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Abstract—In many practical applications, the effort required
for data annotation often exceeds the cost of data acquisition,
especially in the presence of long-tailed distributions within an
open-set setting. This challenge is further exacerbated when rare
classes must be identified in large, unlabeled datasets. Traditional
methods operate under the closed-set assumption, which is
frequently impractical in real-world scenarios. Existing research
on open-set recognition does not fully capture the complexity of
discovering novel classes during the annotation process. To ad-
dress these limitations, we propose a methodology that integrates
active learning and class-incremental techniques, utilizing out-
of-distribution detection algorithms to efficiently identify novel
classes during the annotation process. Our results demonstrate
a significant reduction in the annotation effort required to
approach a closed-set dataset on three widely used benchmark
datasets. Specifically, our methodology discovers 100% of the
classes on Places365-LT and ImageNet-LT with 59.1% and 57.6%
fewer annotations, respectively, compared to random sampling,
by employing a committee of multiple detectors. Similarly, we
discover 99% of the classes on iNaturalist2018-Plantae with
23.0% fewer annotations.1

I. INTRODUCTION

In an increasingly data-driven world, reducing the time
and cost associated with annotating large-scale datasets is
a critical challenge, particularly in machine learning tasks
involving the discovery of classes in complex datasets. A
prominent example of this challenge is long-tailed (LT)
datasets, characterized by a significant variation in occurrence
among different classes. This complex distribution is not just
a statistical curiosity; it mirrors real-world scenarios across
various domains, such as biodiversity [1], medical diagnosis
[2, 3], image segmentation [4], natural language processing,
and autonomous vehicles. In these applications, the rare
classes are often particularly valuable, making their discovery
crucial.

Imagine having a folder containing raw data that you want
to use to train a classification model. The first step is to
annotate the data, which involves labeling the samples with
their desired classes. For example, the folder contains images
taken with a wildlife camera, and you want to know the
species present in the footage. The folder contains a large
number of images of common species, such as deer and
squirrels, while rare species, such as wolves, only appear in

1Our code, dataset adaptations, and models are publicly available at:
github.com/MaxLievense/Active-Class-Incremental-Learning

a handful of images. This LT distribution presents a unique
challenge: how do we ensure that all classes, especially the
rare ones, are labeled during the annotation process?

Annotating a large-scale LT dataset completely will ensure
that all classes are labeled; however, the sheer number
of samples makes this impractical and extremely costly.
Lowering the cost implies only annotating a portion of the
dataset. The LT distribution makes it difficult to ensure that
all classes are represented in the labeled dataset. Given that a
significant portion of the samples belongs to a small subset
of classes, random sampling for annotation would likely
focus on the predominant classes, leaving the rare classes
underrepresented.

This is where the synergy of Active Learning (AL) [5]
with novel class detection can be beneficial. AL aims to
select the most valuable samples for annotation on a limited
annotation budget. AL methods typically operate under a
closed-set scenario where all classes are known prior to
training. However, during annotation, the dataset is in an
open-set scenario, where unknown/novel classes exist that
are not yet represented in the labeled dataset. Novel class
detection algorithms can be used to determine the likelihood
that unlabelled samples belong to a novel class. This research
combines these two approaches and investigates the potential
of novelty detection to discover rare classes during the
annotation of LT datasets using AL.

The primary objective of this work is to maximize class
coverage during training, discovering as many novel classes
as possible, while minimizing the number of labels (human
effort) required. This focus on class coverage as a key
evaluation metric is distinct from the traditional emphasis
on classification accuracy. This objective has been used in
anomaly detection tasks [6–9] on tabular datasets and very
simple image datasets (e.g., GAIT and Digits), but to the best
of our knowledge, it has not been applied to the process of
annotating long-tailed image datasets.

From a different perspective, the proposed process in this
research seeks to ensure that the labeled dataset moves closer
to a closed-set assumption, where rare classes are represented
more frequently, and a greater number of informative and
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Fig. 1: Efficient long-tailed dataset annotation using active learning, class incremental learning, and novelty detection. Starting
from an unlabelled (open-set) dataset, the approach iteratively selects the most valuable samples determined by novelty detection
algorithms to discover novel classes and incorporates them in the model. This processes leads to a closed-set dataset with a
reduced annotation cost.

diverse samples are labeled. Once sufficiently annotated, the
labeled dataset can be utilized to train other classification
models that operate under the closed-set assumption, with their
primary focus being on improving classification accuracy. Our
approach is designed with real-world and practical limitations
in mind, making it particularly valuable for application in
real-world scenarios beyond controlled research environments.

In summary, the key contributions of this research are:
• Foundation of a novel research path: We lay the

groundwork for a novel research path focused on maxi-
mizing class coverage in long-tailed image datasets. We
demonstrate that our approach is distinct from existing
open-set recognition and out-of-domain research. We
evaluate various training techniques, such as balanced
sampling and K-Fold cross-validation, across three unique
and widely used long-tailed benchmarking datasets. Addi-
tionally, we implement a wide array of novelty detection
algorithms, providing a benchmark for future research in
this area.

• Exploration of unsupervised feature representation
learning: We investigate the effectiveness of unsuper-
vised feature representation learning using open-source
supervised pre-trained models. While our findings in-
dicate improvements in open-set recognition tasks, the
impact on our setting was less pronounced. Despite this,
unsupervised models show promise, particularly in sce-
narios where supervised pre-trained models are inacces-
sible, thus broadening the applicability of our approach.

• Substantial reduction in annotation effort: Using
our Active Class-Incremental Learning framework, we
demonstrate a significant reduction in the number of an-
notations required to achieve high class coverage in long-
tailed datasets. Specifically, our methodology discovers
100% of the classes on Places365-LT and ImageNet-LT
with 59.1% and 57.6% fewer annotations compared to
random sampling, respectively, by employing multiple
detectors in a committee approach. Similarly, we discover
99% of the classes on iNaturalist2018-Plantae with 23.0%
fewer annotations.

II. RELATED WORK

Active Learning (AL) traditionally aims to efficiently utilize
a limited label budget by selecting the most valuable samples
for labeling to maximize the performance of a model [10–
16]. In traditional AL, performance is expressed in evaluation
accuracy and typically operates under a closed-set assump-
tion, where all desired classes are known prior to training.
These implementations focus on sample valuableness, a metric
determined by a specific sampling strategy. Although typical
AL sampling strategies are not limited to closed-set settings,
there is limited research on AL for open-set annotation. In
this research, we extend the typical AL sampling strategies
to incorporate novelty detection algorithms, which might be
better suited for our setting.

A. Novelty Detection

Novelty detection [17] involves identifying and classifying
data points that differ from the labeled data available during
training. Terms such as anomaly detection and outlier
detection are frequently used interchangeably with novelty
detection, though they originate from different application
domains [18]. Despite the lack of a universally accepted
definition, these terms share a common goal: to identify data
points that deviate significantly from the norm. Most research
in this area focuses on training a model that can subsequently
be used to detect novel classes in an open-set scenario,
typically as a single-step process. In contrast, our research
emphasizes a multi-step methodology, wherein the detection
process is repeated during the annotation process, and novel
classes are continuously incorporated into the learning process.

A closely related field is Open-Set Recognition (OSR),
which focuses on determining whether a given input belongs
to any of the known classes, while ensuring accurate classifica-
tion of these known classes and mitigating false classification
of unknown classes. In practice, OSR operates on principles
similar to outlier detection at the architectural level, typically
adding layers that ensure the confidence level of unknown
classes remains below a certain threshold. Various approaches
in OSR achieve this by employing techniques such as training
additional memory banks to store features of known classes
and using clustering distances to adjust classification decisions
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[19, 20], or by training binary classifiers to distinguish between
known data and outliers [21].

There is a line of research that addresses the ”open-set
annotation” challenge. However, in contrast to our research,
these works [22–29] assume a closed-set output space.
Their approach focuses on selecting examples that belong
to closed-set classes for annotation while ignoring unknown
ones. Since most of these methods typically operate at the
architectural level, they require a substantial labeled dataset
to function efficiently. Moreover, incorporating novel classes
often necessitates retraining the entire architecture. These
techniques are therefore ill-suited for scenarios where the
outer layer changes frequently, as is the case in this research.

Another related area is Out-of-Distribution (OOD) detection
[30], which focuses on determining whether a sample falls
within the training distribution by utilizing anomaly detection
algorithms to identify unusual patterns in the data. OOD
methods are typically post-hoc or output-level approaches,
meaning they analyze the model’s outputs without requiring
modifications to the model’s architecture. This makes OOD
detection particularly useful in scenarios where architectural
changes occur, such as the incorporation of novel classes
during training. This flexibility enables OOD methods to be
more easily integrated into existing systems and to address a
wider variety of novelty detection challenges. In this research,
we categorize a wide variety of OOD detection methods into
Probability-based [30], Logit-based [31, 32], Feature-based
[33–37], Input-based [38], and Mixed methods [39, 40],
as shown in Table I. Each category represents a different
approach to novelty detection, offering various strengths
depending on the specific settings, elaborated further in
Section IV.

OOD techniques are commonly evaluated by appending
a pre-defined (open-set) dataset containing classes that are
mutually exclusive to the training dataset. However, our re-
search follows the setting where the OOD samples are the
novel classes within the unlabeled dataset. This scenario is
depicted in Figure 2. Due to the limited number of novel
classes within the unlabeled dataset, the complexity of the task
is significantly increased, making the evaluation of the detector
not directly comparable with other research (as elaborated in
Section IV-A). Nevertheless, detector performance can still be
assessed using a similar approach, as discussed in Section
IV-A. Notably, no prior research has specifically addressed
the annotation process for novel classes within the unlabeled
dataset, which is the primary focus of our work.

B. Class Incremental Learning

After detecting novel classes, our next step is to incorporate
them into the training process, introducing the realm of Class-
Incremental Learning (CIL) [41, 42]. This field addresses the
open-set problem by allowing the initial dataset to be open-
ended and extending the output space during training. One
of the primary challenges of CIL is mitigating catastrophic

Fig. 2: Illustration of the different definitions of the OOD
and our setting’s dataset. a) Illustrates appending a uniformaly
or class imbalanced distributed pre-defined dataset containing
mutually exclusive classes from the training set. The OOD
evaluate is based on maximizing the accuracy identifying if
a sample is from a trained class or novel. b) Illustrates our
setting, where the dataset is partly annotated and open-set
classes are the classes not yet represented in the labeled set.
The evaluation is done on the same dataset, where classes can
be both known and unknown, and where unknown classes are
often the rare classes.

forgetting, where the introduction of new classes causes the
model to forget previously learned ones [43]. A common
solution for catastrophic forgetting is the use of replay-based
techniques [41, 42, 44, 45]. In replay-based techniques,
the network revisits former classes by replaying samples
from previous tasks, which is the approach we adopt in this
research, as discussed in Section III-D1.

