
MSc Thesis

Preventing Machine Crashes
in a Single- and Multi-Unit
System using Markov
Decision Processes

F.I. Wienk

Supervisors:
Prof. dr. R.J. Boucherie (University of Twente),
G.J. van der Heijden MSc (Urenco)

October, 2024

Department of Applied Mathematics: Operations Research
Faculty of Electrical Engineering, Mathematics and Computer Science

Acknowledgements

This thesis is written to conclude my master’s degree in Applied Mathematics at the University
of Twente. I’ve been fortunate enough to be able to do my final project at Urenco in Almelo,
an extraordinary company, renowned for its innovative work and supportive culture. I want to
thank my colleagues for their constant support, openness, and genuine interest in my work. Their
support and friendliness made this experience both productive and enjoyable.

The past eight months have been both demanding and rewarding. I thank my supervisors,
Richard from the University of Twente and Gert-Jan from Urenco, for their invaluable guidance
and support. Richard for the insightful meetings, and his critical view. Gert-Jan for the infor-
mative tours, stimulating discussions and making sure I translated the mathematics back into
reality.

Finally, I’m grateful to my family and friends for their constant support. Their unwavering
encouragement throughout this thesis and my studies has meant the world to me.

Femke Wienk,
October 2024

2

CONTENTS CONTENTS

Abstract

In this report we formulate an optimal stopping problem for a single centrifuge that is
subject to deterioration. Five different deterioration causes are identified and modelled with
a discrete-time five-dimensional absorbing Markov chain. The deterioration process ends
with failure, which can be a ‘crash’ or a ‘run down’. Crashes are undesirable, because these
can also damage neighbouring centrifuges in the system, while run downs have almost no
implications. The model is extended to a system of centrifuges, in which the replacement
of all non-operating centrifuges is also considered. The optimal policy for both models is
proven to have a monotone structure within the partial ordering of the state and action
space. The monotone structure is used in the implementation of the policy iteration algorithm
to efficiently neglect certain non-optimal policies. Multiple experiments are performed to
determine how the cost parameters, the number of centrifuges and the state dimensions affect
the resulting policy.

Keywords: Markov Decision Process; Optimal stopping; Single-unit; Multi-unit; Partial ordering;
Monotone policies; Predictive maintenance.

Contents

1 Introduction 6
1.1 Uranium Enrichment Process . 6
1.2 Urenco . 9
1.3 Motivation . 9
1.4 Note from the Author . 9

2 Problem Analysis 10
2.1 Life cycle of Centrifuges . 10

2.1.1 Operational Situations . 10
2.1.2 Maintenance Actions . 10
2.1.3 Failure Types . 10
2.1.4 Failure Causes . 11
2.1.5 Deterioration States . 12
2.1.6 Centrifuge Monitoring System . 14
2.1.7 Pattern Profiling . 15

2.2 Data Analysis . 16
2.2.1 Data . 16
2.2.2 Pattern Detection Approaches . 16
2.2.3 Preprocessing Data . 17
2.2.4 Identifying Deviating Centrifuges from Daily Snapshot Time Series 18
2.2.5 Decomposition of 15-Second Time Series . 18
2.2.6 State Determination . 24
2.2.7 Kaplan-Meier Estimator for Survival Times 25

2.3 Research Objectives . 26
2.4 Research Questions . 26
2.5 Structure of the report . 26

3 Related Works 27
3.1 Maintenance Models . 27
3.2 Optimal Stopping . 28
3.3 Structure of Optimal Stopping Policies . 28

4 Theoretical Background 29
4.1 Maintenance optimization . 29
4.2 Remaining Useful Life . 29
4.3 Deterioration Models . 30
4.4 Stochastic Process Models . 31

3

CONTENTS CONTENTS

4.5 Markov Chain . 31
4.6 Markov Decision Process . 33
4.7 Optimal Stopping Problem . 34
4.8 Policy making . 35

5 Methodology 36
5.1 MDP: Single-Unit System . 36

5.1.1 Decision Epochs . 36
5.1.2 State Variables . 36
5.1.3 Decision Variables . 36
5.1.4 Transition Function . 36
5.1.5 Cost Function . 38
5.1.6 Value Function . 39

5.2 Optimal Policy for Single-Unit System . 39
5.2.1 State Dimension E: Corrosion . 40
5.2.2 State Dimension B: Condensing Feed Impurities 43
5.2.3 State Dimension D: Low Temperature . 47
5.2.4 State Dimension C: Light Gas . 47
5.2.5 State Dimension A: High Pressure . 50
5.2.6 Multi-Dimensional State . 52

5.3 Policy Iteration for Monotone Policies . 54
5.4 MDP: Multi-Unit System . 56

5.4.1 Decision Epochs . 56
5.4.2 State variables . 56
5.4.3 Decision Variables . 56
5.4.4 Transition Function . 57
5.4.5 Cost Function . 57
5.4.6 Value Function . 58

5.5 Optimal Policy for the Multi-Unit System . 58
5.6 Policy Iteration for Class-Ordered policies . 69

6 Results 71
6.1 Transition Function . 71
6.2 Single-Unit Policies . 72
6.3 Multi-Unit Policies . 73

7 Discussion 75

8 Conclusion 77

References 78

Appendices 82

A Glossary 82

B Notation Index 83

C Assumptions 84

D Imputation methods for missing values 85

E Remaining Useful Life (continued) 85
E.A Similarity Models . 85
E.B Survival Models . 86

4

CONTENTS CONTENTS

F Deterministic Deterioration Models 86
F.A Failure patterns . 86
F.B Failure Rates . 86

G Proofs of theorems 87

5

1 INTRODUCTION

1 Introduction

Our research is focused on maintenance activities of gas centrifuges at Urenco. First, we explain
the uranium process to gain a basic understanding of the different parts of a centrifuge, what a
centrifuge does and how a system of centrifuges operates (Section 1.1). This is followed by some
background information of the company Urenco (Section 1.2), and the motivation of our research
(Section 1.3).

1.1 Uranium Enrichment Process

Uranium (U) is a radioactive chemical element. The decay of uranium isotopes varies between
100.000 years and 4.5 billion years, which is a slow decay. In nature, uranium appears mostly
as a mixture of the isotopes U238 (99,27%), U235 (0,72%), and U234 (0,006%). The latter
is often considered a neglectable amount. Isotope U235 is the only naturally occurring fissile
isotope. This means it can sustain a nuclear chain reaction, which makes U235 suitable as fuel
for nuclear reactors. But nuclear reactors require a U235 concentration between 3% and 5%.
Therefore, the concentration of U235 in naturally mined uranium is increased via a process called
enrichment, which can be done by several methods, such as gaseous diffusion, gas centrifugation,
or liquid thermal diffusion. Urenco uses gas centrifuging to concentrate the U235 to low-enriched
uranium, meaning the concentration is smaller than 20%. To separate U235 from U238 the
compound Uranium hexafluoride (UF6) is used. UF6 can be a solid, liquid, or gas, depending on
its temperature and pressure, see the phase-diagram in Figure 1. Gas centrifuges operate with
material in gas form and UF6 is solid at normal atmospheric pressure, so it must be heated for
the enrichment process. [21].

Figure 1: Phase diagram of UF6. Adapted from [34].

A gas centrifuge consists of a cylindrical rotor, casing, and an electric motor. See Figure 2
for a schematic view. The electromagnetic motor rests on the bottom of the casing and turns
a shaft attached to the rotor’s base. The rotor is centered by the magnetic bearing on top,
preventing contact between moving and stationary parts. The rotor is driven by the motor and

6

1.1 Uranium Enrichment Process 1 INTRODUCTION

spins at a high speed (above the speed of sound) inside a vacuum casing. Operating the rotor in a
vacuum minimizes the drag, allows for better temperature control, and isolates the machine from
vibrations. To achieve such high speeds, each machine is manufactured with close tolerances to
minimize the imbalance. Inside the rotor chamber is a rotating disc-shaped baffle and a stationary
tube arrangement for feeding and extracting gas. [11, 36]

A centrifuge has three lines for material to travel: feed, product, and tails. The feed is the
material entering the centrifuge, while the product and tails are the material exiting it. The
product has a higher concentration of U235 than the tails. The feed is fed through a stationary
center post. This post also channels the enriched product to the top scoop and the depleted tails
to the bottom scoop. The process is balanced, so the amount of material that enters the centrifuge
equals the amount leaving it, i.e. feed = product + tails. [34, 39, 43].

Figure 2: Interior details of a gas centrifuge. Retrieved from Olander (1981) in [39].

Centrifuges use the principle of centripetal force. So lighter molecules (U235F6) are moved
to the axis and heavier molecules (U238F6) are forced to the side of the centrifuge. The vertical
arrows in Figure 2 indicate the internal gas circulation. The internal circulation is driven by mul-

7

1.1 Uranium Enrichment Process 1 INTRODUCTION

tiple mechanisms. The “thermal drive”, is generated by controlling the temperature of the rotor
wall and end caps, while the “mechanical drive” results from the interaction between the rotating
gas and stationary objects. A single centrifuge cannot achieve the desired level of enrichment. So
the process is repeated multiple times to further increase the concentration of U235F6. For this,
multiple centrifuges are placed in series and parallel configurations, known as a cascade. The final
product of a cascade contains the desired concentration of U235. This product is discharged into
a cylinder and solidified for transportation to a nuclear power plant [39].

A cascade can contain over a thousand centrifuges. These centrifuges are of the same type,
but may be different versions of that type. This problem focuses on the TC-12 type. Various
cascade arrangements with different numbers of centrifuges are possible. Urenco has multiple
arrangements in its factory. See Figure 4 for a schematic example of a cascade. Here, centrifuges
placed in parallel form a single stage. In reality, a stage consists of multiple flomels, which
are groups of centrifuges that receive identical feed and generate the same product and tails.
However, there are slight performance differences between the centrifuges in a stage. Whether
these differences are negligible depends on the target criteria. Stages are connected in series. The
stage where the feed enters and the stages above it are the enriching stages, while the stages below
are the depleting stages. Urenco uses symmetric cascades, where the enriched product from each
stage becomes the feed for the next stage, and the tails from each stage are part of the feed of the
preceding stage.

Figure 3: Example of factory layout with the different operational levels.

A flomel has physical and process neighbours. A physical neighbour is a flomel positioned
immediately adjacent to another flomel. In the layout depicted in Figure 3, flomels have both
vertical and horizontal neighbours, with an aisle separating vertically aligned flomels. Therefore,
only the 1 or 2 horizontal adjacent flomels are considered physical neighbours. A process neighbour
is a flomel connected to another flomel via pipework according to the different stages as shown in
Figure 4. A flomel has 0, 1, or 2 process neighbours.

The enrichment process is a continuous process. So replacing centrifuges requires stopping the
whole process. This type of maintenance is known as refurbishment and results in a production
loss. The capacity of a cascade is defined by the Seperative Work Units (SWU) produced per time
unit [37, 34].

Time series data is collected for each centrifuge by the Centrifuge Monitoring System (CMS).
The CMS data contains information regarding the power and power-related data of the centrifuge’s
motor. The performance of a centrifuge is determined by the power data. Next to power, the
system measures Cos-Phi data. This is the ratio of the effective power to the apparent power.
The system registers when a centrifuge has failed because no power can be measured anymore.

8

1.2 Urenco 1 INTRODUCTION

Figure 4: Example of a cascade for illustrative purposes.

1.2 Urenco

Urenco (Uranium enrichment company) is an international supplier of enrichment services and
fuel cycle products. Urenco was founded in 1970 after the governments of Germany, the Nether-
lands and the UK signed the Treaty of Almelo, which allows for international cooperation regarding
centrifuge technology for enriching uranium [51].

Urenco has four enrichment facilities: Urenco Nederland (UNL) in Almelo, Urenco UK (UUK)
in Capenhurst, Urenco Deutschland (UD) in Gronau, and Urenco USA in Eunice (UUSA). Each
facility has multiple cascades used for uranium enrichment. The facilities UNL and UUK have
been in operation since 1973. In addition to enriching uranium, UNL uses centrifuge technology
to produce isotopes for medical, industrial and research applications. UD started production in
1983, and UUSA in 2010. The head office is located in Stoke Poges, UK [51].

Enrichment Technology Company (ETC) used to be a subsidiary of Urenco. It manufactures
gas centrifuges. ETC was launched in 2003 and became a joint venture of Urenco and Orano (then
still Avera) in 2006. ETC is responsible for installing the centrifuges in Urenco’s cascades [11].

1.3 Motivation

Urenco experiences centrifuge crashes that not only affect the centrifuge itself but also damage
surrounding centrifuges, which can undesirably shorten their lifespan. Although some centrifuges
are preemptively stopped based on expert judgement, this approach is largely subjective and
relies largely on individual experience rather than systematic assessment. Urenco is interested
in developing a more proactive strategy that uses predictive techniques to anticipate centrifuge
crashes before they occur.

1.4 Note from the Author

Non-proliferation is greatly concerned with the risk of centrifuge technology being used to produce
high-enriched uranium for nuclear weapons. An international treaty aims to prevent the spread
of nuclear weapons. Therefore, some details in this report are redacted and available in the
confidential version. Such paragraphs, concepts, or variables are marked as ‘confidential’.

9

2 PROBLEM ANALYSIS

2 Problem Analysis

This section provides insight in the lifecycle of a centrifuge. It begins by outlining various opera-
tional scenarios (Section 2.1.1), the different maintenance actions (Section 2.1.2), types of failures
(Section 2.1.3), root causes (Section 2.1.4) with the associated deterioration processes (Section
2.1.5). Additionally, the available data for machines is discussed (Section 2.1.6), possible ap-
proaches for data analysis (Section 2.2.2), the data preprocessing steps (Section 2.2.3), how we
identify deviating centrifuges (Section 2.2.4) and a decomposition approach to analyse the data
further (Section 2.2.5). The section closes by stating the research objective (Section 2.3), research
questions (Section 2.4) and the structure of this report.

2.1 Life cycle of Centrifuges

2.1.1 Operational Situations

A centrifuge has different operational modes :

• Run up: The machine is turned on from a standstill and the rotor accelerates in several
steps until the nominal frequency is reached. During a run up the machine passes critical
phases that impose additional strain. Machines are run up after refurbishments.

• Feed Inlet: The machine is filled with UF6.

• In operation: The machine operates at nominal frequency. A machine is in operation
during the enrichment process.

• Run down: The machine is powered off and the rotor decelerates to a complete stop. Run
downs are executed for refurbishments or can occur unsolicited, classified as a failure.

• Stand-by: During refurbishments, the machine receives no power and stands still.

2.1.2 Maintenance Actions

A centrifuge cannot be repaired from failure. However, certain actions can be performed before
failure:

1. stop: The operator turns the centrifuge off, causing it to run down. This can be done either
to avoid failure or in preparation for a refurbishment.

Two other actions, flitzebogen and ISCAR, are possible. These are not included as the information
to choose these actions is confidential. The above maintenance actions are done for each centrifuge
individually. Maintenance actions can also be taken on cascade-level, such as refurbishments or
connecting new feed material.

2.1.3 Failure Types

Each machine failure is classified by type. Two types of critical failures are distinguished based
on rotor behaviour:

• crash: The rotor fails while working at a nominal frequency. The released energy causes a
reaction where “crash gasses” are created and the rotor is destroyed.

• run down: The centrifuge slows down due to the friction of the centrifuge exceeding the
torque of the rotor. The rotor is nearly intact.

There exist hybrid failure types that are a combination of the above, but these can often only be
identified by an autopsy, which takes a lot of work and time and is, hence, almost never done.
Therefore, we neglect these hybrid types. A failure is documented as “Found not running”, when
it is unclear which failure type occurred.

10

2.1 Life cycle of Centrifuges 2 PROBLEM ANALYSIS

2.1.4 Failure Causes

Different causes result in a machine failure. A failure cause is defined as the primary reason for the
failure, although other factors may have contributed. The causes can be divided into two groups:

1. Accident: Sudden failures caused by nature or human events.

2. Surface deterioration: Failures that develop over time due to wear, friction, and lubrica-
tion.

Surface deterioration failures likely follow consistent patterns and are therefore predictable.
Accidental failures are typically single events with no preceding evidence, making them harder to
predict. Therefore, we focus on surface deterioration failures. We describe all potential failure
causes and the related deterioration process for the surface deterioration group 1.

• Manufacturing or Assembly Problems: These defects are present from the beginning
and don’t develop over time. The failure occurs during the initial run up. This is categorized
as an accident failure and can be a crash or run down.

• Feed Inlet/ Run Up: A machine experiences more stress during a run up and run down as
it passes some critical phases. Although caused by deterioration, the failure became critical
due to a maintenance action, making the cause an accident. The rotor is still largely intact,
so it is considered to be a run down.

• High Pressure: A clogged scoop blocks material leaving the centrifuge, while the amount
that enters remains the same. The holdup (the total amount of gas in the rotor) increases and
so does the pressure. When the holdup exceeds the safety limit, the machine experiences
a crash or run down. The holdup develops over time, so the cause is due to surface
deterioration.

• Condensing Feed Impurities: Pollution in the feed enters the rotor and builds up. An in-
creasing CFI-indicator indicates this. The CFI-indicator can decrease, with the introduction
of relatively clean feed. However, once the CFI-indicator exceeds a threshold, UF6 solidifies
and the machine crashes. The pollution builds up over time, hence this cause is classified
as Surface deterioration.

• Light Gas: Light gas is defined as any gas with a lower molecular weight than UF6 (e.g.
oxygen, nitrogen, hydrogen fluoride) [34]. Light gas enters the centrifuge and accumulates,
causing drag that eventually slows the rotor down. The result is a run down. The buildup
develops over time, so the cause is classified as surface deterioration.

• Light Gas with a Pressure Pulse: A crash creates light gases and a pressure pulse that
can affect neighbouring machines. The result is a crash. The failure occurs due to the
failure of another machine, so it is classified as an accident.

• Low Temperature: Recall that the material UF6 is in gaseous state. A too-low tem-
perature in the centrifuge causes the UF6 to desublime in the rotor, leading to imbalance
and a crash. The temperature changes over time, hence this cause is classified as surface
deterioration.

• High Temperature: A higher temperature in a centrifuge has caused problems in other
types of centrifuges. However, these issues have not been observed in TC-12 centrifuges.
Therefore, we do not explore this cause further.

• Frequency: Before reaching the normal frequency, the rotor passes through multiple critical
frequencies, which give extra stress to the rotor. If the rotor keeps operating at these
frequencies, it would eventually lose balance and crash. In normal operation, machines do
not operate at critical frequencies. Therefore, this cause is classified as an accident.

1A more elaborate description is given in the confidential report

11

2.1 Life cycle of Centrifuges 2 PROBLEM ANALYSIS

• Corrosion: The rotor wall develops weak spots that eventually lead to holes. UF6 leaks
from the rotor, causing friction and drag. Eventually, the motor runs down when the
drag exceeds the motor’s torque. Corrosion develops over time, so this cause is a surface
deterioration.

• Moisture Ingress: When refurbishments are not performed correctly, moisture enters the
machine. UF6 reacts with moisture to form the solid Uranyl fluoride (UO2F2) and the
highly corrosive hydrogen fluoride (HF) [34]. The machine would crash immediately. Since
moisture is only present due to maintenance errors, the cause is classified as an accident.

• Seismic Event: Vibrations cause contact between rotating and stationary parts. The
instability leads to a crash. Seismic events are caused by nature, so this cause is classified
as an accident.

• Design Flaws: Some machine versions have a reduced life span due to poor design. We
will not consider centrifuges with design flaws and neglect this factor.

A summary of the deterioration causes along with the corresponding variables and effects is
presented in Table 1.

Deterioration
Cause

Variable Effect Failure type

High Pressure Pressure Holdup of UF6 crash or run down
Condensing Feed Im-
purities

CFI-Indicator Solid UF6 in rotor crash

Light Gas Amount of light gas Drag in rotor run down
Low Temperature Centrifuge inside tem-

perature
Solid UF6 in rotor crash

Corrosion Rotor wall strength Drag in rotor run down

Table 1: Deterioration causes with the corresponding effects.

The causes Frequency, High Temperature, Moisture Ingress, and Seismic Event have not oc-
curred at UNL. These causes will therefore not be considered in the sequel.

2.1.5 Deterioration States

The surface deterioration causes from Section 2.1.4 are translated into individual paths with
distinct deterioration states. Each path result in a crash (F1) or run down (F2). The directed
arcs in the graphs represent the possible transitions between states. Paths A, B, D involve a
threshold that, once reached, leads to failure.

• High Pressure
A high pressure can result in a crash or run down. See Table 2 for the states and possible
transitions in the path for High Pressure.

State Description
A0 Normal pressure level. During operation at nominal frequency, the pressure is

confidential mbar.
A1 Higher pressure results in more holdup (the amount of gas in the rotor). The motor

consumes more power. The pressure is between confidential mbar and confidential
mbar.

A2 Pressure exceeds the threshold (confidential mbar). The holdup in the rotor is too
much.

F1 or F2 Failure: crash or Run down

12

2.1 Life cycle of Centrifuges 2 PROBLEM ANALYSIS

A0 A1 A2

F1

F2

Table 2: High Pressure states and transitions.

• Condensing Feed Impurities
Once a machine experiences pollution, there remains some degree of pollution and the CFI-
indicator never returns to 0%. Therefore, the first state B0 (see Table 3) combines zero
increase with little increase.

State Description
B0 No (0%) or little increase (≤ confidential %) in the CFI-indicator.
B1 A high increase in CFI-indicator: between confidential % and confidential %. Machine

experiences significantly more strain.
B2 CFI-indicator exceeds the threshold (confidential %) and the UF6 solidifies.
F1 Failure: crash

B0 B1 B2 F1

Table 3: Condensing Feed Impurities states and transitions.

• Light Gas
Once a machine experiences light gas, there remains some degree of light gas. Therefore,
the first state C0 (see Table 4) combines no light gas and a small amount of light gas.

State Description
C0 No or a small amount of light gas. The rotor experiences little drag in the rotor.
C1 A large amount of light gas that causes a lot of drag in the rotor.
C2 The amount of light gas exceeds the threshold. The drag exceeds the torque of the

motor and starts to run down.
F2 Failure: Run down

C0 C1 C2 F2

Table 4: Light Gas states and transitions.

• Low Temperature
A small increase in temperature accelerates the corrosion process but has no known addi-
tional consequences. Therefore, a higher-than-usual temperature is considered to be within
the normal temperature range in state D0 (see Table 5).

13

2.1 Life cycle of Centrifuges 2 PROBLEM ANALYSIS

State Description
D0 Normal temperature T in the rotor: confidential ◦C ≤ T .
D1 Lower temperature T . The machine still operates but colder material requires more

power: confidential ◦C < T ≤ confidential ◦C − 2◦C
D2 The temperature T is below the threshold, and the UF6 desublimes: T ≤

confidential ◦C − 2◦C.
F1 Failure: crash

D0 D1 D2 F1

Table 5: Low Temperature states and transitions.

• Corrosion
Corrosion is a monotone process, so once a state in path E is left, it cannot be returned to
(see Table 6).

State Description
E0 No sign of corrosion.
E1 Weak spots have developed in the rotor wall.
E2 The weak spots have become holes. UF6 leaks through the rotor wall and causes drag.
E3 The drag exceeds the torque of the motor and the run down starts.
F2 Failure: Run down

E0 E1 E2 E3 F2

Table 6: Corrosion states and transitions.

2.1.6 Centrifuge Monitoring System

The main objective of the centrifuge monitoring system (CMS) is to inform operators about
changes in the condition of centrifuges while centrifuges are in operation. The CMS measures
various performance characteristics on centrifuge- and cascade level.

The power and cos-phi factor is measured for every centrifuge every 15 seconds. Data
compression stores the current value every hour, along with any values significantly deviating
from the last stored value. This method has been used for about a year. Previously, only one
snapshot per day was stored. Operators compare the power with certain given boundary values
to detect operational issues.

The cos-phi factor (cosϕ) is the ratio of effective power P to apparent power S, see Figure
5. The effective power, (also known as active power) is the power actually used by the machine,
while the apparent power S is the total power required. The cos-phi factor indicates how much
power is lost during the transport of power. It is calculated as follows:

cosϕ =
P

S

14

2.1 Life cycle of Centrifuges 2 PROBLEM ANALYSIS

Figure 5: Power triangle.

The frequency of the rotor can be measured for each centrifuge, but not simultaneously with
the power. Under optimal operation, the frequency remains constant. During run up and run
down, the frequency increases and decreases, respectively.

The CFI-indicator is measured by the Cascade Contamination Monitoring System (CCMS)
for a few centrifuges. These measurements are assumed to reflect the degree of pollution of
machines with the same feed, which are the machines in the same flomel.

The outside temperature of some centrifuges is measured. Operators can also take manual
temperature measurements using a thermographic camera, but these are not stored.

The header pressure of the whole cascade is measured. If it exceeds a threshold, a high-high
alarm sounds and the cascade is evacuated.

The feed cylinders can be tested for material concentration to determine the amount of
condensing feed impurities or light gas. However, the exact amount that enters a specific centrifuge
remains unclear.

A drag scan measures the friction of a centrifuge. This action requires all the machines in a
cascade to be drained of UF6, which leads to a production loss.

All actions taken on a machine or cascade are recorded in a logbook, including changes to
operational settings and the introduction of new feed cylinders.

2.1.7 Pattern Profiling

We aim to determine whether the deterioration paths from Section 2.1.5 are observable by ana-
lyzing multiple run-to-failure time series and time series of machines that have not failed yet, but
show deviating behaviour. Each failure is classified by type, but the specific cause of the crash
or Run down is unknown.

Based on the deterioration paths from Section 2.1.5, we expect specific patterns to emerge as
described in Table 7 2. Patterns are classified as long-term or short-term, with long-term covering
multiple years, and short-term spanning several days or weeks. All centrifuges in a flomel receive
the same feed, therefore differences between flomels is likely due to high pressure, light gas, or
CFI. Differences within a flomel may be the result of corrosion or temperature.

2A more detailed description is given in the confidential report

15

2.2 Data Analysis 2 PROBLEM ANALYSIS

Deterioration Cause Expected Pattern/ Characteristics Failure
Feed Inlet/Run up The failure occurs after refurbishments run down/ crash
High Pressure Short-term increase of the power con-

sumption
run down/ crash

Condensing Feed Impurities The rotor experiences instability, so this
may be reflected by random short-term
fluctuations in power data

crash

Light Gas The rotor experiences more drag, so the
power short-term increases

run down

Light Gas + Pressure Pulse Failure must be preceded by another in
the cascade. Higher power consumption
due to the drag caused by light gas.

crash

Low Temperature The power consumption increases as the
temperature decreases. This can be a
short-term or long-term increase.

crash

Corrosion A long-term process, where the rotor
eventually experiences drag due to leaks,
leading to an increased power consump-
tion.

run down

Table 7: Expected patterns in power data per failure cause.

2.2 Data Analysis

2.2.1 Data

The data used for our data analysis are power time series from 15-second intervals and daily
snapshots, both obtained from the centrifuge monitoring system.

The 15-second interval data contain power measurements recorded at 15-second intervals.
However the data is compressed, so only the value for every hour is stored in the file, along
with any values significantly deviating from the last stored value. Each centrifuge has one file,
containing the entire period from March 2023 till May 2024.

Daily snapshot data contain daily power values. The values of all centrifuges in one cascade
are stored in yearly files. The available data covers the period November 2008 to March 2023.

2.2.2 Pattern Detection Approaches

The goal is to establish a relation between the observations and the underlying deterioration state
of a machine via data analysis. Several approaches exist [28]:

Visual representations of data are line graphs, bar charts and scatter plots. This is a simple
approach to spot patterns and trends.

Statistical analysis can be divided in descriptive statistics and inferential statistics.

Descriptive statistics summarize numerical characteristics of a dataset for a basic under-
standing of the data’s distribution. The summary often contains the mean, median and
variability [28].

Inferential statistics uses techniques such as regression analysis, time series analysis, and
hypothesis testing to identify correlations between variables. Regression analysis estimates
the relation between a dependent and one or more independent variables. Time series anal-
ysis uses moving averages, exponential smoothing and linear regression to identify trend-,
seasonal-, cyclical-, or irregular patterns. Hypothesis testing statistically evaluates assump-
tions about population parameters, such as whether the data follows a normal distribution
[28].

16

2.2 Data Analysis 2 PROBLEM ANALYSIS

Machine learning (ML) algorithms are useful for large and complex datasets. ML algorithms
learn to make predictions or decisions based on past data. They are classified in supervised-,
unsupervised- and reinforcement learning [28].

Supervised learning trains a model with labelled data. The algorithm learns to predict new,
unknown, or unlabeled data. Supervised learning methods are regression, classification,
decision trees, and deep learning.

