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Summary

This report explores various techniques for controlling motor drives and it also delves deep
into harmonic elimination techniques. Traditional motor controller methods like Field Ori-
ented Control (FOC) and Direct Torque Control (DTC) were examined. The FOC method’s
performance is limited by the bandwidth of the PI controllers. This causes slower con-
vergence to target setpoints. Opposed to that, the incorporated indirect Model Predictive
Control (MPC) approach provided significantly faster convergence than the PI controllers. It
did struggle with exact reference tracking due to limitations in its interaction with the Space
Vector Pulse Width Modulation (SPWM) block.

Additionally, this report includes various modulation techniques, like SPWM for FOC. Is-
sues arose with the Equal Area Modulator, which is part of one of the implemented SHE
algorithms. To try and solve these issues a Phase Locked Loop (PLL) was designed, which
successfully filters away unwanted noise coming from the PI outputs or changing motor
speed, but the quality of the current waveforms did not improve unfortunately. The issues
could also be there due to inaccuracies in timing among the gating signals or plant behav-
ior needs to be taken into account. However, the Adaptive Selective Harmonic Elimination
(ASHE) method, based on the Least Mean Squares (LMS) algorithm, demonstrated promis-
ing results by reducing harmonics and maintaining stable (dynamic) control of the inverter
outputs.

The indirect MPC method showed more harmonic reduction when compared to the LMS-
based SHE method connected to the PI-based FOC controller. This scheme reduces Total
Harmonic Distortion (THD) the best as well. Furthermore, the MPC’s ability to quickly adapt
to dynamic conditions makes it an attractive solution for motor drive applications.

All of these (motor) controllers were implemented in PLECS, where an example simula-
tion model provided an excellent start. The (A)SHE methods and indirect MPC method were
implemented in C-script code blocks, which was very fitting, as for these methods to work
on hardware, a digital implementation in code is needed.

Building upon the great results of purely the MPC method, by combining MPC with LMS-
based SHE, could offer significant potential for harmonic elimination and dynamic control in
motor drives. Future work can focus on enhancing this motor controller scheme by filters,
observers or integrating the LMS compensation in a different place to further improve system
performance. Implementing the compensation in different reference frames (like dq or αβ)
could make use of the speed of the MPC to optimize harmonic compensation.
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Chapter 1

Introduction

In today’s world, technological development focuses on creating more efficient and sustain-
able energy sources. The search for efficiency and sustainability is present in many indus-
tries, such as in industrial settings, consumer electronics, the automotive scene or other
forms of electrical transportation. The growing population further enhances the need for
optimising energy usage, to reduce the environmental impact of our actions.

Electrification is important in this context, as this pushes the norm away from fossil-fuel
based systems, which leads to possibly cleaner energy usage, but surely more efficient
energy usage.

A necessary component for electrifying technologies is the electric motor, which is found
in so many products and are used for so many applications that coming up with examples
is trivial. However, for these motors to operate to certain demands, a fitting control system
must be put into place. This is where electric motor drives are called upon.

In modern electric motor drive applications, mitigating electromagnetic noise and vibra-
tion ensures a comfortable user experience across a wide range of speeds. This is par-
ticularly advantageous in Electric Vehicles (EV’s) or maritime applications. Traditional ap-
proaches to reducing this noise and vibration have relied on auxiliary methods such as
attenuation or absorption, which can increase overall costs and system complexity [2]–[4].
An alternative solution involves active control techniques that directly address the sources
of noise and vibration within the motor drives.

This master’s thesis focuses on the study and/or implementation of Selective Harmonic
Elimination (SHE) and Model Predictive Control (MPC) to improve the performance of mo-
tor drives. SHE is a modulation strategy designed to eliminate specific harmonics in the
inverter output, thereby reducing unwanted electromagnetic emissions. By developing and
simulating SHE models on a motor consisting of a resistive-inductive (RL) load, we aim to
validate the effectiveness of this technique in practical scenarios. In this thesis a Permanent
Magnet Synchronous Machine (PMSM) is used to which the aforementioned techniques will
be applied.

Additionally, the integration of MPC provides a robust framework for optimizing the dy-
namic response of motor drives. MPC is well-suited for applications requiring precise control
over system performance metrics, such as harmonic reduction, acoustic noise minimization,
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CHAPTER 1. INTRODUCTION 7

and common-mode voltage suppression [1]. This approach not only enhances the efficiency
and reliability of motor drives but also addresses safety concerns associated with common-
mode current circulation.

The scope of this research includes a comprehensive literature review on predictive
control and optimum pulse pattern modulation in motor drives, analytical modeling of volt-
age source inverters (VSIs), and benchmarking against conventional modulation techniques
such as Sinusoidal Pulse Width Modulation (SPWM). The ultimate goal is to implement and
validate the combined SHE and MPC strategies using a simulation platform, which in this
case is PLECS.

To reach the aforementioned goal, a fitting research question needs to be formulated.
Taking the contents of this report into account and its scope, the research question to be
answered will be:

1. What techniques are used in the control and modulation of electric motor drives?

2. How can MPC and SHE techniques be integrated in a motor drive, where unwanted
harmonics need to be eliminated?

3. How do MPC and certain SHE techniques affect the dynamic performance of motor
drives?

In this thesis, the aim is to demonstrate the potential of integrating SHE and MPC to
achieve superior performance in motor drive applications, thereby contributing to the devel-
opment of possibly more efficient and quieter electric machines.



Chapter 2

Relevant background information

2.1 Operation of a permanent magnet machine

A rudimentary permanent magnet machine is pictured in Fig. 2.1. This specific one is
used solely as a tool to comprehend the operation of a machine and is not used in the
implementation. The motor consists of a rotor and stator, where the stator is the outer part

Figure 2.1: PMSM machine, where the red and green parts of the rotor represent the mag-
netic north and south pole [5]

of the motor, containing the coils. The rotor is the inner part in this specific motor, which
turns. The rotor consists of one pole pair of permanent magnets, which means that every
mechanical revolution, the stator completes an electrical revolution as well.

In this report, a permanent magnet machine will be used which has Ld = Lq, equivalent
to a saliency ratio (Lq/Ld) of 1. To make the rotor of the machine turn, the right coils of the
three phases should be excited appropriately. In the example in Fig. 2.1, to make the motor
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CHAPTER 2. RELEVANT BACKGROUND INFORMATION 9

Figure 2.2: Depiction of the stator commutation of a PMSM [5]

turn clockwise, coil A and A’ should produce the ”strongest” South and North pole to the
side of the coil that is closest to the rotor, when the Q-axis of the rotor is orthogonal to the
magnetic axis of phase A, resulting in maximum torque and zero current on the Direct (D)
axis. As there are no magnetic mono-poles, the outer sides of the coils will of course produce
the complementary magnetic pole. In this case, the excitation of coils C and C’ should be
practically zero, as non-zero D current would result otherwise, which means that there is a
magneto motive force acting through the center of the motor, which results in energy loss.
In Fig. 2.2 the commutation of the stator can be seen. Inserting a rotor in the stator with
the magnetic poles aligned 90 degrees anticlockwise to the induced stator magnetic poles
makes for a correctly turning motor assembly.

Increasing the number of stator poles in a brushless DC (BLDC) can result in the follow-
ing merits:

1. Higher Torque Density [6]: More stator poles create a stronger, more consistent mag-
netic field, resulting in greater torque output for the same motor size. This allows for a
more compact design with higher power density.

2. Smoother Torque Production [6]: A higher number of stator poles leads to a more con-
tinuous and stable torque output, reducing torque ripple and vibration, which improves
the motor’s overall performance and efficiency.

3. Less Cogging Torque: Increasing the stator poles helps minimize cogging torque, lead-
ing to smoother operation, particularly at low speeds.

4. Better Efficiency [6]: More poles can reduce copper and iron losses and improve mag-
netic flux usage, enhancing the motor’s overall efficiency.
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At some point, increasing the number of poles is not favorable, since the back electro-
motive force (EMF) increases with an increasing number of motor poles. In equation 2.1,
Faraday’s law of induction is given, which states that a changing magnetic field creates an
electric field along a contour X from a to b (X = [a, b]). Because of adding more motor poles,
the same change of magnetic field, when turning the motor, now happens in less time, thus
resulting in more back EMF and a reduced mechanical speed. Additionally, when the same
mechanical output speed is required, while more motor poles are added, the electrical speed
is higher. In this case a controller is needed that can produce these higher frequency signals,
which can also become challenging when these frequencies become too high for standard
micro controllers.

Uab =

∮ b

a
E⃗ · d⃗l = −d

dt

∫
S
B⃗ · d⃗S (2.1)

The optimal number of stator poles is chosen based on specific application needs, bal-
ancing factors such as torque, speed, power density, cost, and size.

2.2 Motor Control Schemes

To achieve SHE, first the core part of a motor control scheme needs to be present, thus
an understanding of a ’basic’ motor controller design for a PMSM is needed, to which SHE
techniques can be added. Two conventional controller designs are Field-Oriented Control

Figure 2.3: The FOC control scheme [7]

(FOC), pictured in Fig. 2.3 and Direct Torque Control (DTC), pictured in Fig. 2.5. The
first uses (inverse) Park and Clarke transformations to convert rotating two phase system
setpoints (a direct (d) and a quadrature (q) voltage setpoint; Vd and Vq) into a stationary
reference frame (containing Vα and Vβ). Lastly, the two phase system is converted to a
three phase system (containing Va, Vb and Vc). Gate signals can then be calculated using
Sinusoidal Pulse Width Modulation (SPWM), a common technique to achieve correct gate
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signal generation. SPWM works by comparing modulating signals to a certain carrier wave.
The modulating waveforms are made by performing the Clarke transformation on Vα and Vβ.
The output is equal to the desired three phase sinusoidal voltages. Next, the three phase
voltages are normalised to the supply voltage and compared to a triangle wave to obtain
the gating signals for the inverter side of the motor controller. This SPWM algorithm can be
seen for a given instance of time in Fig. 2.4 for further clarification.

Figure 2.4: SPWM modulation vectors [8]

For the purpose of feedback, the three phase currents are measured (Ia , Ib and Ic) and
multiplied by the inverse Clarke and inverse Park transformations. A stationary two phase
system containing Id and Iq is the result. Applying compensation to reach a certain reference
setpoint is then done, usually with two Proportional Integral (PI) controllers to control the
direct (d) and q axis current independently. An important remark is that inaccurate motor
angle determination can make for noisy d,q variables or non-ideal operation. The Maximum
Torque Per Ampère (MTPA) block present in Fig. 2.3 calculates the d and q axis current.
In this report, a non-salient rotor is used, and thus the only function that the MTPA block
has, is to limit currents to allowed values and to calculate a non-zero Id reference, when
the required operating speed is greater than the base speed of the machine. This control
scheme thus incorporates field weakening already, where the motor synchronous frequency
is increased. That is achieved by effectively advancing the motor timing, which limits the
back EMF and allows for more q torque (and d torque) to be generated.

The required Park and Clarke transformations can be calculated by vector deconstruction
and are given in equation 2.4 and 2.2. The inverse Park and Clarke transformations are
stated in equations 2.5 and 2.3.
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TClarke =
2

3

1 −1
2 −1

2

0
√
3
2 −

√
3
2

1
2

1
2

1
2

 (2.2)

T−1
Clarke =

 1 0 1

−1
2

√
3
2 1

−1
2 −

√
3
2 1

 (2.3)

TPark =

 cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1

 (2.4)

T−1
Park =

cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 (2.5)

Figure 2.5: The DTC control scheme [9]

DTC directly controls the torque and flux of a motor without relying on decoupled control
loops, which allows it to respond faster to changes in torque demand. The control is based
on real-time estimations of torque and flux from measured three phase currents, passed
through the Clarke transformation, bypassing the delays associated with modulation and
PWM. FOC uses decoupled control loops (with PI controllers) to control the d-axis and q-
axis currents. These currents control torque and flux, and the slower dynamic response
is a result of the reliance on modulator and PWM. Thus, DTC eliminates the need for a
modulator, which reduces the processing time and results in faster torque response [10].
DTC does not require position or speed sensors because it estimates the motor’s flux and
torque directly from voltage and current measurements. The need for an electrical motor
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angle θ for the Park transformation is avoided because DTC doesn’t rely on transforming
current vectors into the stationary or rotating reference frame, unlike FOC. Instead, DTC
operates in the stator flux frame and uses lookup tables to directly select voltage vectors
based on the estimated torque and flux. It selects these different vectors when the hysteresis
comparators trigger.

While PI controllers are present in some DTC implementations (e.g., for flux or torque
regulation), their role is less critical compared to FOC. In DTC, the control is more direct and
less dependent on the decoupling and linearization performed by PI controllers in FOC. In
summary, DTC’s dynamic response is faster because there is no need for a modulator, and it
doesn’t require position measurements because it operates based on real-time estimations
rather than reference frame transformations.

Between the two options of FOC and DTC, FOC is a better starting point for the addi-
tion of SHE, because of several reasons. Overall, DTC has worse performance in terms
of harmonics, compared to FOC, because of the variable switching frequency due to the
previously mentioned hysterisis comparators. [10] Additionally, acoustic noise at low speeds
and bad performance at low speeds are bad characteristics of DTC compared to FOC [10].
Advantages of DTC are that no position or speed measurements are needed, as the flux
and torque are controlled directly from the output of the Clarke transformation (Iα and Iβ)
with the inputs being the measured three phase currents (Ia , Ib and Ic).

2.3 Selective Harmonic Elimination (SHE) Technique

The Selective Harmonic Elimination (SHE) techniques aim to improve the quality of the
output voltage in pulse-width modulation (PWM) systems by minimizing specific harmonic
components. When the harmonics of a signal are reduced, the Total Harmonic Distortion
(THD), as defined in equation 2.6 improves. The improvement of THD has a positive effect
on the effiency of the motor drive, as peak currents are reduced [11], [12]. For grid-tied
inverters a power factor close to one may be desired. A lower THD helps in that case and a
power factor closer to one can even reduce electricity bills [11].

THD =

√∑∞
n=2 V

2
n rms

Vfund rms
(2.6)

The following description explains the process of implementing the first of the two used
SHE techniques, from computing the Fourier series to adjusting the PWM-like signals to
achieve harmonic elimination. The procedure that will be explained is similar to and inspired
from [13].
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2.3.1 SHE accomplished by Fourier computation and the equal area modula-
tor

Fourier Series Computation

The process begins with computing the Fourier series of the phase voltages over a complete
period. The Fourier series expansion of a periodic function f(t) with period T is given by:

f(t) = a0 +

∞∑
n=1

(
an cos

(
2πnt

T

)
+ bn sin

(
2πnt

T

))
(2.7)

Given the symmetry and nature of the phase to neutral voltages of every phase, only
the odd harmonics (i.e., sine components) are significant. Hence, the Fourier coefficients an

(cosine terms) are zero, and the focus is on bn. bn is evaluated according to equation 2.8,
where V (t) represents the phase to neutral voltage of a singular phase.

bn =
2

T

∫ T

0
V (t) sin

(
2πnt

T

)
dt (2.8)

For the square wave phase to neutral voltages, the fourier series is derived in equation 2.9
and 2.10 , where the voltage is at zero volts from x0 to x1 and at the DC bus voltage from x1

to x2 alternatingly in the set of switching angles or timestamps x0....xN .

bn =
2

T

∫ x1

x0

0 sin

(
2πnt

T

)
dt+

2

T

∫ x2

x1

VDC sin

(
2πnt

T

)
dt (2.9)

bn =
2

T

[
− T

2πn
VDC cos

(
2πnt

T

)]x2

x1

=
VDC

πn
(cos(2π

n

T
x1)− cos(2π

n

T
x2)) (2.10)

These bn coefficients represent the harmonic content of the voltage signal, with each bn

corresponding to the amplitude of the n-th harmonic. Because the phase to neutral voltages
exhibit quarter wave symmetry, the even harmonic components are zero and thus equation
2.10 is only relevant for odd harmonic components. The Fourier series can also be computed
by taking into account quarter wave symmetry properties of the modulated waveform. The
start of the derivation is given in equation 2.11

bn =
8

T

∫ T/4

0
V (t) sin

(
2πnt

T

)
dt (2.11)

bn =
8

T

i=I∑
i=0

(

∫ xi+1

xi

0 sin

(
2πnt

T

)
dt+

∫ xi+2

xi+1

VDC sin

(
2πnt

T

)
dt) (2.12)

bn =
2

T
[− T

2πn
VDC cos

(
2πnt

T

)
]x2
x1

=
VDC

πn
(cos(2π

n

T
x1)− cos(2π

n

T
x2)) for n = 1+ 2 ∗ i, i ∈ N

(2.13)
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Various SHE methods

Implementing Selective Harmonic Elimination requires solving a non-linear problem set. A
conventional linear set of equations can be solved by performing several operations and
eliminating variables, which can then be used to substitute and solve the set of equations.
As long as there are as many equations as individual variables, the equations are consistent
and all equations are independent, the system is solvable. An example of an equation set
that could be solved to achieve SHE is given in equation 2.14. The system of equations
includes four harmonics that should be eliminated and it can be seen that this system is
already complex to solve algebraically. A more realistic set of like twenty switching angles
per period, would result in every equation of the set having at least five terms (because of
quarter wave symmetry). Solving such a system of equations and especially when more
harmonics need to be eliminated, is not trivial as this requires long derivations. Thus solving
such a problem set is usually done by using numeric methods, in which a first guess is made
for a solution set and iteratively a solution to the problem is found.



Hc5 =
VDC

πn
(cos(2π

5

T
x1)− cos(2π

5

T
x2) + cos(2π

5

T
x3)− cos(2π

5

T
x4) + ....)

Hc7 =
VDC

πn
(cos(2π

7

T
x1)− cos(2π

7

T
x2) + cos(2π

7

T
x3)− cos(2π

7

T
x4) + ....)

Hc11 =
VDC

πn
(cos(2π

11

T
x1)− cos(2π

11

T
x2) + cos(2π

11

T
x3)− cos(2π

11

T
x4) + ....)

Hc13 =
VDC

πn
(cos(2π

13

T
x1)− cos(2π

13

T
x2) + cos(2π

13

T
x3)− cos(2π

13

T
x4) + ....)

(2.14)

The equal area modulator

The equal area modulator is used in this SHE technique. This modulator can be best ex-
plained by referring to Fig. 2.6, where the principle of the equal are criteria is displayed.
During one off and one on state of the output waveform, the area below the target sinusoidal
signal, must be equal to the area above the target signal, since the resulting square wave
during this time frame, will best match the target signal. To perform the complete modulation,
first a set of σk’s need to be chosen. In this implementation they are divided evenly to start
with and corresponding θk’s are calculated afterwards. To calculate these θk’s, a derivation
is given in equations 2.15 to 2.17.∫ θk

σk−1

VDC − (VDC/2 +A sin(x))dx =

∫ σk

θk

VDC/2 +A sin(x)dx (2.15)

[VDC/2 · x+A cos(x)]θkσk−1
= [VDC/2 · x−A cos(x)]σk

θk
(2.16)

θk =
σk
2

+
σk−1

2
+

A(cos(σk−1)− cos(σk))

VDC
(2.17)
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Figure 2.6: The equal area criteria is pictured, which is used in the equal area modulator.
The area above the modulating waveform (purple) should be equal to that under
the modulating waveform (green). Additionally, the σk’s and θk’s are depicted in
the figure as well.

Harmonic Compensation Using Switching Angles

Once the harmonic coefficients are determined, the next step is to adjust the switching
angles to achieve harmonic elimination. The goal is to modify the switching instants so that
the undesired harmonics are minimized or nullified.

The switching instants (angles) are denoted as θ1, θ2, . . . , θk within one quarter of the
period T . Due to quarter-wave symmetry and half-wave symmetry of the waveform, the
complete set of switching angles for the entire period can be derived from these primary
angles.

For SHE, we solve a system of nonlinear equations, which are based on the Fourier
series coefficients. These equations relate the switching angles to the harmonic content:

K∑
k=1

cos(nθk) =
4Vdc

nπ
for n = 1, 3, 5, . . . , N (2.18)
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Where: - K is the number of switching angles per quarter period. - Vdc is the DC link
voltage. - n are the harmonic orders to be eliminated (odd harmonics).

These equations must be solved simultaneously to find the optimal switching angles θk

that minimize or eliminate the specified harmonics.

Iterative Solution of Nonlinear Equations

The system of nonlinear equations is typically solved using numerical methods such as the
Newton-Raphson method or other iterative techniques. The iterative process starts with
an initial guess for the switching angles and refines these guesses until the equations are
satisfied within a specified tolerance.

θk = θk,previous iteration +

5,7,11...∑
3

hm
m (cos(σk)− cos(σk−1))

VDC
(2.19)

1. Initial Guess: Begin with an initial guess for the switching angles, like is mentioned in
section 2.3.1.

2. Iterative Compensation: Calculate the Fourier harmonic constants of the harmonics
that need to be eliminated. Subtract these harmonics from the target signal, which is
then used in the equal area modulator to compute a new set of switching angles. The
equal area modulator then includes the term from equation 2.19 for every harmonic
that needs to be eliminated and on every iteration.

3. Convergence Check: Continue the iterations until the changes in the switching angles
between successive iterations are below a predefined threshold.

Gating Signal Generation

After determining the optimal switching angles, the gating signals are generated accordingly.
The switching times corresponding to these angles are used to control the power electronic
switches, ensuring that the output voltage waveform meets the desired harmonic profile.

Conclusion

The implementation of the SHE technique involves computing the Fourier series of the phase
voltages, determining the coefficients for specific harmonics, and adjusting the switching
angles to minimize or eliminate those harmonics. This process requires solving a system
of nonlinear equations iteratively to find the optimal switching angles. The resulting signals
ensure improved output voltage quality by selectively eliminating undesired harmonics.