In our setting, the likelihood that novel classes belong to
the tail classes is high; this aligns closely with the field
of Few-Shot Class-Incremental Learning (FSCIL) [41, 42].
FSCIL adapts the N-way K-shot task format from Few-Shot
Learning (FSL), which drastically alters the learning process.
Furthermore, rather than using traditional CNNs that classify
individual samples, FSL and FSCIL often employ meta-
learning techniques such as similarity-based networks [46].
Meta-learning techniques are preferred in FSL and FSCIL
because they allow the model to learn how to match classes,
making it more adaptable to new classes with limited data.
Siamese networks use pair-based contrastive loss that attempts
to pull the same class closer and push different classes
further apart [47, 48], and Prototypical networks use the mean
of the embeddings of the samples in a class as the class
prototype [49]. Research in FSCIL on large-scale datasets
[50, 51] suggests that more refined meta-learning techniques
(e.g., class hierarchies) are necessary to decrease classification
complexity. This is because the size of the training dataset and
the number of classes quickly grow beyond the capabilities
of traditional FSL networks, a limitation we are likely to
encounter in this research.
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C. Unsupervised Feature Representation Learning

Unsupervised feature representation learning [52, 53] has
gained significant attention for leveraging large-scale unla-
beled datasets, especially in scenarios with limited labeled
data. Contrastive learning has proven to be an effective alterna-
tive to externally supervised pretrained classification models
(which is the de facto standard for pretraining), particularly
for domain-specific feature extraction from unlabeled datasets.
Studies have shown that unsupervised learning approaches
are more robust to class imbalance compared to supervised
methods [54], making them advantageous in imbalanced data
scenarios. Furthermore, advancements in unsupervised meta-
learning frameworks and positive-unlabeled learning strategies
have enhanced the ability of models to learn from limited
labeled data while efficiently utilizing vast amounts of unla-
beled data [55, 56]. These methods collectively contribute to
more effective domain-specific feature representation and have
demonstrated improved performance across various bench-
marks by first learning through unsupervised methods and then
fine-tuning on labeled data.

III. METHODS

This research explores the performance of various novel
class detectors within the field of Out-of-Distribution (OOD)
detection, employing an Active Learning (AL) approach.
Unlike traditional Open-Set Recognition (OSR) methods, our
approach integrates novel classes through Class-Incremental
Learning (CIL), allowing the model to continue training on
newly discovered classes without the need to retrain the entire
model. Thus, this approach works with open-set datasets,
where the discovery of new classes dynamically enhances
the model’s ability to distinguish between them, fostering a
continuous learning cycle.

We begin with a small initial labeled dataset and
progressively annotate new samples from the unlabeled
dataset. This iterative process is particularly novel in the
fields of AL, OSR, and CIL, as it leverages the information
gained from novel classes to improve further class discovery,
creating a feedback loop that refines the model over time.

The primary objective of this research is to identify an
efficient method for discovering as many classes as possible
during the annotation process while minimizing the number
of labels (and therefore human effort) required. Rather than
defining what constitutes a ”rare class” — a concept that is
often subjective and dataset-dependent — our approach em-
phasizes the ability to discover all classes within an unlabeled
long-tailed (LT) dataset.

A. Setting

1) Problem setting: For this research, we designed a
setting that emulates a practical annotation scenario on a LT
dataset, summarized by the following rules:

• There is no lower limit on the number of samples per
class; therefore, a class may exist with only a single
sample.

• There is no prior knowledge about the classes at the
start of training. This prohibits the use of pre-defined
class labels and hierarchies and requires the model to
incrementally grow the output space as new classes are
discovered.

• A validation dataset is created from the labeled dataset,
rather than being provided externally (e.g., a predefined
validation set).

• Uniformly distributed testing data is only employed as an
evaluation metric in research and does not influence the
training process, as this scenario is unlikely in real-world
applications.

As stated in Section II, no prior research has been identified
that adheres to these criteria, underscoring the novel
contribution of this work to the field.

2) Classification setting: Given a dataset D = DU ∪DL,
where DU denotes unlabeled samples and DL denotes labeled
samples, and DU∩DL = ∅. In D, there exist N unique classes,
and in DL, there are NL ⊆ N . NU denotes the novel classes
in DU that are not represented in DL.

We follow a typical LT classification distribution setting.
Given a labeled imbalanced dataset DL = {xi, yi}NL

i=1 with
NL training classes, where xi denotes a sample and yi
denotes its label. DL is ordered by descending in-class
samples ni, meaning ni < ni+1 where ni is the number of
samples in class index i. This creates head classes Nhead and
tail classes Ntail, which are the classes with the most and
least labeled samples, respectively.

3) Active learning setting: We also follow a typical AL
setting. The AL sampling strategy selects unlabeled samples
from DU to be queried by an oracle. In this context, an
”oracle” refers to a human annotator or an automated system
that provides the correct labels for queried samples. This
process is iterative throughout training and expands DL.
There is an initial labeled dataset DI to which queried
samples D+ are added in each iteration. During the querying
process, the overall human effort encompasses the effort
required to label both DI and all D+. In other words, human
effort is equivalent to the total number of labeled samples
|DL|, including the initial dataset DI .

4) Novel class setting: When DL ≪ D, due to the LT
distribution, it is likely that novel classes NU exist within DU .
We assume that NL and NU are mutually exclusive. During
the AL process, novel samples x+ that belong to a class in
NU are likely to be queried, leading to the discovery of novel
classes N+ while annotating D+.
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Fig. 3: Overview of the datasets used in the research. Under distribution, the train-set class distribution is sorted with respect
to sample occurrence. The line color indicates the tail-category it belongs to, where ”> 100” are Head-classes and ”20 − 5”
and ”< 5” are Tail-classes. For each subset, the number of samples is shown. The images are sampled from the train-set and
open-set. Note that the predefined validation-set is only used in our first experiment.

B. Datasets

In this research, we use three large-scale image classification
datasets, as shown in Figure 3. The datasets are:

• Places365-LT [19]: A LT version of the original
Places365 dataset, containing 1.8 million images from
365 classes. The long-tailed version is a static list of
images selected from the original dataset, resulting in a
LT distribution. It includes a uniformly distributed test
set and a predefined validation set. The open set consists
of mutually exclusive classes from all other subsets. All
images are of size 256× 256 pixels.

• ImageNet-LT [19]: A LT version of the original Ima-
geNet2012 dataset, containing 1.2 million images from
1,000 classes. Images are selected similarly to Places365-
LT. The images are rescaled to 256 × 256 pixels, as the
dataset contains images of varying sizes.

• iNaturalist2018-Plantae: A subset of the iNaturalist2018
[1] dataset, containing only the Plantae superclass. The
original dataset has 1.1 million images from 8,142
classes. iNaturalist2018-Plantae is randomly split into
two subsets: a training set and a test set, following a
holdout rule where a uniform subset of samples is split
off from each class. The images are rescaled to 256×256
pixels, as the dataset contains images of varying sizes.

1) Label semantics: Comparing the datasets, Places365-
LT is a scene-centric dataset, emphasizing the context and
spatial arrangement of multiple objects within a scene, while
ImageNet-LT is object-centric, focusing on distinct object fea-
tures and shapes. Conversely, iNaturalist2018-Plantae is fine-
grained, requiring the model to differentiate between subtle
variations among plant species. Thus, the chosen datasets offer
significant variation in their label semantics, which impacts the
model’s feature learning, generalization, and may influence
novelty detection capabilities.

2) Class distribution: The distributions of Places365-LT
and ImageNet-LT are comparable, both having a minimum of
5 samples per class. The main difference lies in the number
of samples in the head classes. ImageNet-LT is considered
more challenging because it contains three times as many
classes as Places365-LT and twice as many total samples. The
distribution of iNaturalist2018-Plantae is even more extreme,
with over 60% of the classes having fewer than 20 samples.
There are nearly three times as many classes to be discovered
compared to ImageNet-LT.

Together, these three distinct datasets provide a
comprehensive evaluation of the detectors’ performance
across different label semantics, class distributions, and
dataset sizes.

3) Subset creation: Using these datasets, we generate seed-
based subsets for use in the research. The dataset is split into
the following subsets:

• DL: Subset containing all labeled samples.
• Dtrain: Class-balanced sampling on a K-Fold cross-

validated DL.
• Dval: Validation subset used to determine when to

stop training, generated from DL through K-Fold cross-
validation (see Section III-C4). This should not be con-
fused with the predefined validation set.

• DU : Unlabeled subset on which novelty detection is
performed.

• Dtest: Uniformly distributed subset of all classes, either
using the provided external test set or split uniformly
from the dataset through a holdout rule.

• Dopen: An external subset of only open classes used to
extend the open-set recognition evaluation, either using
the provided external test set or generated from the
original dataset.

DI is created by selecting a configurable number of samples
at random to be labeled and used at the start of the training
process.
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C. Data sampling and manipulation
Our setting requires an unconventional approach to data

sampling. Data sampling refers to the process of selecting a
subset of data from a larger dataset for training, validation,
and testing, and it is typically used in class-imbalanced
settings. In our context, data sampling involves selecting from
a dynamically growing DL as it labels samples from DU . This
impacts the class indexes, as novel classes must be added to
the output layer of the model. Model validation is done using
samples in DL rather than relying on a predefined validation
set. We use K-Fold cross-validation to create Dtrain and
Dval, which are updated at each epoch. In LT classification
and Few-Shot Class-Incremental Learning (FSCIL) tasks, it is
common to balance the classes in the training set. Otherwise,
head classes are overrepresented compared to tail classes,
biasing the model toward head classes and causing it to
ignore tail classes. These methods are further elaborated in
the following sections.

1) Augmentations: We follow the commonly used
ImageNet augmentation, which include random cropping,
rotation, flipping, and color adjustments.

2) Annotating data through queries: In our experiments,
we use ground-truth datasets but hide the labels where neces-
sary. The implementation can query unlabeled samples from
DU to a virtual oracle, which provides the ground-truth labels
and includes them in DL. This simulates the annotation
process of a human. Note that we do not use noisy labels
(i.e., incorrect ground-truth labels).

We use a static number of queried samples, denoted as
|D+|. In each iteration of the AL process, |D+| samples are
labeled and added to DL. The samples are selected based
on the novelty detection results, further elaborated in Section
III-F. The reason for using a static |D+| is two-fold: (1) it
allows for a more controlled evaluation of the detectors, as
the number of samples queried is not dependent on detector
performance, and (2) it ensures that the annotation process
continues, even if the detectors perform poorly.

3) Class reorder: During the creation of DI , the original
class labels are not usable, as this would imply that the output
layer of the model contains [0, 1, 2, ..., |N |] as output classes.
Firstly, this requires knowledge of the number of classes in the
dataset, which is not available in this setting. Secondly, if the
open classes exist in the output layer without corresponding
samples to train on, it would unnecessarily expand the output
layer. Having classes in the output layer without corresponding
samples can lead to the model learning to ignore these classes,
which skews the training process.

To address this, we create a class mapping that converts
the original class labels to a new class index range consisting
only of labeled classes (NL). This class index range is also the
possible output of the model, the output layer. Classes that are
not yet labeled (NU ) are mapped to −1 and do not exist in the
output layer. When novel classes are discovered (as a result of

Fig. 4: Illustration of the class reorder process. Only the
classes in DL are represented in the output layer. We assign
an alternative class index to each discovered class so that the
output layer holds only labeled classes. If a novel class is
discovered during the annotation process, the output layer is
extended to include the new class. CC denotes Class Coverage,
which is the percentage of classes discovered in the dataset.

annotating, N+) from the unlabeled datasets, the class index
range is extended, incorporating the new class into the output
layer. This process is illustrated in Figure 4. Samples in Dopen

are also labeled as class −1, allowing for OSR evaluations to
be conducted on classes mapped to −1.