Unsupervised learning trains a model with unlabelled data. The algorithm learns along-
side unlabeled data to find patterns, similarities, or clusters. Unsupervised methods are
clustering, principal component analysis, and kernel density estimation.

Reinforcement learning trains an agent in an environment. The algorithm learns and adapts
its decision-making strategy using the feedback from the environment.

Data mining is used to identify correlations between variables that are unclear to the human
eye. It is a sub-field of ML, but data mining is focused on uncovering patterns and insights.
Examples are association rule mining and sequential pattern mining [28].

We expect deterioration patterns in the data, but it is unknown how these are portrayed.
Therefore, any interesting variation, peaks, or sudden shifts are analyzed. We use visualisation
to detect anomalies and trends. and hypothesis tests to quantify these observations and asses
whether results are due to real effects or due to random variation. The null hypothesis (H0) states
there is no significant difference or effect in the data. The alternative hypothesis (H1) claims that
a substantial difference or effect does exist. The p-value quantifies the evidence against the null
hypothesis. A lower p-value implies stronger evidence against H0, leading to a rejection when the
p-value falls below a threshold α, known as the significance level, typically set at 0.01 or 0.05.
The significance levels affects the occurrence of a type I error or type 2 error. A type I error is
incorrectly rejecting H0, while a type II error fails to reject a false H0. The force of a statistical
test depends on the sample size. Larger samples are more likely to detect true effects. The power
also depends on the variability in the data samples. A higher variability can make it harder to
detect an effect.

Tests can be either parametric, which often assume normally distributed data, or nonpara-
metric, which make no assumptions about the underlying distribution. Common tests include
the t-test for comparing means, chi-square test for independence, ANOVA for comparing multiple
groups, and correlation tests for assessing relationships.

2.2.3 Preprocessing Data

The data should be cleaned and preprocessed to handle missing values, outliers, and obtain a
format ready for analysis.

1. Interpolation of missing values: The data has two types of missing values. The first
type consists of purposely missing values due to data compression. This results in a gap of
at most an hour. Missing values have no significant deviations from the last known value.
Therefore, Last Imputation Carried Forward (see Appendix D) can be used to impute the
missing values. This method replaces missing values with the last known value. The second
type of missing values are unsolicited missing values, often caused by system malfunctions.
These data gaps that can span a day or multiple weeks [28]. There are multiple ways to
handle missing values. If only a few consecutive values are missing, then an estimation can be
calculated by interpolation, such as moving average or linear interpolation (see Appendix D
for different imputation methods). When many consecutive values are missing, interpolation
methods may be inaccurate. The variable(s) can be dropped from the analysis, but if all
machines have the same gap we have no data left. Therefore, we should be aware of the gap
and take this deficiency into consideration.

2. Eliminate outliers: The power operates within specific limits. Any values measured out-
side this range are considered as outliers and removed.

17

2.2 Data Analysis 2 PROBLEM ANALYSIS

3. Rescale data: In this report version, data values are scaled to a value between 0 and 1,
allowing for unrestricted analysis and discussion of the results. This is done by multiplying
each value in the dataset by a constant f .

4. Eliminate noise: The power depends on different factors specific to a machine. Further
details can be found in the confidential report. Some power patterns result from different
operational settings or actions, such as introducing new feed material. These patterns are
considered noise for the data analysis. Such operational actions are recorded in a logbook.

One of these actions is measuring the frequency of the machines. This interrupts the motor
drive, and causes the motor to run asynchronous. To return to the synchronous state, the
motor requires relatively more power, which is visible by peaks as shown in Figure 6. The
peaks inflicted by operators are removed, while asynchronous peaks that appear in a single
time-series are likely due to deterioration and are retained.

Figure 6: Power of a centrifuge, scaled with factor f .

2.2.4 Identifying Deviating Centrifuges from Daily Snapshot Time Series

Given the large amount of available data, we focus on one cascade and limit to centrifuges that
have failed or show deviating behaviour.

Centrifuges with deviating behaviour are identified by analysing daily snapshot data and com-
paring centrifuges within a flomel and comparing flomels. In Figure 7, are all 16 centrifuges shown
for four flomels. We see differences between flomels, e.q. the all time series in the bottom left-
flomel have a monotone decreasing trend, while time series from the other flomels swing from
decreasing to increasing multiple times. The three red-outlined centrifuges show from a certain
year an increasing trend. One of these deviating centrifuges is shown in Figure 8, where the long
term increasing and decreasing parts are indicated by, repectively the green and red subseries. A
long-term increasing trend may indicate corrosion (as we expected in Section 2.1.7). Deviating
centrifuges are further analysed on the 15-second data.

2.2.5 Decomposition of 15-Second Time Series

We aim to identify the states from Section 2.1.5 in the time series to calculate the corresponding
transition probabilities. We believe state transitions are in some way anomalies in the time series.
We analyse individual time series by answering the following questions:

18

2.2 Data Analysis 2 PROBLEM ANALYSIS

Figure 7: Daily snapshots are plotted over the period from 2008 to 2023 for 4 flomels (each
with 16 centrifuges) . Three time series that show deviating behaviour are red-circled time
series. The top left flomel is from the depleting stages, The bottom left is from the feed
stage, and the right flomels are from the enriching stage.

1. Does the frequency of asynchronous peaks increase?

2. Does a trend exists?

3. Does a seasonal pattern exists?

4. If so, is the seasonal pattern constant over time?

5. Does an asynchronous peak affect the seasonal pattern?

6. Does a medium peak affect the cyclical pattern?

7. Are anomalies observable in the residuals?

For Question 1, we classify a data point as asynchronous when it deviates a certain factor from
the long term trend. The factor is determined via the density plot. In the density plot the time
series looks like a normal distribution with a long tail that contains a bump that can be assigned
to the asynchronous peaks.

We determine whether there is a trend in the frequencies and duration of these peaks by
testing these on stationarity using the Augmented Dickey-Fuller test and a KPSS test, which are
explained later.

Questions 2-7 are answered by decomposing the time series, which is suitable for identifying
underlying relations. Decomposition methods are based on the assumption that observed data
contain four components:

1. Trend Tt: Long-term change in the time series.

2. Cycle Ct: Fluctuations with a non-fixed frequency. The cyclic component is often included
in the trend component.

3. Seasonality St: Repeating pattern with a fixed and known frequency. A seasonal component
is generally shorter than the cyclic component

19

2.2 Data Analysis 2 PROBLEM ANALYSIS

(a) Raw daily snapshot data (b) Daily snapshot without outliers

(c) Daily snapshot without steps
(d) Increase and decrease in time series
trend.

Figure 8: Daily snapshot time series plotted from 2008 to 2023.

4. Residuals et: The remainder between the above components and the observed data.

The functional relationship between these components can have different forms. An additive
or multiplicative model is often distinguished, but combinations of additive and multiplicative
models also exist. An additive model assumes the above components work independently and is
useful when the seasonal variation is constant over time. [33]:

Xt = Tt + St + Ct + et, t = 1, 2, . . .

A multiplicative model assumes dependent components, which is often the case for real-world
problems. The trend is non-linear and seasonality varies in frequency and/or amplitude:

Xt = Tt × St × Ct + et, t = 1, 2, . . .

To determine whether a multiplicative or additive model is more appropriate, a Shapiro or
Jarque-Bera test is performed on the values and log values (depending on the length of the time
series). If the values are sampled from a normal distribution, an additive model is appropriate.
While if the log values are sampled from a normal distribution, a multiplicative is more appropriate.

The Shapiro-Wilk Test is a normality test appropriate for small sample sizes [6].

H0: Sample is derived from a normally distributed population.

H1: Sample is not derived from a normally distributed population.

The Jarque-Bera Test is a goodness-of-fit test that determines whether the sample data is
normally distributed by checking the skewness and the kurtosis. It is suitable for large sample
sizes with over 2000 samples for which other normality tests like Shapiro-Wilk are unreliable [6].

H0: Skewness is zero and excess kurtosis is zero, hence sample is normally distributed

H1: Sample is not derived from a normally distributed population

20

2.2 Data Analysis 2 PROBLEM ANALYSIS

Figure 9: Density plot of the scaled power.

If the hypothesis is rejected for the values and the log values, then the choice of a multiplicative
or additive model is based on the variance of the time series. An increasing variance implies that
the four components are not constant over time and a multiplicative model is more appropriate.
For a constant variance an additive model is suitable. The variance is tested using Levene’s test.

Levene’s test assess the variances of two or more groups on equality:

H0: All samples are from a population with equal variances

H1: The variances of the samples are not equal

Now we can decompose the time series using the classical decomposition approach by Brockwell
and Davis in [6], while also including statistical tests to substantiate evidence. A flow diagram of
the analysis is shown in Figure 10.

Step 1: Trend Tt

The Augmented Dickey-Fuller test and Kwiatkowski-Phillips-Schmidt-Shin test are used to
ensure the series is truly stationary. The Augmented Dickey-Fuller test (ADF) is used
to determine whether the time series is non-stationary, i.e. a trend exists. The ADF test
uses an autoregressive model.

H0: Time series has a unit root

H1: Time series has no unit root

If the time series has a unit root, it impliesthe time series is non-stationary. For a long
time series the ADF test will most likely find evidence for some non-stationary, therefore we
apply the test on daily snapshots.

The Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test

H0: Time series is stationary

H1: Time series is non-stationary

21

2.2 Data Analysis 2 PROBLEM ANALYSIS

Figure 10: Flow diagram of the 15-second decomposition method.

If both tests conclude the series is (not) stationary, then the series is (not) stationary. If
KPSS indicates stationary and ADF not, then the series is trend stationary and the trend
needs to be removed for strict stationary. If ADF indicates stationary and KPSS not, then
the series is difference stationary, and the series is differenced.

When we have established that a trend exists, we estimate the trend Tt using a moving
average filter with window size d. That is,

T̂t =

{
1
d

(
1
2Xt−q +Xt−q+1 + . . .+ 1

2Xt+q

)
for d = 2q, q < t < n− q,

1
d (Xt−q +Xt−q+1 + . . .+Xt+q) for d = 2q + 1, q + 1 < t < n− q,

The window size d determines the smoothness of the curve. It should be of the same size
or a multiple of the seasonal length to not include the seasonal component in the trend
component. The observations are detrended: Xt − T̂t for an additive model, Xt/T̂t for a
multiplicative model with t = 1, 2,

The trend Tt is again smoothed with a moving average window to determine increasing and
decreasing subsequences.

Step 2: Seasonality St

Determining whether seasonality exists without visualisation can be done by the Kruskal-

22

2.2 Data Analysis 2 PROBLEM ANALYSIS

Figure 11: The blue plot is the detrended power time series, and the orange plot is the
moving average of the time series. Seasonal cycles are visible. At the start is a medium
peak.

Wallis test. This is a non-parametric statistical test. It assumes a stationary time series.

H0: Medians between groups are equal

H1: Medians between groups are not equal

To determine whether the pattern is seasonal and not cyclical, we perform Levene’s test on
the frequencies of each cycle. The variances of the amplitude is also tested.

We noticed medium peaks in our time series. The parts of the time series between the
medium peaks are considered as subpopulations. The subpopulations are tested on a trend
in durations or amplitude values using the ANOVA and Kruskal Wallis test

Estimate seasonal effects Sk for k = 1, . . . , d. Fast Fourier Transform (FFT) can be used
to identify the most critical frequency in periodic signals. The averages of the detrended
series (Xl − m̂l) are estimated and used to determine the seasonal component Sk. Let
q < l = k + jd ≤ n− q, j = 0, 1, . . . then

Ŝk =

{
(Xl − m̂l)k − 1

d

∑d
i=1 (Xl − m̂l)i, k = 1, . . . , d,

Ŝk−d k > d.

The observations are also deseasonalized for an additive model: Dt = (Xt − m̂t)− Ŝt, t =
1, . . . , n. And for a multiplicative model by Dt = Xt/Ŝt, t = 1, . . . , n

Step 3: Residuals et
Now that the time series is detrended and deseasonalized, the residuals et remain. A changing
variance in the residuals implies that the seasonal component is changing. This is tested
with Levene’s test.

The time series in between the medium peaks are considered as subseries.
A one-way ANOVA test (ANalysis Of VAriance) determines whether there exists statistically

23

2.2 Data Analysis 2 PROBLEM ANALYSIS

significant difference between mean values of three or more groups It is an extension of the t- and
z- test methods. It assumes the data is normally distributed.

H0: Means of all populations are equal µ1 = µ2 = . . . = µk

H1: At least one population mean is different from the rest

Revisiting Questions 1-7 listed at the beginning of this subsection, we find that

1. Does the occurrence of asynchronous peaks increase?
After all non-centrifuge-specific asynchronous peaks are removed, often only a pair of asyn-
chronous peaks remain, so that there is not enough evidence to make conclusions about the
occurrence of these peaks.

2. Does a trend exists?
Most centrifuge time series are non-stationary and therefore have a trend. This is not a
strictly monotone trend over the complete time period. We encountered a handful of time
series that were considered stationary after preprocessing.

3. Does a seasonal pattern exists?
All analysed centrifuges returned enough evidence for a seasonal component according to
the Kruskal Wallis test. From each seasonal pattern the amplitudes and seasonal durations
are retrieved by finding all peaks and determining the height and the time interval between
these peaks.

4. If so, is the seasonal pattern constant over time?
The mean durations and amplitudes of the seasonal cycles for each subseries are non-
stationarity. So the seasonal patterns change over time.

5. Does an asynchronous peak affect the seasonal pattern? Similar to Question 1, after all
non-centrifuge-specific asynchronous peaks are removed, often only a pair of asynchronous
peaks remain, so that there is not enough evidence to make conclusions about the effect of
the asynchronous peaks.

6. Does a medium peak affect the seasonal pattern? Some populations had enough statisti-
cal evidence for a trend in the duration or amplitude of the seasonal component. Some
subpopulations showed non-stationary behaviour, these are used to retract states.

7. Are anomalies observable in the residuals?
No anomalies are visually observable. The variance is not constant within the time series,
which again proves that the seasonal component is changing.

2.2.6 State Determination

We assume based on the pattern profiling from Section 2.1.7, the relations between the time series
and the underlying state are as described in Table 8. The time series denote from which type of
data we retrieve the states.

Path Deterioration Cause Time series Relation to time series
A High Pressure 15-second Increasing amplitude of the cy-

cles from the seasonal compo-
nent

B Condensing Feed Impurities 15-second Increasing/decreasing duration
of cycles from the seasonal com-
ponent

C Light Gas 15-second Short-term increasing trend
D Low Temperature 15-second Long short-term increasing

trend
E Corrosion Daily snapshots Long-term increasing trend

Table 8: Relation between the paths and the time series.

24

2.2 Data Analysis 2 PROBLEM ANALYSIS

The transitions for each individual path are retrieved using the decomposition method. So for
each centrifuge we retrieve the transitions in dimension A, B, C,D, and E. Then the transitions
are merged together for the multi-dimensional state (A,B,C,D,E).

2.2.7 Kaplan-Meier Estimator for Survival Times

Survival analysis assesses the effect of an intervention by measuring the number of subjects sur-
viving over some time. For survival, the variable of interest is the time that elapses before some
event occurs. We define an event as a transition in the machine’s deterioration state. The analyses
are complicated when not all machines have experienced an event or failure before the end of the
study. These cases are right-censored observations for which partial information is available. It is
undesirable to exclude these subjects because they provide some information about survival and
the sample size may become too small. Further, the hazard rate would be overestimated if the
empirical average is computed.

There is data available for the whole lifespan of a machine, but not every type of data. The
install date is known for every centrifuge and for some cascades, the daily snapshots are stored
since the day operation started. The 15-second data is only available since March 2023. Therefore,
it depends on the type of statistical tests and analysis whether the data is censored. The failure
pattern of centrifuges is known to follow a bath tub curve (Appendix F). The beginning of its
lifetime is the ‘Infant Mortality Stage’ which mostly contains failures due to defective components.
This is followed by the ‘Random Failure Period’ with a low failure rate. The ‘Wear-out Stage’ is
the period of our interest as it contains mostly deterioration failures. Therefore, the beginning of
a lifetime is not as relevant to our problem as the end.

Censored data is either left-, right, or interval censored (see Figure 12).

• Left censored data is data for subjects that started before the start of the observation.

• Right censored data is data for subjects that have not failed yet at the end of the observations,
so the failure time is unknown.

• Interval censored data is data where the exact failure time is unknown, but the lower- and
upper bounds of an interval surrounding the failure are known.

Figure 12: Examples of censored lifetimes. The blue dot is the start of the lifetime, and
the cross represents the occurrence of an event. The solid blue lines are known periods of
time, while the dashed blue lines represents an unknown period.

The Kaplan-Meier survival curve computes the survival over time despite the above difficul-
ties. The Kaplan-Meier survival curve is the probability of surviving in a given length of time

25

2.3 Research Objectives 2 PROBLEM ANALYSIS

while considering time in many small intervals. It is assumed that censored subjects follow the
same survival prospects as completely observed subjects. The survival probabilities are equal for
subjects that start at different times. We assume events occur at the end of the interval (the first
observable time).

The survival probability at a time interval t is calculated by the number of surviving subjects
divided by the total number of subbjects at the start:

St =
of subjects operating at the start−# of failed subjects at time t

of subjects operating at the start

Subjects that have died, before the start are censored and not counted in the denominator. The
total probability of survival till a time interval is the multiplication of all probabilities of survival
at all time intervals preceding that time [19].

2.3 Research Objectives

The objective is to prevent centrifuge crashes by proactively stopping centrifuges to avoid damage
to neighbouring centrifuges. We aim to determine a predictive maintenance policy that provides
the optimal stopping time for a centrifuge given its current state of deterioration. The policy
must balance the trade-off between the risk of failure and extended operating hours. Stopping a
centrifuge too early results in unnecessary production losses, while stopping it too late increases
the risk of a crash.

2.4 Research Questions

The main research question is:

“ Can we determine a policy to prevent centrifuge crashes based on real-time observations? ”

The associated sub-questions are:

1. What kind of model can be used to determine a predictive maintenance policy?

2. How can a centrifuge’s remaining useful life distribution be described?

3. What structure has the optimal policy for a single centrifuge?

4. How can find the optimal policy?

5. Does the policy structure change when a system of centrifuges is considered?

2.5 Structure of the report

The remainder of this thesis is structured as follows:
Section 3 reviews literature and approaches in the domain of maintenance optimization.
Section 4 examines deterioration models for maintenance optimization and examines prelim-

inary concepts and notions of Markov decision theory, including Markov chains.
Section 5 describes a model for the single-unit and multi-unit problem, and proves the struc-

ture of the corresponding optimal policy.
Section 6 provides the results for the models introduced in Section 5.
Section 7 summarizes the key results and provides suggestions for further research.
Section 8 summarizes the research and answers the problem statements from Section 2.

26

3 RELATED WORKS

3 Related Works

3.1 Maintenance Models

Developments in technical systems and increasing reliance on equipment requires effective planning
of maintenance activities. De Jonge et al. [13] review maintenance optimization models classifying
them into single- and multi-unit systems. Further sub-classification is based on the structure of
the deterioration state space, which can be discrete or continuous.

Discrete state spaces are classified in two, three, or more states. A two-state model usually
has a functioning and failed state. Three state deterioration processes have a state between
the functioning and failed state. For example, Zhang et al. [55] find a preventive maintenance
policy for a three-state single-unit system. The deterioration process is separated in a continuous
deterioration process caused by wear-and-tear and a discrete deterioration caused by shocks, which
is modelled by a Wiener and compound Poisson process. The resulting policy triggers repair or
replacement actions based on age and condition level, where the condition level is monitored via
discrete inspections. In continuous state spaces the deterioration level can take any value within
a certain range. Single-unit systems with a discrete state space are mainly approached using
Markov decision processes, where actions are based on the condition of the unit. The number of
deterioration states is related to what can be measured in practice. Continuous state spaces are
often discretized or some approximation technique is used to solve the problem [15, 13].

Maintenance actions are preventive or corrective. Preventive actions are performed before
failure of a unit and are triggered based on time, usage, or condition information. For example,
Cha et al. [8] consider age-based maintenance for a single-unit system with an increasing failure
rate, where external shocks, modelled by a Poisson process, lead to an increase in the failure rate.
Corrective maintenance is performed after failure and performed on units that do not deteriorate,
such as electronics [2].

A unit is repairable or non-repairable. Non-repairable units can only be maintained through
replacement. A repair maintenance action can be perfect or imperfect. A perfect repair returns
the state to as-good-as-new. While an imperfect repair improves the state but not to the as-good-
as-new condition. For example, Zhou et al. [57] consider a multi-unit system that deteriorates
according to a continuous-time Markov chain and determine a preventive maintenance threshold
for imperfect maintenance using linear programming. Finkelstein [16] compares perfect and im-
perfect repair based on the cost function. He describes how the nature of the problem differs, as
a perfect repair corresponds to a renewal process, while an imperfect repair leads to an nonho-
mogeneous Poisson process. Finkelstein also discusses on the existence of an optimal degree of
imperfect repair for a system.

In reality, units rarely operate in isolation. Maintenance models often distinguish three types
of dependencies: structural, stochastic, and economic. Multiple dependencies may exist in a single
problem, but most literature only assumes one type to reduce complexity. Structural dependence
describes the difference in operation between machines and is often considered in multi-unit sys-
tems. For instance, van Staden et al. [52] address structural dependence by dividing the machines
in groups based on technology type and power output level. Stochastic dependence exists when
the deterioration or failure of multiple units are dependent. This type of dependence is rarely con-
sidered as it quickly leads to complex structures [13]. Economic dependence is often considered
in the cost function of the model and reflects the economic interactions between units regarding
maintenance. For example, Lugtigheid et al. [31] consider a fixed maintenance set-up cost that is
‘shared’ when multiple units are maintained.

Various studies describe the deterioration process with a discrete-time Markov chain (DTMC).
For example, Jimenez et al. [25] use a DTMC to describe the deterioration of sewer pipes.

Proportional hazard models also appear regularly to describe the deterioration process. Here,
the failure rate depends on a unit’s age and condition that is modeled by a Markov chain. These
models assume that the total failure rate of a unit is a baseline failure rate multiplied with a
functional term that models the systems characteristics. Vlok et al. [53] use a Weibull proportional

27

3.2 Optimal Stopping 3 RELATED WORKS

hazard model to determine the optimal replacement policy for a unit based on monitored vibrations
levels.

Semi-Markov decision processes extend these models by considering state transitions that are
not limited to fixed time intervals. This allows for a more realistic modeling of a unit’s deteri-
oration. For example, Chen and Kishor [9] consider a single-unit system with random decision
epochs, where minimal maintenance or major maintenance can be performed. They find that the
optimal policy follows a threshold-type policy.

Makis and Jiang [32] consider imperfect inspections using a Partially Observable Markov De-
cision Process (POMDP), where the observed state is stochastically related with the actual state,
accounting for uncertainties in condition monitoring. Kim [27] uses a POMDP for imperfect
condition signals and approaches this using Bayesian learning.

3.2 Optimal Stopping

Optimal stopping problems and optimal replacement problems play an important role in predictive
maintenance models, as they aim to determine the best time to take an action. The timing of
actions can greatly impact the overall efficiency and costs.

Optimal replacement problems are a specific type of optimal stopping problems where the
only maintenance action is a replacement of a component. For example, de Saporta describes
[14] an optimal replacement problem for a degrading component using a three-dimensional Piece-
wise Deterministic Markov Process. The model balances costly early interventions and too late
interventions causing system failures.

Aven [3] describes an optimal replacement policy for a general failure model with two states.
A component degrades according to a stochastic process that is interrupted by an observable
stochastic underlying condition, The failure rate and costs depend on the system’s condition.
Aven also considers a system with multiple failure modes, and a case where replacements may not
occur immediately.

3.3 Structure of Optimal Stopping Policies

An MDP allows consideration of the trade-off between immediate and expected future costs when
choosing an action. The optimality equations can be used to establish that the objective function
has certain properties as a function of state and action, e.g. subadditivity. These properties can
guarantee that the optimal policy has a certain simple form, such as a threshold policy.

Oh and Özer [38] study discrete-time optimal stopping problems and propose a method to
characterize the structure of the optimal stopping policies with a finite horizon. A set of meta-
theorems establish conditions on the state transition and the one step value function. The method
is demonstrated on various stopping problems, such as the option pricing problem, the dynamic
market entry model, and the secretary problem An outline is given to extend the results to infinite
horizon problems.

Hjort et al. [24] provide conditions for monotone policy for a system with a totally ordered
multi-state space and independent components. Lindqvist [30] generalize this and consider a
partially ordered state spaces. The result is shown for a repairable systems with dependent
components. The system process is modeled by a Markov chain. Both discrete and continuous
time problems are considered and conditions are imposed on the transition matrix.

In discrete-time problems, often the history dependence causes a multidimensional state. Chris-
tensen and Irle [10] study certain multidimensional optimal stopping problems in discrete and
continuous time using the monotone case approach. This approach uses Doob decomposition of
the reward function and is applied to versions of the house-selling and burglar’s problem. Chris-
tensen and Irle note that optimal stopping theory reaches its limits for finding explicit solutions
for multidimensional problems.

28

4 THEORETICAL BACKGROUND

4 Theoretical Background

We outline approaches for maintenance optimization problems (Section 4.1), including deteriora-
tion models for failure prediction (Sections 4.2- 4.5). Next, we describe a Markov decision process
(Section 4.6) and an optimal stopping problem (Section 4.7) with the various solution methods
for determining an optimal policy (Section 4.8).

4.1 Maintenance optimization

Maintenance models determine when to inspect, repair, and replace deteriorating units. Mainte-
nance optimization aims to improve these policies. Sirakar et al. [49] define three maintenance
strategies;

• Corrective Maintenance (CM): Maintenance is performed after a unit fails;

• Preventive Maintenance (PM): Maintenance is performed before failure occurs. The strate-
gies are time- or usage-based; e.g. “replace a unit after X hours” or “replace a unit after Y
operation cycles”;

• Predictive Maintenance (PdM): The unit’s condition is measured and its reliability is as-
sessed. Maintenance actions are scheduled based on predicted future conditions. This in-
cludes Reliability Centered Maintenance (RCM) and Condition-Based Maintenance (CBM).

We aim to prevent crashes by making decisions based on current observations, using a PdM
strategy. “Prediction” involves using analytical, statistical and machine-learning models for diag-
nosis and prognosis. Diagnosis identifies the unit’s condition, while prognostics estimate the time
to failure. Together, they allow for remaining useful life estimations [56].

PdM techniques include knowledge-based, model-based, physical-based, data-driven, and hy-
brid. These approaches are described in Table 9.

Technique Model Data requirements Knowledge require-
ments

Knowledge-based Expert-system No data Domain knowledge
Model-based Statistical distribution

based models
Lifetime data and
dependencies between
units

Understanding of the
deterioration process

Physical-based Models based on laws
of physics

Observations of physi-
cal wear-and-tear pat-
terns

Domain knowledge in
physics and deteriora-
tion

Data-driven Machine-Learning
model for failure pat-
tern recognition

Large amount of run-
to-failure histories

-

Hybrid Combination of multi-
ple techniques

See the requirements
of the considered tech-
niques

See the requirements
of the considered tech-
niques

Table 9: Predictive Maintenance techniques with the corresponding requirements [29].

4.2 Remaining Useful Life

Remaining useful life (RUL) is the time a unit is expected to function before failing. RUL predic-
tion models are key for anticipating maintenance needs in PdM strategies [4].

RUL is estimated from observations, average estimates of similar units, or a combination of
both. The accuracy depends on factors, such as the machine type, data quality, and modelling
technique. Two types of techniques are often distinguished [17]:

29

4.3 Deterioration Models 4 THEORETICAL BACKGROUND

• Model-based techniques use a deterioration model aligned with the physical structure of
the system.

• Data-driven techniques assume no knowledge about the wear-and-tear process and predicts
the RUL based only on past observations.

For complex systems, it is difficult to accurately model the deterioration process. Data-driven
methods overcome this difficulty and are suitable when the deterioration process is too complex or
not understood. However, data-driven methods often ignore uncertainties in material properties,
measurement errors, operating conditions, and obtaining sufficient data for rare failure causes can
be difficult [17, 23].

The choice of method also depends on the type of available data, which can be categorized
into three types [4]:

• Lifetime data from similar machines contains the length of the operational period from
start-up to failure. The data is suitable for Survival Models, a statistical approach that
requires few data sets. Examples include Proportional hazard models and probability dis-
tributions like Weibull or exponential;

• Run-to-failure histories from similar machines are used in Similarity Models. These
data-driven models capture deterioration patterns and match new data with these patterns
to find the closest profile.