2.3.2 Accomplishing SHE using the Least Mean Square (LMS) method

In [14], the authors present a cutting-edge approach to mitigating harmonics in power elec-
tronic systems. This approach is built around the development of an Adaptive Selective
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Harmonic Elimination (ASHE) algorithm, which is applied in a systematic and non-intrusive
manner to remove specific undesirable harmonic components from control variables such
as current or voltage. The key innovation here is that the harmonic filtering is achieved with-
out compromising the dynamic response of the system, which remains under the control of
conventional controllers, like proportional-integral (PI) regulators.

Harmonic disturbances and the intertwining with the rest of the control loop

In power electronics, harmonic distortions arise due to various sources, such as blanking
time in Pulse Width Modulation (PWM), utility voltage distortion, or non-linearities within the
system. These distortions often manifest as higher-frequency harmonic components, which
regulators like PI controllers cannot easily reject. This is particularly true when the regulators
operate in the discrete domain, where the limitations in bandwidth due to sampling rates
become significant.

Concept of the algorithm

THe method builds on existing harmonic elimination techniques but introduces a novel as-
pect: the ASHE algorithm. This algorithm adapts methods from digital signal processing
(DSP), where single-frequency components are eliminated via adaptive filters, and applies
them to power electronics control. The fundamental aspect of ASHE is its ability to cancel
specific harmonic frequencies without significantly affecting the rest of the system’s behav-
ior, which makes it ideal for a range of applications such as motor drives or uninterruptible
power supplies.

In the ASHE algorithm, the central concept involves creating a reference signal at the
harmonic frequency that needs to be eliminated. This reference signal is processed using
adaptive weights and then subtracted from the original signal to eliminate the unwanted har-
monic. The algorithm adapts over time to match the phase and amplitude of the harmonic
component, ensuring it is effectively canceled. Notably, the ASHE algorithm can operate in
both synchronous and stationary reference frames, preserving the adaptability of conven-
tional synchronous reference frame regulators. [14]

The key ingredient is the LMS algorithm

This ASHE algorithm uses the Least Mean Square (LMS) algorithm in its architecture. An
LMS algorithm minimizes an error signal, which in the case of SHE represents the harmonic
component to be eliminated. The LMS operates by continuously adjusting the weights as-
sociated with the reference signal’s sine and cosine components. These adaptive weights
ensure that the reference signal is dynamically aligned with the harmonic disturbance, which
means that this disturbance can be eliminated.

A key strength of the LMS-based approach is its simplicity and effectiveness. The al-
gorithm updates the weights based on a gradient descent method, allowing it to converge
relatively quickly and with minimal computational effort. In the context of power electronics,



CHAPTER 2. RELEVANT BACKGROUND INFORMATION 19

this means that the ASHE algorithm can be implemented without significantly increasing the
complexity of the control system.

An LMS algorithm can be implemented in various ways. For example double integration
of the error signal can be performed, however this technique incorporates single integration
of the error signal resulting in the used equations, given in equation 2.20. In this equation,
a new weight component is calculated by multiplying the error signal (ϵk) by a gain constant
(2µ) and the sinusoidal signal (xk) and integrating that by adding it to the old weight constant
(wk). The sinusoidal signal represents the sine or cosine component. The combining of
these two weighted sinusoidal signals effectively results in the output being a sinusoid with a
matched phase to the harmonics present in the current waveforms. Obtaining the phase of
the fundamental signal, presents the need for accurate phase detection. This can be done
by implementing a phase locked loop, which itself can be made by similar techniques, like
the LMS algorithm.

wk+1 = wk + 2µϵkxk (2.20)

Integration of ASHE with the control loop

One of the critical challenges in applying selective harmonic elimination techniques is en-
suring that they do not interfere with the primary control loop, which is responsible for the
system’s overall dynamics. This is addressed by assuming that the ASHE algorithm oper-
ates on a slower time scale than the primary control loop. This ensures that the harmonic
elimination process does not introduce instability or degrade the performance of the system’s
main control objectives, such as fast transient response.

The ASHE filter is integrated with the plant’s control system by injecting a signal that can-
cels the targeted harmonic components. Importantly, the plant’s transfer function is taken
into account, which ensures that the injected signal is properly shaped to cancel the harmon-
ics in the plant’s output. This is done by incorporating an inverse model of the plant’s transfer
function into the ASHE algorithm. For instance, if the plant is modeled as an RL (resistance-
inductance) circuit, the ASHE filter adjusts its output to match the harmonic component’s
behavior in such a system, allowing for effective cancellation. [14]

Application in regenerative converters

To demonstrate the effectiveness of the ASHE method, the author of [14] applies the tech-
nique to a regenerative voltage source converter. This type of converter is often used in
systems like motor drives and UPS, where harmonic elimination is crucial for maintaining
power quality and system performance.

In the simulation example, the converter is subject to harmonic distortion due to dead
time in the PWM control signals. Without compensation, this dead time introduces significant
fifth and seventh harmonics into the current waveform. By applying the ASHE algorithm,
these harmonics are successfully eliminated, which makes for a much cleaner current signal
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with minimal distortion.
Interestingly, the ASHE algorithm was able to achieve this without modifying the funda-

mental control loop of the converter. This highlights the advantage of the method: it operates
as an add-on to the existing control system, requiring minimal changes to the primary control
logic. The effectiveness of the ASHE algorithm in eliminating specific harmonics was con-
firmed by observing the current spectrum before and after applying the filter, with significant
reductions in the fifth and seventh harmonic components.

Elimination of additional harmonics

The ASHE algorithm is not limited to the elimination of just a single harmonic. The method-
ology can be extended to eliminate multiple harmonic components simultaneously. This is
achieved by creating multiple ASHE blocks, each tuned to and targeting a specific harmonic
frequency. The use of multiple blocks allows for the simultaneous cancellation of several
harmonics, making the system adaptable to a wide range of unwanted harmonics.

Conclusion and effects

The ASHE algorithm presents itself as a viable option in the field of harmonic elimination for
power electronics. Its ability to selectively cancel harmonic components without interfering
with the primary control loop makes it an attractive option for a wide range of applications.
By leveraging adaptive filtering techniques from digital signal processing, the ASHE algo-
rithm offers a robust and efficient solution to the challenge of harmonic distortion in power
systems.

For practitioners seeking to implement harmonic elimination in systems such as motor
drives, UPS, or regenerative converters, the ASHE algorithm provides a flexible and effective
tool. Its ease of integration, combined with its effectiveness in eliminating multiple harmon-
ics, makes it a valuable addition to conventional control systems. Furthermore, the fact that
it does not require detailed knowledge of the plant’s parameters enhances its practicality in
real-world applications where system characteristics may vary over time.

The next steps in implementing this technique would involve tuning the ASHE algorithm
for specific systems, adjusting the adaptation gain for optimal convergence, and potentially
extending the method to address additional harmonics as required. With proper implemen-
tation, the ASHE algorithm could significantly improve the performance of power electronic
systems by reducing harmonic distortion and enhancing overall power quality.

2.4 Third Harmonic Injection

Third harmonic injection (THI) is a commonly used technique to gain performance in three
phase star connected motor drives with a floating ground point. The technique is compati-
ble with various modulation schemes, like Space Vector Pulse Width Modulation (SVPWM),
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where modulating signals are compared to a carrier wave to generate appropriate gate sig-
nals. Third harmonic injection introduces an additional component to the modulating signal.
The aim is to enhance the utilization of the DC bus voltage, which leads to improved perfor-
mance in a PMSM.

In conventional PWM modulation schemes, the reference signal is purely sinusoidal.
However, this approach underutilizes the available DC bus voltage because the peak of the
sinusoidal wave is less than the peak value that could be reached if the waveform utilized
the full DC bus range. By injecting a third harmonic component, the peak of the waveform
is increased without altering the fundamental frequency, thus maximizing the utilization of
the DC link voltage. The waveforms resulting from using the THI technique can be seen in
Fig. 2.7. To implement third harmonic injection in a motor control system, the modulating

Figure 2.7: The image presents an illustration of the three phase output voltages of an in-
verter with THI, seen as the dotted lines. The waveforms shown with the solid
lines are the phase to neutral voltages of the three phase system. The black
waveform shows the third harmonic that is injected, where this signal is com-
mon to all three phases, which is exactly why THI works. [ [8]]

signals for each phase are altered by adding the calculated third harmonic component. The
modified signals are then fed into the PWM generator, which produces the gate signals for
the inverter. This process enhances the voltage output without requiring a higher DC bus
voltage, which is particularly beneficial in applications where the supply voltage is fixed or
where efficiency is paramount.

By integrating third harmonic injection into a motor control scheme, the voltage margin is
effectively increased, which allows for a higher maximum phase to neutral voltage from the
inverter. This leads to improved torque and speed capabilities of the motor, especially in ap-
plications where maximizing efficiency and performance is critical. Moreover, the injection of
the third harmonic does not require additional hardware changes, making it a cost-effective
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enhancement to conventional PWM techniques.
The introduction of third harmonic injection can be seamlessly integrated into existing

control schemes such as Field-Oriented Control (FOC) or Direct Torque Control (DTC). In
these systems, the third harmonic is added after the Park and Clarke transformations. This
modified signal is then normalized and compared to the carrier wave in the SPWM algorithm,
as depicted in Fig. 2.4.

When viewing Fig. 2.7 the question arises what the amplitude of the third harmonic
should be to gain the best injection performance and bus utilisation. When the amplitude of
the injected wave is smaller than optimal, the bus utilisation is not maximised and conversely,
when the amplitude of the injected wave is larger than optimal the same situation plays out,
as the ’side lobes’ of the waveform increase in amplitude. A derivation for this amplitude is
given in equations B.1 to B.1.

Derivation of the third harmonic to be injected

A start is made by writing down the equation for the modulating signal with the super-
positioned third harmonic.

m(x) = sin(x) + asin(3x), D : {x|x ∈ [0, 2π]} (2.21)

The derivative is computed with respect to x.

m′(x) = cos(x) + 3acos(3x) (2.22)

The minima and maxima are of interest:

m′(x) = 0 (2.23)

To solve the equation
cos(x) + 3a cos(3x) = 0 (2.24)

for x, the derivation is provided in section B.

2.5 Model Predictive Control schemes

In recent years, MPC has shown its potential as a proper approach for managing the com-
plex control challenges presented by various topologies of motor controllers. This section
provides a detailed dive into a couple of MPC methods and provides a comparison of the
common MPC methods as well, addressing their strengths and weaknesses across multiple
metrics. The metrics evaluated in this comparison include computational burden, design
complexity, ability to accommodate multiple control objectives, tuning efforts for weighting
factors (WFs) and controller gains, switching frequency, sensitivity to parameter mismatches,
steady-state performance, and dynamic performance.
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Figure 2.8: Circuit diagram of the system that is used

2.5.1 System model for a PMSM machine

MPC schemes rely on a model of the motor system to make predictions on what voltage
(vector) should be applied to the inverter that controls the motor. A schematic of the system
to model is presented in Fig. 2.8. Analysing this schematic in the stationary α, β frame, and
utilising Kirchhoffs law together with the state equation for inductor current, yields equation
2.25. The resulting model is similar to the one presented in [15].

L
diα
dt

= Uα −Riα − Uα,emf

L
diβ
dt

= Uβ −Riβ − Uβ,emf

(2.25)

Equation 2.25 is integrated to reach the equations related to predicting the α and β currents.
In an ideal case, a MPC only requires one horizon to make an accurate current prediction.
However, since microcontrollers or computers take some time to finish a calculation, a sec-
ond horizon needs to be predicted as well, so that the calculation time is accounted for as
well. The equations for the predicted currents are available in equations 2.26 and 2.27 [15],
[16].

ip,α(k + 1) =

(
1− RTs

L

)
iα(k) +

Ts

L
[Uα(k)− Uα,emf (k)]

ip,β(k + 1) =

(
1− RTs

L

)
iβ(k) +

Ts

L
[Uβ(k)− Uβ,emf (k)]

(2.26)

ip,α(k + 2) =

(
1− RTs

L

)
iα(k + 1) +

Ts

L
[Uα(k + 1)− Uα,emf (k + 1)]

ip,β(k + 2) =

(
1− RTs

L

)
iβ(k + 1) +

Ts

L
[Uβ(k + 1)− Uβ,emf (k + 1)]

(2.27)
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Depending on what type of MPC will be used, a cost function may or may not be needed
to complete the control scheme. In case optimising a control function is necessary for that
specific MPC type, one is stated in equation 2.28, where it is stated that for a minimal cost,
the goal iα must be equal to the predicted iα [15].

C(k) = ∥i∗α(k + 2)− ip,α(k + 2)∥2 + ∥i∗β(k + 2)− ip,β(k + 2)∥2 (2.28)

2.5.2 Conventional FCS-MPC (Finite Control Set MPC)

• Advantages: Simplicity in the design of the controller scheme. Allows for the incorpo-
ration of multiple control targets.

• Disadvantages: Requires a distinct WF for each objective, leading to significant tun-
ing efforts. The variable switching frequency complicates filter design, making it less
suitable for grid-connected applications.

Principles of FCS-MPC

FCS-MPC operates by determining the optimal switching sequence over a predefined con-
trol period (Ts), based on the current system state and a cost function that typically includes
terms for compensation of measured parameters and control variables. The absence of
a modulator in FCS-MPC allows for immediate and precise control actions. However, this
approach results in only one switching vector being applied for the entire control interval,
that means increased voltage and current ripples will result. The high ripples in the out-
put waveform can significantly degrade steady-state performance compared to PWM-based
methods, which utilize varying duty cycles to obtain a smoother output. [16], [17]

Harmonic Spectrum and Filter Design Challenges

One effect of the variable switching frequency associated with FCS-MPC is the wide har-
monic spectrum generated in the output current and voltage. This broad spectrum can
complicate filter design, as filters must attenuate not only a specific target frequency, but
also a range of harmonics that can interfere with the system’s feedback and cause equip-
ment malfunctions. Further negative consequences are that increased ripples lead to higher
levels of harmonic distortion, affecting the overall quality of the power delivered.

Solutions to Address Variable Switching Frequency

The Hybrid FCS-MPC approach is one of the earliest solutions proposed to mitigate the
issues associated with variable switching frequency. This method involves the application
of a low-pass filter as a demodulation stage after the FCS-MPC controller. By filtering out
high-frequency components, the hybrid technique reduces the harmonic distortion at the
output. Subsequently, a sinusoidal PWM or space vector modulation stage can be employed
to smooth the output further. This method is practical and intuitive, but it does result in



CHAPTER 2. RELEVANT BACKGROUND INFORMATION 25

some degradation of dynamic and steady-state performance compared to traditional FCS-
MPC. Various MPC methods that are to be explained will also address the issues of variable
switching frequencies, namely M2PC and OSS-MPC [1].

Control Steps of FCS-MPC

The FCS-MPC operates according to a few specific steps:

1. Constructing a discrete-time prediction model

2. Designing the cost Function

3. Applying the optimal vector through an optimization algorithm

For this MPC method, a discrete time prediction system model like laid out in section
2.5.1 can be used to evaluate the possible switching vectors.

Integrating a cost function g is a key component in FCS-MPC, defining the optimization
problem by encapsulating control objectives and system constraints. The formulation of the
cost function is crucial, especially in systems with multiple objectives, as it directly influences
system performance and stability. An example for a cost function that includes multiple
objectives or targets (i∗ = ip, v∗x = vx, v∗x = vx and a minimum deviation in vz) is given in
equation 2.29. Every λi is a weighing factor that specifies which objectives are the most
important or should weigh heavier in the cost function [17].

g = [i∗(k+1)−ip(k+1)]2+λ1[v
∗
x(k+1)−vx(k+1)]2+λ2[v

∗
y(k+1)−vy(k+1)]2+λ3[∆vz(k+1)]2

(2.29)
The objectives can be either a topology-related one or a application-related one, where

the first are integrated to ensure proper inverter operation, such as dc-link voltage balancing
and capacitor voltage control and the latter type of targets are used to be compatible with
the specific requirements of the load, including reference current tracking, torque control,
and power management [17].

The weighting factors (λ) play a significant role in tuning the control behavior, and their
proper selection is critical for system stability and performance.

2.5.3 Optimal Vector Identification through Optimization Algorithm

After setting up the discrete-time model and cost function, an optimization algorithm identi-
fies the optimal control action. The traditional approach often employs an Exhaustive Search
Algorithm (ESA), but in multilevel inverter applications, the number of states can lead to sig-
nificant computational demands.

For a five level inverter, each phase has eight switching states, resulting in 512 (i.e., 83)
states for the three-phase implementation. This necessitates extensive computations—512×
512—to evaluate the control variables and the cost function for each control sampling period.
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Due to this computational burden, alternative optimization algorithms are explored, in-
cluding sphere decoding algorithms (SDA) and other techniques designed to alleviate the
weight of the optimization problem, particularly for longer prediction horizons. [1]

2.5.4 Long-Horizon MPC

• Advantages: Superior steady-state performance due to a more comprehensive predic-
tion horizon.

• Disadvantages: Exponential increase in computational burden with the increase in
prediction steps

In scenarios requiring long-term predictions of system behavior, Long-Horizon FCS-MPC
is an innovative solution. By manipulating the switch positions over an extended prediction
horizon, the optimization problem can become complex. However, recent studies demon-
strate that extending the prediction horizon can significantly enhance control performance,
particularly in complex MLI applications. [1]

Benefits of Long Prediction Horizons

1. Improved Closed-Loop Performance: Utilizing a longer prediction horizon allows for
more accurate modeling of system dynamics, enabling the controller to make more
accurate decisions about future states.

2. Reduced Total Demand Distortion (TDD): Longer horizons have been shown to de-
crease current Total Demand Distortion (TDD), thereby aligning with grid standards
and enhancing system efficiency.

3. Adaptability to Complex Dynamics: The ability to predict the evolution of the system
state over a longer time interval is particularly beneficial for higher-order systems, such
as those utilizing Modular Multilevel Converters (MMCs) or systems with coupled in-
ductors. [1]

Computational Challenges and Solutions

The benefits of long-horizon FCS-MPC are clear, but the computational complexity associ-
ated with evaluating a broad set of potential switching sequences poses a significant chal-
lenge for real-time implementation. To address this issue, several methods have been pro-
posed:

• Sphere Decoding Algorithm (SDA): This approach reformulates the optimization prob-
lem into an Integer Least-Squares (ILS) problem, reducing computational load while
maintaining an optimal solution. The SDA narrows down the search space by looking
at probable candidates to find the optimal switching sequence.
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• Move Blocking Strategies: By grouping multiple prediction moves, these strategies re-
duce the effective prediction horizon, which balances performance with computational
efficiency.

• Heuristic Approaches: Simplifying the optimization process through heuristics can
speed up the process without drastically compromising control quality. [1]

2.5.5 Lyapunov-based MPC

• Advantages: Uses a discrete form of the derivative of a positive Lyapunov cost function
to ensure system stability and robustness. Shares similarities with conventional FCS-
MPC but with optimized weights.

• Disadvantages: Not suitable for systems with multiple constraints, lacking detailed
stability analysis. [1]

Lyapunov-based MPC is a model predictive control strategy that uses a discrete form of
the Lyapunov function to ensure system stability. The Lyapunov function is a mathematical
tool that helps verify the stability of a system by measuring how system states evolve over
time. In Lyapunov MPC, the control outputs are designed to decrease the value of this
function at each step, ensuring that the system remains stable. [1]

2.5.6 M2PC (Modified Model Predictive Control) and OSS-MPC (Optimal Switch-
ing Strategy MPC)

• Advantages: Enhanced steady-state performance. Fixed switching frequency reduces
the complexity associated with filter design.

• Disadvantages: Increased computational load and complexity compared to traditional
methods.

Another promising method is the Modulated MPC (M2PC), which simulates PWM-like be-
havior by allowing multiple vectors to be applied within a single control cycle. The durations
for which each vector is applied are inversely proportional to their associated cost function
values, optimizing performance in terms of harmonic distortion and dynamic response. This
method has shown efficacy across various MLI topologies, including Neutral Point Clamped
(NPC) converters and Cascaded H-Bridge (CHB) converters, enhancing flexibility in control
applications. [1]

Optimal Switching Sequence MPC (OSS-MPC) The Optimal Switching Sequence MPC
(OSS-MPC) focuses on identifying the best sequence of switching states from a predeter-
mined set. The converter states are categorized into a finite number of sequences, and
the optimal sequence is determined by optimizing a cost function across these sequences.
While OSS-MPC has shown improvements in steady-state performance and harmonic spec-
trum compared to standard FCS-MPC, it takes on a higher computational burden due to the
increased complexity of identifying the optimal sequence. [1]
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2.5.7 Indirect MPC (CCS-MPC)

• Advantages: Retains the multiple objectives handling of MPC while allowing for explicit
system constraints. Has a modest computational complexity.

• Disadvantages: More WFs than FCS-MPC can complicate tuning. Susceptible to
model deviations and parameter uncertainties.

Where regular FCS-MPC takes on the task of the modulation as well, Indirect MPC
specifically does not. The modulation can be performed seperately, which means that a
regular SPWM block could be used to convert the modulating signals to gating signals. [1]

2.5.8 DB-MPC (Discrete-Time Base MPC) or (Dead-Beat MPC)

• Advantages: Achieves high dynamic performance and steady-state characteristics
similar to PI controllers. Maintains a constant switching frequency.

• Disadvantages: Difficulty in effectively addressing multiple objectives without complex-
ity.