This simple yet efficient method allows the model to
dynamically incorporate new classes without needing to
know the number of classes in the dataset beforehand. It
also enables the model to continuously train on an increasing
number of trainable classes without retraining the entire model
(as elaborated in Section III-D1), addressing a common issue
in CIL and OSR methods.

4) K-Fold cross-validation: During CIL cycles, we use K-
Fold cross-validation to create Dtrain and Dval. K-Fold cross-
validation ensures that the model is evaluated on different
subsets of the data, providing a more robust estimate of model
performance and reducing the risk of overfitting to a static
Dval. A static Dval is impractical in this setting, as new data
is labeled continuously, requiring a new Dval to be created
for every epoch.

The dataset is split into K folds, where each fold serves as
the validation set Dval once. The model is trained on Dtrain,
which consists of the remaining K − 1 folds. Performance
evaluation is conducted on the generated Dval, where the same
early stopping mechanism is applied. No class balancing is
performed on Dval as it best simulates the distribution of DU .
Increasing K reduces the amount of data in the validation set
but maximizes the use of data for training.

The model is trained with an early stopping mechanism
based on validation loss on Dval. If no improvement is
observed for a set number of epochs (Patience), the model
reverts to the state with the highest validation accuracy, and
training is stopped.
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5) Balanced sampling: To mitigate the effects of class-
imbalanced learning, where head classes are overrepresented
compared to tail classes, we use a stratified sampling method,
Random Oversampling (ROS), to balance the number of
samples presented per class. For each epoch, a new variation
of Dtrain is created, where each represented class gets a
configurable number of slots. Samples are randomly selected
from the available samples for that class (see Section VII-D).
If a class has fewer samples than the number of slots, already
chosen samples can be picked again until the number of slots
is filled. Data augmentation is applied separately to these
duplicate samples, generating different variations of the same
data sample.

D. Pretrained Model Weights

In our research, we approach the use of pretrained models
in two distinct ways: using open-source available datasets
(and weights) and learning feature representations from an
unlabeled dataset.

a) Pretrained model on ImageNet: As a general open-
source pretrained model, we utilize the provided weights from
PyTorch’s [57] for a ResNet50 [58] network pretrained on the
full ImageNet dataset [59]. Our evaluations on ImageNet-LT
using these weights should be interpreted with caution, as the
ResNet50 backbone has been trained on the same dataset,
which could affect the evaluation of its ability to discover
novel classes. We argue that evaluating on ImageNet-LT
extends this research by providing a case where an almost
”perfect” pretrained or transferable model exists.

b) Unsupervised Feature Representation Learning:
As an alternative to using a general pretrained model, we
explore learning feature representations on an unlabeled
dataset. This approach is motivated by the idea that the
model can learn domain-specific features that may not be
present in a general pretrained model. Furthermore, by using
Unsupervised Feature Representation Learning rather than a
supervised approach, our research supports applications where
open-source pretrained models for transfer learning may not
be available. We use an unsupervised learning approach
called MoCo [52, 53], where the model is trained through
contrastive learning on an unlabeled dataset. It is important
to note that the resulting features focus on distinguishing
characteristics, which may be more suitable for our task of
discovering novel classes.

We train our MoCo models prior to our experiments using
4 distributed GPUs with a batch size of 256, following the
suggested hyperparameters in the original paper. For each
dataset, a model is trained for 600 epochs using only the
images (not any labels). The resulting performance is shown
in Table A.3.

1) Class-Incremental Learning: After DI is created, the
CIL process begins. In CIL, the model iteratively queries
samples from DU and adds them to DL, incorporating
novel classes. K-Fold cross-validation and balanced sampling
together form part of CIL’s Replay-based tasks. In replay-
based tasks, the network revisits former classes by replaying
samples from previous tasks. This mitigates catastrophic
forgetting, where the introduction of new classes can
cause the model to forget previously learned ones. Unlike
traditional CIL tasks, which are predetermined at the start
of training, our tasks are generated at each epoch. An
epoch is defined as a single pass of all samples provided
by the balanced sampler, and an iteration refers to each
individual cycle of training and annotating samples. Each
class is given a configurable number of slots, meaning
novel class samples may be presented more than once
during training. Classes with more samples are limited to
presenting a subset of their samples per epoch, allowing the
model to revisit former classes similarly to replay-based tasks.

2) Training Configurations: We avoid using similarity-
based networks, which are common in FSCIL tasks, where
the model is trained to recognize known classes and detect
unknown classes based on their similarity to the known
classes. Similarity-based networks do not scale well to large
datasets [50, 51], as they require changes in hierarchical class
structures. These changes introduce additional complexity
and instability, which are undesirable in our setting because
they make it harder to maintain consistent performance and
scalability.

Instead, we use traditional class-classification networks and
cross-entropy loss. Class-classification networks categorize
input data into predefined classes, and cross-entropy loss
measures the difference between the predicted probability
distribution and the true distribution, effectively penalizing
incorrect classifications.

The model is trained using a single Adam optimizer split
over the backbone and the Fully Connected layer (FC) layer:

• Backbone: The backbone is trained using a OneCycleLR
scheduler, which starts with a learning rate of 0, increases
to 1.5× 10−4, and then decreases back to 0.

• FC: The FC is trained using a StepLR scheduler, which
reduces the learning rate by a factor of 0.9 every 5 epochs.

These schedulers allow the model to first train the FC layer
to learn novel classes and then fine-tune the backbone to
incorporate these new classes. Without this implementation,
the randomly initialized FC neurons for novel classes could
interfere with the backbone’s training, hindering the fine-
tuning process.
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E. Evaluation Metrics

During this research, we have access to the ground truth
of the dataset, which allows us to evaluate the detectors
directly on NU . To avoid biases related to threshold selection,
we evaluate the detectors in a threshold-independent manner,
in line with our approach of selecting a fixed number of
samples to label in each iteration, as detailed in Section III-C2.
Our evaluation focuses on Area Under Receiver Operating
Characteristic (AUROC) and Area Under the Precision-Recall
(AUPR), common metrics in the field of OSR, which are
based on single-step evaluations. For our CIL experiments,
we incorporate additional metrics: Queried Novel Classes,
Class Coverage, and Effort metrics, which assess the overall
efficiency and effectiveness of the entire annotation process
beyond a single OSR step.

We utilize the following metrics to evaluate the detectors:
• AUROC↑: The Area Under Receiver Operating Char-

acteristic measures the detector’s ability to distinguish
between known and novel classes across all possible
thresholds. It represents the probability that a randomly
chosen novel class will be ranked higher than a randomly
chosen known class. AUROC is useful for balanced
datasets where both classes are equally important, but
it can be less informative in imbalanced scenarios, as it
may give an overly optimistic view of performance.

• AUPR↑: The Area Under the Precision-Recall [60] quan-
tifies the area under the precision-recall curve, capturing
the trade-off between precision and recall across all
thresholds. AUPR is especially valuable in imbalanced
datasets, such as our setting, where the positive class
(novel classes) is rare, making precision as important as
recall. This metric provides a more focused evaluation of
the detector’s performance in such scenarios.

• Queried Novel Classes (N+)↑ and Novel samples
(x+)↑: By sampling D+ samples from DU and querying
the oracle, D+ may contain NU . This metric provides
insight into the model’s ability to discover new classes
during a single annotation step. For DU , we use N+ to de-
note the discovered novel classes, where each novel class
is represented by a newly labeled sample. For Dopen, we
use x+ to denote the discovered novel samples, as these
datasets do not contain class labels, and therefore N+

cannot be determined.
• Class Coverage↑: This metric represents the percentage

of classes discovered in the dataset and is calculated as
the percentage of classes with at least one labeled sample
in DL (Class Coverage = |NL|/|N |). It provides insight
into the model’s ability to discover new classes over the
course of the entire annotation process.

• Effort (DL/D)↓: This metric tracks the total number of
labeled samples in DL compared to the total number of
samples in D. Used in conjunction with Class Coverage,
it evaluates the efficiency of the model in discovering new
classes while minimizing the human labeling effort.

Fig. 5: Illustration of the detector categories defined in this
research. Each category corresponds to a specific state of the
data being processed by the model. The backbone consists of
the convolutional layers, the FC is the fully connected layer,
and the Softmax and ArgMax operations result in the final
classification of input data.

F. Novel Class Detection

In line with AL terminology, our sampling strategies select
the most informative samples from DU to be queried by the
oracle. These strategies, referred to as ”detectors,” are used to
infer over the entire DU , assigning a novelty score to each
unlabeled sample. The |D+| samples with the most favorable
novelty scores are selected, labeled by the oracle, and added
to DL.

We categorize the detectors based on which data layer
they use as input for their algorithm. Figure 5 illustrates the
different categories with respect to a model’s architecture. The
categories are as follows:

• Probability: Uses the softmax class probabilities as input.
• Logit: Operates on the output of the FC layer before the

softmax layer.
• Latent: Uses the linear layer between the backbone and

the FC layer.
• Feature: Takes the output from the backbone, after the

last pooling layer (except for ASH detectors).
• Input: Utilizes the entire model to process input features.

Table I lists all detectors used in this research, providing
a short description and their corresponding category. The
detectors are implemented based on the framework by [61].

IV. EXPERIMENT RESULTS

We conducted a series of experiments aimed at investigating
the distinctions between traditional training paradigms and
our novelty detection task, as well as evaluating how different
novelty detection approaches perform in discovering novel
classes during the annotation process. Since the detectors
employ distinct methodologies for novelty detection, we
systematically tested multiple configurations for each. These
configurations explored variations in pretrained models
(using ImageNet and MoCo) and trainable parameters. Each
experiment was repeated twice with different random seeds
to ensure robustness, and the results were averaged. For
clarity, we present only the best-performing configuration for
each detector, where ”best” refers to the configuration that
achieves the highest average ranking across all points on the
x-axis in the respective graphs.
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DETECTOR USES DESCRIPTION SOURCE
Uncertainty Probability Uses softmax output probabilities to compute the uncertainty score of a sample, identifying how likely

the sample belongs to the predicted class.
Ours

Margin Probability Calculates the margin score by taking the difference between the highest and the second-highest class
probabilities.

Ours

KLMatching Probability Captures the typical posterior distribution shape for each class and compares the network’s softmax
distribution during inferencing to these templates, generating an anomaly score based on the minimum
KL divergence.

[30]

Energy Logit Computes the negative energy of the logit vector, which is utilized as an outlier detection score to
identify novel classes.

[31]

Entropy Logit Measures the entropy of the classifier’s logits to quantify uncertainty in the model’s predictions, aiding
in detecting outliers.

