula. In Equation (3.24), x is given
by the input parameters and their variation. The output of the system y is given by
the damage indices. As the parameters and the Damage Indices are known, a system
of equations could be set up. This system of equations could then be used to find the
regression estimators β, ϵ and ζ.

To test if the set-up formula actually can predict the Damage Index for a random
situation, a validation test was done. Fifteen random simulations were taken, which
were not used as input for the regression formula. The Damage Indices of these
simulations were determined using the XFEM model and the regression formula. In
Figure 4.11 the comparison between both is shown. Even though the formula is not
able to predict the Damage Indices precisely, the error is always below 20% of the
FEM model value. Figure 4.12 shows the Damage Index found by the FEM model
and the Damage Index found by the formula. 15 Simulations are used to show this
comparison. The graph shows that for lower Damage Indices the error is low. For
higher values, the error can be larger. By studying the input data, it was seen that if
the vertical wear depth is at the end of the range (h ≤ 2mm, h ≥ 10mm), then the
error is generally larger. For cases with the vertical wear depth between 2 and 10
mm the error is often below 10%.

Using the regression formula, it was possible to create graphs with the Damage In-
dex as a function of the variable parameter. These graphs show the influence of
the specific parameter on the Damage Index. To create these graphs, all parameters
were set at their base values, and only the analysed parameter was varied between
the minimum and maximum values. Figure 4.13 shows an overview of these re-
sults. In the graphs, the Damage Index is set up against the parameter. In theory,
the plot in these graphs should show similar trends to those already shown in the
previous chapter. For example, the rail cant, the graph shows, just as Figure 4.2, that
for increasing cant, the Damage Index decreases. The longitudinal stiffness shows
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Figure 4.11: Comparison between 2 approaches to obtain the Damage Index.

Figure 4.12: Comparison between Damage Indices.

that there is only little change in the Damage Index for increasing stiffness. Some
graphs also show the parameter influence in more detail. In Figure 4.4, the Damage
Index remains constant for increasing curve radii. The graph of Figure 4.13c how-
ever shows that the damage index does increase a bit for increasing radii. Finally,
most of the parameters seem to have a (almost) linear relationship with the increase
of the parameter and the change in the Damage Index. The vertical wear depth does
show more quadratic behaviour. From Figure 4.9 it was expected that the line would
only decrease for increasing wear depth, but the formula shows that after a certain
value, the Damage Index actually will increase. For most parameters, the expected
results are found and thus the formula is expected to be correct for those parame-
ters. The vertical wear depth shows non-linear results and has large estimator sizes.
It could be the case that the vertical wear depth cannot as easily be explained with
this regression formula. This is however not researched in further detail.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.13: Parameter influence based on regression formula.
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The last thing to pay attention to is the β, ϵ and ζ estimators of the function. Es-
pecially their sizes can show some information. If the estimator is large, it is ex-
pected that the (combination of) parameters associated with that estimator have a
large influence on the Damage Index. For the β estimators combined with only one
parameter (second term in Equation (3.24), linear relation) there are relatively high
estimators for the radius, cant, speed and vertical wear depth. The coefficient of
friction has a very low estimator. Also, both stiffnesses have little linear relation.
These parameters seem to be less influential when looking at individual parameters.
Similar results are obtained for the squared parameters (ϵ). However, the estimators
for the squared parameters are generally lower than the single parameters. In Fig-
ure 4.14 the linear and quadratic estimators are shown. The bar graph of Figure 4.15
shows the estimator size for combinations of two parameters (ζ estimator). It can be
seen that the vertical wear depth in combination with all other parameters is an im-
portant factor. The Coefficient of friction with radius, cant and speed also has higher
values. The stiffnesses seem rather unimportant also in this graph.

Figure 4.14: Estimator size for all single parameters.

