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Improving operation time estimation in laparoscopic cholecystectomy using pre- and intraoperative
parameters

Vincent OOSTERHOFF

The operating room (OR) is responsible for significant revenue and costs in hospitals. Therefore, carefully schedul-
ing the operating time is of great importance. However, surgeries frequently exceed their planned duration due
to unforeseen intraoperative challenges. To address this issue and enhance surgical scheduling, we proposed a
method that utilizes both preoperative and intraoperative variables to estimate operating time dynamically. Our
studies at Meander Medical Center (MMC) focused on laparoscopic cholecystectomy, a high-volume procedure
characterized by substantial intraoperative variability. Our initial analysis examined surgical data from 2017 to
2023 to quantify the extent of operating time inaccuracies. Machine learning (ML) models were trained on available
clinical data to predict operating time. A linear regression (LR) model achieved a root mean squared error (RMSE)
of ± 14.18 minutes, marginally outperforming the conventional method’s RMSE of ± 16.22 minutes. Despite this
improvement, the predictive accuracy remains insufficient for clinical application. In a subsequent prospective
analysis, additional patient-specific factors were incorporated to enhance predictive performance. Following data
cleaning, 199 patients were retained from an initial cohort of 231. The best-performing LR model achieved an
RMSE of ± 12.28 minutes, representing a modest improvement over existing methods but still falling short of
the precision required for clinical implementation. To further advance the model, intraoperative variables were
integrated through an assessment of surgical difficulty using the Nassar scale. The multi-scale vision transformer
(MViTv2) was employed to classify surgical videos, with the best model achieving an accuracy of 36%. This level
of performance remains inadequate for clinical use. While these studies have contributed to a deeper understand-
ing of the factors influencing operating time, the predictive models developed thus far are not yet suitable for
clinical deployment. Nonetheless, further refinement and integration of preoperative and intraoperative variables
hold promise for more accurate operating time predictions in the future.
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General introduction

Accurate estimation of operation time is crucial for optimizing the operating room (OR) efficiency, which is a sig-
nificant source of revenue and costs for hospitals [1]. Inaccurate operation time estimations can lead to operational
inefficiencies, such as delays, unplanned overtime, or underutilized OR time [2, 3]. The ability to accurately pre-
dict surgery times not only improves financial outcomes for hospitals but also enhances patient care by reducing
wait times and minimizing cancellations.

In standard clinical practice, surgical scheduling depends on estimated case durations provided by the surgeons
themselves, which are often unreliable [4, 5, 6]. Previous research indicates limited accuracy in these estimations
[5, 7]. Alternatively, in some hospitals, historical averages of case-time durations for a specific surgeon have been
used to schedule operation time. Nonetheless, these, too, lack the required accuracy due to variations in the pre-
operative situation and are, therefore, unable to effectively predict the operating time [8].

To improve these current estimations, several studies attempted to estimate the procedure time based on patient
factors preoperatively, reporting promising results in different departments [6, 9, 10, 11, 12]. However, these mod-
els are not accurate enough because the intraoperative setting too often differs from the expectations set by the
preoperative parameters [13]. When adjusting for unexpected intraoperative findings during surgery, additional
resources can be allocated, schedules can be modified, and the flow of the OR can be maintained efficiently [14].
Moreover, this information can assist recovery room nurses in tracking and managing the progress of multiple
ongoing surgeries in the OR [15].

FIGURE 1: Overview of the individual components of the proposed model.

We hypothesize that combining preoperative and intraoperative information in a single model can significantly
improve the estimation of operation time. To this end, we propose a model that begins with an initial estimation
based on preoperative patient parameters, which can be linked to operation time using machine learning (ML)
models. After generating this initial estimate, intraoperative findings—reflecting the difficulty of the operation,
can be used to refine the estimate. Figure 1 shows an overview of our proposed model. We aim to achieve this
refinement using the multiscale Vision Transformer version 2 (MViT2). To assess the feasibility of this approach,
we focus on laparoscopic cholecystectomy (LC), a procedure commonly performed in peripheral hospitals with
a wide range of intraoperative variations [16, 17]. We anticipate that incorporating such a scheduling model for
LC could improve operating room planning, and with minor adjustments, the model could be adapted for other
surgeries.

To investigate the feasibility of our proposed method, this thesis aims to answer the following research questions:

1. To what extent can we predict the operation time needed for a laparoscopic cholecystectomy based on pre-
operative variables?

2



2. To what extent can we determine intraoperative difficulty of a laparoscopic cholecystectomy using a multi-
scale vision transformer?

To answer these questions, the thesis is divided into several chapters. Chapter 2 provides medical and technical
background. In Chapter 3, a retrospective study is presented to assess the planning accuracy of the current method,
offering a preliminary exploration of operation time estimation. Chapter 4 expands on this by incorporating
additional parameters, aiming to capture a more comprehensive understanding of the intraoperative environment.
In Chapter 5, a novel approach to evaluate intraoperative difficulty is proposed using a deep learning model. The
thesis concludes in Chapter 6 with a general discussion and summary of the applicability of our proposed dynamic
operation time estimating model.
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Background

This chapter provides a brief overview of laparoscopic cholecystectomy (LC), the surgical procedure central to this
research. Next, we provide the technical background needed to develop our model. This is done in two parts. The
first part elaborates on the methods used to estimate operation time from surgical data. The second part discusses
the approaches used to assess surgical difficulty objectively from laparoscopic videos.

2.1 Laparoscopic cholecystectomy

Approximately 6% of all men and 9 %of all women have gallstones [1]. Asymptomatic gallbladder stones found in
a normal gallbladder and biliary tree do not need treatment unless symptoms develop. However, approximately
20% of these asymptomatic gallstones will develop symptoms over 15 years of follow-up [2]. These patients experi-
ence intense colic pains at random moments, impeding their quality of life. Moreover, this can lead to cholecystitis,
choledocholithiasis and biliary pancreatitis [3].

The standard treatment for symptomatic gallbladder disease is a gallbladder resection (cholecystectomy), which
is traditionally performed with an open approach. However, since the introduction of laparoscopic surgery, the
golden standard of cholecystectomy is changed to a laparoscopic approach [4]. This change in surgical technique
and a less invasive approach leads to an increase in the total amount of LCs done worldwide [5]. Despite the
minimally invasive nature and average low post-operative in-hospital time, an LC is not without risk. Some pos-
sible complications are damage to the common bile duct (CDB), only partial removal of the gallbladder, internal
bleeding, conversion to open surgery, and post-operative inflammation [6].

FIGURE 2.1: Anatomical
overview of the gallbladder

and the cystic artery [7].

FIGURE 2.2: The different re-
gions of the gallbladder [8].

Knowledge of the anatomy of the gallbladder is of great importance to limit complications. In Figure 2.1 an
overview of the relation of the gallbladder with the important arteries and the liver is shown. The gallbladder
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is connected with the cystic duct to the common bile duct [9]. Via the cystic duct, the gallbladder drains bile to
the duodenum while also receiving the produced bile from the liver. The cystic artery supplies the blood to the
gallbladder. The gallbladder is divided into a neck, body, and fundus, as shown in Figure 2.2. The neck of the
gallbladder contains a mucosal fold known as Hartmann’s pouch. This pouch is generally used to grasp the gall-
bladder and generate an overview.

A laparoscopic cholecystectomy consists of different stages [10]. The procedure begins with establishing access
to the abdomen and creating a pneumoperitoneum to inflate the abdominal cavity. Once this is done, trocars are
inserted to allow surgical instruments into the abdomen. The liver is first elevated to expose the gallbladder and
surrounding structures. The surgeon then lifts the gallbladder’s fundus to maintain this exposure while retracting
Hartmann’s pouch to improve the visibility of the bile ducts and arteries [11]. If adhesions are present, they are
carefully separated before proceeding. Next, the surgeon dissects the peritoneum and surrounding fat from the
cystic duct and artery within the hepatocystic triangle, visible in blue in Figure 2.1. Often done with blunt instru-
ments, this dissection clears the field to expose the critical structures. The aim here is to achieve what is known
as the Critical View of Safety (CVS), where both the cystic duct and cystic artery are identified and isolated before
any further action [12]. Once the CVS is confirmed, the cystic duct and cystic artery are each clipped in two places,
close to the gallbladder and away from it, to prevent bleeding and bile leakage. After the clips are securely placed,
the cystic duct and artery are transected between the clips using scissors.

Following this, the gallbladder is carefully separated from the liver bed. Once freed, it is placed in a retrieval
bag to prevent contamination or the spillage of bile and gallstones into the abdominal cavity. The gallbladder is
then removed from the body through one of the incisions. Once the gallbladder is removed, the abdominal cavity
is inspected, and the instruments are withdrawn, concluding the surgery.

2.1.1 Nassar grade
The difficulty of laparoscopic cholecystectomy (LC) can vary significantly due to factors such as patient anatomy,
adhesions to neighbouring structures, and active inflammation [13]. Several scoring systems have been developed
to assess these characteristics. In this thesis, we primarily utilize the Nassar grading system, as it is the only clin-
ically validated method [14]. The Nassar grade consists of four levels: a Nassar grade of 1 indicates a relatively
straightforward procedure, while a Nassar grade of 4 denotes a very challenging one. This grading system in-
cludes three subscores that evaluate the gallbladder, the presence of adhesions, and the cystic pedicle. The cystic
pedicle is a triangular fold of peritoneum that contains the cystic duct, cystic artery, and a variable amount of fat
[15]. Figure ?? illustrates the different Nassar grades, and Figure ?? displays laparoscopic images corresponding
to each grade.

FIGURE 2.3: Description of the dif-
ferent subscores of the nassar grade
corresponding to a specific grade

[16].

FIGURE 2.4: Visual example of the dif-
ferent Nassar grades [14]
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2.2 Technical background

In this thesis, we work with two distinct types of data. The first type consists of patient characteristics, including
age, body mass index (BMI), and history of prior surgeries. We employ a subset of machine learning (ML) methods
to estimate operation times from this data. The two regression models are explained, and the evaluation metrics
are briefly discussed in the "Regression Models" section. The second data type involves video recordings, from
which difficulty ratings are derived. This is accomplished using a deep learning model. An overview of the
fundamentals of Convolutional Neural Networks (CNNs) is included in the "Deep Learning" section to provide
an understanding of the core mechanisms behind this approach. Finally, the specific framework used for video
analysis is described.

2.2.1 Regression models
Machine learning is a powerful tool in predictive modelling, enabling computers to learn from data and make
predictions or classifications. By leveraging algorithms that identify patterns in complex datasets, machine learn-
ing is now widely applied across various fields, including healthcare, finance, and engineering [17]. Regression
algorithms are often employed in predictive tasks, such as estimating a numerical outcome or identifying trends.
These algorithms aim to model the relationship between input variables (features) and continuous output vari-
ables (dependent variables). Among the diverse array of regression techniques, the Linear Regressor (LR) and the
Random Forest Regressor (RFR) are two widely utilized models, each with distinct characteristics and advantages
[18].