[32]

KNN Latent Fits a k-Nearest Neighbor model to labeled samples and scores unlabeled samples by calculating
their distances to the nearest labeled neighbors, using these distances as an outlier score. (Minkowski
Euclidean distance, k:3, radius:1, leaf size:30, scoring:Energy)

[34]

ViM Logit+Feature Detects OOD samples by generating a virtual logit from the residuals in the feature space and matching
it with the original logits. The softmax probability of this virtual logit indicates the degree of OOD-ness.
(Dimensionality of the principal subspace:0)

[40]

ReAct Feature Identifies the most influential weights post-backbone layer using a contribution matrix, then sparsifies
the connections based on these weights, improving OOD detection without modifying the network’s
parameters. (Clipping threshold:1, scoring:Energy)

[33]

ASH Feature Prunes the largest activations from the features (ASH-p), binarizes the remaining activations (ASH-b),
and rescales them (ASH-s), with energy-based outlier scoring. (Percentile activations modified:0.65,
scoring:Energy)

[35]

DICE Feature Sparsifies weights by ranking them according to their contribution to ID classification and selects the
most significant ones for detecting OOD. (Percentile weight drop:0.7, scoring:Energy)

[36]

SHE Feature Uses a Hopfield Network to store patterns and retrieve them by minimizing an energy function. This
process updates input patterns to converge toward stored patterns. OOD detection is facilitated by
comparing input patterns with those derived from the labeled dataset, measuring their similarity.

[37]

RMD Input+Feature Enhances the Mahalanobis Distance (MD) method by subtracting the MD of a distribution fitted on
all training data from the class-specific MD, effectively computing a likelihood ratio. This provides a
robust, hyperparameter-free confidence score for near-OOD detection.

[39]

ODIN Input Enhances the separation of ID and OOD data by adjusting softmax scores with temperature scaling.
It then preprocesses inputs by adding perturbations that increase the softmax score, enabling effective
classification based on a predetermined threshold. (Gradient descent step:0.05)

[38]

Committee - Combines multiple detectors, elaborated in Section IV-D. Ours

TABLE I: Overview of novelty detectors used in this research, including their hyperparameters (if applicable).

The first experiment (Section IV-A) seeks to understand
the complexity of novelty detection in our specific setting,
questioning whether performance on the OSR task directly
translates to performance in our task. We assess the detectors’
performance at a single step of the annotation process using the
DU and Dopen datasets. To explore the influence of different
training settings, we introduce the following:

• Both: Both the backbone and the Fully Connected layer
(FC) layer are trained.

• Frozen: Only the FC layer is trained, while the backbone
remains frozen.

• Pretrained model: The pretrained model is either super-
vised (ImageNet) or unsupervised (MoCo).

We evaluate performance using AUROC and AUPR, which are
standard metrics in OOD and OSR evaluations. Additionally,
we introduce custom metrics, x+ and N+, to measure
annotation effectiveness in our task. Early stopping is applied
based on a predefined validation set to mitigate overfitting.

In the second experiment (Section IV-B), we investigate
whether employing K-Fold cross-validation, as opposed to
using the predefined validation set, affects overfitting. By
splitting the validation data from the training set, we introduce
additional complexity into the training process and analyze
its effect on model generalizability.

The third experiment (Section IV-C) investigates how differ-
ent detectors perform in discovering novel classes during the
annotation process. Here, we compare detectors and random
sampling in terms of achieving Class Coverage, as indicated
by the number of labeled samples required. Upon identifying
novel classes (N+), the model’s output layer is extended to
accommodate these new classes (see Section III-C3). Two
different approaches are tested:

• Continuous: Both the backbone and FC layer are kept
as new classes are discovered. The additional outputs
in the FC layer are randomly initialized along with the
optimizer. This approach raises concerns about potential
overfitting, which we further elaborate on in Section
IV-B.

• Reload: The backbone is reset to its original pre-trained
state, and the FC layer and optimizer are reinitialized.
This approach completely restarts training with newly
discovered classes, providing insights into potential
improvements in class discoverability.

The final experiment (Section IV-D) examines the potential
for leveraging multiple detectors simultaneously. We inves-
tigate whether employing multiple detectors in a committee
approach can enhance novelty detection performance and
assess whether a universal combination of detectors and con-
figurations can perform consistently across diverse datasets.
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A. Single-Step Novelty Detection and Open-set Recognition

In the first experiment, we evaluate detector performance
in a single-step annotation process using the DU and
Dopen datasets. The evaluation metrics include Area Under
Receiver Operating Characteristic (AUROC), Area Under
the Precision-Recall (AUPR), x+, and N+, with AUROC
and AUPR being standard in Out-of-Distribution (OOD)
and Open-Set Recognition (OSR) evaluation. The x+ and
N+ metrics emphasize practical performance by selecting
the top-scoring |D+| samples (following the configuration
in Table A.4). In this experiment, we use the dataset’s
Predefined Validation set for early stopping, ensuring that
the model does not overfit to the training data.

For Dopen, which reflects traditional OOD and OSR tasks,
AUPR benefits from having an increased amount of labeled
data. As shown in Figure 6, detectors maintain relatively
stable AUROC values across all labeled percentages, reflecting
consistent binary classification ability as the class distribution
shifts. In contrast, DU presents a more challenging task,
requiring the discovery of novel classes within the same
dataset. As more data is labeled, the AUPR and N+ metrics
exhibit a downward trend due to the decreasing number
of novel classes in DU , making novel instance detection
increasingly difficult.

The ranking of the detectors would be expected to
be similar on both DU and Dopen if the settings were
comparable. However, this is not the case for AUROC,
AUPR, x+, and N+. When analyzing the overall ranking
of the detectors across all datasets, we observe that the best
and worst-performing detectors alternate between DU and
Dopen. This finding suggests that detector performance on
Dopen does not reliably generalize to DU , indicating that
the two tasks differ due to variations in dataset structure and
complexity.

A noteworthy finding is that for several detectors, the
unsupervised MoCo pretrained model performs better on
the Dopen datasets than the ImageNet pretrained models,
though this advantage does not extend to the DU datasets,
contrary to our expectations. Given the unique features
learned through contrastive learning in MoCo, we anticipated
better performance on DU . This suggests that MoCo’s learned
features may be more effective in OSR tasks than those
learned through traditional supervised classification. Notably,
even when compared to the almost perfectly pretrained
ImageNet models on ImageNet-LT, MoCo achieves superior
performance on the Dopen dataset for several detectors,
further highlighting its potential to enhance OSR capabilities.

In summary, this experiment highlights the differences be-
tween traditional OOD and OSR tasks and our novelty detec-
tion task. It demonstrates the complexity of novelty detection
during the annotation process and the limitations of traditional

metrics and methods in this setting. Each detector has an
optimal configuration for each dataset and metric. Surprisingly,
the MoCo pretrained model does not show significant benefits
for our novelty detection tasks, although it does for OSR tasks.
No further analysis is provided for the OSR tasks, as the focus
of this research is on novelty detection. Overall, the results
suggest that the best detectors for our Active Class-Incremental
Learning task are KLMatching, RMD, DICE, Uncertainty,
KNN, Margin, and SHE. However, their performance may
depend on the dataset, the amount of labeled data, and the
multi-step nature of the problem, which we further explored
in Section IV-C.

B. Training using K-Fold Cross-Validation

In this experiment, we no longer use the predefined
validation dataset for early stopping, as in the first experiment
(Section IV-A). Instead, the validation data is split from the
training data, aligning with our setting where preventing
overfitting is critical. We present the results for Places365-
LT, noting that ImageNet-LT shows similar behavior (see
Figures A.9 and A.10) due to shared characteristics (e.g.,
long-tailed (LT) distribution, annotation quality, and class
imbalance). The key differences in performance are primarily
driven by the training paradigm rather than the dataset
itself. iNaturalist2018-Plantae is less affected by K-Fold
cross-validation, likely due to a too small model size to train
effectively.

1) Accuracy Performance and Trainable Settings:
We utilize accuracy as a metric to evaluate the training
performance and to assess the impact of K-Fold cross-
validation on overfitting and generalization. In Figure 7, we
compare the training performance for each combination of
pretrained models and training settings. The results show that
the MoCo pretrained model has notably lower training and
testing accuracy compared to the ImageNet pretrained model.
This is likely due to MoCo being trained with a contrastive
loss function, which emphasizes the extraction of more unique
features for class distinction [54], but tends to underperform
in classification tasks. In the first experiment (Section IV-A),
we demonstrated that the MoCo pretrained model performs
better on the Dopen dataset with several detectors in the
OSR task, suggesting that testing accuracy does not always
correlate with performance in novelty detection tasks.

2) K-Fold Cross-Validation: Compared to using a pre-
defined validation set, K-Fold cross-validation introduces a
higher risk of overfitting, as the model is evaluated on the same
data it was trained on (see Section III-C4). The more the model
is trained, the less effective the validation process becomes,
as demonstrated in the Both Continuous setting. Overfitting
is typically indicated by high training accuracy and lower
testing accuracy, which is evident in Figure 7. When both the
backbone and FC layer are trained, the training accuracy is
higher, but the testing accuracy is lower compared to freezing
the pretrained model. In contrast, in the Frozen setting, the
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Fig. 6: Open-set recognition on the Places365-LT and ImageNet-LT datasets using the predefined validation set. The detectors
are evaluated on the Dopen dataset (left) and the DU dataset (right) with the metrics AUROC↑ (top), AUPR↑ (middle), and
x+ and N+ ↑ (bottom). The x-axis indicates the percentage of the dataset that is labeled DL/D ↓, and the y-axis is scaled
to the range of the minimum and maximum values for each labeled percentage. We include Experimental Random, which
shows values obtained using random sampling. In AUROC plots, the horizontal line indicates a AUROC of 0.5. Only the best
configuration per detector is shown; the legend indicates the configuration (e.g., B.I implies Both on ImageNet’s pretrained
model, and F.M implies FC on MoCo’s pretrained model). The legend is sorted based on the average ranking of detectors
across all labeled dataset percentages.

Fig. 7: Impact of K-Fold cross-validation on training and testing
accuracies using different training settings and pretrained models on
Places365-LT. The x-axis indicates the percentage of the dataset that
is labeled. Training and Testing Accuracies↑ are shown on the y-axis.
The rightmost graph shows the average Early Stopping Epoch↓ for
each k-fold configuration.
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testing accuracy is less affected by K-Fold cross-validation,
indicating that training both components increases the risk of
overfitting.

In Figure A.9, we analyze the impact of K-Fold cross-
validation on the single-step novelty detection task. Despite
the reduced generalization, most detectors show improved
performance when training both components, likely due to
the detectors’ enhanced ability to distinguish between novel
classes. Therefore, all configurations (training settings and
pretrained models) are still considered.

Both Figure Figure 7 and Table A.9 display different config-
urations of K-Fold cross-validation, where the number of folds
and patience values are varied. The results indicate a minimal
impact on accuracies and detection performance, except for
the Early Stopping Epoch, which is significantly affected. A
K of 5 with a Patience of 6 produces the lowest Early
Stopping Epoch across all combinations of training settings
and pretrained models and will be applied in the subsequent
experiments.

When the backbone is not Frozen, K-Fold cross-validation
exacerbates overfitting, especially in the Continuous setting,
where the backbone is kept throughout the annotation process.
Over successive iterations, the validation data is drawn from
the training data that has already been fine-tuned, leading to an
ineffective validation set. The effects of this issue are further
explored in Section IV-C.