Figure 4.15: Estimator size for all parameter combinations.
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4.3 RCF function development

By using the regression formula, a simplified method is found to determine the Dam-
age Index. After showing the influence of different parameters, it should be possible
to create RCF functions for various situations. The difficulty in this is finding a clear
relation between the points on the RCF WLRM line. As each result only presents one
point in the wear number / Damage Index graph, drawing a line is only possible
if multiple points can be found that can be related to each other. A test case is set
up to try to find an RCF line for a specific situation. In this theoretical case a rail
with a fixed radius, cant and vertical wear depth is used. In an ideal situation, the
analysed rail is used by only one train type. Because this is not often the case, for
this theoretical problem, the rail is primarily used by four different types of trains,
all with different axle loads and stiffnesses. Train 1 has the highest axle load. This
decreases to the lowest axle load for train 4. The longitudinal and lateral stiffness are
assumed to be the same for a train. The size of these stiffnesses however is changed
for each train. The Coefficient of Friction is varied between 0.3 and 0.5 for these train
types. Finally, a speed of 140 km/h and a speed of 100 km/h are used as the standard
speeds with which the trains travel. Using these parameters, The Damage Indexes
and wear numbers of multiple of these cases were obtained. In Figure 4.16 these
results are shown. The colour of the symbol indicates the train used, the circle and
triangle indicate if 100 or 140 km/h is used respectively, and the size of the symbol
indicates if µ = 0.3, µ = 0.4 or µ = 0.5. The parameters for all trains are given in
Table 4.1

Table 4.1: Test case parameters.

Train 1 Train 2 Train 3 Train 4
Vertical wear depth 6 mm 6 mm 6 mm 6 mm
Curve Radius 1500 m 1500 m 1500 m 1500 m
Rail cant 120 mm 120 mm 120 mm 120 mm
Coefficient of friction 0.3-0.5 0.3-0.5 0.3-0.5 0.3-0.5
Vehicle speed 100-140 km/h 100-140 km/h 100-140 km/h 100-140 km/h
Longitudinal stiffness 6*10ˆ5 N/m 7*10ˆ5 N/m 5*10ˆ5 N/m 8*10ˆ5 N/m
Lateral Stiffness 6*10ˆ5 N/m 7*10ˆ5 N/m 5*10ˆ5 N/m 8*10ˆ5 N/m
Axle load 37700 37000 36500 29400

In an ideal situation, the points in the graph shown would be lying on a line, making
it easy to create the RCF function for the specific test case. As has been shown before
however, the different parameters have influence on the Damage Index. In reality,
the points form a cloud from which it is difficult to draw a solution. One does see
the influence of the parameters as explained before. For example, train 4 (blue) has
three points on the right of the graph. with increasing COF the wear number de-
creases, as is also shown in Figure 4.3. The most right point has µ = 0.3 while the
left point has µ = 0.5. The other points of train 4 are performed with a higher speed.
Just as shown before, an increase in speed significantly decreases the wear number.
For higher speeds, the simulations show to be less influenced by the COF. There-
fore, an RCF line could be drawn through these points. At lower speed, the COF
has more influence, the points of the loads are farther from each other. As shown
in Figure 4.15 the combination speed and the COF has a relatively high estimator,
making them significantly dependent on each other. This explains why the COF is
more influential at lower speed. Drawing an RCF curve for these points is therefore
more difficult. One could suggest to give a range in which the RCF curve falls, but
a founded estimation of the RCF function placement is not possible with only these
points.
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Figure 4.16: WLRM for test case with four train types.