Linear regressor

LR is one of the most fundamental and interpretable algorithms in machine learning [19]. The core principle of LR
is to establish a linear relationship between the independent and dependent variables. The equation of the LR is
described in Equation 2.1, where ŷi is the prediction of the model, β is the weight of each feature, X is the input for
each of the features and ϵ is the error present.

Ŷi = β0 + β1X1 + βnXn + ϵ (2.1)

One of LR’s key strengths is its simplicity and interpretability, which allow for a straightforward understand-
ing of how each predictor affects the outcome. However, LR is based on several assumptions, such as linearity,
constant variance of errors, and the absence of multicollinearity among predictors. This limits its effectiveness in
capturing non-linear relationships.

Random forest regressor

A Random Forest Regressor (RFR) is built using multiple decision trees. A decision tree is a straightforward
machine learning model composed of several nodes, where the model makes decisions based on the input features.
After passing through each node, the data moves to the next one until it reaches a terminal node, which provides
the final output. However, a single decision tree can be prone to overfitting, which is why RFR is employed.
An RFR is constructed from multiple decision trees, and the final output is determined by a majority vote of the
individual trees [20]. Figure 2.5 illustrates the difference between a single tree and multiple trees.

RFR offers several advantages over traditional regression models. It is highly flexible and can capture non-
linear relationships between the features and the target variable. Additionally, aggregating predictions from mul-
tiple trees makes them more generalizable to unseen data. Moreover, RFRs can handle a large number of features.
However, despite its robustness and flexibility, RFR can be computationally intensive, mainly when dealing with
large datasets or many trees. Furthermore, the model’s complexity can make it less interpretable than simpler
models like LR.

Evaluation metrics

Two metrics are used to evaluate the regression models. The first metric is the mean squared error (MSE), and the
second is the R2-score. The MSE is an absolute measure to evaluate a model, which is presented in Equation 2.2,
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FIGURE 2.5: Visualisation of the difference between a single decision tree and an RFR[21].

where y represents the actual value and ŷ the predicted value [22]. It determines the squared distance from the
model prediction to the actual value. This measure can never be negative. The RMSE (root mean squared error)
represents the same value but in actual units.

The R2-score is a metric that indicates how well a model fits the data. The R2-score is situated between 0 and
1, with 1 indicating the model can explain all variance of the model and 0 indicating the model cannot explain any
of the variance in the data [23]. The R2-score is calculated using the sum of squares of residuals (SSR) and the total
sum of squares (TSS) as shown in 2.3. y denotes the actual value, ŷ denotes the predicted value, and ȳ presents the
mean value. It is important to note that the R2-score itself is not squared; only the separate parts of it are. If the
SSR is bigger than the TSS, the R2-score can be lower than zero. This happens in cases where using the mean as a
predictor instead of the model results in better predictions. Based on these metrics, the models will be fine-tuned,
and the best-performing model will be evaluated.

MSE =
1
n

N

∑
i=1

(yi − ŷi)
2 (2.2)

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳi)2 = 1 − SSR

TSS
(2.3)

2.2.2 Deep-learning
We use a deep learning model called the multiscale visions transformer version 2 (MViTv2) to extract difficulty
gradings from surgical videos. To provide a clear understanding of how the model works, we begin with a gen-
eral overview of artificial neural networks (ANNs). Next, we focus on convolutional neural networks (CNNs),
widely used for extracting information from images. Finally, we introduce the model used in this thesis, the Vision
Transformer (ViT). A detailed explanation of the specific ViT employed in this research is provided in Chapter 5.

Artificial neural networks

Deep learning methods are based on artificial neural networks (ANNs). ANNs consist of neurons, which function
similarly to those in the human brain [24]. These neurons are organized in layers and interconnected within a
broad network. Each neuron contains a weight and a bias, as shown in Figure ??. Neurons are either connected to
previous neurons or directly to inputs. Upon receiving an input, a neuron multiplies it by a specific weight, which
determines the signal’s direction and strength. The product of the weight and input is then added to the bias, a
constant term unique to each neuron. Note that a neuron can receive multiple inputs, each with its weight. The
sum of all weighted inputs is combined with the bias and passed to the activation function, which decides whether
the neuron will fire. The combination of weights and biases ultimately determines whether a neuron produces an
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output for a given input. Each distinct pattern of activated neurons is associated with a specific output. In this
way, an ANN can make a classification or prediction for a particular input.

FIGURE 2.6: Overview of a neural network
structure. In yellow, the input layer is de-
fined. In green, the hidden layers are visual-
ized. Within these layers, the computations
are done to generate an output based on the
weights and biases of the hidden layers. Red

denotes the output layer [25].

FIGURE 2.7: Representa-
tion of a single neuron. X
represents the input, and
W denotes the weight. In
the neuron, the weights
are summed and multi-

plied with the bias[26].

For a neural network to accurately produce predictions, it must tune the weights and biases. This is achieved
through forward and backward propagation [27]. The input is presented to the model, and all necessary calcula-
tions are performed. Next, back-propagation is initiated. An error is calculated by comparing the model’s output
with the ground truth of the input images. Based on this error, a gradient is computed to update the weights
and biases. After the update, the input is presented again, and the process is repeated until the error reaches the
desired level. In this way, a neural network can make non-linear predictions for complex data. ANNs can also
process image data. However, a specific version of an ANN is required to effectively capture information from an
image. For this purpose, convolutional neural networks (CNNs) are commonly used.

2.2.3 Convolutional neural networks
CNNs are a type of deep neural network designed for image classification [29]. The goal of a CNN is to extract
different levels of features from an image and output a prediction or a class, which is shown in Figure 2.8. This is
done using different types of layers. Most novel models are based on the basic layers and are fine-tuned using new
techniques or adding extra information. These basic layers essential to highlight and to understand the different
models we use are the convolutional layer, the pooling layer, and the fully connected layer.

Convolutional layer

The first layer in a CNN Is the convolutional layer [30]. This layer is used to extract features from an image. The
convolution is done using a filter. The size of this filter can vary. Typically, a 2 x 2 or 3 x 3 filter is used. These
filters are placed on the image. The filter contains a subset of numbers used to calculate a convolution of the part
of the image covered by the filter. This filter outputs one number representing a feature corresponding to that
given portion of the image. The next step is to slide the filter over the image until all pixels are used. This leaves
a smaller subset of the original image representing features. This can be repeated using different filters to extend
the feature space. Figure 2.8 represents this using the small yellow square.

Pooling layer

A convolutional layer is often directly followed by a pooling layer [30]. A pooling layer reduces the number of
features from the convolutional layer. This is also done by combining the information of multiple features into one,
as represented in Figure 2.9. There are two main variants to conduct pooling: average pooling or max pooling.
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FIGURE 2.8: General overview of a convolutional neural network
[28]

When applying the pooling layer, a lot of information is lost. However, it also has some main benefits: they help
to reduce complexity, improve efficiency, and limit the risk of overfitting.

FIGURE 2.9: Use of pooling and the different types of pooling [31].

Fully connected layer

After all desired convolutions, we are left with a volume of features [30]. These features are used as input for an
ANN. To achieve this, the feature space is flattened so it has 1XN dimensions. Next, a fully connected layer is
introduced, in which all neurons of the flattened layer are connected to the neurons of the fully connected layer.
The neurons of the fully connected layer generate an output that, with the help of an activation function, can be
transformed into a probability for one of the classes. The softmax function is the most commonly used function,
which maps the outputs to a probability between 0 and 1.

2.2.4 Vision transformers
A Vision Transformer (ViT) is derived from the transformer architecture used in networks like ChatGPT. ViTs
use self-attention to focus on different parts of the input sequence when processing each element. Self-attention
uses three matrices called the query, key, and value matrices [?]. Figure 2.10. These matrices are all three linear
projections of the original embedding and are used to calculate attention scores. We compare the concept with a
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general information retrieval system to grasp it. If you want, for example, to search for a specific video on YouTube,
you use the search bar. The search algorithm processes the query (the text entered in the search bar) by matching
it against a set of keys (metadata such as video titles, descriptions, tags, etc.) associated with potential candidate
videos in its database. The system returns the most relevant results (values), representing the best-matching videos
based on the query and associated keys. So, in the context of images, we present specific images to the system,
and within the database, the model identifies which keys best fit the presented image. After calculating this, the
model defines which values to assign to this combination of queries and keys. This value matrix can finally give a
final prediction of the image.

FIGURE 2.10: Example of the self attention [32]

The images need to be vectorised to use this self-attention system in the context of ViTs. This is done by di-
viding the image into different parts called patches. Next, these patches are fed into a ResNet50, a type of CNN.
From this CNN, the fully connected layer is removed so that the model’s output is a feature space that can serve as
input for the ViT. These representations are labelled with a location vector so that the model can define the position
of each of the individual patches. Next, these representations are fed into the self-attention mechanism called a
transformer block. Multiple transformer blocks can be stacked together and comparable with the different layers
of a CNN. Within these transformer blocks, different variations exist to introduce non-linearity and compute the
different matrices.

The ViT can conceptually be seen as an extension of the CNN that uses the extracted features to add an addi-
tional layer of information [33]. Due to this extra layer of information, ViTs can link different parts of the input
image to each other and, therefore, understand the context. A CNN is more focused on tracing more and more
high-level features and has a more narrow focus. However, because the query, key, and value matrices all con-
tain trainable weights, a ViT includes a lot of parameters. Therefore, ViTs need a lot more data than conventional
CNNs. One significant advantage of the ViT is that it primarily focuses on matrix multiplications. Thus, a lot of
the computing can be done in parallel. This is done by using multi-head attention instead of single-head attention.
Multi-head attention improves performance, delivers a more complete representation because each head can focus
on different aspects of the data, and improves flexibility.
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Abstract
Background: Accurate estimation of surgery duration can lead to cost-effective utilization of surgical staff and
operating rooms and decrease patients’ waiting time. This study aimed to determine the accuracy with which the
operation room (OR) time is scheduled within the Meander Medical Center (MMC). Moreover, we attempted to
improve OR planning using two different machine learning (ML) approaches.
Methods: Surgical data of elective cholecystectomies from 2017 to 2023 were used to determine whether
the planned operation time matched the actual operation time. Moreover, a univariate analysis was done to
determine the correlation between age, body mass index (BMI), sex, American Standards Association (ASA)
score, and the level of expertise with the actual operation time. Next, the importance of each of these features
was determined using forward and backward feature selection. Lastly, the selected features were used to train
two ML algorithms: Linear regression (LR) and Random Forest Regression (RFR). The predictions of both
models were compared with the conventional planning method.
Results: 848 elective laparoscopic cholecystectomies were included in the model. In 21%, the absolute error
between actual and planned operation time was greater than 15 minutes. The features BMI, sex, and level of
expertise were statistically significant with a correlation coefficient of respectively 0.21, -0.083, and 0.096. The
model that fitted the data best was the LR model using the features BMI, sex, and level of expertise, resulting
in a root mean squared error (RMSE) of 14.18 (±0.58) minutes. The conventional planning method achieved
a RMSE of 16.22 (±0.50) minutes. The mean R2-score of the best model was 0.040, which indicates a poor
explanation of the variance in the data
Conclusion: Much OR time is lost using the current planning method. Improving operational planning could
lead to a more efficient use of OR time. The use of ML models can be promising; however, the features currently
used in the model were not sufficient to describe the variance in the data.
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1. Introduction
In modern hospitals, operating rooms (ORs) are both a signifi-
cant source of costs and revenue [1]. Due to delayed surgeries,
the surgery schedule can deviate significantly [2]. This can
affect hospital costs and care delivery due to surgery cancella-
tion, nursing staff turnovers due to conflict in planning, staff
overtime, and employee dissatisfaction [3, 4, 5]. Optimiz-
ing ORs’ scheduling and use is crucial for effective hospital
management.