C. Novelty Detection with Active Class-Incremental Learning

Using the detectors from Table I, we apply the Class-
Incremental Learning (CIL) framework (see Figure 1). We
evaluate detector performance based on the number of labeled
samples DL required to achieve Class Coverage. After se-
lecting the initial dataset DI at random, we follow the cycle
described in Section III-D1. The model is trained on DL,
novelty detection is used to select |D+| samples from DU for
labeling, these samples are added to DL, and novel classes
are incorporated into the model through CIL. This process is
repeated for 14 more queries, resulting in 15 queries including
DI . During this process, we record class coverage, paying
special attention to the number of samples required to achieve
90%, 95%, 99%, and 100% class coverage (milestones).
The experimental configurations per dataset are shown in
Table A.4, which also includes the milestones for a naive
setting where samples are selected randomly. We vary the
following parameters: the detector, training settings (Frozen,
Both), model state retention (Continuous, Reload), and the
pretrained model (ImageNet, MoCo). Each experiment is
conducted twice with seeds 1 and 2, and the results shown
are averaged across both seeds. Early stopping is performed
on Dval using K-Fold cross-validation, with a K of 5 and a
patience of 6.

The best configurations for each detector are presented in
Figure 8, with a comprehensive overview provided in Table
A.6. As expected, the N+ metric in single-step detection
(Section IV-A and Section IV-B) serves as a good indicator of
performance in our multi-step novelty detection task.

Fig. 8: Best-performing detectors across all datasets in the
Novelty Detection with Active Class-Incremental Learning
process. The x-axis indicates the percentage of the dataset
that is labeled DL/D ↓, and the y-axis shows corresponding
Class Coverage. Milestone markers indicate when the detector
achieves Class Coverage. The mean and standard deviation
for random sampling are included. The right plot shows the
same data, with the y-axis representing the difference from
the theoretical Random baseline. The legend is sorted by the
average ranking of detectors across all queries.
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However, due to the sequential nature of multi-step
detection, a critical nuance is overlooked in single-step
experiments: after each step, the samples queried by
the detector are removed, making subsequent detections
progressively more challenging. Additionally, some detectors
may develop a bias toward certain features or classes,
reducing their ability to discover novel classes in later steps.
Notably, most detectors from the Feature category exhibit
this behavior, where they rank better in the single-step
experiments than in the multi-step ones. The results also
demonstrate that the iNaturalist2018-Plantae dataset presents
significant difficulty in identifying all classes, which can be
attributed to a more imbalanced class distribution, as shown
in Figure 3.

Detectors from the Probability category, as well as RMD,
demonstrate superior performance in multi-step novelty detec-
tion. As shown in Figure 8, Table A.6, and Table A.5, these
detectors consistently rank among the top performers across
all datasets. Table A.6 details the number of labels required to
reach specific milestones compared to random sampling, high-
lighting the best individual detectors for each dataset. By using
KLMatching, RMD, Entropy, and KNN on Places365-LT, we
achieve 100% class discovery with 46.9% fewer annotations
compared to random sampling. Similarly, on ImageNet-LT and
iNaturalist2018-Plantae, we achieve 99% class coverage with
59.9% fewer annotations using Uncertainty and 23.0% fewer
annotations using KLMatching, respectively, all leveraging the
supervised ImageNet pretrained model.

D. Multiple Detectors by Committee

In this final experiment, we explore the benefits of
using multiple detectors to discover novel classes during the
annotation process. In the previous experiment (Section IV-C),
we observed significant variation in detector performance
across datasets. Some detectors excelled on specific datasets,
and their performance was influenced by the amount of
labeled data available. As each queried novel class is removed
from the pool of undiscovered classes, subsequent detection
becomes more challenging, and a detector’s novelty detection
potential may diminish over time. We investigate the potential
benefits of combining detectors [62] to perform consistently
well across various datasets, regardless of their characteristics
(e.g., label semantics).

1) Potential Novel Classes Using Other Detectors: We
assessed the benefits of multiple detectors by analyzing how
many novel classes each alternative detector would have
queried at a single step, had it been used instead of the
active detector. The results, visualized in Table A.5, confirm
that different detectors identify different novel classes. This
supports the hypothesis that combining detectors can enhance
overall performance.

2) Combining Detectors: Based on the results from Table
A.5, we selected the best-performing detectors for each pre-
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TABLE II: Multiple detector combinations used for each pre-
trained model and trainable parameter. The T-Scaling column
shows the scaling factor used for each detector, where x
represents the query number.

trained model and trainable parameter. The combinations are
shown in Table II.

We propose two approaches for combining detectors:
• Committee by Majority (Committee): Each detector

selects its top-ranked novelty samples, with the weight of
each vote based on the sample’s rank in the novelty score.
The top |D+| samples with the highest collective weight
are queried. Samples selected by multiple detectors are
more likely to belong to novel classes and are prioritized
for querying.

• T-scaled Committee by Majority (Committee*): This
method extends the Committee by Majority approach by
applying a temperature scaling factor, adjusting detector
weights based on their performance. This accounts for
the observation that some detectors perform better in the
early stages of annotation, while others excel later in the
process. The scaling factors used in this experiment are
shown in Table II.

The comparative performance of these combinations
against individual detectors is presented in Figure 8 and
Table A.6, labeled as Committee and Committee*, ranking
among the highest-performing detectors. The T-scaled
Committee* approach consistently outperforms individual
detectors, achieving 100% class coverage for Places365-LT
and ImageNet-LT with 59.1% and 57.6% fewer annotations
than random sampling, respectively.

On iNaturalist2018-Plantae, however, it was still outper-
formed by Margin and KLMatching. We anticipate that further
fine-tuning of the T-scaling factors will enable Committee* to
outperform on iNaturalist2018-Plantae as well. These results
underscore the potential of multi-detector approaches to sig-
nificantly enhance annotation efficiency across datasets.
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V. DISCUSSION

The experiments conducted in this study offer several
significant insights that advance the field of novelty detection
and long-tailed (LT) dataset annotation. First, our results
highlight a clear distinction between the Open-Set Recognition
(OSR) task and the novelty detection tasks introduced in this
study. This distinction implies that the evaluation metrics and
methodologies used in existing OSR and Out-of-Distribution
(OOD) research are not directly transferable to our setting
(see Section IV-A). This realization underscores the necessity
for a dedicated benchmark specific to novelty detection, which
our study establishes by providing a thorough evaluation of
multiple detection algorithms across three widely used LT
datasets with various training settings.

Furthermore, the integration of OOD detection methods,
specifically KLMatching, RMD, and ReAct, into Active
Learning (AL) sampling strategies demonstrated a notable
improvement in discovery performance, both for OSR and in
our novelty detection task. These detectors, combined with
traditional AL strategies such as Uncertainty, Margin, KNN,
and Entropy, consistently ranked among the top performers
across all datasets. This observation suggests that combining
AL with OOD detection methods enhances the identification
of valuable samples for annotation, which is the primary
aim of AL. The combination of multiple detectors through
the Committee approach consistently ranked among the top
performers across all datasets, leveraging the complementary
strengths of various detectors to provide a more robust
solution for novelty detection.

Another key finding of this study is the exploration
of the usability of unsupervised pre-trained models, such
as MoCo, illustrating their potential in scenarios where
supervised models are unavailable. Although these models
generally underperformed compared to supervised pre-
trained models (on ImageNet), they achieved a significant
reduction in annotations needed to achieve high class
coverage, demonstrating that unsupervised learning is a
viable alternative in contexts where transfer learning from
supervised models is not feasible.

Lastly, specific detectors have preferences for training set-
tings; however, it is possible to train a model where detectors
can discover novel classes while the backbone is frozen with
any non-feature-based detectors. This eliminates the need for
class-incremental learning techniques used during continuous
training, simplifying and accelerating the training process.
Selecting the optimal training setting, detector, or combination,
and pre-trained model depends on the dataset and resource
availability. However, our results demonstrate that it is feasible
to discover all classes with significantly fewer annotations than
random sampling across all datasets using probability-based
detectors while the pre-trained backbone is frozen.

VI. CONCLUSION

This research presents a novel approach at the intersection
of AL, Class-Incremental Learning (CIL), and novelty
detection, with a particular focus on annotating long-tailed
image datasets. Our method operates under an open-set
assumption and facilitates continuous learning as novel
classes emerge, without relying on predefined validation sets
or prior class knowledge.

Our findings reveal that the detectors KLMatching, RMD,
and ReAct from the field of OOD detection improve on
the standard AL strategies, such as Uncertainty, Margin,
KNN, and Entropy, in identifying valuable samples for
annotation. KLMatching discovers 99% of the classes with
23.0% fewer annotations than random sampling on the
iNaturalist2018-Plantae dataset. The Committee approach,
which combines multiple detectors, consistently ranked
among the top three across all datasets, further validating its
potential. Specifically, it discovers 100% of the classes on
Places365-LT and ImageNet-LT with 59.1% and 57.6% fewer
annotations, respectively.

In conclusion, our research provides novel insights and
establishes a foundation for future research in the field, partic-
ularly at the intersection of Active Learning, Class-Incremental
Learning, and novelty detection, with clear implications for
real-world use cases. This work provides a scalable and cost-
efficient methodology for annotating long-tailed datasets under
an open-set assumption, bridging the gap between theoretical
novelty detection research and practical applications.

VII. FUTURE WORK

This study aimed to establish a foundation for future re-
search rather than provide a fully optimized solution. Many
hyperparameters, including detector-specific settings (see Sec-
tion I), training hyperparameters, and the T-scaling factors for
the Committee* approach (see Table II), were not extensively
fine-tuned. Further exploration of these parameters could result
in performance improvements, and running the experiments on
more seeds will provide a more accurate evaluation. Neverthe-
less, the provided evaluation demonstrates the effectiveness
of the proposed methodology in reducing annotation effort
and improving class discovery in long-tailed datasets. Several
promising directions for future research, based on the insights
gained from this study, are discussed below.

A. Impact of Label Semantics

One underexplored aspect is the role of label semantics
in the performance of novelty detection. Our use of three
distinct types of label semantics (see Section III-B2) suggests
that semantics influence detector performance, specifically on
MoCo-pretrained models. These models, trained uniformly
across datasets, still exhibited preferences for specific datasets,
supporting the hypothesis that label semantics affect discovery
performance. Future research should investigate this further,
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ideally with additional datasets having comparable label se-
mantics to validate these findings.

B. Unsupervised Learning

This study reveals considerable room for exploring the po-
tential of unsupervised learning in long-tailed datasets. Several
avenues for future work include:

• Effect of Long-tailedness on Unsupervised Learning:
Investigating how long-tailed distributions affect the per-
formance of unsupervised representation learning could
provide valuable insights.

• Alternative Pre-training Methods: Exploring methods
like SimCLR [63] or BYOL [64] may enhance the
performance of unsupervised models. The work of [65]
could serve as a starting point.

• Unsupervised Classification for DI : Instead of ran-
dom initialization, unsupervised classification techniques
could be used to select the most informative samples for
annotation, improving class coverage and label diversity
at the start of the process.