This type of MPC is a subgroup of Indirect MPC. A dead-beat controller has the property of
reaching a control target in one sampling period, thus only one sampling period is off target
i.e. a dead beat. [1], [18]

2.5.9 Future Trends in MPC for MLIs [1]

Despite the advancements in MPC methods for inverters, several challenges remain that
are critical for future research. Below are key research directions that could enhance the
performance and usefulness of MPC in practical scenarios:

Computational Efficiency

The computational burden of MPC, especially for OSS-MPC, poses challenges for real-time
applications. Future research should focus on reducing the computational demands without
degrading performance, particularly for high-level MLIs (e.g., Nlevel >= 5).

Formulation of Nonlinear MPC

Many MPC formulations currently incorporate linear systems. Moving towards a framework
that addresses the nonlinear nature of many applications can lead to more robust control
strategies.

Tuning of Weighting Factors (WFs)

The process of tuning WFs is time-consuming. Integrating Artificial Neural Networks (ANNs)
for optimizing WFs could facilitate real-time adjustments, making FCS-MPC more adaptive
without adding computational complexity.
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Reliability and Component Stress Distribution

Investigating the relationship between component performance and control strategies could
lead to improved reliability and longer lifetimes of semiconductor devices and capacitors
used in MLIs.



Chapter 3

Implementation

A starting point was obtained by building upon an existing demo model available in the
PLECS software [19]. In this model, a carrier based FOC controller is realised using PI
controllers. Modifications can be made to this model to replace the PI controllers or the
carrier based modulator.

The final code that was made to simulate the system can be viewed in section G.

3.1 MPC implementation

In indirect MPC, the control system generates modulating signals, which are fed into a mod-
ulation method (such as SPWM or SHE) to determine the switching states of the inverter.
Unlike direct MPC, which directly computes the switching states, indirect MPC allows for
more flexibility, particularly in the modulation strategy.

This implementation focuses on regulating the output voltages and currents of a two level
inverter. By utilizing both the stationary αβ frame and the rotating dq frame, the controller
is compatible with the SHE method and the SPWM modulation. The model presented in
section 2.5.1 is used to calculate and predict values for the αβ currents.

3.1.1 Adjustable Prediction Horizon

One of the properties of this implementation is the ability to modify the prediction horizon.
The prediction horizon in MPC defines how many future time steps the controller considers
in its optimization process.

• Short Horizon: This provides faster computational times and a more reactive control
response but may sacrifice long-term optimization.

• Long Horizon: A longer horizon improves long-term control quality but increases com-
putational demand.

This adjustability provides flexibility, allowing the controller to adapt based on the appli-
cation’s computational capacity and dynamic requirements.

30
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If such an MPC controller is implemented in hardware, calculation time is needed as
a processor takes time to complete its computations. This calculation time presents itself
as a delay in the PLECS simulation. One prediction horizon is thus not enough to get
a correctly operating control loop. In the simulation a delay block is implemented in the
modulator. This block has a delay of one sampling period, which is equal to the inverse of
the PWM frequency specified for the modulator. The MPC controller itself runs at an update
frequency of 100 kHz. So if the PWM frequency is set at 10 kHz, the MPC needs to predict
1 + 1

10/
1

100 = 11 horizons.

3.1.2 Hybrid Control in the αβ and dq Frames

Control in the αβ Frame

The stationary αβ frame is used to compute and control the voltages in a two-phase plane,
simplifying the system’s mathematical representation. This frame avoids the trigonometric
complexities inherent in transformations, making it useful for high-speed changes in refer-
ence signals.

Transformation to the Rotating dq Frame

To complement the αβ frame, voltages are also transformed into the rotating dq reference
frame using the Park transformation matrix, which was previously stated in equation 2.4:(

Vd

Vq

)
=

(
cos(θ) sin(θ)

− sin(θ) cos(θ)

)(
Vα

Vβ

)
(3.1)

where θ is the angular position of the rotating frame. As can be seen from equations
2.26 and 2.27, the variables that are inputs to the equation require to be altered in such a
way that they represent themselves in a future timestamp. In the code this is implemented
by performing an inverse Park transformation of the dq components, together with the motor
angle θ, but a term of 1

100000 ∗ ωsynchronous is added to the motor angle for every new horizon
prediction. This ensures that the Uαβ,emf , Uαβ and Iαβ input variables are correctly evolved
in time.

3.1.3 Integration with Selective Harmonic Elimination (SHE)

To reduce harmonic distortion, the modulating voltages Vd and Vq obtained from the MPC
algorithm are adjusted in conjunction with the SHE technique. SHE is a widely-used method
for eliminating specific harmonics by carefully selecting the switching angles of the inverter.

In this implementation, SHE works with the modulating voltages to ensure that prob-
lematic harmonics (e.g., the 5th, 7th, and 11th harmonics) are minimized while maintaining
the desired output voltage waveform. The combination of MPC and SHE provides a robust
harmonic mitigation strategy that surpasses the performance of either method alone.
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Cost Function Optimization using Gradient Descent

One of the key challenges in MPC is solving the cost function that minimizes the tracking
error between predicted and reference voltages while respecting system constraints. In this
implementation, gradient descent is employed to optimize the modulating voltages.

Cost Function Formulation

The cost function J is designed as stated in equation 3.2

J [k] = ∥i∗α[k + 2]− ip,α[k + 2]∥2 + ∥i∗β[k + 2]− ip,β[k + 2]∥2 (3.2)

3.1.4 Gradient Descent Optimization

Gradient descent is used to iteratively minimize the cost function. The modulating voltages
are updated like in equation 3.3.

Vd[i+ 1] = Vd[i]− η
∂J

∂Vd

Vq[i+ 1] = Vq[i]− η
∂J

∂Vq

(3.3)

Where i is the iteration index, η is the learning rate, and ∂J
∂Vd

and ∂J
∂Vq

are the gradients of
the cost function with respect to Vd and Vq, respectively.

This approach ensures an efficient optimization process, suitable for real-time applica-
tions. Using this strategy of obtaining the correct modulating voltages also makes the system
easily changeable in the code by adjusting a single parameter that controls the amount of
prediction horizons.

For the implemented simulation, the according equation for the gradient descent function
is derived from equation 3.2, and stated in equation 3.4.

When α components are predicted:

Vd = Vd + η ∗ 2 ∗ (i∗α[I]− ip,α[I]) ∗ Ts/Ld ∗ cos(θe + (I + 1) ∗ ωs ∗ Ts)

Vq = Vq + η ∗ 2 ∗ (i∗α[I]− ip,α[I]) ∗ Ts/Lq ∗ sin(θe + (I + 1) ∗ ωs ∗ Ts)

When β components are predicted:

Vd = Vd + η ∗ 2 ∗ (i∗β[I]− ip,β[I]) ∗ Ts/Ld ∗ sin(θe + (I + 1) ∗ ωs ∗ Ts)

Vq = Vq + η ∗ 2 ∗ (i∗β[I]− ip,β[I]) ∗ Ts/Lq ∗ cos(θe + (I + 1) ∗ ωs ∗ Ts)

(3.4)

Where Vd and Vq are updated for every prediction of either an α or β component. Ts rep-
resents the sampling time or updating time of the MPC controller, θe is the electrical motor
angle and I denotes the entry in the array, where the last information of the last or highest
horizon is stored. The distinction between the sets of equations for α and β components
is important, as it stems from the fact that the inverse Park transformation is involved. For
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implementing a correctly functioning code, it should also be noted that the Vd and Vq compo-
nents can not instantly be updated after either a new α or β components is calculated, due
to the fact that the cost function will not have the same input Vd and Vq variables for both α

and β components.

3.1.5 Comparison with PI Control

A property of this implementation is the ability to directly compare the MPC-generated Vd and
Vq voltages with those obtained from a traditional PI controller. The MPC boasts superior
tracking performance, particularly during rapid reference changes, as it considers future
behavior over the prediction horizon. PI controllers tend to have slower transient responses,
because they work with information from the present and past.

3.2 Implementation of the Selective Harmonic Elimination (SHE)
Technique

Sample inputs:
Vd, Vq, Vdc, PLL

Select the correct
switching state from
the list and update

the modulator stage
state

Calculate new list of
switching angles

Calculate the
harmonics present in
this list of switching

angles

Third harmonic on target?
(if this function is on)

Compensate for the
harmonics present,

using the equal area
modulator

First Harmonic on target?
(if this function is on)

Yes

Harmonics
eliminated?

Wait for next
update triggerYes

SHE update
triggered

No
No

Figure 3.1: Flow chart of the SHE algorithm

As mentioned previously, SHE is a useful technique for improving the harmonic contents
of output waveforms in power electronics. This technique is chosen for several compelling
reasons that make it more applicable to other methods.
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3.2.1 Precision in Harmonic Elimination

The primary motivation for using the SHE technique is its precision in eliminating specific
harmonic components from the output voltage waveform. By accurately calculating and
compensating for the harmonic content through iterative processes involving Fourier series
analysis, SHE ensures that undesired harmonics are effectively minimized. This precision
leads to a cleaner output. Reducing lower order harmonics using SHE can increase the
higher order harmonic components, however for applications like power grids, this is ad-
vantageous. Because the lower order harmonics are reduced, a smaller filter size can be
utilised, leading to a possibly more efficient output and lower filter cost that meets stringent
power quality standards.

3.2.2 Efficiency of Iterative Processes

The iterative nature of SHE, incorporating Fourier calculations and compensation using the
equal area criteria, allows for on-demand adjustment of the switching angles. A flow chart
of this iterative process is presented in Fig. 3.1. This flexibility contrasts sharply with tradi-
tional SHE techniques that rely on precomputed lookup tables. In those methods, the fixed
nature of the lookup tables limits adaptability and responsiveness to changes in operating
conditions. SHE’s iterative approach, however, can dynamically adapt to varying conditions,
ensuring optimal performance without the need for extensive precomputed data.

The equal area modulator only calculates θk’s, which is the switching angle at which the
modulator goes to the on state. However, an additional mode was implemented, where the
σk’s can also be compensated. The derivation for this leads to just flipping the input variables
in equation 2.17, where σk becomes σk−1 and vice versa. After the iterative SHE process is
ran, it may occur that the amplitude of the fundamental changed. To fix this, the fundamental
is also taken into account in the iterative process, like stated in Fig. 3.1. The goal is then not
to eliminate the first harmonic, but to eliminate the deviation from what it originally was when
the equal area modulator was calculating a fresh set of switching angles. This process can
also be repeated for the third harmonic, to obtain THI. This functionality is also present in
the code, which can ofcourse be seen in section D.

3.2.3 Universality and Flexibility

Another significant advantage of this SHE technique is its universality. Unlike some other
nonlinear SHE methods that require solving complex nonlinear equations specific to a given
application, this technique provides a universal framework. This means it can be quickly
altered and applied to different applications without extensive reconfiguration. The ability to
generalize SHE across various applications enhances its practicality and efficiency, making
it a versatile tool in the field of power electronics.
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3.2.4 Implementation of the Fourier series computation

To compute the calculations for this part, edge detection on the phase to neutral voltage
is done for all of the three phases. All these switching timestamps, along with the voltage
level of the peak or zero state, are saved for calculating the harmonic constants of a period
later on. When the electrical motor angle reaches 2π, the Fourier constants are calculated
by iterating over the saved timestamps with their according voltage level and inserting them
into equation 2.10. Obtaining accurate period detection is crucial for the SHE algorithm
to operate correctly and care must be taken to avoid fluke period detections. This Fourier
calculation is then used to check and evaluate the effectiveness of the SHE algorithm, but
this calculation algorithm can also be used for the first step of the SHE compensation algo-
rithm with slight modifications. For the SHE calculations it is imperative that the switching
timestamps of the next period are calculated and compensated for to eliminate the targeted
harmonic components. This is done by first computing a set of switching angles that result in
a correct first harmonic level (the fundamental), by using the equal area modulator. After the
switching angles are found, the Fourier calculation is performed for the coming period and
the resulting non-zero harmonics can be eliminated using the equal area modulator again.
Again, the whole process can be reviewed in Fig. 3.1.

3.2.5 Implementation hurdles

All SHE methods rely on accurate modulating, where the states are switched at precisely
calculated angles or phases. Because of the inherent nature of SHE to have a relatively
low amount of switching angles per electrical period, the problem can arise where the mo-
tor speed starts to oscillate correlated to the calculated switching angles. This oscillating
behaviour of the motor speed has its effect on the electrical phase as well, because it is
determined from the motor speed by integrating it. The modulating wave forms of the three
phases are also influenced by this effect, which thus works against the proper functioning of
the SHE algorithm.

3.2.6 Oscillation improvement idea using sign alternation

The previously described problem was thought to be caused by on and off times being too
long in comparison to the inertia of the machine. This is analogues to the PWM frequency
being too low for the machine. The equal area modulator starts a period in a fixed state (the
low state). It calculates when the phase voltage should jump to the high state. If this order
were reversed, the hypothesis can be made that the effects that the normal period will have
on the machine, would be cancelled out or reversed by the alternate period, where the start
sign of the equal area modulator is different. Implementing this supposed fix for the motor
oscillations requires the formula of the equal are modulator to be altered. Equations 2.17
and 2.19 contain the default equal area modulator and running through the derivation for
them again, with the addition of the first sign being altered, results in equations 3.5 and 3.6.
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θk =
σk
2

+
σk−1

2
+

A(cos(σk)− cos(σk−1))

VDC
(3.5)

θk = θk,previous iteration +

5,7,11...∑
3

hm
m (cos(σk−1)− cos(σk))

VDC
(3.6)

It can be seen that these equations are similar to equations 2.17 and 2.19, where the
only difference is that σk is substituted for σk−1 and vice versa. However, the results of this
change show that this does not improve the situation and that the system becomes even
more unstable. This unstable behaviour was thought to arise because of the fact that at the
instance when the sign is flipped, the modulator output state stays fixed for a moment, before
continuing to the other state, which completes the sign alternation. This sign alternation can
thus amplify the instability in that instance, as the motor speed change continues during the
sign alternation, which could make the system even more unstable, removing the possible
good effects of this technique.

3.2.7 Designing a Phase Locked Loop for accurate phase detection

Controller
H=Kp+Ki /s

Plant
H=K0/s

Phase in

Phase Out

Phase error
+

-

Figure 3.2: The control loop of the PLL

Controller
H=Kp+Ki /s

Plant
H=K0/s

Phase in

Phase Out

Phase error
+

-
LPF

H=(1/(1+sRC))Filter Order

Figure 3.3: The control loop of the PLL with the added low pass filter

Another solution could be to implement a phase locked loop. Thus, a phase locked
loop is to be designed, which can filter out the unwanted oscillations to determine a useful
phase signal for the SHE algorithms to work with. The proposed PLL is pictured in Fig. 3.2.
A proportional-integral (PI) controller is used to achieve correct tracking of the reference
signal. The PI controller can be tuned to a certain cutoff frequency, determining a suitable
value for this is crucial. The plant is simply an integrator with a gain (K0) of one, because a
stepped input to the plant results in an output of one after a second. Additionally, the input
of the plant and the output of the controller represents the electrical rotor speed.
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In order to further improve the performance of the PLL, an additional digital low-pass fil-
ter was added, to further decouple the PLL from disturbances and oscillations. The modified
block diagram of the control loop can be seen in Fig. 3.3. This low-pass filter is a 6th order
cascaded filter. Making the filter one of the 6th order ensures quick roll-off behaviour, while
having relatively little phase delay at the cut off frequency, as it was noticed that going to
higher order filters, results in the cut-off frequency not significantly reducing. In Fig. 3.4 a
bode plot is presented for the different filter orders. In the implementation, it is an option
to have the filter cut-off frequency and PI cut-off frequency be calculated by the code in
real time and adjust the filter and PI parameters. Depending on the motor speed and the
PWM frequency or number of switching angles per period, the filter and PI parameters are
updated. Since the effective PWM frequency introduces the most noise in the motor speed,
the PLL is usually operated at that frequency with a target gain of for example -40 dB. When
SHE is operating, a specified number of switching angles per period are present. The ef-
fective PWM frequency for the real time updating of the parameters is then calculated to
be: Nswitching angles per period/2 ∗ ωsynchronous. Additionally, another feature is also present in
the code, where the response of the PI can be adjusted so that a certain phase margin is
maintained. The PI and plant of the PLL are analysed open loop, which results in a phase
margin for a certain cut-off frequency of the PI. This phase margin is calculated to be 66◦.
The code then uses simple interpolation between the cut-off frequency and a decade less
than that, to obtain a simple representation of the phase delay. A value in the code can be
set that subtracts a little from the phase margin to use for the filter stage. In the case of Fig.
3.5, this value was set to -6◦. From Fig. 3.5 it can be seen that around 30◦ of phase margin
is left in open loop state, which means that the interpolation was not entirely accurate, but
it should be accurate enough to make the PLL operate nicely. If needed, the value which
controls the allowed phase margin can be set higher to obtain more phase margin for the
whole system. To calculate the values for Kp and Ki, equation 3.7 was the starting point
and equation 3.11 gives the resulting PI values.

|C ∗ P |ω=ωbandwidth
= 1 (3.7)

|Kp ∗ s+Ki

s
∗ K0

s
|ω=ωbandwidth

= 1 (3.8)

|Kp ∗ jωbandwidth +Ki| =
ω2
bandwidth

K0
(3.9)

K2
p =

−ω2
bandwidth +

√
(ω4

bandwidth + ω4
bandwidth)

0.5 ∗K2
0

(3.10)

Kp =
ωbandwidth ∗

√
(2(
√
(2)− 2)

K0

Ki =
ω2
bandwidth ∗ (

√
2− 1)

K0

(3.11)

The closed loop transfer function, a long with the open loop transfer function can then be
modeled in MATLAB, and Fig. 3.5 depicts the results. The low pass filter is characterised
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as follows from equation 3.12. The associated formulas are presented from the information
available in [20].

yi = αxi + (1− α)yi−1 (3.12)

In equation 3.12 a new term α arises, which is defined in equation 3.13.

α :=
Ts

RC + Ts
(3.13)

From the expression for the cut-off frequency of the filter (fc) in equation 3.14 the equation
for RC can be determined.

fc =
1

2πRC
so RC =

1

2πfc
(3.14)

The presented equations are what is needed to implement the filter in a code based solution.
The written code for the PLL can also be read through in section C.

3.2.8 Controller of FOC

(In normal foc) The controller also benefits from filtering, as with high speed operation, the
current waveforms start to look more ’jagged’ as the triangular nature of the motor inductor
currents become more apparent. This can be seen in the default model which was provided
in the PLECS example library. The Id and Iq currents are very noisy, because of this reason,
thus providing filtering like achieved previously in section 3.2.7, would reduce the noise.

3.3 Dissipating energy in the system

In PLECS a controlled torque source is used, which has a negative torque value, thus actu-
ally becoming a torque ’sink’. The benefit of using this component is that the motor speed
will stay relatively constant, as the torque that the motor produces is equal to the torque
that the sink produces in the opposite direction. Then a net effective torque close to zero is
applied to the motor inertia, which means that the speed does not increase or decrease, but
stays constant.

3.4 Implementation of the LMS-based SHE

This SHE method was implemented in PLECS as well, according to the block diagrams
depicted in Fig. 3.7, 3.8 and 3.9. This can be seen in Fig. 3.6. The previously discussed
PLL can be recycled for use with this C-Script and is present on the second input of the code
block. Additionally, the stator currents are needed for this scheme and they are present on
the third input. The tracking of the harmonic components is done on the three phase current
signals. The LMS algorithm then does its task and the output of the code block is present
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Figure 3.6: The schematic of the implementation of the LMS-based SHE method in PLECS

on the LMS SHE signal port in PLECS. These signals can then be superpositioned onto the
three phase modulating waveforms which go into the SPWM block of the model.

To predict the back emf for every horizon, the code excerpt 1 used in the MPC imple-
mentation, presents the solution. The rest of the code used for the MPC controller can be
found in E.

Algorithm 1 This code excerpt shows the generation of input variables to the model
predictor for every horizon. p.Uemf[i][j] is the two-dimensional array where the Uemf for
α and β are stored. The integer i refers to α and β when it is equal to zero and one
respectively. Integer j is the variable that specifies which horizon is calculated. The
InputSignal function retrieves the amplitude of the back emf, which is calculated outside the
C-block by multiplying the synchronous speed by the permanent magnet flux linkage.

if(i==0) {

p.Uemf[i][j] = InputSignal(pIn_Uemf, 0)*-sin(M.angle+j*M.speed*Ts);

p.U[i][j] = invParkAlpha(p.Vd, p.Vq, M.angle+j*M.speed*Ts);

p.iGoalFurthestHorizon[i] = invParkAlpha(p.idGoal, p.iqGoal, M.angle+

↪→ PREDICTIONS*M.speed*Ts);

} else {

p.Uemf[i][j] = InputSignal(pIn_Uemf, 0)*cos(M.angle+j*M.speed*Ts);

p.U[i][j] = invParkBeta(p.Vd, p.Vq, M.angle+j*M.speed*Ts);

p.iGoalFurthestHorizon[i] = invParkBeta(p.idGoal, p.iqGoal, M.angle+

↪→ PREDICTIONS*M.speed*Ts);

}
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Figure 4.1: Phase currents startup with the PI carrier-based implementation

The modeled motor and connected components in PLECS have the specifications stated
in table 4.1. The motor parameters are inline with [18] and [21]. Additionally, [22] presents
a high-power motor with significantly less stator inductance. It is interesting to notice that
certain motor parameters can vary widely, while the characteristics of the motor power are
the same. To provide an overview, in table 4.2 the frequencies at which parts of the system
operate are given. The cut-off frequencies of the PLL where obtained by setting the filter
target to be 40 dB attenuation at 2 kHz in the code, which can be retrieved from section C.

