
AN INTERACTIVE APPROACH FOR MRI-BASED
INTERVENTIONAL NAVIGATION

I. (Idse) Kuijper

MSC ASSIGNMENT

Committee:
prof. dr. ir. S. Stramigioli

dr. ir. K. Niu
dr. ir. W.M. Brink

dr. V. Groenhuis, MSc
dr. J. Dasdemir

October, 2024

071RaM2024
Robotics and Mechatronics

EEMCS
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands



An Interactive Approach to MRI-based Interventional Navigation

Idse Kuijper1, dr. Vincent Groenhuis1, Wyger M. Brink2, prof. dr. ir. Stefano Stramigioli1, dr. ir. Kenan Niu1

Abstract— Magnetic resonance imaging (MRI) offers higher
sensitivity in detecting invasive breast cancer, enabling the iden-
tification of lesions at earlier, more treatable stages. However,
unlike ultrasound-guided biopsies, current MRI-guided biopsies
lack real-time confirmation of lesion removal, necessitating
multiple verification scans and follow-up MRI’s. Recent advan-
vements in real-time MRI imaging, with interactive imaging
of a slice at up to 30Hz, present opportunities for MRI-safe
manipulators by enabling closed-loop control through intra-
operative imaging.

This study proposes a methodology for closing the loop
for the Sunram 7 pneumatically actuated breast biopsy robot
using MR image feedback in-plane of the end-effector. By
leveraging the segmented tip and base position with the planned
needle path, an improved estimate of the needle’s position and
orientaiton is achieved, potentially enhancing target accuracy.
Features, such as automatic calibration between image frame
and robot base frame, multi-planar reconstruction, path plan-
ning, and discretization optimization, provide essential support
in the biopsy procedure.

Proof-of-concept validation within the MRI-environment
demonstrated a significant reduction in the mean euclidian
position error, from 8.81 mm using sole feed-forward estimation
to 1.11 mm with the proposed methodology, highlighting its
potential to improve the targeting accuracy of the robot. The
proposed methodology is novel in the fact that it automatically
calibrates the robot based on the new estimation for direct
control of the planned path.

In conclusion, this methodology shows promising results in
improving the positional accuracy of the Sunram 7 robot’s
end-effector and warrants further validation for definitive
implementation.

I. INTRODUCTION

Breast cancer is the leading cancer in terms of inci-
dence and death among females worldwide, accumulating
to 2,308.897 new cases and 665.684 deaths in 2022 [1, 2].
Affecting about one in ten women living in western countries
during their lifetime [3], and showing significant increase for
high-risk women with an inherited predisposition that can
give rise to an early onset of the disease, giving a lifetime
risk greater than 50-60% [3]. The 5-year relative survival
rate of breast cancer in the United States is shown to be
91%, with a significant increase to 99% when the tumor is
diagnosed at a local stage [4]. Indicating the importance of
early detection and screening of malignant lesions.
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Fig. 1: Virtual surrogate of the Sunram 7 robot with the base
plate, six MRI identifiable markers and the mapped breast
phantom mesh. The virtual surrogate of the Sunram 7 is in
the zero position and the greyed-out version indicates the
planned configuration at the point of entry.

Current screening recommendation differs between
average-risk females and high-risk females; average-risk
females can rely on annual or biennial mammography
screening from age 40 onwards whilst high-risk females
should rely on earlier mammography screening adjunct to
annual Magnetic Resonance Imaging (MRI) screening [5, 6].
MRI’s higher sensitivity to invasive breast cancer indicate
its ability to detect it at a more favorable stage as opposed
to other imaging methods [7, 8]. Even shown in research to
have detected all 14 Ductal Carcinoma In Situ’s (DCISs),
compared to mammography and ultrasound each detecting
five DCISs [9]. Still due to high cost, long screening time
and debatable specificity of MRI this imaging method is
recommended only for women in the high-risk group or for
situations where the primary breast cancer is too small for
detection using mammography or ultrasound (US) [8, 9].
To address the low specificity of MRI it is recommended
to perform a targeted US upon identification of lesions
suspicious for malignancy during MRI screening, referred
to as a ’second-look US’ [7]. This way the practitioner
can confirm the tissue is indeed malignant and perform
an US guided biopsy to establish diagnosis. The presence
of an US correlate, however, is only reported in 23-71%
of cases and occlusion of the corresponding abnormality
indicate an MRI-guided biopsy is the only viable option for
diagnosis [10, 11]. Obtaining tissue diagnosis is especially
imperative for MRI-detected abnormalities because of
similar appearance of benign and malignant lesions on MRI
[12].

Presently, the MRI-guided biopsy procedure is compli-
cated, lengthy and an imperfect procedure, requiring a mul-



(a) B. Yang et al. [13] (b) C. Song et al. [14] (c) J. Cheng et al. [15] (d) M. Amvari et al. [16] (e) D. Stoianovici et al. [17]

Fig. 2: Various MRI-compatible biopsy robots for either the breast or prostate.

titude of scans and samples to be taken [7, 10]. Upon
start of the breast biopsy procedure the patient is posi-
tioned in prone position on the examination table and the
patient’s breast is compressed in a grid-like square that
doubles as localization device. Immobilisation of the breast
is a prerequisite for accurate sampling as it allows for
better elimination of artefacts or blurring from respiratory
motion and reduces movement of the breast tissue during
insertion [7]. A pre-contrast MRI sequence is obtained to
initialize the fiducials in the localization device to allow
for mapping between localization device and image space.
This is followed by a dynamic MRI sequence combined
with administration of contrast medium (gadolinium-based
agent) into the breast [10]. Depending on lesion kinetics,
a single or two imaging sequences after contrast agent
administration are usually sufficient for lesion identification
[10] with other centers performing five sequences [7]. These
scans allow for selection of the lesion and entrance site in
image space. Using the previously obtained mapping, the
target point can be transformed into an entrance position
and depth on the localization device for biopsy positioning
[10]. The entrance site of the breast is prepared for insertion
by cleaning and administration of local anesthesia. A coaxial
system consisting of plastic inducer with numeric gradation
and an introductory metallic stylet is then used and advanced
into the breast upto the indicated depth at the calculated site
of entry. The stylet is swapped with a blunt-tipped MRI-
negative plastic MRI introducer and a MRI sequence is
obtained to verify the position of the MRI introducer in
relation to the area to be biopsied. If needed, the needle
position is adjusted and confirmation scans are performed,
repeating the cycle until adequate biopsy position is obtained.
Upon obtaining adequate positioning, the vacuum assisted
biopsy (VAB) needle can be placed and appropriate samples
taken. Finally, a localization marker clip is deployed labelling
the site of biopsy and a final MRI sequence is performed to
verify that the correct tissue has been sampled and ensuring
clip position.

The successful execution of MRI-guided vacuum-assisted
biopsies (VAB) is prone to human errors and relies heavily on
the extensive training and experience of the healthcare team.
The National Health Service Breast Screening Programme
recommends that these procedures be performed by breast
centres conducting a minimum of 12 MRI-guided biopsies
and at least 50 image-guided VABs anually [7]. VAB is
considered advantageous over core needle biopsy due to its

ability to extract larger volumes of tissue as opposed to core
needle biopsy, reducing sampling errors [18]. Sample size
typically ranges from 40 to 310mg depending on needle
gauge (14G to 8G), compared to 17mg from core needle
biopsies [18]. Additionally, research indicates the collection
of 4 to 24 samples dependent on exact gauge size and
lesion dimensions [7, 10], further enhancing the likelihood of
obtaining sufficient material for accurate diagnosis. However,
the increased volume of tissue sampling can lead to unnec-
essary removal of healthy tissue, raising concerns regarding
patient comfort and potentially unnecessary breast damage.

Moreover, the grid-like orientation device limits the angle
of entry and the need for accessibility of the patient by the
practioner necessitates movement of the patient in and out of
the MRI bore, complicating the workflow. Unlike US-guided
biopsy, current MRI-guided VAB lacks real-time confirma-
tion of lesion removal, necessitating multiple verification
scans during the procedure and follow-up MRIs to ensure
complete removal, especially when benign histopathology re-
sults are obtained [19]. Challenges posed by the gadolinium
based contrast agents (GBCA) washing out during procedure
and post-biopsy changes including air, hemorrhage, and local
anesthesia further complicate assessment of these verification
scans [12, 19].

The limitations of the manual MRI-guided procedure in
combination with current development of real-time MRI
imaging providing interactive imaging of a slice at up to
30Hz [20] provides opportunities for MRI-safe manipulators
to fill the gaps in the current procedure through use of intra-
operative imaging. The benefits of the integration of MR-
safe robotic manipulators into medical applications has been
shown to include higher accuracy and precision, standardiza-
tion of the procedure, stability, and less insertions, realizing
procedures that are faster, less expensive and produce less
patient trauma [21]. The use of real-time MRI imaging is
not an entirely novel idea, B. Yang et al. presents a six
degree of freedom (DOF) teleoperated primary-secondary
MRI-compatible robot placing a guiding cannula for needle
insertion in the breast under 2.5 frames per second MRI
guidance [13]. Showing that the secondary robot could
operate under continuous MRI with no visually-detectable
image distortion and minimal loss in signal to noise ratio
(SNR), but with mild field homogenity distortion. This robot,
however, is not autonomous and places only a guiding
cannola in the breast, leaving the diagnostic procedure to
be performed manually, thereby limiting its improvement in



terms of amount of scans and patient movement in and out of
the MRI-bore. Another MR-compatible robot using real-time
feedback during navigation is presented by C. Song et al [14].
This, however, makes use of a stereo camera setup detecting
three personalized markers reconstructing the 14G consid-
ered rigid needle upon insertion. This system also relies on
manual insertion of the biopsy needle through the needle
guide. The pneumatically actuated soft needle manipulator,
called SoNIM, presented by J. Cheng et al. has also shown to
achieve needle manipulation in the MR environment using
a motion capture system [15]. Demonstrating the potential
of the SoNIM to perform needle manipulation in minimally
invasive surgeries, but mentioning the need for closed-loop
control in an MR environment through either fiber Bragg
grating (FBG) sensors or processing of 3D MRI data in real-
time. It does demonstrate the possibility of using MRI as an
alternative way to measure the configuration of the SoNIM
to achieve closed-loop control, but is yet to implement it.
For breast biopsies also the MR-compatible image guided
automated robot presented by M. Amvari et al. demonstrates
sub-millimeter accuracy and repeatability [16]. However, this
system lacks any real-time image guidance as the patient is
moved out of the MRI bore for needle insertion due to signif-
icant artifacts produced by the commercially available biopsy
tools used. For prostate biopsy D. Stoianovici et al. proposed
a FDA approved MR-safe robot called MrBot consisting of a
MR-safe 6 DOF parallel link structure mounted on the MRI
table [17]. This system positions a needle-guide to the target
position without any continuous MRI and relies on manual
biospy.

