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Abstract

Recently introduced sparse neural network training methods have been shown to match
or even surpass the performance of comparable dense neural networks while increasing
their computational efficiency. However, these experiments have been performed in con-
trolled environments with fixed network architectures and hyperparameter configurations,
potentially causing skewed results. We conducted experiments on six datasets, using
multi-objective hyperparameter optimization in a configurable setting to approximate the
accuracy-efficiency trade-off in neural networks with sparse neural network training. After-
wards, we performed a hyperparameter analysis to discover how hyperparameters influence
this trade-off. Our results show that the efficiency of neural networks can be heavily im-
proved for a slight decrease in accuracy and that sparse neural network training plays a
vital but complex role in this trade-off.

Keywords: Multi-objective optimization, Hyperparameter optimization, Hyperparameter
importance, Sparse neural networks, Sparse neural network training, Deep learning
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Chapter 1

Introduction

Over the past decade, deep neural networks have been the driving force of many research
areas, producing state-of-the-art results for tasks such as image recognition and natural
language processing [22, 15]. Unfortunately, what deep neural architectures win in perfor-
mance, they lack in sustainability. Larger models with more parameters often outperform
comparable smaller models, and these larger models come with substantial storage and en-
ergy costs. With the continued rise in popularity of machine learning and neural networks,
these sustainability issues are becoming an increasingly large problem. Fortunately, there
are ways to combat these issues. Pruning methods show that many models contain redun-
dant parameters, which can be removed to decrease a model’s size. These efficient new
sparse neural network (SNN) structures created by pruning often come with a negligible
loss in performance [11]. Pruning helps make trained neural networks more efficient, but
training these networks remains an inefficient and computationally expensive task. Recent
research introduced the concept of SNN training, where networks are also sparse during
training, resulting in a more efficient way to create SNNs [82, 26]. Current research presents
the effect of sparsity in SNN training in an accuracy-efficiency trade-off and shows that
such networks require significantly fewer computations to train while having comparable or
even improved accuracy compared to dense neural network (DNN) models [26]. However,
these trade-offs are primarily explored in restricted environments with fixed network struc-
tures and hyperparameter configurations. We believe that research into the actual effects
of sparsity is missing, as we might find a different accuracy-efficiency trade-off when ap-
plying sparse training to different network structures and hyperparameter configurations.
Therefore, this research aims to uncover the true underlying accuracy-efficiency trade-off
of SNN training. This goal directly leads us to our first research question:

RQ1: What does the accuracy-efficiency trade-off in sparse neural network
training look like in an environment with many configurable hyperparameters?

To generate comparable and measurable results from this question, we aim to answer
the following sub-research questions simultaneously.

RQ1.1: How does the accuracy-efficiency trade-off in sparse neural network
training compare to the trade-offs found in previous studies without a config-
urable environment?

RQ1.2: How is the accuracy-efficiency trade-off in sparse neural network train-
ing dependent on the network architecture type that is being optimized and
the data type it is optimized on?
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To find this trade-off, we use Hyperparameter Optimization (HPO). HPO is a sub-field
of automated machine learning and automated algorithm configuration that focuses on
finding the set of hyperparameters that optimizes the performance of a machine learning
model on a given dataset [50, 9]. Machine learning performance can be measured in
multiple ways with different objectives, but we focus on accuracy and efficiency in this
study. Accuracy stands for the percentage of correctly predicted samples in a classification
problem. Efficiency can be separated into two objectives: training efficiency and inference
efficiency. We define training efficiency as the total number of floating point operations
(FLOPs) needed to train a model and inference efficiency as the number of FLOPs needed
to pass one data point through the network after training. Most HPO methods optimize
only for a single objective, such as accuracy, but to determine the accuracy-efficiency trade-
off, we use a Multi-Objective HPO (MO-HPO) method [57]. Such methods do not optimize
a single objective but find different configurations that approximate the optimal underlying
trade-off between these objectives. By combining this technology with a configurable
SNN training environment and making accuracy, training efficiency and inference efficiency
explicit objectives, we can approximate the accuracy-efficiency trade-off incurred by SNN
training.

Knowing how accurate and efficient SNN training can be is our primary goal. However,
these results become far more valuable if we gain further insights from them that can be
used in future research. Therefore, we set the secondary goal to study the effects of the
configured hyperparameters. This leads us to the second research question:

RQ2: How do sparsity and other hyperparameters influence the accuracy-
efficiency trade-off in sparse neural network training?

To study the influence of hyperparameters on an objective trade-off, we perform a multi-
objective hyperparameter importance analysis [109]. In this analysis, the importance of
each hyperparameter is quantified per objective, giving an idea of which hyperparameters
play a role in improving which objectives. Furthermore, we will perform an analysis on the
optimal values of each hyperparameter, showing how hyperparameters should be configured
to find an optimal accuracy-efficiency trade-off.