43
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Table 4.1: Hardware properties of the simulated system
Motor inductance (Ld, Lq) 200µH

Stator resistance (Rs) 20 mΩ

Motor poles 8 (4 pairs)
DC link voltage 400 V
Permanent Magnet Flux Linkage 0.15 Wb

Table 4.2: Frequencies at which system parts operate
PI-based FOC controller bandwidth 20 Hz
PWM frequency 10 kHz
MPC sampling frequency 100 kHz
LMS-based SHE sampling frequency 50 kHz
SHE update frequency 10 kHz
Fourier components calculation update frequency Continuous (when new period is detected)
PLL update frequency 100 kHz
PLL cut-off frequency of the PI 97 Hz
PLL cut-off frequency of the filter stage 928 Hz
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4.1 PI-based controller with no SHE

To provide a baseline, the system is simulated in a bare-bones way, where the controller
is a PI-based one with SPWM modulation set to a bandwidth of 20 Hz. The target current
quadrature current is set to 200 A and zero direct current is required. The waveforms of the
stator phase currents and the Id and Iq are viewable in Fig. 4.1 and Fig. 4.2 respectively.
The PWM frequency was set to 10 kHz and the mechanical speed of the motor at 100 rad/s.
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Figure 4.3: Phase currents with the carrier-based indirect MPC connected
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Figure 4.4: D and Q currents with the carrier-based indirect MPC connected
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Figure 4.5: Calculated Vα and Vβ by the MPC

4.2 Indirect MPC

Connecting the discussed indirect MPC controller to the motor simulation results in the id

and iq waveforms present in Fig. 4.4. Additionally, the stator phase currents can be seen
in Fig. 4.3. The currents are not tracking their references however, this means that some
disturbance observer or a separate compensator with integrator behavior needs to be im-
plemented to combat this behavior. However, compared to the original PI controller, the
currents rise to their targets in an instant of time. What can also be noticed is that there is
slightly less current ripple in the D and Q reference frame with the MPC implementation. The
MPC calculates the Vα and Vβ correctly, as can be seen in Fig. 4.5. There is ripple present,
which be attributed to the fact that the carrier based PWM does not update instantly, so the
MPC is correcting for a change that did not happen yet.

The MPC controller itself already has superior performance in terms of harmonic elimi-
nation, but of course the MPC controller does not directly incorporate harmonic elimination.
THD was also improved compared to the PI-based FOC controller. The results are also
added to table 4.3 and the harmonic components are normalized to the 200 A current tar-
get, as the other entries in the table were operating at that setpoint and the MPC’s current
measured showed slightly lowered values.

It is important to set an appropriate learning rate for the MPC controller. In this simulation
a learning rate (η) of ten provided quick convergence of the required modulating voltages.
Additionally, the cost was optimized to a value of 0.005 or below to provide accurate results.
As mentioned before, eleven horizons are predicted and the amount of allowed iterations
was set to a maximum of 100. Setting this maximum number of iterations can be important,
as otherwise the code can never solve and meet the cost criteria, which would result in an
infinite loop. The amount of iterations can also be used in a system where the learning rate
(η) is set by some controller in the program itself, which tries to match a specified amount of
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Figure 4.6: Shows the correct calculation of the switching angles. In this case SHE is turned
off.

iterations to reach convergence.

4.3 SHE correct operation check

In Fig. 4.6 the correct operation of the equal area modulator can be observed. The graph
shows the modulated signal for a full period of a single phase. Only the equal area modulator
is active in Fig. 4.6, which is equal to the first step in the process of Fig. 3.1. To speed up
the process, the list with ”old” switching angles can be used directly, when the compensation
is on for the first harmonic. Fig. 4.7 shows the modulated signals for the case when SHE
is turned on. The waveform looks similar to Fig. 4.6, which is ofcourse logical, as the equal
area modulator should only correct for the harmonics, which does not change the shape of
the modulated waveform significantly.
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Figure 4.7: Shows the correct calculation of the switching angles. In this case SHE is turned
on.
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Figure 4.8: Shows that the LMS algorithm can handle changes of the Q current setpoint
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4.4 PI-based FOC controller in combination with SHE
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Figure 4.9: Stator phase currents with the SHE algorithm operating from 0.5 s onwards. 300
switching angles were used in this instance to compare with the 10 kHz PWM
frequency

The simulated output stator currents and dq currents pictured in Fig. 4.9 and 4.10 reflect
that the system is unstable. The PLL does its job in terms of filtering away fast transients in
the motor control (Fig. 4.11), which can reflect onto the phase of the three phase currents.
However, the addition of the PLL was not enough to achieve a steady current signal. Ad-
ditionally, low-pass filtering of the required Vd and Vq signals was tried as a solution to the
unstable currents by adding a moving average filter. This did not yield an improved result,
however, which means that this SHE method is less suitable for use in this specific appli-
cation. The resulting Fourier spectra show that the harmonics have not reduced. To get
a sense of what could be the issue at hand, the modulated waveform was passed onto an
RL-circuit in PLECS, with the same Lstator and Rstator values as in the main simulation. It
was noticed (Fig. A.1 in section A) that putting these modulated voltages onto the RL-circuit
also introduces peaky behavior in the amplitude or maxima of the current waveform. The
reason could be that in the carrier based modulator, the gating signals (Fig. A.2 in sec-
tion A) are ”synchronized”, meaning that they overlap most of the time. The output of the
equal area modulator, which is visible in Fig. A.3 in section A, does not have this inherent
synchronization, meaning that this unwanted behavior can result.

4.5 Indirect MPC combined with SHE

The system is operational with the MPC connected to the SHE algorithm, however the quality
of control is not there, similar to the situation where the PI controllers were used. Thus
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Figure 4.10: D, Q currents with the SHE algorithm operating from 0.4 s onwards

the inclusion of MPC did not improve the previously mentioned behavior. One thing that is
important to notice, is that the MPC approach of SHE can operate the motor better when lots
of current ripple is present or the synchronous frequency approaches the PWM frequency.

4.6 LMS-based SHE operation validity check (ASHE)

The simulated output of the individual LMS algorithm compensation components can be
seen in Fig. 4.12. It was noticed that the waveforms increase in amplitude gradually over
time, owing to the principle of operation behind the LMS algorithm, which confirms that the
system is operating appropriately.

4.7 PI-based FOC controller in combination with LMS-based SHE

Table 4.3: The results of the LMS-based SHE compared to the PI-based FOC without SHE

PI baseline
LMS SHE
after one second

LMS SHE
after two seconds

MPC without SHE

THD 0.0583 0.047 0.040 0.029
5th harmonic amplitude [V] 8.7 6.2 4.6 2.4
7th harmonic amplitude [V] 6.2 5.6 4.4 1.8
11th harmonic amplitude [V] 2.0 1.3 2.3 1.3

The fifth and seventh harmonics were targeted to be reduced and looking at the Fourier
spectrum graph yields a positive result. From Fig. 4.13 it can be seen that the fifth and
seventh harmonics have reduced after the LMS algorithm became operational.
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Figure 4.11: Graphs that display the correct operation of the PLL

After some heuristic testing of the LMS algorithm and adjusting the µ gain, a value of
0.0006 was best suited. The final results of the LMS-based SHE compared to no SHE
method active is presented in table 4.3, where the simulation was run at a mechanical speed
of 100 rad/s. From this table, it is clear that the LMS algorithm is able to reduce the harmonic
content of the three-phase stator currents. The LMS algorithm works by detecting the har-
monics in the current, this differs from the other SHE method, where the harmonics in the
modulator voltage waveform are reduced. This difference means that the LMS algorithm
can compensate for harmonics that resulted from the effects of dead time. This is an im-
portant distinction to make and depending on in what system SHE is needed, the ability of
LMS-based SHE to compensate for harmonics originating due to the dead time, can be ben-
eficial. The LMS gain is dependent on the simulation parameters and needs to be adjusted
for different rotor speeds and motor parameters. Also a sampling frequency of 50 kHz was
used for the LMS algorithm. Changing the sampling frequency also requires changing of the
µ.

When THD is reduced in a system, the efficiency can possibly improve. In this case with
the LMS-based SHE, the efficiency difference between using the LMS method and regular
FOC came out to be 0.02%. Which means that there is a negligible difference in efficiency.

The dynamic performance of this scheme was also tested briefly. From Fig. 4.8 it can be
seen that the changes in Q current setpoints are reached. The overshoots happen, because
of the response of the PI controller, which also happen without the LMS algorithm attached.
The sequence used here started with the Q current target set at 200 A then it was set to
220 A, 180 A and finally to 200 A.
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Figure 4.12: Injection signals referring to the LMS-based SHE method

4.8 Indirect MPC combined with the LMS-based SHE

Combining MPC and LMS did not provide further harmonic reduction. As can be seen
from Fig. 4.14, the weights of the LMS algorithm keep increasing. This means that the
LMS algorithm is not actually affecting the system, as otherwise the weights would stop
increasing and reach a certain fixed amount. The MPC operates at a similar frequency to
the LMS-based SHE, which means that it can compensate the changes the LMS-based SHE
wants to make away. Incorporating a filter on the MPC inputs or outputs may be a viable
solution to stop the effects these two controllers have on each other.
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Figure 4.13: The graph of the harmonic amplitudes over time. The LMS algorithm is turned
on when one second of simulation time has elapsed. Moving Average12:1
corresponds to the fifth harmonic of the stator currents, Moving Average12:2
to the seventh, Moving Average12:3 to the eleventh and so on.

Injected Signals On the three phase modulating signals
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Figure 4.14: Injection signals referring to the LMS-based SHE method, however, the LMS
algorithm is overcome by the MPC, as the injection does not stop increasing.



Chapter 5

Conclusions and Recommendations

In this report various techniques for controlling motor drives, were discussed. Main con-
tenders used in the field are mainly FOC and DTC, as discussed in section 2. However,
both methods have some drawbacks. For the incorporated FOC method in the simulation,
the drawback is the bandwidth of the PI controllers. Accurate setpoint matching can be
achieved, however it takes some time to get there. This is where the indirect MPC approach
demonstrated its ability to handle the control objectives and system constraints, providing
significantly quicker convergence to the references compared to the PI-based approach.
Nonetheless, the indirect MPC method struggled to reach the exact current target, as the
MPC controller does not have a model incorporated of the plant of the SPWM block. The
SPWM modulator that is attached to the MPC controller provides a PWM signal, which can
not match the MPC commands instantly.

As for modulation techniques, mainly SPWM modulators are used in the implementa-
tion of FOC. Implementing THI or other zero-sequence injections results in the most optimal
usage of the available bus, when an inverter is used like in this report. Another modulator
choice is the Equal Area Modulator explored in this report. However, this approach did not
perform as expected, potentially due to inaccuracies in modulation timing or harmonic con-
tent prediction. Fortunately, the Adaptive Selective Harmonic Elimination (ASHE) method,
built upon the Least Mean Squares (LMS) algorithm, delivered satisfactory results. The indi-
rect MPC method was able to reduce the harmonics to the lowest level. The ASHE method
effectively minimized harmonics and still provided consistent control over the inverter output,
demonstrating its robustness and adaptability in dynamic operating conditions.

The required background information from section 2 was successfully used to build a
simulation where unwanted harmonics are eliminated. The indirect MPC scheme was es-
pecially chosen for the potential to work with SHE techniques and as a direct replacement
of the PI controllers. With the output of the MPC being α and β voltages, it is clear that this
MPC can pair nicely with the SHE methods.

Overall, the combination of indirect MPC with ASHE shows potential for achieving precise
control in multilevel inverters, but further enhancements, such as compensators, filters, plant
modeling or advanced observers, may be required for optimal performance.

For further development of harmonic reduction and THD minimization, combining the

54



CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS 55

MPC and LMS algorithm would be an interesting proposition. The MPC algorithm proved to
be very dynamic in terms of reaching the setpoints in a timely fashion, but it also showed
superior performance to the LMS-based SHE method incorporated with the PI-based FOC
controller. Thus, a combination of the LMS-based SHE method and MPC would be very
interesting. Another way of trying to achieve this could be to change the ASHE method a bit.
Instead of superpositioning the correction signals of the LMS algorithm on the modulating
waveform in the ABC frame, the LMS algorithm could superposition its output onto the id

and iq references, by either incorporating Clarke and Park transformations in the existing
implementation or by letting the LMS algorithm work in the αβ or dq frame. The fast nature
of the MPC can then be utilized to compensate for the still present harmonics already.

Additionally, the SHE method requires further improvement. As said before, the differ-
ences in ”synchronization” of the gating signals may have an effect on the stability of the
system. Improving the algorithm of the equal area modulator to generate similar waveforms
to the SPWM modulator could yield improvements. An alternate way to look at the issue
that presented itself is on the reference side. If the reference takes into account the ”plant”
or behavior of the SHE, by first adjusting the present/calculated switching angle list to the
reference amplitude, then calculating the current response of that via the model of the motor,
the output of the PI would possibly become less noisy, which would help the functioning of
the scheme.

Incorporating the plant of the LMS method could also be beneficial in the PI-based
approach, as higher bandwidths could be explored. The PI does not compensate for the
changes that the LMS algorithm is trying to make in that case.

For the case of the MPC, which did not exactly reach the current references, recommen-
dations are also thought of. The limitation of not reaching the references precisely suggests
that the inclusion of an observer or an integrating compensator may be necessary to im-
prove accuracy and address model uncertainties. Papers such as [17] could prove helpful
in solving this challenge. Another possible option would be to incorporate a fast-updating
FCS-MPC method, to achieve a reasonable performance to PWM. FCS-MPC incorporates
functionality similar to a modulator, which means that it can match the references more accu-
rately, because there is no SPWM block in-between. If fast enough updates are not available,
other MPC techniques have been researched in section 2.5 (M2PC or OSS-MPC for exam-
ple) that do incorporate a modulator-like system. Attaching the LMS control voltages to the
references of these MPC schemes could prove beneficial.
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Appendix A

Additional Figures
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Figure A.1: The modulator output of the SHE algorithm was passed to an RL circuit. The
resulting phase currents are displayed in this figure.
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Figure A.2: Modulator output with no SHE active
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Figure A.3: Modulator output with SHE active



Appendix B

Third Harmonic Injection Derivation

To recap what was written in section 2.4:
A start is made by writing down the equation for the modulating signal with the super-

positioned third harmonic.

m(x) = sin(x) + asin(3x), D : {x|x ∈ [0, 2π]} (B.1)

The derivative is computed with respect to x.

m′(x) = cos(x) + 3acos(3x) (B.2)

The minima and maxima are of interest:

m′(x) = 0 (B.3)

To solve the equation
cos(x) + 3a cos(3x) = 0 (B.4)

for x, the derivation is provided here:
Step 1: Express cos(3x) in terms of cos(x)
Using the triple-angle formula:

cos(3x) = 4 cos3(x)− 3 cos(x) (B.5)

The triple-angle formula can itself be derived with the following trigonometric identity:

cos(A+B) = cos(A) cos(B)− sin(A) sin(B)

Step 2: Substitute equation B.5 in the original equation

cos(x) + 3a(4 cos3(x)− 3 cos(x)) = 0 (B.6)

cos(x) + 12a cos3(x)− 9a cos(x) = 0 (B.7)

cos(x)(1− 9a+ 12a cos2(x)) = 0 (B.8)
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Then cos(x) = 0, x = π
2 + kπ, k ∈ Z or 1− 9a+ 12a cos2(x) = 0

The derived values for x in the first solution do not include a in the equation, so the
second solution needs to be found by solving for cos2(x):

12a cos2(x) = 9a− 1 (B.9)

cos2(x) =
9a− 1

12a
(B.10)

Taking the square root:

cos(x) = ±
√

9a− 1

12a
(B.11)

Therefore, the solutions are:

x = ±cos−1

(√
9a− 1

12a

)
+ 2kπ, k ∈ Z (B.12)

Substituting the solution from equation B.12 into the starting equation (B.1):

m(cos−1

(√
9a− 1

12a

)
) = sin(cos−1

(√
9a− 1

12a

)
) + asin(3cos−1

(√
9a− 1

12a

)
) (B.13)

The last term of equation B.13 can be taken as sin(3 cos−1(x)), this term can then be
simplified:

1. Let θ = cos−1(x), hence cos(θ) = x: Since cos(θ) = x, we can use trigonometric
identities to express sin(3θ) in terms of cos(θ).

2. Use the triple angle formula for sine:

sin(3θ) = 3 sin(θ)− 4 sin3(θ)

To find sin(θ), recall that sin2(θ) + cos2(θ) = 1. Therefore,

sin(θ) =
√

1− cos2(θ) =
√
1− x2

3. Substitute sin(θ) and cos(θ) into the triple angle formula:

sin(3 cos−1(x)) = 3 sin(cos−1(x))− 4 sin3(cos−1(x))

sin(cos−1(x)) =
√

1− x2 (B.14)

Therefore,
sin(3 cos−1(x)) = 3

√
1− x2 − 4(

√
1− x2)3

4. Simplify the expression:

sin(3 cos−1(x)) = 3
√

1− x2 − 4(1− x2)3/2

= 3
√

1− x2 − 4(1− x2)
√

1− x2

= 3
√
1− x2 − 4(1− x2)3/2
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Thus:
sin(3 cos−1(x)) = 3

√
1− x2 − 4(1− x2)3/2 (B.15)

Accordingly, equation B.14 can be used to simplify the first term of equation B.13 and
equation B.15 is used to simplify the second term of equation B.13:

m(cos−1

(√
9a− 1

12a

)
) =

√
1− 9a− 1

12a
+ a

(
3 ·
√
1− 9a− 1

12a
− 4

(
1− 9a− 1

12a

) 3
2

)
(B.16)

Equation B.16 can then be differentiated with respect to a, with the goal to obtain a value
of a connected to an extreme point in the output of equation B.16, which corresponds to the
ideal amplitude of the third harmonic to be injected. The derivation can be performed by
using the differentiation rules (f ± g)′ = f ′ ± g′ and (fg)′ = f ′ · g + f · g′.

d

da

(√
1− 9a− 1

12a
+ a

(
3 ·
√

1− 9a− 1

12a
− 4

(
1− 9a− 1

12a

) 3
2

))
=

− 1

4 · 3
1
2x

3
2 (3x+ 1)

1
2

+
36x2 + 6x+ 1

12 · 3
1
2x

3
2 (3x+ 1)

1
2

=

(6x− 1) (3x+ 1)
1
2

6 · 3
1
2x

3
2

(B.17)

Setting the final solution of equation B.17 equal to zero yields the optimal amplitude for
THI:

(6x− 1) (3x+ 1)0.5

6 · 30.5 · x
3
2

= 0 (B.18)

x =
1

6
(B.19)

By using the found amplitude from equation B.19 in equation B.21, the gained amount
of bus utilisation can be calculated. The value used for x can be calculated using equation
B.12.

x = cos−1

(√
9
6 − 1
12
6

)
=

π

3
(B.20)

m(
π

3
) = sin(

π

3
) +

1

6
sin(3 · π

3
) =

√
3

2
(B.21)

Thus the gained bus utilisation is: 1/
√
3
2 = 2√

3
= 1.1547 or 115.47% bus utilisation.



Appendix C

Code of the PLL

C.0.1 Definitions and Functions of the code

#define pIn_time 0

#define pIn_angle 1

#define pIn_VdqGoal 2

#define pIn_mSpeed 3

#define pIn_SWALPHAS 4

#define pIn_MPP 5

#define pOut_phaseABC 0

#define pOut_ABCfilt 1

#define pOut_phaseOut 2

#define pOut_cutFreq 3

#define N_PHASES 4

#define SAMPLE_FREQ 100000

#define FILT 1

#define FILT_MIN_CUT_FREQ 1

#define FILT_ORDER 6 //PI adds another order

#define FILT_FREQ_GOAL 2500

#define FILT_ATT_GOAL -40 //dB

#define FILT_DYN_TARGET 0

#define DYN_MODE 2 //1 = freq goal @influence due to SWALPHAS, 2 = freq

↪→ goal @influence due to motorspeed itself

#define INIT_SPEED 100

#define PI_DYN_TARGET 1

#define PI_FREQ_GOAL 40
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#define PI_ATT_GOAL -0

#define PI_MIN_CUT_FREQ 1

#define PI_FILT_PHASE_TOT -6 //this much phase margin is added from the (

↪→ cascaded) filter at fcut from PI. -114 -> -180 ; -66

#define PLANT_K0 1

//#define out_phaseA OutputSignal(pOut_phaseABC, 0)

//#define out_phaseB OutputSignal(pOut_phaseABC, 1)

//#define out_phaseC OutputSignal(pOut_phaseABC, 2)

#include <math.h>

#include <stdlib.h>

#include <stdio.h>

float time = 0, correction = 0, phase[N_PHASES] = {0}, phaseModded[N_PHASES]

↪→ = {0}, Vd = 0, Vq = 0;

int swAlphas, MPP;

//double filtCutFreq = 0, decades = 0;

typedef struct motor {

float motAngle, motAngleLast, speed;

} motor;

motor m = {0};

typedef struct lpf {

double cutFreq, decades;

float a, yLast[FILT_ORDER][N_PHASES], y[FILT_ORDER][N_PHASES], out[N_PHASES

↪→ ], in[N_PHASES];

} lpf;

lpf filt = {0};

typedef struct PI {

float Kp, Ki, I[N_PHASES], P[N_PHASES], e[N_PHASES], out[N_PHASES],

↪→ tlast[N_PHASES];

double cutFreq, decades;

//int FcutDivisor;

} PI;

PI C = {0};
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typedef struct plant {

int K0;

float out[N_PHASES], outModded[N_PHASES], tlast[N_PHASES];

} plant;

plant P = {0};

double signD(double num) {

if(num < 0) {

return -1;

} else {

return 1;

}

}

int signI(int num) {

if(num < 0) {

return -1;

} else {

return 1;

}

}

float signF(float num) {

if(num < 0) {

return -1;

} else {

return 1;

}

}

/**

* Find maximum between two numbers.