• Prescribed threshold value data contains information on critical conditions. For ex-
ample, ”the machine must not exceed 160°F to avoid failure”. Condition indicators are
extracted from sensor data and used to fit Deterioration Models, which predict when the
threshold is exceeded. Thresholds can also be calculated, given there is enough statistical
data.

Survival Models fit a model or probability distribution on the data. But in practice, different
runs can vary greatly in duration or shape. Similarity models handle this by matching deterio-
ration patterns. However, similarity models are data-driven and function as a black box, lacking
insight into the system’s internal structure [50]. We present model-driven approaches to describe
a deterioration process of a machine.

4.3 Deterioration Models

Deterioration models describe and predict the physical conditions of equipment. It supports
decision makers to understand how fast a condition aggravates or violates a threshold. These
models are influenced by sampling and temporal uncertainty [41]. Sampling uncertainty refers to
the variability in deterioration between samples. This epistemic uncertainty can be reduced by
increasing the amount of samples. Temporal uncertainty refers to the uncertain progression of
deterioration over time. This is a random type of uncertainty and cannot be completely reduced
by considering more samples.

A unit’s condition can be represented by a deterministic index or a failure probability. Tradi-
tional deterioration methods are usually deterministic, while more recent methods use probabilistic
models.

• Deterministic models are deterioration curves based solely on factors like age. These are
known as failure patterns. No probabilities can be incorporated and the uncertainty about
variables is ignored. Examples are the bathtub curve and P-F curve. See Appendix F for
more details on deterministic models.

• Probabilistic models describe the probability of being in a certain condition. The prob-
ability distributions can be updated as new information becomes available. This ensures
the distributions represent the system’s current state at any time. Probabilistic models are
categorized into random variable (RV) and stochastic process models.

30

4.4 Stochastic Process Models 4 THEORETICAL BACKGROUND

RV models randomize parameters of an empirical deterioration law to reflect the variability
among deterioration samples. It cannot consider temporal uncertainty, so a specific sample
path is considered deterministic.

Stochastic process models consider temporal uncertainty, keeping specific sample paths un-
certain. Examples are Markov chains and Gamma processes.

It is important to consider the uncertainties related to deterioration for meaningful reliability
analysis. If temporal uncertainty is present, a stochastic process is most suitable [41].

4.4 Stochastic Process Models

A stochastic process evolves over time based on probabilistic rules, making it partially random.

Definition 4.1. A stochastic process is a family of random variables {Xθ} with θ ∈ Θ. For
discrete-time processes, Θ consists of integers. For a continuous time process, Θ is a real line and
then θ is often replaced by t: {X(t)} [48].

For stationary stochastic processes, the probabilistic rules do not change over time. These
models can be discrete or continuous in time and state space. A discrete-state, discrete-time
model allows for direct numerical calculations and simulations. Often it is also easier to determine
transition probabilities for discrete-states than transition densities for continuous state spaces.
Future states of stochastic processes are either dependent or independent of past and present
states.

4.5 Markov Chain

A Markov chain is a type of Markov process, which is a stochastic processes with the Markov
property.

Definition 4.2. The Markov property states that future behaviours of the system only depends
on the current state of the model, and not its history behaviour.

A Markov chain models systems transitioning among a finite number of states. Each transition
is called a step and the system can be in one state at a time [54]:

Definition 4.3. A discrete-time stochastic process Xt is a Markov chain if

P (Xn+1 = in+1|X0 = i0, X1 = i1, . . . , Xn = in) = P (Xn+1 = in+1|Xn = in) ,

with i0 ≤ i1, . . . , in+1 ∈ S, here S contains all possible states of the process.

One way to represent the transition probabilities is in a transition matrix, also known as a
probability- or Markov matrix [20].

Definition 4.4. The transition matrix P for the Markov chain is the N ×N matrix, whose (i, j)-
th entry Pij is the transition probability for moving from state i to state j, and 0 ≤ Pij ≤ 1, for

1 ≤ i, j ≤ N and
∑N

j=1 Pij = 1 for 1 ≤ i ≤ N.

The transition matrix contains one-step probabilities. To find the probability of transitioning
from state i to state j in n periods is given by

P
(n)
ij =

∑
k∈S

P
(n−1)
ik Pkj ,

or by matrix multiplication
P(n) = P(n−1)P(1).

Definition 4.5. Let X be a Markov chain with state space S. If there exists some m ≥ 0 for

some states i, j ∈ S, such that P
(m)
ij > 0, then i leads to j. If j also leads to i, then i and j are

said to communicate with each other.

31

4.5 Markov Chain 4 THEORETICAL BACKGROUND

States that can be transitioned into and out of are called transient. States that cannot be
transitioned out of are absorbing states. A special type of Markov chain is an absorbing Markov
chain. This is a Markov chain with at least one absorbing state and from every state it is possible
to transition to an absorbing state in several steps. In Figure 13 an example of an absorbing
Markov chain is visualized with one absorbing and ∆− 1 transient states.

Suppose an absorbing Markov chain has r absorbing states and t transient states, then the
transition matrix, where the first t stats are transient and the last r absorbing, has the following
form [20]:

P =

(
Q R
0 I

)
, (1)

with Q an t-by-t matrix, R a nonzero t-by-r matrix, 0 the r-by-t zero matrix, and I is the r-by-t
identity matrix.

The n-step transition matrix has the form

Pn =

(
Qn

∑n−1
i=0 RQi

0 I

)
.

The probability of being in a transient state approaches zero as the number of steps approaches
infinity.

Theorem 4.1. In an absorbing Markov chain, the probability that the process will be absorbed is
1 [20]:

Qn → 0 as n → ∞.

The proof can be found in Appendix G

The following theorems can be used to determine the expected number of steps before absorp-
tion.

Theorem 4.2. In an absorbing Markov chain, the matrix I−Q, where Q is defined in Equation
(1), has an inverse known as the fundamental matrix N. Matrix

N = (I−Q)−1 = (I+Q+Q2 + . . .),

where the (i, j)-th entry gives the expected number of times the process is in transient state sj,
given the process started in transient state si. The initial state is also counted in the case i = j
[20].

The proof can be found in Appendix G.

Theorem 4.3. Let ti be the expected number of steps before the chain is absorbed starting from
state si. The column vector t whose i-th entry is ti. Then t = Ne, with N being the fundamental
matrix for P and e being the all-ones column vector [20].

Theorem 4.4. Let B be an t × r matrix, with entries bi,j that denothe the probability that an
absorbing chain is absorbed in absorbing state sj, given starting in transient state si. Then

B = NR,

where N is the fundamental matrix and R as in canonical form [20].

32

4.6 Markov Decision Process 4 THEORETICAL BACKGROUND

Figure 13: Absorbing Markov chain of a non-monotone deterioration process. The circles
represent the possible states, the directed arcs visualise the possible transitions between
the states, with pi,j being the probability of transitioning from state i to state j.

4.6 Markov Decision Process

A Markov decision process (MDP) models sequential decision making in systems with uncertain
future states. At decision epochs, the operator observes a state, performs an action and the system
transitions to the next state with a corresponding reward [5].

An MDP is a tuple (S,A, p, r), where

• The planning horizon T is the set of all decision epochs. The set may be finite or infinite,
and discrete or a continuum. If T = {1, 2, . . . , N} for some N < ∞, the problem has a finite
horizon. No decision has to be taken at the last decision epoch N . If the set with decision
epochs is infinite T = {1, 2, . . .}, the problem has an infinite horizon. Discrete decision
epochs require a decision at every epoch. While in a continuum, decisions are to be made
either at all decision epochs, random points of times when an event occurs, or times chosen
by the operator.

• S is the state space. This set contains all possible states. The state captures the configuration
of the system.

• A is the action space. This set contains all possible actions. The set As contains all actions
available while being in state s. Actions may be chosen randomly or deterministically.

• pt(s
′|s, a) is the probability at epoch t for transitioning to state s′, given current state s and

choosing action a. It is assumed that
∑

s′∈S pt(s
′|s, a) = 1.

• rt(s, a) is the reward at epoch t for being in state s and taking action a. The reward may
depend on the state of the system at the next decision epoch. The expected value at decision
epoch t can be estimated by

rt(s, a) =
∑
s′∈S

rt(s, a, s
′)pt(s

′|s, a).

Instead of maximizing a reward function, one can minimize a cost function ct(s, a), which is
the negative of the reward function.

The operator starts in an initial state s0 ∈ S. At each decision epoch t, an action at ∈ A(st)
is chosen. The system transitions to the next state st+1 according to the transition function. An
immediate reward rt is received.

The decision rule dt : S → As is a function that maps each state s ∈ S to an action a ∈ As

at decision epoch t. Decision rules range from deterministic Markovian to randomized history
dependent. This depends on how past information is incorporated and how actions are selected:

• Deterministic Markovian (MD) rules depend on previous system states and action only by
the current state st and an action at is chosen with certainty.

33

4.7 Optimal Stopping Problem 4 THEORETICAL BACKGROUND

• Deterministic history dependent (HD) rules depend on the history ht of the system as rep-
resented by the sequence of previous states and actions, so ht = (s1, a1, . . . , st−1, at−1, st),
with si and ai being the state and action at decision epoch i, respectively.

• Randomized Markovian (MR) rules are similar to MD rules, except actions are chosen ac-
cording to a probability distribution based on the state st.

• Randomized history dependent (HR) is similar to HD, except actions are chosen according
to a probability distribution based on history.

Any optimal problem can be made Markov by including all relevant information from the past in
the current state [46].

A policy π is a sequence of decision rules for every decision epoch π = (d1, d2, . . . , dN−1),
N ≤ ∞. A policy is stationary if the decision rules are independent of time, and hence the same
for every decision epoch: π = (d, d, . . .). The goal is to find a policy that optimizes an objective
function over the time horizon [46].

The standard form of an optimization problem is

minimize f(−→x)

subject to −→x ∈ Ω.

The function f : Rn → R is the objective function and the vector −→x ∈ Rn contains the decision
variables. The optimization problem aims to find the best −→x in all possible vectors Ω. The
objective function is also referred to as the value function.

The objective function can be described by maximizing the discounted expected rewards (or
minimizing expected costs):

vπγ (s) = lim
N→∞

Eπ
s

N∑
t=1

γt−1r(st, π(st))

The discount factor γ ∈ [0, 1) is introduced to limit the contribution of future rewards r(st, π(st)).
The objective function can also maximize the average expected reward:

vπγ (s) = lim
N→∞

1

N
Eπ

s

N∑
t=1

r(st, π(st))

This approach is suitable for frequent decision making or when the discount factor is close to
1.

The Bellman equations, also known as the optimality equations, splits the value function into
immediate rewards and discounted rewards for future states. The discounted optimality equations
is the following system of equations [46]:

vγ(s) = max
a∈As

{r(s, a) +
∑
s′∈S

γp(s′|s, a)v(s′)}, s ∈ S. (2)

For the average reward case, define g = lim
γ↑1

(1−λ)v∗γ(0) and h(s) = lim
γ↑1

[v∗γ(s)−v∗γ(0)]. Given these

limits exist, the average reward optimality equations are

h(s) = max
a∈As

{r(s, a)− g +
∑
s′∈S

p(s′|s, a)h(s′)}, s ∈ S. (3)

4.7 Optimal Stopping Problem

An optimal stopping problem is a Markov Decision Process with a finite state space and only
two actions for each state: stop or continue. Such a problem is sometimes referred to as a binary

34

4.8 Policy making 4 THEORETICAL BACKGROUND

decision process. The system evolves according to an uncontrolled process with a possibly non-
stationary Markov chain. The goal is to find the optimal time to stop a given Markov process that
minimizes a certain cost associated with the process. The action stop corresponds to a cost, while
the action continue corresponds with a reward. The problem can have a finite or infinite horizon
depending on the class of stopping times. When the stopping action is chosen, the process stops
and no more costs or rewards are incurred [15, 46].

The optimal policy is often a monotone policy and since we have only two actions (a0 and
a1), the monotone policy is a threshold policy. Here, the state space is divided into two mutually
exclusive subspaces based on a threshold, where each action is only taken in one of the subspaces:

π(s) =

{
a0, s < τ,

a1, s ≥ τ.

Finding an optimal policy reduces to finding a threshold τ , also called a control limit.

Figure 14: Symbolic representation of the decision process for optimal stopping. Here
s, s1, s2, . . . , sn ∈ S, where sn is the absorbing state.

4.8 Policy making

Three main approaches exist to find optimal policies for finite MDPs: value iteration, policy itera-
tion, and linear programming. Value iteration and policy iteration are both dynamic programming
algorithms.

Value iteration finds the optimal policy by constantly solving optimality equations for each
state. The actions with the most optimal value are determined and used in further calcula-
tions. The resulting policy is ϵ-optimal [46].

Policy iteration starts with a certain initial policy. The policy’s value is fixed and used to
determine a new policy. So it finds the optimal policy by iteratively computing vn by
(I − γPdn)v = rdn and dn+1 by dn+1 ∈ arg max

d∈As

(rd + γPdv
n), until the optimal policy is

found. This approach applies to stationary infinite-horizon problems.

Linear Programming finds the minimum or maximum value of an objective function subject
to some constraints. The primal problem is often difficult to compute, therefore the dual
program is solved instead. The result is an optimal policy.

35

5 METHODOLOGY

5 Methodology

We begin by describing a Markov Decision Process (MDP) for a single centrifuge (Section 5.1,
proving the structure of its optimal policy (Section 5.2) and describing the policy iteration algo-
rithm to find the optimal solution (Section 5.3). Next, we extend this to an MDP for a system of
centrifuges (Section 5.4), the optimal policy’s structure is proven (Section 5.5), and the adapted
policy iteration algorithm is described (Section 5.6). Note: A centrifuge is now referred to as a
unit and a cascade is referred to as a system.

5.1 MDP: Single-Unit System

Our goal is to determine the optimal time to stop a unit to prevent a crash. We model this problem
using a Markov Decision Process (MDP), where an operating unit carries a risk of crashing, while
a non-operating unit produces no output. The state of each unit is described using the five
deterioration paths outlined in Section 2.1.5.

5.1.1 Decision Epochs

The system is observed every 15 seconds, so we consider discrete decision epochs. The stochastic
process ends when a unit fails or the stopping action is chosen. Units have a finite lifetime, but
the exact duration is uncertain. Therefore, we assume an infinite set of discrete decision epochs
T = {1, 2, . . .}.

5.1.2 State Variables

The state variable s ∈ S describes the unit’s condition. Two different states are directly observ-
able: Fault and Operating. One operating state does not accurately describe the unit’s health.
Therefore, multiple operating states are defined that correspond with the deterioration processes
in Section 2.1.4. We consider five deterioration paths: A: High Pressure, B: Condensing Feed
Impurities, C: Light gas, D:Low Temperature, and E: Corrosion. These paths may evolve simul-
taneously, so the state is five-dimensional. As soon as one dimension has reached the failure state,
the unit completely fails. So two failure states are defined: F1 for a crash, and F2 for a run
down. The state space is

S =

{{
(Ai, Bj , Ck, Dl, Em) for i, j, k, l ∈ {0, 1, 2}, m ∈ {0, 1, 2, 3}

}
∪ {F1, F2}

}
.

5.1.3 Decision Variables

Two types of actions can be taken in all the states except the failure states:

• a0: continue. No action is taken, there is no effect on the current state.

• a1: stop. The unit is stopped preemptive via a Run Down.The next state is s′ = F2 with
probability 1.

Once the absorbing state F1 or F2 is reached, the stochastic process stops and no more decisions
have to be taken. So

As = A = {a0, a1}, s ∈ S \ {F1, F2}.

5.1.4 Transition Function

Observations are made every 15 seconds. Given this timescale, it is unlikely that multiple states
in one dimension are crossed at once. However, for Condensing Feed Impurities and Low Temper-
ature, solidification occur within seconds once the critical state is reached. So states B1 and D1

can transition to F1 in one time step without observing the intermediate step. We also assume
transitions occur in at most one dimension at a time.

The state variable is updated with the transition probabilities:

36

5.1 MDP: Single-Unit System 5 METHODOLOGY

p(s′|s, a) =


p(s′|s), s′ ∈ S, a = a0, s ∈ S \ {F1, F2},
1, s′ = F2, a = a1, s ∈ S \ {F1, F2},
0, otherwise.

The transition function p(s′|s) is a multidimensional Markov chain. Let s = (Ai, Bj , Ck, Dl, Em)
with i, j, k, l ∈ {0, 1, 2}, andm ∈ {0, 1, 2, 3} (unless otherwise specified). Further, p+q+r+s+t = 1
with p, q, r, s, t ∈ {0, 1}, then all possible transitions are:

p(s′|s) =



p(s|s),
p((Ai+p, Bj+q, Ck+r, Dl+s, Em+t)|s), i+ p, j + q, k + r, l + s ∈ {0, 1, 2}, m+ t ∈ {0, 1, 2, 3},
p((Ai+p, Bj+q, Ck+r, D1−s, Em+t)|s), i+ p, j + q, k + r ∈ {0, 1, 2}, m+ t ∈ {0, 1, 2, 3},
p((Ai+p, Bj+q, Ck−r, Dl+s, Em+t)|s), i+ p, j + q, k − r, l + s ∈ {0, 1, 2}, m+ t ∈ {0, 1, 2, 3},
p((Ai+p, Bj+q, Ck−r, D1−s, Em+t)|s), i+ p, j + q, k − r ∈ {0, 1, 2}, m+ t ∈ {0, 1, 2, 3},
p((Ai+p, B1−q, Ck+r, D1−s, Em+t)|s), i+ p, k + r ∈ {0, 1, 2}, m+ t ∈ {0, 1, 2, 3},
p((Ai+p, B1−q, Ck+r, D1−s, Em+t)|s), i+ p, k + r ∈ {0, 1, 2}, m+ t ∈ {0, 1, 2, 3},
p((Ai+p, B1−q, Ck−r, Dl+s, Em+t)|s), i+ p, k − r, l + s ∈ {0, 1, 2}, m+ t ∈ {0, 1, 2, 3},
p((Ai+p, B1−q, Ck−r, D1−s, Em+t)|s), i+ p, k − r ∈ {0, 1, 2}, m+ t ∈ {0, 1, 2, 3},
p((Ai−p, Bj+q, Ck+r, Dl+s, Em+t)|s), i− p, j + q, k + r, l + s ∈ {0, 1, 2}, m+ t ∈ {0, 1, 2, 3},
p((Ai−p, Bj+q, Ck+r, D1−s, Em+t)|s), i− p, j + q, k + r ∈ {0, 1, 2}, m+ t ∈ {0, 1, 2, 3},
p((Ai−p, Bj+q, Ck−r, Dl+s, Em+t)|s), i− p, j + q, k − r, l + s ∈ {0, 1, 2}, m+ t ∈ {0, 1, 2, 3},
p((Ai−p, Bj+q, Ck−r, D1−s, Em+t)|s), i− p, j + q, k − r ∈ {0, 1, 2}, m,m+ t ∈ {0, 1, 2, 3},
p((Ai−p, B1−q, Ck+r, Dl+s, Em+t)|s), i− p, k + r, l + s ∈ {0, 1, 2}, m+ t ∈ {0, 1, 2, 3},
p((Ai−p, B1−q, Ck+r, Dl+s, Em+t)|s) i− p, j − q, k + r, l + s ∈ {0, 1, 2}, m+ t ∈ {0, 1, 2, 3},
p((Ai−p, B1−q, Ck−r, Dl+s, Em+t)|s), i− p, j − q, k − r ∈ {0, 1, 2}, m+ t ∈ {0, 1, 2, 3},
p((Ai−p, B1−q, Ck−r, D1−s, Em+t)|s), i− p, j − q, k − r ∈ {0, 1, 2}, m+ t ∈ {0, 1, 2, 3},
p(F1|s), i = 2, j, k, l ∈ {0, 1, 2}, m ∈ {0, 1, 2, 3}

∨ j ∈ {1, 2}, i, k, l ∈ {0, 1, 2}, m ∈ {0, 1, 2, 3}
∨ l ∈ {1, 2}, i, j, k ∈ {0, 1, 2}, m ∈ {0, 1, 2, 3},

p(F2|s), i = 2 j, k, l ∈ {0, 1, 2}, m ∈ {0, 1, 2, 3}
∨ k = 2 i, j, l ∈ {0, 1, 2}, m ∈ {0, 1, 2, 3}
∨ m = 3, i, j, k, l ∈ {0, 1, 2},

0, otherwise.

Example

Suppose we only consider deterioration paths A and E. The state space is

SA × SE =

{{
(Ai, Em) for i ∈ {0, 1, 2} and m ∈ {0, 1, 2, 3}

}
∪ {F1, F2}

}
.

This contains 14 states, two of which are failure states. Figure 15 shows the corresponding
two-dimensional Markov chain for a = a0. The possible transitions for 15-second-intervals are
represented by the directed arcs.

37

5.1 MDP: Single-Unit System 5 METHODOLOGY

A0E0

A0E1

A0E2

A0E3

A1E0

A1E1

A1E2

A1E3

A2E0

A2E1

A2E2

A2E3

F1

F2

Figure 15: The circles represent the possible states, the directed arcs visualise the possible
transitions between the states when action a0 is taken.

5.1.5 Cost Function

The cost function considers rewards for production, and a penalty for unexpected crashes, which
depends on the next state. Further, the production and therefore rewards nonincrease with the
partial ordering of the unit’s state. For current state s ∈ S and action a ∈ A, the cost function
c(s, a) is defined as

c(s, a) = cproduct(s, a) + ccrash(s, a)

= cproduct(s, a) +
∑
s′∈S

ccrash(s, a, s
′)p(s′|s, a), (4)

with

cproduct(s, a) =

{
−c1(s), s ∈ S \ {F1, F2}, a = a0,

0, otherwise.

ccrash(s, a, s
′) =

{
C3, s′ = F1, a = a0, s ∈ S \ {F1, F2},
0, otherwise.

Then Equation (4) reduces to:

c(s, a) =

{
−c1(s) + C3 p(F1|s), s ∈ S \ {F1, F2}, a = a0,

0, otherwise.
(5)

38

5.2 Optimal Policy for Single-Unit System 5 METHODOLOGY

The penalty C3 for a crash is higher than the product reward c1(s) and all costs are finite.
The production reward are defined as negative costs. This is to ensure that there is an optimum
stopping interval for minimum costs. So 0 ≤ c1(s) ≤ C3 < ∞.

5.1.6 Value Function

The value function for policy π is the γ-discounted expected costs. For s ∈ S,

vπγ (s) =c(s, π(s)) + γE[vπγ (s
′)],

=c(s, π(s)) + γ
∑
s′∈S

p(s′|s, a)vπγ (s′). (6)

The discount factor γ ∈ [0, 1) limits the contribution of future rewards and c(s, a) is defined in
Equation (5).

5.2 Optimal Policy for Single-Unit System

The optimality equation (2) is assumed to return a stationary optimal policies for a stationary
cost and transition function. An optimal policy π∗ : S → A, minimizes the expected discounted
cumulative costs over the time horizon [46]:

π∗ = argmin
π
E[

∞∑
t=0

γc(st, π(st), st+1)] (7)

This results in the following system of equations to determine the optimal policy π∗:

π∗(s) = argmin
π

{γc(s, π(s)) +
∑
s∈S

v(s′)}, s ∈ S. (8)

The optimal policy is expected to have a monotone structure, which is beneficial in their
appeal to operators, the ease of implementation, and efficient computation. The existence of
optimal monotone policies is shown under the following assumptions that ensure the existence of
an optimal stationary lim inf policy[46]:

Assumption 5.1. For each s ∈ S, −∞ < C ≤ c(s, a) < ∞.

Assumption 5.2. For each s ∈ S, 0 ≤ γ < 1, v∗γ(s) < ∞.

Assumption 5.3. There exists a K < ∞ such that, for each s ∈ S, h∗
γ(s) ≡ v∗γ(s)− v∗γ(0) ≥ −K

for 0 ≤ γ < 1.

Assumption 5.4. There exist a non-negative function M(s) such that

a. M(s) < ∞;

b. for each s ∈ S, hγ(s) ≤ M(s) for all γ, 0 ≤ γ < 1; and

c. for each s ∈ S, and a ∈ As,
∑

s′∈S p(s′|s, a)M(s′) < ∞.

Further, monotone policies require the state to have a physical interpretation and a natural
ordering. An ordering is a transitive, reflexive and antisymmetric relationship between elements
in the set [46]:

Definition 5.1. Let W be an arbitrary set with a partial ordering on that set described by ⪯.
For u, v, and w ∈ W , u ⪯ v, v ⪯ w implies u ⪯ w (transitivity) and w ⪯ w (reflexivity), and u ⪯ v
v ⪯ u implies u = v (antisymmetry). A partially ordered set is called a poset [46].

Definition 5.2. Two elements u and v in W are comparable if either u ⪯ v or v ⪯ u [46].

Definition 5.3. A partial ordering is a total ordering on W if every pair of elements in W is
comparable. A set with a total ordering is called a chain [46].

39

5.2 Optimal Policy for Single-Unit System 5 METHODOLOGY

The natural ordering for each individual deterioration path in Sections 5.2.1-5.2.4 follows the
deterioration from new to failure state. So Ai ⪯ Aj ⪯ F1, F2 for i <≤ j and F1||F2. The orderings
are similar for B,C,D, and E.

The following theorem from Puterman [46] gives conditions under which an optimal monotone
policy exists. The first two conditions ensure the value function is nondecreasing in s and the last
two ensure the policy is monotone in s. In the case of a two-action space, the monotone policy is
a threshold policy. The stopping action becomes optimal when the units condition is sufficiently
deteriorated. It is assumed that the action space is not a function of the state, so As = A for all
s [46].

Theorem 5.1. Let S = {0, 1, . . .}, suppose that Assumptions 5.1-5.4 hold, and further that

1. c(s, a) is nondecreasing in s for all a ∈ A

2. q(k|s, a) ≡
∑∞

s′=k p(s
′|s, a) is nondecreasing in s for all k ∈ S and a ∈ A

3. c(s, a) is a subadditive function on S ×A

4. q(k|s, a) is a superadditive function on S ×A for all k ∈ S alternative:
∑∞

s′=0 p(s
′|s, a)u(s′)

is a superadditive function on S ×A for nonincreasing u.

Then there exists a lim inf average optimal stationary policy (d∗)∞ in which d∗ is nondecreasing
in s. Further, when S is finite, (d∗)∞ is average optimal.

The following lemma can be used to prove the sub- or superadditivity of functions.

Lemma 5.2. Let g(s, a) be a real-valued function on S ×A, with A = {0, 1} and S = {0, 1, . . . }.
If g(s, a) satisfies

[g(s+ 1, 1)− g(s+ 1, 0)]− [g(s, 1)− g(s, 0)] ≥ 0 (9)

for all s, it is superadditive. If the reverse inequality holds, then g(s, a) is said to be subadditive
[46].

Further, Kallenberg [26] showed that under conditions 1 and 2 from Theorem 5.1, vγ(s) is
nondecreasing in s. This is used to proof Assumption 5.3.

Lemma 5.3. If

• c(s, a) is nondecreasing in s for all a ∈ A,

• q(k|s, a) ≡
∑∞

s′=k p(s
′|s, a) is nondecreasing in s for all k ∈ S and a ∈ A.

Then value function vγ(s) is nondecreasing in s ∈ S.

We show the structure for each dimension in the state space (as if each deterioration path
evolves independently from the other paths).

5.2.1 State Dimension E: Corrosion

Corrosion has a monotone increasing path that ends in a run down with no risk for a crash.
We expect that choosing the stopping action is not optimal in any state.

Define SE = {E0, E1, E2, E3, F2}. At each decision epoch, the possible actions are to continue
a0 or to stop a1, but the failure state requires no action. Let s+ 1 = Ei+1 if s = Ei for i = 0, 1, 2
and s+ 1 = F2 if s = E3. The transition probabilities are

p(s′|s, a) =


0, s′ ≺ s,

p(s′|s), s′,∈ {s, s+ 1, F2}, s ∈ {E0, E1, E2, E3}, a = a0,

1, s′ = F2, s ∈ {E0, E1, E2, E3}, a = a1.

This corresponds with the following absorbing Markov chain:

40

5.2 Optimal Policy for Single-Unit System 5 METHODOLOGY

E0 E1 E2 E3 F2

a0
a0

a1

a0
a0

a1

a0
a0

a1

a0

a1

a0

The edge weights denote the possible transitions corresponding to a certain action. Since P (F1|s) =
0 for all s, the cost function is

c(s, a) =

{
−c1(s), a = a0,

0, a = a1.
(10)

Let v∗γ(s) = min
a∈A

{c(s, a) + γ
∑

s′ p(s
′|s, a)v∗(s′)}. Set v(F2) = Z for some constant 0 ≤ Z < ∞.