To answer these research questions, we have chosen six benchmark datasets on which we
performed three experiments. In these experiments, we approximate the accuracy-efficiency
trade-off induced by SNN training similar to what was done in reproduction, using MO-
HPO and a combination of these two methods. Furthermore, we analyse the resulting
trade-offs and their corresponding hyperparameter configurations. Our results show that
SNN training can drastically improve the efficiency of large neural network models for a
small but unpredictable decrease in accuracy. The remainder of this report is structured as
follows. Chapter 2 introduces SNN training literature and methods, better describing how
this technique works and why its efficiency should be studied. Chapter 3 gives a detailed
introduction to how MO-HPO can be used to approximate objective trade-offs and covers
related work. Chapter 4 explains relevant methods and decisions and introduces a set of
experiments with which we answer the first research question. Chapter 5 further specifies
the details of these experiments and presents their results. Chapter 6 uses the results of
the previous experiments for further analysis to answer the second research question. We
conclude the report and discuss future work in Chapter 7.
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Chapter 2

Sparse Neural Networks

This chapter provides a further theoretical background to Sparse Neural Networks. We
first introduce core concepts of neural networks and show how sparsity could be a solution
to their efficiency problems. Then, we cover the state-of-the-art of SNN training and show
why more research into their efficiency is needed. To keep this chapter readable, these
sections introduce only the key concepts related to this study, and we direct the reader to
the referenced articles for a more detailed explanation.

2.1 Neural Networks

2.1.1 Machine Learning

Many people have heard of artificial intelligence (AI). While there does not seem to be a
single definition for the term, it boils down to creating machines that have intelligence, a
unique and complex trait of creatures such as humans. Intelligence is equally difficult to
define, but one crucial aspect is that intelligent creatures are capable of learning: gaining a
better understanding of something by analyzing examples. Allowing machines to mimic this
behaviour is an essential step towards artificial intelligence, and it is what machine learning
(ML) focuses on [10]. Machine learning often uses the fact that complex natural phenomena
result from unknown probability distributions and, thus, can be mathematically modelled
and estimated. This can be done in many ways, depending on the goals and available data.
This report focuses on supervised learning, where a machine (a model) is exposed to many
examples (a dataset) and finds relations between them. For example, we might want to
use it to predict the type of flower given the size of its petals. There are many different
methods which can be used to achieve this, such as linear regression, decision trees [93],
support vector machines [17], random forest classifiers [41], restricted Boltzmann machines
[104] and neural networks [96]. The process of exposing such a model to a dataset in order
for it to learn is called fitting or training. After a model is trained, it can be deployed and
used for the task it is trained for.

2.1.2 Supervised Training

To better understand how such methods work, we start by understanding how they are
trained. To do so, we will explain essential aspects of supervised training for a classification
task. The first step is to collect a dataset filled with input (e.g. petal size) and output
(e.g. flower type) examples of the problem we wish to solve. Then, this dataset is split
into three subsets: the training, validation and test dataset [36].
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We use the training dataset to train a model on this data. Here, the first step is to
choose a model type. The second step is choosing values for all hyperparameters1. Each
model type has different hyperparameters, and the optimal values for these hyperparam-
eters differ per problem. After choosing these values, we can train the model. Different
models are trained in different ways. For example, some models systematically process the
dataset once to learn parameters, while others iteratively loop through the data, where
every complete pass-through of the training set is called an epoch. After training, we can
evaluate how well a model has learned the data using the validation set. Evaluation is
done by letting the trained model classify each sample in the validation set, after which
we evaluate whether the result is correct. Different statistics can be calculated to measure
this performance, of which accuracy (the percentage of correct predictions) is among the
most popular.

This entire process is usually repeated multiple times with different hyperparameters.
Eventually, the best model and hyperparameter configuration are chosen and evaluated
once more on the test set. This gives an unbiased measure of the network’s performance
and presents the expected performance.

Since data is often scarce and more data generally better covers the data distribution,
we want to use all available data to tweak our network. Therefore, a k-fold cross-validation
approach is often used (see Figure 2.1). With this approach, we do not create a single
training and validation dataset pair, but we create k "folds" (i.e. train-validation pairs).
For each fold, the network is trained on the training set and validated on the validation
set. Eventual validation performance can be calculated by averaging the validation results.
This may make the search for the best hyperparameters take longer, but it will result in
better generalised results.

Formally, we define the ML problem using a formulation similar to the notation intro-
duced in [57]. Our dataset D consists of input feature vectors x with output labels y. This
is resampled into J , a collection of K training and validation sets Dk

train and Dk
val. An ML

model I with hyperparameters λ ∈ Λ can be learned to map x to y using Dk
train. This

learned model is denoted as Iλ(Dk
train). We use the loss L, a difference measure between y

and the predicted output, to calculate how well the model I learned this mapping. When
choosing our model and hyperparameters, we wish to minimize the expected generalization
error ĜE:

ĜE(I,J , L, λ) := 1

K

K∑
k=1

1

|Dk
test|

∑
(x,y)∈Dk

test

L(y, Iλ(Dk
train)(x)). (2.1)

2.1.3 Introduction to Neural Networks

One of the first machines capable of learning was the perceptron, introduced by Frank
Rosenblatt in 1958 [96]. The perceptron was designed for image recognition and could
recognize simple shapes in 20 × 20 input images. It realised this by connecting 3 layers
of so-called cells to each other: the projection, association and response layers. There are
some limitations to the original Perceptron, but it inspired what would become one of the
most popular ML models: the multi-layer perceptron.