This research aims to close the loop for MRI-guided
biopsy procedures through an interactive approach to
real-time MRI-based interventional navigation. The find-
ings are presented according to the following structure.
Section II, methodology, will provide a comprehensive de-
scription of the proposed system, including details on the
robot design, kinematics, calibration between image and
robot space, path-planning, discretization error minimiza-
tion, feedback loop, and proposed experimental validations.
Following this, the thesis will present the results of the
experimental validations. These results are synthesized and
highlighted in significance in the conclusion. Finally, the
discussion will analyze the findings, compare these to the
state of the art and discuss their implications for future MRI-
guided biopsy practices.

II. METHODS

Achieving closed-loop control in MRI-guided biopsy pro-
cedures requires the seamless integration of various compo-
nents. This research specifically addresses closing the control
loop for the Sunram 7 biopsy robot [22], whilst performing
biopsies on PVC-P-based breast phantoms within a 1.5T
MRI scanner (SIEMENS 1.5T MAGNETOM Aera, Siemens
Healthineers, Erlangen, Germany). A high-level overview of
the system architecture and its key components is provided
in Fig. 3, outlining the envisioned setup for this study.

A. System Overview

Several components of the envisioned MRI-guided biospy
system were adopted from pre-existing designs and remained
unchanged. These include the MRI scanner (SIEMENS
1.5T MAGNETOM Aera, Siemens Healthineers, Erlangen,
Germany), Siemens Access-I Application Programming In-
terface (API, Siemens Healthcare GmbH), the mechanical
design of the Sunram 7 biopsy robot, and its pneumatic
controller board [22]. The study focuses on the needed
components and algorithms for closing the control loop and
integrating real-time feedback as shown in Fig. 3 whilst
maintaining these established system components. Through-
out this paper four coordinate frames and a configuration
space can be identified:

1) Dicom Volume Coordinate System (DCS): The co-
ordinate frame obtained when loading a three dimen-
sional MR imaging sequence, with the origin located
at the top-left of the first slice.

2) Robot Base Frame (RBF): The coordinate frame with
its origin aligned with the robot base as indicated in
Fig. 4.

3) Patient Coordinate System (PCS): The coordinate
frame with its origin at the isocentre of the MRI
scanner.

4) Image Coordinate System (ICS): The two dimen-
sional coordinate frame of singular MRI slices with
its origin in the top-left.

5) Joint Space of the Robot (Q): The space representing
the internal state of the robot joints, defined by the
set of joint angles and position that describe the
configuration of the Sunram 7.

Furthermore, the envisioned procedure can be split up
into three phases: pre-operative, intra-operative and post-
operative.

The pre-operative phase focuses on establishing calibration
between the dicom volume coordinate system and the robot
space. This relies on identifying six MRI-visible markers
within the field-of-view (FOV) of the three-dimensional
calibration scan. The position of these markers in RBF are
known, and using image processing these six markers are
identified in the DCS. A Procrustes analysis can be per-
formed on the coordinates of these six identifiable markers in
both frames providing the estimated transformation between
both frames [23]. Once the transformation is obtained, the
clinician can select the target for biopsy using multi-planar
reconstruction (MPR) of the DICOM images, which can
then be transformed to the RBF. Subsequently, the clinician
selects the desired angle of approach in robot base frame
and uses the inverse kinematics (IK) mapping of the Sunram
7 to obtain the required position of the Sunram 7 in joint
space. Using the required orientation and target position, the
point of entry into the breast phantom is also identified by
placing its outside mesh in the RBF and finding the point
of intersection. Using both of these identified points; target
and entry, in joint space, the robots path can be planned.
Movement is performed up until the needle touches the breast



Fig. 3: The proposed system to close the control loop of the Sunram 7 robot. The Siemens Access-I API is used for
two-way communication over the local area network between MRI-scanner and the system. Upon initialization, a full three-
dimensional scan including six fiducial markers is used to map image space to robot space as to be able to identify the target
position relative to the robot. Based on the Sunram 7’s inverse kinematics the needed path is generated to reach this target.
This is sent to the Sunram 7 pneumatic controller as serial commands in order to move the Sunram 7 along the chosen path
using the pneumatic stepper motors. Meanwhile, real-time imaging is obtained using MR images by scanning an oblique
slice of the planned needle tip position and orientation. These images showing the needle and target provide feedback on
the movement of the Sunram 7, thereby closing the control loop.

in the pre-operative phase.

The intra-operative phase is where the real-time feedback
loop is engaged. The needle is inserted into the breast
phantom up to 10 mm, allowing for initial needle recognition
using the YOLOV8 segmentation described in Z.J. Tai et al.
[24]. The inner-workings of the segmentation methodology
is outside the scope of this research and implementation is
based on the findings described in Z.J. Tai et al. [24]. As
a starting point for segmentation of the needle, its position
and orientation in PCS are required. The needle position and
orientation can be obtained by mapping the joint position
using the forward kinematics. This position and orientation in
RBF can be converted to PCS by: (1) mapping it to DCS us-
ing the inverse transformation matrix obtained by Procrustes
analysis and (2) mapping between DCS and PCS obtained
from the scanning metadata. The Access-I API used for
communication between MRI scanner and application uses
the PCS for selecting a slice position and orientation. Using
the obtained slices at needle tip position, the segmentation
algorithm tracks the needle throughout the procedure and
provides the system with the coordinates of the needle tip,
the needle base in ICS. The obtained needle tip position and
orientation are used in combination with the planned path
to obtain a new estimated position of the needle through
Kalman filtering. Based on the newly estimated position the
planned trajectory can be adjusted to compensate for any
errors in positioning of the pneumatic stepper motors [22].
This phase ends with firing the biospy needle and retracting

Fig. 4: The origin of the robot base frame indicated on the
base plate of the Sunram 7, the serrated edge on the bottom
are the teeth for joint 1 [25].

it until outside of the breast phantom.
The post-operative phase consists of releasing the needle,

acquiring the biopt and resetting the Sunram to its zero
position for next use.

B. Sunram 7 robot modelling and kinematics

As stated, this research aims to close the control loop
for the Sunram 7 robot developed at University Twente
and presented by H. Ranjan et al. [22]. The Sunram 7 is
the fully 3-D printed five degrees of freedom pneumatically
actuated robot depicted in Fig. 5. The only non-MRI-safe
component is the needle, which is an off-the shelf, non-
magnetic MR-conditional titanium biopsy needle sized 14



gauge (∅2.1 mm) and mechanically modified to fit in Sunram
7’s pneumatic biopsy gun [22]. This system has the benefit
that it is MR safe, meaning that it can be positioned close
to the magnet’s isocenter and continuous MRI scanning is
possible even when in motion [22]. The robot is equipped
with five joints, comprising of four revolute joints (J1 to J4)
and one prismatic joint (J5), which enable the robot to target
spatially defined lesions from various azimuth and elevation
angles.

Fig. 5: The Sunram 7 robot annotated with its joint direc-
tions (gray) displayed together with its base, the six MRI
identifiable markers (orange), a breast phantom and the tool
frame T (red).

1) Forward Kinematics: The position and orientation of
the needle tip is defined by the manipulator kinematics of
the Sunram 7, more specifically its five joints. This mapping
of the tool frame T relative to the base frame S based on
the joint positions is represented by the forward kinematics
gst : Q → SE(3) [26]. To describe this mapping the base
frame S is considered to coincide with the RBF, and all
connections between the serial chain joints of the Sunram
7 as depicted in Fig. 5 are considered to be rigid. The joint
space, Q = (θ1, θ2, θ3, θ4, θ5), of the Sunram 7 consists of all
possible values for the joints of which the limits are indicated
in table I. The general formula for the forward kinematics
map of an open-chain manipulator, as the Sunram 7 is, can
be described by [26]:

gst(θ) = eξ̂1θ1eξ̂2θ2 . . . eξ̂nθngst(0), (1)

where n is the number of joints, ξi’s are the twists
numbered sequentially starting from the base. The twist of a
revolute joint has the following form [26]:

ξi =

[
−ωi × qi

ωi

]
, (2)

where ωi ∈ R3 is a unit vector in the direction of the twist
axis and qi ∈ R3 is any point on the axis. For a prismatic
joint [26]:

ξi =

[
vi
0

]
(3)

where vi ∈ R3 is a unit vector pointing in the direction of
translation. All of these vectors and points are specified for
the Sunram 7 relative to the RBF in table I.