Several attempts are made to improve OR planning using
simple historical data for a given procedure and then calcu-
lating an average duration [6]. This can involve using the
surgeon’s estimate for the given operation or taking the av-
erage duration of only the most recent records of the same
procedure [7]. However, these simple methods do not accu-
rately capture the high variance between patients.

A possible solution for this problem could be using patient-

specific and surgery-specific factors [8, 9]. The relationship
between these factors and operation varies across different
studies. Additionally, the methods described in the litera-
ture show considerable diversity, ranging from basic machine
learning (ML) algorithms to advanced deep learning (DL)
techniques [8, 10, 11, 12]. Despite these variations, most ar-
ticles reported promising results for improving operational
planning.

This study aims to determine the accuracy of the current
planning method in the Meander Medical Center (MMC) and
explore the possibility of improving surgery scheduling by
using ML models. Our study focuses on two key objectives.
First, we will evaluate the current method used in clinical
practice by comparing the actual operation duration with the
planned time. Second, we will explore the feasibility of using
ML algorithms on data from the MMC.
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2. Methods
To research the possibilities for operation time assessment, we
did a retrospective analysis on a dataset containing surgical
information of all patients within the MMC of the past 5 years.
After acquiring the dataset, outliers were filtered out, and the
relevant parameters were determined. Next, the univariate cor-
relation of the parameters with the actual operation time was
determined. A multivariate analysis was done using forward
and backward feature selection. Lastly, two ML models were
trained and compared with the planned operation time by the
OR schedulers.

2.1 Dataset
After the internal review board’s approval, a retrospective
dataset was used. This dataset contains all operations done
in the MMC over the past five years. Emergency procedures,
patients with concurrent procedures, and patients under 18
were excluded. Moreover, outliers within the actual surgery
time were filtered out based on the interquartile range (IQR).

2.2 Outcome variable
The primary outcome variable was the actual operation time,
which was defined as the time from the first incision to skin
closure. After model training, the predictions of the best
models were compared with the originally planned operation
time to assess whether the models improved the current OR
planning.

2.3 Independent variables
Independent factors for each case were examined to deter-
mine their association with operative duration. Independent
variables included in this study were the patient factors age,
sex, body mass index (BMI), and American Society of Anes-
thesiologists (ASA) class) and the non-patient factor level of
expertise of the performing surgeon. The level of expertise
existed in two classes: resident and fully trained surgeon. The
continuous variables age and BMI were linearly normalized
between zero and one. The ordinal variable ASA score was
one hot encoded, creating three separate ASA classes. The
variable’s level of expertise and sex were binarized.

2.4 Feature selection
Feature selection was applied to optimize the model and filter
out possible redundant features. This was done in two steps:

1. The variance inflation factor (VIF) was calculated for
each feature. Features with a VIF bigger than ten were
excluded from the dataset.

2. A forward and backward approach was used to filter
out redundant features. This was done for five folds to
determine the stability of the selected feature sets. The
forward and backward feature selection performance
was evaluated using the R2-score. After five-folds, the
features present three times in either the forward or
backward feature selection were selected.

2.5 Model fine-tuning and evaluation
The final step was to fine-tune the model on the selected pa-
rameters. Due to the simplicity of the LR, this was done only
for the RFR. Table 1 shows the selection of hyperparameters
used. The selected features were used to train both models
using five-fold cross-validation. In addition, the influence of
the feature selection was determined by training the models
on the complete feature set. Finally, the trained models were
compared with the planned operation time. This was done by
comparing the RMSE and the R2-score.

Table 1. Hyperparameters used for RFR
Hyperparameter Values
Max depth 3, 5, 7
Minimal samples per leaf 1, 2, 4
Minimal samples per split 2, 5, 10
Number of estimators 100, 200, 300

3. Results
After data cleaning, 848 cases were included in the analy-
sis. The patient demographics are presented in Table 2. All
continuous independent variables, along with the actual and
planned operation times, were not normally distributed. The
median actual operation time was 50 minutes (19 [60:41]),
and the median planned operation time was 45 minutes (0
[45:45]). Figure 1 shows that, in most cases, a planned op-
eration time of 45 minutes was used, which does not match
the distribution of the actual operation times. The absolute
error between the actual and planned operation times was
illustrated in Appendix A.1. In Table 3, the individual correla-
tion of the dependent variable with the independent variables
is shown. The Variables BMI, sex, and level of expertise were
significantly correlated with the actual operation time.

3.1 Feature selection
After calculating the VIF, only the feature ASA score 1 was
excluded. Both the forward and backward feature selection
process is done using five-fold cross-validation. In Appendix
B.1 & B.2 the influence of the number of features on the R2-
score is visualized. Figure 2 shows the features’ prevalence.
On the y-axis, the frequency of the features is plotted, and on
the x-axis features are plotted. The selected features for the
LR model were age, BMI, sex, and level of expertise. The
features chosen for the RFR were age, sex, ASA Score 2, ASA
score 3, and Level of expertise.

3.2 Model fine-tuning and evaluation
The optimal hyperparameters for the RFR were a maximum
depth of 10, a minimum sample per leaf of 4, a minimum
sample per split of 10, and 200 estimators. The models were
successfully trained using the selected feature set. Moreover,
both models were also trained using all features. The results
are shown in Table 4. The LR performed the best. In Ap-
pendix C.1, the best fold for both models is presented in a
Bland–Altman plot.
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Table 2. Patient characteristics

Characteristics N(%)1 Shapiro-Wilk P-value
Sex

Males 561 (66.2%)
Females 287 (33.8%)

Age 54.0 (24 [42.0: 66.0]) 0.98 9.25e-9
Level of expertise

Surgeon 284 (33.5%)
Resident 564 (66.5%)

ASA
1 240 (28.3%)
2 492 (58.0%)
3 116 (13.7%)

BMI 27.45 (6.32 [24.49: 30.81]) 0.97 4.83e-13
1 Median is denoted as Median (IQR [Q1:Q3]).

Table 3. Correlation between the different features and the outcome variable

Predictor Correlation P-value Correlation Type
Age -0.036 0.29 Pearson
BMI 0.21 1.3e-8 Pearson
Sex -0.083 0.015 Point-Biserial
Level of expertise 0.096 0.0052 Point-Biserial
ASA 1 -0.059 0.086 Point-Biserial
ASA 2 0.029 0.39 Point-Biserial
ASA 3 0.035 0.30 Point-Biserial

Figure 1. The distribution of the actual operation time and the planned operation time

4. Discussion

Operating room (OR) time is expensive and a limited resource.
Much research is done to optimize operative workflow and
minimize costs [13, 14, 15, 16]. In this study, we trained two
basic ML models to investigate the possibility of predicting
operation time using five preoperative features in a dataset
of 848 patients. The models were cross-validated 5 times to
increase model stability. Our best model was the LR model

trained with a selection of the available features with a R2-
score of 0.040 ±0.040 and a root mean squared error (RMSE)
of 14.18 minutes ±0.58, which makes it outperform the cur-
rent planning method, which has a RMSE of 16.22 ±0.50
minutes. As seen in Appendix C.1 the model predictions were
mainly around the mean operation time. This is caused be-
cause, as visualized by the R2-score, the model cannot yet
describe the variance in the data set.

A study by Thiels et al. also attempted to predict chole-
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Figure 2. Influence of amount of features on model performance after five-fold cross-validation for backward feature selection

Table 4. Results of the five-fold cross-validation

Model R2-score RMSE
LR model

Selected features 0.040 ±0.040 14.18 ±0.58
All features 0.036 ±0.039 14.21 ±0.057

RFR
Selected features -0.087 ±0.045 15.01 ±0.56
All features -0.029 ±0.064 14.68 ±0.70

Planned -0.26 ±0.088 16.22 ±0.50

cystectomy operation time [8]. They created a stable model
incorporating patient factors and surgical expertise. However,
their mean operative time was significantly higher than in
our dataset, resulting in a standard deviation of 32 minutes,
which is, for clinical practice, not yet workable. Their model
achieved a R2-score of 0.18, which is relatively low for ML
purposes [17]. It should be noted that their model could filter
out outliers present in the dataset. Outliers impact surgical
scheduling the most, therefore a model that can effectively
predict outliers is desirable. The reason Thiels et al. achieved
higher R2-scores is probably due to the use of more param-
eters. In their study, more parameters were available that
described the level of expertise. Moreover, they also used
laboratory results of the patients. In our study, the amount of
parameters and information they represent were more limited.

Other studies researched the applicability of operation
time prediction for all operations within the OR complex using
LR and RFR models. They report a RMSE between 26.09
minutes and 45.18 minutes and estimation errors between 15%
and 40% [16, 18, 19]. In these studies, the developed model
had more trouble predicting outliers and was more accurate

in predicting cases that were more situated around the mean.
This behaviour indicates that also in these studies, a limited
amount of the variance can be predicted using patient-specific
and surgery-specific factors.

In the present study features, Sex, Level of expertise, and
BMI were found to be statistically significant, with BMI hav-
ing the strongest correlation of 0.21. The finding of the cor-
related values is similar to other studies found in literature
[20, 21]. However, other studies also indicated that gender
was associated with a longer operation time. Our study did not
show the feature ASA-score as a significant outcome variable.
A study by Master et al. found that the ASA score had low
importance within their models, suggesting this is because
important information within the ASA score may already be
coded more clearly within other variables, such as the patient’s
weight [22].