As it is shown to be difficult to obtain an RCF function for a specific rail location,
it can be argued if it is useful to draw an RCF function for a specific situation. If
these clouds of points are not able to comprehensively show how the RCF function
should behave, it is inconvenient to draw such a line. Next to that, it could be ques-
tioned what the obtained line exactly would explain. The simulated cases will give
points on the line for which that line is valid, but it cannot be said without hesita-
tion that other cases will also be on that line. It could be discussed that the only real
added value of the RCF curve is that this will show if and when the RCF dominant
phase starts and when wear will influence the rail Damage. Therefore it is suggested
to omit creating the WLRM and instead look at the Damage Index for specific situ-
ations only. As it is relatively easy to find the Damage Index and wear number for
a case, this would be a straightforward approach to predict failure and maintenance
needs. The only difficulty in using only points is that the dominant failure mech-
anism (wear or RCF) is not immediately clear. The Damage Index for both mech-
anisms should be found to compare and determine the dominant mechanism. The
number of cycles to failure can then be predicted based on the dominant mechanism.

(a) (b)

Figure 4.17: RCF function and Wear function Damage comparison.
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To be able to compare both mechanisms and determine the dominant one, some
theory of the WLRM stays relevant. In Figure 4.17a the basis of the WLRM is shown
again. There are three important distinctive regions. In region A, there is only fatigue
and thus this is the dominant mechanism. In region B there is also some influence
from wear, but fatigue is still dominant. In region C, the wear has become dominant,
the rail wears away too fast to form fatigue cracks. If it is assumed that these specific
regions still hold, the wear and fatigue damage can easily be compared to find the
dominant mechanism. In Figure 4.17b these two damages are compared. The RCF
damage is calculated using the quadratic regression formula derived in this thesis.
The wear damage is calculated using a similar equation to calculate the wear rate
[53]. Four random simulations are taken which show the different phases clearly.
The first simulation, with a wear number of approximately 15 N, there is some RCF
damage. As the wear damage has a value of 0, there is no wear taking place. The
damage would thus be in phase A and only RCF would be of influence. For the sec-
ond simulation (wear number of 80 N), both the wear and RCF are above 0. As the
RCF damage is still higher than the wear, there is still crack formation happening,
despite wear also taking place. This simulation can be placed in phase B. Both the
wear and the RCF are of importance. In simulation 3, wear number of 160 N, both
damages are almost the same, with the wear being slightly higher. This means that
the intersection between both functions has just been passed and phase C has been
reached. The wear is now dominant as fatigue cracks have no time to form. In the
last simulation, wear number of 230 N, the wear has become even more dominant,
so even further in phase C. The simulations were not compared with each other, ran-
dom ones were chosen. Because of this, there is no linear correlation between the
wear number increase and the damage index increase. Nevertheless, by identifying
the wear and RCF damage for any condition, the dominant mechanism could easily
be obtained and an estimation of the number of cycles until failure could be given.

4.4 Crack growth influence

One final aspect which should still be included in the model is that changing crack
growth is not taken into account. In the XFEM model, the Stress Intensity Factors
are calculated when the crack is one or two millimetres in length. The growth rate
is calculated for this crack and assumed to be constant. The problem with this as-
sumption is that the growth rate is not stable during the full lifetime of the rail. The
crack develops and changes geometry. The stresses and thus the SIFs in the crack are
changed by this. The Paris law (Figure 2.5), from which Equation (3.21) is a mod-
ification, shows that the growth rate generally increases with increasing SIFs. Test
specimens from different research show that increased crack lengths cause increased
Stress Intensity Factors and crack growth rates [55]. For this study, it was tried to
analyse the effect of changing crack sizes. Three random simulations were taken,
which were run through the XFEM model. An elliptical crack was used with an ini-
tial radius of 1 mm. After performing a run with the model, the growth rate for that
crack was obtained after which the crack size was manually increased. For simula-
tions 1 and 2, the crack size was increased by 0.5 mm. For simulation 3 (wear number
33.23 N), the crack size was increased by 0.25 mm. After the size increment, the sim-
ulation was run through the XFEM model again. These steps were repeated multiple
times for each simulation until a crack size of 10 mm was reached. In Figure 4.18 the
crack growth rate is set up against the crack length for these three simulations.
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Figure 4.18: Crack growth rate variation over crack length.