Theorem 5.4. An optimal policy π∗
E exists, which is a threshold policy with no threshold:

π∗
E(s) =

{
a0, s ∈ {E0, E1, E2, E3},
a1, s ∈ ∅.

Proof. If Assumptions 5.1-5.4 and conditions 1-4 of Theorem 5.1 hold, then an optimal policy
exists and is a threshold-type:

Assumption 5.1: Reward c1(s) is by definition nonincreasing with s and 0 < c1(s) < ∞. Therefore, −c1(E0) ≤
c(s, a) ≤ 0 and Assumption 5.1 holds with C = −c1(E0).

Assumption 5.2: Let d∞ denote the stationary policy to stop in every state: d(s) = a1 for all s.

v∗γ(s) ≤vdγ(s)

=0 + γ
∑

s′∈SE

p(s′|s, a1)vγdγ(s′)

=0 + γvdγ(F2)

=γZ

<∞

So Assumption 5.2 holds.

Assumption 5.3: Later we show that conditions 1 and 2 from Theorem 5.1 hold. Then by Lemma 5.3, v∗γ(s)
does not decrease with s and v∗γ(s) ≥ v∗γ(E0) for all s.

So that

h∗
γ(s) =v∗γ(s)− v∗γ(E0)

≥v∗γ(E0)− v∗γ(E0)

=0

So Assumption 5.3 holds with K = 0.

Assumption 5.4: Let M(s) < ∞, recall v∗γ(E0) ≤ v∗γ(s) ≤ 0 ≤ v∗γ(F2) = Z, for s ∈ SE \{F2} and A = {a0, a1}.

41

5.2 Optimal Policy for Single-Unit System 5 METHODOLOGY

Then for s ∈ SE

hγ(s) =v∗γ(s)− v∗γ(E0)

≤Z − v∗γ(E0)

=Z −min
a∈A

{c(0, a) + γ
∑

s′∈SE

p(s′|E0, a)v
∗(s′)}

=Z −min{γZ,−c1(E0) + γ
∑
s′

p(s′|E0)v
∗(s′)}

So Assumption 5.4b holds forM(s) = M = Z−min{γZ, c1(E0)+γ
∑

s′∈SE
p(s′|E0)v

∗(s′)} =
Z − v∗γ(E0), which is well-defined (finite).∑

s′∈SE

p(s′|s, a)M(s′) =
∑

s′∈SE

p(s′|s, a)M

=
∑

s′∈SE

p(s′|s, a)(Z − v∗γ(E0))

=
(
Z − v∗γ(E0)

) ∑
s′∈S

p(s′|s, a)

=Z − v∗γ(E0)

<∞

Further, the conditions for Theorem 5.1 hold:

1. By definition c(s, a) is nondecreasing in s for all a ∈ A;

2. For a = a1, q(k|s, a) is independent of s, so nondecreasing. For a = a0, define ∆q(k, s) ≡
q(k|s+ 1, a0)− q(k|s, a0). Then

∆q(k, s) =

{∑
s′∈SE

(p(s′|s+ 1)− p(s′|s)), k ≻ s,

0, k ⪯ s.
(11)

For k = s+ 1, the first term can be reduced to∑
s′⪰s+1,s′∈SE

(p(s′|s+ 1)− p(s′|s)) =1− p(s+ 1|s)

≥0.

For k = s+ 2, the first term can be reduced to∑
s′⪰s+2,s′∈SE

(p(s′|s+ 1)− p(s′|s)) =p(s+ 2|s+ 1)

≥0.

For k ⪰ s+ 3, the first term can be reduced to∑
s′⪰s+3,s′∈SE

(p(s′|s+ 1)− p(s′|s)) =0− 0

=0.

So ∆q(k, s) is nonnegative, implying q(k|s, a) is nondecreasing in s for all a ∈ A.

3.

[c(s+ 1, a1)− c(s+ 1, a0)]− [c(s, a1)− c(s, a0)] =[0− (−c1(s+ 1))]− [0− (−c1(s))]

=c1(s+ 1)− c1(s)

≤0

42

5.2 Optimal Policy for Single-Unit System 5 METHODOLOGY

The last inequality follows from c1(s) being nonincreasing in s. So c(s, a) is subadditive by
Lemma 5.2.

4. [∑
s′∈SE

p(s′|s+ 1, a1)u(s
′)−

∑
s′∈SE

p(s′|s+ 1, a0)u(s
′)

]
−

[∑
s′∈SE

p(s′|s, a1)u(s′)−
∑

s′∈SE

p(s′|s, a0)u(s′)

]

=u(F2)−
∑

s′∈SE

p(s′|s+ 1, a0)u(s
′)−

[
u(F2)−

∑
s′∈SE

p(s′|s, a0)u(s′)

]
=

∑
s′∈SE

p(s′|s, a0)u(s′)−
∑

s′∈SE

p(s′|s+ 1, a0)u(s
′)

= [p(s|s)u(s+ 1) + p(s+ 1|s)u(s)]− [p(s+ 1|s+ 1)u(s+ 1) + p(s+ 2|s+ 1)u(s+ 2)]

≥p(s|s)u(s+ 1) + p(s+ 1|s)u(s+ 1)− (p(s+ 1|s+ 1)u(s+ 1) + p(s+ 2|s+ 1)u(s+ 1))

=u(s+ 1)− u(s+ 1)

=0

The inequality follows from u(s) being nonincreasing in s. So
∑

s′∈SE
p(s′|s, a)u(s′) is a

superadditive function by Lemma 5.2.

A run down failure incurs no penalty, eliminating the trade-off between production re-
wards and the crash risk. From the cost function (Equation 10), we get c(s, a0) ≤ 0 and
c(s, a1) = 0. So the corresponding value function (that we want to minimize) is nonnegative
for s ∈ {E0, E1, E2, E3} and a ∈ {a0, a1}:

vπγ (s) = c(s, π(s)) +
∑

s′∈SE

γp(s′|s, a)v(s′) =

{
−c1(s) +

∑
s′∈SE

γv(s′) ≤ v(F2), π(s) = a0,

v(F2), π(s) = a1.

Hence, stopping (a1) never returns a lower cost than continuing operation (a0). The optimal
policy π∗

E is to let the unit operate until it runs down by itself:

π∗
E(s) =

{
a0, s ∈ {E0, E1, E2, E3},
a1, s ∈ ∅.

5.2.2 State Dimension B: Condensing Feed Impurities

Condensing Feed Impurities has a non-monotone path that ends in a crash. We expect that
there will be a threshold for choosing the stopping action.

Define SB = {B0, B1, B2, F1}. At each decision epoch, the actions are to continue a0 or to
stop a1, but the failure state requires no action. The transition probabilities are

p(s′|s, a) =



p(s′|s), s′ = s ∈ {B0, B1, B2}, a = a0,

∨ s′ = s+ 1, s ∈ {B0, B1, B2, }, a = a0,

∨ s′ = B0, s = B1, a = a0,

∨ s′ = F1, s ∈ {B1, B2}, a = a0,

1, s′ = F2, s ∈ {B0, B1, B2}, a = a1,

0, otherwise.

This corresponds with the following Markov chain:

43

5.2 Optimal Policy for Single-Unit System 5 METHODOLOGY

B0 B1 B2

F1

F2

a0
a0

a1

a0

a0

a0

a0

a1

a0
a0

a1

The cost is given by

c(s, a) =

{
−c1(s) + C3p(F1|s), a = a0,

0, a = a1.
(12)

Further, the value function satisfies v∗γ(s) = min
a∈A

{c(s, a)+γ
∑

s′ p(s
′|s, a)v∗γ(s′)}, and set vγ(F1) =

Z and vγ(F2) = Z for some constant 0 ≤ Z < ∞.

Theorem 5.5. An optimal policy π∗
B exists. This is a threshold policy with threshold τB.

π∗
B(s) =

{
a0, s ≺ τB ,

a1, s ⪰ τB .

Proof. Assumptions 5.1-5.4 hold:

Assumption 5.1: For a = a1, c(s, a) = 0 for all s. For a = a0, we have c(s, a) = −c1(s) + C3P (F1|s). Here,
reward c1(s) is by definition nonincreasing with s, C3 is a constant and 0 < c1(s) ≤ C3 < ∞.
We assume the failure rate is increasing, so P (F1|s) increases with s. Function c(s, a) is
increasing with s, and −c1(B0) < c(s, a) ≤ C3. So Assumption 5.1 holds with C = −c1(B0).

Assumption 5.2 We refer to the proof of Theorem 5.4.

Assumption 5.3 We refer to the proof of Theorem 5.4

Assumption 5.4 Let M(s) < ∞, recall v∗γ(B0) ≤ v∗γ(s).

hγ(s) =v∗γ(s)− v∗γ(B0)

=min
a∈A

{c(s, a) + γ
∑

s′∈SB

p(s′|s, a)v∗(s′)} −min
a∈A

{c(B0, a) + γ
∑

s′∈SB

p(s′|B0, a)v
∗(s′)}

=min{γZ,−c1(s) + C3p(F1|s) + γ
∑

s′∈SB

p(s′|s)v∗(s′)} −min{γZ,−c1(B0) + γ
∑

s′∈SB

p(s′|B0)v
∗(s′)}

≤γZ −min{γZ,−c1(B0) + γ
∑

s′∈SB

p(s′|B0)v
∗(s′)}

≤Z −min{γZ,−c1(B0) + γ
∑

s′∈SB

p(s′|B0)v
∗(s′)}

<∞

So Assumption 5.4b holds forM(s) = M = Z−min{0,−c1(B0)+γ
∑

s′∈SB
p(s′|B0)v

∗(s′)} =
Z − v∗γ(B0). Lastly, we refer to Theorem 5.4 for Assumption 5.4c.

Further, the conditions for Theorem 5.1 hold:

1. By definition c(s, a) is nondecreasing in s for all a ∈ A.

44

5.2 Optimal Policy for Single-Unit System 5 METHODOLOGY

2. For a = a1, q(k|s, a) is independent of s, so nondecreasing. For a = a0, define ∆q(k, s) ≡
q(k|s+ 1, a0)− q(k|s, a0). Then

∆q(k, s) =
∑

s′⪰k,s′∈SB

(p(s′|s+ 1)− p(s′|s)) (13)

• Suppose k = B0, then∑
s′⪰k,s′∈SB

(p(s′|s+ 1)− p(s′|s)) =
∑

s′∈SB

(p(s′|s+ 1)− p(s′|s))

=1− 1

=0

• Suppose k = B1, then∑
s′⪰k,s′∈SB

(p(s′|s+ 1)− p(s′|s)) =
∑

s′≥B1,s′∈SB

(p(s′|s+ 1)− p(s′|s))

=[1− p(B0|s+ 1)]− [1− p(B0|s)]
=p(B0|s)− p(B0|s+ 1)

We assume
p(B0|B0) ≥ p(B0|B1),

as a unit is more likely to stay in B0 than to return to B0 once it has experienced
a significant amount of impurities B1. So for s = B0, ∆q(k, s) is nonnegative. For
s = B1, it reduces to

p(B0|B1)− p(B0|B2) = p(B0|B1)− 0 ≥ 0.

For s ⪰ B2, it reduces to zero.

• Suppose k = B2, then∑
s′⪰k,s′∈SB

(p(s′|s+ 1)− p(s′|s)) =
∑

s′⪰B2,s′∈SB

(p(s′|s+ 1)− p(s′|s))

=[p(B2|s+ 1) + p(F1|s+ 1)]− [p(B2|s) + p(F1|s)]

For s = B0, it reduces to

[p(B2|B1)+p(F1|B1)]− [p(B2|B0)+p(F1|B0)] = p(B2|B1)+ [p(F1|B1)−p(F1|B0)] ≥ 0.

For s = B1, it reduces to

[p(B2|B2) + p(F1|B2)]− [p(B2|B1) + p(F1|B1)] = 1− p(B2|B1) ≥ 0.

For s = B2, it reduces to

[p(B2|F1) + p(F1|F1)]− [p(B2|B2) + p(F1|B2)] = 1− 1 = 0.

• Suppose k = F1, then∑
s′⪰k,s′∈SB

(p(s′|s+ 1)− p(s′|s)) =(p(F1|s+ 1)− p(F1|s))

≥0

So ∆q(k, s) is nonnegative in s, implying q(k|s, a) is nondecreasing in s for all a ∈ A.

45

5.2 Optimal Policy for Single-Unit System 5 METHODOLOGY

3.

[c(s+ 1, a1)− c(s+ 1, a0)]− [c(s, a1)− c(s, a0)]

=[0− (−c1(s+ 1) + C3p(F1|s+ 1))]− [0− (−c1(s) + C3p(F1|s)]
=c1(s+ 1)− C3p(F1|s+ 1)− c1(s) + C3p(F1|s)
=[c1(s+ 1)− c1(s)] + C3[p(F1|s)− p(F1|s+ 1)]

≤0

The last inequality follows from c1(s) being nonincreasing in s and an increasing failure rate.
So c(s, a) is subadditive by Lemma 5.2.

4. [∑
s′∈SB

p(s′|s+ 1, a1)u(s
′)−

∑
s′∈SB

p(s′|s+ 1, a0)u(s
′)

]
−

[∑
s′∈SB

p(s′|s, a1)u(s′)−
∑

s′∈SB

p(s′|s, a0)u(s′)

]

=u(F2)−
∑

s′∈SB

p(s′|s+ 1, a0)u(s
′)−

[
u(F2)−

∑
s′∈SB

p(s′|s, a0)u(s′)

]
=

∑
s′∈SB

p(s′|s)u(s′)−
∑

s′∈SB

p(s′|s+ 1)u(s′)

• Suppose s = B0, then s+ 1 = B1 and∑
s′∈SB

p(s′|s)u(s′)−
∑

s′∈SB

p(s′|s+ 1)u(s′)

=u(B0)p(B0|B0) + u(B1)p(B1|B0)

− [u(B0)p(B0|B1) + u(B1)p(B1|B1) + u(B2)p(B2|B1) + u(F1)p(F1|B1)]

≥u(B0)[p(B0|B0)− p(B0|B1)] + u(B1)p(B1|B0)− u(B1) [p(B1|B1) + p(B2|B1) + p(F1|B1)]

=u(B0)[p(B0|B0)− p(B0|B1)] + u(B1)p(B1|B0)− u(B1) [1− p(B0|B1)]

=u(B0)[p(B0|B0)− p(B0|B1)] + u(B1) [p(B1|B0)− 1 + p(B0|B1)]

=u(B0)[p(B0|B0)− p(B0|B1)] + u(B1) [1− p(B0|B0)− 1 + p(B0|B1)]

=u(B0)[p(B0|B0)− p(B0|B1)] + u(B1) [p(B0|B1)− p(B0|B0)]

≥u(B1)[p(B0|B0)− p(B0|B1)]− u(B1)[p(B0|B1)− p(B0|B0)]

=0

The inequalities follow from u(s) being nonincreasing in s.

• Suppose s = B1, then∑
s′∈SB

p(s′|s)u(s′)−
∑

s′∈SB

p(s′|s+ 1)u(s′) =

u(B0)p(B0|B1) + u(B1)p(B1|B1) + u(B2)p(B2|B1)u(F1)p(F1|B1)

− [u(B2)p(B2|B2) + u(F1)p(F1|B2)]

=u(B0)p(B0|B1) + u(B1)p(B1|B1) + u(B2)[p(B2|B1)− p(B2|B2)] + u(F1)[p(F1|B1)− p(F1|B2)]

≥u(B2)p(B0|B1) + u(B2)p(B1|B1) + u(B2)[p(B2|B1)− p(B2|B2)] + u(F1)[p(F1|B1)− p(F1|B2)]

=u(B2) [p(B0|B1) + p(B1|B1) + p(B2|B1)− p(B2|B2)] + u(F1)[p(F1|B1)− p(F1|B2)]

=u(B2) [1− p(F1|B1)− [1− p(F1|B2)]] + u(F1)[p(F1|B1)− p(F1|B2)]

=u(B2) [p(F1|B2)− p(F1|B1)] + u(F1)[p(F1|B1)− p(F1|B2)]

≥u(F1) [p(F1|B2)− p(F1|B1)] + u(F1)[p(F1|B1)− p(F1|B2)]

=0

46

5.2 Optimal Policy for Single-Unit System 5 METHODOLOGY

• Suppose s = B2, then∑
s′∈SB

p(s′|s)u(s′)−
∑

s′∈SB

p(s′|s+ 1)u(s′) =

=u(B2)p(B2|B2) + u(F1)p(F1|B2)− u(F1)p(F1|F1)

≥u(F1)p(B2|B2) + u(F1)p(F1|B2)− u(F1)

=u(F1)− u(F1)

=0

So
∑

s′∈SB
p(s′|s, a)u(s′) is a superadditive function by Lemma 5.2.

So if p(B0|B0) ≥ p(B0|B1), then the optimal policy π∗
B is a threshold policy with threshold

τB .

π∗
B(s) =

{
a0, s ≺ τB ,

a1, s ⪰ τB .

The policy states that at the threshold τB , the crash risk penalty outweighs production rewards,
making it cost-optimal to stop the unit before a crash occurs.

5.2.3 State Dimension D: Low Temperature

We refer to Section 5.2.2 since both paths have the same number of states and transitions (replace
‘B’ with ‘D’).

Theorem 5.6. An optimal policy π∗
D exists. This is a threshold policy with threshold τD:

π∗
D(s) =

{
a0 s ≺ τD,

a1 s ⪰ τD.

Proof. For the proof we refer to the proof of Theorem 5.5 in Section 5.2.2. We assume that
p(D0 ≥ D0) ≥ p(D0|D1) as a unit is more likely stay in D0 (normal temperature), than to
transition back to D0 once a unit experiences a lower temperature D1.

5.2.4 State Dimension C: Light Gas

Light Gas has a non-monotone path that ends in a run down. We expect that choosing the
stopping action is not optimal in any state.

At each decision epoch, the actions are to continue a0 or to stop a1. Define SC = {C0, C1, C2, C3, F2}.
The transition probabilities are

p(s′|s, a) =



p(s′|s), s′ = s ∈ {C0, C1, C2}, a = a0

∨s′ = s+ 1, s ∈ {C0, C1, C2, }, a = a0

∨s′ = s− 1, s ∈ {C1, C2} a = a0,

1, s′ = F2, s ∈ {C0, C1, C2}, a = a1,

0, otherwise.

This corresponds with the following Markov chain:

C0 C1 C2 F2

a0
a0

a1

a0

a0

a0

a1

a0

a0

a0

a1

47

5.2 Optimal Policy for Single-Unit System 5 METHODOLOGY

Since P (F1|s) = 0 for all s, the cost function is

c(s, a) =

{
−c1(s), a = a0,

0, a = a1.
(14)

Let v∗γ(s) = min
a∈A

{c(s, a)+γ
∑

s′ p(s
′|s, a)v∗(s′)}, and set v(F2) = Z for some constant 0 ≤ Z < ∞.

Theorem 5.7. An optimal policy π∗
C exists, which is a threshold policy with no threshold:

π∗
C(s) =

{
a0, s ∈ {C0, C1, C2, C3},
a1 s ∈ ∅.

Proof. We refer to Theorem 5.4 to show assumptions 5.1-5.4 hold, as well as conditions 1 and 3
from Theorem 5.1.

Conditions 2 and 4 from Theorem 5.1 also hold:

2. For a = a1, q(k|s, a) is independent of s, so nondecreasing. For a = a0, define ∆q(k, s) ≡
q(k|s+ 1, a0)− q(k|s, a0). Then

∆q(k, s) =

{∑
s′⪰k,s′∈SC

(p(s′|s+ 1)− p(s′|s)) k ≻ s,

0 k ⪯ s.
(15)

We assume p(C0|C0) ≥ p(C0|C1) and p(C1|C1) ≥ p(C1|C2), as it is more likely to remain in
a state than it is to transition back to a better state.

– For k = s+ 1 and s = C0, the first term can be reduced to∑
s′⪰C1,s′∈SC

(p(s′|C1)− p(s′|C0)) =p(C1|C1)− p(C1|C0) + p(C2|C1)

=p(C1|C1)− (1− p(C0|C0)) + p(C2|C1)

=1− p(C0|C1)− (1− p(C0|C0))

=p(C0|C0)− p(C0|C1)

≥0

– For k = s+ 1 and s = C1, the first term can be reduced to∑
s′⪰C2,s′∈SC

(p(s′|C2)− p(s′|C1)) =p(C2|C2)− p(C2|C1) + p(F1|C2)

=1− p(C1|C2)− p(C2|C1)

≥1− p(C1|C1)− p(C2|C1)

=p(C0|C1)

≥0

– For k = s+ 1 and s = C2, the first term can be reduced to∑
s′⪰C3,s′∈SC

(p(s′|F1)− p(s′|C2)) =p(F1|F1)− p(F1|C2)

=1− p(F1|C2)

≥0

– For k = s+ 2, the first term can be reduced to∑
s′⪰s+2,s′∈SC

(p(s′|s+ 1)− p(s′|s)) =p(s+ 2|s+ 1)

≥0.

48

5.2 Optimal Policy for Single-Unit System 5 METHODOLOGY

We have p(s′|s) = 0 for all s′ ≥ s+2. So for k ≥ s+3, ∆q(k|s, a) = 0. So condition 3 holds.

4. [∑
s′∈SC

p(s′|s+ 1, a1)u(s
′)−

∑
s′∈SC

p(s′|s+ 1, a0)u(s
′)

]
−

[∑
s′∈SC

p(s′|s, a1)u(s′)−
∑

s′∈SC

p(s′|s, a0)u(s′)

]

=

[
u(F2)−

∑
s′∈SC

p(s′|s+ 1)u(s′)

]
−

[
u(F2)−

∑
s′∈SC

p(s′|s)u(s′)

]
=

∑
s′∈SC

p(s′|s)u(s′)−
∑

s′∈SC

p(s′|s+ 1)u(s′)

Suppose s = C0, then s+ 1 = C1. Recall p(C0|C0) ≥ p(C0|C1) by assumption, then∑
s′∈SC

p(s′|s)u(s′)−
∑

s′∈SC

p(s′|s+ 1)u(s′)

=p(C0|C0)u(C0) + p(C1|C0)u(C1)− [p(C0|C1)u(C0) + p(C1|C1)u(C1) + p(C2|C1)u(C2)]

= [p(C0|C0)− p(C0|C1)]u(C0) + [p(C1|C0)− p(C1|C1)]u(C1)− p(C2|C1)u(C2)

≥ [p(C0|C0)− p(C0|C1)]u(C1) + [p(C1|C0)− p(C1|C1)]u(C1)− p(C2|C1)u(C2)

= [p(C0|C0) + p(C1|C0)− p(C0|C1)− p(C1|C1)]u(C1)− p(C2|C1)u(C2)

= [1− (1− p(C2|C1))]u(C1)− p(C2|C1)u(C2)

=p(C2|C1)u(C1)− p(C2|C1)u(C2)

≥0

The last inequality follows, because u(s) is nonincreasing in s.

Suppose s = C1, then s+ 1 = C2 and∑
s′∈SC

p(s′|s)u(s′)−
∑

s′∈SC

p(s′|s+ 1)u(s′)

=p(C0|C1)u(C0) + p(C1|C1)u(C1) + p(C2|C1)u(C2)− [p(C1|C2)u(C1) + p(C2|C2)u(C2) + p(F2|C2)u(F2)]

=p(C0|C1)u(C0) + [p(C1|C1)− p(C1|C2)]u(C1) + [p(C2|C1)− p(C2|C2)]u(C2)− p(F2|C2)u(F2)

≥p(C0|C1)u(C2) + [p(C1|C1)− p(C1|C2)]u(C2) + [p(C2|C1)− p(C2|C2)]u(C2)− p(F2|C2)u(F2)

= [p(C0|C1) + p(C1|C1)− p(C1|C2) + p(C2|C1)− p(C2|C2)]u(C2)− p(F2|C2)u(F2)

= [1− (1− p(F2|C2)]u(C2)− p(F2|C2)u(F2)

=p(F2|C2)u(C2)− p(F2|C2)u(F2)

≥0

The last inequality follows, because u(s) is nonincreasing in s. Suppose s = C2, then
s+ 1 = F2 and∑
s′∈SC

p(s′|s)u(s′)−
∑

s′∈SC

p(s′|s+ 1)u(s′) =p(C1|C2)u(C1) + p(C2|C2)u(C2) + p(F2|C2)u(F2)− u(F2)

≥p(C1|C2)u(F2) + p(C2|C2)u(F2) + p(F2|C2)u(F2)− u(F2)

=u(F2)− u(F2)

=0

A run down failure incurs no penalty, eliminating the trade-off between production rewards
and the crash risk. So the optimal policy π∗

C is to let the unit operate until it runs down by
itself:

π∗
C(s) =

{
a0, s ∈ {C0, C1, C2, C3},
a1 s ∈ ∅.

49

5.2 Optimal Policy for Single-Unit System 5 METHODOLOGY

5.2.5 State Dimension A: High Pressure

Condensing Feed Impurities has a non-monotone path that ends in a crash or run down. We
expect that there will be a threshold for choosing the stopping action.

At each decision epoch, the actions are to continue a0 or to stop a1. Define SE = {A0, A1, A2, F1, F2}.
The states A0, A1, A2 are ordered with respect to the level of deterioration, but the path ends in
either a crash F1 or run down F2 (competing failure types). We propose that the ordering of
states is not necessary for the absorbing states: s = A2 gives s+ 1 = F1 or s+ 1 = F2.

The transition probabilities are

p(s′|s, a) =



p(s′|s), s′ = s ∈ {A0, A1, A2}, a = a0

∨s′ = s+ 1, s ∈ {A0, A1, A2}, s′ ∈ {A1, A2, F1, F2} a = a0

∨s′ = s− 1, s ∈ {A1, A2} a = a0,

1, s′ = F2, s ∈ {A0, A1, A2}, a = a1,

0, otherwise.

This corresponds with the following Markov chain:

A0 A1 A2

F1

F2

a0
a0

a1

a0

a0

a0

a1

a0

a0

a0

a0

a1

The cost function is

c(s, a) =

{
−c1(s) + C3p(F1|s), a = a0,

0, a = a1.
(16)

The value function is v∗γ(s) = min
a∈A

{c(s, a) + γ
∑

s′ p(s
′|s, a)v∗(s′)}. Set v(F1) = Z and v(F2) = Z

for some constant 0 ≤ Z < ∞.

Theorem 5.8. An optimal policy π∗
A exists. This is a threshold policy with threshold τA.

π∗
A(s) =

{
a0, s ≺ τA,

a1, s ⪰ τA.

Proof. We refer to Theorem 5.5 to show that assumptions 5.1-5.4 hold, as well as conditions 1 and
3 from Theorem 5.1.

Conditions 2 and 4 from Theorem 5.1 also hold:

2. For a = a1, q(k|s, a) is independent of s, so nondecreasing. For a = a0, define ∆q(k, s) ≡
q(k|s+ 1, a0)− q(k|s, a0). Then

∆q(k, s) =

{∑
s′⪰k,s′∈SA

(p(s′|s+ 1)− p(s′|s)) k ≻ s,

0 k ⪯ s.
(17)

We refer to the proof of Theorem 5.7 for the cases that k = s+ 1 and s = A0, s = A1,

50

5.2 Optimal Policy for Single-Unit System 5 METHODOLOGY

– For k = s+ 1 and s = A2, when we take s+ 1 = Fi with i = 1, 2 the first term can be
reduced to ∑

s′⪰Fi,s′∈SA

(p(s′|Fi)− p(s′|A2)) =p(Fi|Fi)− p(Fi|A2)

=1− P (Fi|A1)

≥0

– For k = s + 2, the first term reduces to zero for all s, since transitions do not skip a
state.