One of the limitations of our study is the limited amount
of machine learning models fitted compared to other stud-
ies. In our study, we restricted ourselves to two traditional
regression models. This is because, for the goal of operation
time prediction, decision tree models often perform equally
and sometimes even better than deep learning networks [23].
Moreover, the acquired dataset is relatively simple and does
not contain many features and complex correlations. It could
be discussed that using more complicated models and other
types of feature selection could increase the model perfor-
mance. However, it is not expected that it would increase the
R2-score drastically [24]

Another limitation of our study is the limited number of
features available for model training. As visible in the model
results, the selected features do not capture all the information
needed to predict operation duration accurately. More specific
features, such as preoperative medical imaging, are expected
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to improve the model significantly.
In conclusion, our current study emphasizes the operation

scheduling problem in the OR. We found that in 21% of the
cases, the prediction error is bigger than 15 minutes. More-
over, we fitted two ML models to determine the feasibility of
preoperative operation time prediction. In the current setup,
we were able to outperform the current scheduling method
slightly. However, It is expected that if we incorporate more
patient-specific features, we can further increase the model
predictions and improve OR scheduling.
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Appendix
A. Distribution of the error of the planned operation time

Figure A.1. The error between the actual operation time and the planned operation time

B. Feature selection plots of forward and backward feature selection

Figure B.1. Influence of amount of features on model
performance after five-fold cross-validation for forward
feature selection

Figure B.2. Influence of amount of features on model
performance after five-fold cross-validation for backward
feature selection
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C. Bland-Altmann plot of the best prediction of the LR and RFR

Figure C.1. Bland–Altman plot of the best predictions of the LR and RFR
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Abstract
Background: Accurately estimating surgery duration can improve the cost-effective use of surgical staff and
operating rooms while also reducing patient wait times. In a previous retrospective study, we attempted to predict
operation time using the features of age, body mass index (BMI), sex, American Standards Association (ASA)
score, and surgical level of expertise. The resulting models were not clinically applicable. To further increase
model accuracy, this study incorporates a broader subset of patient factors and added imaging factors to improve
the model further.
Methods: Patient data from 199 elective cholecystectomy procedures performed between 2021 and 2024 was
extracted from the electronic health record (EHR). From this data, patient, imaging, and surgical factors were
obtained. The variance inflation factor (VIF) and forward/backward feature selection were conducted to reduce
the number of used features for operation time estimation. Lastly, a linear regressor (LR) and a random forest
regressor (RFR) were used to predict operating time. The predictions of both models were compared with the
conventional planning method.
Results: The inflammation by indication, thickened gallbladder wall, and surgical level of expertise were
significantly correlated to the operating time. The combined features of inflammation by indication with a
thickened gallbladder wall and thickened gallbladder wall with the operator’s level of expertise were also
significant. The best model achieved a R2-score of -0.083 ±0.10 and Root mean squared error (RMSE) of 12.28
±1.20. This produced similar results to the planned operation time, which had a R2-score of -0.20 ±0.17 and
RMSE of 12.88 ±0.05.
Conclusion: The generated models perform similarly to the current planning method. To enhance their suitability
for clinical application, further refinement is necessary. This could be accomplished by expanding the dataset and
integrating intraoperative data, which may provide additional predictive accuracy and robustness in real-world
settings.

Keywords
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1Technical medicine, University Twente, Enschede, The Netherlands
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1. Introduction

In our previous retrospective analysis, we evaluated the accu-
racy of predicting the required operation time for laparoscopic
cholecystectomy (LC) based on patient characteristics such as
age, sex, body mass index (BMI), American Society of Anes-
thesiologists (ASA) score, and the surgeon’s level of expertise.
The study demonstrated an average planning error of 16.22
± 0.58 minutes, and the model achieved a root mean squared
error (RMSE) of 14.18 (± 0.58) minutes. Despite these re-
sults showing a slight improvement over manual planning,
the model’s performance remained insufficient for clinical
application, as indicated by an R2 score of 0.040. This low R2

value suggests that the model explained only a tiny fraction
of the variance in operation time, likely due to the limited set

of parameters considered in the initial analysis [1].
In addition to the factors examined in our previous study,

the literature identifies several other patient-related variables
associated with prolonged operation times. These include
smoking, diabetes mellitus (DM), prior abdominal surgery,
indication for surgery, anticoagulant, and Endoscopic Retro-
grade Cholangiopancreatography (ERCP) [2, 3, 4, 5, 6, 7, 8].
Furthermore, imaging factors may also enhance the prediction
of operating time in LC [9]. Common imaging factors include
increased gallbladder wall thickness, the presence of stones in
the gallbladder neck, and dilatation of the common bile duct
(CBD) [3, 10, 11].

To improve our model’s predictive capability, we are con-
ducting a prospective study that incorporates additional fac-
tors identified in the literature. By integrating these variables,
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we aim to enhance the model’s accuracy and develop a tool
that can be effectively implemented in clinical practice. This
prospective analysis will build upon the findings of our previ-
ous work and provide a more comprehensive understanding
of the factors influencing surgical duration.

2. Methods
This prospective study aimed to predict the operation time
required for laparoscopic cholecystectomy (LC). We utilised
three distinct subsets of factors: patient factors, imaging fac-
tors, and surgical factors. Collectively, these factors are re-
ferred to as the features used to train the model. The workflow,
as depicted in Figure 1, consists of five key steps:

1. Data collection & cleaning: Preoperative data from
patients undergoing an elective LC in the Meander Med-
ical Center (MMC) is collected. Outliers were removed
based on the interquartile range (IQR). Moreover, pa-
tients with incomplete data were also removed.

2. Univariate analysis: For all variables, the correlation
with the outcome variable is determined without con-
sidering other variables’ influence.

3. Feature engineering: Polynomial features were engi-
neered based on clinical expertise to ensure non-linear
data relations are accounted for [12].

4. Feature selection: With the variance inflation factor
(VIF), multicollinear features were removed, and us-
ing forward and backward feature selection, the final
feature set was selected.

5. Model development: Two machine learning (ML)
models were used to make operation time estimation:
a linear regression model (LR) and a random forest re-
gression (RFR). The stability and reproducibility of the
proposed method is tested using K-fold cross-validation.
Finally, a comparison is made between the different
models’ predictions and the planners’ planned time.

2.1 Data
2.1.1 Data source
We collected patient data from 231 patients undergoing an
elective LC in the MMC, Amersfoort, The Netherlands. All
procedures took place between 1 January 2021 and 1 Au-
gust 2024. The study was approved by the local Institutional
Review Board of the MMC (Protocol No: TWO 21–007. Pa-
tients with non-elective procedures, those who refrained from
treatment, individuals with missing medical images, patients
under 18, and those undergoing concurrent procedures were
excluded.

2.1.2 Outcome variable
The outcome variable in this study was the actual operation
time, which was defined as the time between the first incision
and skin closing. The anaesthesia staff recorded the actual
operation time during surgery.

2.1.3 Independent variables
Nineteen independent patients, medical imaging, and surgical
factors were selected in total. Eighteen factors were directly
extracted from the electronic health record (EHR). The factor
time between indication and operation >6 weeks after diag-
nosis was computed based on the operation date and the date
of indication. This factor was included because the time of
surgery can influence the intraoperative findings.

2.1.4 Patient factors
Selected patient factors were BMI, age, ASA score, sex, smok-
ing, hypertension, indication, previous jaundice, prior abdom-
inal surgery, diabetes, and anticoagulant use. These factors
were extracted from the EHR. BMI and age were continuous.
Sex was categorical, and the other factors were binary.

2.1.5 Medical imaging factors
Imaging was performed for each patient before surgery using
abdominal ultrasound (US), computed tomography (CT), or
magnetic resonance cholangiopancreatography (MRCP). The
extracted factors from the medical images were gallbladder
volume, thickening of the common bile duct, thickening of
the gallbladder wall, presence of stones in the gallbladder
neck, and presence of stones in the gallbladder, as well as
whether Endoscopic Retrograde Cholangiopancreatography
(ERCP) was performed before surgery. Gallbladder volume
was categorised as shrunken, hydropic, or normal, while the
other factors were binary variables.

2.1.6 Surgical factors
The variables of the surgeon’s level of expertise and time
between indication and operation >6 weeks after diagnosis
were included. Both were binary variables.

2.2 Univariant analysis
The correlation with the outcome variable is determined using
Pearson correlation for continuous variables and point-biseral
correlation for binary variables. A correlation was deemed
significant if P < 0.05. A correlation was considered very
strong if higher than 0.7 and weak if lower than 0.2 [13].

2.3 Feature engineering
New features were created based on clinical knowledge and
the variables that had a significant correlation with the de-
pendent variable. For example, in the case of gallbladder
inflammation as an indication, a longer operative time is ex-
pected based on clinical experience. Typically, six weeks is
considered necessary to control the inflammation. Therefore,
if these six weeks have passed, the surgery is expected to be
less difficult and thus shorter than if the surgery took place
within the six weeks. The same applies when a stone in the
gallbladder neck was not removed using ERCP. This can make
it more difficult for the surgeon to tension the gallbladder, neg-
atively impacting the operative time.
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Figure 1. Used workflow for training ML models for operation time estimation

2.4 Feature Selection
After feature engineering, multicollinearity was checked using
the Variance Inflation Factor (VIF). Any feature with a VIF
over ten was removed, starting with the one with the highest
VIF if multiple exceeds this threshold. If both a polynomial
feature and its base feature have VIFs over ten, the polynomial
was removed.

Next, the best set of features was chosen through forward-
backward selection, performed with 5-fold cross-validation to
ensure stable feature selection. Features appearing in at least
three of the five folds in either forward selection or backward
selection were used for the final model.

For any features unique to either set, VIF was recalculated.
If there was no more collinearity, those features were added
to the model. If collinearity was still present, the feature with
the highest VIF was removed. This process was repeated until
the collinearity issue was resolved.

2.5 Model development
Lastly, the models were trained using the selected features.
Therefore, an LR model and an RFR model were selected. The
LR model was chosen to see how well the data can be fitted as-
suming linearity [14]. In the case of a high-performing linear
model, there was no need to add extra layers of complexity to
predict operation time. The RFR was used to indicate the us-
ability of a model accounting for non-linear relationships [15].
If the RFR outperforms the LR model, which is expected, it
could be favourable to fit more complex models. Moreover,
both LR and RFR models were used in other studies aiming
to predict operation time [16, 17].

To optimise the performance of the RFR, hyperparameter
tuning is applied using the hyperparameter grid shown in
Table 1. No additional hyperparameters were selected for the
LR model due to the limited effect of hyperparameter tuning
for LR [18]. Lastly, the models were fitted with the previously
selected features. A 5-fold cross-validation was conducted to
ensure the final model’s stability.