The exponential of the twist, considered as ξi =
[
v ω

]T
,

is calculated as follows:

eξ̂θ =

[
eω̂θ (I − eω̂θ)(ω × v)
0 1

]
, (4)

where for ω =
[
ω1 ω2 ω3

]T
:

ω̂ =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 . (5)

The exponential is then defined as follows:

eω̂θ = I + ω̂ sin θ + ω̂2(1− cos θ). (6)

Using these definitions, the only requirement left for
completing the forward kinematics map gst(θ) of the Sunram
7 is the transformation matrix from base frame S to tool
frame T (Fig. 5) at zero position Q(0), which is constructed
as follows:

gst(0) =

[
I3×3 pEE

01×3 1

]
, (7)

where PEE =
[
13.5 127 41.0

]T
.

2) Inverse Kinematics: Obtaining the required joint posi-
tions for the Sunram 7 end-effector to be at a certain position
and orientation is done through the inverse kinematics map of
the system. This is a non-trivial procedure, but by exploiting
the specific kinematic configuration of the Sunram 7; (1) the
projection of the line along the end-effector in the XY-plane
solely depends on J1 and J2, (2) the Z-component of the end-
effector orientation solely depends on J3 and J4, and (3) J5
is a pure translation along the orientation axis, the procedure
can be separated into the following three respective steps.

J1 and J2 are dependent solely on the end-effector projec-
tion in the XY-plane. Thus, a projection, l̂(λ) = p̂0+λd̂, of
the line along the end-effector, l = p0 + λd, onto the XY-
plane is used, as depicted in Fig. 6. Note that the end-effector
is offset with 13.5 mm and 15 mm in the x- and z-direction
respectively compared to its joints in the end-effector frame.
To compensate for these displacements the following line
parallel to the end-effector is used for step one and two in
the analysis:

p̂0 = p0 +REE



−13.5

0
−15


 (8)

where REE is the rotation matrix that transforms the
orientation of the end-effector in zero coniguration (unit
vector in the +y-direction) to the required orientation of
the end-effector. One can find the projection line simply by
taking only the x- and y-component of both the position
vector p̂0 and the orientation of the end-effector d. One
constructs a helper circle in the XY-plane of all possible



TABLE I: Information on the joints of the Sunram relevant to the forward kinematics of the system.

Joint Type (unit) Limits Direction d̂ Position p Stepsize

1 revolute (◦) [−20, 20] ω1 =
[
0 0 1

]T
q1 =

[
0 240 0

]T 0.13
2 revolute (◦) [−40, 40] ω2 =

[
0 0 1

]T
q2 =

[
0 12 0

]T 0.38
3 revolute (◦) [0, 50] ω3 =

[
1 0 0

]T
q3 =

[
0 −58 26

]T 0.58
4 revolute (◦) [0, 50] ω4 =

[
−1 0 0

]T
q4 =

[
0 2 26

]T 0.58
5 prismatic (mm) [−120, 15] vi =

[
0 1 0

]T n.a. 0.60

locations for the axis of J2, this is represented by a circle
centered around the axis of J1 position with a radius of 228
mm. The intersection points of the projected line with this
circle, and the center of J1 provide the necessary information
to obtain the configuration of J1 and J2. J1 is equal to the
angle between the line from the origin to the centre of J1
and the line from the centre of J1 and the intersection of the
projection line in the 180◦ on the side of the Sunram 7. J2 is
equal to the angle between the latter and the projection line.

A similar procedure can be used to obtain J3 and J4 with
its geometry presented in Fig. 7. Now with the added caveat
that the plane in which these joints move is dependent on
J1 and J2. In order to obtain the position of the plane that
encompasses these joints the forward kinematics are used
to obtain the position of the axis of J3, similar to what is
described in eq. (1):

p3(θ) = eξ̂1θ1eξ̂2θ2q3, (9)

with q3 in homogeneous coordinates. A circle positioned
along the end-effector is constructed around the found po-
sition of the axis of J3, p3, with a radius equal to 60 mm,
providing all possible positions of the axis of J4. Positioning
the circle along the end-effector is achieved by coinciding it
with the plane at the position of the axis of J3, p3, with a
normal vector equal to the cross product of the orientation
vector indicated in eq. (8) and the unit vector

[
0 0 1

]T
.

J3 can be found as the angle between the orientation vector
projected onto the XY-plane and the line between the position
of J3 and the intersection with the circle with the largest Y-
value. J4 is equal to the angle between the latter line and the
orientation line indicated in eq. (8).

Knowing J1-4, the position of J5 can be obtained by filling
in eq. (1) with J5 equal to zero. The obtained position of the
end-effector can be compared with the required position of
the end-effector, and the distance between these points is the
required value for J5.

3) Workspace: The Sunram 7 has a reachable workspace
of 4.1L [22]. It, however, cannot reach all of the points inside
this volume at an arbitrary insertion angle. To get an idea of
the versatility of the Sunram 7 throughout the volume the
workspace is analyzed using two methods:

1) Monte Carlo method: random sampling [27].
2) Inverse Kinematics method: variation of orientations

a voxel in the volume can be reached with.
The Monte Carlo method is done by sampling 100.000

random joint configurations within the Sunram 7 joint limits

(a) Top view

(b) Isometric view

Fig. 6: Geometric relation between Sunram 7 configuration
and joint 1 and 2 depicted in RBF. The large green circle
is centered around the axis of J1 with the radius equal to
the distance of the axis of J2 from the axis of J1. Indicating
all possible positions of the axis of J2. The smaller green
circle represents J2. The blue lines are the line along the end-
effector and its projection on the XY-plane. The black line
is the line through the axes J1 and J2 at zero configuration.
Associated with the plots is a depiction of the orientatation
of the RBF coordinate frame axes.

depicted in Table I and computing the associated end-effector
positions and orientations using the forwards kinematics



Fig. 7: Geometric relation between Sunram 7 configuration
and joint 3 and 4. The green circle is centered around J3
with the radius equal to the distance of the center of J4 from
J1. The blue line is the line along the end-effector, adjusted
with the offset. The black line is the projection of the blue
line onto the XY-plane at the height of the centre of J3.

mapping. The obtained workspace is divided into isotropic
voxels of length 10 mm, and for each voxel within the
workspace a simple statistical analysis is performed on the
acquired end-effector orientation vectors for the end-effector
positions inside the voxel. The variation in orientation with
which the Sunram 7 is able to reach these voxels is given
a quality factor based on the spread in these orientation
vectors. The angle each orientation vector makes with the
mean orientation vector in the respective voxel is calculated:

cos θi =
vi · vm

|vi||vm| (10)

where θi is the angle the i-th orientation vector vi makes
with the mean orientation vector in that voxel vm. The
standard deviation of this spread in angles is used as the
quality factor of each voxel, an indicative measure of the
versatility of the end-effector orientation at that position.

The Monte Carlo result, however, does not result in an
equal amount of tests throughout the workspace volume.
Therefore, the inverse kinematics method relies on creating
100 equally spaced orientation vectors in a cone of 90◦

around the positive y-direction. For each voxel within the
workspace obtained by the Monte Carlo method, the inverse
kinematics is performed for all 100 vectors and the amount
of orientation vectors that can be reached at each voxel are
counted. Then a quality map is made based on the normalized
amount of orientations that can be reached out of these 100
vectors for each of the voxels in the workspace.

C. System Calibration

A prerequisite for planning the trajectory of the Sunram
7 is the relative position of the target in the breast phantom
with respect to the robot base. The methodology used for ob-
taining this mapping is an adapted version of the Procrustes
method presented in L. Marx et al. [28], by calculating the

required translation, scale and rotation to aquire the best
match between the identified positions in DCS and the known
position of the six markers in RBF.

1) Image Processing: Before the Procrustes analysis can
be performed the six markers should be identified in the
DCS. After applying a Gaussian filter, the obtained dataset
is separated into background noise and tissue/markers using
a threshold value obtained by Otsu’s method [29]. Sep-
arating the breast phantom tissue from markers is done
using a Fast Fourier Transform (FFT) template matching
algorithm [30]. The template is constructed based on the
known dimensions of the markers and the voxel size of
the MRI scan. Specifically, an isotropic cubic template with
side length equal to the marker diameter (∅10 mm) plus
a padding margin of 3 mm is employed. At the center
of the template, a spherical region with a diameter equal
to that of the markers (∅10 mm) is set to a value of 1,
representing the marker region. The surrounding padding
margin is assigned a value of -1 to penalize the correlation
factor when background is matched with tissue in the MRI
image. An exhaustive search throughout the volume using
this template provides the correlation factor for each voxel.
Applying a threshold to the result identifies which voxels
can be considered part of a marker. All connected voxels
above this threshold are then grouped and considered part
of the same marker. Subsequently, the estimated position of
each of the detected markers is taken as the centroid of their
respective group. Once the position of each of the separate
markers is obtained, the one requirement left is to match each
marker in DCS to their respective ground truth. This is done
using a Python adaption of the closest pair correspondence
algorithm presented in L. Marx et al. [28].