4. We show that
∑

s′∈SA
p(s′|s, a)u(s′) is a superadditive function by showing Lemma 5.2 holds:[∑

s′∈SA

p(s′|s+ 1, a1)u(s
′)−

∑
s′∈SA

p(s′|s+ 1, a0)u(s
′)

]
−

[∑
s′∈SA

p(s′|s, a1)u(s′)−
∑

s′∈SA

p(s′|s, a0)u(s′)

]

=u(F2)−
∑

s′∈SA

p(s′|s+ 1, a0)u(s
′)−

[
u(F2)−

∑
s′∈SA

p(s′|s, a0)u(s′)

]
=

∑
s′∈SA

p(s′|s)u(s′)−
∑

s′∈SA

p(s′|s+ 1)u(s′)

– Suppose s = A0, s+ 1 = A1 and recall p(A0|A0) ≥ p(A0|A1) by assumption. Then∑
s′∈SA

p(s′|s)u(s′)−
∑

s′∈SA

p(s′|s+ 1, a0)u(s
′) =

=p(A0|A0)u(A0) + p(A1|A0)u(A1)− [p(A0|A1)u(A0) + p(A1|A1)u(A1) + p(A2|A1)u(A2)]

= [p(A0|A0)− p(A0|A1)]u(A0) + [p(A1|A0)− p(A1|A1)]u(A1)− p(A2|A1)u(A2)

≥ [p(A0|A0)− p(A0|A1)]u(A1) + [p(A1|A0)− p(A1|A1)]u(A1)− p(A2|A1)u(A2)

= [p(A0|A0)− p(A0|A1) + p(A1|A0)− p(A1|A1)]u(A1)− p(A2|A1)u(A2)

= [1− (1− p(A2|A1))]u(A1) +−p(A2|A1)u(A2)

=p(A2|A1)u(A1)− p(A2|A1)u(A2)

≥0

– Suppose s = A1, s+ 1 = A2 and assume that p(A1|A1) ≥ p(A1|A2). Then∑
s′∈SA

p(s′|s)u(s′)−
∑

s′∈SA

p(s′|s+ 1)u(s′)

=p(A0|A1)u(A0) + p(A1|A1)u(A1) + p(A2|A1)u(A2)

− [p(A1|A2)u(A1) + p(A2|A2)u(A2) + p(F1|A2)u(F1) + p(F2|A2)u(F2)]

=p(A0|A1)u(A0) + [p(A1|A1)− p(A1|A2)]u(A1) + [p(A2|A1)− p(A2|A2)]u(A2)

− p(F1|A2)u(F1) + p(F2|A2)u(F2)

≥p(A0|A1)u(A2) + [p(A1|A1)− p(A1|A2)]u(A2) + [p(A2|A1)− p(A2|A2)]u(A2)

− p(F1|A2)u(F1)− p(F2|A2)u(F2)

= [p(A0|A1) + p(A1|A1)− p(A1|A2) + p(A2|A1)− p(A2|A2)]u(A2)− p(F1|A2)u(F1)− p(F2|A2)u(F2)

= [1− p(A1|A2)− p(A2|A2)]u(A2)− p(F1|A2)u(F1)− p(F2|A2)u(F2)

= [1− (1− p(F1|A2) + p(F2|A2))]u(A2)− p(F1|A2)u(F1)− p(F2|A2)u(F2)

= [p(F1|A2) + p(F2|A2)]u(A2)− p(F1|A2)u(F1)− p(F2|A2)u(F2)

≥ [p(F1|A2) + p(F2|A2)]u(A2)− [p(F1|A2) + p(F2|A2)]max{u(F1), u(F2)}
≥0

51

5.2 Optimal Policy for Single-Unit System 5 METHODOLOGY

The optimal policy π∗
A is a threshold policy with threshold τA:

π∗
A(s) =

{
a0, s ≺ τA,

a1, s ⪰ τA.

The policy states that at the threshold τA, the crash risk penalty outweighs production rewards,
making it cost-optimal to stop the unit before a crash occurs.

5.2.6 Multi-Dimensional State

In sections 5.2.1-5.2.4, we considered each dimension of the state space S separately. But all
deterioration paths evolve simultaneously, so now we determine the structure of the optimal policy
when all dimensions are considered. The state s ∈ S with

S = SA × SB × SC × SD × SE

is multi-dimensional. Here, Si, with i = A,B,C,D,E are totally ordered sets as described in
Sections 5.2.1-5.2.4. The Cartesian product S = SA×SB ×SC ×SD ×SE is then a finite partially
ordered set with a componentwise ordering.

Definition 5.4. Partial ordering operator ⪯ on an N -dimensional set S is defined as s ⪯ s′, for
any s, s′ ∈ S with s = (s1, s2, . . . , sN) and s = (s′1, s

′
2, . . . , s

′
N), if si ⪯ s′i for all i ∈ {1, . . . , N}.

This is a componentwise ordering [42].

Definition 5.5. Given two partially ordered sets (X,⪯X) and (Y,⪯Y). A function f : X → Y
is monotone (or order-preserving) if f preserves order; that is, for all x, y,∈ X, if x ⪯X y, then
f(x) ⪯Y f(y). [12]

Theorem 5.9. Let X be a partially ordered set with the property that any two chains in X of
cardinal 2 have a common upper bound and a common lower bound; and let Y be any totally
ordered set. If the function f : X → Y is monotonic on every chain (Definition 5.3) in X of
cardinal 3, then f is monotonic on X [7].

A special case of Theorem 5.9 is Proposition 5.1.

Proposition 5.1. Let X1, . . . , Xn be (non-empty) subsets of R and let X = X1 × . . .×Xn. If the
function f : X → R is monotonic on every chain in X of cardinal 3, then f is monotonic on X
[7].

We claim Theorem 5.10.

Theorem 5.10. An optimal policy π∗ exists. This is a monotone policy with a five-way threshold.

Proof. We use Proposition 5.1 with X1 = A,X2 = B,X3 = C,X4 = D,X5 = E, and f = vγ : S →
R. In the proofs of Theorem 5.4- Theorem 5.8, it is shown that vγ is monotonic on A, B, C, D,
E, and hence vγ is also monotonic on every chain in X = X1 ×X2 ×X3 ×X4 ×X5. Additionally,
Theorem 5.4- Theorem 5.8 showed that the optimal policies π∗ : S → A are monotonic on S.
Action space A = {a0, a1} is totally ordered and can be mapped on R. Then by Proposition 5.1,
π∗ is a monotone policy on S.

The result is a 5-way threshold policy that is a 5-cube in the state space, where the stopping
action a1 is chosen if one of the edges is reached.

This means that a critical state in a single deterioration path is automatically critical in the
multi-dimensional state (regardless of the state of the other paths). For example, if A2 ⪰ τA so that
the stopping action is chosen in A2, then the stopping action is also chosen for (A2, Bj , Ck, Dl, Em)
regardless of j, k, l,m.

Our deterioration paths are dependent, so combination of deterioration states that may fall
short in each of the single paths, could, in combination equal in weight to a full dimension. The
stopping action would be chosen earlier. To illustrate how this work, we use an example.

52

5.2 Optimal Policy for Single-Unit System 5 METHODOLOGY

Example

Consider paths D and E. The state space

SD × SE =

{{
Dl, Em) for l ∈ {0, 1, 2} and m ∈ {0, 1, 2, 3}

}
∪ {F1, F2}

}
is two-dimensional. Theorems 5.6 and 5.4 state that the optimal policies for, respectively, path D
and E are

π∗
D(s) =

{
a0, s ≺ τD, s ∈ SD,

a1, s ⪰ τD, s ∈ SD,

π∗
E(s) =

{
a0, s ∈ SE ,

a1, s ∈ ∅.

Suppose τD = D2. If the paths evolve independently, then Figure 16a shows the two-way
threshold, which is τD for dimension D and none for dimension E. Multiple states fall short of
the threshold in their respective paths. However, if the paths evolve dependently (which is the
case for our problem), then the states D1 and E3 could together be a critical condition where it
would be optimal to stop. So the two-way threshold becomes a bound that is a combination of
both thresholds, see Figure 16b.

(a) Two-way threshold for
independent paths.

(b) Two-way threshold for
dependent paths.

Figure 16

53

5.3 Policy Iteration for Monotone Policies 5 METHODOLOGY

5.3 Policy Iteration for Monotone Policies

Policy iteration iterates over all policies and returns the optimal one. The monotone structure of
the policy is used to effectively search through all policies and neglect certain suboptimal policies.

Puterman [46] describes a monotone policy iteration algorithm for totally ordered state space.
We adapt this algorithm to make it applicable to partially ordered state spaces, see the pseudocode
in Algorithm 1. The algorithm is structured as follows:

1. Initialization: Randomly choose a nondecreasing policy π.

2. Policy Evaluation: Bellman’s equations are solved via an iterative scheme to approximate
the value of the current policy.

3. Policy Improvement : We improve the current policy by greedily selecting actions that min-
imizes the value function. To guarantee the monotonicity of the new policy, we proceed as
follows:

• If action a0 is chosen for state s, then assign action a0 to all states that precede s.

• If action a1 is chosen for state s, then assign action a1 to all states that succeed s.

The policy evaluation and improvement steps are repeated until the policy no longer changes.
During the policy improvement step the value of the policy can only decrease, therefore the
policy converges to the optimal policy.

54

5.3 Policy Iteration for Monotone Policies 5 METHODOLOGY

Algorithm 1 Policy Iteration Algorithm for a Monotone Policy with Partial Ordering

1: Input: γ: discount factor; θ: a small positive number; Z: a large positive number.
2: Output: π∗: a deterministic optimal policy
3:

4: // Initialization
5: Randomly initialize a nondecreasing policy π in s
6:

7: stable-policy = False
8: while stable-policy = False do
9: // Policy Evaluation

10: πold = π
11: ∆ = θ + 0.1
12: while ∆ > θ do
13: Set v(F1) = Z and v(F2) = Z
14: for s ∈ S \ {F1, F2} do
15: vold = v(s)
16: v(s) = c(s, πold(s)) + γ

∑
s′ p(s

′|s, πold(s))v(s
′)

17: ∆ = max{∆, |vold − v(s)|}
18: end for
19: end while
20:

21: // Policy Improvement
22: stable-policy = True
23: visited-states = emptylist
24: for s ∈ S \ {F1, F2} do
25: if s not in visited-states then
26: Add s to visited-states
27: π(s) = argmina{c(s, a) + γ

∑
s′ p(s

′|s, a)v(s′)}
28: if π(s)! = πold(s) then
29: stable-policy = False
30: end if
31: if π(s) =continue then
32: for s̃ preceding s that are not visited yet do
33: π(s̃) = continue
34: add s̃ to visited-states
35: if π(s̃)! = πold(s̃) then
36: stable-policy = False
37: end if
38: end for
39: else // π(s) = stop
40: for s̃ succeeding s that are not visited yet do
41: π(s̃) = stop
42: add s̃ to visited-states
43: if π(s̃)! = πold(s̃) then
44: stable-policy = False
45: end if
46: end for
47: end if
48: end if
49: end for
50: end while
51: return π∗ = π

55

5.4 MDP: Multi-Unit System 5 METHODOLOGY

5.4 MDP: Multi-Unit System

The production of the system decreases as more centrifuges fail. Non-operating centrifuges are
replaced during refurbishments, which are planned when a significant increase in production can
be made.

Refurbishments require preparations and cannot be executed immediately. Centrifuges should
be in stock and workers should be available to install the centrifuges. Several centrifuges are always
in stock, so we can assume 100% of a cascade is in stock. Urenco takes six to twelve months of
preparation between deciding and executing a refurbishment. The duration of a refurbishment
depends on the amount of centrifuges that need to be replaced and other maintenance activities.
The total duration often spans multiple weeks. centrifuges that are still operating are not replaced
in a refurbishment. If a centrifuge shows signs of some type of deterioration, it is relocated to a
position at which that type of deterioration does not progress. Therefore, we state

Assumption 5.5. Assume that after a refurbishment all units operate as new. So all units return
to state (A0, B0, C0, D0, E0).

5.4.1 Decision Epochs

The decision epochs are at discrete moments in time. The same intervals as in the single-unit model
are used. Due to Assumption 5.5, the operation cycle ends once a refurbishment is executed. The
system operates for a finite time before a refurbishment is planned, but the exact time is unknown.
Therefore, we consider an infinite horizon T = {1, 2, . . . , }.

5.4.2 State variables

The state variable s ∈ SM contains the deterioration state of all units. Each unit has the same
possible states as in the single-unit model, so we also use state space S from the single-unit model
(Section 5.1.2). Suppose we have m flomels, each containing n units. The state space is

SM = {Mm×n, with Mi,j ∈ S, for i = 1, . . . ,m, j = 1, . . . , n}.

5.4.3 Decision Variables

Two types of actions can be taken for any operating unit:

• a0: continue operating. No action is taken, and there is no effect on the current operating
state.

• a1: stop. A single unit is run down.

The stochastic process of the multi-unit system continues when a single unit has failed. So we
define one type of action for non-operating units:

• a3: continue non-operating. No action is taken, and the unit remains non-operating.

Another action is taken on system level:

• a2: refurbishment. A refurbishment is executed, that replaces all non-operating units.

Every decision epoch an action a ∈ A is to be taken where

A = {A1, A2} with A1
i,j ∈ {a0, a1}, if Mi,j /∈ {F1, F2}, i = 1, . . . ,m, j = 1, . . . , n,

A1
i,j = a3, if Mi,j ∈ {F1, F2}, i = 1, . . . ,m, j = 1, . . . , n,

A2 ∈ {a0, a2}.

56

5.4 MDP: Multi-Unit System 5 METHODOLOGY

5.4.4 Transition Function

The transition function pM (s′|s) is the probability that the next state is s′ ∈ SM given the
current state is s ∈ SM . It uses the transition function p(s′|s) from the single-unit model in
Section 5.1.4. Further, the factor (1 + Di) with Di ≥ 0 increases the probability of centrifuges
in flomel i transitioning to a worse state due to a neighbouring crash. Each flomel has process
and location neighbouring flomels (Section 1.1), so define factor dL for when a crash occurred
in a location-neighbouring flomel, where NL,i is the set of location-neighbouring flomels of flomel
i, and dP for when a crash occurred in a process-neighbouring flomel, where NP,i is the set of
process-neighbouring flomels of flomel i.

Then

Di = dL min
{
1,

∑
k∈NL,i

n∑
j=1

1{Mk,j = F1}
}
+ dP min

{
1,

∑
k∈NP,i

n∑
j=1

1{Mk,j = F1}
}
.

To ensure the sum of probabilities equals one, the probability of transitioning to the same or
a better state decreases with a factor 0 ≤ Qi ≤ 1, which follows from

1 =
(1 +Di)

∑
M ′

i,j≻Mi,j
p(M′

i,j |Mi,j) +Qi

∑
M ′

i,j⪯Mi,j
p(M′

i,j |Mi,j)

(1 +Di)
∑

M ′
i,j≻Mi,j

p(M′
i,j |Mi,j) +Qi

∑
M ′

i,j⪯Mi,j
p(M′

i,j |Mi,j)

=
(1 +Di)

(1 +Di)
∑

M ′
i,j≻Mi,j

p(M′
i,j |Mi,j) +Qi

∑
M ′

i,j⪯Mi,j
p(M′

i,j |Mi,j)

∑
M ′

i,j≻Mi,j

p(M′
i,j |Mi,j)

+
Qi

(1 +Di)
∑

M ′
i,j≻Mi,j

p(M′
i,j |Mi,j) +Qi

∑
M ′

i,j⪯Mi,j
p(M′

i,j |Mi,j)

∑
M ′

i,j⪯Mi,j

p(M′
i,j |Mi,j)

=α
∑

M ′
i,j≻Mi,j

p(M′
i,j |Mi,j) + β

∑
M ′

i,j⪯Mi,j

p(M′
i,j |Mi,j).

Here, we substituted the fractions by α and β for further ease of notation. Also, 1 ≤ α and
0 ≤ β ≤ 1, this follows from D ≥ 0.

For s = M, s′ = M′, and a = (A1, A2)

pM (s′|s, a) = pM (M′
1,1|M1,1, a)× . . .× pM (M′

m,n|Mm,n, a)

with

pM (M′
i,j |Mi,j , a) =



α · p(M′
i,j |Mi,j) M′

i,j ≻ Mi,j , A1
i,j = a0, A2 = a0,

β · p(M′
i,j |Mi,j) M′

i,j ⪯ Mi,j , A1
i,j = a0, A2 = a0,

1 M′
i,j = (A0, B0, C0, D0, E0), A2 = a2

∨ M′
i,j = F2, M′

i,j ≻ Mi,j , A1
i,j = a1, A2 = a0

∨ Mi,j = M′
i,j ∈ {F1, F2}, A1

i,j = a3, A2 = a0

0, otherwise.

5.4.5 Cost Function

The cost function considers the production reward cproduct(s, a), replacement costs creplace(s, a)
and penalties for crashes ccrash(s, a, s

′) and non-operating units cnon-operating(s, a):

c(s, a) = cproduct(s, a) + creplace(s, a) + ccrash(s, a) + cnon-operating(s, a) (18)

= cproduct(s, a) + creplace(s, a) +
∑

s′∈SM

ccrash(s, a, s
′)p(s′|s, a) + cnon-operating(s, a).

The total product reward is the sum of the product of all individual units per flomel. Similar
to Section 5.1.5, the product and therefore rewards c1(Mi,j) nonincrease with the partial ordering
of the unit’s state. The total reward is the sum over all centrifuges of the reward per centrifuge
per time unit c1(Mi,j) ≥ 0, which is based on the unit’s state.

57

5.5 Optimal Policy for the Multi-Unit System 5 METHODOLOGY

cproduct(s, a) =

{∑n
i=1

∑m
j=1 −c1(Mi,j)1{A1

i,j = a0}, A2 = a0,

0, A2 = a1.

The replacement costs creplace(s, a) represents the cost of a refurbishment. The cost includes
the cost of hiring a crew and purchasing new units. Both components depend on the total number
of units to be replaced. Therefore, we define a cost C6 that combines the crew cost and the
purchase cost of a new unit. Then

creplace(s, a) =

{
0, A2 = a0,∑m

i=1

∑n
j=1

[
1{Mi,j ∈ {F1, F2}}+ 1{A1

i,j = a1}
]
C6, A2 = a2.

We charge a fixed penalty C3 for unexpected crashes, so ccrash(s, a) depends on the next state
s′ = M′

i,j :

ccrash(s, a) =

{∑m
i=1

∑n
j=1 C3p(M

′
i,j = F1|Mi,j ̸= F1)1{A1

i,j = a0}, A2 = a0,

0, A2 = a2.

We introduce a penalty for every non-operating unit to account for the loss in production.
This penalty has the same value as a crash penalty C3, so that the cost function is monotone in
the state, which is shown later in Section 5.5.

cnon-operating(s, a) =

{∑m
i=1

∑n
j=1 C31{Mi,j ∈ {F1, F2}}, A2 = a0,

0, A2 = a2.

Here, the penalty for a single crash C3is higher than a unit’s product reward c1(Mi,j) and all
costs are finite. The production reward are defined as negative costs. So 0 ≤ c1(Mi,j) ≤ C3 < ∞
and 0 ≤ C6 < ∞.

The cost function reduces to

c(s, a) =

{
cproduct(s, a) + cnon-operating(s, a) + ccrash(s, a), A2 = a0,

creplace(s, a), A2 = a2,
(19)

=


∑n

i=1

∑m
j=1 −c1(Mi,j)1{A1

i,j = a0}+ C31{Mi,j ∈ {F1, F2}}
+C3p(M

′
i,j = F1|Mi,j ̸= F1)1{A1

i,j = a0}, A2 = a0,∑m
i=1

∑n
j=1(1{Mi,j ∈ {F1, F2}}+ 1{A1

i,j = a1})C6, A2 = a2.

(20)

5.4.6 Value Function

The value function for policy π is the γ-discounted expected costs. For s ∈ S,

vπγ (s) =c(s, π(s)) + γE[vπγ (s
′)]

=c(s, π(s)) + γ
∑
s′∈S

pM (s′|s, a)vπγ (s′) (21)

The discount factor γ ∈ [0, 1) limits the contribution of future rewards and c(s, a) is defined in
Equation (20).

5.5 Optimal Policy for the Multi-Unit System

To determine the structure of the optimal policy, we define the partial ordering of the state space
as a componentwise ordering based on the condition of the units: Let s, s′ ∈ SM , with s = M and
s′ = M′. Then state s precedes state s′, denoted as s ⪯ s′, if Mi,j ⪯ M′

i,j for all i = 1, . . . ,m and
j = 1, . . . , n.

Similarly, the partial ordering of the action space is also a componentwise ordering: Let a, a⋆ ∈
A, where a = (A1, A2) and a⋆ = (A⋆1, A⋆2). Then action a precedes action a⋆, denoted as a ⪯ a⋆,

58

5.5 Optimal Policy for the Multi-Unit System 5 METHODOLOGY

if A1
i,j ⪯ A⋆1

i,j for all i = 1, . . . ,m, j = 1, . . . , n and A2 ⪯ A⋆2, with the ordering a0 ⪯ a1 ⪯ a3 and
a0 ⪯ a2.

Garcia et al. [18] introduce class-ordered monotone policies (CMP), that generalize monotone
policies to cases where monotonicity holds on ordered classes of states and actions. Suppose the
state space SM is partitioned into ordered state classes SM

1 , SM
2 ,. . . , SM

G indexed by the set
G = {1, . . . , G} and the action space A is partitioned into action classes A1, A2,. . . , AH indexed
by the set H = {1, . . . ,H}. Each state s ∈ SM is mapped into one state class via function
Θ : SM → G and each action is mapped into one action class via the function Φ : A → H. States
and actions within a class are not ordered, and for any g′ > g and any state s′ ∈ SM

g′ and state

s ∈ SM
g , can be interpreted that state s′ is more ‘severe’ than state s.

For the multi-unit model the action classes are composed as follows. Given action space A,
then actions a = (A1, A2) and ã = (Ã1, Ã2) belong to the same action class, if they have the same
refurbishment action A2, and if A1, and Ã1 assign the same number of units to actions to a0, a1,
and a3. So if

A2 = Ã2,

m∑
i=1

n∑
j=1

1{A1
i,j = a0} =

m∑
i=1

n∑
j=1

1{Ã1
i,j = a0},

m∑
i=1

n∑
j=1

1{A1
i,j = a1} =

m∑
i=1

m∑
j=1

1{Ã1
i,j = a1},

and
m∑
i=1

n∑
j=1

1{A1
i,j = a3} =

m∑
i=1

m∑
j=1

1{Ã1
i,j = a3}.

The partial ordering between the action classes is as follows: Suppose a = (A1, A2) ∈ Φ, and
ã = (Ã1, Ã2) ∈ Φ̃, then action class Φ precedes action class Φ̃, denoted as Φ ⪯ Φ̃, if

A2 ⪯ Ã2,

m∑
i=1

n∑
j=1

1{A1
i,j = a1} ≤

m∑
i=1

m∑
j=1

1{Ã1
i,j = a1},

and
m∑
i=1

n∑
j=1

1{A1
i,j = a3} ≤

m∑
i=1

m∑
j=1

1{Ã1
i,j = a3}.

This is visualized for a system with two units in Figure 17. The action space is ordered in
classes, where all actions within one class are incomparable. The ordering between classes is
denoted by the operator ⪯.

The state classes are composed as follows: States s = M and s̃ = M̃ belong to the same class
Θ if, for all x ∈ S, states s and s̃ have the same number of units with state x. All units within
a flomel are stochastically the same, but due to the factor Di and D̃i in the transition function
(Section 5.4.4) not all flomels are the same. Hence, these factors are also considered for the state
classes:

m∑
i=1

n∑
j=1

1{Mi,j = x}1{Di = y} =

m∑
i=1

n∑
j=1

1{M̃i,j = x}1{D̃i = y} x ∈ S, y ∈ {D1, . . . , Dm, D̃1, . . . , D̃m}.

The policy for a class-ordered state and actions space is defined as:

Definition 5.6. A policy π is a class-ordered monotone policy (CMP) if Θ(s) ≥ Θ(s′) implies
Φ(π(s)) ≥ Φ(π(s′)) [18]

59

5.5 Optimal Policy for the Multi-Unit System 5 METHODOLOGY

Figure 17: Classes for the action spaceA = (A1, A2) withA1
2×1. The classes are represented

by the rounded rectangles and ordered in dimensions A1 and A2 according to the operator
⪯. Actions within a class are incomparable.

If Θ and Φ are the identity functions, so Θ(s) = s and Φ(a) = a, then the resulting set of
CMP’s is the set of monotone policies. CMPs do not enforce strict monotonicity across states and
actions, but they do retain the natural interpretability inherent in monotone policies.

Theorem 5.11. The optimal policy is a class-ordered monotone policy decreasing in the class
ordering of S and A.

Proof. Value function 21 is monotonically non-decreasing in s, if Assumptions 5.1- 5.4 hold and
the four conditions of Theorem 5.1 in each dimension of the state and action space.

Assumption 5.1: “ For each s ∈ SM , −∞ < C ≤ c(s, a) < ∞.”

The cost function is

c(s, a) = cproduct(s, a) + creplace(s, a) + ccrash(s, a) + cnon-operating(s, a)

• Since c1(s) is by definition nonincreasing with s and finite, we have 0 ≤ c1(Mi,j) ≤
c1((A0, B0, C0, D0, E0)), and the first component satisfies

−m · n · c1((A0, B0, C0, D0, E0)) ≤ cproduct(s, a) =

m∑
i=1

n∑
j=1

c1(Mi,j)1{A1
i,j = a0} ≤ 0 < ∞

• Cost component creplace(s, a) satisfies

0 ≤ creplace(s, a) ≤ m · n · C6 < ∞,

since at most m · n units can be replaced, and 0 ≤ C6 ≤ ∞ by definition.

• Clearly, 0 ≤ p(M′
i,j = F1|Mi,j = F1) ≤ 1, so that

0 ≤ ccrash(s, a) ≤
m∑
i=1

n∑
j=1

C3p(M
′
i,j = F1|Mi,j ̸= F1)1{A1

i,j = a0} ≤ m · n · C3 < ∞.

• 0 ≤ cnon-operating(s, a) ≤ m · n · C3 < ∞

60

5.5 Optimal Policy for the Multi-Unit System 5 METHODOLOGY

Therefore, −m ·n ·c1((A0, B0, C0, D0, E0)) ≤ c(s, a) ≤ m ·n(C6+2C3) < ∞ and Assumption
5.1 holds with C = −n ·m · c1((A0, B0, C0, D0, E0)).

Assumption 5.2: “For each s ∈ SM , 0 ≤ γ < 1, v∗γ(s) < ∞.”
Let d∞ denote the stationary policy to stop every unit in every state and never plan a
refurbishment: Ai,j = a1 for i = 1, . . . ,m, j = 1, . . . , n, and A2 = a0. So a = (a1, a0). Then

v∗γ(s) ≤vdγ(s)

=c(s, a) + γ
∑
s′

pM (s′|s, a)vd(s′)

=cproduct(s, a) + ccrash(s, a) + cnon-operating(s, a)

=0 + 0 +m · n · C3

<∞

So Assumption 5.2 holds.

Assumption 5.3: “There exists a K < ∞ such that, for each s ∈ SM , h∗
γ(s) ≡ v∗γ(s) − v∗γ(0) ≥ −K for

0 ≤ γ < 1.”
Conditions 1 and 2 from Theorem 5.1 (that are proven later) imply that the value function
is monotone increasing in s. So

h∗
γ(s) =v∗γ(s)− v∗γ(0)

≥v∗γ(0)− v∗γ(0)

=0

Here, state s = 0 means Mi,j = (A0, B0, C0, D0, E0) for i = 1, . . . ,m and j = 1, . . . , n.
Assumption 5.3 holds for K = 0

Assumption 5.4: “There exist a non-negative function M(s) such that

a. M(s) < ∞;

b. for each s ∈ S, hγ(s) ≤ M(s) for all γ, 0 ≤ γ < 1; and

c. for each s ∈ S, and a ∈ As,
∑

s′∈SM p(s′|s, a)M(s′) < ∞.”

Let M(s) < ∞, recall v∗γ(s) ≥ v∗γ(0).

We assume no units are stopped a1, while being in state (A0, B0, C0, D0, E0), so that

c(0, a) =cproduct(0, a) + creplace(0, a) + ccrash(0, a) + cnon-operating(0, a)

=−
m∑
i=1

Cproduct(Mi,:,A
1
i,:) + 0 + 0 + 0

=−m · n · c1((A0, B0, C0, D0, E0)).

Let d∞ denote the stationary policy to stop every unit in every state and never plan a
refurbishment: d∞ = (A, A2), with Ai,j = a1 for i = 1, . . . ,m, j = 1, . . . , n, and A2 = a0.
Then vdγ(s) = m · n · C3.

hγ(s) =v∗γ(s)− v∗γ(0)

≤vdγ(s)− v∗γ(0)

≤m · n · C3 −
(
−m · n · c1((A0, B0, C0, D0, E0)) + γ

∑
s′∈SM

pM (s′|0)v∗(s′)
)

=m · n · C3 +m · n · c1((A0, B0, C0, D0, E0))− γ
∑

s′∈SM

pM (s′|0)v∗(s′)

≤m · n · C3 +m · n · c1((A0, B0, C0, D0, E0))−
∑

s′∈SM

v∗(s′)

< ∞

61

5.5 Optimal Policy for the Multi-Unit System 5 METHODOLOGY

The last inequality follows since v ∗ (s) < ∞ by Assumption 5.3 and since the state space
SM is finite.