To assess the effectiveness of the feature selection process,
the models were also trained using manually selected features,
selected based on significant correlation. Additionally, the
models were evaluated using the complete set of features to
determine the impact of feature selection on overall model
performance.

3. Results

Table 1. Grid used for RFR hyperparameter tuning.
Hyperparameter Values
Max Depth 3, 5, 7
Minimal samples per leaf 1, 2, 4
Minimal samples per split 2, 5, 10
Number of estimators 100, 200, 300

3.1 Data cleaning
32 patients were excluded due to missing medical imaging
and due to patients refraining from treatment. Three data
points were identified as outliers based on the IQR, leaving
a dataset of 199 patients used for model development. The
patient characteristics are shown in Table 2.

Figure 2 displays the distribution of the actual and planned
operation times. The actual operation time was not normally
distributed, with a median of 46.61 (16.25 [38.0:54.25]). The
planned operation time is also not normally distributed with a
median of 45 (0.0[45.0: 45.0]). The error between actual op-
eration time and planned operation time is shown in Appendix
A.1

3.2 Univariant analysis
Based on the univariant analysis, the patient factors inflamma-
tion by indication, the imaging factor thickened gallbladder
wall, and the surgical factor level of expertise showed signifi-
cant correlations with the outcome variable. These significant
correlations are highlighted in Table 2.

3.3 Feature engineering
The constructed features inflammation by indication and stone
in gallbladder neck, inflammation by indication with gallblad-
der wall thickened, and gallbladder wall thickened with oper-
ator level of expertise were significant (see Appendix A Table
A.1). In most of the engineered features, the distribution of
the classes was imbalanced (see Appendix Figure B.1).

3.4 Feature selection
Given that the variables, a stone in the gallbladder neck in
combination with previous ERCP performed, ASA 1, and a
shrunken gallbladder exhibited a VIF greater than 10, they
were excluded from the analysis. Subsequently, forward and
backward feature selection was conducted using 5-fold cross-
validation. The outcomes of these selections are shown in
Appendix D.1 and D.2, respectively. Figure 3 depicts the
distribution of the selected features across the five folds. For
the LR model, the features chosen for the final model were:

• Anticoagulation
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Table 2. Patient characteristics and correlation with the outcome variable
Characteristics N(%)1 Correlation P value

PATIENT FACTORS
Age 53 (22 [41; 63]) 0.046 0.54
BMI 27.05 (5.9 [24.6; 30.5]) 0.035 0.63
Sex -0.070 0.33

Males 61 (31.12%)
Females 135 (68.88%)

Previous surgery 0.0039 0.96
Yes 68 (34.69%)
No 128 (65.31%)

Smoking 0.071 0.32
Yes 26 (13.27%)
No 170 (86.73%)

Hypertension 0.020 0.79
Yes 45 (22.96%)
No 151 (77.04%)

Previous Jaundice 0.010 0.17
Yes 16 (8.16%)
No 180 (91.84%)

Diabetes 0.12 0.093
Yes 15 (7.65%)
No 181 (92.35%)

Anticoagulant 0.057 0.43
Yes 18 (9.18%)
No 178 (90.82%)

Inflammation by indication2 0.20 0.0044
Yes 9 (4.57%)
No 187 (95.41%)

ASA score 1 43 (21.94%) -0.030 0.70
ASA score 2 119 (60.71%) -0.053 0.46
ASA score 3 30 (15.31%) 0.096 0.18
ASA score 4 4 (2.04%) 0.020 0.79

IMAGING FACTORS
Shrunken gallbladder 15 (7.65%) -0.11 0.13
Normal gallbladder 170 (86.73%) 0.060 0.41
Hydropic gallbladder 11 (5.61%) 0.037 0.60
Stones 0.025 0.73

Yes 184 (93.88%)
No 12 (6.12%)

ERCP Performed 0.056 0.44
Yes 22 (11.22%)
No 174 (88.87%)

Stone in gallbladder neck 0.12 0.085
Yes 19 (9.69%)
No 177 (90.31%)

Dilated CBD 0.10 0.16
Yes 28 (14.29%)
No 168 (85.71%)

Thickened gallbladder wall2 0.16 0.029
Yes 33 (16.84%)
No 163 (83.16%)

SURGICAL FACTORS
Level of expertise2 0.16 0.014

Surgeon 79 (40.31%)
Resident 117 (59.69%)

Operation >6 Weeks After Diagnosis -0.062 0.39
Yes 158 (80.61%)
No 38 (19.39%)

1 Median is denoted as Median (IQR [Q1:Q3]).
2 The emphasised correlations are statistically significant.
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Figure 2. Distribution of the actual and planned operation times.

• Smoking
• Gallbladder Wall Thickened
• Level of Expertise
• Hypertension
• BMI
• CBD dilation
• Inflammation by Indication
• Normal gallbladder
• tone in Gallbladder Neck
• Operation 6 Weeks After Diagnosis

For the RFR model, the features used to train the final
model were:

• Age
• Sex
• Diabetes
• BMI
• Previous Abdominal Surgery

3.5 Model evaluation
The optimal hyperparameters for the RFR include a maximum
depth of 10, a minimum of 2 samples per leaf, 10 samples
per split, and 100 estimators. The results of the 5-fold cross-
validation are presented in Table 3. The model with the lowest
R2-score is the RFR model with features selected using for-
ward and backward feature selection.

4. Discussion
This study aimed to evaluate the efficacy of preoperative fac-
tors in predicting the duration of elective laparoscopic chole-
cystectomy (LC) procedures. Our analysis used both an LR
and RFR model to predict operation times. The linear regres-
sion model demonstrated a mean R2-score of -0.17 ±0.14 min-

Table 3. Results of the 5-fold cross-validation
Model R2-score RMSE
LR model

Selected features -0.17 ±0.21 12.72 ±1.75
Manual Selected features -0.17 ±0.27 12.73 ±2.044
All features -0.63 ±0.14 15.11 ±1.69

RFR
Selected features -0.083 ±0.10 12.28 ±1.20
Manual Selected features -0.087 ±0.16 12.12 ±1.65
All features -0.13 ±0.18 12.56 ±1.58

Planned -0.20 ±0.17 12.88 ±0.05

utes across 5-fold cross-validation. The RFR model yielded a
mean R2-score of -0.0853 ±0.091. When comparing the pre-
dicted operation times from our model to the scheduled times
estimated by planners, our model showed similar accuracy in
predicting actual operation duration. Interestingly, our model
did not outperform the models in the retrospective study. This
could be due to several reasons.

Firstly, the dependent variable, operation time, may be
subject to measurement errors [19]. The anesthesiology staff
records These times manually, and factors such as operational
stress, distractions, and individual variations in work habits
can lead to inconsistencies. Given the small error margins
in our study, even a minor deviation could significantly af-
fect model performance. Adopting objective time-tracking
systems or surgical phase detection mechanisms would be
necessary to mitigate this issue. This could be achieved by
deriving the absolute operation time from the laparoscopic
videos.

Secondly, the univariate analysis revealed fewer statisti-
cally significant predictors of operation time than anticipated.
Literature commonly identifies patient factors such as BMI,
age, gender, and ASA score as significant predictors of op-
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Figure 3. Results of the cross-validated feature selection process for forward and backward feature selection.

eration time [20, 21, 22, 23, 24]. However, our analysis did
not find these variables to be significant predictors. Potential
reasons for this discrepancy include the relatively small size of
our dataset compared to other studies, which typically involve
patient populations ranging from 323 to 7,227 [8, 25]. This
limitation and measurement error in the outcome variable may
have influenced the observed correlations. Additionally, the
current study found relatively low correlations, ranging from
0.14 to 0.20 [13].

Moreover, the selected imaging factors were also less cor-
related with the operation time than reported in other studies
[3, 26, 27]. In our study, only the thickened gallbladder wall
was shown to be correlated with the operation time. However,
in a study by Siddiqui et al., stones in the gallbladder neck
and a dilated common bile duct were significant in predicting
operating time [27]. This difference may be due to the manual
extraction of imaging factors from radiology reports in the
current study, which introduces inter-observer variability. Dif-
ferent radiologists at MMC handle the reporting, and while

some specify the exact gallbladder wall thickness, others use
broader terms like ”thickened” or ”normal.” Since we only ex-
tracted binary values, and the criteria for these classifications
were not always clearly defined, this could affect the results.

It is also important to note that factors correlated with
the outcome were relatively imbalanced. The patient fac-
tor inflammation by indication was only present 9 times in
the dataset but showed a strong correlation. The Same ac-
counts for the imaging factor of thickened gallbladder wall,
which was present in only 33 cases and all three significant
constructed features. This underrepresentation of correlated
factors could partially declare the high standard deviation and
the low score of the regression models, which is visualised
in Appendix D.1 and D.2 [28]. Expanding the dataset to in-
clude more underrepresented cases will enhance the model’s
performance.

The predictions could potentially be optimised by explor-
ing alternative modelling approaches. This study focussed
on two general machine learning algorithms, but numerous
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other models and their variations exist [29, 30]. A systematic
review of predictive models across various surgical domains
has highlighted the efficacy of neural networks in estimating
operation time [17]. However, it is only favourable to inves-
tigate more complex models if a certain relation in the data
exists [31].

Lastly, in both the retrospective and prospective studies,
not all the variance can be explained by the preoperative
variables. Additional information is necessary to determine
the operation time accurately. One method to achieve this
could be by incorporating intraoperative information based
on laparoscopic videos. Due to the fact that the patient and
imaging factors try to predict the intraoperative situation, this
information would likely improve the model’s performance.
One way to quantify this is by using the difficulty grading
[32, 33]. We hypothesise that adding the difficulty grade to the
model could lead to a more accurate and dynamic operation
time prediction.

In conclusion, the current study shows that the factors of
thickened gallbladder wall, inflammation by indication, and
surgical level of expertise significantly correlate to the oper-
ation time. The current models are not yet usable in clinical
practice due to the lack of factors accurately describing the
variance of the operation time and due to the relatively small
dataset. We hypothesise that increasing the dataset and adding
operational difficulty as an additional predictor could improve
the model performance and lead to a more accurate operation
time prediction.
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Appendix
A. Error distribution

Figure A.1. Distribution of the error between the actual and planned operation times.