2) Procrustes Analysis: Upon obtaining the two sets of
linked positions, one in DCS and the ground truth in RBF,
the Procrustes analysis is used to obtain a transformation
matrix that maps the image frame best to the ground truth
according to the following least-squares criterion [23]:

S12 = min||TADCS −ARBF ||2, (11)

where XDCS and XRBF are the sets of linked marker
positions in image frame and ground truth respectively, and T
is the obtained transformation matrix. This procedure starts
by centering each set around the origin by subtracting the
centroid of the sets of points from their respective matrix.
Followingly, the scale factor can be obtained using the ratio
of the Frobenius norms of both matrices [28]:

s =
||ARBF ||F
||ADCS ||F

(12)

with s the scale factor, ||ARBF ||F and ||ADCS ||F the
Frobenius norm of the ground truth positions and the image
positions respectively. The Frobenius norm is defined as:

||A||F =

√√√√
n∑

i=1

3∑

j=1

|aij |2, (13)



where n is the number of points and j each coordinate of
the point. By scaling the centered set of points in the image
frame using this scale factor, the magnitude between ground
truth and image frame are aligned. Finally, the required
rotation from DCS to RBF can be obtained using Singular
Value Decomposition (SVD). The SVD states that a matrix
A can be separated into unitary rotation matrices and the
’stretching’-factors or singular values as follows [31]:

A = UΣV ′, (14)

Where U and V ′ are unitary matrices holding the vector
directions and Σ is the diagonal matrix containing singular
values of matrix A. Taking the SVD of the cross covariance
matrix between image and ground truth ADCSA

′
RBF , where

the positions in image frame are scaled and centered and the
positions in ground truth are centered, we get the optimal
Procrustes rotation as follows [32]:

R = UV ′, where SVD(ADCSA
′
RBF ) = UΣV ′. (15)

The obtained translations, scaling and rotation can be
combined into a singular transformation matrix, mapping
DCS to RBF as follows:

T = TRBFRsTDCS , (16)

where T is the combined transformation matrix, TGT and
TDCS are the centroid translations of the ground truth and
image frame respectively represented as 4×4-transformation
matrices, R is the Procrustes rotation represented as 4 × 4-
transformation matrix, and s is the scaling factor.

D. Path Planning

With the newly obtained mapping between DCS and RBF,
the full calibration scan with markers can be placed relative
to the robot. This placement allows for path planning for the
Sunram 7 upon choosing a target position and orientation.
An example of the breast phantom image mapped to the
robot base with selected target and orientation is depicted in
Fig. 5.

1) Target identification: Target identification can be done
in two ways; either by manual selection of coordinates in the
robot base frame or through the use of a MPR of the MRI
image. The former method is trivial and useful for testing the
kinematics, whilst the latter is more suitable for application
in clinical settings. The MPR simultaneously presents the
clinician with three linked orthogonal 2D slices reconstructed
from the 3D DCS volume. This way the clinician can scroll
through the volume in each direction: coronal, sagittal, and
axial, and select a target based on the grayscale image of
the calibration scan. This target is selected in pixels in ICS:
pim =

[
xim yim

]T
, which is converted to DCS depending

on the plane:

yz-plane:
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xz-plane:
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xy-plane:
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where β is the isotropic voxel size of 1.5mm and xs, ys,
and zs are the slice number in the respective direction. The
position in DCS can be transformed to robot base using the
Procrustes mapping.

2) Entrance identification: For separating the functional-
ity between pre-operative, intra-operative and post-operative
sections, the point at which the needle enters the breast
must be identified. This is split up into two methodologies:
an automatic and a manual selection. The latter is kept
in place to keep the clinician in control of the procedure.
The automatic procedure uses Algorithm 1 to minimize the
distance the needle travels through the breast under the
condition that the chosen point of entry must be within a
voxel that can be reached at many insertion angles relative
to other voxels. This condition can be tested using the IK
workspace analysis discussed in Section II-B.3 by laying the
thresholded voxel quality map as a mask over the workspace.
The condition is required to increase the likelihood that the
Sunram 7 has enough buffer to be adjusted during insertion.

Algorithm 1: Automatic Entry Point Selection
Data: Breast mesh vertices, Workspace mask, target
Result: Entry-point
Find vertices within voxel mask
Sort vertices based on ascending distance from target
for Sorted vertices do

Orientation = target - vertex
if IK(vertex, orientation) <= Joint limits then

if IK(target, orientation) <= Joint limits then
Entry-point found
Break

end

The manual approach allows the clinican to click and drag
an arrow in the RBF plotter to select the envisioned angle of
insertion. From the selected orientation a line is constructed
through RBF and the 25 closest vertices to this line are used
to compute the entrance position as indicated in Fig. 8. The
weighted average position based on the distance from the
line of these 25 vertices is used to determine the entry point:

pe =
n∑

i=1

1
di∑n

j=1
1
dj

pi, (20)

where pe is the entry point, n is the number of closest
vertices considered, d is the distance of the associated vertex
to the line, and pi is the position of the vertex. Whether



Fig. 8: Calculation of the insertion point based on the 25
closest vertices to the line along the chosen orientation. The
red line is the line along the orientation and the blue line is
the calculated distance through the breast tissue.

the entry point can be reached with this orientation is
then determined by whether the inverse kinematics mapping
obtains a joint configuration that is within the joint limits.

3) Path: The path planning of the Sunram 7 is split
up into two sections; pre-operative and intra-operative. Of
which the latter is discussed in Section II-F and the former
based solely on the joint configuration Q at the target point
and at the entry point. The pre-operative path planning is
designed such that the Sunram 7 travels through the breast
tissue in a straight line. Due to the kinematic design of
the Sunram 7 this is as simple as moving J5 last. This
also simplifies the path planning for the other joints as
keeping the Sunram 7 with J5 in a retracted state circumvents
any robot breast collisions. For simplicity, path planning in
the XY-plane is separated from the z-direction as well, by
first moving J3 and J4 to their required position. In the
movement of J3 and J4 there is concern for the Sunram
7 to collide with itself for higher values of J3 when J4 is
of low value. A very simple solution is proposed in first
moving J4 to 10◦ and then performing J3 and J4 to their
required position. Subsequently J1 and J4 can be moved to
their respective positions. Lastly, J5 is moved directly to the
entry position and the remaining distance to the target point
is split into stages of 10 mm. An example of such a planned
path is indicted in Table II This does not circumvent the
collision for the entire workspace of the Sunram 7 but for
all targets and orientations regarded relevant for the clinical
implementation. Note, that the method of calibration between
DCS and RBF only directly places the image with respect
to the base of the robot. Thus, it is required to start the
procedure with the Sunram 7 in a known zero configuration:
Q = (0, 0, 0, 0,−100), with respect to the base.

The planned path is discretized to steps by the discretiza-
tion procedure presented hereafter in Section II-E using the
stepsizes indicated in Table I. These step set-points for each
consecutive joint configurations are sent to the pneumatic
controller board using serial commands. The pneumatic
stepper frequency of the controller board is limited to 10Hz
because of the relatively long (7m) tubes for operation inside
the MRI bore [22].

TABLE II: Example of a planned path for the Sunram
7 robot. Pose 4 represents the entry configuration of the
Sunram 7 in the breast phantom and pose 5 at 10mm into
the breast.

Pose J1 (◦) J2 (◦) J3 (◦) J4 (◦) J5 (mm)
0 0 0 0 0 -100
1 0 0 0 10 -100
2 0 0 16.67 37.34 -100
3 -12.37 -12.49 16.67 37.34 -100
4 -12.37 -12.49 16.67 37.34 -69.46
5 -12.37 -12.49 16.67 37.34 -59.46
6 -12.37 -12.49 16.67 37.34 -49.46
7 -12.37 -12.49 16.67 37.34 -39.46
8 -12.37 -12.49 16.67 37.34 -31.58

E. Discretization error

The discrepancy between the continuous nature of the
joint configuration obtained from the inverse kinematics
and the discrete nature of the pneumatic stepper motors
of the Sunram 7 introduce an error in reaching the target
position and orientation. An obvious solution would be to
round each of the joints off to the nearest step, but due to
the kinematic structure of the Sunram 7, as presented in
Section II-B, this might not be the ideal solution. In the
context of taking biopsies, the position of the needle tip
is considered most important as one must ensure to reach
the lesion. Therefore, this research proposes an optimization
algorithm of the discretization error based on minimizing the
error of the target position whilst keeping the end-effector
orientation close to the chosen orientation.

The algorithm is based on an iterative procedure of chang-
ing the joint step of the joint that has the largest component
in direction of the target error, with the added caveat that
already tried joint configurations cannot be tested again.
Thus, on each iteration the effect of a step for each respective
joint at that joint configuration is calculated:

vi = tc,i+1 − tc, (21)

where vi is the effect vector of joint i, ti+1 is the end-
effector position reached by adding a step to joint i at the
joint configuration at that iteration, and tc is the end-effector
position for the joint configuration of that iteration. The
component of each of the normalized joint effects along
the error in end-effector position compared to the target is
computed:

wi =
vi · te
|te|

, (22)

with w the weight factor of joint i indicating its component
along the error, vi the effect vector of joint i, and te the
error between target and end-effector position at the joint
configuration. This weight vector indicates the joint that has
the largest component in the direction of the target from
the given joint configuration and thus should be adjusted.
Note, that the sign direction of the weight indicates in what
direction the joint should be adjusted.



The starting point of this algorithm are the rounded values
of the exact joint steps obtained from the target position and
orientation. The joint that should be adjusted is computed,
it is checked whether the obtained configuration has already
been tested. If not, the next iteration is started with the new
joint configuration, and if it is, the joint with the second
largest component is tested. If all joint adjustments are
already tested, two steps in the joints from largest component
in the direction of the target error is tested and so on. For
each of the configurations the error, the distance between
the target and the obtained end-effector position, is saved.
An overview of the algorithm is presented in algorithm 2.