So let M(s) = m · n · C3 +m · n · c1((A0, B0, C0, D0, E0))−
∑

s′ v
∗(s′)

∑
s′∈S

p(s′|s, a)M(s′) =
∑
s′∈S

p(s′|s, a)M

=M
∑
s′∈S

p(s′|s, a)

=M

<∞

So Assumption 5.4 holds with M = m · n · C3 +m · n · c1((A0, B0, C0, D0, E0))−
∑

s′ v
∗(s′)

Further, the conditions for Theorem 5.1 hold:

1.Conditions
Theorem 5.1:

→ 1,
2,
3,
4.

“c(s, a) is nondecreasing in s for all a ∈ A”

• Fix A2 = a0, then for any A1, the cost function is

c(s, a) =−
m∑
i=1

n∑
j=1

c1(Mi,j)1{A1
i,j = a0}+ C3p(M

′
i,j = F1|Mi,j ̸= F1)1{A1

i,j = a0}

+ C31{Mi,j ∈ {F1, F2}}

−c1(Mi,j) increases in s by definition. Due to an increasing failure rate p(M′
i,j =

F1|Mi,j ̸= F1) increases in s till failure is reached. Upon reaching failure, ccrash becomes
zero, but the loss in costs is compensated by cnon-operating. So c(s, a) increases in s for
A2 = a0.

• Fix A2 = a2, then for any A1, the cost function is

c(s, a) =

m∑
i=1

n∑
j=1

(
1{Mi,j ∈ {F1, F2}}+ 1{A1

i,j = a1}
)
C6

This increases as more units reach a failure state, so c(s, a) increases in s for A2 = a2.

Therefore, the cost function c(s, a) increases in s for all actions a ∈ A.

2.Conditions
Theorem 5.1:

1,
→ 2,

3,
4.

“q(k|s, a) ≡
∑

k⪯s′,s′∈SM p(s′|s, a) is nondecreasing in s for all k ∈ SM and a ∈ A ”
Define

∆q(k|s, a) = q(k|s+ 1, a)− q(k|s, a).

• For A2 = a2 and any A1, the operation cycle ends, and the system returns with prob-
ability one to an as-good-as-new new state: s∗ = M∗ with M∗

i,j = (A0, B0, C0, D0, E0)
for i = 1, . . . ,m, j = 1, . . . , n. Two cases can happen for k:

∆q(k|s, a) =
∑
k⪯s′

pM (s′|s+ 1, a)−
∑
k⪯s′

pM (s′|s, a)

=

{
pM (s∗|s+ 1, a)− pM (s∗|s, a) = 1− 1 = 0, for k ⪯ s∗

0− 0 = 0, for s∗ ≺ k

.

• For A2 = a0, and any A1, let s = M, s+ 1 = M⋆, k = K. Then s ⪯ s+ 1 implies for
i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, either

62

5.5 Optimal Policy for the Multi-Unit System 5 METHODOLOGY

(a) Mi,j = M⋆
i,j ;Conditions

Theorem 5.1:
1,

→ 2,
3,
4.

(b) Mi,j ≺ M⋆
i,j .

If s = s+1, then ∆q(k|s, a) = 0. For s ≺ s+1, at least one unit must satisfy case (b).

∆q(k|s, a) =
∑
k≺s′

pM (s′|s+ 1, a)−
∑
k≺s′

pM (s′|s, a)

=
∑
k≺s′

pM (s′|s+ 1, a)− pM (s′|s, a)

=
∑

K≺M′

pM (M′|M⋆, a)− pM (M′|M, a)

=
∑

K≺M′

pM (M′
1,1|M⋆

1,1, a)× . . .× pM (M′
m,n|M⋆

m,n, a)

− pM (M′
1,1|M1,1, a)× . . .× pM (M′

m,n|Mm,n, a)

We reduce this further, by fixing all dimensions in the state s but one, so assume all
units satisfy case a) and one satisfies case b). W.l.o.g. let this be unit M1,1 We show
∆q(k|s, a) ≥ 0 in dimension M1,1.

∑
K≺M′

pM (M′|M⋆, a)− pM (M′|M, a)

(1)
=

∑
K1,1≺M′

1,1

pM (M′
1,1|M⋆

1,1, a)× . . .× pM (M′
m,n|M⋆

m,n, a)

− pM (M′
1,1|M1,1, a)× . . .× pM (M′

m,n|Mm,n, a)

=
∑

K1,1≺M′
1,1

pM (M′
1,1|M⋆

1,1, a)× . . .× pM (M′
m,n|Mm,n, a)

− pM (M′
1,1|M1,1, a)× . . .× pM (M′

m,n|Mm,n, a)

(2)
=

∑
K1,1≺M′

1,1

pM (M′
1,1|M1,1, a)× Ω

− pM (M′
1,1|M1,1, a)× Ω

=Ω
∑

K1,1≺M′
1,1

pM (M′
1,1|M⋆

1,1, a)− pM (M′
1,1|M1,1, a)

=Ω
(∑
K1,1≺M′

1,1≺M1,1≺M⋆
1,1

β1p(M
′
1,1|M⋆

1,1, a)− β1p(M
′
1,1|M1,1, a)

+
∑

K1,1⪯M1,1≺M⋆
1,1⪯M′

1,1

α1p(M
′
1,1|M⋆

1,1, a)− α1p(M
′
1,1|M1,1, a)

)
=Ω

(∑
K1,1≺M′

1,1≺M1,1≺M⋆
1,1

β1

[
p(M′

1,1|M⋆
1,1, a)− p(M′

1,1|M1,1, a)
]

+
∑

K1,1⪯M1,1≺M⋆
1,1⪯M′

1,1

α1

[
p(M′

1,1|M⋆
1,1, a)− p(M′

1,1|M1,1, a)
])

≥Ω
(∑
K1,1≺M′

1,1≺M1,1≺M⋆
1,1

β1

[
p(M′

1,1|M⋆
1,1, a)− p(M′

1,1|M1,1, a)
]

+
∑

K1,1⪯M1,1≺M⋆
1,1⪯M′

1,1

β1

[
p(M′

1,1|M⋆
1,1, a)− p(M′

1,1|M1,1, a)
])

63

5.5 Optimal Policy for the Multi-Unit System 5 METHODOLOGY

=Ω
∑

K1,1≺M′
1,1

β1

[
p(M′

1,1|M⋆
1,1, a)− p(M′

1,1|M1,1, a)
]

(3)
=0

(1) Uses that Mi,j = Mi,j⋆ for i = 1, j = 2, . . . , n and i = 2, . . . ,m, for j = 1, . . . , n.
(2) pM (M′

1,2|M1,2, a) × . . . × pM (M′
m,n|Mm,n, a) does not change within the sum, so

substitute this term by the constant Ω. (3) Follows from the proofs from Theorems
5.4- 5.8. So ∆q(k|s, a) ≥ 0 in Mi,j for all i = 1, . . . ,m, j = 1, . . . , n. Therefore,
∆q(k|s, a) ≥ 0 in s.

3.Conditions
Theorem 5.1:

1,
2,

→ 3,
4.

“c(s, a) is a subadditive function on SM ×A”

• In dimension A1.
Let A2 be fixed, and suppose s = M, s + 1 = M⋆, a = (A1, A2), a⋆ = (A⋆1, A2), so
that a ≺ a⋆. Then, for A2 = a0:

[c(s+ 1, a⋆)− c(s+ 1, a)]− [c(s, a⋆)− c(s, a)]

=

[m∑
i=1

n∑
j=1

−c1(M
⋆
i,j)1{A⋆1

i,j = a0}+ C3p(M
⋆′
i,j = F1|M⋆

i,j ̸= F1)1{A⋆1
i,j = a0}

+ C31{M⋆
i,j ∈ {F1, F2}}

−
(m∑
i=1

n∑
j=1

−c1(Mi,j)1{A⋆1
i,j = a0}+ C3p(M

′
i,j = F1|Mi,j ̸= F1)1{A⋆1

i,j = a0}

+ C31{Mi,j ∈ {F1, F2}}
)]

−
[m∑
i=1

n∑
j=1

−c1(Mi,j)1{A⋆1
i,j = a0}+ C3p(M

′
i,j = F1|Mi,j ̸= F1)1{A⋆1

i,j = a0}

+ C31{Mi,j ∈ {F1, F2}}

−
(m∑
i=1

n∑
j=1

−c1(Mi,j)1{A1
i,j = a0}+ C3p(M

′
i,j = F1|Mi,j ̸= F1)1{A1

i,j = a0}

+ C31{Mi,j ∈ {F1, F2}}
)]

=

m∑
i=1

n∑
j=1

(
c1(Mi,j)− c1(M

⋆
i,j)

)
1{A⋆1

i,j = a0}+
(
c1(M

⋆
i,j)− c1(Mi,j)

)
1{A1

i,j = a0}

(22)

+ C3

(
p(M⋆′

i,j = F1|M⋆
i,j ̸= F1)− p(M′

i,j = F1|Mi,j ̸= F1)

)
1{A⋆1

i,j = a0} (23)

− C3

(
p(M⋆′

i,j = F1|M⋆
i,j ̸= F1)− p(M′

i,j = F1|Mi,j ̸= F1)

)
1{A1

i,j = a0} (24)

Now, a ≺ a⋆, this brings three cases for i = 1, . . . ,m, j = 1, . . . , n, either

(a) A1
i,j = a0, A

⋆1
i,j = a0;

(b) A1
i,j = a0, A

⋆1
i,j = a1;

(c) A1
i,j = a1, A

⋆1
i,j = a1.

For each case, respectively, lines (23) and (24) reduce componentwise as follows:

(a) Then 1{A⋆1
i,j = a0} = 1 = 1{A1

i,j = a0}, so lines (22), (23) and (24) reduce to

64

5.5 Optimal Policy for the Multi-Unit System 5 METHODOLOGY

zero:Conditions
Theorem 5.1:

1,
2,

→ 3,
4.

(
c1(Mi,j)− c1(M

⋆
i,j)

)
1{A⋆1

i,j = a0}+
(
c1(M

⋆
i,j)− c1(Mi,j)

)
1{A1

i,j = a0}

+ C3

(
p(M⋆′

i,j = F1|M⋆
i,j ̸= F1)− p(M′

i,j = F1|Mi,j ̸= F1)

)
1{A⋆1

i,j = a0}

− C3

(
p(M⋆′

i,j = F1|M⋆
i,j ̸= F1)− p(M′

i,j = F1|Mi,j ̸= F1)

)
1{A1

i,j = a0}

=c1(Mi,j)− c1(M
⋆
i,j) + c1(M

⋆
i,j)− c1(Mi,j)

+ C3

(
p(M⋆′

i,j = F1|M⋆
i,j ̸= F1)− p(M′

i,j = F1|Mi,j ̸= F1)−

−
(
p(M⋆′

i,j = F1|M⋆
i,j ̸= F1)− p(M′

i,j = F1|Mi,j ̸= F1)
))

=0

(b) Then 1{A1
i,j = a0} = 1 and 1{A⋆1

i,j = a0} = 0, so lines (22), (23) and (24) reduce
to:

(
c1(Mi,j)− c1(M

⋆
i,j)

)
1{A⋆1

i,j = a0}+
(
c1(M

⋆
i,j)− c1(Mi,j)

)
1{A1

i,j = a0}

+ C3

(
p(M⋆′

i,j = F1|M⋆
i,j ̸= F1)− p(M′

i,j = F1|Mi,j ̸= F1)

)
1{A⋆1

i,j = a0}

− C3

(
p(M⋆′

i,j = F1|M⋆
i,j ̸= F1)− p(M′

i,j = F1|Mi,j ̸= F1)

)
1{A1

i,j = a0}

=c1(M
⋆
i,j)− c1(Mi,j)− C3

(
p(M⋆′

i,j = F1|M⋆
i,j ̸= F1)− p(M′

i,j = F1|Mi,j ̸= F1)

)
≤0

Where the last equality is the same as the equations in the proofs 5.2.1 and 5.2.2
of the single-unit model, hence the inequality follows.

(c) Then 1{A⋆1
i,j = a0} = 0 = 1{A1

i,j = a0}, so lines (23) and (24) reduce to zero:(
c1(Mi,j)− c1(M

⋆
i,j)

)
1{A⋆1

i,j = a0}+
(
c1(M

⋆
i,j)− c1(Mi,j)

)
1{A1

i,j = a0}

+ C3

(
p(M⋆′

i,j = F1|M⋆
i,j ̸= F1)− p(M′

i,j = F1|Mi,j ̸= F1)

)
1{A⋆1

i,j = a0}

− C3

(
p(M⋆′

i,j = F1|M⋆
i,j ̸= F1)− p(M′

i,j = F1|Mi,j ̸= F1)

)
1{A1

i,j = a0}

=0 + 0 + 0− 0

=0

For A2 = a2, and any A1:

[c(s+ 1, a⋆)− c(s+ 1, a)]− [c(s, a⋆)− c(s, a)]

=

[m∑
i=1

n∑
j=1

(1{M⋆
i,j ∈ {F1, F2}}+ 1{A⋆1

i,j = a1})C6

−
(m∑
i=1

n∑
j=1

(1{M⋆
i,j ∈ {F1, F2}}+ 1{A1

i,j = a1})C6

))]

−
[m∑
i=1

n∑
j=1

(1{Mi,j ∈ {F1, F2}}+ 1{A⋆1
i,j = a1})C6

65

5.5 Optimal Policy for the Multi-Unit System 5 METHODOLOGY

Conditions
Theorem 5.1:

1,
2,

→ 3,
4.

−
(m∑
i=1

n∑
j=1

(1{Mi,j ∈ {F1, F2}}+ 1{A1
i,j = a1})C6

)]

=

m∑
i=1

n∑
j=1

C6

(
1{M⋆

i,j ∈ {F1, F2}}+ 1{A⋆1
i,j = a1})

− 1{M⋆
i,j ∈ {F1, F2}} − 1{A1

i,j = a1}
− 1{Mi,j ∈ {F1, F2}} − 1{A⋆1

i,j = a1}

+ 1{Mi,j ∈ {F1, F2}}+ 1{A1
i,j = a1}

)
=0.

• In dimension A2.
Let A1 be fixed, and suppose s = M, s+ 1 = M⋆, a = (A1, a0), a

⋆ = (A1, a2), so that
a ≺ a⋆. Then

[c(s+ 1, a⋆)− c(s+ 1, a)]− [c(s, a⋆)− c(s, a)]

=

[m∑
i=1

n∑
j=1

(1{M⋆
i,j ∈ {F1, F2}}+ 1{A1

i,j = a1})C6 −
(m∑
i=1

n∑
j=1

−c1(M
⋆
i,j)1{A1

i,j = a0}

+ C3p(M
⋆′
i,j = F1|M⋆

i,j ̸= F1)1{A1
i,j = a0}+ C31{M⋆

i,j ∈ {F1, F2}}
)]

−
[m∑
i=1

n∑
j=1

(1{Mi,j ∈ {F1, F2}}+ 1{A1
i,j = a1})C6 −

(m∑
i=1

n∑
j=1

−c1(Mi,j)1{A1
i,j = a0}

+ C3p(M
′
i,j = F1|Mi,j ̸= F1)1{A1

i,j = a0}+ C31{Mi,j ∈ {F1, F2}}
)]

=

m∑
i=1

n∑
j=1

(1{M⋆
i,j ∈ {F1, F2}} − 1{Mi,j ∈ {F1, F2}})C6 + (c1(M

⋆
i,j)− c1(Mi,j))1{A1

i,j = a0}

+ C3p(M
′
i,j = F1|Mi,j ̸= F1)1{A1

i,j = a0}+ C3p(M
⋆′
i,j = F1|M⋆

i,j ̸= F1)1{A1
i,j = a0}

− C31{Mi,j ∈ {F1, F2}} − C31{M⋆
i,j ∈ {F1, F2}}

=

m∑
i=1

n∑
j=1

(1{M⋆
i,j ∈ {F1, F2}} − 1{Mi,j ∈ {F1, F2}})C6 + (c1(M

⋆
i,j)− c1(Mi,j))1{A1

i,j = a0}

+ C3

(
p(M′

i,j = F1|Mi,j ̸= F1)1{A1
i,j = a0}+ 1{Mi,j ∈ {F1, F2}}

− p(M⋆′
i,j = F1|M⋆

i,j ̸= F1)1{A1
i,j = a0} − 1{M⋆

i,j ∈ {F1, F2}}
)

– In case A1
i,j = a1, assume Mi,j ,M

⋆
i,j /∈ {F1, F2} since no A1

i,j = a0 once a unit
(i, j) has reached a failure state.

(1{M⋆
i,j ∈ {F1, F2}} − 1{Mi,j ∈ {F1, F2}})C6 + (c1(M

⋆
i,j)− c1(Mi,j))1{A1

i,j = a0}

+ C3

(
p(M′

i,j = F1|Mi,j ̸= F1)1{A1
i,j = a0} − 1{Mi,j ∈ {F1, F2}}

− p(M⋆′
i,j = F1|M⋆

i,j ̸= F1)1{A1
i,j = a0} − 1{M⋆

i,j ∈ {F1, F2}}
)

=0 + 0 + C3

(
p(M′

i,j = F1|Mi,j ̸= F1)− p(M⋆′
i,j = F1|M⋆

i,j ̸= F1)
)

≥0

Due to an increasing failure rate.

– In case A1
i,j = a0, we distinguish three cases:

66

5.5 Optimal Policy for the Multi-Unit System 5 METHODOLOGY

(a) Mi,j ,M
⋆
i,j /∈ {F1, F2}, so that

(1{M⋆
i,j ∈ {F1, F2}} − 1{Mi,j ∈ {F1, F2}})C6 + (c1(M

⋆
i,j)− c1(Mi,j))1{A1

i,j = a0}

+ C3

(
p(M′

i,j = F1|Mi,j ̸= F1)1{A1
i,j = a0}+ 1{Mi,j ∈ {F1, F2}}

− p(M⋆′
i,j = F1|M⋆

i,j ̸= F1)1{A1
i,j = a0} − 1{M⋆

i,j ∈ {F1, F2}}
)

=c1(M
⋆
i,j)− c1(Mi,j)

+ C3

(
p(M′

i,j = F1|Mi,j ̸= F1)− p(M⋆′
i,j = F1|M⋆

i,j ̸= F1)
)

≤0

Since c1(Mi,j) decreases with the unit state Mi,j and the failure rate increases.

(b) Mi,j /∈ {F1, F2},M⋆
i,j ∈ {F1, F2}, then

(1− 0)C6 + (0− c1(Mi,j))

+ C3

(
p(M′

i,j = F1|Mi,j ̸= F1) + 0

− 0− 1
)

=C6 − c1(Mi,j) + C3

(
p(M′

i,j = F1|Mi,j ̸= F1)− 1

Now −c1(Mi,j) ≤ 0, and 0 ≤ p(M′
i,j = F1|Mi,j ̸= F1) ≤ 1, so the second

and third component are nonpositive. The first component, C6 is positive

and a constant. Since A2 = a0 and A⋆2 = a2, assume
∑m

i=1

∑n
j=1

(
C6 −

c1(Mi,j)
)
1{Mi,j /∈ {F1, F2},M⋆

i,j ∈ {F1, F2}} ≤ 0

(c) Mi,j ,M
⋆
i,j ∈ {F1, F2}, then

(1{M⋆
i,j ∈ {F1, F2}} − 1{Mi,j ∈ {F1, F2}})C6 + (c1(M

⋆
i,j)− c1(Mi,j))1{A1

i,j = a0}

+ C3

(
p(M′

i,j = F1|Mi,j ̸= F1)1{A1
i,j = a0}+ 1{Mi,j ∈ {F1, F2}}

− p(M⋆′
i,j = F1|M⋆

i,j ̸= F1)1{A1
i,j = a0} − 1{M⋆

i,j ∈ {F1, F2}}
)

=(1− 1)C6 + (0− 0)

+ C3

(
0 + 1− 0− 1

)
=0

So c(s, a) is a subadditive function on S ×A.

4.Conditions
Theorem 5.1:

1,
2,
3,

→ 4.

“q(k|s, a) is a superadditive function on S ×A for all k ∈ S
alternative:

∑∞
s′=0 p(s

′|s, a)u(s′) is a superadditive function on S ×A for nonincreasing u.”
In dimension A2.

Let A1 be fixed, and suppose s = M, s + 1 = M⋆, a = (A1, a0), a
⋆ = (A1, a2), so that

a ≺ a⋆.

For A2 = a2, the operation cycle ends, and the system returns to an as-good-as-new state,
so pM (0|s, a) = 1. Then

[∑
s′∈SM

pM (s′|s+ 1, a⋆)u(s′)−
∑

s′∈SM

pM (s′|s+ 1, a)u(s′)

]

−

[∑
s′∈SM

pM (s′|s, a⋆)u(s′)−
∑

s′∈SM

pM (s′|s, a)u(s′)

]

67

5.5 Optimal Policy for the Multi-Unit System 5 METHODOLOGY

=

[
pM (0|s+ 1, a⋆)u(0)−

∑
s′∈SM

pM (s′|s+ 1, a)u(s′)

]
−

[
pM (0|s, a1)u(0)−

∑
s′∈SM

pM (s′|s, a)u(s′)

]
=u(0)−

∑
s′∈SM

pM (s′|s+ 1, a)u(s′)− u(0) +
∑

s′∈SM

pM (s′|s, a)u(s′)

=
∑

s′∈SM

pM (s′|s, a)u(s′)− pM (s′|s+ 1, a)u(s′)

=
∑

s′∈SM

(
pM (s′|s, a)− pM (s′|s+ 1, a)

)
u(s′)

=
∑

M′∈SM

(
pM (M′

1,1|M1,1,A
1
1,1)× . . .× pM (M′

m,n|Mm,n,A
1
m,n)

− pM (M′
1,1|M⋆

1,1,A
1
1,1)× . . .× pM (M′

m,n|M⋆
m,n,A

1
m,n)

)
u(M′)

(1)
=

∑
M′∈SM

(
pM (M′

1,1|M1,1,A
1
1,1)× . . .× pM (M′

m,n|Mm,n,A
1
m,n)

− pM (M′
1,1|M⋆

1,1,A
1
1,1)× . . .× pM (M′

m,n|Mm,n,A
1
m,n)

)
u(M′)

=
∑

M′∈SM

(
pM (M′

1,1|M1,1,A
1
1,1)× Ω− pM (M′

1,1|M⋆
1,1,A

1
1,1)× Ω

)
u(M′)

=Ω
∑

M′∈SM

(
pM (M′

1,1|M1,1,A
1
1,1)− pM (M′

1,1|M⋆
1,1,A

1
1,1)

)
u(M′)

=Ω
[∑
M′

1,1⪯M1,1≺M⋆
1,1

β1

(
p(M′

1,1|M1,1,A
1
1,1)− p(M′

1,1|M⋆
1,1,A

1
1,1)

)
u(M′)

+
∑

M′
1,1⪯M1,1≺M⋆

1,1

α1

(
p(M′

1,1|M1,1,A
1
1,1)− p(M′

1,1|M⋆
1,1,A

1
1,1)

)
u(M′)

]
≥Ω

[∑
M′

1,1⪯M1,1≺M⋆
1,1

β1

(
p(M′

1,1|M1,1,A
1
1,1)− p(M′

1,1|M⋆
1,1,A

1
1,1)

)
u(M′)

+
∑

M′
1,1⪯M1,1≺M⋆

1,1

β1

(
p(M′

1,1|M1,1,A
1
1,1)− p(M′

1,1|M⋆
1,1,A

1
1,1)

)
u(M′)

]
=Ωβ1

∑
M′

1,1∈S

(
p(M′

1,1|M1,1,A
1
1,1)− p(M′

1,1|M⋆
1,1,A

1
1,1)

)
u(M′)

≥0

The last inequality follows from Lemma 5.12, since u(M′) is nonincreasing in s = M and∑
M′

1,1∈S p(M′
1,1|M⋆

1,1) ≥
∑

M′
1,1∈S p(M′

1,1|M1,1) as shown in the proofs from Theorems 5.4-

5.8.

Lemma 5.12. Let {xi}, {x′
i} be real-valued non-negative sequences satisfying

∑∞
j=k x

′
j ≥∑∞

j=k xj for all k, with equality holding for k = 0. Suppose vj+1 ≤ vj for j = 0, 1, . . ., then
[46]

∞∑
j=0

x′
jvj ≥

∞∑
j=0

xjvj .

68

5.6 Policy Iteration for Class-Ordered policies 5 METHODOLOGY

5.6 Policy Iteration for Class-Ordered policies

The monotone class-ordered structure of the policy is used to effectively search through all policies
and neglect certain suboptimal policies during policy iteration.

Puterman [46] describes a monotone policy iteration algorithm for totally ordered state space.
We adapt this algorithm to make it applicable to the class-ordered state and action space, see the
pseudocode in Algorithm 2. This algorithm is structured as follows:

1. Initialization: Randomly choose a nondecreasing policy π.

2. Policy Evaluation: Bellman’s equations are solved via an iterative scheme to approximate
the value of the current policy.

3. Policy Improvement : We improve the current policy by greedily selecting actions that min-
imizes the value function.

We iterate over all states. When action a is assigned to state s, we also assign an action
from the corresponding action class Φ(a) to all states within the same state class Θ(s).

To guarantee the monotonicity of the new policy, we reduce the action space for the re-
maining states s⋆ in all state classes that strictly precede (succeed) the state class Θ(s),
by removing all actions from s⋆’s action space that belong to the action classes strictly
succeeding (preceding) the action class Φ(a).

The policy evaluation and policy improvement steps are repeated till the policy does no longer
change. During the policy improvement step the policy can only decrease in cost, therefore the
policy converges to the optimal policy.

69

5.6 Policy Iteration for Class-Ordered policies 5 METHODOLOGY

Algorithm 2 Policy Iteration Algorithm for a Monotone Policy with Class-Ordered State
and Action Space

1: Input: γ: discount factor; θ: a small positive number.
2: Output: π∗: a deterministic optimal policy.
3:

4: // Initialization
5: Randomly initialize a nondecreasing policy π in s
6:

7: stable-policy = False
8: while stable-policy = False do
9: // Policy Evaluation

10: πold = π
11: A′

s = As

12: ∆ = θ + 0.1
13: while ∆ > θ do
14: for s ∈ SM do
15: vold = v(s)
16: v(s) = c(s, πold(s)) + γ

∑
s′ p(s

′|s, πold(s))v(s
′)

17: ∆ = max{∆, |vold − v(s)|}
18: end for
19: end while
20:

21: // Policy Improvement
22: stable-policy = True
23: visited-classes = emptylist
24: for s ∈ SM do
25: if Θ(s) not in visited-classes then
26: Add Θ(s) to visited-classes
27: π(s) = arg min

a∈A′
s

{c(s, a) + γ
∑

s′ p(s
′|s, a)v(s′)}

28: if π(s)! = πold(s) then
29: stable-policy = False
30: end if
31: for s̃ ∈ Θ(s) and s̃ ̸= s do
32: π(s̃) = A′

s̃ ∩ Φ(a)
33: end for
34: for classes Θ̃ not in visited-classes do
35: if Θ̃ ≺ Θ(s) then
36: for s⋆ ∈ Θ̃ do
37: A′

s⋆ = A′
s⋆ \

⋃
Φ̃≻Φ(π(s)) Φ̃

38: end for
39: else if Θ̃ ≻ Θ(s) then
40: for s⋆ ∈ Θ̃ do
41: A′

s⋆ = A′
s⋆ \

⋃
Φ̃≺Φ(π(s)) Φ̃

42: end for
43: end if
44: end for
45: end if
46: end for
47: end while
48: return π = π∗

70

6 RESULTS

6 Results

This section shows some results using the policy iteration for the single-unit model (Section 6.2)
and the multi-unit model (Section 6.3).

6.1 Transition Function

The inputs for the transition probabilities are derived from the data analysis. The resulting
transition matrix for the single-unit model is:

p(s′|s, a0) =

(A0, B0, C0, D0, E0)

(A1, B0, C0, D0, E0)

(A0, B1, C0, D0, E0)

(A0, B0, C1, D0, E0)

(A0, B0, C0, D1, E0)

(A0, B0, C0, D0, E1)

.

.

.

F1

F2



(A
0
, B

0
, C

0
, D

0
, E

0
)

0.977

(A
1
, B

0
, C

0
, D

0
, E

0
)

0.004

(A
0
, B

1
, C

0
, D

0
, E

0
)

0.004

(A
0
, B

0
, C

1
, D

0
, E

0
)

0.008

(A
0
, B

0
, C

0
, D

1
, E

0
)

0.004

(A
0
, B

0
, C

0
, D

0
, E

1
)

0.002 . . .
. . .