The graph shows that after a 3 mm crack length, the growth rate increases almost in a
linear manner. Before the 3 mm crack length, the growth rate seems to decrease. This
is not expected and has partly to do with the model being less precise with smaller
cracks. As the mesh is not small enough to capture the minimal crack, some prob-
lems could exist in getting stresses at the exact crack tip. Next to that, Burstow [4]
shows in his crack growth predictions that the growth rate in certain situations stays
almost constant at 1-3 mm. Another study by Trollé [56] about crack propagation in
rails also shows the behaviour of decreasing crack growth rate before 3 mm crack
length, whereafter the growth rate starts to increase again. Even though no reason
for this is given, it is thus shown before.

In the crack growth rate, also the geometry of the crack plays a role. In the XFEM
model, a semi-circular crack was used as the initial crack face. In 3D simulation,
cracks are generally modelled as semi-elliptical cracks with a vertical axis a being
the length of the crack and a horizontal axis b being the width of the crack. As ex-
plained before, for this study, only one load cycle is placed on the crack and no real
crack growth takes place in the model. Therefore, in the XFEM model, the crack
stays circular with a constant radius. In real life, however, a crack would never be a
perfect semicircle. Because the model is 3D and the crack does not go fully through
the rail, a rounded semi-elliptical crack face is the best approximation to a simple
initiated crack. In this crack face, the stresses may be different at different locations.
In Figure 3.13 it has been shown that the SIFs are obtained for multiple locations at
the crack front. Only the middle node is taken for the Damage Index calculation, but
the other nodes could have significantly different SIFs. This means that the elliptical
crack could grow at different speeds in different locations. It could be chosen to look
at both axes of the elliptical crack, a and b, as both can have different growth speeds.
Figure 4.19 shows what happens with the crack size if both these axes are taken into
account. To obtain these results, an initial crack with a size of 1 mm length and 1
mm width radius was situated on the rail for a random VI-Rail simulation. After
each XFEM model run, the growth rate for the corresponding axis was determined
by obtaining the SIFs at the crack tip and at the crack sides. It was then calculated
what the length of the axes would be after 10000 cycles with that growth rate. That
redefined length was placed in the XFEM model and a simulation was done again
to find the new growth rates. These steps were repeated multiple times until an idea
of the crack growth and the differences between both axes was gathered. As can be
seen, the horizontal axis, the crack width, starts growing faster. Eventually, both the
width and the length of the crack will grow at similar speed, but the width will be
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significantly larger at that stage. Even though they have a similar rate at some times,
the growth rates are different. It can thus not be said that the crack will remain cir-
cular during the full lifetime. This should be taken into consideration for Damage
calculations, but was not done for this study.

Figure 4.19: Difference in growth of axes of crack.

4.5 Discussion

Finally, some decisions and considerations have to be discussed in more depth. Most
important in this is the lack of inclusion of the initiation phase. As explained in the
Theoretical Framework (Chapter 2), crack growth has two distinctive phases; the ini-
tiation phase and the propagation phase. Both should be treated individually. Due
to time constraints, only the propagation phase was analysed in this study.

Another point that has to be discussed is the geometry and the location of the crack
on the rail. For this study, the crack was kept at an angle of 30°. This was chosen as
the model by Rodriguez et al. [40] made use of the same angle, and this is a com-
monly found angle for Head Checking in rails. It was not tried to change the angle,
but a change in results would be expected if this was done. Sung et al. [57] did look
into this and showed that for steeper angles the growth rate generally decreased. If
angles significantly different from 30°are found to be present for a specific case, the
XFEM model should be changed to fit these different angles.