Algorithm 2: Discretization error optimization
Data: exact joint steps, target, iterations
Result: discretized joints steps
Initial joint steps: round(exact joint steps)
for iterations do

Compute joint effects
Compute target error for joint configuration
Compute component joint effect along target error
Order joints based on largest component
for Max Steps do

for Ordered Joints do
if new joint configuration then

Next iteration joint configuration
break

end
end

end

F. Image based feedback loop

The needle has to be surrounded by tissue for it to show
up on the MRI image such that it can be detected by the
segmentation algorithm descibed in Z.J. Tai et al. [24].
Thus the image-based feedback loop starts from the pose
in the path planning at which the Sunram 7 is inserted
10mm into the breast phantom. The segmentation algorithm
starts by providing it with the estimated position of the
needle entry point and tip position in PCS. The position of
the end-effector at entry and for the tip position in RBF
is obtained by computing the forward kinematics for the
joint configurations associated with these poses. This can
be converted to the DCS using the inverse of the Procrustes
transformation described in section II-C.2. The Access-I API,
however, uses the PCS for selecting a slice position and
orientation, the mapping from DCS to PCS can be obtained
from the Image Orientation (Patient) and Image Position
(Patient) DICOM metadata attributes of the first slice with
tags (0020, 0037) and (0020, 0032) respectively. The image
orientation attribute indicates the direction of the row and
column vectors of slice scanning in PCS and the image
position attribute indicates the position of the top left voxel
of the slice. The mapping can then be constructed as:

TDCS
PCS =




nx cx rx px
ny cy ry py
nz cz rz pz
0 0 0 1


 , (23)

where r and c are the row and column vectors of the slice
scanning direction respectively, n is the final orthogonal
direction obtained by the cross product of r and c, and p is
the slice position of the first slice. The converted end-effector
position and orientations are used to obtain the appropriate
slices for the segmentation algorithm presented in Z.J. Tai et
al. [24]. This algorithm returns the segmented end-effector
tip and base position from this slice, which are the needle
tip and the detected point of entry into the breast tissue. The
needle tip position can be used as the measured end-effector
tip whilst the orientation of the end-effector can be obtained
by:

oEE = ptip − pbase, (24)

where ptip is the segmented needle tip position and pbase

is the segmented point of entry of the needle. These mea-
surements can be used to update the estimated position
and orientation of the end-effector, which in turn can be
used to find the adjustment that needs to be made to the
planned path in order to reach the target position. To prevent
bending of the needle and other side-effects from needle-
tissue interaction, reorientation of the end-effector is done
outside of the breast phantom. Meaning that the needle is
moved outside of the breast, J1-J4 are adjusted and the needle
is reinserted for a new iteration of measurements.

The predicted state from the planned path and the mea-
sured state can be used to obtain the newly estimated state us-
ing Kalman filtering. Where the state for this system consists
of the position and orientation: x = (px, py, pz, ox, oy, oz).
Kalman filtering is based on the following formula for
predicting the estimated state based on the prediction and
measurement [33]:

xk+1 = xk+1|k +Kkvk, (25)

where xk+1|k is the predicted state at k+1 given the state at
k, Kk is the Kalman gain, and vk is the measurement update.
This newly updated state also has a newly associated updated
covariance matrix given by:

Pk+1 = (I −KkH)Pk+1|k, (26)

where H is the measurement matrix and Pk+1|k is the
covariance prediction given the covariance at step k. For
this system the predicted state xk+1|k is taken as purely
equal to the updated planned path and orientation based
on the estimated state xk and measurement update vk. The
measurement update vk is given by:

xk+1|k = Fxk +Buk, (27)

where in this case, to avoid mapping the kinematics into the
state progression matrix, this is separated into two cases. The
needle is reoriented and the process noise is reset: F = 0,
B = I , and the control input vector: uk = xplanned after



the joints are re-calibrated to the newly estimated position
based and moved back to the planned position for a new
measurement. Or the needle is inserted 10mm along J5, so
in the direction of the orientation vector and thus:

F =

[
I3×3 10 · I3×3

03×3 I3×3

]
, (28)

and the input vector uk is zero. This predicted state given
the state at k also has an associated covariance predication:

Pk+1|k = FPkF
T + Cw, (29)

where Cw is the process noise covariance matrix. Meaning
that for reorientation the covariance matrix prediction is
reset to the process noise and otherwise the correlation
information between orientation and position is embedded
into the covariance matrix. The measurement update vk is
equal to:

vk = zk −Hxk+1|k, (30)

where zk is the measurement vector, H = I is the measure-
ment matrix mapping the state to the measurement space.
The Kalman gain matrix at k is given by:

Kk = Pk+1|kH
T
(
HPk+1|kH

T + Cv

)−1
, (31)

where Cv is the measurement noise covariance matrix. This
way on each iteration the estimated state can be computed
as follows:

xk+1|k =

{
xplanned if re-orientation
Fxk if insertion

Pk+1|k =

{
Cw if re-orientation
FPkF

T + Cw if insertion

vk = zk −Hxk+1|k

Kk = Pk+1|kH
T
(
HPk+1|kH

T + Cv

)−1

xk+1 = xk+1|k +Kkvk

Pk+1 = (I −KkH)Pk+1|k

which is basically a weighted average based on the process
and measurement noise upon reinsertion and incorporates
the correlation between orienation and predicted position
otherwise.

Based on the newly acquired state estimation xk+1; po-
sition and orientation, on each iteration the system either
retracts itself and reorients if the difference between planned
and estimated is large or adjusts only slightly during inser-
tion. Reorientation involves retraction from the breast, re-
calibrating to the newly estimated position and orientation,
and moving to the planned trajectory for J1-J4 and inserting
again along J5. Upon insertion a new iteration of the Kalman
filtering is performed.

G. Experimental validations

This research is composed of a multitude of components.
In order to discover the performance and accuracy of the
separate components or the system as a whole the following
experimental validations are set up.

1) Workpsace: A proof of concept for taking the versatil-
ity of the workspace as voxel mask for viable entry points for
automatic selection of an entry point is provided by placing
the voxel quality maps over a Procrustes transformed breast
mesh in RBF.

2) Image processing: The main purpose of the image
processing step is to accurately define the position of the six
MR-visible markers in the DCS. The performance of this
algorithm is tested by comparing the identified positions of
the markers with the manually discovered positions of each
of these markers for a set of calibration scans. Quantification
of the error is done by finding the mean distance from each
of the markers and the standard deviation from this error.

3) Procrustes analysis: The Procrustes analysis is used
to obtain a mapping between the DCS and the RBF. The
performance of the procedure is quantified by its target
registration error (TRE); the distance between the mapped
detected marker positions in RBF to the known ground
truth. Quantification of the error is done by finding the
mean distance between the transformed identified marker
positions in DCS and the ground truth in combination with
the standard deviation over the 15 trials.

4) Discretization error: The optimization algorithm of
the discretization error is tested by comparing the obtained
results with the result of simply rounding the joint configura-
tion steps to the nearest integer and a grid search of the steps
around the computed joint configuration. This comparison is
done for 10 different sets of target positions and orientations.
The main component of the result is the distance of the end-
effector position from the target, but also the mean angle
the obtained orientation has with the target orientation. The
computing time needed for the algorithms also indicates
the efficiency of the algorithm and the error over iterations
provides insight into how many iterations would provide an
acceptable error for the system.

5) Path planning: The path planning algorithm is eval-
uated by performing a planned path for a target position,
without adjustments using the image based feedback algo-
rithm. The planned path is compared to the segmented needle
tip positions from the algorithm presented in Z. J. Tai et
al. [24] and manually observed needle positions in a 3D
evaluation scan after insertion. The error is quantified for
both the planned path and the segmented result, by the mean
perpendicular distance the points are from the line along the
manually obtained needle position using the evaluation scan
and the standard deviation of both methods.

6) Image-based feedback: Validation of the image-based
feedback is performed by estimating the needle position
during straight insertion into the breast phantom in steps of
10 mm. The segmented tip and base position obtained from
the segmentation algorithm developed in Z.J. Tai et al. [24]
during this insertion together with the planned path are used
to estimate the needle position. To mimic both the needle
advancement and reorientation with this data two different
scenario’s are performed whilst estimating the state using
discrete Kalman filtering. The planned path is taken as the
predicted state and each iteration presents a new reinsertion



along the planned path with the next segment of mea-
surements available. Indicating the weighted average result
upon reinsertion for reinsertion at one step farther along the
planned path. Secondly, the needle insertion is mimicked for
insertion along J5; the initial predicted value is the same as
first planned path, on the second iteration the newly predicted
state is taken as a 10 mm advancement into the breast from
the estimated state on the previous measurement. The next
iteration, the new measurement at 10mm advancement into
the breast is available and the new estimate can be obtained
and so on. This way the state estimation is tested by simply
not adjusting the end-effector as envisioned but rather trying
to improve the estimated position over purely taking the feed-
forward expected position as the needle state.

III. RESULTS

The separate modules of the system are evaluated based
on the empirical validations described in section II-G and
the resultant metrics are presented here.

1) Workspace: The workspace analysis result for the
Monte Carlo and IK methods are depicted in Figs. 9 and 10
respectively. Both workspaces are plotted as a quality map
over 5100 voxels plotted in the RBF over a transformed
MRI image to RBF. The colors of a voxel indicate the
quality factor associated with that voxel. For the Monte
Carlo method this is the normalized standard deviation of the
spread in angles compared to the mean orientation for that
voxel, thresholded at a value of 0.4 for opaque plotting. The
yellow color indicates a high spread in angle of the obtained
orientations compared to the mean orientation at that voxel,
and the purple values indicate a low spread in angle at that
position.

Out of the 100, 000 randomly sampled joint configura-
tions, the end-effector position fell within the centre region
defined by p = ([−40, 40] , [0, 75] , [20, 75])

T on 17, 775
occasions. This corresponds to 17.78% of the sampled po-
sitions. Given that this region constitutes 0.33 L of the total
workspace volume of 4.1 L, 17.78% of the points were
concentrated within 8% of the total workspace.

For the IK method the quality factor is based on the
normalized amount of orientation vectors that can be reached
at the position of the voxel, thresholded at a value of 0.4
for opaque plotting. A yellow color indicates a relatively
large amount of orientations can be reached at that voxel
position compared to others, and a purple color indicates a
low amount of the orientations can be reacehed at that voxel
position.