F
1

0

F
2

0
0.008 0.946 0 0 0 0 . . . 0 0
0.008 0 0.938 0 0 0 . . . 0 0
0.007 0 0 0.945 0 0 . . . 0 0
0.008 0 0 0 0.939 0 . . . 0 0
0 0 0 0 0 0.958 . . . 0 0
...

...
...

...
...

...
. . .

...
...

0 0 0 0 0 0 . . . 1 0
0 0 0 0 0 0 . . . 0 1


The transition matrix for less state dimensions is made by neglecting the non-considered

dimensions. For every individual dimension, this resulted in the following transition matrices:

• State Dimension A: High Pressure

p(s′|s, a0) =

A0

A1

A2

F1

F2



A0

0.9955

A1

0.0044

A2

0

F1

0

F2

0
0.0047 0.990 0.0043 0 0

0 0.0038 0.8821 0.0773 0.0366
0 0 0 1 0
0 0 0 0 1


In the proof of Theorem 5.8 we assumed p(A0|A0) ≥ p(A0|A1) and p(A1|A1) ≥ p(A1|A2),
both hold in the above transition matrix.

• State Dimension B: CFI

p(s′|s, a0) =

B0

B1

B2

F1


B0

0.9934

B1

0.01

B2

0

F1

0
0.0060 0.9372 0.0058 0.0508

0 0 0 1
0 0 0 1


In the proof of Theorem 5.5 we assumed p(B0|B0) ≥ p(B0|B1), this holds in the above
transition matrix.

• State Dimension C: Light Gas

p(s′|s, a0) =

C0

C1

C2

F2


C0

0.995

C1

0.0043

C2

0

F2

0
0.0042 0.9912 0.0044 0

0 0.0042 0.9166 0.0790
0 0 0 1


71

6.2 Single-Unit Policies 6 RESULTS

In the proof of Theorem 5.7 we assumed p(C0|C0) ≥ p(C0|C1) and p(C1|C1) ≥ p(C1|C2),
both hold according to the above transition matrix.

• State Dimension D: Low Temperature

p(s′|s, a0) =

D0

D1

D2

F1


D0

0.9935

D1

0.0064

D2

0

F1

0
0.0062 0.9369 0.0058 0.0509

0 0 0 1
0 0 0 1


In the proof of Theorem 5.6, we assumed p(D0|D0) ≥ p(D0|D1), this holds in the above
transition matrix.

• State Dimension E: Corrosion

p(s′|s, a0) =

E0

E1

E2

E3

F2



E0

0.9958

E1

0.0041

E2

0

E3

0

F2

0
0 0.9957 0.02 0 0
0 0 0.9 0.0042 0
0 0 0 0.9210 0.0789
0 0 0 0 1


6.2 Single-Unit Policies

One unit has 3×3×3×3×4 = 324 deterioration states and two failure states, which makes a total
of 326 possible states when all state dimensions are considered. We set v(F1) = v(F2) = 1000.
There seems to be a bound for C3, that once exceeded the policy returns stopping in all states,
regardless of the value for c1(A0, B0, C0, D0, E0). If we set the values for v(F1) and v(F2) a factor
larger, the cost bound for C3 also increases with the same factor. We use γ = 0.7 and γ = 0.9.
The results are shown in Tables 10 - 13. In Tables 10 and 12, we considered all state dimensions
and in Tables 11 and 13, we removed some dimensions. The run time for γ = 0.9 is longer than
for γ = 0.7, because the policy evaluation step took more iterations. Action a1 is chosen when
the state reached or exceeded threshold τB or τD.

Dimensions c1(0) C3 τA τB τC τD τE Run Time 1 Run Time 0
(A,B,C,D,E) 1 1 - B2 - D2 - 5.72 s 5.77 s
(A,B,C,D,E) 1 2.2 - B2 - D2 - 5.66 s 6.37 s
(A,B,C,D,E) 1 2.3 - B0 - D0 - 5.20 s 6.29 s
(A,B,C,D,E) 2 2.2 - B2 - D2 - 5.41 s 7.83 s
(A,B,C,D,E) 2.2 2.2 - B2 - D2 - 5.78 s 6.73 s
(A,B,C,D,E) 2 2.3 - B0 - D0 - 5.68 s 8.83 s
(A,B,C,D,E) 2.3 2.3 - B0 - D0 - 5.28 s 9.09 s
(A,B,C,D,E) 2.3 2.2 - B0 - D0 - 5.28 s 6.55 s

Table 10: Threshold for γ = 0.7. ‘Run Time 1’ is the run time using Algorithm 1, while
‘Run Time 0’ is the run time using standard policy iteration.

72

6.3 Multi-Unit Policies 6 RESULTS

Dimensions c1(0) C3 τA τB τC τD τE Run Time 1 Run Time 0
(A,B,C,D) 1 8.3 - B2 - D2 \ 0.33 s 0.399 s
(A,B,C,D) 1 8.4 - B0 - D0 \ 0.360 s 0.413 s
(A,B,C,E) 1 10.2 - B0 - \ - 0.642 s 0.69 s
(A,B,C,E) 1 10.3 - B2 - \ - 0.591 s 1.34 s
(A,B,C) 1 38.8 - B2 - \ \ 0.051 s 0.089 s
(A,B,C) 1 38.9 - B0 - \ \ 0.050 s 0.079 s
(B,C) 1 113.2 \ B2 - \ \ 0.021 s 0.039 s
(B,C) 1 113.3 \ B0 - \ \ 0.035 s 0.036 s

Table 11: Threshold for γ = 0.7. ‘Run Time 1’ is the run time using Algorithm 1, while
‘Run Time 0’ is the run time using standard policy iteration.

Dimensions c1(0) C3 τA τB τC τD τE Run Time 1 Run Time 0
(A,B,C,D,E) 1 0.7 - B2 - D2 - 23.22 s 25.48 s
(A,B,C,D,E) 1 0.8 - B0 - D0 - 23.36 s 34.44 s
(A,B,C,D,E) c1(s) = c1 = 1 0.8 - B0 - D0 - 29.58 s 32.4 s
(A,B,C,D,E) c1(s) = c1 = 1 0.7 - B2 - D2 - 28.23 s 31.7 s
(A,B,C,D,E) c1(s) = c1 = 0.7 0.7 - B2 - D2 - 28.11 s 31.5 s

Table 12: Threshold for γ = 0.9. ‘Run Time 1’ is the run time using Algorithm 1, while
‘Run Time 0’ is the run time using standard policy iteration.

Dimensions c1(0) C3 τA τB τC τD τE Run Time 1 Run Time 0
(A,B,C,D) 1 2.7 - B2 - D2 \ 0.965 s 1.10 s
(A,B,C,D) 1 2.8 - B0 - D0 \ 0.907 s 0.921 s
(A,B,C,E) 1 3.4 - B0 - \ - 0.642 s 0.69 s
(A,B,C,E) 1 3.5 - B2 - \ - 0.591 s 1.34 s
(A,B,C) 1 12.9 - B2 - \ \ 0.196 s 0.115 s
(A,B,C) 1 13 - B0 - \ \ 0.187 s 0.116 s
(B,C) 1 37.7 \ B2 - \ \ 0.044 s 0.021 s
(B,C) 1 37.8 \ B0 - \ \ 0.031 s 0.024 s

Table 13: Threshold for γ = 0.9. ‘Run Time 1’ is the run time using Algorithm 1, while
‘Run Time 0’ is the run time using standard policy iteration.

6.3 Multi-Unit Policies

Recall that m is the number of flomels, n is the number of centrifuges in a single flomel. Location
neighbouring units have more risk than process neighbouring units, so dP ≤ dL and these are
estimated to be dL = 0.10, dP = 0.08. We use γ = 0.9.

We try different cost parameters. For state dimensions B and C, the results for 3 units are
shown in Table 14. For dimension B, the results are shown for 3 units in Table 15, for 4 units in
Table 16, and for 5 units in Table 17. We observed that action a1 is chosen for a unit when it
reaches or succeeds the state as shown in the table, but for A2 = a2, action a1 is not chosen for
any units. All solutions were found within two iterations.

73

6.3 Multi-Unit Policies 6 RESULTS

c1(0) C3 C6 A1
i,j = a1 A2 = a2 Run Time 2 Run Time 0

1,..,4 16 1,...,16 Mi,j ⪰ (B2, C0) M ⪰ Θ((F1,0,0)) 88.2 s 237.1 s
1 17 1,...,17 Mi,j ⪰ (B1, C0) M ⪰ Θ((F1,0,0)) 90.1 s 238.0 s

5,..,8 16 1,..,16 Mi,j ⪰ (B2, C0) M ⪰ Θ((F1, (B2, C0)),0)) 103.3 s 295.4 s
9,...,16 16 1,...,16 Mi,j ⪰ (B2, C0) M ⪰ Θ((F1, F1,0)) 74,9 s 239,6 s

1 1 16 Mi,j ⪰ (B2, C0) M ⪰ Θ((F1, F1,0)) 69.2 s 219.0 s
1 2,3 16 Mi,j ⪰ (B2, C0) M ⪰ Θ((F1, (B2, C0),0)) 65.4 s 228.8 s
1 4,..,15 16 Mi,j ⪰ (B2, C0) M ⪰ Θ(F1,0,0) 69.6 s 219.3 s
5 8 16 Mi,j ⪰ (B2, C0) M ⪰ Θ((F1, F1,0)) 69.9 s 226.4 s
1 16 17 Mi,j ⪰ (B2, C0) M ⪰ Θ(F1,0,0) 68.7 s 223.8 s

2,3,4 16 17 Mi,j ⪰ (B2, C0) M ⪰ Θ((F1,0,0)) 63.2 s 211.9 s
5,...,8 16 17 Mi,j ⪰ (B2, C0) M ⪰ Θ((F1, (B2, C0),0)) 103.3 s 295.4 s
9,10 16 17 Mi,j ⪰ (B2, C0) M ⪰ Θ((F1,0,0)) 63.7 s 210.3 s

Table 14: State dimensions (B,C),γ = 0.9, m = 3, n = 1, Total 3 units. ‘Run Time 2’ is
the run time using Algorithm 2, while ‘Run Time 0’ is the run time using standard policy
iteration

c1(0) C3 C6 A1
i,j = a1 A2 = a2 Run Time 2

1 16 16 Mi,j ⪰ B2 M ⪰ Θ((F1, B0, B0)) 6.61 s
∨ M ⪰ Θ((B1, B1, B0))

1 17 1,...,17 Mi,j ⪰ B1 M ⪰ Θ((B1, B1, B0)) 3.06 s
∨ M ⪰ Θ((F1, B0, B0))

1 1 16,17 Mi,j ⪰ B2 M ⪰ Θ((B2, B2, B0)) 3.10 s

Table 15: State dimension B,γ = 0.9, m = 3, n = 1, Total 3 units. ‘Run Time 2’ is the run
time using Algorithm 2.

c1(0) C3 C6 A1
i,j = a1 A2 = a2 Run Time 2 Run Time 0

0 16 16 Mi,j ⪰ B0 M ⪰ Θ((F2, B0, B0, B0)) 14.65 s 310.0s
1,...,4 16 16 Mi,j ⪰ B2 M ⪰ Θ((F2, B0, B0, B0)) 110.2 s 332.7 s

∨ M ⪰ Θ((B2, B2, B1, B0))
5,...,16 16 16 Mi,j ⪰ B2 M ⪰ Θ((F2, B2, B0, B0)) 152.1 s 339.8 s

∨ M ⪰ Θ((B2, B2, B1, B0))
1 16 1,...,10 Mi,j ⪰ B2 M ⪰ Θ((B1, B1, B1, B0)) 111.1 s 455.4 s

∨ M ⪰ Θ((F1, B0, B0, B0))

Table 16: State dimension B,γ = 0.9, m = 4, n = 1, Total 4 units. ‘Run Time 1’ is the run
time using Algorithm 1, while ‘Run Time 0’ is the run time using standard policy iteration

c1(0) C3 C6 A1
i,j = a1 A2 = a2 Run Time 2

16 16 1 Mi,j ⪰ B2 M ⪰ Θ((B2, B2, B2, B0, B0)) 4534.2 s
∨ M ⪰ Θ((F1, B2, B1, B0, B0))

Table 17: State dimension B,γ = 0.9, m = 5, n = 1, Total 5 units. ‘Run Time 2’ is the run
time using Algorithm 2.

74

7 DISCUSSION

7 Discussion

For the single-unit model, we observed that the resulting policy is influenced by thresholds in the
cost components. Specifically, when the penalty C3 is below a certain ‘penalty’ threshold, it is
optimal to stop the unit if state-dimension B has reached or succeeded B2 or if state-dimension D
has reached or succeeded D2. If the penalty C3 is above the threshold, then the stopping action a1
is already chosen in the as-good-as-new-state (A0, B0, C0, D0, E0), regardless of the reward values
c1(s).

The dimension thresholds in this model appear to behave independently. Whether, all five
dimensions or less dimensions were considered, the decision to choose the stopping action was
not affected by the combined state of the other dimensions. This independence may suggest that
threshold for each dimension can be determined separately.

A lower discount factor γ, which puts less emphasis on future costs (and more on immediate
costs), allows a higher penalty C3 value before the stopping action is chosen in a state.

For the multi-unit model, we considered only some of the state dimensions to reduce the run
time. We specifically focused on dimension B, which ends in a crash, and dimension C, which
ends in a run down. In reality, one might expect that is beneficial to stop and replace a sufficiently
deteriorated (operating) centrifuge, when a refurbishment is planned. However, due to Assumption
5.5 that states that all centrifuges return to an as-good-as-new state after refurbishment, the model
favoured to continue operation for single units, when the refurbishment action a2 is chosen. This
is because the unit then also returns to the as-good-as-new state with no additional replacement
cost.

We also observed that a higher refurbishment cost C6 does not lead to choosing the refur-
bishment action a2 at a worse system state. Instead the action tends to be optimal in a better
state. This arises because the total refurbishment costs are completely dependent on the number
of operating units and there is no additional fixed component charged for every refurbishment .

Extending the single to a multi-unit model, resulted in an exponential increase in the size of
the state and action space. Implementing the monotone policy structure in the policy iteration
reduced the run times, and its impact was more noticeable in the multi-unit model compared to
the single-unit model. Nevertheless, the run times still grow exponentially with each additional
state dimension, which limited the accessibility of testing the multi-unit model.

In reality, there exists a, so-called, action-delay for refurbishment action a2. The refurbishment
cannot be immediately executed and is executed at a later decision epoch. Including the delay
in the model requires tracking the previous actions within the state, which increases the size of
the state. Therefore, we chose to neglect this delay. If the delay would be implemented, the
refurbishment action would likely be chosen at an earlier state.

Deterioration patterns in centrifuges can vary from hours to years (e.g. corrosion). But a
unit’s state can become critical within seconds. Therefore, decisions must be made on the order
of seconds and days. Given that our decision epochs are set to 15-second intervals, the probability
of the system remaining in the same state is close to one. This often leads to a policy where units
are stopped only in relatively very deteriorated conditions. However, in practice, operators cannot
monitor every centrifuge every 15 seconds due to the size of the system. Therefore, longer intervals
(like hourly decision epochs) may be more feasible for implementation. Longer intervals affect the
transition probabilities since more state transitions are possible. Then it would be possible to
reach a crash from a currently declared ‘safe’ state. The resulting policy would therefore, have a
lower threshold, causing units to be stopped earlier.

We made several assumptions to simplify the problem and these provide opportunities for
further research. First of all, the data analysis was not the prime focus of our research, hence
assumptions were made about the relation between the observations and the true underlying state.

75

7 DISCUSSION

However, a more in-depth study would be needed to rigorously substantiate this relation.

We suggest evaluating additional time series and considering other factors, such as the amount
of run ups that a centrifuge has experienced. More questions could be answered in the data
analysis, for example Are the frequency or amplitude from the seasonal component correlated? or
Are the power and CFI-indicator correlated?. Executing the decomposition approach for a single
time series required several hours. Instead machine learning techniques could be employed to
detect patterns more efficiently.

Centrifuges experience different effects based on their location in the system. Some stages are
more susceptible to light gas, others more to CFI. This structural dependency can be implemented
by assigning different transition functions to units based on their location.

76

8 CONCLUSION

8 Conclusion

Coming back to our research questions stated in Section 2.4:

1. What kind of model can be used to determine a predictive maintenance policy?
We have formulated a Markov Decision problem, becomes an optimal stopping problem
when only two actions are considered. For a single unit system, we considered production
rewards, and crash penalties, to allow for a trade-off between maximizing operating hours
and preventing a crash.

2. How can a centrifuge’s remaining useful life distribution be described?
We modelled the deterioration of a centrifuge using a discrete-time, multi-dimensional ab-
sorbing Markov chain. Each dimension represents a different deterioration path. The failure
states are defined as absorbing states.

3. What structure has the optimal policy for a single machine?
We proved that the optimal policy has a monotone structure. Given that we have two
actions, the monotone policy is equivalent to a threshold policy, where the state space is
divided in two mutually exclusive groups and one action is taken only within one of these
groups. Due to the five-dimensional state space, the threshold is a five-way threshold.

4. How can find the optimal policy?
We employed policy iteration to determine the optimal policy. Here, we used the monotone
structure and the partial ordering of the state space to efficiently eliminate certain non-
optimal policies.

5. Does the policy structure change when a system of centrifuges is considered?
In a system of centrifuges it is also of interest to decide when to execute a refurbishment. So
the policy involves two types of actions: whether to stop an individual machine and whether
to execute a refurbishment. Although, the optimal policy is shown to have a monotone
structure, it is not a threshold policy due to the multi-dimensional action space. The decision
to stop a unit, now also depends on whether a refurbishment action is taken.

Now we can answer our main research question:

“ Can we determine a policy to prevent crashes based on real-time observations? ”

We have determined a predictive maintenance policy to prevent centrifuge crashes by formulating
a Markov decision process and solving it using policy iteration. We have developed a policy frame-
work for both single and multi-unit centrifuge systems that indicates the cost-optimal moment to
stop a centrifuge or perform a refurbishment based on the current condition of the system.

77

REFERENCES REFERENCES

References

[1] M. Abdel-Hameed. “Deterioration processes”. In: Semi-Markov Models: Theory and Ap-
plications. Ed. by Jacques Janssen. Boston, MA: Springer US, 1986, pp. 231–252. isbn:
978-1-4899-0574-1. doi: 10.1007/978-1-4899-0574-1_13. url: https://doi.org/10.
1007/978-1-4899-0574-1_13.

[2] J.J. Arts. Maintenance modeling and optimization. BETA publicatie : working papers. Tech-
nische Universiteit Eindhoven, Mar. 2017.

[3] T. Aven. “Optimal replacement under a minimal repair strategy—a general failure model”.
In: Advances in Applied Probability 15.1 (Mar. 1981), pp. 198–211. doi: 10.2307/1426990.
url: https://doi.org/10.2307/1426990.

[4] A. Baru and R. Johnson. Three ways to estimate remaining useful life for predictive main-
tenance. 2020. url: https://www.mathworks.com/content/dam/mathworks/ebook/
estimating-remaining-useful-life-ebook.pdf.

[5] R. Bellman. “A Markovian decision process”. In: Indiana University mathematics journal
6.4 (Jan. 1957), pp. 679–684. doi: 10.1512/iumj.1957.6.56038. url: https://doi.org/
10.1512/iumj.1957.6.56038.

[6] P. J. Brockwell and R. A. Davis. Introduction to Time Series and Forecasting. Jan. 2002.
doi: 10.1007/b97391. url: https://doi.org/10.1007/b97391.

[7] H Burkill. “Monotonic functions on partially ordered sets”. In: Journal of Combinatorial
Theory Series A 37.3 (Nov. 1984), pp. 248–256. doi: 10.1016/0097-3165(84)90049-9.
url: https://doi.org/10.1016/0097-3165(84)90049-9.

[8] J. H. Cha, M. Finkelstein, and G. Levitin. “On preventive maintenance of systems with
lifetimes dependent on a random shock process”. In: Reliability Engineering System Safety
168 (2017). Maintenance Modelling, pp. 90–97. issn: 0951-8320. doi: https://doi.org/10.
1016/j.ress.2017.03.023. url: https://www.sciencedirect.com/science/article/
pii/S0951832016305920.

[9] D. Chen and K. S. Trivedi. “Optimization for condition-based maintenance with semi-
Markov decision process”. In: Reliability Engineering System Safety 90.1 (2005), pp. 25–29.
issn: 0951-8320. doi: https://doi.org/10.1016/j.ress.2004.11.001. url: https:
//www.sciencedirect.com/science/article/pii/S0951832004002601.

[10] S. Christensen and A. Irle. “The monotone case approach for the solution of certain mul-
tidimensional optimal stopping problems”. In: Stochastic Processes and their Applications
130.4 (Apr. 2020), pp. 1972–1993. doi: 10. 1016/j .spa .2019. 06.009. url: https:
//doi.org/10.1016/j.spa.2019.06.009.

[11] Enrichment Technology Company. Our Gas Centrifuge Technology for uranium enrichment
— ETC. Feb. 2023. url: https://enritec.com/technology/centrifuge-technology/.

[12] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Apr. 2002. doi: 10.
1017/cbo9780511809088. url: https://doi.org/10.1017/cbo9780511809088.

[13] B. De Jonge and P. Scarf. “A review on maintenance optimization”. In: European Journal of
Operational Research 285.3 (Sept. 2020), pp. 805–824. doi: 10.1016/j.ejor.2019.09.047.
url: https://doi.org/10.1016/j.ejor.2019.09.047.

[14] B. De Saporta et al. “Optimal stopping for the predictive maintenance of a structure subject
to corrosion”. In: Proceedings of the Institution of Mechanical Engineers. Part O, Journal of
risk and reliability/Proceedings of the Institution of Mechanical Engineers. Part O, Journal
of risk and reliability. 226.2 (Oct. 2011), pp. 169–181. doi: 10.1177/1748006x11413681.
url: https://doi.org/10.1177/1748006x11413681.

[15] R. Dekker et al. MAINTENANCE AND MARKOV DECISION MODELS. Dec. 2007. url:
https://math.leidenuniv.nl/reports/files/2007-39.pdf.

[16] M. Finkelstein. “On the optimal degree of imperfect repair”. In: Reliability Engineering
System Safety 138 (June 2015), pp. 54–58. doi: 10.1016/j.ress.2015.01.010. url:
https://doi.org/10.1016/j.ress.2015.01.010.

78

https://doi.org/10.1007/978-1-4899-0574-1_13
https://doi.org/10.1007/978-1-4899-0574-1_13
https://doi.org/10.1007/978-1-4899-0574-1_13
https://doi.org/10.2307/1426990
https://doi.org/10.2307/1426990
https://www.mathworks.com/content/dam/mathworks/ebook/estimating-remaining-useful-life-ebook.pdf
https://www.mathworks.com/content/dam/mathworks/ebook/estimating-remaining-useful-life-ebook.pdf
https://doi.org/10.1512/iumj.1957.6.56038
https://doi.org/10.1512/iumj.1957.6.56038
https://doi.org/10.1512/iumj.1957.6.56038
https://doi.org/10.1007/b97391
https://doi.org/10.1007/b97391
https://doi.org/10.1016/0097-3165(84)90049-9
https://doi.org/10.1016/0097-3165(84)90049-9
https://doi.org/https://doi.org/10.1016/j.ress.2017.03.023
https://doi.org/https://doi.org/10.1016/j.ress.2017.03.023
https://www.sciencedirect.com/science/article/pii/S0951832016305920
https://www.sciencedirect.com/science/article/pii/S0951832016305920
https://doi.org/https://doi.org/10.1016/j.ress.2004.11.001
https://www.sciencedirect.com/science/article/pii/S0951832004002601
https://www.sciencedirect.com/science/article/pii/S0951832004002601
https://doi.org/10.1016/j.spa.2019.06.009
https://doi.org/10.1016/j.spa.2019.06.009
https://doi.org/10.1016/j.spa.2019.06.009
https://enritec.com/technology/centrifuge-technology/
https://doi.org/10.1017/cbo9780511809088
https://doi.org/10.1017/cbo9780511809088
https://doi.org/10.1017/cbo9780511809088
https://doi.org/10.1016/j.ejor.2019.09.047
https://doi.org/10.1016/j.ejor.2019.09.047
https://doi.org/10.1177/1748006x11413681
https://doi.org/10.1177/1748006x11413681
https://math.leidenuniv.nl/reports/files/2007-39.pdf
https://doi.org/10.1016/j.ress.2015.01.010
https://doi.org/10.1016/j.ress.2015.01.010

REFERENCES REFERENCES

[17] T. Gao et al. “Data-Driven Method for predicting remaining useful life of bearing based on
Bayesian theory”. In: Sensors 21.1 (Dec. 2020), p. 182. doi: 10.3390/s21010182.

[18] G.G. P. Garcia et al. “Interpretable Policies and the Price of Interpretability in Hypertension
Treatment Planning”. In: Manufacturing Service Operations Management 26.1 (Jan. 2024),
pp. 80–94. doi: 10.1287/msom.2021.0373. url: https://doi.org/10.1287/msom.2021.
0373.

[19] M. K. Goel, P. Khanna, and J. Kishore. “Understanding survival analysis: Kaplan-Meier
estimate”. In: International journal of Ayurveda research 1.4 (Jan. 2010), p. 274. doi: 10.
4103/0974-7788.76794. url: https://doi.org/10.4103/0974-7788.76794.

[20] C. M. Grinstead Jr. et al. Grinstead and Snell’s Introduction to Probability. Tech. rep. July
2006. url: https://math.dartmouth.edu/~prob/prob/prob.pdf.

[21] H. Hartmann et al. “Overview of Toxicity Data and Risk Assessment Methods for Evaluating
the Chemical Effects of Depleted Uranium Compounds”. In: Hum. Ecol. Risk Assess. 6 (Oct.
2000). doi: 10.1080/10807030091124239.

[22] Hashed-feature similarity model for estimating remaining useful life - MATLAB - Math-
Works Benelux. Retrieved March 9, 2024. 2023. url: https://nl.mathworks.com/help/
predmaint/ref/hashsimilaritymodel.html.

[23] T. Hiruta and Y. Umeda. “Model-Based Deterioration Estimation with Cyber Physical
System”. In: International journal of automation technology 14.6 (Nov. 2020), pp. 1005–1012.
doi: 10.20965/ijat.2020.p1005. url: https://doi.org/10.20965/ijat.2020.p1005.

[24] Nils Lid Hjort, Bent Natvig, and Espen Funnemark. “The Association in Time of a Markov
Process with Application to Multistate Reliability Theory”. In: Journal of Applied Probabil-
ity 22.2 (1985), pp. 473–479. issn: 00219002. url: http://www.jstor.org/stable/3213792
(visited on 10/14/2024).

[25] L. A. Jimenez-Roa et al. “Deterioration Modeling of Sewer Pipes via Discrete-Time Markov
Chains; A Large-Scale Case Study in the Netherlands”. In: Book of Extended Abstracts for
the 32nd European Safety and Reliability Conference. ESREL. Research Publishing Services,
2022, pp. 1299–1306. doi: 10.3850/978-981-18-5183-4_r22-13-482-cd. url: http:
//dx.doi.org/10.3850/978-981-18-5183-4_R22-13-482-cd.

[26] L. Kallenberg. MARKOV DECISION PROCESSES. Tech. rep. Oct. 2016. url: https:
//www.math.leidenuniv.nl/~kallenberglcm/Lecture-notes-MDP.pdf.

[27] M. J. Kim. “Robust Control of Partially Observable Failing Systems”. In: Operations Re-
search 64.4 (Aug. 2016), pp. 999–1014. doi: 10.1287/opre.2016.1495. url: https:
//doi.org/10.1287/opre.2016.1495.

[28] D. P. Kroese et al. “Data Science and Machine Learning: Mathematical and statistical
methods”. In: 77 (Jan. 2019).

[29] J. Li, Dirk Schaefer, and Jelena Milisavljevic-Syed. “A Decision-Based Framework for pre-
dictive maintenance technique selection in Industry 4.0”. In: Procedia CIRP 107 (Jan. 2022),
pp. 77–82. doi: 10.1016/j.procir.2022.04.013. url: https://doi.org/10.1016/j.
procir.2022.04.013.

[30] B. H. Lindqvist. “Monotone and associated Markov chains, with applications to reliability
theory”. In: Journal of Applied Probability 24.3 (Sept. 1987), pp. 679–695. doi: 10.2307/
3214099. url: https://doi.org/10.2307/3214099.