B. Violin plots of constructed features

Figure B.1. The violin plots of the selected polynomial features display the distribution of the new features.
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C. Correlation of the constructed features with the outcome variable

Table A.1. Results of feature engineering and correlation with the outcome variable.
Characteristics N(%) Correlation P value
Inflammation by indication and stone
in gallbladder neck

0.20 0.0049 1

Yes 3 (1.53%)
No 193 (98.47%)

Inflammation by indication and gall-
bladder wall thickened

0.23 0.0012 1

Yes 7 (3.56%)
No 189 (96.43%)

Inflammation by indication and oper-
ator level of expertise

0.13 0.068

Yes 6 (3.06%)
No 190 (96.94%)

Stone in gallbladder neck and gall-
bladder wall thickened

0.084 0.2404

Yes 10 (5.10%)
No 186 (94.90%)

Stone in gallbladder neck and opera-
tor level of expertise

0.11 0.12

Yes 11 (5.61%)
No 185 (94.39%)

Gallbladder wall thickened and oper-
ator level of expertise

0.20 0.0059 1

Yes 19 (9.69%)
No 177 (90.31%)

Inflammation by indication and oper-
ation >6 weeks after diagnosis

0.041 0.56

Yes 2 (1.02%)
No 194 (98.98%)

Stone in gallbladder Neck and ERCP
performed

0.080 0.26

Yes 17 (8.67%)
No 179 (91.33%)

1 This constructed feature showed a statistically significant correlation with the dependent variable.
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D. Feature selection plots of forward and backward feature selection

Figure D.1. Influence of amount of features on model
performance after five fold cross-validation for forward
feature selection

Figure D.2. Influence of amount of features on model
performance after five fold cross-validation for backward
feature selection

E. Bland-Altmann plot of the best prediction of the LR and RFR

Figure E.1. The Bland-Altman plot for the best folds for the LR and RFR model. In these models, the features from the feature
selection process are used.
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Abstract
Background: Intraoperative difficulty assessment could be helpful in both operation time prediction and surgical
benchmarking. However, objective difficulty assessment remains a challenge. Recent studies have shown the
feasibility of deep-learning models using frame-wise classification. However, these methods fail to capture spatio-
temporal context and therefore lack accuracy. In this study, we explore the possibility of using the Multi-scale
Vision Transformer version 2 (MViTv2) to objectively determine the difficulty of laparoscopic cholecystectomy
(LC) procedures.
Methods: To evaluate the effectiveness of the MViTv2 model, a surgical dataset consisting of 65 LC videos
was utilized. A modified Nassar scale was created to classify the videos. The dataset was then divided into
10-second clips for model training. To assess the model’s performance, accuracy, precision, recall, and F1 score
were determined using a test set that was not used for training.
Results: The MViTv2 model successfully overfitted on a subset of our surgical dataset, indicating that usable
features could be extracted. However, when trained on the complete dataset, the highest accuracy was 0.36%,
indicating poor generalization to new data.
Conclusions: The MViTv2 model was not yet able to successfully determine the difficulty of an LC, as reflected
by the best test accuracy of 36%. To improve the model, we recommend increasing the dataset size, employing
various augmentation techniques, training on multiple GPUs to process more frames, and increasing the temporal
step size of the training dataset.
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1Technical medicine, University Twente, Enschede, The Netherlands
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1. Introduction
Laparoscopic surgery has not only transformed the field of
cholecystectomy by improving post-operative outcomes for
patients but also introduced a new dimension of data within
the operating room [1, 2]. However, much of the valuable in-
formation embedded in this data remains inaccessible through
traditional methods [3]. With recent advancements in AI,
new models are emerging that can extract information from
laparoscopic videos, offering enhanced decision-making tools
[4, 5, 6]. One particularly valuable application is the objective
assessment of surgical difficulty, where AI can quantify and
predict challenges during surgery, enabling better preparation
and response [7, 8].

Using difficulty assessment not only aids in real-time
decision-making but also offers a significant advantage in
surgical benchmarking [9, 10]. By objectively measuring
intra-operative conditions during laparoscopic cholecystec-
tomy (LC), surgeons gain a deeper understanding of the com-

plexity of procedures. This objective assessment is crucial for
predicting operation times and creating standardized bench-
marks to evaluate surgical performance and outcomes [10]. A
recent study demonstrated the feasibility of using computer
vision models to determine surgical difficulty by assessing
the Parkland difficulty grade [11]. While promising, this ap-
proach faced limitations. The first limitation was using the
Parkland grading scale, which is not clinically validated [8].
A second limitation was that the model primarily focuses
on gallbladder-specific features such as redness and vascu-
larization and cannot identify adhesions correctly. Despite
these challenges, integrating difficulty assessment into surgi-
cal benchmarking holds great potential for enhancing surgical
training, improving patient outcomes, and standardizing pro-
cedural evaluation.

Building on this, previous research at the Meander Medi-
cal Center (MMC) explored a similar approach to difficulty
assessment using a frame-wise method, where the model at-
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tempted to estimate gallbladder difficulty based on individual
frames of the video [7]. In this study, the Nassar scale, a
clinically validated measure of difficulty, was used [12]. They
reported an accuracy of 88% in distinguishing between an
easy and a difficult gallbladder. However, while the frame-
based method could differentiate between inflamed and non-
inflamed gallbladders, it struggled to capture the adhesion
grade and failed to determine the total Nassar score reliably.
We hypothesize that these shortcomings stem from the lack
of spatiotemporal information, which is crucial for accurate
difficulty assessment. In our institution, human annotators
determine the Nassar scale by examining video clips and as-
sessing the relationship between surrounding tissue and the
gallbladder. This contextual information allows for better
differentiation of tissue types, such as distinguishing adhe-
sions, and provides a more comprehensive understanding of
procedural difficulty.

Therefore, to improve the difficulty prediction further, a
model must understand how different parts of the video relate
to each other. A possible framework to achieve this is the
multi-scale vision transformer version 2 (MViTv2) [13, 14].
This model, based on transformers, can understand contextual
information within a video [15]. The model achieved a top-1
error of 86.1 % and a top-5 error of 97.0% on the Kinetics-400
dataset in terms of video classification, which outperforms
temporal convolutional neural networks (CNNs) [13, 14, 16,
17]. Due to the high accuracy and the ability to understand
video context, we expect that the MViTv2 model can better
capture the relation between the gallbladder and surrounding
tissue and achieve higher accuracy scores on the total grade
than frame-based methods.

This research aims to determine MViTv2’s strengths and
limitations in surgical video analysis and improve difficulty
assessments.

2. Methods
To evaluate the usability of the MViTv2 model in difficulty
assessment, we first explain its working mechanism. Next,
we define the datasets and labels used to analyze the model’s
behaviour further. Lastly, we elaborate on how the models are
trained and discuss the evaluation metrics.

2.1 MViTv2 model structure
The building block of the MViTv2 model is the vision trans-
former. An overview of the model is visualized in Figure 1.
First, a clip from the input video is randomly selected (a). The
length of each clip is determined before training and is typi-
cally around 1 to 2 seconds. Additionally, frames are sampled
within this clip. Using all frames in the selected clip yields
better accuracy but has a bigger computational burden. Next,
the frames are divided into several patches (b). Because the
input for the transformer block must be a vector, these patches
are fed into a ResNet50 [18] (c). Using ResNet50 to extract
features, each patch is assigned a unique vector representing
the original image’s characteristics. Position embedding is

added to ensure the model knows the original position of the
patches [19]. After position embedding, the obtained vectors
are fed into the transformer encoder (d). This transformer
encoder is built up using multiple transformer blocks. The
detailed structure of a transformer block is presented in Figure
2.

Figure 1. Overview of the MViTv2 work flow. A) a subset of
frames is randomly sampled from the video. B) The frames are
divided into several patches. C) The patches are fed into a ResNet to
encode them as input for the transformer encoder. D) The embedded
patches are fed into the transformer encoder structure of the MViT.
E) A multi-head perceptron is added to classify the output of the
Transformer encoder. F) The model outputs the probability of the
label.

These encoder blocks are chained to each other in layers.
Subsequently, the model is built in different layers. The first
layers of the model primarily focus on gathering high spatial
and temporal detail, and the later layers primarily focus on im-
age features. In other words, the depth of the feature maps in
the model expands over the layers while the processed number
of frames reduces. In our model architecture, three scaling lay-
ers contain 3, 7, and 6 transformer blocks, respectively. The
input for the next block is the output of the previous. To ac-
count for the change in dimension across layers, the MViTv2
uses residual pooling layers in the transformer blocks, which
is visible in Figure 2. After all transformer blocks are passed,
the output is fed into a multi-head perceptron. The last step is
a fully connected softmax layer in which the found features
are assigned to one of the pre-defined labels.

2.2 Acquiring labels
For acquiring the difficulty labels, the videos were loaded
into label studio (v 0.9.0) [20]. We adopted the Nassar scale,
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Figure 2. Visualisation of the MViTv2 model transformer block
[14].

which has been validated for surgical outcomes [21, 12]. A
label guide was constructed with a surgeon performing multi-
ple LCs per week, shown in Appendix A. In this label guide,
we attempted to make objective cut-off points suitable for
a deep-learning model without impeding the clinical signifi-
cance of the Nassar scale. After the construction of the label
guide, the available videos were labelled by two annotators,
one technical physician, and one technical medicine student.
After labelling all videos separately, the cases with different
grades were discussed until the annotators reached a consen-
sus. Because we focus primarily on elective cases, the amount
of Nassar grade 4 cases in the dataset was limited. Therefore,
we decided to combine Nassar grades 3 and 4. In this study,
we only used the final Nassar grade. This is determined by
the category with the highest grade [12]. For example, if a
video has gallbladder grade 2, adhesions grade 3, and cystic
pedicle grade 2, the final Nassar grade is 3.

2.3 Dataset
The dataset consisted of laparoscopic videos from 70 patients
undergoing LC surgery at Meander Medical Center between
2021 and 2024. The study was approved by the local Insti-
tutional Review Board (Protocol No: TWO 21–007). Three
videos were excluded because the recording started after the
start of the operation. Two videos were excluded because they
were robot-assisted. Because the MViTv2 model randomly
samples clips within the input video, training on the entire
video was expected not to give the best results [14]. There-
fore, clips were generated for each video. The clip started at
the first moment the gallbladder came into view. If, in the
video, the surgeon began to dissect the cystic duct, clipping
was stopped. The minimum distance between the clips was
10 seconds. The length of the clips can be changed if neces-
sary. For each video, a minimum of two and a maximum of
seven clips were sampled. This is done to prevent under or
over-sampling of videos.

Two separate datasets are made. Dataset one is primar-

ily used to investigate model behaviour and determine how
the model samples the input videos. This dataset contained
six surgical videos, with each Nassar label represented two
times. In this dataset, the train, validation, and test set contain
the same videos. For this set, there are also clips available.
However, for each of the videos, only one clip is made.