2) Image Processing: The performance of the image
processing algorithm is quantified by comparing the detected
MR-visible marker positions in DCS to manual selection of
the marker positions. The result is presented in Table III for
the target registration error over 15 trials. The marker color
is correlated with the display color of the respective markers
indicated in Fig. 6. The mean absolute error is indicated for
each separate marker and for the combination of all markers
as well as the respective standard deviations. The error in

Fig. 9: The workspace of the Sunram 7 depicted using the
Monte Carlo method for 100.000 randomly sampled joint
configurations for a voxel size of 10 × 10mm. The color
of the points indicates the normalized standard deviation of
the insertion angles at each voxel. The threshold for plotting
opaque voxels is set at a quality factor of 0.4.

position for the image processing step over all markers is
3.03± 0.65 mm.

Simply taking the Otsu threshold for binzarization of the
3-D calibration scan worked for 27 out of 32 total calibration
scans performed. Further investigation into the remaining
cases showed that simply lowering the threshold till obtaining
proper marker binarization allowed for calibration with little
to no impact on the obtained breast mesh. Furthermore,
on the 3-D calibration scans it could be observed that
the petroleum jelly based MRI visible markers are not of
constant intensity throughout their volume. An indicative
image of this is presented in Fig. 11, depicting the blue
marker for one of the calibration scans in the trial.

Furthermore in 2 cases the template matching step found
more than six markers, creating difficulties with the method
of labelling the markers. Further investigation of these cases,
showed that some small pieces of the phantom were discon-
nected from the main tissue and laid separately in the MRI
bore. These tissues showed as similar lumps on the MRI-scan
compared to the markers in Fig. 11.

TABLE III: The results for the image processing algorithm in
segmenting the MR-visible marker positions in DCS shown
in mean target registration error (Mean) and standard devi-
ation (SD) thereof. The marker color identification matches
with the respective markers in Fig. 6

Segmented Markers
Red Green Blue Yellow Purple Cyan

Mean (mm) 3.14 2.82 2.85 3.04 3.09 3.25
3.03

SD (mm) 0.66 0.66 0.74 0.62 0.60 0.58
0.65



Fig. 10: The workspace of the Sunram 7 depicted using the
inverse kinematics method for 100 orientation vectors at each
voxel for a voxel size 10 × 10mm. The color of the points
indicate the quality factor based on the normalized amount
of orientations reachable by the Sunram 7 at each voxel. The
threshold for plotting opaque voxels is set at a quality factor
of 0.4.

(a) Coronal (b) Sagittal (c) Axial

Fig. 11: The cross-sectional MRI image of the center of the
blue marker as color coded in Fig. 6.

3) Procrustes Analysis: The result for the Procrustes
analysis is presented in Table IV. The table presents the
result for each marker over the columns, and the results for
the separate trials in the row direction. Five trial runs are
presented, but all statistical analysis is performed over all 15
available trials. The bottom right result presents the mean
distance a transformed identified marker position is away
from the ground truth over all markers and trials, providing
an overall TRE of 0.67± 0.43 mm.

A one-way ANOVA test on the TRE of individual markers
indicates a statistically significant difference in TRE error
across colors at a 5% significance level (p = 0.0193). Further
analysis using Tukey’s honest significance test shows that the
only significant difference is between the error of the blue
and red marker with a p-value of 0.0082.

4) Discretization Error: The experimental validation for
the optimization algorithm for the discretization error over
ten trials is presented in Table V. The first five trials are

Fig. 12: The obtained 2-D slice using continuous MRI
imaging from selecting the slice position and orientation in
Access-I based on the FK. Showing the needle in-plane and
annotated in green is the planned path of the Sunram 7 in
ICS.

explicitly depicted, and the statistical analysis of all ten
trials is presented below these five trials. The joint effect
optimization algorithm for a 1,000 iterations shows an error
in target position of 0.07 ± 0.03 mm in a computation
time of 5.34 ± 0.34 s. Directly rounding the steps to the
nearest integer results in an error of 0.52 ± 0.25 mm in
practically zero computation time, and the grid search for
100,000 iterations results in an error of 0.08 ± 0.05 mm
with a computation time of 86.28± 1.31 s.

The amount of iterations the joint effect algorithm takes
to acquire an error below 0.2 mm over the ten trials is equal
to 61 ± 173 iterations. Note here, that one trial presents an
outlier at iteration 580, and removing this trial from the test
results in the algorithm needing 3±2 iterations to realize an
error below 0.2 mm. Increasing the threshold for error to 0.3
mm shows the algorithm to find a solution in 3±2 iterations
over all ten trials.

5) Path Planning: Fig. 13 depicts the obtained results for
performing a path towards a target position in the centre of
the breast. The purple line indicates the manually detected
position of the needle from an evaluation scan performed
with the needle tip at the planned target position. The green
lines shows the planned path in robot base frame and the
red line shows a least squares fitted line through the detected
needle tip positions during the insertion using the algorithm
disclosed in Z. J. Tai et al. [24].

The calibration scan for this trial had a mean error
in transforming the marker positions in DCS to the RBF
of 0.47 mm. The planned path is performed for a target
position at

(
33.47 94.32 23.93

)T
mm with orientation(

−0.20 0.93 −0.32
)T

ending up with joint configuration
J1-J4= (0.16, 0.05, 0.20, 0.52) rad and J5= −35.64 mm.
The planned insertion path ended up with a mean orthogonal
distance of 8.81±1.93mm from the manually detected needle
position in the evaluation scan. The needle tip segmentation
algorithm during insertion obtained a mean orthogonal dis-
tance of 1.28± 0.61mm.

Fig. 12 shows a single slice of the continuous image
obtained by providing the planned needle position and orien-
tation in PCS to Access-I. Some imaging artefacts around the



TABLE IV: The result for the Procrustes analysis. Five trials are presented, although the statistical qualities results are
depicted according to all 15 trials. The bottom row presents the error between computed marker position and ground truth
(GT) across all markers (AAM) and the most right column presents the error computed marker position across all trials
(AAT).

Marker GT
(mm)

Trials (mm) Error
AAT (mm)

SD
AAT (mm)1 2 3 · · · 14 15

Red
x
y
z

−90.0
70.0
65.0

−90.59
69.69
63.99

−90.57
69.76
64.08

−90.57
69.68
64.11

· · ·
−90.44
69.67
64.11

−89.36
69.46
64.70

0.70 0.42

Green
x
y
z

−90.0
100.0
25.0

−89.69
99.62
26.59

−89.66
99.77
26.35

−89.52
99.80
26.27

· · ·
−89.85
99.75
26.51

−89.82
99.70
24.38

0.74 0.51

Blue
x
y
z

−90.0
120.0
85.0

−90.26
120.64
84.49

−90.27
120.45
84.52

−90.36
120.43
84.55

· · ·
−90.31
120.51
84.25

−90.06
120.68
85.70

0.69 0.39

Yellow
x
y
z

90.0
120.0
65.0

89.92
119.95
65.69

89.95
120.06
65.71

89.87
119.90
65.60

· · ·
89.60
119.80
65.50

89.01
119.72
65.15

0.85 0.50

Purple
x
y
z

90.0
100.0
25.0

89.78
99.83
24.46

89.97
99.71
24.41

90.05
99.72
24.62

· · ·
90.43
99.89
24.98

90.58
100.32
24.69

0.52 0.32

Cyan
x
y
z

90.0
70.0
85.0

90.84
70.28
84.78

90.59
70.25
84.93

90.53
70.41
84.85

· · ·
90.57
70.37
84.65

89.66
70.12
85.37

0.49 0.31

AAM Error (mm) 0.99 0.87 0.83 · · · 0.90 0.81 0.67 0.43SD (mm) 0.60 0.53 0.51 · · · 0.56 0.48

TABLE V: The results for the proposed joint effect algorithm (Joint) for a 1000 iterations, compared to simply rounding
the steps to the nearest integer (Rounded) and a grid search algorithm (Grid) of 100000 iterations (10 per joint). Five trials
are explicitly presented as an indication of specific results and the bottom row show the statistical analysis of a total of ten
trials for each algorithm.

Trial Target Algorithm End-effector
Pos. (mm) Orien. Type Joint Config. (Steps) Iter. Pos. (mm) Angle (◦) Error (mm)

1




25.97
119.19
34.65






−0.27
0.91
−0.28




Rounded (80, 14, 53, 82,−3) n.a.
(
26.06 119.49 35.42

)T 0.21 0.83
Grid (84, 16, 54, 84,−3) 97676

(
25.93 119.00 34.71

)T 1.15 0.21
Joint (77, 13, 43, 69,−9) 931

(
25.96 119.30 34.72

)T 2.05 0.13

2



−22.57
94.56
35.98







0.03
0.97
−0.24




Rounded (−73, 21, 29, 53,−56) n.a.
(
−22.34 94.36 36.02

)T 0.07 0.30
Grid (−72, 22, 31, 56,−55) 66787

(
−22.54 94.56 36.09

)T 0.72 0.12
Joint (−51, 35, 24, 45,−57) 762

(
−22.58 94.54 36.02

)T 8.27 0.05

3




9.9
109.25
55.59






−0.07
1.00
−0.05




Rounded (6, 8, 34, 39,−26) n.a.
(
10.10 109.14 55.62

)T 0.02 0.23
Grid (1, 6, 32, 36,−26) 3326

(
9.89 109.21 55.59

)T 1.55 0.04
Joint (1, 6, 36, 42,−25) 187

(
9.89 109.19 55.61

)T 1.53 0.06

4



46.48
96.09
28.33







0.11
0.95
−0.30




Rounded (44,−33, 28, 58,−46) n.a.
(
46.55 95.81 28.09

)T 0.23 0.37
Grid (40,−35, 31, 62,−43) 13899

(
46.48 96.09 28.39

)T 1.56 0.04
Joint (40,−35, 29, 59,−44) 34

(
46.48 96.03 28.31

)T 1.46 0.06

5




7.01
105.01
21.02






−0.04
0.97
−0.24




Rounded (−5, 8, 8, 31,−38) n.a.
(
6.97 105.07 22.01

)T 0.40 0.99
Grid (−5, 8, 8, 32,−38) 55566

(
6.97 104.97 20.97

)T 0.18 0.07
Joint (−3, 9, 1, 21,−39) 345

(
6.97 104.98 21.01

)T 2.23 0.05
10

Trial
Stat

Rounded Mean
error (mm)

0.52 SD
error (mm)

0.25 Mean
computation

time (s)

0.00 Mean
Iteration

n.a.
Grid 0.08 0.05 86.28 57397
Joint 0.07 0.03 5.34 503

titanium biopsy needle can be observed on the 2-D slice MRI
scan. The planned path deviated from the actual path from
the evaluation scan with an angle 7.48◦ in 3-D space, whilst
the segmented needle positions deviated from the observed
needle positions with an angle of 4.31◦. Subsequent analysis
showed that J3 did not reach its desired planned path.