[31] D. Lugtigheid, D. Banjevic, and A. K.S. Jardine. “System repairs: When to perform and
what to do?” In: Reliability Engineering System Safety 93.4 (Apr. 2008), pp. 604–615. doi:
10.1016/j.ress.2007.03.023. url: https://doi.org/10.1016/j.ress.2007.03.023.

[32] V. Makis and X. Jiang. “Optimal replacement under partial observations”. In: Mathematics
of Operations Research 28.2 (May 2003), pp. 382–394. doi: 10.1287/moor.28.2.382.14484.
url: https://doi.org/10.1287/moor.28.2.382.14484.

[33] L. March, Cambridge Group for the History of Population, and Social Structure. Measuring
seasonality, pp. 3–42. url: https://www.demogr.mpg.de/books/drm/003/3.pdf.

79

https://doi.org/10.3390/s21010182
https://doi.org/10.1287/msom.2021.0373
https://doi.org/10.1287/msom.2021.0373
https://doi.org/10.1287/msom.2021.0373
https://doi.org/10.4103/0974-7788.76794
https://doi.org/10.4103/0974-7788.76794
https://doi.org/10.4103/0974-7788.76794
https://math.dartmouth.edu/~prob/prob/prob.pdf
https://doi.org/10.1080/10807030091124239
https://nl.mathworks.com/help/predmaint/ref/hashsimilaritymodel.html
https://nl.mathworks.com/help/predmaint/ref/hashsimilaritymodel.html
https://doi.org/10.20965/ijat.2020.p1005
https://doi.org/10.20965/ijat.2020.p1005
http://www.jstor.org/stable/3213792
https://doi.org/10.3850/978-981-18-5183-4_r22-13-482-cd
http://dx.doi.org/10.3850/978-981-18-5183-4_R22-13-482-cd
http://dx.doi.org/10.3850/978-981-18-5183-4_R22-13-482-cd
https://www.math.leidenuniv.nl/~kallenberglcm/Lecture-notes-MDP.pdf
https://www.math.leidenuniv.nl/~kallenberglcm/Lecture-notes-MDP.pdf
https://doi.org/10.1287/opre.2016.1495
https://doi.org/10.1287/opre.2016.1495
https://doi.org/10.1287/opre.2016.1495
https://doi.org/10.1016/j.procir.2022.04.013
https://doi.org/10.1016/j.procir.2022.04.013
https://doi.org/10.1016/j.procir.2022.04.013
https://doi.org/10.2307/3214099
https://doi.org/10.2307/3214099
https://doi.org/10.2307/3214099
https://doi.org/10.1016/j.ress.2007.03.023
https://doi.org/10.1016/j.ress.2007.03.023
https://doi.org/10.1287/moor.28.2.382.14484
https://doi.org/10.1287/moor.28.2.382.14484
https://www.demogr.mpg.de/books/drm/003/3.pdf

REFERENCES REFERENCES

[34] MODULE 4.0: GAS CENTRIFUGE. July 2009. url: https : / / www . nrc . gov / docs /
ML1204/ML12045A055.pdf.

[35] F. S. Nowlan and H. F. Heap. Reliability-Centered maintenance. Tech. rep. Dec. 1978. doi:
10.21236/ada066579. url: https://doi.org/10.21236/ada066579.

[36] Ivanka Barzashka Ivan Oelrich. Federation of American Scientists :: Engineering Consider-
ations for Gas Centrifuges. Sept. 2013. url: https://programs.fas.org/ssp/nukes/
fuelcycle/centrifuges/engineering.html.

[37] Ivanka Barzashka Ivan Oelrich. Federation of American Scientists :: Enrichment Cascades.
Sept. 2013. url: https://programs.fas.org/ssp/nukes/fuelcycle/centrifuges/
cascades.html.

[38] S. Oh and Ö. Özer. “Characterizing the structure of optimal stopping policies”. In: Produc-
tion and Operations Management 25.11 (Nov. 2016), pp. 1820–1838. doi: 10.1111/poms.
12579. url: https://doi.org/10.1111/poms.12579.

[39] Donald R. Olander. “The theory of uranium enrichment by the gas centrifuge”. In: Progress
in Nuclear Energy 8.1 (1981), pp. 1–33. issn: 0149-1970. doi: https://doi.org/10.1016/
0149-1970(81)90026-3. url: https://www.sciencedirect.com/science/article/pii/
0149197081900263.

[40] Pairwise comparison-based similarity model for estimating remaining useful life - MATLAB
- MathWorks Benelux. Retrieved March 9, 2024. 2023. url: https://nl.mathworks.com/
help/predmaint/ref/pairwisesimilaritymodel.html.

[41] M. D. Pandey and X. X. Yuan. A Comparison of Probabilistic Models of Deterioration for
Life Cycle Management of Structures. Feb. 2007, pp. 735–746. doi: 10.1007/1-4020-4891-
2\{_}62. url: https://doi.org/10.1007/1-4020-4891-2_62.

[42] K. Papadaki and W. B. Powell. “Monotonicity in multidimensional Markov decision pro-
cesses for the batch dispatch problem”. In: Operations research letters 35.2 (Mar. 2007),
pp. 267–272. doi: 10.1016/j.orl.2006.03.013. url: https://doi.org/10.1016/j.orl.
2006.03.013.

[43] J. Pike. Gas centrifuge uranium enrichment. url: https://www.globalsecurity.org/
wmd/intro/u-centrifuge.htm.

[44] Probabilistic failure-time model for estimating remaining useful life - MATLAB - Math-
Works Benelux. Retrieved March 9, 2024. 2023. url: https://nl.mathworks.com/help/
predmaint/ref/reliabilitysurvivalmodel.html.

[45] Proportional hazard survival model for estimating remaining useful life - MATLAB - Math-
Works Benelux. Retrieved March 9, 2024. 2023. url: https://nl.mathworks.com/help/
predmaint/ref/covariatesurvivalmodel.html.

[46] Martin L Puterman. Markov decision processes. en. Wiley Series in Probability and Statis-
tics. Nashville, TN: John Wiley & Sons, Feb. 2005.

[47] Residual comparison-based similarity model for estimating remaining useful life - MATLAB
- MathWorks Benelux. Retrieved March 9, 2024. 2023. url: https://nl.mathworks.com/
help/predmaint/ref/residualsimilaritymodel.html.

[48] Sheldon M. Ross. Stochastic processes. 2nd ed. Wiley, Dec. 1982. url: https://openlibrary.
org/books/OL3488929M/Stochastic_processes.

[49] Rajesh Siraskar et al. “Reinforcement learning for predictive maintenance: a systematic
technical review”. In: Artificial Intelligence Review 56.11 (Mar. 2023), pp. 12885–12947. doi:
10.1007/s10462-023-10468-6. url: https://doi.org/10.1007/s10462-023-10468-6.

[50] Youri Soons et al. Predicting Remaining Useful Life with Similarity-Based Priors. Jan. 2020,
pp. 483–495. doi: 10.1007/978-3-030-44584-3\{_}38. url: https://doi.org/10.1007/
978-3-030-44584-3_38.

[51] Urenco. url: https://www.urenco.com.

80

https://www.nrc.gov/docs/ML1204/ML12045A055.pdf
https://www.nrc.gov/docs/ML1204/ML12045A055.pdf
https://doi.org/10.21236/ada066579
https://doi.org/10.21236/ada066579
https://programs.fas.org/ssp/nukes/fuelcycle/centrifuges/engineering.html
https://programs.fas.org/ssp/nukes/fuelcycle/centrifuges/engineering.html
https://programs.fas.org/ssp/nukes/fuelcycle/centrifuges/cascades.html
https://programs.fas.org/ssp/nukes/fuelcycle/centrifuges/cascades.html
https://doi.org/10.1111/poms.12579
https://doi.org/10.1111/poms.12579
https://doi.org/10.1111/poms.12579
https://doi.org/https://doi.org/10.1016/0149-1970(81)90026-3
https://doi.org/https://doi.org/10.1016/0149-1970(81)90026-3
https://www.sciencedirect.com/science/article/pii/0149197081900263
https://www.sciencedirect.com/science/article/pii/0149197081900263
https://nl.mathworks.com/help/predmaint/ref/pairwisesimilaritymodel.html
https://nl.mathworks.com/help/predmaint/ref/pairwisesimilaritymodel.html
https://doi.org/10.1007/1-4020-4891-2\{_}62
https://doi.org/10.1007/1-4020-4891-2\{_}62
https://doi.org/10.1007/1-4020-4891-2_62
https://doi.org/10.1016/j.orl.2006.03.013
https://doi.org/10.1016/j.orl.2006.03.013
https://doi.org/10.1016/j.orl.2006.03.013
https://www.globalsecurity.org/wmd/intro/u-centrifuge.htm
https://www.globalsecurity.org/wmd/intro/u-centrifuge.htm
https://nl.mathworks.com/help/predmaint/ref/reliabilitysurvivalmodel.html
https://nl.mathworks.com/help/predmaint/ref/reliabilitysurvivalmodel.html
https://nl.mathworks.com/help/predmaint/ref/covariatesurvivalmodel.html
https://nl.mathworks.com/help/predmaint/ref/covariatesurvivalmodel.html
https://nl.mathworks.com/help/predmaint/ref/residualsimilaritymodel.html
https://nl.mathworks.com/help/predmaint/ref/residualsimilaritymodel.html
https://openlibrary.org/books/OL3488929M/Stochastic_processes
https://openlibrary.org/books/OL3488929M/Stochastic_processes
https://doi.org/10.1007/s10462-023-10468-6
https://doi.org/10.1007/s10462-023-10468-6
https://doi.org/10.1007/978-3-030-44584-3\{_}38
https://doi.org/10.1007/978-3-030-44584-3_38
https://doi.org/10.1007/978-3-030-44584-3_38
https://www.urenco.com

REFERENCES REFERENCES

[52] H. E. Van Staden, L. Deprez, and R. Boute. “A dynamic “predict, then optimize” preventive
maintenance approach using operational intervention data”. In: European Journal of Oper-
ational Research 302.3 (Nov. 2022), pp. 1079–1096. doi: 10.1016/j.ejor.2022.01.037.
url: https://doi.org/10.1016/j.ejor.2022.01.037.

[53] P. J. Vlok et al. “Optimal Component Replacement Decisions Using Vibration Monitoring
and the Proportional-Hazards Model”. In: The Journal of the Operational Research Society
53.2 (2002), pp. 193–202. issn: 01605682, 14769360. url: http://www.jstor.org/stable/
822993 (visited on 08/02/2024).

[54] Y. Ye et al. “Modeling for reliability optimization of system design and maintenance based
on Markov chain theory”. In: Computers Chemical Engineering 124 (May 2019), pp. 381–
404. doi: 10.1016/j.compchemeng.2019.02.016. url: https://doi.org/10.1016/j.
compchemeng.2019.02.016.

[55] J. Zhang et al. “Optimal inspection-based preventive maintenance policy for three-state
mechanical components under competing failure modes”. In: Reliability Engineering System
Safety 152 (Aug. 2016), pp. 95–103. doi: 10.1016/j.ress.2016.02.007. url: https:
//doi.org/10.1016/j.ress.2016.02.007.

[56] J. Zhao et al. “Overview of Equipment Health State Estimation and Remaining Life Predic-
tion Methods”. In: Machines 10.6 (May 2022), p. 422. doi: 10.3390/machines10060422.
url: https://doi.org/10.3390/machines10060422.

[57] Y. Zhou et al. “An effective approach to reducing strategy space for maintenance optimi-
sation of multistate series–parallel systems”. In: Reliability Engineering System Safety 138
(June 2015), pp. 40–53. doi: 10.1016/j.ress.2015.01.018. url: https://doi.org/10.
1016/j.ress.2015.01.018.

81

https://doi.org/10.1016/j.ejor.2022.01.037
https://doi.org/10.1016/j.ejor.2022.01.037
http://www.jstor.org/stable/822993
http://www.jstor.org/stable/822993
https://doi.org/10.1016/j.compchemeng.2019.02.016
https://doi.org/10.1016/j.compchemeng.2019.02.016
https://doi.org/10.1016/j.compchemeng.2019.02.016
https://doi.org/10.1016/j.ress.2016.02.007
https://doi.org/10.1016/j.ress.2016.02.007
https://doi.org/10.1016/j.ress.2016.02.007
https://doi.org/10.3390/machines10060422
https://doi.org/10.3390/machines10060422
https://doi.org/10.1016/j.ress.2015.01.018
https://doi.org/10.1016/j.ress.2015.01.018
https://doi.org/10.1016/j.ress.2015.01.018

A GLOSSARY

Appendices

A Glossary

Cascade System of centrifuges that operate together.
Centrifuge Monitoring System Measures various performance characteristics on centrifuge-

and cascade level.
Chain A totally ordered set, i.e. all elements in a chain are compa-

rable.
CMS Centrifuge monitoring system.
Crash A failure type in which the rotor is destroyed.
Feed Material that enters the centrifuge.
Flomel A group of centrifuges in the cascade that receive the same

feed and are on the same stage.
CFI Condensed Feed Impurities. One of the failure causes for a

centrifuge.
Markov chain Type of Markov process, so it satisfies the Markov Property.
Markov Property Future behaviours of the system only depends on the current

state of the model, and not its history.
DTMC Discrete time Markov chain.
PdM Predictive Maintenance.
Poset Partially ordered set.
Product Enriched material that leaves the centrifuge.
Survival analysis A class of statistical approaches to estimate the time for an

event to occur.
Refurbishment Maintenance action performed on the complete system, during

which centrifuges can be replaced.
Rotor Cylindrical chamber that rotates at high speed in the cen-

trifuge, in which material is enriched.
RUL Remaining useful life.
Run Down The rotor decelerates to a complete stop. If can occur unso-

licited when the centrifuge’s friction exceeds the torque of its
motor, in which case it is one of the failure types.

Run up The centrifuge is turned on from a standstill and the rotor
accelerates in several steps to normal frequency.

Tails Depleted material that leaves the centrifuge.
UF6 Uranium hexafluoride. The feed material.

82

B NOTATION INDEX

B Notation Index

Chapter 2
Ai Deterioration state for High Pressure-path with i = 0, 1, 2
Bi Deterioration state for Condensing Feed Impurities-path with i = 0, 1, 2.
Ci Deterioration state for Light Gas-path with i = 0, 1, 2.
Ct Cyclical component from time series at time t with t = 1, 2,
Di Deterioration state for Low Temperature-path with i = 0, 1, 2.
d Window size of the moving average filter.
Ei Deterioration state for Corrosion-path with i = 0, 1, 2, 3.
et Residuals from decomposed time series at time t with t = 1, 2,
F1 Run Down state, absorbing failure state.
F2 Crash state, absorbing failure state.
St Seasonal component from time series at time t with t = 1, 2,
Tt Trend component from time series at time t with t = 1, 2,
Xt Time series with t = 1, 2,

Chapter 5
Single-Unit Model
a0 ‘continue’-action, there is no effect on the current state.
a1 ‘stop’-action, the unit is stopped preemptive via a Run Down.
A Action space for the single-unit model.
c(s, a) Cost function, returns the immediate cost when action a is taken in

state s.
ccrash Penalty cost for an unexpected crash.
cproduct(s, a) Reward for production (nonpositive costs).
C3 Nonnegative cost parameter that represents the cost of a crash.
h∗
γ(s) used for Assumption 5.3

p(s′|s, a) Probability to transition to state s′ given the current state is s and
action a is taken.

p(s′|s) Probability to transition to state s′ given the current state is s and
action a0 is taken.

π∗ Optimal policy that minimizes the costs.
q(k|s, a) used for Condition 2 in 5.1.
S State space for the single-unit model, S = SA × SB × SC × SD × SE .
SA State space for dimension A.
SB State space for dimension B.
SC State space for dimension C.
SD State space for dimension D.
SE State space for dimension E.
τA Threshold for dimension A, the stopping action a1 becomes optimal

once state exceeds the threshold.
τB Threshold for dimension B.
τC Threshold for dimension C.
τD Threshold for dimension D.
τE Threshold for dimension E.
vπγ (s) Value function with γ-discounted expected costs.
Z Nonnegative value assigned to the value function for the failure states.
⪯,⪰ Partial ordering operators.

83

C ASSUMPTIONS

Multi-Unit Model
a0 ‘continue operating’-action, there is no effect on the current state
a1 ‘stop’-action, the unit is stopped preemptive via a Run Down.
a2 refurbishment is planned
a3 No action is taken, this action is only available for non-operating units
A Action space for the multi-unit model.
α Substitute variable.
β Substitute variable.
c(s, a) Cost function
ccrash(s, a) Penalty cost for an unexpected crash
cnon-operating(s, a) Cost for every non-operating unit
cproduct(s, a) Reward for production (nonpositive costs)
creplacement(s, a) Replacement cost of all non-operating centrifuges
C3 Nonnegative cost parameter that represents the cost of a crash
C6 The crew cost and the purchase cost of a new unit
Di Factor that increases the probability of transitioning to a worse state
dL Factor if crash occurred in a location-neighbouring flomel
dP Factor if crash occurred in a process-neighbouring flomel
m Number of flomels
n Number of centrifuges in one flomel
Nl,i Set of location-neighbouring flomels of flomel i
NP,i Set of process-neighbouring flomels of flomel i
π∗ Optimal policy that minimizes the costs
pM (s′|s, a) Transition function for the multi-unit system.
p(M′

i,j |Mi,j) Transition function for a single unit, when action a0 is chosen for a
single unit. Same function as in the single-unit model.

Qi Factor that decreases the probability of transitioning to the same or a
better state

SM State space for the Multi-unit model
S State space for a single unit. Same as in the single-unit model.
vπγ (s) Value function with γ-discounted expected costs
⪯,⪰ Partial ordering operators.

C Assumptions

• The initial state of the system is as-good-as-new.

• Centrifuges have an increasing failure rate.

• Centrifuges have a finite lifetime.

• Centrifuges are subject to deterioration.

• The centrifuge is monitored every certain period of time. The component’s state is considered
unobservable in between these times. The inspections are non-destructive.

• Observations directly relate to a centrifuge’s true deterioration state.

• Changes in the centrifuge’s state only depend on the current state and the action taken.

• The reward function and transition probabilities are not dependent on time, i.e. we have
stationary rewards and transition probabilities.

• The rewards are bounded for all actions and states.

• The state- and action space are discrete and finite.

• Future rewards are discounted according to a discount factor γ, with 0 ≤ γ < 1.

84

E REMAINING USEFUL LIFE (CONTINUED)

• After refurbishments all centrifuges (replaced and non-replaced) are considered to be as-
good-as-new.

D Imputation methods for missing values

Mean Imputation: fills in the missing values by the average of the whole column. This method
fails to consider trends or seasonality, but is suitable when data is assumed to be randomly
distributed.

Median Imputation: Replace missing values by the median of the entire column.

Last Imputation Carried Forward: Replaces missing values with the last known value.
This works well for time series with a constant or rising trend, but distorts trends that are
changing.

Next Observation Carried Forward: Replaces missing values with the next known value.
This works well for time series with a constant or downwards trend.

Linear Interpolation: Estimates missing values by drawing a linear line between the two
nearest known values. This Works well for linear trends, but fails to describe complex
trends.

Spline Interpolation: Estimates missing values by fitting a curved line through the data points.
This is computationally more expensive than linear interpolation.

E Remaining Useful Life (continued)

Data-driven techniques are classified in two classes, depending whether a probability distribution
of the RUL must be obtained, or a point-estimate is sufficient. A probability distribution of RUL
can be implemented in stochastic decision making, which is our interest [50].

E.A Similarity Models

Similarity Models are based on the hypothesis that if at some point a curve has evolved in the
same way as other curves, it is likely to continue to do so, and therefore have a similar remaining
useful life (RUL). Similarity models estimate the RUL of the test unit as the median statistic T
of the lifetime span of the most similar units (in the training set) minus the current lifetime value
t of the test unit; T − t. Different Similarity Models exist. Which model is suitable depends on
the available data [4]:

• A Hash Similarity Model is useful when large data sets are available. This model
transforms the historical deterioration path data for each member in the data set in a series
of hashed-features. These features may be the mean, minimum, or maximum values for the
data. The hashed features of the test unit can be computed and compared to the features
of the data members [22].

• A Pairwise Similarity Model compares the deterioration profile of a test unit directly to
the deterioration path histories for multiple similar units. The similarity of the test unit to
the other units is a function of the distance between the deterioration profile and the units
profile, computed using correlation or dynamic time warping. [40].

• A Residual Similarity Model is useful when the deterioration dynamics of multiple
similar units are known. The historical data for each member in the data is fitted with a
model. The deterioration data of the test unit is then used to compute one-step prediction
errors, or residuals for the model with each data member. The error sizes show the similarity
of the test unit to the members [47].

85

E.B Survival Models F DETERMINISTIC DETERIORATION MODELS

E.B Survival Models

Survival models are used when the only available data are the failure times of similar units. Two
different Survival Models are distinguished:

• A Reliability Survival Model is used when the only available data is the failure times of
multiple similar units. The coefficients of a probability distribution are estimated using the
failure-time data. The survival model then uses the probability distribution of unit failure
times to estimate the RUL [44].

• A Covariate Survival Model (also called a Proportional Hazard Survival Model) is
used when next to life-time data one also has associated covariates. Associated covariates
can be environmental or explanatory variables. The model coefficients are estimated using
the collection of failure-time and associated covariates [45].

F Deterministic Deterioration Models

F.A Failure patterns

There are six different failure patterns associated with equipment failure: The Bathtub curve,
Wear-out curve, Fatigue Wear curve, Initial Break-in period, Constant Failure rate, and Infant
Mortality. See Figure 18 for the different shapes of the failure patterns, where the failure rate of
equipment is plotted against time. For most patterns the failure rate varies over time. The shape
of the pattern allows to identify whether a failure is an infant mortality, random, or wear-out
failure. The first two curves have a well-defined wearout period. For these two curves, an age
limit may be useful, but the effectiveness depends on the probability that a unit survives to that
age [35].

The failure pattern of a centrifuge follows a Bathtub curve. This curve has three sections.
The first section is the ‘run-up period’, where the failure rate is decreasing and failures are mostly
caused by defective units. A unit remains most of its lifespan in the ‘random failure period’, which
has a low constant failure rate since units are worn in. The third section is the ‘wear-out period’,
where the failure rate increases again, as wear and mechanical fatigue have caused damage over
time resulting in failures [35].

F.B Failure Rates

The failure rate is defined as the frequency with which a unit fails:

Definition F.1. Failure rate h(t) is the limit of the probability that a failure occurs per unit time
interval ∆t, given that no failure has occurred before time t:

h(t) = lim
P(t < T ≤ t+∆t|T > t)

∆T
=

lim
∆t→0

{F (t+∆t)− F (t)}/∆t

R(t)
=

f(t)

R(t)
,

with R(t) the probability that the unit survives beyond time t, and f(t) the probability density
function of the lifetime.

We have

R(t) =

∫ ∞

t

f(s)ds = 1−
∫ t

0

f(s)ds.

The lifetime is often assumed to be of a distribution (Weibull, exponential, or gamma), or
a given family of distributions (increasing failure rate, or increasing failure rate average). The
failure rates are estimated based on data collected on the failure times and verified by hypothesis
testing. In practice there is often not enough data available, or the validity of the distribution is
questionable due to the sometimes unfounded assumptions. The above difficulties can be avoided
by looking into the way a failure occurs and use this to determine the form of its distribution
function [1].

86

G PROOFS OF THEOREMS

Figure 18: The six failure patterns as defined by Nolan and Heap [35]

The Weibull distribution is the most used lifetime distribution in reliability analysis. This
distribution is described by

f(λ, β, t) = λβ(λt)β−1 exp−(λt)β , λ, β, t > 0,

with scale parameter λ, which indicates the unit’s potential of failure, and shape parameter β.
Three cases are described for β [54]:

• β = 1: Weibull reduces to an exponential distribution f(t) = λe−λt, so R(t) = e−λt, and the
failure rate h(t) = λ is constant;

• β > 1 : R(t) = exp−(λt)β , and the failure rate h(t) = βλβtβ−1 increases with time;

• β < 1: R(t) and h(t) are the same as for β > 1, but now the failure rate decreases with time.

G Proofs of theorems

Theorem 4.1

Proof. A characteristic from an absorbing Markov chain is that it is possible to reach an absorbing
state from any transient state sj . Let mj denote the minimum number of steps needed to reach
an absorbing state from state sj . The probability to not reach an absorbing state in mj steps is
given by pj , with 0 ≤ pj < 1. Let m = minj mj , and p = maxj pj . Then the probability of no
absorption in m steps is less than or equal to p. No absorption in 2m steps is less than or equal
to p2. So the probability of no absorption within nm steps is pn. Since p < 1, the probabilities
monotone decrease to zero, hence limn→∞ Qn = 0.

Theorem 4.2

Proof. First, we proof that there exists an inverse for matrix I − Q. For a square matrix the
inverse exists when it’s non-singular, i.e. 1 is not an eigenvalue of Q. x = Qx Let (I−Q)x = 0,

87

G PROOFS OF THEOREMS

which equals x = Qx. Iterating, we obtain x = Qnx Since Qn → 0, we have Qnx → 0, together
with x = Qnx,we have x = 0. So the inverse (I−Q)−1 = N exists. Next, we can write

(I−Q)(I+Q+Q2 + . . .+Qn) = I −Qn+1

. Multiplying both sides by (I−Q)−1, gives

(I−Q)−1(I−Q)(I+Q+Q2 + . . .+Qn) = (I−Q)−1(I −Qn+1)

(I+Q+Q2 + . . .+Qn) = (I−Q)−1(I −Qn+1)

Let n → ∞, so that Qn+1 → 0 gives

(I+Q+Q2 + . . .) = (I−Q)−1 = N.

Lastly, we proof that entry nij denotes the expected number of times the chain is in state sj
given starting in state si.

Let states si and sj be two transient states. We introduce binary variable X(k) with X(k) = 1 if
the chain is in state sj after k steps, X(k) = 0 otherwise. For each k the binary variable depends on

i and j. Then P(X(k) = 1) = q
(k)
ij , and P(X(k) = 0) = 1− q

(k)
ij for k = 0, 1, 2, . . ., where q

(k)
ij is the

(i, j)-th entry of Qk. This gives E(X(k)) = P(X(k) = 1)1 + P(X(k) = 0)0 = P(X(k) = 1) = q
(k)
ij .

Similarly,

E(X(0) +X(1) + . . .+X(n)) = E(X(0)) + E(X(1)) + . . .+ E(X(n)) = q
(0)
ij + q

(1)
ij + . . .+ q

(n)
ij

Let n → ∞, then

E(X(0) +X(1) + . . .+X(n)) = E(X(0)) + E(X(1)) + . . . = q
(0)
ij + q

(1)
ij + . . . = nij

88

	Introduction
	Uranium Enrichment Process
	Urenco
	Motivation
	Note from the Author

	Problem Analysis
	Life cycle of Centrifuges
	Operational Situations
	Maintenance Actions
	Failure Types
	Failure Causes
	Deterioration States
	Centrifuge Monitoring System
	Pattern Profiling

	Data Analysis
	Data
	Pattern Detection Approaches
	Preprocessing Data
	Identifying Deviating Centrifuges from Daily Snapshot Time Series
	Decomposition of 15-Second Time Series
	State Determination
	Kaplan-Meier Estimator for Survival Times

	Research Objectives
	Research Questions
	Structure of the report

	Related Works
	Maintenance Models
	Optimal Stopping
	Structure of Optimal Stopping Policies

	Theoretical Background
	Maintenance optimization
	Remaining Useful Life
	Deterioration Models
	Stochastic Process Models
	Markov Chain
	Markov Decision Process
	Optimal Stopping Problem
	Policy making

	Methodology
	MDP: Single-Unit System
	Decision Epochs
	State Variables
	Decision Variables
	Transition Function
	Cost Function
	Value Function

	Optimal Policy for Single-Unit System
	State Dimension E: Corrosion
	State Dimension B: Condensing Feed Impurities
	State Dimension D: Low Temperature
	State Dimension C: Light Gas
	State Dimension A: High Pressure
	Multi-Dimensional State

	Policy Iteration for Monotone Policies
	MDP: Multi-Unit System
	Decision Epochs
	State variables
	Decision Variables
	Transition Function
	Cost Function
	Value Function

	Optimal Policy for the Multi-Unit System
	Policy Iteration for Class-Ordered policies

	Results
	Transition Function
	Single-Unit Policies
	Multi-Unit Policies

	Discussion
	Conclusion
	References
	Appendices
	Glossary
	Notation Index
	Assumptions
	Imputation methods for missing values
	Remaining Useful Life (continued)
	Similarity Models
	Survival Models

	Deterministic Deterioration Models
	Failure patterns
	Failure Rates

	Proofs of theorems