Dataset two contains clips of all available surgical videos.
The video clips were made after data splitting to ensure there
were no clips of the same video in the train, validation, or
test set. In Figure 3, the final distribution of the labels is
visualized. Due to the class imbalance in the dataset, class
weighting was applied [22]. This was done using the Equation
1, where nsamples denotes the total amount of labels present
in the dataset, nclasses the amount of different classes present
in the dataset and nlabeli the amount samples of a single label
[23].

Class weights =
nsamples

nclasess ×nlabeli
(1)

2.4 Trained models
Table 1 shows the different models we trained. First, we
identified the ability of the model to overfit on surgical data.
This was done using dataset one. One model was trained
using the whole video as input. The other model was trained
using only clips of 1 second as input. Both models’ training
and validation loss were logged as the primary output.

Next, we trained several models using dataset two. One
model was trained with clips of 1 second, and one was trained
with clips of 10 seconds. This was done to determine the
influence of adding more data to the model. Both models
were trained without data augmentation and using a model
from scratch. To complete the analysis, two additional models
were trained to identify the influence of a pre-trained model
and data augmentation. To train these models, the clips of 10
seconds were used, because we hypothesized that the clips
containing more data should yield more accurate results and
are less prone to overfitting. One model was trained using the
10-second video clips using an MViTv2 model pre-trained
on the kinetics400 dataset [16]. The other model was trained
using 10-second video clips, a pre-trained model, and data
augmentation. An overview of the different models and the
corresponding metrics is shown in Table 2.

For models 3,4,5 and 6, the precision, accuracy, recall, and
F1 score were calculated. The formulas for these metrics are
shown in Equations (1)–(4). Here, the TP are the true positive
classifications of the frames, TN the true negatives, FP false
positives, and FN the false negatives. These were also used
to generate the (normalized) confusion matrices [24]. The
metrics were determined by performing inference on the first
60 seconds of the operation. This time frame was chosen,
because it gives a good indication of model performance at
the start of the operation. For inference, the models with the
lowest validation loss during training were selected, which
were manually extracted from the resulting validation plots.
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Figure 3. Distribution of the Nassar grade clips in dataset dataset 2 as used for training.

Table 1. Overview of the trained model. Dataset 1 indicates the dataset with six videos and an equal train, validation, and test
set. Dataset 2 contains all surgical videos and the corresponding clips

Model Dataset Clip length Number of clips in train set Pre-train Augmentation
1 1 Whole video 6 No No
2 1 1 second 6 No No
3 2 1 second 207 No No
4 2 10 seconds 207 No No
5 2 10 seconds 207 Yes No
6 2 10 seconds 207 Yes Yes

Accuracy =
T P+T N

T P+T N +FP+FN
(2)

Precision =
T P

T P+FP
(3)

Recall =
T P

T P+FN
(4)

F1 =
2 ·Precision ·Recall
Precision+Recall

(5)

3. Results
In Figure 4, the results of the MViTv2 training on dataset 1
and dataset 2 are shown. It shows that the training and vali-
dation loss were lower when using only clips of 1 second for
training. This result aligns with expectations, as the MViTv2
model randomly samples frames during training [25]. It is
important to note that the validation loss for the training with
clips is lower than the corresponding training loss. This hap-
pens because, during validation, the model is set to evaluation
mode, where regularization techniques are not applied [26].
During training, regularisation prevents overfitting, which can
affect the model’s output. When the same dataset is used for
both training and validation, the validation loss is expected to
be lower than the training loss, as all model weights are used
without regularization during validation.

Next, we trained the model on the complete dataset using
both clips of 1 second and clips of 10 seconds. The class

weights were computed as mentioned in the methods, resulting
in the following weights: 3.45 for Nassar grade 1, 0.66 for
Nassar grade 2, and 0.84 for Nassar grade 3. The metrics of
the models are shown in Table 2. It is visible that the model
using 1-second clips performs best on the test set. Moreover,
none of the models gave Nassar grade 1 as an output. This is
further emphasized by the confusion matrix of the 1-second
and the 10-second clips without data augmentation in Figure
5.

4. Discussion
In this study, we developed a pipeline for labelling surgical
videos and trained an MViTv2 model to assess the difficulty of
LC procedures. We successfully trained the MViTv2 models
on our surgical dataset. Our best model achieved an accuracy
of 36%, significantly lower than the frame-wise difficulty
predictions reported in previous research [7, 8]. In all trained
models, we saw that the model tended to overfit. This resulted
in a model primarily predicting Nassar grade 2.

Our study has several limitations. First, our model was
trained on a relatively small dataset. The final set consisted of
256 surgical video clips, each lasting one second. When using
pre-trained models, less data is needed to achieve appropriate
conversion [27]. Despite the advantages of pre-trained models,
our dataset would still be relatively small, especially for a
ViT, which is known for its significant amount of tunable
parameters [28]. To further enhance the model predictions, we
suggest extending the dataset by selecting more clips within
the videos where the gallbladder is visible.
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Figure 4. Training and validation loss training on video clips and the whole video using dataset 1.

(a) 1 second clips (b) 10 seconds clips

Figure 5. Confusion matrices of the models using 1-second and 10-second clips for training. Both models are not pre-trained or
use data augmentation. The inference is done on the first 60 seconds of the operation in the test set videos.
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Table 2. Metrics of the models trained on dataset 2. On the left side of the table, the model characteristics are shown. The performance
metrics are shown on the right side. The accuracy is determined for the entire model, and the other metrics are calculated for each label.

Model Clip length Pre-traiend Data augmentation Grade Accuracy1 Precision Recall F1-score
3 1 second No No 1 0.36 0 0 0

2 0.23 0.40 0.29
3 0.53 0.67 0.59

4 10 seconds No No 1 0.33 0 0 0
2 0.33 1 0.50
3 0 0 0

5 10 seconds Yes No 1 0.24 0 0 0
2 0.19 0.40 0.26
3 0.35 0.33 0.34

6 10 seconds Yes Yes 1 0.33 0 0 0
2 0.33 1 0.50
3 0 0 0

1 Accuracy is determined for the entire model.

Initially, we trained the model with minimal data aug-
mentation to determine if it could extract features from the
images. While this method can lead to overfitting, it allowed
us to determine the model’s behaviour. However, overfitting
was still present after incorporating some basic augmenta-
tion and embedding a dropout layer. It is very important
to fine-tune data augmentation further because it is known
that vision transformers tend to overfit very fast on small
datasets [29]. Moreover, recent studies report that incorporat-
ing augmentation and regularisation techniques can achieve
the same results in improving the model as increasing the
dataset [30, 31]. After incorporating more extensive data aug-
mentation, we expect the model to be more generalizable over
different datasets. Another method to reduce overfitting is the
use of mixup. Mixup is a technique that combines synthetic
images from the current batch of videos [32]. However, since
mixup effectively increases the batch size by adding synthetic
data, this leads to higher computational demands. As a result,
training on multiple GPUs may be required to accommodate
these increased costs.

Another issue we encountered was dataset imbalance,
which we attempted to mitigate through class weighting. How-
ever, this approach did not fully compensate for the scarcity
of Nassar grade 1 cases in the dataset [33]. We also tried
binarizing the labels by combining grades 1 and 2, as sug-
gested by Abbing et al., but this did not improve the model’s
performance. More Nassar grade 1 and 3 cases need to be
included to balance the dataset, particularly by incorporating
non-elective gallbladder cases. Since grade 1 gallbladders are
more challenging to obtain, focusing on a subscore, such as
the gallbladder or adhesion subscore, might provide a more
balanced distribution.

Moreover, there are possibly some inconsistencies in the
labelling process. Although we developed a labelling guide
with input from a surgeon experienced in LC, the labelling
was done without direct surgical oversight. Discrepancies
between the two labellers were occasionally observed, par-
ticularly when distinguishing whether procedural difficulty
stemmed from the intraoperative situation or the surgeon’s
skill. For instance, a straightforward procedure could appear
more difficult if inadequate tension is applied, affecting vis-

ibility and leading to subjective labelling. Additionally, we
modified the Nassar grading scale to better capture specific
features in the operating room, which may affect its correla-
tion with clinical outcomes.

Lastly, we used a set time window of 1 second for the
model to select frames from. In this one second, 25 frames
were extracted. If human reviewers label the gallbladder
videos, we mostly jump into the video reviewing 2 or 3 sec-
onds of video information. Therefore, training the model
using longer video clips, including more frames, could be
helpful. One drawback of this is that the computational costs
increase when the number of frames loaded in the model
increases.

A study by Kiyasseh et al. used another variant of a ViT
to decode surgical videos for recognizing laparoscopic tool
gestures, achieving accuracy rates of 0.85 in needle handling
and 0.82 in needle driving [34]. Although their focus was on
tool tracking rather than difficulty classification, their work
underscores the utility of vision transformers in extracting
meaningful features from surgical videos. Key differences
between their study and ours include the volume of video data
used and their application of a self-supervised, pre-trained ViT
model. The self-supervised method used is DINO (knowledge
distillation with no labels) and shows promising results with
530 - 912 clips per video. [35, 34]. They also trained the
network on bigger sub-samples of the video, ranging between
10 - 30 seconds. Moreover, they made predictions of the
entire surgical video, indicating the applicability of vision
transformers for our tasks.

For future research, we recommend focusing on the model’s
performance in assessing adhesions. We hypothesize that the
strength of vision transformers lies in comparing different
video segments. While gallbladder inflammation, assessed
by surface appearance, is well suited for ResNet models (as
demonstrated by Abbing et al.), identifying adhesions is more
challenging due to their visual similarity to healthy tissue.
In such cases, contextual information becomes crucial. Fo-
cusing solely on adhesion grading may reveal whether the
MViTv2 is better suited for this task. It is also advised to dive
into the possibility of incorporating the DINO framework for
self-supervised learning.
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Moreover, we suggest verifying all labels with a clini-
cal expert and performing laparoscopic cholecystectomies
weekly. This should increase the label certainty and enhance
the model’s input data [36]. Additionally, the dataset should
be extended to elective procedures and non-elective proce-
dures, increasing the amount of Nassar grade 3 labels present
in the dataset.

In conclusion, we developed a pipeline for manually la-
belling LC videos and training the MViTv2 model. Our re-
search demonstrated the feasibility of training the MViTv2
model in-house and assessed its applicability to surgical data.
While the model successfully extracted video features, it
tended to overfit, and its generalizability to new data remains
limited. To further explore the utility of MViTv2 for diffi-
culty classification, future work should focus on expanding
the dataset, applying appropriate data augmentation, consult-
ing with clinical experts during labelling, and including non-
elective gallbladder cases.
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Galbladder grading 
Grade Criteria Characteristics Notes Images  
1 Floppy, non-

adherent 
Gallbladder easy graspable 
and is easily moved out of 
the liver bed 
 
Slim galbladder, the pedicle 
is already clearly visible, and 
the first structures are 
recognisable (it is practicle 
impossible to have a very 
slim galbaldder with difficult 
cystic pedicle).  
 