The operation time for performing the planned path was
10:32 minutes. This included acquisition of the calibration
scan (1:32 minutes), Procrustes analysis, target and orien-

tation selection, obtaining joint configuration, joint effect
discretization optimization algorithm, path planning, estab-
lishing TCP connection with segmentation algorithm Z.J. Tai
et al. [24], robot operation and simultaneously segmenting
needle tip locations.

6) Image-based feedback: The results for testing the
Kalman filter for taking each iteration as a newly inserted
measurement and insertion with sole calibration at the new
estimated position in Figs. 14a and 14b respectively. The



(a) Plain result (b) Relative to the robot and breast mesh.

Fig. 13: The manually detected needle position in the evaluation MRI scan (purple) plotted against the segmented position
of the needle tip in the continuous 3D tracking algorithm (red) and the planned path using the forward kinematics of the
Sunram 7 (green).

estimated positions (blue) are plotted together with their
respective counterparts in measurements (red) in similar
shades. The measurements are the same measurements as
depicted in Section III-.5 and the process and measurement
noise is based on those results. Investigations of the mea-
surements did show that the segmentation algorithm has a
significant change in base position as can be seen from
the measurements for iteration 3 in Fig. 14. The Kalman
filter for these results was initialized with variances 10mm2

and 0.0025 for position and orientation respectively, whilst
the measurement noise variances are set at 1mm2 and 0.05
for position and orientation respectively. The orthogonal
distance and angle the estimated state makes with the needle
position and orientation in the 3-D evaluation scan over the
iterations for both methodologies is depicted in Table VI.
The mean orthogonal distance error from the needle in
the 3-D evaluation scan is 1.11mm and 1.15mm over the
four iteration for reorientation and insertion methodology
respectively. The mean error over the iterations in angle
with the needle observed in the 3-D evaluation scan is 4.65◦

and 3.94◦ for the reorientation and insertion methodology
respectively.

IV. DISCUSSION
This study proposes a methodology for closing the loop

for a MRI-guided biopsy robot, presenting the envisioned
procedure and required algorithms. This proposed system
enables automatic path planning with continuous intra-
operative imaging from selection of a target position in the
MRI image by the clinician.

TABLE VI: The orthogonal distance between the estimated
position and the manually observed needle position in the
3-D evaluation scan (Error) and the angle between the
estimated orientation and the manually observed needle
orientation in the 3-D evaluation scan (Angle) for both the
reorientation and insertion validation of the Kalman filter
algorithm.

Iterations
1 2 3 4

Reorientation Error (mm) 1.46 0.63 0.85 1.52
Angle (◦) 2.83 4.20 6.00 5.59

Insertion Error (mm) 1.46 1.17 0.76 1.25
Angle (◦) 2.83 3.69 5.22 4.03

A. Workspace Sunram 7

This proposed methodology of operation of the Sunram
7 enables the option to automatically select a needle entry-
position into the breast based on the Monte Carlo and IK
analysis of the workspace. Both methodologies provide a
quality factor of versatility of the positions in the workspace
(Figs. 9 and 10). Significant overlap is shown in the voxels
with a normalized quality factor higher than 0.4. The Monte
Carlo method, however, has a bias towards the center of the
workspace in front of the Sunram 7 in zero configuration,
emphasized by the fact that 17.78% is concentrated in
this region spanning only 8% of the total workspace. The
influence of the bias is minimized by taking the standard
deviation from the mean as the quality factor, this does
not, however, remove the bias completely. The IK analysis



(a) Re-orientation (b) Insertion

Fig. 14: The newly obtained state estimates using the Kalman filtering for both scenarios. The measured state (red) and the
estimated state (blue) are plotted as points with an orientation line representing the needle 10mm in length. These are plotted
based on iteration from a lighter to a darker shade. The predicted state (black) is plotted as a point with an orientation
line 5mm in length. Additionaly the fitted needle tip position measurements are plotted, the planned path and the manually
detected needle in an evaluation scan.

of the workspace provides a more equal analysis over the
workspace, providing a clearer description and comparison
of the versatility of the Sunram throughout the workspace.
Showing the viability of taking the closest breast entry vertex
to the target point within a voxel with a quality factor above a
certain threshold (0.4). This methodology does not take into
account the angle of insertion or the target position when
computing the versatility factor. This could mean that even
though the Sunram 7 can reach multiple insertion angles
at this entry-point, the required orientation might be at the
edge of the viable options limiting the possible corrections
during the intra-operative procedure. Leaving out the target
position and target orientation on the other hand does allow
for precomputing the workspace analysis and loading it
independent of lesion site during execution, thereby saving
overall operation time.

B. Image Processing
The mean error in identification of the marker positions

in DCS is equal to twice the isotropic voxel length at
3.03 ± 0.65 mm. The centroid of the template matched
connected voxels at the marker position is thus shifted by two
voxels compared to the actual position. This error is rather
large considering the diameter of the markers of 10 mm and
can be attributed to different factors that can be improved
upon. Firstly, the manual selection of the centre of the
markers was limited to single voxels, so the minimum step
was 1.5 mm for these values, whilst the exact true marker

position might be in between voxel positions. Secondly, the
petroleum based markers show significant difference in in-
tensity on the calibration scan as indicated in Fig. 11, whilst
the template matching algorithm relies on the theoretically
spherical marker identification. Optimizing the shape for a
template matching algorithm such that it separates it from
the main breast and shows a clearer indication of its position
or implementing passive micro-coil fiducial markers for this
purpose [34].

Furthermore, using Otsu threshold to binarize the image
worked for 25 out of 30 calibration scans. The five remaining
cases could be resolved by simply taking a lower threshold
value without visible effect on the breast mesh, therefore
showing only little delay in procedure. The two scans for
which more than six markers were identified were completely
fixed once the debris of breast phantom were removed from
the MRI-scan. Using a more distinctive fiducial marker is
also expected to minimize this problem in identification.

Lastly, a simplifying the calibration system could be done
by using MRI-identifiable markers that show up with a
different intensity compared to the breast/breast phantom to
possibly remove the need for template matching by using
Otsu multithresholding [29]. Thereby next to separating the
background from the tissue, also separating the markers
’tissue’ from breast tissue directly based on the different
peaks of intensity with which these show up.



C. Procrustes Analysis

The Procrustes calibration results in Table IV show a total
TRE of 0.67 ± 0.41 mm. This TRE is similar to the result
obtained in L. Marx et al. [28] at 0.86 ± 0.35 mm, which
formed the basis for the adapted version presented here.
Considering the results of the image processing step, how-
ever, this result does not provide a complete picture as the
Procrustes analysis performs translation, scaling and rotation
to match the detected marker positions with a certain error
to the ground truth positions. Thereby, certain consequent
errors in detected marker positions can be masked due to
the Procrustes analysis, e.g. due to uneven maker intensity
as depicted in Fig. 11. This is underlined by the fact that there
can be deemed a significance difference in the error over the
15 trials between the blue and red marker with a confidence
level of 5%. Subsequent analysis on the bias in the error in a
certain direction in the image processing step could provide
insight in the difference in error for the cyan and yellow
marker in the Procrustes analysis. General improvement of
the marker identification can improve the entire calibration
overall as the Procrustes analysis has a significantly lower
error.

D. Discretization Error

From the discretization results, depicted in Table V, one
can see that the error in the target position is a lot lower over
ten trials when using the ’joint effect’ algorithm compared to
simply rounding the steps at a respective error of 0.07±0.03
mm and 0.52± 0.25 mm. Note, however, that this can come
at a cost in terms of the end-effector orientation compared
to the selected orientation. With the context of taking breast
biopsies, for this paper the error in target position is deemed
more important for the simple requirement of reaching the
lesion site. Even if firm restrictions on angle of approach are
present, the algorithm can easily be extended in this regard
with restrictions on the new configurations that can be tested
by the angle these would make with the selected orientation.

Furthermore, the ’joint-effect’ algorithm shows to be able
to generally reach a better result over ten trials than the
grid search algorithm in significantly less time at an error
of 0.07 ± 0.03 mm in 5.34 ± 0.34 s and 0.08 ± 0.05
mm in 86.28 ± 1.31 s respectively. Again, the angle of
insertion strays further from the selected, but this is to be
expected based on the kinematics: as sets of steps further
from the ’non-discretized’ steps are directed at the same
target point. The improved error and the shorter amount of
time over these ten trials emphasizes the efficient way that the
algorithm ’looks’ through the available joint configurations.
The third and fourth trial in Table V show that the ’joint-
effect’ algorithm does not always find a better result in 1, 000
iterations compared to the grid search of 100, 000 iterations,
indicating that the algorithm suffers somewhat from local
minima’s. This could be addressed by looking into possible
methods to move away from these local minima’s, like
random restarts [35], adaptive restarts [36], particle swarm
optimization [37], or using knowledge of the continuous
joint configuration to intelligently move around the joint

configuration space. The fact that over the ten trials the ’joint
effect’ algorithm was able to reach an error below 0.3 mm
in 3±2 iterations over the ten trials shows promise for these
methodologies to be able to cut-down on computation time
even more whilst possible lowering the error.