*/

float max(float num1, float num2)

{

return (num1 > num2 ) ? num1 : num2;

}

/**

* Find minimum between two numbers.
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*/

float min(float num1, float num2)

{

return (num1 > num2 ) ? num2 : num1;

}

float constrain(float num, float lo, float hi) {

return max(min(num, hi), lo);

}

float avg(float num1, float num2) {

return (num1+num2)/2;

}

C.0.2 Start of the code

P.K0 = PLANT_K0;

if(!FILT_DYN_TARGET) {

filt.decades = (float)FILT_ATT_GOAL/((float)FILT*(float)FILT_ORDER

↪→ *-20);

filt.cutFreq = (float)FILT_FREQ_GOAL/pow(10, filt.decades);

filt.a = 2*M_PI*(1/(float)SAMPLE_FREQ)*filt.cutFreq/(2*M_PI*(1/(float

↪→ )SAMPLE_FREQ)*filt.cutFreq+1);

}

if(!PI_DYN_TARGET) {

C.decades = (float)PI_ATT_GOAL/((float)-20);

C.cutFreq = (float)PI_FREQ_GOAL/pow(10, C.decades);

} else {

double pm = -45-(float)PI_FILT_PHASE_TOT/FILT_ORDER;

C.decades = pm/-45;

C.cutFreq = filt.cutFreq/pow(10, C.decades);

}

C.Kp = C.cutFreq*2*M_PI*sqrt(2*sqrt(2)-2)/P.K0;

C.Ki = pow((C.cutFreq*2*M_PI), 2)*(sqrt(2)-1)/P.K0;
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MPP = InputSignal(pIn_MPP, 0);

for(int i = 0; i < N_PHASES; i++) {

C.I[i] = INIT_SPEED;

}

C.0.3 Updating part of the code

time = InputSignal(pIn_time, 0);

m.motAngleLast = m.motAngle;

m.motAngle = InputSignal(pIn_angle, 0);

Vd = InputSignal(pIn_VdqGoal, 0);

Vq = InputSignal(pIn_VdqGoal, 1);

m.speed = InputSignal(pIn_mSpeed, 0);

swAlphas = InputSignal(pIn_SWALPHAS, 0);

OutputSignal(pOut_cutFreq, 0) = filt.cutFreq;

OutputSignal(pOut_cutFreq, 1) = C.cutFreq;

if(FILT_DYN_TARGET) {

filt.decades = (float)FILT_ATT_GOAL/((float)FILT*(float)FILT_ORDER

↪→ *-20);

//filtCutFreq = FILTPI_FREQ_GOAL/pow(10, decades);

if(DYN_MODE == 1) {

filt.cutFreq = max(m.speed/(2*M_PI)*MPP*swAlphas/2*3/pow(10,

↪→ filt.decades),FILT_MIN_CUT_FREQ);

} else if(DYN_MODE == 2) {

filt.cutFreq = max(m.speed/(2*M_PI)*MPP*3/pow(10, filt.decades

↪→ ),FILT_MIN_CUT_FREQ);

}

filt.a = 2*M_PI*(1/(float)SAMPLE_FREQ)*filt.cutFreq/(2*M_PI*(1/(float

↪→ )SAMPLE_FREQ)*filt.cutFreq+1);

if(PI_DYN_TARGET) {

double pm = -45-(float)PI_FILT_PHASE_TOT/FILT_ORDER;

C.decades = pm/-45;

C.cutFreq = filt.cutFreq/pow(10, C.decades);

C.Kp = C.cutFreq*2*M_PI*sqrt(2*sqrt(2)-2)/P.K0;
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C.Ki = pow((C.cutFreq*2*M_PI), 2)*(sqrt(2)-1)/P.K0;

}

}

/*if(Vd > 0 && Vq >= 0) correction = atanf(Vq/Vd);

else if(Vd < 0) correction = atanf(Vq/Vd)+M_PI;

else if(Vd > 0 && Vq < 0) correction = atanf(Vq/Vd+2*M_PI);

else if(Vd == 0) correction = signF(Vq)*0.5*M_PI;*/

correction = atan2f(Vq, Vd);

for(int i = 0; i < N_PHASES; i++) {

//Phase measured from motor angle

if(i != 3) {

phase[i] = m.motAngle+correction-(float)i/3*2*M_PI+0.5*M_PI;

} else {

phase[i] = m.motAngle;

}

if(signF(m.motAngle) == -1 && signF(m.motAngleLast) == 1 && m.speed >

↪→ 0) P.out[i] = phase[i]-C.e[i];

else if(signF(m.motAngle) == 1 && signF(m.motAngleLast) == -1 && m.

↪→ speed < 0) P.out[i] = phase[i]+C.e[i];

phaseModded[i] = fmodf(phase[i], 2*M_PI);

if(phaseModded[i] < 0) phaseModded[i] += 2*M_PI;

OutputSignal(pOut_phaseABC, i) = phaseModded[i];

if(FILT) {

filt.in[i] = phase[i]-P.out[i]; //error calculation into filter

//if(filt.in[i] > M_PI) filt.in[i] -= 2*M_PI;

//else if(filt.in[i] < -M_PI) filt.in[i] += 2*M_PI;

for(int j = 0; j < FILT_ORDER; j++) {

if(j==0) filt.y[j][i] = (filt.in[i])*filt.a + (1-filt.a)*filt.

↪→ yLast[j][i];

else filt.y[j][i] = filt.y[j-1][i]*filt.a + (1-filt.a)*filt.

↪→ yLast[j][i];
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filt.yLast[j][i] = filt.y[j][i];

}

filt.out[i] = filt.y[FILT_ORDER-1][i];

}

//Controller

if(FILT) {

C.e[i] = filt.out[i]; //error into PI

} else {

/*typedef struct PI {

float Kp, Ki, I[3], P[3], e[3], out[3];

double cutFreq;

} PI;*/

C.e[i] = phase[i]-P.out[i]; //error into PI

//if(filt.in[i] > M_PI) filt.in[i] -= 2*M_PI;

//else if(filt.in[i] < -M_PI) filt.in[i] += 2*M_PI;

}

//float temp = phase[i]-P.out[i]; //error into PI

//if(temp > M_PI) temp -= 2*M_PI;

//else if(temp < -M_PI) temp += 2*M_PI;

OutputSignal(pOut_ABCfilt, i) = C.e[i];

C.P[i] = C.Kp*C.e[i];

C.I[i] = C.Ki*C.e[i]*(time-C.tlast[i])+C.I[i];

C.tlast[i] = time;

C.out[i] = C.P[i] + C.I[i];

//Plant

P.out[i] = C.out[i]*(time-P.tlast[i])+P.out[i];

P.tlast[i] = time;

P.outModded[i] = fmodf(P.out[i], 2*M_PI);

if(P.outModded[i] < 0) P.outModded[i] += 2*M_PI;

OutputSignal(pOut_phaseOut, i) = P.outModded[i];

//int nPhase = phase[i]/(2*M_PI), nPout = P.out[i]/(2*M_PI), nFin;

/*if(signI(nPhase) == 1 && signI(nPout) == 1) {

nFin = min(nPhase, nPout);

phase[i] -= nFin*2*M_PI;
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P.out[i] -= nFin*2*M_PI;

}else if(signI(nPhase) == -1 && signI(nPout) == -1) {

nFin = max(nPhase, nPout);

phase[i] -= nFin*2*M_PI;

P.out[i] -= nFin*2*M_PI;

}*/

}

//printf("@: %f, a: %f, cutFreq: %f, Va phase unfiltered: %f, C.cutFreq: %f,

↪→ C.e: %f, C.P: %f, C.I: %f, C.out: %f, P.out: %f\n", time, filt.a,

↪→ filt.cutFreq, phase[0], C.cutFreq, C.e[0], C.P[0], C.I[0], C.out[0], P

↪→ .out[0]);



Appendix D

Code of the SHE algorithm

D.0.1 Definitions and Functions of the code

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include <stdbool.h>

#define N_PHASES 3

//#define M_PI acos(-1.0)

#define PWMTOL 0.75

//#define SWALPHAS 40 //NEEDS to be multiple of 4 per whole period

#define CALCMODE 1; //1 is full periods, 2 is half periods

int HCs[] = {1, 3, 5, 7, 9, 11, 13, 35, 37, 41, 43, 73, 77, 79, 83};

//int HCsSHE[] = {5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47,

↪→ 49, 53, 55, 59, 61, 65, 67, 71, 73, 77, 79, 83};

int HCsSHE[] = {5, 7};

//int HCsSHE[] = {5, 7, 11, 13, 17};

#define SHE 1 //set SHE on or off

#define SHE_ITERATIONS 100 //max iterations

#define SHE_ELIMINATED 0.1 // at this value, harmonics are considered

↪→ eliminated

#define SHE_FUNDAMENTAL 1

#define SHE_3H_INJECTION 0

#define THETAS_SWITCHING_WITH_SIGMAS 1

#define VF_SAMPLES_PP 10 //number of samples per period
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#define VF_OVER_X_PERIODS 1 //array is filled in x phase periods

#define VF_DELAY_PERIODS 0

#define VF_MIN_SAMPLE_T 0.02

#define VF_LIVE 1

#define VF_SAMPLES_TOT VF_SAMPLES_PP*VF_OVER_X_PERIODS

#define FIRSTMOVE_ALTERING 0

//#define FIRSTMOVE_MODE 0 //0 = every period first move alters; 1 = every

↪→ first half is flipped mode; 2 = every second half is flipped mode; 3 =

↪→ 1 and 2 alternated every period; 4 = random every half period

#define randnum(min, max) \

((rand() % (int)(((max) + 1) - (min))) + (min))

#define pIn_Vpn 0

#define pIn_VdqGoal 7

#define pIn_VnGoal 8

#define pIn_swAlphas 9

#define pIn_FPIPLL 10

#define pOut_HCsVa 0

#define pOut_Mod 3

#define pOut_PeriodUpdate 4

#define pOut_Phase 6

#define pOut_Speed 7

#define pOut_SWALPHAS 8

#define inVdc InputSignal(1,0)

#define inThreshold InputSignal(2,0)

#define inTime InputSignal(3,0)

#define inRotorSpeed InputSignal(4,0)

#define inRotorAngle InputSignal(4,1)

#define inPolePairs InputSignal(5,0)

#define inFpwm InputSignal(6,0)

#define outTime OutputSignal(5,0)

double Vdc = 0, VdcHalf = 0, lastVPN1State = 0, lastVPN2State = 0,

↪→ lastVPN3State = 0, lastVPN1 = 0, lastVPN2 = 0, lastVPN3 = 0;

int SHE_arrSize = sizeof(HCsSHE)/sizeof(HCsSHE[0])+SHE_FUNDAMENTAL +

↪→ SHE_3H_INJECTION;
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float dTheta, VdGoalLast, VqGoalLast, VdGoal, VqGoal; //phase between two

↪→ sigma k’s

int threshold = 0, calcMode = CALCMODE;

int sampledPhases = 0, sheUpdatedPhases = 0;

int swAlphas = 0; // Harmonics to calculate

typedef struct electricMotor {

double rotorSpeed, rotorAngle;

int polePairs;

} electricMotor;

float time = 0;

float slowPrinter = 0, maxVoltageTimer = 0, sheUpdateTime = 0;

// Structure to hold switching timestamps

typedef struct switchingTimestamp {

float timestamp;

double voltage;

//float

struct switchingTimestamp *next;

struct switchingTimestamp *prev;

} switchingTimestamp;

struct switchingTimestamp *switchingTimestampsVPN[N_PHASES] = {NULL};

struct switchingTimestamp *comingStampsFullV[N_PHASES] = {NULL};

struct switchingTimestamp *comingStampsQuartV[N_PHASES] = {NULL};

struct switchingTimestamp *comingStampsQuartBeginV[N_PHASES] = {NULL};

typedef struct phaseStruct {

double voltage, prevVoltage;

float beginTimePeriod, deltaT, periodAverage, lastPeriodAverage,

↪→ lastRiseTimestamp,

lastFallTimestamp, lastHalfPeriodTimestamp, lastHalfPeriodTime,

↪→ maxVoltage, goalVoltage,

prevGoalVoltage, lastPeriodTimestamp, phase, lastPhase, rotorSpeed,

↪→ thetaMid, nextVSampleTimestamp;
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int state, listSize, halfBridgeState, dThetasPassed, dThetasPassedLast,

↪→ samplesIndex;

bool modReset, modState, stateReset, stateReset2, comingNegativePeriod,

↪→ triggerRefresh, firstMoveState;

float comingHarmonics[sizeof(HCsSHE)/sizeof(HCsSHE[0])+SHE_FUNDAMENTAL +

↪→ SHE_3H_INJECTION], VSamples[VF_SAMPLES_TOT];

switchingTimestamp *alphaTraverser;

} phaseStruct;

typedef struct pulsewidthmodulation {

double F, tolerance;

float T, startTime, onTime, endTime;

} pulsewidthmodulation;

struct electricMotor motor = {0};

//struct phaseStruct phaseEMPTY = {0};

struct phaseStruct phase[N_PHASES] = {0};// = {NULL, NULL, NULL};

struct pulsewidthmodulation pwm = {0};

//float fmod(float num, float divisor) {

// return num-((int)(num/divisor))*divisor;

//}

double signD(double num) {

if(num < 0) {

return -1;

} else {

return 1;

}

}

int signI(int num) {

if(num < 0) {

return -1;

} else {

return 1;

}

}
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float signF(float num) {

if(num < 0) {

return -1;

} else {

return 1;

}

}

/**

* Find maximum between two numbers.

*/

float max(float num1, float num2)

{

return (num1 > num2 ) ? num1 : num2;

}

/**

* Find minimum between two numbers.

*/

float min(float num1, float num2)

{

return (num1 > num2 ) ? num2 : num1;

}

float constrain(float num, float lo, float hi) {

return max(min(num, hi), lo);

}

float avg(float num1, float num2) {

return (num1+num2)/2;

}

float averageMotorSpeeds(float samples[], int* index, float rotorSpeed,

↪→ float* outputTimestamp) {

samples[VF_SAMPLES_TOT-1] = rotorSpeed;

if(index != NULL) *index = 0;

int divisor = VF_SAMPLES_TOT;

float temp = 0;
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for(int i = 0; i < VF_SAMPLES_TOT; i++) {

if(fabs(samples[i]) > 0) {

temp += samples[i];

} else {

divisor--;

}

//printf("Sample %d: %f, ", i, samples[i]);

}

float outputSpeed = temp/divisor;

if(outputSpeed != 0 && outputTimestamp != NULL) {

*outputTimestamp = time+2*M_PI/rotorSpeed/VF_SAMPLES_PP;

}

return outputSpeed;

}

float averageMotorSpeedsLive(float samples[], int index) {

index--;

if(index<0) index = VF_SAMPLES_TOT-1;

int divisor = VF_SAMPLES_TOT-VF_DELAY_PERIODS*VF_SAMPLES_PP;

float temp = 0;

int iEnd = index - 1 - VF_DELAY_PERIODS*VF_SAMPLES_PP;

if(iEnd < 0) iEnd += VF_SAMPLES_TOT;

int i = index;

bool going = true;

//int loopCounter = 0;

while(going) {

//going = false;

if(i >= VF_SAMPLES_TOT) i = 0;

if(fabs(samples[i]) > 0) {

temp += samples[i];

} else {

divisor--;

}

if(i == iEnd) going = false;

//printf("LoopCounter: %d, i: %d, iEnd: %d, divisor: %d, temp:

↪→ %f\n", loopCounter, i, iEnd, divisor, temp);

i++;

//if(loopCounter > 500) going = false;

//loopCounter++;
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}

return temp/divisor;

}

// Function to check if harmonic elimination is reached

bool completedSHE(float comingHarmonics[], float maxVoltage) {

int enabledFeatures = 0;

if(SHE_FUNDAMENTAL) {

if(fabs(comingHarmonics[enabledFeatures]-maxVoltage) >

↪→ SHE_ELIMINATED) return false;

enabledFeatures++;

}

if(SHE_3H_INJECTION) {

if(fabs(comingHarmonics[enabledFeatures]-maxVoltage/6) >

↪→ SHE_ELIMINATED) return false;

enabledFeatures++;

}

for(int j = enabledFeatures; j < SHE_arrSize; j++) {

if(fabs(comingHarmonics[j]) > SHE_ELIMINATED) return false;

}

return true;

}

// Function to add a new switching timestamp to the list

void addswitchingTimestamp(switchingTimestamp **head, float timestamp,

↪→ double voltage) {

switchingTimestamp *newTimestamp = (switchingTimestamp *)malloc(sizeof(

↪→ switchingTimestamp));

if (newTimestamp == NULL) {

fprintf(stderr, "Memory␣allocation␣failed\n");

exit(EXIT_FAILURE);

}

newTimestamp->timestamp = timestamp;

newTimestamp->voltage = voltage;

newTimestamp->next = *head;

newTimestamp->prev = NULL;

if (*head != NULL) {

(*head)->prev = newTimestamp;
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}

*head = newTimestamp;

}

// Function to calculate Fourier expansion for specified harmonics

float calculateHarmonics(double Vdc, switchingTimestamp *head, float *

↪→ harmonics, float beginTime, int cMode, float in2ndHalf) {

if(head == NULL) return -1;

float lastTimestamp = 0; //start at ending = always a half period is

↪→ completed

float endTime = head->timestamp;

float deltaT = endTime - beginTime;

//deltaT = deltaT*1.1;

//printf("rotorSpeed: %f, endTime: %f\n", rotorSpeed, endTime);

for (int m = 0; m < sizeof(HCs)/sizeof(HCs[0]); m++) {

float sum = 0.0;

switchingTimestamp *current = head;

lastTimestamp = current->timestamp;

//lastTimestamp = timestamp;

//printf("\n%.4f ", (lastTimestamp-*beginTime)/deltaT*M_PI);

if(current->next == NULL) return -1;

current = current->next;

float timestamp = current->timestamp;

while (current != NULL) {

timestamp = current->timestamp;

//if(m==0) printf("Timestamp: %f, voltage: %f, cMode: %d, sum: %f

↪→ \n", timestamp, current->voltage, calcMode, sum); //print

↪→ the full variable size list only one time

// sum += (current->voltage) / ((double)m * M_PI) * (cos((double)

↪→ m * timestamp * rotorSpeed * polePairs) - cos((double)m *

↪→ M_PI)); //rotorspeed = omega of rotor. * polepairs ->

↪→ electrical rotational speed

//} else {

if(cMode == 1) {
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sum += (current->voltage) / ((float)HCs[m] * M_PI) * (cos((

↪→ float)HCs[m]* ((timestamp-beginTime)/(deltaT)*2*M_PI))

↪→ - cos((float)HCs[m]* ((lastTimestamp-beginTime)/(deltaT

↪→ )*2*M_PI))); //rotorspeed = omega of rotor. * polepairs

↪→ -> electrical rotational speed

} else if(cMode == 2) {

sum += 2*(current->voltage) / ((float)HCs[m] * M_PI) * (cos((

↪→ float)HCs[m]* (in2ndHalf*M_PI+(timestamp-beginTime)/(

↪→ deltaT*2)*2*M_PI)) - cos((float)HCs[m]* (in2ndHalf*M_PI

↪→ +(lastTimestamp-beginTime)/(deltaT*2)*2*M_PI))); //

↪→ rotorspeed = omega of rotor. * polepairs -> electrical

↪→ rotational speed

}

//sum += (current->voltage) / ((float)m * M_PI)

↪→ * (cos((float)m* (timestamp-beginTime)*

↪→ rotorSpeed*motor.polePairs) - cos((float)

↪→ m* (lastTimestamp-beginTime)*rotorSpeed*

↪→ motor.polePairs)); //rotorspeed = omega

↪→ of rotor. * polepairs -> electrical

↪→ rotational speed

//}

//printf("%.4f ", (timestamp-*beginTime)/deltaT

↪→ *M_PI);

lastTimestamp = timestamp;

current = current->next;

}

harmonics[m] = sum;

}

return deltaT;

}

// Function to calculate Fourier expansion for specified harmonics

float calculateComingHarmonics(switchingTimestamp *head, float *harmonics) {

if(head == NULL) return -1;
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float lastTheta = 0; //start at ending = always a half period is

↪→ completed

//deltaT = deltaT*1.1;

//printf("beginTime: %f, endTime: %f, deltaT: %f\n", beginTime, endTime,

↪→ deltaT);

//printf("inComingHarmonics: %f, ", head->voltage);

//return 0;

for (int m = 0; m < SHE_arrSize; m++) {

float sum = 0.0;

switchingTimestamp *current = head;

lastTheta = current->timestamp;

//printf("inComingHarmonics: %f, ", lastTheta);

//lastTheta = timestamp;

//printf("\n%.4f ", (lastTheta-*beginTime)/deltaT*M_PI);

current = current->next;

if(current == NULL) return -1;

float theta = current->timestamp;

//printf("inComingHarmonics2: %f, ", theta);

while (current != NULL) {

theta = current->timestamp;

/*

if(m==1) { printf("phase: %f, voltage: %f\n", theta, current->

↪→ voltage); //print the full variable size list only one time

}

//*/

// sum += (current->voltage) / ((double)m * M_PI) * (cos((double)