Multi-layer perceptions (MLPs) are the most basic type of neural networks. They
consist of several layers of so-called neurons. Usually, there are three or more layers: an

1The parameters that define an ML model are learnable. The parameters that define the model’s
learning process are hence referred to as hyperparameters.
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Figure 2.1: Experimental setup for a supervised learning task using k-fold cross-
validation with k=5. The data is split into training and testing data, after which
the training data is split into several folds with training and validation data. Image
taken from2.

in

in

in

out

out

Figure 2.2: An example standard multi-layer perceptron with 3 inputs, 2 outputs
and 2 hidden layers of sizes 4 and 3.

input layer, an output layer, and a number of hidden layers in between, as visualized in
Figure 2.2. Each neuron is a non-linear function of its input, the outputs of the previous
layer of neurons multiplied by so-called weights. Together, this makes the entire network
a large, complex function of its input. By scaling the number of layers and their sizes
and properly setting the weights, neural networks can describe any continuous function to
arbitrary precision [45]. This ‘universal approximation’ property is one of the reasons for
the popularity of neural networks. Machine learning often aims to model a distribution
function, and we know that neural networks can model them.

In later years, backpropagation and stochastic gradient descent (SGD) [94, 115, 13]
were introduced. SGD takes samples of the training dataset and passes them through the
neural network. This output prediction is combined with the actual output to calculate
the loss. Backpropagation uses this loss to slightly update all weights and biases of the
network so that the loss will be lower on the next passthrough of this sample. By doing this
iteratively for each sample in the dataset, the network slowly learns to map the given input
data to the given output data in the training set. This technique allowed for the efficient
and scalable training of neural networks, which led to an increase in the possibilities of
neural networks.

Nowadays, a large part of neural network research is focused on deep learning: advanced
2See https://scikit-learn.org/stable/modules/cross_validation. Last visited on 17/10/2024.
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neural network architectures consisting of multiple layers [65]. These architectures add
multiple levels of abstraction, allowing models to better model underlying structures in
data. Examples of deep learning architectures are convolutional neural networks [64],
residual networks [38], and transformers [112]. Such architectures are better suited for
different types of data and make neural networks capable of reaching state-of-the-art results
in several research areas [15, 22, 54, 28].

2.1.4 Efficiency of Neural Networks

With an increase in network architecture complexity and hardware capabilities, neural
networks have grown exponentially in size, with some networks needing over 10 billion
times as many calculations as the Rosenblatt perceptron [97], and this trend does not
seem to flatten yet. This increase in neural network size not only increases the networks’
performance but also decreases the networks’ efficiency. These larger networks require
more storage and substantially more energy to be trained and deployed. Next to the
decreased efficiency of training a single network, many more networks are trained. The
large variability in network architectures and corresponding hyperparameter options makes
it hard to find the best configuration, which causes developers to train many large neural
networks. This large increase in neural network energy use is not only undesirable due to
the global energy and sustainability crisis but also the immense financial costs required
to achieve state-of-the-art results 3 and the impracticality of running neural networks on
low-resource devices. While the true energy consumption and related costs of the largest
AI models are often unknown or overestimated [107, 90], it is certain that the energy
used by ML is rising and that ML practitioners and researchers should pay attention to
the sustainability of their models [90, 111]. Schwartz et al. [100] warn for “Red AI”: the
trend of focusing AI research on small accuracy improvements in exchange for decreased
efficiency. Instead, they recommend giving efficiency an equal priority as accuracy, which
they dub “Green AI”. Furthermore, research should continue to develop more efficient ML
techniques.

Measuring Neural Network Efficiency

To prioritise efficiency, we first need to know how we can measure efficiency. First, we
can separate efficiency into training efficiency and inference efficiency. Training efficiency
relates to the computational efficiency of the entire training phase of the network. Inference
efficiency relates to the computational efficiency of calculating a single result using the
network. Calculating a single result is always substantially more efficient than the entire
training process. Still, it is essential to note that the best statistic for optimal sustainability
differs per use case. The more a network is used after training, the less relevant its training
efficiency is relative to its inference efficiency. For example, Google spends about 1.5 times
more energy on ML inference than ML training [90] while a network trained for research
purposes generally spends much more energy on training than inference.