In short, the methodology is proven in terms of minimizing
the discretization error at the target position for the Sunram
7 and is versatile in adaptation for implementing other
constraints whilst keeping computation time acceptable. Es-
pecially, seeing that it only has to be ran once after selecting
the target and orientation. If computation time would be
of greater importance, the algorithm shows to find an con-
siderable improvement over directly rounding of the errors
by finding an error below 0.2 mm within 3 ± 2 iterations,
with the notable exception of outlier trial 1. Increasing the
threshold for the error to 0.3 mm the expected amount of
iterations is 3±2 over all ten trials indicating its benefit over
simply rounding the values directly at very low computation
times under 0.05 s. However, as the ten trials is a rather small
sample size, a greater trial size should help define the exact
accuracy of this procedure. Its benefit over simply rounding
the steps to the nearest integers and the grid search algorithm
are already proven here.

E. Path Planning

The planned path had a rather large difference with respect
to the observed path with a mean orthogonal distance of
8.81 ± 1.93mm. This error is largely present in the z-
direction, even showing to have a combination in calibration
and navigation causing difference of about six steps for J4.
Comparing this to the reported accuracy (euclidian distance
form a target) of the Sunram 7 in free air in H. Ranjan et al.
[22] of 2.54±0.86 mm and in L. Marx et al. [28] 1.36±0.89
mm shows that this is a rather large error. Whilst this paper
mainly focuses on closing the loop to be able to deal with
the this error and compensate for it, it is acknowledged that
any combination of the following factors could be a possible
cause for the rather large error. Calibrating the Sunram 7 to
its zero-configuration can cause any of the joints in the robot
to be in between successive steps [22]. Causing the robot to
not generally start in the same or optimal position causing a
successive error in the path planning as the zero configuration
is assumed to be perfect. Next to this, it was observed
that what was considered to be the zero-configuration of
J4 practically means that end-effector is three steps lower
due to gravity and needle-tissue interaction. The mapping
of the target position to the RBF is dependent on the
calibration error of the system. Upon insertion, the needle
experiences forces when moving through the tissue, this can
cause possible bending in both the needle or the base frame
causing further displacement of the needle compared to the
planned path. Luckily, the needle segmentation algorithm is
shown to have a mean orthogonal distance from the observed
needle of 1.28±0.61mm and considering average lesion size
ranging from 3 mm to 70 mm, the test does show promise
that the continuous image feedback can prove its worth in
assisting with MR-guided breast biopsies.



F. Image-based feedback

The result depicted in Section III-.6 serves as a proof-
of-concept for the proposed image-feedback algorithm to
improve the accuracy of the Sunram 7 in performing breast
biopsies. The algorithm still requires testing in several dif-
ferent scenarios for a definitive analysis, especially one in
which the estimated position is used to re-calibrate the robot
joint-configuration for new measurements, but the obtained
result shows significant decrease in the mean orthogonal
distance between actual needle position from the pure feed-
forward part at 8.81 mm to 1.11 mm. This shows the
possibility of using the measurement data in combination
with the planned path to optimize the estimation of the end-
effector position and orientation. This is emphasized by the
relatively large feed-forward error compared to associated
researches of L. Marx et al. [28] and H. Ranjan et al.
[22] addressed in section IV-E. Especially, noticing that a
several of the discussed causes can be linked to an issue with
calibration and subsequent movement after re-calibration
should decrease this uncertainty. Further measurements of
the system can be used to further enhance the Kalman
filtering in optimizing the variances for the process noise
and measurement noise as well as selecting a smart choice
of state progression matrix. For example, incorporating the
prior-knowledge that the first insertion of the needle is with
a larger uncertainty due to calibration errors compared to
a second insertion with a significantly amount of steps
performed in the joint configuration can largely improve
the estimation. Investigation of the measurements highlighted
that the segmentation identified a change in detected base of
the needle, this is not to be expected for a straight insertion as
was performed for these measurements. Therefore, it might
be possible to look into an algorithm that removes outliers
from the mean base position for further analysis, as this
hugely influences the measured orientation.

Note that adjustments of the needle whilst inside tissue led
to significant bending of the needle and should be avoided
when reorienting the robot. Therefore, as the current seg-
mentation method of the needle requires it to be surrounded
by tissue the needle should be retracted, reoriented and
reinserted for the next iteration of measurements. Only small
changes in steps can be made whilst the needle is inside
the breast phantom, with the range of possible adjustments
decreasing as the needle is inserted deeper. Placing MRI-
visible fiducial markers that do not require surrounding tissue
along the end-effector at known locations would allow for
orienting the end-effector before insertion. The proposed al-
gorithm can still be used to obtain the initially required slice
to get the fiducials in frame, and subsequent segmentation
of these fiducials would allow for re-calibration of the joints
and subsequent adjustment of the path as described in this
paper. Removing the need for insertion to provide feedback
to the robot, allowing for large adjustment to be made before
insertion, which would otherwise result in unnecessary tissue
damage for the patients.

Further improvements can be related to include lesion

segmentation during insertion and thereby also providing
information on the lesion position, possibly dealing with
movement of the lesion due to deformation and compression
of the breast.

G. Comparison with state-of-the-art MRI guided biopsy
robots

This paper provides a proof of concept for the envisioned
MR-image based feedback for the Sunram 7 robot. The
envisioned feedback protocol is compared with state-of-the-
art MRI guided biospy robots specifically in regards to this
methodology.

The robot presented in B. Yang et al. [13] is based
on a tele-operated primary-secondary robot principle which
follows a similar technique to provide MR-image based
feedback. Similarly, high resolution anatomical images are
used to identify a target location and a point of insertion.
Initial positioning of the robot is done using an MR visible
marker attached to the needle holder and aligning that with
the entry point and target position. The clinician is then pro-
vided with dynamic imaging (rapid gradient echo sequence)
at 2.5 frames per second in the planned plane of traversal
for tracking the insertion. Next to this, the clinician is also
provided with both force-feedback interface; depicting the
force along the needle axis measured with a MRI-compatible
fiber-optic force sensor. During the seven performed ex vivo
trials to robot comes within 2− 4mm of the target location
six times and in one trial the target is missed by about
8mm. Although the imaging methodology does have a lot
of overlap, this system has a very distinct differences to the
system proposed here: the imaging is only used for visual
feedback to the clinician in controlling the master robot and
no segmentation is performed to obtain the position of the
needle in order to close the loop on the control algorithm.
Comparing the presented ex vivo results of the system in B.
Yang et al. [13] ranging from 2−8 mm of the target location
with the proof-of-concept here moving within 1.15 ± 0.26
mm shows promise in improving on this accuracy.

The dedicated breast support device presented in C. Song
et al. [14] uses a single calibration scan to intialize the sys-
tem. Further control is based on this scan and reconstruction
of the biopsy needle in the 3D scan based on control using
a stero-camera setup to position the guiding cannula. Then
the insertion is performed whilst the system provides image
feedback to the clinician by reconstruction of the biopsy
needle in the 3-D calibration scan based on the stereo-camera
setup. Showing an ex vivo puncture error of 1.04±0.15 mm.
This system, however, only provides image feedback from
a reconstruction based on an MRI scan that was performed
before having to move the patient out of the MRI bore for
operation of the robot and needle insertion, thereby a greater
error can be expected in vivo as movement of the patient
will play a role. This methodology currently cannot provide
feedback through intra-operative imaging of the system.

The soft pneumatic biopsy robot SoNIM presented in J.
Cheng et al. [15] closes the loop using a motion control
system to provide feedback on the needle tip. Similar to



the Sunram 7, the SoNIM soft actuator has the benefit of
having relatively low production costs. It also demonstrates
the possibility of using MR imaging to close the loop, but
does not present any closed control loop as such. Using
the motion control system the target accuracy was equal
to 2.9 ± 0.98 mm, but thereby lacking any possible intra-
operative imaging of the needle-lesion relation.

V. CONCLUSION

A novel methodology was developed to enable closed-loop
control of the Sunram 7 pneumatic MRI-safe MRI biopsy
robot in order to enable continuous intra-operative imaging
of the system for possible improvement of the targeting
accuracy. This approach utilizes six MRI-visible markers
to achieve calibration between DICOM image frame and
the robot base frame, facilitating path planned based on a
selected target and insertion angle. Based on the planned
path and bi-directional communication with the MRI-scanner
continuous 2-D MR imaging in-plane of the end-effector
is achieved. Segmented tip and base positions of the end-
effector in combination with the planned path are used to
estimate the end-effector position and orientation in order to
re-calibrate the joint-configuration of the robot throughout
the procedure. Proof-of-concept results demonstrates a sig-
nificant reduction in the error of the feed-forward estimated
position, from 8.813mm to 1.11mm, indicating the potential
of the system for enhanced accuracy. The completion of
the feed-forward path in 10 minutes and 32 seconds further
suggests a reduction in overall operation time. Additional
functionalities, such as multi-planar reconstruction (MPR)
for target selection, automatic entry-point, path planning, and
discretization optimiztation, were successfully integrated.
Future work should focus on extensive testing while dynam-
ically updating the robot’s path using the proposed closed-
loop and optimizing Kalman filter variables. Additionally,
several identified issues should be addressed to improve the
feed-forward performance of the system.

APPENDIX

Fig. 15: Schematics of the pre-operative phase of the system.
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