C. Exploration of Alternative Architectures

The selection of ResNet50 as the backbone for detectors
balanced performance with computational efficiency, as well
as its widespread use in research. However, exploring different
architectures may reveal improvements in performance or
resource use. Future research could explore:

• Model size: Examining smaller models like ResNet18 or
wider variants like WideResNet may yield insights into
the trade-offs between performance and computational
costs, as well as the impact of labeled dataset size on
model complexity.

• Vision Transformers: Vision transformers have demon-
strated superior performance in image classification, par-
ticularly when capturing global context [66]. Integrating
transformers with existing detector algorithms, especially
unsupervised methods like MoCo [53], could be a promis-
ing direction.

• Prototypical Networks: Extending the dataset structure
to incorporate hierarchical elements and employing Pro-
totypical Networks, as used in few-shot learning Few-
Shot Class-Incremental Learning (FSCIL), may improve
detection performance.

• Model Ensembling: Combining models of varying archi-
tectures, pre-training methods, or training settings into an
ensemble could improve detection results, as seen with
the Committee approach (see Section IV-D).

• Liquid Neural Networks: Adopting Liquid Neural Net-
works [67], which dynamically adjust model size based
on dataset complexity, may allow models to start small
and scale up as needed with dataset complexity.

D. Optimization of Sample Selection Techniques

We employed Random Oversampling (ROS) to mitigate
class imbalance (see Section III-C5). However, this method
does not consider sample informativeness. Future work could

refine sample selection by incorporating the novelty detection
scores, which already emphasize a sample’s uniqueness. This
prioritization could allow the model to better generalize for
novel classes. Additionally, leveraging Explainable AI (XAI)
techniques such as SHAP [68] or LIME [69] could help iden-
tify influential samples, guiding more informed resampling
strategies.

E. Post-process Accuracy Optimization

This study concludes with a (near) closed-set dataset. Fur-
ther research could investigate how testing accuracy compares
when using the obtained dataset with fewer annotations versus
the entire dataset, providing insights that enable more mean-
ingful comparisons with related work on AL.
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APPENDIX

DATASET TRAIN TIME
[HH:MM]

TOP-1 ACC.
[%]

TOP-5 ACC.
[%]

Places365-LT 13:26 53.5 78.5
ImageNet-LT 26:03 66.4 82.0
iNaturalist2018-Plantae 31:10 63.3 80.7

TABLE A.3: MoCo [52, 53] unsupervised representation learning results. The training time is the total time it took to train
the model on the unlabeled dataset. The top-1 and top-5 accuracy are the performance metrics on the respective datasets.
Comparatively, the authors of MoCo [52, 53] report a top-1 accuracy of 71.1% on full ImageNet with the same model
(ResNet50).

Fig. A.9: Impact of using the predefined validation set versus various configurations of K-Fold cross-validation on novel class
detection performance and overfitting on the datasets. The x-axis indicates the percentage of the dataset that is labeled, while
the y-axis shows the number of Queried Novel Classes (N+) ↑.

Fig. A.10: Training accuracy ↑ and testing accuracy ↑ using K-Fold cross-validation on the datasets. The x-axis indicates the
percentage of the dataset that is labeled, and the y-axis shows the accuracy.
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DATASET |D+| DL |NL|@DI 90% 95% 99% 100%
Places365-LT
62,500 samples
365 classes

1,500 36.0% 70.3% 5,217 8,645 19,346 32,936

ImageNet-LT
115,846 samples
1,000 classes

2,000 19.2% 66.0% 7,361 12,143 27,583 60,797

iNaturalist2018-Plantae
112,966 samples
2,917 classes

3,000 39.8% 46.5% 14,880 20,438 34,423 71,870

TABLE A.4: Configurations of Novelty Detection with Active Class-Incremental Learning on the different datasets. D+ is the
number of samples in each query, and the total number of queries is 15 (including the query of DI ). DL shows the percentage
of the dataset that is labeled at the end of the process. |NL|@DI represents the class coverage at the start of the process. The
last four columns show how many samples are required to achieve milestone class coverages when picking samples at random.
These values were obtained by running a simulation of the process 500 times with random seeds.
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Energy 4.2 2.3 1.9 2.7 1.1 0.5 0.3 -0.4 0.0 0.0 0.2 -0.8 -1.8 -1.3 -2.6 -3.5
ASH-s 4.4 1.6 2.0 1.0 0.8 0.1 0.0 1.0 0.1 0.1 0.3 -1.0 -0.4 -1.9 -2.4 -2.5
RMD 0.0 2.2 1.8 0.4 2.5 1.9 1.5 1.4 1.8 1.8 -0.3 0.9 0.1 -1.1 -1.6 -4.7
ODIN 5.1 4.2 2.7 3.6 3.0 2.4 1.9 0.0 1.6 1.6 1.1 1.3 0.8 0.8 -1.2 -2.3
SHE 5.8 3.6 2.8 3.7 3.1 2.9 2.2 1.3 1.7 1.7 1.7 0.0 1.2 -0.2 -1.8 -2.5
ReAct 4.1 3.4 3.1 4.2 3.2 3.0 2.9 2.2 2.6 2.6 1.4 2.3 -0.1 0.0 -2.1 -2.3
DICE 4.3 4.6 3.6 4.6 3.9 3.4 3.3 2.8 3.0 3.0 1.9 2.3 0.0 0.8 -0.7 -2.9
ASH-b 6.6 7.3 5.8 6.9 6.9 6.3 5.8 4.5 5.2 5.2 4.0 4.3 4.0 2.6 0.0 0.5
ViM 7.3 7.1 6.7 7.5 7.0 6.5 6.3 6.5 5.8 5.8 4.4 5.6 3.2 4.0 2.5 0.0

(a) Both Continuous using the ImageNet pretrained model
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KLMatching 0.0 -0.4 -1.3 -0.3 -0.7 -1.0 -1.4 -1.5 -1.4 -1.8 -1.4 -1.8 -3.7 -2.5 -2.3 -3.4
Uncertainty 1.1 2.1 2.1 0.4 1.3 0.3 0.0 -0.7 -0.9 -1.0 -1.1 -1.6 -1.8 -2.2 -2.0 -1.4
Entropy 2.6 1.7 2.4 0.4 1.7 1.4 -0.2 0.0 -0.8 -0.6 -0.9 -1.3 -2.1 -1.9 -2.4 -0.4
ASH-s 1.9 2.6 2.0 0.8 0.9 1.3 0.2 0.4 -0.3 -0.2 0.0 -1.2 -2.2 -1.9 -2.1 -1.9
ReAct 1.4 2.1 2.0 0.0 1.1 1.4 -0.4 0.1 0.1 0.1 0.0 -0.4 -0.7 -2.0 -1.7 -2.1
Margin 1.9 0.8 1.3 1.6 0.0 -0.7 0.2 0.7 0.3 0.3 0.6 -0.1 0.2 -1.3 -1.9 -1.3
Energy 2.2 3.4 2.8 1.5 1.4 1.6 0.6 0.3 -0.1 0.0 -0.0 -0.6 -0.8 -1.6 -1.6 -0.8
ASH-p 3.4 3.5 2.5 1.3 1.6 1.9 0.8 0.4 0.0 0.0 0.3 -0.1 -1.3 -1.2 -1.5 -0.5
KNN 3.8 1.9 0.0 2.8 2.2 1.6 2.7 2.6 2.1 1.9 1.9 1.4 0.3 0.4 0.1 -2.1
ASH-b 3.5 3.7 3.1 2.5 3.1 2.8 2.1 1.9 1.2 1.3 1.1 0.0 1.6 -0.4 -0.1 0.8
RMD 3.8 0.0 0.2 3.6 1.7 1.4 2.9 3.4 3.6 3.3 3.0 2.6 1.4 0.4 1.4 -0.4
SHE 5.7 5.4 4.2 4.0 3.1 3.4 3.4 3.6 3.2 3.3 2.6 1.7 2.0 0.0 1.0 2.7
ODIN 5.5 4.2 4.7 4.6 4.2 3.5 4.6 4.2 4.0 4.1 3.9 3.2 1.7 2.1 0.0 1.6
DICE 6.4 5.9 5.3 4.4 4.4 4.3 4.1 4.3 3.9 3.9 3.7 3.1 0.0 1.3 1.4 0.3
ViM 6.9 6.3 6.4 5.8 5.0 4.6 5.4 5.1 4.8 4.8 4.8 4.5 2.2 3.6 3.3 0.0

(b) Both Continuous using the MoCo pretrained model
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Margin 4.6 1.8 0.0 0.4 -0.4 -0.2 -0.2 -0.0 -0.6 -1.3 -0.3 -1.1 -1.1 -1.8 -2.4 -1.8
Uncertainty 3.8 0.8 1.8 0.0 0.2 0.1 -0.9 0.1 -0.9 -0.3 -0.2 -0.8 -0.8 -1.3 -1.1 -2.2
RMD 0.0 0.9 2.7 1.2 1.0 0.2 0.7 0.2 0.6 1.1 -1.3 0.3 0.3 -2.4 0.1 -0.8
KLMatching 2.0 0.0 2.2 1.8 0.4 -1.4 1.3 0.4 1.0 0.4 0.4 1.1 1.1 -2.4 1.6 -0.1
Entropy 4.7 3.8 3.1 2.8 1.8 3.1 -0.5 0.1 0.0 0.6 -1.3 -1.6 -1.6 0.8 -1.5 -1.8
SHE 5.4 2.9 2.9 2.4 1.5 0.7 0.6 0.0 0.6 0.6 0.9 0.2 0.2 -0.3 -0.0 -0.7
ASH-s 5.2 4.3 3.4 2.3 2.4 3.0 0.0 0.5 0.8 0.4 -0.1 -1.6 -1.6 1.1 -0.4 -0.8
ODIN 6.1 3.7 3.0 2.0 2.2 1.5 0.6 0.6 0.2 0.0 1.3 -0.0 -0.0 1.0 0.1 -0.7
KNN 5.6 3.2 3.3 2.6 2.3 0.0 2.3 2.4 2.1 2.5 2.8 2.1 2.1 -2.0 2.1 0.9
Energy 5.9 5.0 4.3 3.2 3.1 4.2 2.1 2.0 2.3 2.2 0.3 0.0 0.0 1.9 -0.5 -0.5
ASH-p 5.6 5.3 3.8 3.4 3.4 4.2 2.4 1.7 2.6 1.9 0.5 0.0 0.0 1.5 0.0 -0.1
ReAct 5.4 5.2 3.9 4.2 2.9 4.3 2.8 2.8 2.8 2.6 0.9 1.4 1.4 2.6 -1.5 0.0
DICE 5.6 6.4 4.9 4.9 3.7 5.0 3.5 4.2 3.4 4.0 0.0 2.5 2.5 2.9 -0.0 1.6
ViM 7.3 4.7 4.9 4.5 3.3 1.5 4.5 4.3 4.0 3.6 3.7 3.9 3.9 0.0 2.8 2.4
ASH-b 7.7 6.9 5.3 6.3 4.0 5.5 5.3 4.9 5.1 4.2 3.3 4.0 4.0 4.0 0.0 2.6