Since our primary goal of increasing efficiency is to decrease the energy consumption
of neural networks, it makes sense to measure network efficiency based on energy con-
sumption. While tools exist to measure ML energy consumption [3, 99], they are generally
not used for this purpose. Energy consumption depends on the efficiency of your imple-
mentation, the technical capabilities of your (cloud) computer and the efficiency of energy
production in the computer’s area. When researching and developing new efficient neural

3See https://lambdalabs.com/blog/demystifying-gpt-3. Last visited on 04/03/2024.
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network training methods, we need a unit of measure independent of these variables to opti-
mize the method’s efficiency. As such a measure, Schwartz et al. [100] advocate publishing
and minimising the number of floating point operations (FLOPs4) used to train a network
and the number of FLOPs needed for inference of the network. They define a FLOP as
the addition, subtraction, multiplication or division of two floating point numbers. This
way, the FLOPs represent the amount of work a network needs, independent of hardware
or local energy efficiency differences. Furthermore, the FLOPs needed for a calculation can
be computed relatively easily, making it a popular unit of measure for network efficiency.

However, using the FLOPs to measure efficiency also has problems if our goal is to
improve sustainability. First, there is a big energy difference between different floating
point operations. Luo and Sun [75] show that floating point multiplications require ≈ 3×
as much energy as floating point additions and vastly improve a model’s energy efficiency
by focussing on addition operations. Furthermore, Patterson et al. [90] argue that other
operations, such as main memory accesses, also significantly influence an ML model’s
carbon emissions and should not be omitted from the calculation. For example, some
neural networks can be made much more efficient by decreasing these other operations
while using substantially more FLOPs [68]. Unfortunately, to our knowledge, no unit of
measure correctly captures the efficiency by combining these operations. Instead, Patterson
et al. [90] recommend measuring latency or carbon emissions directly, but these measures
have the problem of incomparability mentioned before.

Efficient Neural Networks

Now that we know why it is important to pay attention to the efficiency of neural networks
and how we can measure this efficiency, we can look into how we can improve efficiency.
First, ML practitioners can look at their choice of model. While we focus on neural
networks, we must not forget about the abundance of other options. Different models
yield the best results for different applications, and many models, such as decision trees,
tend to be more efficient than neural networks [52]. If a neural network model is chosen,
practitioners should pay attention to its relevant hyperparameters. Hyperparameters such
as the size of a network and the number of training epochs influence a network’s efficiency.
However, next to these standard options, additional techniques have been developed to
increase efficiency.

Many of the first techniques developed to increase the efficiency of neural networks
focused on model compression: limiting a model’s size after training. These techniques
usually do not increase the training efficiency but do make a difference in inference effi-
ciency and required storage. Some popular model compression techniques are knowledge
distillation [40], quantization [31] and, most notably, pruning [86, 66, 11].

Pruning is one of the most popular model compression techniques, and its concept is
fairly simple. After a neural network has been trained, we can analyze which parts are
least important when generating results and remove them. For example, take the network
layer in Figure 2.3a. After the network is trained, all weights have received values such that
they map the relation between the desired input and output values. Looking at the values
of the weights, we can see that some seem far less influential than others. In pruning, we
determine the least important weights using a method such as magnitude-based selection
[34] and delete them, leaving us with the layer in Figure 2.3b.

4We refer to the plural of FLOP as FLOPs. This is not to be confused with FLOPS, a popular measure
for hardware performance denoting the number of FLOPs per second.
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⇔


2.01 −3.23
0.01 1.58
1.70 0.51
−2.11 -0.03
-0.05 1.24


(a) A network layer after training

⇔


2.01 −3.23
- 1.58

1.70 -
−2.11 -

- 1.24


(b) A network layer after pruning

Figure 2.3: An example of a neural network layer and its corresponding weight
matrix before and after pruning. A weight is deleted by freezing its value at 0.0.

2.2 Sparse Neural Networks

A network consisting only of fully connected layers, such as in Figure 2.3a, is called a dense
neural network (DNN). Otherwise, if a network has sparse layers, such as the network in
Figure 2.3b, the network is called a sparse neural network (SNN). This study focuses on
SNN methods to improve neural network efficiency. We refer to the percentage of weights
that have been pruned in an SNN as sparsity. So, if 90 of the 100 weights of a DNN
have been pruned, we end up with an SNN with a sparsity of 90%. Generally, SNNs have
sparsities ranging from 50 to 99%. In this section, we will elaborate on the advantages of
SNNs and introduce other methods to create SNNs.

2.2.1 SNN Advantages

Efficiency

The most notable improvement of SNNs is their efficiency. By removing parameters from
a network, we are reducing the number of calculations required to perform inference on
a network. Most calculations in a neural network are multiplications between neuron
outputs with weights of neurons in the next layer. SNNs reduce the number of weights
in a network and, with that, directly limit the number of calculations needed to perform
inference on the network. Quick estimates show us that a sparsity of 99% could remove
≈ 99% of computations from the popular AlexNet network [62], causing a 100× efficiency
improvement [106]. However, such optimistic estimations are far from accurate. Since
dense matrix populations are so frequent in computer calculations, GPUs and libraries are
specially made to compute dense matrix calculations efficiently. Therefore, using default
machine learning libraries and standard GPUs for sparse matrix calculations would not
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increase efficiency at all. Fortunately, specialized computers for sparse linear algebra exist5,
and research to optimize these calculations is ongoing [120, 79, 30], making it reasonable
to assume that this efficiency limitation will cease to exist in the foreseeable future.