↪→ m * timestamp * rotorSpeed * polePairs) - cos((double)m *

↪→ M_PI)); //rotorspeed = omega of rotor. * polepairs ->

↪→ electrical rotational speed

//} else {

int enabledFeatures = 0;

if(SHE_FUNDAMENTAL) {

if(m == enabledFeatures) sum += 4*(

↪→ current->voltage) / ((float)1 *

↪→ M_PI) * (cos((float)1 * theta) -

↪→ cos((float)1 * lastTheta)); //

↪→ rotorspeed = omega of rotor. *

↪→ polepairs -> electrical rotational



APPENDIX D. CODE OF THE SHE ALGORITHM 81

↪→ speed

enabledFeatures++;

}

if(SHE_3H_INJECTION) {

if(m == enabledFeatures) sum += 4*(

↪→ current->voltage) / ((float)3 *

↪→ M_PI) * (cos((float)3 * theta) -

↪→ cos((float)3 * lastTheta)); //

↪→ rotorspeed = omega of rotor. *

↪→ polepairs -> electrical rotational

↪→ speed

enabledFeatures++;

}

if(m >= enabledFeatures) {

sum += 4*(current->voltage) / ((float)HCsSHE[m-enabledFeatures

↪→ ] * M_PI) * (cos((float)HCsSHE[m-enabledFeatures] *

↪→ theta) - cos((float)HCsSHE[m-enabledFeatures] *

↪→ lastTheta)); //rotorspeed = omega of rotor. * polepairs

↪→ -> electrical rotational speed

}

//}

//printf("%.4f ", (timestamp-*beginTime)/deltaT

↪→ *M_PI);

lastTheta = theta;

current = current->next;

}

harmonics[m] = sum;

}

return 1;

}

float calculateThetaK(float thetaLo, float thetaHi, float maxVoltage, float

↪→ Vdc) {

return thetaHi/2+thetaLo/2+(maxVoltage*(cos(thetaHi)-cos(thetaLo)))/

↪→ Vdc;

//return output;

}

float addHarmonicCompensation(float thetaK, float thetaLo, float thetaHi,

↪→ float h, float hc, float Vdc) {

thetaK += (hc*(cos(h*thetaLo)-cos(h*thetaHi)))/(h*Vdc);
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return thetaK;

}

void copyAngleSet(switchingTimestamp** fromHead, switchingTimestamp* beginP,

↪→ switchingTimestamp** toHead, switchingTimestamp** traverser) {

if(*fromHead == NULL) return;

switchingTimestamp* current = beginP;

addswitchingTimestamp(toHead, current->timestamp, current->voltage);

*traverser = *toHead;

while(current->prev != NULL) {

addswitchingTimestamp(toHead, current->timestamp, current->

↪→ voltage);

current = current->prev;

}

}

void quadrupleAngleSet(switchingTimestamp** head) {

if(*head == NULL) return;

switchingTimestamp* current = *head;

while(current->next != NULL) {

current = current->next;

addswitchingTimestamp(head, M_PI - current->timestamp, -

↪→ current->voltage);

}

current = *head;

while(current->next != NULL) {

current = current->next;

if(current->voltage == current->prev->voltage) {

switchingTimestamp* current2 = *head;

current2->voltage = -current->prev->voltage;

}

addswitchingTimestamp(head, 2*M_PI - current->timestamp,

↪→ current->voltage);

//current = current->next;

}

}

// Function to calculate pwm sequence for coming period
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int calculateComingPeriod(switchingTimestamp** head, switchingTimestamp**

↪→ beginP, float maxVoltage, float Vdc, float comingHarmonics[], bool

↪→ alternateMode, bool FirstMoveState) {

//FirstMoveState = 1;

if(!FIRSTMOVE_ALTERING) FirstMoveState = 0;

if(maxVoltage == 0) return -1;

if(*head == NULL) {

for(int i=0; i < (int)swAlphas/8; i++) {

float thetaLo = i*dTheta;//+(float)sign*M_PI;

float thetaHi = (i+1)*dTheta;//+(float)sign*M_PI;

if(FirstMoveState) {

//float temp = thetaLo;

//thetaLo = thetaHi;

//thetaHi = temp;

float thetaMid = calculateThetaK(thetaHi, thetaLo,

↪→ maxVoltage, Vdc);

addswitchingTimestamp(head, thetaLo, Vdc/2);

if(i==0) {*beginP = *head;

//printf("Traverser tstamp: %f\n", (*traverser)->

↪→ timestamp);

}

addswitchingTimestamp(head, thetaMid, -Vdc/2);

} else {

float thetaMid = calculateThetaK(thetaLo, thetaHi,

↪→ maxVoltage, Vdc);

addswitchingTimestamp(head, thetaLo, -Vdc/2);

if(i==0) {*beginP = *head;

//printf("Traverser tstamp: %f\n", (*traverser)->

↪→ timestamp);

}

addswitchingTimestamp(head, thetaMid, Vdc/2);

}

}

if(FirstMoveState) {

addswitchingTimestamp(head, ((float)0.5)*M_PI, -Vdc/2);

} else {

addswitchingTimestamp(head, ((float)0.5)*M_PI, Vdc/2);

}
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//swAlphas[SWALPHAS] = (float)2*M_PI;

} else {

/*for(int i = 0; i <= SWALPHAS-2; i=i+2) {

float thetaLo = *swAlphas[i];

float thetaHi = *swAlphas[i+2];

} */

switchingTimestamp* current = *head;

if(current->next == NULL || current->next->next == NULL) {

return -1;

}

//alternateMode = 0;

//printf("here ");

if(alternateMode) current = current->next;

//printf("here2 ");

while(1) {

if(current->next == NULL || current->next->next == NULL

↪→ ) {

break;

}

float thetaHi = current->timestamp;

float thetaLo = current->next->next->timestamp;

if(FirstMoveState) {

float temp = thetaHi;

thetaHi = thetaLo;

thetaLo = temp;

}

if(alternateMode) {

float temp = thetaHi;

thetaHi = thetaLo;

thetaLo = temp;

}

current = current->next;

float thetaMid = current->timestamp;

int enabledFeatures = 0;

//float prevThetaMid = thetaMid;
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if(SHE_FUNDAMENTAL) {

thetaMid = addHarmonicCompensation(thetaMid,

↪→ thetaLo, thetaHi, 1, comingHarmonics[

↪→ enabledFeatures]-maxVoltage, Vdc);

enabledFeatures++;

}

if(SHE_3H_INJECTION) {

thetaMid = addHarmonicCompensation(thetaMid,

↪→ thetaLo, thetaHi, 3, comingHarmonics[

↪→ enabledFeatures]-maxVoltage/6, Vdc);

enabledFeatures++;

}

for(int j = enabledFeatures; j < SHE_arrSize; j++) {

thetaMid = addHarmonicCompensation(thetaMid,

↪→ thetaLo, thetaHi, HCsSHE[j-

↪→ enabledFeatures], comingHarmonics[j], Vdc

↪→ );

}

//float change = 0.05;

/*if(prevThetaMid != 0) {

if ((signF(thetaMid-prevThetaMid)/prevThetaMid)

↪→ > change) thetaMid = prevThetaMid+signF(

↪→ thetaMid-prevThetaMid)*prevThetaMid*

↪→ change;

}*/

//--------------- Dont overlap switching angles

↪→ ----------------

if(current->prev != NULL && thetaMid > current->prev->

↪→ timestamp) {

thetaMid = current->prev->timestamp;

}

if(current->next != NULL && thetaMid < current->next->

↪→ timestamp) {

thetaMid = current->next->timestamp;

}

//--------------- end Comment ----------------

current->timestamp = thetaMid;
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current = current->next;

}

}

/*switchingTimestamp* current = *head;

current = current->next;

while(current != NULL) {

addswitchingTimestamp(head, 2*M_PI-current->timestamp, current

↪→ ->voltage, NULL);

current = current->next;

}*/

return 1;

}

void emptyList(switchingTimestamp** head_ref)

{

switchingTimestamp* current = *head_ref;

switchingTimestamp* next;

while (current != NULL) {

next = current->next;

free(current);

current = next;

}

if(*head_ref != NULL) *head_ref = NULL;

}

D.0.2 Start of the code

printf("dTheta:␣%f\n", dTheta);

swAlphas = InputSignal(pIn_swAlphas, 0);

dTheta = ((2*M_PI)/((float)swAlphas/2));

motor.polePairs = inPolePairs;

motor.rotorSpeed = inRotorSpeed;

motor.rotorAngle = inRotorAngle;

pwm.F = inFpwm;

pwm.tolerance = PWMTOL;

if(pwm.F > 0) {

pwm.T = 1/pwm.F;

}
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for(int s = 0; s < N_PHASES; s++) {

//phase[s] = NULL;

printf("Init␣Loop␣%d\n", s);

phase[s].stateReset = true;

phase[s].stateReset2 = true;

phase[s].phase = 2*M_PI;

phase[s].alphaTraverser = NULL;

for(int i = 0; i < sizeof(HCs)/sizeof(HCs[0]); i++) {

OutputSignal(pOut_HCsVa+s, i) = 0;

printf("HC␣resetter:␣%d\n", i);

}

}

printf("SIZE:␣%d,␣size␣extra:␣%d\n", (int)sizeof(HCs)/(int)sizeof(HCs[0]),

↪→ SHE_FUNDAMENTAL + SHE_3H_INJECTION);

outTime = 0;

OutputSignal(pOut_SWALPHAS, 0) = swAlphas;

D.0.3 Updating part of the code

// Main

Vdc = inVdc;

VdcHalf = Vdc/2;

threshold = inThreshold;

time = (float)inTime;

outTime = time;

motor.rotorSpeed = inRotorSpeed;

motor.rotorAngle = inRotorAngle;

for(int n = 0; n < N_PHASES; n++) {

//------------- phase n calculations ---------------//

phase[n].prevVoltage = phase[n].voltage;

phase[n].voltage = InputSignal(pIn_Vpn, n);

VdGoalLast = VdGoal;

VqGoalLast = VqGoal;
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VdGoal = InputSignal(pIn_VdqGoal, 0);

VqGoal = InputSignal(pIn_VdqGoal, 1);

// float temp = (float)inVaGoal;

/*if(fabs(temp-phase[n].prevGoalVoltage) > 0) {

}*/

phase[n].prevGoalVoltage = phase[n].goalVoltage;

phase[n].goalVoltage = InputSignal(pIn_VnGoal, n);

if (phase[n].voltage >= threshold) {

phase[n].halfBridgeState = 1;

} else {

phase[n].halfBridgeState = -1;

}

if(time >= phase[n].nextVSampleTimestamp) {

sampledPhases++;

if(sampledPhases >= 3) {

phase[n].nextVSampleTimestamp = time+constrain(2*M_PI/motor.

↪→ rotorSpeed/VF_SAMPLES_PP, 0, VF_MIN_SAMPLE_T);

sampledPhases = 0;

}

phase[n].VSamples[phase[n].samplesIndex] = inRotorSpeed;

if(phase[n].samplesIndex < VF_SAMPLES_TOT-1) phase[n].samplesIndex++;

else if(!VF_LIVE) phase[n].samplesIndex = 0;

else if(VF_LIVE) phase[n].rotorSpeed = averageMotorSpeedsLive(phase[n

↪→ ].VSamples, phase[n].samplesIndex);

OutputSignal(pOut_Speed, n) = phase[n].rotorSpeed;

//printf("Averaged speed: %f, @%fs\n", phase[n].rotorSpeed, time);

}

phase[n].lastPhase = phase[n].phase;

phase[n].phase = InputSignal(pIn_FPIPLL, n);

OutputSignal(pOut_Phase, n) = phase[n].phase;

if (fabs(phase[n].rotorSpeed) > 0 && phase[n].listSize > 0) {

phase[n].dThetasPassed = (int)(phase[n].phase / dTheta);
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if (abs(phase[n].dThetasPassed - phase[n].dThetasPassedLast) > 0) {

float thetaLo = (float)dTheta * phase[n].dThetasPassed;

float thetaHi = (float)dTheta * (phase[n].dThetasPassed + 1);

if(phase[n].firstMoveState && FIRSTMOVE_ALTERING) {

float temp = thetaLo;

thetaLo = thetaHi;

thetaHi = temp;

}

phase[n].thetaMid = calculateThetaK(thetaLo, thetaHi, phase[n].maxVoltage

↪→ , Vdc);

phase[n].dThetasPassedLast = phase[n].dThetasPassed;

}

// printf("just before problem");

// printf("ok state: %d", ok);

//phase[n].alphaTraverser = NULL;

if (SHE) { //if SHE

bool going = true;

while(going) {

going = false;

if (phase[n].alphaTraverser != NULL && phase[n].alphaTraverser

↪→ ->prev != NULL) {

//printf("TRAVERSER HAS VALUES!!\n");

if (phase[n].phase >= phase[n].alphaTraverser->prev->

↪→ timestamp) {

//outModulator1 = signF(phase[n].alphaTraverser->prev->

↪→ voltage);

phase[n].alphaTraverser = phase[n].alphaTraverser->prev

↪→ ;

going = true;

}

}

if (phase[n].alphaTraverser != NULL && phase[n].alphaTraverser

↪→ ->next != NULL) {

//printf("TRAVERSER HAS VALUES!!\n");
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if (phase[n].phase < phase[n].alphaTraverser->timestamp

↪→ ) {

//OutputSignal(pOut_Mod, n) = signF(phase[n].

↪→ alphaTraverser->next->voltage);

phase[n].alphaTraverser = phase[n].alphaTraverser->next

↪→ ;

going = true;

}

}

}

if(phase[n].alphaTraverser != NULL) {

OutputSignal(pOut_Mod, n) = signF(phase[n].alphaTraverser->

↪→ voltage);

}

} else {

if (phase[n].phase >= phase[n].thetaMid) {

OutputSignal(pOut_Mod, n) = 1;

} else {

OutputSignal(pOut_Mod, n) = -1;

}

if(phase[n].firstMoveState && FIRSTMOVE_ALTERING) OutputSignal(pOut_Mod,

↪→ n) = -1*OutputSignal(pOut_Mod, n);

}

// printf("after");

//}

//*/

} else {

OutputSignal(pOut_Phase, n) = 0;

//outPhaseVa = 0;

OutputSignal(pOut_Mod, n) = 0;

}

if ((phase[n].phase > (float)0.5 * M_PI && phase[n].stateReset)) {

phase[n].state = signF(phase[n].goalVoltage);

phase[n].stateReset = false;

//printf("phase state: %d @%fs, phase: %f\n", phase[n].state, time, phase[

↪→ n].phase);

}

if (phase[n].phase > (float)1.5 * M_PI && phase[n].stateReset2) {

phase[n].state = signF(phase[n].goalVoltage);
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phase[n].stateReset2 = false;

//printf("phase state: %d @%fs, phase: %f\n", phase[n].state, time, phase[

↪→ n].phase);

}

//*/

/*if(time-maxVoltageTimer > 1/1000) {

}*/

// update VPN’s on every rising/falling edge of the square wave

if ((phase[n].voltage) > threshold && (phase[n].prevVoltage) <= threshold &&

↪→ (time - phase[n].lastRiseTimestamp) > pwm.T * pwm.tolerance && phase[

↪→ n].modState == false) {

// printf("rising edge\n");

phase[n].modState = true;

phase[n].lastRiseTimestamp = time;

addswitchingTimestamp(&switchingTimestampsVPN[n], time, Vdc / 2);

phase[n].listSize++;

switchingTimestamp* current = switchingTimestampsVPN[n];

if (current == NULL) {

goto skipAvg;

}

float timestamp = current->timestamp;

current = current->next;

if (current == NULL) {

goto skipAvg;

}

float earlierTimestamp = current->timestamp;

double voltage = current->voltage;

current = current->next;

if (current == NULL) {

goto skipAvg;

}

float earliererTimestamp = current->timestamp;

double voltage2 = current->voltage;

phase[n].lastPeriodAverage = phase[n].periodAverage;

phase[n].periodAverage = (earlierTimestamp - earliererTimestamp) / (

↪→ timestamp - earliererTimestamp) * voltage2 + (timestamp -

↪→ earlierTimestamp) / (timestamp - earliererTimestamp) * voltage;
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// printf("time: %f, voltage averaged: %f, last one: %f, v1: %f, v2: %f,

↪→ t1: %f, t2: %f, t3: %f\n", time, phase[n].periodAverage, phase[n].

↪→ lastPeriodAverage, voltage, voltage2, earliererTimestamp,

↪→ earlierTimestamp, timestamp);

goto doneAvg;

skipAvg:

phase[n].periodAverage = 0;

phase[n].lastPeriodAverage = 0;

//printf("empty list!\n");

// outPeriodUpdate = 0;

// riseFallDetect = 1;

} else if ((phase[n].voltage) < threshold && (phase[n].prevVoltage) >=

↪→ threshold && (time - phase[n].lastFallTimestamp) > pwm.T * pwm.

↪→ tolerance && phase[n].modState == true) {

// printf("falling edge\n");

phase[n].modState = false;

phase[n].lastFallTimestamp = time;

addswitchingTimestamp(&switchingTimestampsVPN[n], time, -Vdc / 2);

phase[n].listSize++;

// outPeriodUpdate = 0;

}

doneAvg :

if(time-sheUpdateTime > (float)1/10000) {

sheUpdatedPhases++;

if(sheUpdatedPhases >= 3) {

sheUpdateTime = CurrentTime;

sheUpdatedPhases = 0;

}

phase[n].maxVoltage = sqrt(pow(VdGoal, 2) + pow(VqGoal, 2));

//printf("SHE maxV: %f\n", phase[n].maxVoltage);

for (int i = 0; (i < SHE_ITERATIONS && SHE && !completedSHE(phase[n].

↪→ comingHarmonics, phase[n].maxVoltage)); i++) {
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calculateComingPeriod(&comingStampsQuartV[n], &comingStampsQuartBeginV[n

↪→ ], phase[n].maxVoltage, Vdc, phase[n].comingHarmonics, 0, phase[n

↪→ ].firstMoveState);

calculateComingHarmonics(comingStampsQuartV[n], phase[n].comingHarmonics)

↪→ ;

/*if(n==1) {

printf("iterative SHE (phase %d, i: %d): ", n, i);

for (int j = 0; j < SHE_arrSize; j++) {

printf("h_%d=%.2f ", j + 1, phase[n].comingHarmonics[j]);

}

printf("\n");

}*/

/*}

switchingTimestamp* current = comingSwitchingTimestampsV[n];

printf("switching alphas:\n");

while (current != NULL) {

printf("%f, ", current->timestamp);

current = current->next;

}

printf("\n");*/

if(THETAS_SWITCHING_WITH_SIGMAS) {

calculateComingPeriod(&comingStampsQuartV[n], &comingStampsQuartBeginV[n

↪→ ], phase[n].maxVoltage, Vdc, phase[n].comingHarmonics, 1, phase[n

↪→ ].firstMoveState);

// printf("here");

calculateComingHarmonics(comingStampsQuartV[n], phase[n].comingHarmonics)

↪→ ;

}

/*current = comingSwitchingTimestampsV[n];

printf("switching alphas:\n");

while (current != NULL) {

printf("%f, ", current->timestamp);

current = current->next;

}

printf("\n");*/

if(n==1) {

printf("iterative␣SHE␣(phase␣%d,␣i:␣%d):␣", n, i);

for (int j = 0; j < SHE_arrSize; j++) {
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printf("h_%d=%.2f␣", j + 1, phase[n].comingHarmonics[j]);

}

printf("\n");

}

}

if(SHE) {

emptyList(&comingStampsFullV[n]);

copyAngleSet(&comingStampsQuartV[n], comingStampsQuartBeginV[n], &

↪→ comingStampsFullV[n], &phase[n].alphaTraverser);

quadrupleAngleSet(&comingStampsFullV[n]);

/*

if(n==0) {

switchingTimestamp* test = phase[n].alphaTraverser;

while(test != NULL) {

printf("TRAVERSER phase %d tstamp ’returned’: %f, voltage: %f, maxV:

↪→ %f\n", n, test->timestamp, test->voltage, phase[n].maxVoltage);

test = test->prev;

}

printf("----------------------------------------------------\n");

}*/

}

}

if (phase[n].listSize >= 4 && phase[n].state > 0 && phase[n].phase > 1.5 *

↪→ M_PI && phase[n].stateReset == false && phase[n].stateReset2 == false)

↪→ {

phase[n].state = signF(InputSignal(pIn_VnGoal, n));

// printf("state resetter tripped!");

}

//----------- print variables at slow pace

if(time-slowPrinter > (float)1/5000) {

//printf("error ed: %f, eq: %f\n", inEd, inEq);

//printf("var1: %.8f, var2: %d, var3: %.20f, var4: %.20f, var5: %d\n

↪→ ", time, phase[n].state, phase[n].goalVoltage, phase[n].

↪→ prevGoalVoltage, phase[n].listSize);

/*if(phase[n].alphaTraverser != NULL && phase[n].alphaTraverser->prev

↪→ != NULL && phase[n].alphaTraverser->prev->prev != NULL) {
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slowPrinter = time;

printf("SHE DEBUG: phase: %f, t1: %f, t2: %f, t3: %f\n", phase[n].

↪→ phase, phase[n].alphaTraverser->timestamp, phase[n].

↪→ alphaTraverser->prev->timestamp, phase[n].alphaTraverser->prev

↪→ ->prev->timestamp);

}//*/

//if(phase[n].alphaTraverser!=NULL) printf("Debug phase %d;

↪→ NULL??: %d\n", n, phase[n].alphaTraverser==NULL);

//if(phase[n].alphaTraverser != NULL) printf(" next element: %

↪→ d", phase[n].alphaTraverser->next==NULL);

//printf("\n");

//phase[n].alphaTraverser = NULL;

slowPrinter = time;

//printf("Debug phase %d; NULL??: %d\n", n, phase[n].

↪→ alphaTraverser==NULL);

//printf("debug phase %d: G: %f, pG: %f, lsize: %d, %f, %d,

↪→ cMode: %d\n", n, phase[n].goalVoltage, phase[n].