(c) Both Reload using the ImageNet pretrained model
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Margin 2.2 0.1 -0.6 0.0 1.0 -1.6 -2.2 -1.4 0.3 0.4 -0.5 -1.5 -0.9 -1.1 -2.5 -1.5
KLMatching 0.0 0.8 -0.8 1.4 2.9 -3.3 -2.4 0.5 0.6 0.5 0.7 -0.3 0.4 1.0 1.0 -0.9
ReAct 4.2 4.0 2.0 3.7 0.0 1.8 0.9 0.6 -0.1 -0.1 0.1 2.2 -0.4 0.1 -0.3 -0.8
Uncertainty 6.0 4.3 4.7 3.5 2.6 3.7 3.0 0.0 -0.6 -0.6 -0.4 0.7 -1.1 -1.5 -1.2 -0.9
RMD 2.2 3.0 0.0 2.8 3.2 -2.1 -3.0 3.9 3.2 3.4 3.7 1.5 3.5 2.1 0.6 1.7
Energy 6.1 4.4 4.6 3.8 3.5 5.7 4.7 -0.0 0.0 -0.1 -0.2 0.9 -0.6 -0.2 -1.2 -0.6
Entropy 6.4 4.7 4.7 4.2 2.9 5.0 4.2 0.7 0.1 0.1 0.0 1.2 -0.6 -0.4 -0.8 -0.6
ASH-p 6.6 4.6 4.3 4.4 3.7 4.8 4.2 0.6 0.2 0.0 0.1 1.0 -0.4 -0.2 -0.8 -0.6
ASH-s 6.3 4.2 4.9 3.5 3.6 5.0 4.7 1.1 0.7 0.5 0.3 0.8 0.0 0.5 -0.6 -0.3
ASH-b 6.7 4.9 5.0 4.3 4.2 4.9 4.3 0.7 0.3 0.2 0.1 0.9 -0.3 0.0 -0.2 -0.2
ODIN 6.8 4.9 5.4 4.2 4.0 4.9 4.5 0.5 0.7 0.6 -0.1 0.9 -0.1 0.1 0.1 0.0
SHE 5.5 4.2 5.1 4.1 4.9 2.8 2.8 2.1 2.3 2.2 1.9 0.0 1.9 2.4 2.2 0.5
DICE 7.2 5.4 5.6 4.5 4.8 5.1 5.0 1.2 1.3 1.4 1.2 1.8 0.7 0.6 0.0 0.5
KNN 4.2 3.9 3.3 4.1 5.6 0.0 -1.5 5.3 5.9 5.8 5.9 3.2 6.1 5.2 4.1 4.0
ViM 5.8 6.0 6.1 5.7 6.5 3.1 0.0 6.5 6.8 6.7 6.6 4.7 7.0 6.2 6.1 4.5

(d) Both Reload using the MoCo pretrained model
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Margin 2.8 0.1 0.0 -0.3 -1.0 -1.6 -1.5 -1.3 -2.2 -1.7 -1.9 -2.5 -2.5 -2.8 -3.1 -3.6
RMD 0.0 -1.1 2.0 0.1 0.5 0.0 -2.4 -0.1 0.0 -0.6 -1.9 0.4 0.4 -4.4 -0.9 -0.6
Uncertainty 4.0 1.4 1.1 0.0 1.1 -1.4 0.9 -0.4 -1.5 -0.6 -0.0 -1.7 -1.7 -0.8 -2.3 -1.3
KLMatching 3.6 0.0 1.1 1.0 0.3 0.7 -1.5 0.4 0.3 0.5 0.5 0.1 0.1 -2.1 -0.9 1.0
ASH-s 4.7 3.0 2.3 1.0 1.6 0.0 1.2 0.1 0.1 -0.5 -0.8 -1.7 -1.7 0.4 -1.5 -1.4
Entropy 4.5 2.7 2.3 1.2 1.2 -0.0 1.6 0.4 0.0 -0.1 0.4 -1.4 -1.4 0.4 -1.0 -1.2
SHE 5.4 3.4 2.4 2.9 1.6 1.1 0.6 0.0 0.9 0.1 1.2 0.3 0.3 -0.8 -0.5 -0.1
ODIN 6.9 4.2 3.0 2.2 2.1 0.6 2.3 1.7 0.3 0.0 1.4 -0.2 -0.2 1.2 -0.5 -0.2
ASH-p 4.9 4.3 3.3 2.3 2.7 2.1 2.1 0.9 2.1 1.3 -0.2 0.0 0.0 0.7 -0.4 -0.3
Energy 5.3 3.5 3.6 2.6 2.3 2.1 1.7 1.1 2.0 1.2 0.3 0.0 0.0 0.9 -0.0 -0.2
ReAct 5.7 4.2 3.7 3.0 2.9 2.0 3.2 1.5 1.9 1.6 1.3 0.8 0.8 1.8 0.0 -0.7
DICE 6.3 6.0 4.5 4.1 2.9 2.8 4.3 3.2 2.4 2.5 0.0 1.9 1.9 2.0 1.0 -0.6
KNN 6.2 3.8 4.0 3.4 2.9 3.4 0.0 2.5 3.1 3.2 3.0 3.1 3.1 -1.2 1.8 3.4
ViM 7.0 5.4 5.4 4.9 3.4 4.5 1.4 3.9 4.2 3.6 3.7 4.1 4.1 0.0 2.8 2.7
ASH-b 7.5 6.7 5.0 5.7 3.6 4.7 5.3 4.5 4.5 4.0 3.0 3.6 3.6 3.9 2.5 0.0

(e) Frozen using the ImageNet pretrained model
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Margin 2.0 0.1 -0.7 0.0 -0.7 -0.7 -1.3 -1.9 -2.4 -1.5 -2.1 -2.8 -1.8 -2.5 -3.5 -2.9
KLMatching 0.0 0.0 -1.3 0.4 -0.1 -2.9 -4.6 -1.2 -1.4 -0.4 -1.3 -1.7 -0.4 -2.5 -2.7 -1.7
ReAct 4.9 3.9 3.9 3.5 0.0 1.8 0.7 -0.4 -0.4 0.8 -0.1 -0.5 0.3 0.8 -1.1 -1.1
RMD 1.6 1.4 0.0 1.7 3.9 -2.4 -3.5 3.3 3.2 2.7 3.9 3.2 0.4 -0.2 1.8 0.0
Uncertainty 5.9 3.3 4.0 2.8 3.2 3.7 3.0 0.6 0.6 0.0 -0.4 -0.6 -0.5 0.6 -0.8 -1.1
ASH-p 5.7 4.1 3.9 3.4 3.0 4.4 3.4 0.0 0.1 0.1 -0.4 -0.6 -0.1 0.4 -0.3 -0.8
Energy 6.1 4.2 3.7 4.2 3.7 4.0 3.3 -0.1 0.0 0.3 -0.5 -0.8 0.1 1.0 -0.7 -1.2
Entropy 6.4 4.6 4.8 3.7 3.4 4.1 3.8 0.3 0.4 0.4 0.0 -0.5 0.3 1.0 -0.4 -0.6
ASH-s 6.4 4.6 5.0 4.1 3.5 4.9 3.2 0.8 0.9 0.6 0.0 0.0 0.0 0.5 -0.2 -0.6
ASH-b 6.3 5.4 4.0 4.1 4.5 4.3 4.4 0.6 0.7 0.7 0.2 -0.2 0.7 1.0 0.0 -0.4
ODIN 6.0 4.1 4.6 4.1 4.5 3.8 2.8 1.5 1.5 1.3 1.3 0.5 0.0 0.1 0.3 0.1
SHE 5.6 4.2 4.9 4.1 4.5 2.3 2.2 2.0 2.2 1.4 1.5 1.5 0.4 0.0 1.8 1.5
DICE 7.0 5.5 6.2 4.5 4.2 5.1 5.8 1.3 1.4 1.0 0.9 0.8 1.1 1.5 0.9 0.0
KNN 4.1 3.4 3.1 4.0 5.1 0.0 -2.1 4.9 5.0 4.5 5.0 5.1 3.9 2.0 4.0 3.3
ViM 5.4 5.1 5.6 5.6 6.3 2.5 0.0 7.0 7.1 5.4 6.6 7.1 4.7 4.0 6.2 5.7

(f) Frozen using the MoCo pretrained model

TABLE A.5: These tables illustrate the total number of potentially novel classes discovered by alternative detectors (columns)
compared to the active detector (rows) throughout the entire annotation process across all datasets. The values are normalized
per column to mitigate bias towards earlier queries, where more novel classes are typically present. Each value represents the
sum of normalized potential novel class detections across the entire annotation process. A positive value indicates that the
alternative detector would have discovered additional novel classes compared to the active detector. If a row predominantly
contains negative values, it suggests that the active detector outperforms most alternative detectors. The active detectors are
sorted by their normalized average number of potentially missed novel classes, with the top row representing the best-performing
detector for these configurations. Conversely, the columns are sorted based on the average normalized number of potentially
discovered novel classes, with the left column representing the best-performing alternative detector. Note that this analysis does
not account for the iterative nature of the process, where a detector might identify the same novel class multiple times.
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Dataset Places365-LT ImageNet-LT iNaturalist2018-Plantae
Class Coverage 90% 95% 99% 100% 90% 95% 99% 100% 90% 95% 99% 100%

Pretrained Detector Config

ImageNet Committee Both Reload -36.4% -48.8% -60.2% - -31.3% -45.1% -59.2% - -12.5% -11.6% -7.6% -
Frozen -35.6% -46.9% -63.6% - -29.8% -44.0% -62.0% -57.6% -10.5% -8.4% -11.2% -

Committee* Both Reload -37.7% -38.4% -47.4% - -30.7% -43.8% -58.0% -57.6% -12.4% -10.6% -10.9% -
Frozen -36.1% -41.2% -48.4% -59.1% -30.3% -44.2% -56.2% - -5.6% -3.6% -4.6% -