Storage

Logically, decreasing the number of weights that need to be stored decreases the total
storage required for a neural network. However, the reduction in storage requirements
does not directly scale with the sparsity. When storing a weight, we need its value and its
location, specifying the two nodes it is connected to. This location is implicitly defined in
dense matrices by the value’s row and column but needs to be explicitly defined in sparse
matrix formats. Therefore, storage requirements only decrease starting from a certain
sparsity threshold. This threshold depends on the data type and storage format. For
example, storing integers using the coordinate list format6 stores three integers per matrix
value: the value, and its row and column position. Therefore, this format decreases storage
requirements starting from a sparsity of ≈ 66%.

Generalization

Many machine learning networks are overparameterized, and pruning aims to identify
and remove redundant parameters. Often, these redundant parameters do not change the
network’s result or only do so in very specific cases. In the latter case, the network probably
has learned noise: small, unforeseen perturbations in the training data that should not
affect the result. By removing these weights, we force the network to ‘focus’ on the more
critical aspects of the data, increasing its ability to model data it was not trained on, i.e.
its generalization [42].

2.2.2 SNN Training

If a DNN can be decreased in size without losing much accuracy after training, it would
make sense that we should be able to train an already pruned network from scratch. Such
a training procedure could be more efficient and allow for larger SNNs, as the largest SNN
that we can train is limited by the size of the largest DNN that we can train. While training
a pruned network from scratch seemed to reach lower accuracies than dense networks, it
was already shown in 2015 by Han et al. [34] that it is possible to retrain a pruned network
from scratch if we use the same initial weights as were used in training the dense network
(i.e. the weights are not re-initialized), which was backed up in 2019 by Frankle and
Carbin with the Lottery Ticket Hypothesis [29]. This hypothesis claims that “A randomly-
initialized, dense neural network contains a subnetwork [i.e. a winning ticket] that is
initialized such that —when trained in isolation— it can match the test accuracy of the
original network after training for at most the same number of iterations”. Essentially,
this makes sparse neural network training a subset selection problem for graphs [21, 69].
Furthermore, Frankle and Carbin showed that training an SNN from scratch with re-
initialized weights is often possible when the sparsity stays under 80%. Following the
studies showing that it is possible to train an SNN ‘from scratch’, more methods have been
developed over the years to try to train an SNN from scratch, a research area which we
call SNN training. The research on SNN training can be categorized into several types as

5See https://cerebras.ai/press-release/cerebras-announces-third-generation-wafer-scale-engine.
Last visited on 04/08/2024.

6See https://docs.scipy.org/doc/scipy/reference/sparse.html. Last visited on 04/08/2024.
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Figure 2.4: Schematic representation of various method types used to obtain
sparse neural networks and a rough estimation of their scalability; a. Pruning, b.
Simultaneously training and pruning, c. One-shot pruning, d. Static sparse train-
ing, e. Dynamic sparse training (gradient), f. Dynamic sparse training (random).
Figure taken from [81].

in Figure 2.4. This overview only lists methods until 2020. Novel techniques have been
developed since then (e.g. [73, 4, 63]), but the most important methods and categories
are covered in Figure 2.4. In the remainder of this section, we will cover the static and
dynamic sparse training categories and introduce relevant techniques in these categories.

Static Sparse Training

In static sparse training, the topology and weights of an SNN are initialized using an
initial DNN, sparsity level and dataset. While it has been shown that it is difficult to
train a randomly initialized SNN with a high sparsity, these methods manage to define
initial weights for a sparse network topology that can be trained using statistics from the
training data and by applying network science properties. For example, Radix-Nets [58]
create networks by combining topologies based on mixed-radix number systems. These
networks exhibit path-connectedness (each output depends on all inputs) and symmetry
(there is an equal length between each input and output pair). Furthermore, complex
Boltzmann machines (XBMs) [80] create small-world (most node pairs are only a few steps
away) and scale-free (most nodes have few connections, but some have many) topologies
for Boltzmann machines while taking data distributions of the training data into account.
These network science properties, which are well-studied and are known to exist in many
biological (neural) networks, help these networks to be trained sparsely from scratch.

Dynamic Sparse Training

In dynamic sparse training, an SNN’s topology is not fixed after initialization but is con-
stantly updated during training. We know from the Lottery Ticket Hypothesis that a
trained DNN is primarily defined by a sparse subnetwork and that stochastic gradient
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descent searches for this subnetwork from all possible subnetworks during training. In
dynamic sparse training, we can start with an imperfect sparse subnetwork and use the
weight updates of stochastic gradient descent to update the topology towards the desired
subnetwork. In practice, this often results in SNNs that achieve high accuracies and ex-
hibit similar network properties as static sparse networks, such as small-worldness and
scale-freeness [82].