↪→ prevGoalVoltage, phase[n].listSize, motor.rotorSpeed,

↪→ phase[n].stateReset, calcMode);

//printf("debug: last rise stamp %f, %f, %d, %f, %d\n", signF(

↪→ phase[n].goalVoltage), signF(phase[n].prevGoalVoltage),

↪→ phase[n].listSize, motor.rotorSpeed, phase[n].

↪→ stateReset);

}

//if ( ((signF(phase[n].goalVoltage) != signF(phase[n].prevGoalVoltage) &&

↪→ calcMode == 2) || (signF(phase[n].goalVoltage) == 1 && signF(phase[n].

↪→ prevGoalVoltage) == -1 && calcMode == 1)) &&

//phase[n].listSize >= 4 && motor.rotorSpeed > 0 && !phase[n].stateReset) {

if(phase[n].phase < 0.25*M_PI && phase[n].lastPhase > 1.75*M_PI && !phase[n

↪→ ].stateReset && phase[n].listSize >= 4) {

addswitchingTimestamp(&switchingTimestampsVPN[n], time, 0);

float harmonics[sizeof(HCs)/sizeof(HCs[0])];

phase[n].deltaT = calculateHarmonics(Vdc, switchingTimestampsVPN[n],

↪→ harmonics, phase[n].beginTimePeriod, calcMode, !phase[n].

↪→ comingNegativePeriod);

// Print or use the calculated harmonics for VPN1

/*printf("Vpn%d harmonics: ", n);

for (int j = 0; j < sizeof(HCs)/sizeof(HCs[0]); j++) {



APPENDIX D. CODE OF THE SHE ALGORITHM 96

printf("h_%d=%.2f ", HCs[j], harmonics[j]);

}

printf("\n");

*/

for(int i = 0; i < sizeof(HCs)/sizeof(HCs[0]); i++) {

OutputSignal((int)pOut_HCsVa+n, i) = harmonics[i];

}

emptyList(&switchingTimestampsVPN[n]);

phase[n].listSize = 1;

addswitchingTimestamp(&switchingTimestampsVPN[n], time, -Vdc / 2);

phase[n].firstMoveState = randnum(0,1);

//phase[n].firstMoveState = 1;

phase[n].maxVoltage = sqrt(pow(InputSignal(pIn_VdqGoal, 0), 2) + pow(

↪→ InputSignal(pIn_VdqGoal, 1), 2));

if(phase[n].state == -1) {

phase[n].comingNegativePeriod = 0;

} else {

phase[n].comingNegativePeriod = 1;

}

//printf("max3phV: %f, Va*: %f, Va*prev: %f, First Move State: %d\n",

↪→ phase[n].maxVoltage, phase[n].goalVoltage, phase[n].prevGoalVoltage,

↪→ phase[n].firstMoveState);

//int arrayLength = sizeof(phase[n].comingHarmonics) / sizeof(phase[n].

↪→ comingHarmonics[0]);

/*for (int i = 0; i < arrayLength; i++) {

phase[n].comingHarmonics[i] = 0;

}*/

phase[n].beginTimePeriod = time;

if(!VF_LIVE) phase[n].rotorSpeed = averageMotorSpeeds(phase[n].VSamples, &

↪→ phase[n].samplesIndex, motor.rotorSpeed, &phase[n].

↪→ nextVSampleTimestamp);
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phase[n].phase = 0;

phase[n].stateReset = true;

phase[n].stateReset2 = true;

//phase[n].state = 1;

OutputSignal(pOut_PeriodUpdate, n) = 1;

phase[n].lastPeriodTimestamp = time;

phase[n].lastHalfPeriodTime = time - phase[n].lastHalfPeriodTimestamp;

phase[n].lastHalfPeriodTimestamp = time;

} else if (time - phase[n].lastPeriodTimestamp >= (float)1 / 100000) {

OutputSignal(pOut_PeriodUpdate, n) = 0;

}

}

return;



Appendix E

Code of the MPC algorithm

E.0.1 Definitions and Functions of the code

#include <math.h>

#include <stdlib.h>

#include <stdio.h>

#include <stdbool.h>

#define SAMPLETIME (float)1/100000

float Ts = SAMPLETIME;

#define pIn_Mconsts 0

#define pIn_iGoal 1

#define pIn_i 2

#define pIn_Uemf 3

#define pIn_mSpeedAngle 4

#define pIn_idqGoal 5

#define pIn_Vdc 6

#define pOut_cost 0

#define pOut_Uab 1

#define pOut_Udq 2

#define pOut_Uemf 3

#define COST_OPTIMIZED_THRESHOLD 0.005

#define GD_ITERATIONS 125

#define PREDICTIONS 11

#define vLength 2

#define LRATE 10

#define PREV_I_SAMPLES 2

#define PHASES 3
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#define POSSIBLE_VECTORS 8

typedef struct predictionStruct {

float ip[vLength][PREDICTIONS], i[vLength][PREDICTIONS], iPrev[

↪→ vLength][PREV_I_SAMPLES], iGoalFurthestHorizon[vLength], idGoal

↪→ , iqGoal,

U[vLength][PREDICTIONS], Vd, Vq, VdTemp, VqTemp, Uemf[vLength][

↪→ PREDICTIONS], totCost, prevCost[vLength], leastCost[PREDICTIONS

↪→ ];

int leastCostIndex[PREDICTIONS];

} predictionStruct;

predictionStruct p = { 0 };

typedef struct motorStruct {

float L[vLength], R, angle, speed;

} motorStruct;

motorStruct M = { 0 };

float Vdc = 0;

float Valbe[vLength][POSSIBLE_VECTORS] = { 0 };

float VhBridge[2];

//float Vbe[POSSIBLE_VECTORS] = { 0 };

float invParkAlpha(float d, float q, float a) {

return d*cos(a)-q*sin(a);

}

float invParkBeta(float d, float q, float a) {

return d*sin(a)+q*cos(a);

}

float ClarkeAlpha(float Vabc[]) {

return (float)2/(float)3*(Vabc[0]-0.5*Vabc[1]-0.5*Vabc[2]);

}

float ClarkeBeta(float Vabc[]) {

//printf("sqrt(3): %f", Vabc[0]);

return (float)2/(float)3*(sqrtf(3)/(float)2*Vabc[1]-sqrtf(3)/(float)

↪→ 2*Vabc[2]);

}
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float signF(float num) {

if(num < 0) {

return -1;

} else {

return 1;

}

}

/**

* Find maximum between two numbers.

*/

float max(float num1, float num2)

{

return (num1 > num2 ) ? num1 : num2;

}

/**

* Find minimum between two numbers.

*/

float min(float num1, float num2)

{

return (num1 > num2 ) ? num2 : num1;

}

float constrain(float num, float lo, float hi) {

return max(min(num, hi), lo);

}

float avg(float num1, float num2) {

return (num1+num2)/2;

}

E.0.2 Start of the code

M.L[0] = InputSignal(pIn_Mconsts, 0);

M.L[1] = InputSignal(pIn_Mconsts, 1);

M.R = InputSignal(pIn_Mconsts, 2);

Vdc = InputSignal(pIn_Vdc, 0);

Vdc = 400;
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VhBridge[0] = -Vdc/2;

VhBridge[1] = Vdc/2;

int hBridgeStates = 2;

int a = 0;

for(int i = 0; i < hBridgeStates; i++) {

for(int j = 0; j < hBridgeStates; j++) {

for(int k = 0; k < hBridgeStates; k++) {

float Vabc[PHASES];

Vabc[0] = VhBridge[i];

Vabc[1] = VhBridge[j];

Vabc[2] = VhBridge[k];

Valbe[0][a] = ClarkeAlpha(Vabc);

Valbe[1][a] = ClarkeBeta(Vabc);

printf("i:␣%d,␣j:␣%d,␣k:␣%d,␣alpha:␣%f,␣beta:␣%f\n", i,

↪→ j, k, Valbe[0][a], Valbe[1][a]);

//printf("Vabc: %f, %f, %f, Vdc: %f\n", Vabc[0], Vabc

↪→ [1], Vabc[2], Vdc);

a++;

}

}

}

E.0.3 Updating part of the code

M.speed = InputSignal(pIn_mSpeedAngle, 0);

M.angle = InputSignal(pIn_mSpeedAngle, 1);

Vdc = InputSignal(pIn_Vdc, 0);

p.idGoal = InputSignal(pIn_idqGoal, 0);

p.iqGoal = InputSignal(pIn_idqGoal, 1);

//for(int a = 0; a < POSSIBLE_VECTORS; a++) {

/*
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for(int j = 0; j < PREDICTIONS; j++) {

p.leastCost[j] = INFINITY;

for(int a = 0; a < POSSIBLE_VECTORS; a++) {

p.totCost = 0;

for(int i = 0; i < vLength; i++) {

if(j > 0) {

p.i[i][j] = p.ip[i][j-1];

//p.i[i][j] = 3*p.ip[i][j-1]-3*p.iPrev[i][j-1]+p.iPrev[

↪→ i][j];

} else {

p.i[i][j] = InputSignal(pIn_i, i);

}

if(i==0) {

p.Uemf[i][j] = InputSignal(pIn_Uemf, 0)*-sin(M.angle+j*

↪→ M.speed*Ts);

//p.U[i][j] = invParkAlpha(p.Vd, p.Vq, M.angle+j*M.

↪→ speed*Ts);

p.U[i][j] = Valbe[i][a];

p.iGoalFurthestHorizon[i] = invParkAlpha(p.idGoal, p.

↪→ iqGoal, M.angle+PREDICTIONS*M.speed*Ts);

//printf("Prediction: %d, wIters: %d, iGoal: %f, U: %f,

↪→ Uemf: %f\n", j, wIters, p.iGoal[i][j], p.U[i][j

↪→ ], p.Uemf[i][j]);

} else {

p.Uemf[i][j] = InputSignal(pIn_Uemf, 0)*cos(M.angle+j*M

↪→ .speed*Ts);

//p.U[i][j] = invParkBeta(p.Vd, p.Vq, M.angle+j*M.speed

↪→ *Ts);

p.U[i][j] = Valbe[i][a];

p.iGoalFurthestHorizon[i] = invParkBeta(p.idGoal, p.

↪→ iqGoal, M.angle+PREDICTIONS*M.speed*Ts);

}

p.ip[i][j] = (1-M.R*Ts/M.L[i])*p.i[i][j] + Ts/M.L[i]*(p.U[i][j

↪→ ] - p.Uemf[i][j]);

p.totCost += powf(p.iGoalFurthestHorizon[i]-p.ip[i][

↪→ PREDICTIONS-1], 2);

}
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printf("p.totCost: %f\n", p.totCost);

if(p.totCost < p.leastCost[j]) {

p.leastCost[j] = p.totCost;

p.leastCostIndex[j] = a;

printf("horizon: %d, leastCost: %f, vectorIndex: %d\n",

↪→ j, p.leastCost[j], p.leastCostIndex[j]);

}

}

}

*/

//}

int wIters = 0;

while((p.totCost > COST_OPTIMIZED_THRESHOLD && wIters < GD_ITERATIONS) ||

↪→ wIters == 0) {

p.totCost = 0;

for(int i = 0; i < vLength; i++) {

for(int j = 0; j < PREDICTIONS; j++) {

if(j > 0) {

p.i[i][j] = p.ip[i][j-1];

//p.i[i][j] = 3*p.ip[i][j-1]-3*p.iPrev[i][j-1]+p.iPrev[

↪→ i][j];

} else {

p.i[i][j] = InputSignal(pIn_i, i);

}

if(i==0) {

p.Uemf[i][j] = InputSignal(pIn_Uemf, 0)*-sin(M.angle+j*

↪→ M.speed*Ts);

p.U[i][j] = invParkAlpha(p.Vd, p.Vq, M.angle+j*M.speed*

↪→ Ts);

p.iGoalFurthestHorizon[i] = invParkAlpha(p.idGoal, p.

↪→ iqGoal, M.angle+PREDICTIONS*M.speed*Ts);
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//printf("Prediction: %d, wIters: %d, iGoal: %f, U: %f,

↪→ Uemf: %f\n", j, wIters, p.iGoal[i][j], p.U[i][j

↪→ ], p.Uemf[i][j]);

} else {

p.Uemf[i][j] = InputSignal(pIn_Uemf, 0)*cos(M.angle+j*M

↪→ .speed*Ts);

p.U[i][j] = invParkBeta(p.Vd, p.Vq, M.angle+j*M.speed*

↪→ Ts);

p.iGoalFurthestHorizon[i] = invParkBeta(p.idGoal, p.

↪→ iqGoal, M.angle+PREDICTIONS*M.speed*Ts);

}

p.ip[i][j] = (1-M.R*Ts/M.L[i])*p.i[i][j] + Ts/M.L[i]*(p.U[i][j

↪→ ] - p.Uemf[i][j]);

//if(p.totCost

//printf("wIter: %d, i: %d, j: %d, iGoal: %f, ip: %f, Cost:

↪→ %.3f, Ufound: %f, emf: %f\n", wIters, i, j, p.

↪→ iGoalFurthestHorizon[i], p.ip[i][j], p.totCost, p.U[i][

↪→ i], p.Uemf[i][i]);

//p.AuTemp = p.AuTemp - 2*(InputSignal(pIn_iGoal, i)-p.ip[i][

↪→ PREDICTIONS-1])*

//Ts/M.L[i]*(-sin(M.angle+(PREDICTIONS-1)*M.speed*Ts)*(float)i==0+cos

↪→ (M.angle+(PREDICTIONS-1)*M.speed*Ts)*(float)i==1);

}

p.totCost += powf(p.iGoalFurthestHorizon[i]-p.ip[i][

↪→ PREDICTIONS-1], 2);

if(i==0) {

p.VdTemp = p.VdTemp + LRATE*2*(p.iGoalFurthestHorizon[i

↪→ ]-p.ip[i][PREDICTIONS-1])*Ts/M.L[i]*cos(M.angle

↪→ +(PREDICTIONS-1)*M.speed*Ts);

p.VqTemp = p.VqTemp + LRATE*2*(p.iGoalFurthestHorizon[i

↪→ ]-p.ip[i][PREDICTIONS-1])*Ts/M.L[i]*-sin(M.angle

↪→ +(PREDICTIONS-1)*M.speed*Ts);

} else {

p.VdTemp = p.VdTemp + LRATE*2*(p.iGoalFurthestHorizon[i

↪→ ]-p.ip[i][PREDICTIONS-1])*Ts/M.L[i]*sin(M.angle

↪→ +(PREDICTIONS-1)*M.speed*Ts);

p.VqTemp = p.VqTemp + LRATE*2*(p.iGoalFurthestHorizon[i

↪→ ]-p.ip[i][PREDICTIONS-1])*Ts/M.L[i]*cos(M.angle

↪→ +(PREDICTIONS-1)*M.speed*Ts);
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}

}

p.Vd = p.VdTemp;

p.Vq = p.VqTemp;

/*if(i==0) {

p.V

} else {

p.cost[i] = powf(InputSignal(pIn_iGoal, i)-p.ip[i][PREDICTIONS

↪→ -1], 2);

p.U[i][0] = p.U[i][0] - 2*(InputSignal(pIn_iGoal, i)-p.ip[i][

↪→ PREDICTIONS-1])*Ts/M.L[i];

}*/

wIters++;

}

printf("D;␣wIters:␣%d,␣iGoal:␣%f,␣ip:␣%f,␣i:␣%f,␣Cost:␣%.3f,␣Ufound:␣%f,␣emf

↪→ :␣%f\n", wIters, p.iGoalFurthestHorizon[0], p.ip[0][PREDICTIONS-1], p.

↪→ i[0][PREDICTIONS-1], p.totCost, p.U[0][PREDICTIONS-1], p.Uemf[0][

↪→ PREDICTIONS-1]);

printf("Q;␣wIters:␣%d,␣iGoal:␣%f,␣ip:␣%f,␣i:␣%f,␣Cost:␣%.3f,␣Ufound:␣%f,␣emf

↪→ :␣%f\n", wIters, p.iGoalFurthestHorizon[1], p.ip[1][PREDICTIONS-1], p.

↪→ i[1][PREDICTIONS-1], p.totCost, p.U[1][PREDICTIONS-1], p.Uemf[1][

↪→ PREDICTIONS-1]);

float out1 = p.U[0][PREDICTIONS-1], out2 = p.U[1][PREDICTIONS-1];

float magnitude = sqrt(powf(p.Vd, 2)+powf(p.Vq, 2));

if(magnitude > Vdc/2) {

out1 *= Vdc/2/magnitude;

out2 *= Vdc/2/magnitude;

}

for(int i = 0; i < vLength; i++) {

for(int j = PREV_I_SAMPLES-1; j > 0; j--) {

p.iPrev[i][j] = p.iPrev[i][j-1];

}

p.iPrev[i][0] = InputSignal(pIn_i, i);

}
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//printf("Magnitude: %f\n", magnitude);

OutputSignal(pOut_cost, 0) = p.totCost;

OutputSignal(pOut_Uab, 0) = out1;

OutputSignal(pOut_Uab, 1) = out2;

OutputSignal(pOut_Udq, 0) = p.Vd;

OutputSignal(pOut_Udq, 1) = p.Vq;

OutputSignal(pOut_Uemf, 0) = p.Uemf[0][0];

OutputSignal(pOut_Uemf, 1) = p.Uemf[1][0];

//printf("wIters: %d, Cost: %.3f, Ufound: %f, a emf: %f, b emf: %f\n",

↪→ wIters, p.totCost, p.U[0][0], p.Uemf[0][0], p.Uemf[0][1]);



Appendix F

Code of the LMS-based SHE

F.0.1 Definitions and Functions of the code

#define pIn_time 0

#define pIn_PLL 1

#define pIn_I 2

#define pIn_SWALPHAS 3

#define pIn_MPP 4

#define pOut_fundLMS 0

#define pOut_funde 1

#define pOut_LMS 2

#define pOut_Uashes 3

#define pOut_HCmag 4

#define N_PHASES 3

#define SAMPLE_FREQ 500000

#define MU 0.0006

//int HCsSHE[] = {1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43,

↪→ 47, 49, 53, 55, 59, 61, 65, 67, 71, 73, 77, 79, 83, 85, 89, 91};

//int HCsSHE[] = {1, 5, 7, 11, 13, 17, 19, 23, 25, 29};

int HCsSHE[] = {1,5, 7, 11, 13};

int sheSize = sizeof(HCsSHE)/sizeof(HCsSHE[0]);

#include <math.h>

#include <stdlib.h>

#include <stdio.h>

float time = 0, mu = MU;

int swAlphas, MPP;
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//double filtCutFreq = 0, decades = 0;

typedef struct lmsStruct {

float ek[sizeof(HCsSHE)/sizeof(HCsSHE[0])], Wc[sizeof(HCsSHE)/sizeof(

↪→ HCsSHE[0])], Ws[sizeof(HCsSHE)/sizeof(HCsSHE[0])], mag[sizeof(

↪→ HCsSHE)/sizeof(HCsSHE[0])];

} lmsStruct;

lmsStruct lms[N_PHASES] = {0};

typedef struct asheStruct {

float phase, Xkc[sizeof(HCsSHE)/sizeof(HCsSHE[0])], Xks[sizeof(HCsSHE

↪→ )/sizeof(HCsSHE[0])], out[sizeof(HCsSHE)/sizeof(HCsSHE[0])],

↪→ outIP[sizeof(HCsSHE)/sizeof(HCsSHE[0])],

outIPSummed;

} asheStruct;

asheStruct ashe[N_PHASES];

double signD(double num) {

if(num < 0) {

return -1;

} else {

return 1;

}

}

int signI(int num) {

if(num < 0) {

return -1;

} else {

return 1;

}

}

float signF(float num) {

if(num < 0) {

return -1;

} else {

return 1;

}

}

/**
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* Find maximum between two numbers.

*/

float max(float num1, float num2)

{

return (num1 > num2 ) ? num1 : num2;

}

/**

* Find minimum between two numbers.

*/

float min(float num1, float num2)

{

return (num1 > num2 ) ? num2 : num1;

}

float constrain(float num, float lo, float hi) {

return max(min(num, hi), lo);

}

float avg(float num1, float num2) {

return (num1+num2)/2;

}

F.0.2 Start of the code

MPP = InputSignal(pIn_MPP, 0);

F.0.3 Updating part of the code

time = InputSignal(pIn_time, 0);

swAlphas = InputSignal(pIn_SWALPHAS, 0);

for(int i = 0; i < N_PHASES; i++) {

ashe[i].phase = InputSignal(pIn_PLL,i);

/*ashe[i].Xkc[0] = cos(ashe[i].phase);

ashe[i].Xks[0] = sin(ashe[i].phase);
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ashe[i].out[0] = lms[i].Wc[0]*ashe[i].Xkc[0]+lms[i].Ws[0]*ashe[i].Xks

↪→ [0];

lms[i].ek[0] = InputSignal(pIn_I, i)-ashe[i].out[0];

float temp = atan2f(lms[i].Ws[0], lms[i].Wc[0]);

lms[i].mag[0] = lms[i].Wc[0]*cos(temp)+lms[i].Ws[0]*sin(temp);

lms[i].Wc[0] = lms[i].Wc[0]+2*mu*lms[i].ek[0]*ashe[i].Xkc[0];

lms[i].Ws[0] = lms[i].Ws[0]+2*mu*lms[i].ek[0]*ashe[i].Xks[0];*/

ashe[i].outIPSummed = 0;

for(int j = 0; j < sheSize; j++) {

ashe[i].Xkc[j] = cos(HCsSHE[j]*ashe[i].phase);

ashe[i].Xks[j] = sin(HCsSHE[j]*ashe[i].phase);

ashe[i].out[j] = lms[i].Wc[j]*ashe[i].Xkc[j]+lms[i].Ws[j]*ashe

↪→ [i].Xks[j];

ashe[i].outIP[j] = lms[i].Ws[j]*ashe[i].Xkc[j]-lms[i].Wc[j]*

↪→ ashe[i].Xks[j];

if(j==0) {

lms[i].ek[j] = InputSignal(pIn_I, i)-ashe[i].out[j];

} else {

lms[i].ek[j] = ashe[i].out[0];

}

float temp = atan2f(lms[i].Ws[j], lms[i].Wc[j]);

lms[i].mag[j] = lms[i].Wc[j]*cos(temp)+lms[i].Ws[j]*sin(temp);

//if(j==0) {

lms[i].Wc[j] = lms[i].Wc[j]+2*mu*lms[i].ek[j]*ashe[i].