KLMatching Both Reload -38.5% -48.8% -56.5% -46.9% -24.7% -31.2% -36.5% - -14.3% -7.7% -1.4% -
Uncertainty Both Cont. -39.8% -43.8% -51.4% - -21.5% -28.7% -28.7% - -18.4% -19.2% -6.1% -
Committee Both Cont. -39.4% -50.6% -46.4% - -17.3% -25.4% -25.1% - -20.0% -20.7% -20.9% -
Committee* Both Cont. -33.8% -38.4% -50.9% - -22.1% -22.8% -32.2% - -16.2% -15.2% -18.2% -
KLMatching Frozen -36.1% -44.9% -58.5% - -18.4% -26.0% -33.1% - -12.5% -5.4% -1.8% -
Entropy Both Cont. -36.0% -41.8% -51.1% -46.9% -17.4% -18.0% -24.2% - -14.5% -11.1% -5.1% -
Margin Both Cont. -32.5% -36.5% -45.4% - -24.9% -21.2% -22.7% - -21.0% -20.5% -22.8% -
Uncertainty Both Reload -41.2% -44.6% -35.0% - -30.4% -43.1% -59.9% - -2.6% +6.7% +12.0% -
KLMatching Both Cont. -32.1% -34.4% -36.8% - -20.5% -20.3% -24.7% - -25.5% -25.1% -23.0% -
RMD Frozen -31.2% -36.6% -51.9% -46.9% -17.0% -36.4% -55.7% - -9.2% -2.2% -3.5% -
Margin Both Reload -28.2% -23.8% -10.0% - -30.2% -41.5% -51.3% - -10.6% -10.2% -11.6% -
RMD Both Reload -31.8% -42.9% -45.4% -42.8% -15.0% -34.4% -55.4% - -7.7% -3.0% -3.8% -
Margin Frozen -27.9% -17.2% -27.9% - -30.3% -42.8% -55.4% - -10.3% -9.2% -10.9% -
RMD Both Cont. -30.3% -39.1% -48.7% - -1.1% -15.8% -30.9% - -10.7% -8.3% -7.2% -
ASH-s Both Cont. -34.9% -38.9% -48.0% - -17.2% -17.7% -18.1% - -11.4% -4.7% -3.6% -
KNN Both Cont. -28.1% -38.3% -43.7% - -13.1% -20.6% -22.4% - -12.1% -9.5% -11.3% -
Energy Both Cont. -34.0% -38.7% -47.9% -42.8% -14.2% -22.8% -9.7% - -9.1% -5.1% -2.0% -
Uncertainty Frozen -37.5% -40.8% -31.3% - -25.3% -41.0% -58.2% - +4.5% +12.1% +9.5% -
ASH-p Both Cont. -34.5% -41.3% -43.7% - -12.5% -15.5% -21.4% - -8.3% -6.5% -1.6% -
ASH-s Frozen -37.4% -30.2% -34.6% - -24.7% -33.3% -43.6% - +6.6% +15.3% +7.9% -
Entropy Both Reload -24.1% -21.8% -33.7% - -20.0% -29.6% -32.0% - -0.7% +2.5% -0.7% -

Frozen -30.7% -35.3% -31.9% - -26.2% -30.9% -42.3% - +9.5% +12.8% +6.7% -
SHE Both Reload +1.2% +5.2% +0.4% - -26.3% -38.3% -33.1% - -7.4% -5.1% -0.7% -
ASH-s Both Reload -25.2% -21.9% -26.7% - -25.1% -31.6% -38.1% - +1.4% +3.1% +14.4% -
SHE Both Cont. -34.6% -33.1% -10.0% - -13.1% -14.7% -8.0% - -9.6% +2.5% +11.1% -

Frozen +10.7% +15.2% -4.1% - -21.7% -36.1% -25.3% - -0.7% +3.4% +4.0% -
KNN Both Reload -29.5% -23.2% -36.6% -46.9% +26.8% +61.5% - - +0.5% +3.5% +3.8% -
ODIN Both Reload -25.9% +3.8% - - -29.5% -40.7% -25.5% - +5.9% +8.7% +16.3% -

Frozen -18.1% +6.8% - - -23.7% -36.6% -22.4% - -0.8% +4.3% +12.1% -
ASH-p Frozen -26.0% -22.7% -12.5% - -15.4% -6.5% - - +4.6% +9.3% +6.0% -
ODIN Both Cont. -24.1% -14.0% -29.5% - -17.3% -20.6% -24.2% - +3.2% +11.7% - -
Energy Frozen -23.2% -18.8% -17.1% - -16.4% -9.8% - - +4.7% +5.9% +6.9% -
ReAct Both Cont. -25.4% -23.9% -43.6% -42.8% +9.5% +12.7% - - +3.1% +11.0% - -
DICE Both Cont. -28.2% -36.4% -46.4% - -1.6% +2.5% -1.3% - +23.4% +35.1% - -
ASH-p Both Reload -25.8% -6.6% +5.2% - -4.9% +4.4% - - +2.7% +7.2% +6.9% -
ReAct Frozen -22.9% -14.6% -18.0% - +9.5% +28.1% - - +5.5% +6.6% +7.8% -
DICE Frozen -24.6% -26.8% -30.2% - +43.8% +59.1% - - +3.6% +10.5% +10.3% -
KNN Frozen -19.9% -17.3% -29.7% -38.7% +26.2% +57.4% - - +4.8% +6.6% +8.6% -
Energy Both Reload -22.7% -8.2% -1.5% - -11.3% -1.3% - - +0.8% +8.4% +12.0% -
ReAct Both Reload -20.1% -5.1% -18.0% - +10.6% +24.3% - - +4.6% +7.0% +10.2% -
DICE Both Reload -14.9% -10.2% -5.4% - +33.2% +46.1% - - -1.0% +5.7% +12.6% -
ViM Both Reload -2.8% -8.2% -27.5% - +74.8% +86.4% - - +7.4% +13.2% +10.2% -

Frozen -6.2% -0.2% -24.4% - +31.1% +56.1% - - +15.3% +18.0% +15.3% -
Both Cont. -1.9% -4.9% -24.2% - +124.0% +94.9% - - +46.6% +75.2% - -

MoCo Committee* Both Reload -28.2% -30.3% -38.4% -42.8% -11.5% -13.3% -21.6% - -13.7% -9.7% -11.4% -
Frozen -27.6% -33.6% -44.6% -38.7% -5.2% -12.4% -23.1% - -12.6% -11.0% -13.4% -

Committee Frozen -28.8% -32.7% -51.4% - -11.7% -12.4% -14.7% - -10.3% -9.3% -8.3% -
KLMatching Both Cont. -27.6% -36.9% -20.4% -38.7% -7.7% -11.5% -13.7% - -16.9% -15.6% -15.2% -

Both Reload -30.1% -30.2% -33.2% - -10.3% -9.0% - - -12.3% -11.7% -4.3% -
Frozen -32.2% -38.6% -39.3% -42.8% -4.7% -1.9% -4.1% - -8.9% -9.9% -9.1% -

Margin Frozen -26.3% -22.1% -12.0% - -10.6% -11.0% -4.1% - -13.3% -12.1% -16.9% -
Committee Both Reload -34.8% -33.7% -41.7% - -1.6% -6.0% -5.4% - -11.3% -8.5% -3.6% -
Margin Both Cont. -20.3% -14.6% -29.5% - -10.1% -13.4% -8.6% - -11.6% -9.1% -10.5% -
Committee Both Cont. -33.3% -26.7% -29.7% - -0.7% +0.1% - - -13.2% -10.5% -8.0% -
Committee* Both Cont. -27.5% -25.0% -26.1% - -5.8% -9.3% - - -12.0% -3.3% -5.1% -
Margin Both Reload -25.5% -12.2% -2.9% - -7.1% -12.5% -3.0% - -11.5% -11.6% -10.3% -
Uncertainty Both Cont. -31.7% -36.5% -45.2% -38.7% -8.1% -7.9% - - -4.1% +6.9% - -
ReAct Both Cont. -34.7% -37.3% -40.8% -42.8% -3.1% -2.4% -1.0% - -4.5% +7.2% +12.3% -
ASH-p Both Cont. -21.8% -20.6% -31.3% - -7.6% -3.1% - - -3.9% +1.5% +5.8% -
KNN Both Cont. -23.2% -20.9% -23.1% - -5.6% -7.4% +0.3% - -6.2% -1.0% +5.8% -
ASH-s Both Cont. -14.4% -24.4% -38.4% -42.8% -6.2% +3.1% -6.4% - -1.0% +6.3% +8.8% -
Entropy Both Cont. -29.4% -34.5% -32.2% - -7.9% -0.0% +0.3% - +4.8% +11.0% - -
Energy Both Cont. -11.4% -14.2% -24.2% - -5.0% -6.3% -6.4% - -1.7% +3.4% +10.2% -
ReAct Both Reload -34.6% -39.1% -25.1% - -3.1% +19.3% - - -2.4% +9.0% - -
RMD Both Cont. -12.7% -17.8% -23.1% - +3.5% +2.9% -4.7% - -5.3% -1.9% -1.6% -
ReAct Frozen -28.4% -37.5% -26.7% - -3.6% +12.3% - - +2.9% +14.0% - -
RMD Frozen -23.0% -24.2% -30.2% - +5.5% -2.6% -10.8% - +6.8% +14.8% +14.7% -

Both Reload -25.1% -25.7% -40.8% - +8.8% +0.8% -1.6% - +7.4% +15.3% +12.6% -
ASH-b Both Cont. -13.4% -11.4% -24.2% - -4.1% -1.2% +0.3% - +2.2% +18.4% - -
Uncertainty Both Reload -24.8% +44.8% - - -3.7% +19.3% - - -1.7% +12.0% - -
ASH-p Frozen -5.4% +17.7% - - +14.5% +43.2% - - -2.6% +3.5% - -
Uncertainty Frozen -4.1% +67.6% - - +0.1% +38.2% - - -0.7% +6.9% +18.1% -
KNN Frozen -24.1% -13.4% -18.0% - +0.1% +11.0% - - +51.7% +72.2% - -
DICE Both Cont. -24.1% -5.0% -1.5% - +3.7% +15.2% - - +12.1% +20.4% - -
Energy Both Reload +22.3% +28.7% - - +5.5% +39.2% - - -1.5% +8.8% +16.4% -
KNN Both Reload -27.0% -14.2% -16.0% - +20.2% +31.7% - - +49.4% +62.9% - -
Energy Frozen -5.1% +26.1% - - +16.4% +41.1% - - -1.2% +13.5% - -
ASH-p Both Reload +13.9% +45.7% - - +17.6% +53.7% - - -3.5% +6.9% - -
Entropy Both Reload -3.8% +78.3% - - +21.5% +59.9% - - -3.3% +5.6% +13.7% -
ODIN Frozen -3.0% +85.6% - - +19.2% +49.1% - - +1.2% +6.0% +12.0% -
SHE Both Cont. +50.3% +109.1% - - -4.7% -5.8% - - +8.4% +16.5% - -

Both Reload +170.6% - - - +31.7% +42.8% - - -0.6% +5.0% +3.2% -
ODIN Both Cont. -7.6% -2.0% - - +14.2% +14.3% - - +19.2% +33.4% - -
ASH-s Frozen -5.1% +41.7% - - +34.6% +56.9% - - +1.5% +6.2% - -
ViM Both Cont. -10.9% -6.9% +0.4% - +30.3% +44.1% - - +5.0% +18.5% - -

Frozen -25.3% -1.2% -18.2% - +40.5% +46.5% - - +93.6% - - -
Both Reload -17.8% -6.9% -15.7% - +49.7% +50.6% - - +85.9% - - -

TABLE A.6: Results of Novelty Detection with Active Class-Incremental Learning from Sections IV-C and IV-D. Per dataset
and pretrained model, the values represent the percentage of DL ↓ required to achieve a certain class coverage compared
to random sampling. The detectors are sorted by their overall performance across all datasets based on ranking. The best-
performing detector per milestone is highlighted in bold. Detectors that performed worse than random sampling on all milestones
across all datasets are excluded from the table, including: On ImageNet, B+BC+F-ASH-b; On MoCo, B+F-ASH-b, B-ASH-s,
B+F-DICE, F-Entropy, B-ODIN, and F-SHE.
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