Dynamic sparse training methods update their topology by periodically deleting and
growing weights. They primarily differ in how they choose which weights to grow, how they
choose which weights to delete and when topology updates take place. The most important
distinction can be found in the first design choice, which we explain by highlighting two of
the most relevant SNN training methods, SET [82] and RigL [26].

SET (Sparse Evolutionary Training) is one of the simplest dynamic sparse training
methods and, to our knowledge, also the first. In its default setting, it initializes a network
with a given sparsity following a random ‘Erdös Rényi’ topology, scaling the number of
connections in a layer with the sizes of the input and output layers. In each training epoch,
a fraction of the smallest positive and largest negative weights are removed from each
layer, after which an equal number of weights is randomly regrown. After the last training
epoch, the same fraction of weights is removed but none are regrown. With this method,
the network sparsity is constant throughout the training process, and only relevant and
trained weights will remain in the final network. Some details differ per implementation,
such as the frequency of topology updates and the initial distribution of weights among
layers. Despite being the first dynamic sparse training method, SET remains relevant
among newer methods [16].

RigL (the Rigged Lottery) is a newer method, adding extra complexity to the sparse
training process. RigL primarily differs from SET in its regrowth strategy. After removing
a fraction of the smallest positive and largest negative weights from each layer, the gradients
of all possible dense weights are computed. Afterwards, weights are grown not randomly
but based on the dense gradients. This adds some computational overhead and limits the
size of the largest possible sparse network by the largest possible dense network that fits
in memory. In their work, Evci et al. [26] calculate that this overhead is often negligible
and show that it allows RigL to achieve higher accuracies than other methods.

Several other SNN training methods exist that slightly change the behaviour of SET in
different ways, such as [85] and [20]. For most methods, a user defines the dense starting
topology of a network and the desired total sparsity level. These methods then choose
how to distribute this sparsity among the different layers. Often, the first and last layers
remain dense, while all other layers are sparsified.

2.2.3 SNN Training Results

Successful SNN training methods result in SNNs that match or surpass their dense coun-
terparts in accuracy with significant efficiency improvements. For example, [26] report
that using RigL to train WideResNet-22-2 on CIFAR-10 can surpass the test accuracy if
a sparsity level of 50% is set and that the accuracy steadily decreases with higher sparsity
levels. These results can be found in Figure 2.5. Furthermore, they note that RigL’s ac-
curacy consistently increases if trained longer. Using this knowledge, they show that RigL
can be used to train a ResNet-50 on the Imagenet-2012 dataset with an accuracy increase
of 0.3 percentage points using 0.42× the inference FLOPs but 2.09× the training FLOPs.

Knowing the trade-off between the accuracy and efficiency of an SNN training method,
such as presented in Figure 2.5, allows neural network designers to choose the desired
sparsity and training method for their networks. Such trade-offs are often presented in
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Figure 2.5: Test accuracies of sparse WideResNet-22-2’s on CIFAR-10 task
trained using different sparsity methods. Figure taken from [26].

papers that introduce new SNN training methods [82, 26, 118, 85]. However, we believe
that there are three limitations to these results. First, none of them attempt to estimate
the entire underlying trade-off. Instead, they choose a few levels of high sparsity, such
as 80%, 90% and 95%. Arguably, these are the most interesting sparsity levels for SNNs
due to their obvious efficiency improvements and their comparability with other papers.
Nevertheless, the global trade-offs of these methods remain unknown and could provide
interesting insights for future research.

Second, these studies research the capabilities of SNN training only in a few networks,
such as ResNet-50 [37]. Different neural network training methods sometimes work better
on different network architectures. To the best of our knowledge, no research has been
conducted to discover whether SNN training results differ within different architectures.

Finally, all of these studies estimate the trade-offs by fixing all hyperparameters except
for the sparsity, generating an accuracy-efficiency trade-off within this fixed hyperparam-
eter environment. Sometimes, these fixed hyperparameters have been chosen using small
hyperparameter optimization experiments, or their relations to sparsity are explored, but
it might be perfectly possible that the best hyperparameter combinations remain unknown.
We believe all hyperparameters need to be configurable to shift this local comparison to a
global comparison and find a realistic trade-off between accuracy and efficiency.

To combat any of these limitations, a fully configurable SNN training environment must
be combined with an automation tool. To the best of our knowledge, no SNN training
method explores its method in such an environment.

14



Chapter 3

Hyperparameter Optimization

In this chapter, we explore the relevant theoretical background for hyperparameter op-
timization. Next to giving an introduction to the fields of hyperparameter optimization
and importance, we list state-of-the-art methods and explore the use of hyperparameter
optimization for sparse neural network training. Just as in Chapter 2, we only introduce
the key concepts related to this study, and we direct the reader to the referenced articles
for more detailed explanations.