↪→ Xkc[j];

lms[i].Ws[j] = lms[i].Ws[j]+2*mu*lms[i].ek[j]*ashe[i].

↪→ Xks[j];

//} else {

// lms[i].Wc[j] = lms[i].Wc[j]+2*mu/100*lms[i].ek[j]*ashe[i].

↪→ Xkc[j];

// lms[i].Ws[j] = lms[i].Ws[j]+2*mu/100*lms[i].ek[j]*ashe[i].

↪→ Xks[j];

//}

if(i == 0) {
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OutputSignal(pOut_HCmag, j) = lms[0].mag[j];

OutputSignal(pOut_LMS, j) = ashe[0].out[j];

}

if(j!=0) {

ashe[i].outIPSummed += ashe[i].outIP[j];

}

}

OutputSignal(pOut_Uashes, i) = ashe[i].outIPSummed;

OutputSignal(pOut_fundLMS, i) = ashe[i].out[0];

OutputSignal(pOut_funde, i) = lms[i].ek[0];

}

//printf("@: %f, a: %f, cutFreq: %f, Va phase unfiltered: %f, C.cutFreq: %f,

↪→ C.e: %f, C.P: %f, C.I: %f, C.out: %f, P.out: %f\n", time, filt.a,

↪→ filt.cutFreq, phase[0], C.cutFreq, C.e[0], C.P[0], C.I[0], C.out[0], P

↪→ .out[0]);



Appendix G

End of life code

This is a previous version of the SHE code, however the accompanying text is still usefull as
it can provide insight into how the code works, since parts of the final code match with this
code.

G.0.1 Definitions and Functions of the code

Below is the detailed description of the provided code, including the definitions and functions
used, explained in a manner aimed at fellow programmers. The code itself is presented in
code blocks for clarity.

Header Files The program starts with including standard libraries necessary for mathe-
matical calculations, input/output operations, memory allocation, and boolean operations:

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include <stdbool.h>

Macro Definitions Next, several macros are defined to set various parameters and to simplify
accessing inputs and outputs:

//#define M_PI acos(-1.0)

#define PWMTOL 0.75

#define SWALPHAS 16 //NEEDS to be multiple of 4

#define NUM_HARMONICS 13

#define SHE 1 //set SHE on or off

#define SHE_ITERATIONS 150

Input and Output Signal Macros These macros map input and output signals to specific
channels for easier reference within the code:

#define inVPN1 InputSignal(0,0)

#define inVPN2 InputSignal(0,1)

#define inVPN3 InputSignal(0,2)
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#define inVdc InputSignal(1,0)

#define inThreshold InputSignal(2,0)

#define inTime InputSignal(3,0)

#define inRotorSpeed InputSignal(4,0)

#define inRotorAngle InputSignal(4,1)

#define inPolePairs InputSignal(5,0)

#define inFpwm InputSignal(6,0)

#define inVdGoal InputSignal(7,0)

#define inVqGoal InputSignal(7,1)

#define inVaGoal InputSignal(8,0)

#define inVbGoal InputSignal(8,1)

#define inVcGoal InputSignal(8,2)

#define inPLLPhase InputSignal(9,0)

#define outV1HC1 OutputSignal(0,0)

#define outV1HC2 OutputSignal(0,1)

#define outV1HC3 OutputSignal(0,2)

#define outV1HC4 OutputSignal(0,3)

#define outV1HC5 OutputSignal(0,4)

#define outV1HC6 OutputSignal(0,5)

#define outV1HC7 OutputSignal(0,6)

#define outV1HC8 OutputSignal(0,7)

#define outV1HC9 OutputSignal(0,8)

#define outV1HC10 OutputSignal(0,9)

#define outV1HC11 OutputSignal(0,10)

#define outV1HC12 OutputSignal(0,11)

#define outV1HC13 OutputSignal(0,12)

#define outV2HC1 OutputSignal(1,0)

#define outV2HC2 OutputSignal(1,1)

#define outV2HC3 OutputSignal(1,2)

#define outV2HC4 OutputSignal(1,3)

#define outV2HC5 OutputSignal(1,4)

#define outV2HC6 OutputSignal(1,5)

#define outV2HC7 OutputSignal(1,6)

#define outV2HC8 OutputSignal(1,7)

#define outV2HC9 OutputSignal(1,8)

#define outV2HC10 OutputSignal(1,9)

#define outV2HC11 OutputSignal(1,10)

#define outV2HC12 OutputSignal(1,11)

#define outV2HC13 OutputSignal(1,12)
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#define outV3HC1 OutputSignal(2,0)

#define outV3HC2 OutputSignal(2,1)

#define outV3HC3 OutputSignal(2,2)

#define outV3HC4 OutputSignal(2,3)

#define outV3HC5 OutputSignal(2,4)

#define outV3HC6 OutputSignal(2,5)

#define outV3HC7 OutputSignal(2,6)

#define outV3HC8 OutputSignal(2,7)

#define outV3HC9 OutputSignal(2,8)

#define outV3HC10 OutputSignal(2,9)

#define outV3HC11 OutputSignal(2,10)

#define outV3HC12 OutputSignal(2,11)

#define outV3HC13 OutputSignal(2,12)

#define outModulator1 OutputSignal(3,0)

#define outModulator2 OutputSignal(3,1)

#define outModulator3 OutputSignal(3,2)

#define outPeriodUpdate1 OutputSignal(4,0)

#define outPeriodUpdate2 OutputSignal(4,1)

#define outPeriodUpdate3 OutputSignal(4,2)

#define outTime OutputSignal(5,0)

#define outPhaseVa OutputSignal(6,0)

#define outPhaseVb OutputSignal(6,1)

#define outPhaseVc OutputSignal(6,2)

#define outPhase1Max OutputSignal(7,0)

#define outPhase2Max OutputSignal(7,1)

#define outPhase3Max OutputSignal(7,2)

Constants and Global Variables A set of constants and global variables are defined for vari-
ous purposes:

const float M_PI = 3.14159265359;

float dTheta = ((2*M_PI)/((float)SWALPHAS/2));

int threshold = 0; // Harmonics to calculate

double VPN1 = 0.0;

double VPN2 = 0.0, VPN3 = 0.0, Vdc = 0, VdcHalf = 0, lastVPN1State = 0,

lastVPN2State = 0, lastVPN3State = 0, lastVPN1 = 0, lastVPN2 = 0, lastVPN3 =

↪→ 0;
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Data Structures

electricMotor Structure

This structure holds information about the motor:

\begin{lstlisting}[language=C]

typedef struct electricMotor {

double rotorSpeed, rotorAngle;

int polePairs;

} electricMotor;

switchingTimestamp Structure This structure represents a timestamp for switching events,
forming a doubly linked list:

typedef struct switchingTimestamp {

float timestamp;

double voltage;

struct switchingTimestamp *next;

struct switchingTimestamp *prev;

} switchingTimestamp;

phase Structure

This structure holds various parameters for each phase:

typedef struct phase {

double voltage, prevVoltage;

float beginTimePeriod, deltaT, periodAverage, lastPeriodAverage,

↪→ lastRiseTimestamp,

lastFallTimestamp, lastHalfPeriodTimestamp, lastHalfPeriodTime,

↪→ maxVoltage, goalVoltage,

prevGoalVoltage, lastPeriodTimestamp, phase, rotorSpeed, thetaMid;

int state, listSize, halfBridgeState, dThetasPassed, dThetasPassedLast;

bool modReset, modState, stateReset, stateReset2;

float comingHarmonics[NUM_HARMONICS];

switchingTimestamp *alphaTraverser;

} phase;

pulsewidthmodulation Structure This structure holds information about the PWM parame-
ters:

typedef struct pulsewidthmodulation {

double F, tolerance;

float T, startTime, onTime, endTime;

} pulsewidthmodulation;

Function Definitions

addswitchingTimestamp Function
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This function adds a new switching timestamp to the linked list:

\begin{lstlisting}[language=C]

void addswitchingTimestamp(switchingTimestamp **head, float timestamp,

↪→ double voltage) {

switchingTimestamp *newTimestamp = (switchingTimestamp *)malloc(sizeof(

↪→ switchingTimestamp));

if (newTimestamp == NULL) {

fprintf(stderr, "Memory␣allocation␣failed\n");

exit(EXIT_FAILURE);

}

newTimestamp->timestamp = timestamp;

newTimestamp->voltage = voltage;

newTimestamp->next = *head;

newTimestamp->prev = NULL;

if (*head != NULL) {

(*head)->prev = newTimestamp;

}

*head = newTimestamp;

}

This function dynamically allocates memory for a new switchingTimestamp node, initializes
it with the provided timestamp and voltage, and inserts it at the beginning of the list.

calculateHarmonics Function This function calculates the Fourier expansion for specified
harmonics based on the switching events:

float calculateHarmonics(double Vdc, switchingTimestamp *head, float *

↪→ harmonics, float beginTime, float rotorSpeed) {

if(head == NULL) return -1;

float lastTimestamp = 0; //start at ending = always a half period is

↪→ completed

float endTime = head->timestamp;

float deltaT = endTime - beginTime;

for (int m = 1; m <= NUM_HARMONICS; m++) {

float sum = 0.0;

switchingTimestamp *current = head;

lastTimestamp = current->timestamp;

current = current->next;

if(current == NULL) return -1;
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float timestamp = current->timestamp;

while (current != NULL) {

timestamp = current->timestamp;

sum += (current->voltage) / ((float)m * M_PI) * (cos((float)m* (

↪→ timestamp-beginTime)/deltaT*2*M_PI) - cos((float)m* (

↪→ lastTimestamp-beginTime)/deltaT*2*M_PI));

lastTimestamp = timestamp;

current = current->next;

}

harmonics[m - 1] = sum;

}

return deltaT;

}

This function traverses the linked list of switching events, computing the Fourier coefficients
for each harmonic up to NUM HARMONICS. It uses the difference in timestamps to calculate
the harmonic content in the voltage signal.

calculateComingHarmonics Function This function computes the harmonics for the up-
coming period:

float calculateComingHarmonics(switchingTimestamp *head, float *harmonics) {

if(head == NULL) return -1;

float lastTimestamp = head->timestamp;

float endTime = head->timestamp;

switchingTimestamp *current = head->next;

if(current == NULL) return -1;

float deltaT = (current->timestamp - endTime);

for (int m = 1; m <= NUM_HARMONICS; m++) {

float sum = 0.0;

while (current != NULL) {

float timestamp = current->timestamp;

sum += current->voltage / (m * M_PI) * (cos(m * timestamp /

↪→ deltaT * 2 * M_PI) - cos(m * lastTimestamp / deltaT * 2 *

↪→ M_PI));

lastTimestamp = timestamp;

current = current->next;

}

harmonics[m - 1] = sum;

}

return 1;

}
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Similar to calculateHarmonics, this function calculates the upcoming harmonics using the
same principles but focused on the next period of the waveform.

calculateThetaK Function This function computes the mid-angle thetaK for a given volt-
age and switching angles:

float calculateThetaK(float thetaLo, float thetaHi, float maxVoltage, float

↪→ Vdc) {

return thetaHi/2 + thetaLo/2 + (maxVoltage * (cos(thetaHi) - cos(thetaLo)

↪→ )) / Vdc;

}

This function computes the thetaK, which is the mid-point between thetaLo and thetaHi,
adjusted for the desired maxVoltage.

addHarmonicCompensation Function This function adjusts thetaK to compensate for
specific harmonics:

float addHarmonicCompensation(float thetaK, float thetaLo, float thetaHi,

↪→ float h, float hc, float Vdc) {

thetaK += (hc * (cos(h * thetaLo) - cos(h * thetaHi))) / (h * Vdc);

return thetaK;

}

This function adds a compensation term to thetaK, based on harmonic content, improving
the waveform’s harmonic profile.

calculateComingPeriod Function This function determines the PWM sequence for the
upcoming period, based on harmonic compensation:

int calculateComingPeriod(switchingTimestamp** head, switchingTimestamp**

↪→ traverser, float maxVoltage, float Vdc, float comingHarmonics[], bool

↪→ alternateMode) {

float dTheta = 2 * M_PI / SWALPHAS;

float prevTheta = 0;

float theta = 0;

float thetaLo = 0;

float thetaHi = dTheta;

float thetaK = 0;

int maxListSize = (int)((float)SWALPHAS/2.0);

int listSize = 0;

if(*head == NULL) return -1;

emptyList(head);

for(int i = 0; i < maxListSize; i++) {

if(alternateMode) {

theta = dTheta * (float)(i+1);
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} else {

theta = dTheta * (float)i;

}

thetaLo = prevTheta;

thetaHi = theta;

if(i == 0) {

addswitchingTimestamp(head, 0, maxVoltage);

prevTheta = thetaHi;

listSize++;

continue;

}

thetaK = calculateThetaK(thetaLo, thetaHi, maxVoltage, Vdc);

for(int h = 1; h < NUM_HARMONICS; h++) {

thetaK = addHarmonicCompensation(thetaK, thetaLo, thetaHi, (float

↪→ )h, comingHarmonics[h], Vdc);

}

if(i == (maxListSize-1)) {

addswitchingTimestamp(head, 1, -maxVoltage);

prevTheta = thetaHi;

listSize++;

continue;

}

addswitchingTimestamp(head, thetaK / (2 * M_PI), -maxVoltage);

prevTheta = thetaHi;

listSize++;

}

*traverser = *head;

return 1;

}

This function calculates the switching times for the upcoming period, taking into account
harmonic compensation to minimize unwanted harmonics in the signal. It dynamically con-
structs the switching timestamps list for the PWM controller to follow.

emptyList Function This function frees the memory of the linked list and resets the head
pointer:

void emptyList(switchingTimestamp** head_ref) {
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switchingTimestamp* current = *head_ref;

switchingTimestamp* next;

while (current != NULL) {

next = current->next;

free(current);

current = next;

}

*head_ref = NULL;

}

This function iterates through the linked list, freeing each node’s memory, and sets the head
pointer to NULL to signify the list is empty.

outputHarmonicConstants Function This function outputs harmonic constants for speci-
fied phases:

int outputHarmonicConstants(int num, double *harmonics) {

for (int i = 0; i < NUM_HARMONICS; i++) {

if(num == 1) {

*outV1HC1 = harmonics[0];

...

*outV1HC13 = harmonics[12];

} else if(num == 2) {

*outV2HC1 = harmonics[0];

...

*outV2HC13 = harmonics[12];

} else if(num == 3) {

*outV3HC1 = harmonics[0];

...

*outV3HC13 = harmonics[12];

}

}

return 1;

}

This function sets the output signals for harmonic constants, based on the phase number
(num). It updates the output signals with the computed harmonic values for each phase.

Utility Functions Several utility functions are defined for common mathematical opera-
tions:

double signD(double num) {

return (num >= 0.0) ? 1.0 : -1.0;

}
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int signI(int num) {

return (num >= 0) ? 1 : -1;

}

float signF(float num) {

return (num >= 0.0f) ? 1.0f : -1.0f;

}

float max(float num1, float num2) {

return (num1 > num2) ? num1 : num2;

}

float min(float num1, float num2) {

return (num1 < num2) ? num1 : num2;

}

float constrain(float num, float lo, float hi) {

if (num < lo) {

return lo;

} else if (num > hi) {

return hi;

} else {

return num;

}

}

float avg(float num1, float num2) {

return (num1 + num2) / 2.0;

}

signD, signI, signF: Return the sign of a number (double, int, float respectively). max: Re-
turn the maximum of two float numbers. min: Return the minimum of two float numbers.
constrain: Constrain a float number to lie between two specified bounds. avg: Calculate the
average of two float numbers. Conclusion The code implements a sophisticated motor con-
trol system with a focus on PWM and harmonic compensation. It uses structures and linked
lists to manage and optimize the motor’s performance. The provided functions calculate and
adjust switching times to minimize harmonic distortion, ensuring efficient and smooth motor
operation. Each function and variable plays a crucial role in the overall system, contributing
to the accurate simulation and control of the motor’s behavior.
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G.0.2 Output code explanation

This report delves into a motor control system algorithm, focusing on the continuous loop
execution for managing the voltage, phase, and modulation states of a motor’s rotor. The
algorithm intricately handles real-time updates and calculations to ensure the efficient oper-
ation of the motor, based on various input parameters such as rotor speed, rotor angle, and
voltage goals.

Initialization The initial phase of the code involves setting up the essential variables re-
quired for the motor’s operation:

Vdc = inVdc;

VdcHalf = Vdc / 2;

threshold = inThreshold;

time = (float)inTime;

outTime = time;

motor.rotorSpeed = inRotorSpeed;

motor.rotorAngle = inRotorAngle;

Here, the input voltage (Vdc), threshold values and time parameters are initialized. The
motor’s rotor speed and angle are also set based on the input values.

Phase 1 Calculations Voltage and Goal Voltage Update In the first phase, the system
updates the voltage and goal voltage for phase 1:

phase1.prevVoltage = phase1.voltage;

phase1.voltage = inVPN1;

phase1.prevGoalVoltage = phase1.goalVoltage;

phase1.goalVoltage = inVaGoal;

The previous voltage and goal voltage are stored before updating them with new input val-
ues.

Half-Bridge State Determination The half-bridge state is determined based on the volt-
age threshold:

if (phase1.voltage >= threshold) {

phase1.halfBridgeState = 1;

} else {

phase1.halfBridgeState = -1;

}

This condition sets the state to 1 if the voltage is above the threshold and to -1 otherwise.
Phase Calculation The phase of the motor’s rotor is calculated if the rotor speed is non-

zero and the list size is greater than zero:

if (fabs(phase1.rotorSpeed) > 0 && phase1.listSize > 0) {
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phase1.phase = (time - phase1.beginTimePeriod) / (2 * M_PI / ((float)

↪→ phase1.rotorSpeed * (float)motor.polePairs)) * 2 * M_PI;

outPhaseVa = phase1.phase;

phase1.dThetasPassed = (int)(phase1.phase / dTheta);

}

The phase calculation involves complex mathematical operations considering the time, rotor
speed, and pole pairs.

State Reset and Modulation The code further handles state resets, based on specific
phase conditions:

if ((phase1.phase > (float)0.5 * M_PI && phase1.stateReset)) {

phase1.state = signF(phase1.goalVoltage);

phase1.stateReset = false;

}

if (phase1.phase > (float)1.5 * M_PI && phase1.stateReset2) {

phase1.state = signF(phase1.goalVoltage);

phase1.stateReset2 = false;

}

These conditions reset the state and manage modulation accordingly.
Voltage and Harmonics Calculations The algorithm updates voltage on rising and falling

edges of the square wave and calculates the harmonics:

if ((phase1.voltage > threshold && phase1.prevVoltage <= threshold && (time

↪→ - phase1.lastRiseTimestamp) > pwm.T * pwm.tolerance && phase1.modState

↪→ == false)) {

phase1.modState = true;

phase1.lastRiseTimestamp = time;

addswitchingTimestamp(&switchingTimestampsVPN1, time, Vdc / 2);

phase1.listSize++;

...

} else if ((phase1.voltage < threshold && phase1.prevVoltage >= threshold &&

↪→ (time - phase1.lastFallTimestamp) > pwm.T * pwm.tolerance && phase1.

↪→ modState == true)) {

phase1.modState = false;

phase1.lastFallTimestamp = time;

addswitchingTimestamp(&switchingTimestampsVPN1, time, -Vdc / 2);

phase1.listSize++;

}

Switching timestamps are added on detecting voltage changes, and the list size is updated.
Harmonics are then calculated based on these timestamps.
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Phase 2 Calculations The second phase follows a similar structure as phase 1, handling
voltage updates, state determination, phase calculations, and modulation for the second set
of inputs:

phase2.prevVoltage = phase2.voltage;

phase2.voltage = inVPN2;

phase2.prevGoalVoltage = phase2.goalVoltage;

phase2.goalVoltage = inVbGoal;

if (phase2.voltage >= threshold) {

phase2.halfBridgeState = 1;

} else {

phase2.halfBridgeState = -1;

}

if (fabs(phase2.rotorSpeed) > 0 && phase2.listSize > 0) {

phase2.phase = (time - phase2.beginTimePeriod) / (2 * M_PI / ((float)

↪→ phase2.rotorSpeed * (float)motor.polePairs)) * 2 * M_PI;

outPhaseVb = phase2.phase;

phase2.dThetasPassed = (int)(phase2.phase / dTheta);

}

The operations performed in this phase mirror those in the first phase, ensuring consistent
control across different phases of the motor.

Conclusion The continuous loop code for this motor control system demonstrates a ro-
bust mechanism for real-time voltage, phase, and modulation management. By leverag-
ing threshold-based state determination, intricate phase calculations, and harmonic adjust-
ments, the system ensures precise control over the motor’s rotor dynamics. This detailed
understanding of the code’s functioning provides insights into its operational efficiency and
reliability in various motor control applications.
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