Finally regarding the crack, the location could be a point of interest. For this re-
search, it was assumed that the crack would be located exactly below the middle of
the loads the train would exert on the rail. As the loads are the highest here, this
point was taken. In reality, it could be the case that an existing crack is not situated
exactly below the train wheel. In that case the stresses in the rail could be different,
such that the SIFs in the cack tips get different results. This could have a significant
influence on the Damage Index and is thus something that should be taken into con-
sideration. With this model, it has not been analysed how the SIFs or the Damage
Index would change by moving the crack away from the middle of the load.
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Then there are some discussion points regarding the obtained results. By analysing
the parameter influence on the WLRM, it was found that the vertical wear depth has
a significant influence on the Damage Index. This influence is not simply linearly de-
scribed. At least a quadratic formulation is needed, if not higher orders, to describe
the influence of the vertical wear depth. Further research would be needed to give
more insight into the influence of this parameter.

A large discussion point is the real added value of the WLRM. As has been shown,
it is difficult to draw an RCF curve for specific cases. It could be possible that the
inclusion of the initiation phase, as well as the changing crack growth, improves the
results. Nevertheless, even if the WLRM could be drawn, the added value could
be discussed. For specific cases, the Damage Index and wear number could easily
be obtained for RCF as well as for wear. As has been shown, the dominant failure
mechanism can be found and a prediction of the number of cycles until failure can
be defined. By constructing the full WLRM for a specific case, the lines would only
show the already found Damage Indices and a graph which is not necessarily useful
for any other case. Even though the idea of the WLRM is useful, it can be argued
that the full graph is obsolete.

In the end, the reason for writing this study has been discussed. In the unpublished
work of Meghoe et al. [2], a model was set up to predict the Damage using wear and
RCF. The reviewfailure mechanism can be found and er of this paper had certain
difficulties with this model, which proved to be enough to reject the paper. These
difficulties were mainly formed by the RCF part of the model. It was too much de-
pendent on elastic material parameters, only a limited range of contact conditions
was analysed and there where some wheel-rail contact assumptions made which
were not fully valid. Because of these points, this study was set up to find another
way in which the crack growth in rails could be predicted. In this study it was tried
to use FEM models to predict the crack growth. LEFM is still used as the basis for
the model as multiple other researches use similar approaches [40, 45]. Nevertheless,
a FEM model is used that describes the stresses in the crack locally. This will give
increased significance in the possible stress calculation. Next to the different model,
The contact conditions have been analysed by looking at different parameters for the
contact conditions. Different radii, cant, and speeds have been used to simulate rail
contact. In that, also the friction for different friction coefficients is taken into con-
sideration. The vertical wear depth was also used as input parameter to be included
into the analysis. The part still missing to fill this gap completely is the addition
of looking at different rail material grades, different geometries and different wheel
geometries. The tonicity of the wheels could have different effects on the stresses in
the crack, but these geometries have not been researched yet.
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5.1 Conclusion

In this study, it was tried to find a possible approach to construct the RCF function of
a WLRM. This study aimed to find an approach that could be used to construct the
RCF part of the WLRM, by using operational data as input values. To set up such
an approach, the crack growth on rails was studied and divided into an initiation
phase and a propagation phase. Both phases need their own prediction model to
get a full view of the RCF crack growth. Due to time constraints, this study only
included the propagation phase. From the literature review, it was found that a
FEM model would be a preferable method to model crack propagation in rails. An
extended finite element method (XFEM) was chosen as this method makes the anal-
ysis of propagating cracks easier and requires less computational effort. Using this
model, the Burstow WLRM RCF part was recreated, the influence of different input
parameters was analysed and a test case was set up to see if it could be used on real
cases. From this study, the following conclusions have been drawn:

• Using the framework from Figure 3.6 it is possible to determine the wear num-
ber and Damage Index for a specific case

• If loads and frictions comparable to Burstow’s field results are used, Damage
Indices within a range of the existing WLRM of Burstow can be found. The
RCF part of the WLRM can be obtained by these points

• From the eight analysed parameters, the vertical wear depth, axle load, train
speed and coefficient of friction have a significant influence on the RCF func-
tion. For the other parameters, the influence is less significant. The longitudi-
nal and lateral stiffness can be neglected due to their low influence.