Within first minute no doubt 

this is an easy gallbladder 

 

 
Frame: 4122 
Video: 03913994a1.mp4 

  Can be filled, but must be 
easy moveable  

  

2 Voluminous 
gallbladder, 
slightly 
withdrawn in 
liverbed 

Slightly withdrawn in liver 
bed. 
 
Easy graspable without 
punctioning. 
 
Filled gallbladder, less pink 
than grade 1. 

 

 
Frame: 2912 
Video: 004fdea34e.mp4 

Appendix
A. Label guide for labelling laparoscopic videos using an adjusted Nassar scale
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General discussion and conclusion

Scientific and clinical relevance

In this master’s thesis, we investigated the possibility to improve the operation time planning of an LC using a
model that incorporates both preoperative and intraoperative information. We developed a preoperative pipeline
to utilize a wide variety of patient characteristics to estimate the required operation time for an LC. Within this
pipeline, parameters can be easily added to expand the model in the future. Different ML models can also be
integrated into the pipeline to enhance the initial prediction further. Moreover, we created a pipeline that uses a
state-of-the-art model to extract the Nassar grade from LC videos, which could adjust the initial estimation of the
preoperative model. New data can be easily added within this model, and the focus can shift from training on the
entire Nassar grade to training on a specific sub-score.

Unfortunately, the individual models have not yet yielded suitable results for clinical practice. Based on our
evaluation, the preoperative patient model achieved an RMSE of 12.28 ±1.20, similar to the RMSE achieved by the
planners at 12.88 ±0.05 on the same dataset. Additionally, our deep learning model was not yet able to accurately
predict the difficulty of the gallbladder based on the LC videos, yielding an accuracy of only 36%. However, this
research lays the foundation for enhancing operation time predictions while also highlighting the limitations of
deep learning and machine learning within a surgical context. Expanding this work to improve accuracy and
apply it to a broader range of surgeries could increase patient satisfaction, reduce operating room costs, and im-
prove staff morale. Furthermore, it serves as a stepping stone towards a better intraoperative difficulty assessment,
which can be used for surgical benchmarking and ultimately improve surgical outcomes [1, 2]. To our knowledge,
no previous research combined preoperative patient characteristics and intraoperative video analysis for dynamic
operation time estimation.

Study limitations

Within our study, there are several limitations present in both the preoperative model and the intraoperative
model. Therefore, the limitations per model are highlighted. In the preoperative model, our current approach
mainly focused on determining operation time based on patient-specific factors. However, operation time is also
heavily influenced by factors related to the operating team [3, 4, 5, 6, 7]. We attempted to capture part of this vari-
ability by distinguishing between the expertise levels of the operating surgeon. However, this variable is highly
simplified, as it only distinguishes between a resident and a fully trained surgeon. Moreover, in some cases, the
surgeon listed in the EHR performs only part of the operation, while a resident does the other part. Therefore, a
case can be classified as a simple case according the Nassar grade but takes more time due to the composition of
the surgical team. It is expected that by extending the surgical factors to include the specific surgeon, the anesthe-
siologist, and the OR assistant, the accuracy of the operation time prediction can be significantly improved, and a
better initial estimation can be made [8].

The second limitation of the preoperative model is the measurement of the actual operation time. The opera-
tion time may be prone to measurement errors since it is manually recorded by anesthesiology staff. Operational
stress, distractions, and individual work habits can contribute to inconsistencies in operation time measurements,
introducing variability that could affect model accuracy. The dependent variable must be reliably extracted to
develop a model that can accurately predict operation time. This can be achieved by manually selecting a starting
and an ending point in the laparoscopic video. In this way, a more objective operation time can be extracted.
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Our intraoperative model also has some limitations. The first limitation is that the intraoperative difficulty assess-
ment is conducted at the start of the operation, allowing only the initial time estimation to be adjusted. However,
this adjustment does not account for intraoperative events. For example, if our model predicts an operating time
corresponding to a Nassar grade 1 but bleeding occurs, the model does not update its prediction [9]. This results
in an incorrect operation time estimation. The primary reason for using the Nassar grade for time predictions
was that it enables both operation time estimation and surgical benchmarking simultaneously [10]. While objec-
tive difficulty assessment could be precious for further research and surgical performance evaluation, it may not
be optimal for precise operation time estimations. To achieve the most accurate predictions, it would be worth
considering implementing a deep-learning model that incorporates intraoperative events. A suitable framework
for this is a long short-term memory (LSTM) model [11]. A model based on this framework, the residual surgery
duration network (RSDnet), can accurately provide real-time residual operation time estimates based on intraop-
erative findings. In this way, the model accounts for the objective difficulty grade and intraoperative tool handling
[12].

Another limitation in the assessment of intraoperative difficulty lies in our labelling methodology. As mentioned
earlier, the labelling was performed by a technical physician and a medical student, following a labeling guide
developed in collaboration with a trained surgeon. However, the labelling process itself occurred without direct
supervision from the surgeon. As a result, the labels may diverge from the surgeon’s expert opinion, potentially
introducing inconsistencies that could negatively impact model performance. Furthermore, the skewed label dis-
tribution and the relatively small dataset may have also influenced the model’s performance [13]. Additionally,
the modification of the Nassar grade might have reduced the clinical relevance of the Nassar grade, possibly lead-
ing to correlations with operation time that are weaker or different from those reported in the literature [9, 14, 15].
Therefore, it is essential to establish a clear correlation between operation time and the adjusted Nassar grade.
This is also an important step in combining our model’s preoperative and intraoperative parts.

A final limitation of our intraoperative difficulty assessment is the amount of data. Most of our models are trained
with random initialized weights. To successfully tune all the weights in these models, a lot of data is required
[16]. Although no specific dataset size has been identified for video classification tasks, it is reasonable to assume
that a large dataset is crucial. Another limitation of the current model for difficulty analysis is the computational
load needed to train the model. If all different data augmentation and mixup methods are implied, the model can
no longer be trained on a single GPU [17]. Therefore, in this research model, the complexity and the amount of
sampled frames are limited. Regarding vision transformers, the model performance increases if there are more
layers and the patch size is reduced, but they expand the number of parameters exponentially [18].

Recommendations

As stated above, it is essential to address the limitations of the individual models. Therefore, for the preoperative
model, it is essential to develop an objective method for registering the operation time. This could be done by an-
alyzing the laparoscopic videos and manually labelling the operation’s start and end based on prespecified points
or phases. In the future, this labelling could be automated by a deep-learning model to handle significant amounts
of new data. Moreover, it is recommended that more surgical parameters be incorporated. When distinguishing
between the individual surgeons and residents, it is expected that a lot more of the variability present in the opera-
tion time can be captured. Regarding the amount of data, it is essential to include more patients. Because we want
to determine whether or not certain correlations in our data are present, we recommend to focus on extending the
prospective data for a single center. In case the correlations are stronger (above 0.5) for more cases, it could be fa-
vorable to determine the correlation over multiple centers in a retrospective way. However, it should be noted that
with the current amount of patients stronger correlations were already expected [19]. More data might increase
the correlations, but this is not guaranteed. Therefore, we advise first to focus on acquiring objective operation
time data and adding surgical parameters before focusing on gathering more data.

For the intraoperative model, assessing whether the MViTv2 model is appropriate for our task is crucial. In the
current setup, the model did not outperform existing frame-based techniques when predicting based on the over-
all Nassar grade. The strength of MViTv2 lies in its ability to capture correlations between different positions
within the image, which is expected to be particularly valuable in identifying and classifying adhesions in videos.
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Therefore, we recommend focusing on training and testing on adhesions specifically. In this training, it is essential
to consider the limitations previously discussed. We recommend using a pre-trained model on the Kinetics-400
dataset or applying a semi-supervised learning method to fine-tune model parameters before training. One possi-
ble approach is the DINO (knowledge distillation with no labels) framework [20, 21]. Additionally, we recommend
expanding the dataset. A study by Kiyaseh et al. successfully trained a ViT for video classification using 512-930
clips per class [22]. Consequently, we recommend extending the dataset to 300 LC videos and continue extracting
clips from these videos. The resulting dataset would contain around 1,200 clips across three classes by selecting
approximately four clips per video. Although this is still lower than the number of video clips in the study of
Kiyasseh et al., we expect improved results from the model.

To improve the generalizability of the intraoperative model, we recommend leveraging MViTv2’s built-in data
augmentation framework, with careful parameter tuning to suit our dataset. If performance remains suboptimal
compared to frame-based methods after implementing these adjustments, alternative approaches for assessing in-
traoperative difficulty may be necessary. One potential approach involves building further on frame-based meth-
ods. To make such a model feasible, developing a gallbladder detection algorithm to identify frames showing
the gallbladder during surgery would be essential. Although this approach could be functional, it may still lack
accuracy in grading difficulty due to the absence of adhesion grading. Integrating a frame-wise ViT instead of a
temporal ViT could help address this limitation [23]. Combining outputs from both models might enable more
accurate difficulty prediction. One advantage of the frame-wise approach is the significant increase in available
data due to the large number of frames. However, a limitation of this method is that it can only detect the presence
of adhesions, not their severity. Consequently, the model would produce only a binary output.

A next important recommendation is integrating the different aspects of our current work into a single model.
This process involves incorporating the Nassar grade into the prediction model and examining its correlation with
operation time. Furthermore, it will be essential to determine the appropriate interval rate for making predictions
regarding intraoperative Nassar grades. Preferably, this should be done at a small interval. However, this is not
yet possible due to the computational time required to make predictions. Therefore, we advise making predictions
every 30 seconds of the surgical video after the start of the procedure. This should give the model enough infor-
mation to make predictions and indicate operational difficulty in the early stages of the operation. However, an
optimal value for this should be determined in future research.

Another consideration for future studies is the separation of operation time estimation from difficulty assessment.
While difficulty assessment is a valuable tool for surgical benchmarking, alternative deep-learning models may
provide more accurate predictions of remaining procedure time. Although both approaches are likely necessary
for improving operating room efficiency and overall clinical care, in our specific context, it may be more effective
to handle these two objectives separately.

Conclusion

Accurately predicting operation time remains a challenge. Despite the factors of thickened gallbladder wall, indi-
cation by indication, and surgical level of expertise significantly correlate to the operation time, we are not yet able
to accurately predict operation time. Our current model, using both pre- and intraoperative parameters, lacks the
precision required for clinical use. Optimizing the individual components could significantly improve the model’s
accuracy. However, alternative methods may be needed for intraoperative time estimation, as difficulty is a static
measure that is hard to capture with current approaches. Despite this, the work presented in this thesis lays the
groundwork for further advancements in surgical planning.
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