3.1 Algorithm Configuration

When algorithm developers choose not to make premature design decisions themselves but
expose those decisions as configuration parameters, algorithms can be more versatile, and
development time can be saved. This approach, known as Programming by Optimiza-
tion [43], has been embraced by developers in many fields, creating highly configurable
algorithms with much potential. However, by increasing the possibilities of algorithms, it
becomes increasingly difficult to find proper configurations for these algorithms, leading to
the field of algorithm configuration (AC). Formally, we can define AC as a black-box opti-
misation problem using notations similar to [98]. AC aims to optimise a target algorithm
A with its corresponding set of performance-affecting parameters Λ. Furthermore, there
exists a set of problem instances I with probability distribution P, for which we have a
set of training examples Itrain ⊆ I that cover the problem space we wish to solve with A.
Finally, we need a cost measure c that quantifies the cost of running the algorithm with
configuration λ ∈ Λ and instance i ∈ I. After defining an objective function m such as the
total cost over Itrain using c and a configuration λ, AC can search for the configuration
λ̂ ∈ Λ that minimizes the cost over all problem instances as follows:

λ̂ ∈ argmin
λ∈Λ

m(c, Itrain, λ). (3.1)

One can manually perform AC using, for example, trial and error. However, this has
proven not to be a trivial task due to several problems. First, evaluating a configuration λ
on Itrain is often a time-costly task that can easily take hours to execute. Second, the effects
of and relationships between different configurable parameters are often complex. There-
fore, we need expert knowledge to find good configurations, which we might not always
have. Finally, the search space can become very complex due to these complex effects and
relationships, making it difficult to find global optima even with expert knowledge. These
difficulties make the automation of this process an attractive option and have resulted in
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Figure 3.1: Illustration of Bayesian optimization. The goal is to minimize the
dashed line using a surrogate model (black line with blue tube) by maximizing an
acquisition function (orange curve). Figure taken from [50].

the research field of automated algorithm configuration (AAC), in which meta-algorithms
automatically choose such configuration parameters.

3.1.1 AC Methods

Over the past two decades, many AAC methods have been developed to alleviate AC’s
problems. Indeed, AAC has been shown to find better configurations in multiple problem
fields, such as SAT [55, 51] and MIP [55]. AAC methods can be subdivided into two
groups: model-free and model-based methods. Model-based methods fit the results of
evaluated configurations to a separate model. This model, the surrogate model, can be
used to estimate the results of an unknown model. A popular model-based strategy is
Bayesian optimization. Here, an acquisition function determines promising configurations
by trading off exploration and exploitation. An illustration of how an acquisition function
interacts with the surrogate model can be found in Figure 3.1. As the name suggests,
model-free methods do not make such estimations.

Within both groups, ParamILS [49] and SMAC [48] are among the most popular.
The model-free ParamILS is one of the first general-purpose AAC methods. It chooses a
random parameter configuration, uses Iterated Local Search [74], changes one parameter in
each iteration and avoids local optima by randomly resetting the parameter configuration
while optimizing. On the other hand, SMAC (Sequential model-based optimization) is
a general-purpose model-based method based on Bayesian optimization. SMAC uses a
random forest classifier [41] as surrogate model, a classifier that is able to model regression
and classification tasks, and the Expected Improvement (EI) [53] as acquisition function.
This has been shown to successfully determine good configurations for many various tasks.
Both methods have been further researched and developed over the years [71, 92].
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3.2 Hyperparameter Optimization

A special case of AAC is hyperparameter optimization (HPO) [50], in which the hyper-
parameters of an ML model are configured. Just like in standard AAC, HPO focuses
on optimizing a black-box function using only the input (hyperparameters) and output
(performance metrics after training) of that function. HPO is characterized by a couple
of aspects. Some of them also occur in AAC problems, but in HPO, they always occur
together. First, evaluating a single instance for a configuration is very expensive since a
model needs to be trained to evaluate it. Depending on the model and data size, this
can take up to several days. Second, HPO does not have multiple problem instances since
HPO aims to optimize a model for a single dataset instead of a problem class. Multiple
instantiations of the dataset are generally created using k-fold cross-validation. However,
this is limited, and the handful of created instances have a smaller problem class distri-
bution than many problems in standard AAC. Finally, many ML models train iteratively,
training on the same dataset for multiple epochs.

Formally, the problem is very comparable to AC. HPO is a black-box optimization
method with the main goal of minimizing the expected generalization error as defined in
Equation 2.1:

λ̂ ∈ argmin
λ∈Λ

ĜE(I,J , L, λ). (3.2)

3.2.1 HPO Methods

Due to these differences in HPO, different methods excel in HPO, and others have been
developed for HPO. The most naive method is grid search, in which a user specifies a range
of possible values for each hyperparameter. Grid search then evaluates the performance
of all the combinations and returns the best hyperparameter configuration. While this
simple method might seem promising at first, it suffers from several problems. It requires
the user to specify potential values, it uses exponentially more function evaluations as
the number of hyperparameters grows, it might evaluate many configurations that are
even worse than the default configuration [114], and it might waste resources exploring
unimportant hyperparameters.