• For a theoretical case it is still difficult if not impossible to derive the RCF func-
tion. Due to the significant and complex influence of some operational param-
eters on the Damage Index, no straight line can be found. The Damage Indices
create a cloud in the WLRM from which no RCF curve can be drawn. For real
cases, the same is expected

• It is possible to find the dominant failure mechanism (wear/RCF) for a case
and determine in which phase of the WLRM a specific case is placed.

From the conclusions drawn, it can be seen that the aim of this study has not fully
been achieved yet. A method has been developed to obtain the RCF function, but it
has been proven that obtaining the RCF function is more difficult and requires more
research.
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5.2 Recommendation

As a closure, some recommendations have been made which are needed for further
development of the RCF model. A number of important developments have already
been discussed that require further research. Some aspects of crack formation have
been neglected in this study but should still be implemented in a prediction method
like the WLRM. In the list below, a number of these developments is given;

• The crack initiation model should be included into the prediction model. Im-
portant for such a model is the location where the crack will start to grow as
well as the threshold stresses needed to initiate the crack. Expected is that the
initiation will give more insight into the threshold value of the RCF function
and its place in the WLRM.

• Changing crack growth due to changing crack size should be included into
the Damage Index calculation. As the crack size and thus the growth rate is
dependent on time and the number of cycles passed, it is suggested to add
a certain timescale. This would show the growth rate and crack size after a
certain amount of cycles, which would better indicate the state of the rail.

• In the parameter influences, it is seen that the vertical wear depth has signif-
icant influence, but its behaviour is not simply linear. It is beneficial to do
further research into this behaviour, as the wear depth is not described linearly
or quadratically, but otherwise.

• Instead of the used UIC-54 geometry with R260 steel, other rail geometries and
steel grades should be tested to see if different results are obtained. Expected
is that a geometry change would not be very significant other than a possible
change in crack location. The steel grade will be influential because material
properties such as the Young’s Modulus and the Poisson ratio are of impor-
tance in the SIF calculations.

• In the same category, also the wheel profiles of the crossing trains should be
varied. The study only uses one wheel, while different geometries and materi-
als can be used for that as well. Expected is a different stress field running over
the model and thus different stresses and SIFs in the crack.

• The crack geometry and location should be varied. As has been shown, the
geometry of the crack influences the growth rate. Because cracks are not ex-
pected to grow as simple elliptical cracks, a way to include this in the growth
rate calculations has to be found.

• Finally, the idea of the WLRM should be tested on real-life cases. With an
experimental test, it could be validated if the WLRM is describing the crack
formation properly. Labaratory tests could be performed to validate the if the
crack growth predicts similar to the way the WLRM predicts this growth. In
the end, the useability on real life rail maintenance should be tested.
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[41] D. Bóbis and P. T. Zwierczyk. Introduction of a possible approach to modelling
the propagation of head check cracks using the extended finite element method
taking into account fluid penetration. In Proceedings - European Council for Mod-
elling and Simulation, ECMS, volume 37, pages 131–137, 2023. Export Date: 21
December 2023; Cited By: 0.
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A | Burstow Results

A.1 Burstow WLRM

In his work, Burstow [4] defined the WLRM by looking at three different locations
and drawing a line through the obtained points. Figure A.1 shows this obtained
model. To obtain these points, he studied three locations with multiple different
train types and wheel geometries running at these locations. For the Leigh-on-Sea
location, the main force and contact patch parameters are given. These are shown in
Figure A.2. The ranges of these parameters are used to determine the load parame-
ters from Table 3.3. Finally Figure A.3 shows the crack growth of multiple cracks in
the Harringay location. As can be seen, the cracks mainly start to grow linearly after
0.003 m of length has been reached.

Figure A.1: The WLRM obtained by Burstow, including data points from field results
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(a) (b)

(c) (d)

(e)

Figure A.2: Load parameters for Leigh-on-Sea case Burstow
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Figure A.3: Crack size after a certain amount of cycles
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