As a response, another popular method for HPO is random search [6]. Random search
samples configurations randomly from the configuration space until a stopping criterion
is met and the best-found configuration is returned. This simple technique does not need
user input, scales better with more hyperparameters, and better covers the hyperparam-
eter space if unimportant hyperparameters are in play. This last advantage is shown in
Figure 3.2, where it is shown how a random configuration can better find optima in an
equal number of evaluations. This is only the case if a random search uniformly samples
the hyperparameter space, which is often ensured with extra precautions such as Latin Hy-
percube Sampling [77]. Random search acts as a strong baseline for other HPO methods
[9] and is a popular choice due to its simplicity.

A problem of grid and random search is that they do not learn from evaluated configu-
rations. Instead, guided search methods could be used, which use previous evaluations to
determine new configurations. Inspiration can be taken from the general AAC field, and
indeed, we see that many guided search methods use Bayesian optimization [105], such
as the HPO implementation of SMAC, SMAC4HPO [71]. In reality, most guided search
methods can outperform random search [50].
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Figure 3.2: Grid and random search of nine trials for optimizing a function with
two parameters, of which one has little importance. With grid search, only three
values of the important variable are explored, while random search explores nine
distinct values of the important variable. Figure taken from [6].

3.2.2 Multi-Objective Optimization

An unmentioned problem of HPO lies in its objectives. ML models are generally trained
to optimise their accuracy on the prediction task, but this is often not the only goal. We
might also be interested in minimizing the misclassification rate for medical applications
or the inference efficiency for small and efficient models. This introduces the problem of
multi-objective HPO (MO-HPO). Adding more objectives to the optimization algorithm
is not trivial, as objectives are often conflicting. For example, it is impossible to reach the
optimal efficiency of 0 FLOPs while reaching an accuracy of 100%. Therefore, a decision
maker must determine a trade-off between the objectives. One can choose to determine
this trade-off a priori by defining preferences and scaling the objectives. This turns the
problem into a single objective optimization problem [78] and allows us to simply reuse
existing HPO methods. However, defining the weight or importance of an objective without
knowing the underlying trade-off is often very difficult.

Pareto Optimality

Due to the unknown underlying trade-off, MO-HPO methods often return not one but
multiple solutions. With conflicting objectives and an unknown trade-off, multiple equally
good solutions exist. To understand this, we explain the concept of Pareto dominance
using the notation of [57]. Given two vectors c and c′ in an objective space of size m, we
say that c dominates c′ (i.e. c ≺ c′) if and only if

∀i ∈ {1, . . . ,m} : ci ≤ c′i∧
∃j ∈ {1, . . . ,m} : cj < c′j .

(3.3)

We use the same term to denote the relation between the hyperparameter configurations
λ and λ′ corresponding to the objective vectors c and c′, i.e. λ dominates λ′. In MO-HPO,
we are looking for Pareto optimal configurations, i.e. those that are not dominated by any
other configuration. When dealing with conflicting objectives, the following situation can
cause c and c′ to both be non-dominated solutions:

∃i, j ∈ {1, . . . ,m} : ci < c′i ∧ c′j < cj . (3.4)
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Figure 3.3: Illustration for a two-dimensional MOO problem with two objectives.
The left plot shows the search space, and the right plot shows the objective space.
Non-dominated configurations (the estimated Pareto set (left)) and their mapping
to the co-domain (the estimated Pareto front (right)) are highlighted. Taken from
[57].

The set of Pareto optimal configurations is called the Pareto set, and its corresponding
set of objective scores is called the Pareto front. The Pareto front shows the underlying
trade-off between the conflicting objectives, and to allow for a posteriori decision making,
the goal of a MO-HPO method is to return a Pareto set that best approximates the Pareto
front. Figure 3.3 shows an example Pareto set front for a 2-dimensional optimization
problem. There are more advantages to having MO-HPO estimate the Pareto front next
to informed decision-making. Unknown underlying trade-offs can be discovered, regions
of the Pareto front can be found that scalarization methods cannot reach [23], and better
results for individual objectives can be achieved, as MO-HPO is less likely to get stuck in
local optima [60].

MO-HPO methods

This subsection further introduces some MO-HPO problems and solutions, but we direct
the reader to a recently published survey by Karl et al. [57] for a complete overview. MO-
HPO can be approached in several ways. The basic grid search and random search can
be easily adapted to solve MO-HPO problems by having them return all non-dominated
solutions, and they can serve as the same baseline they do for single-objective HPO [57].
Alternatively, we can perform MO-HPO by scaling the objectives. While a prior scalar-
ization does not result in a trade-off with multiple solutions, this can be achieved using
online scalarization. The most popular scalarization method is ParEGO [59]. ParEGO
is an extension of Bayesian optimization, in which the objectives are differently scaled in
each iteration to ensure that the Pareto front is explored evenly. This allows us to use
any single-objective HPO method based on Bayesian optimization to solve a MO-HPO
problem with multiple solutions.

Another class of MO-HPO methods are MO evolutionary algorithms (MOEAs). These
algorithms simultaneously evaluate a (often randomly initialized) set of configurations and
generate new configurations by combining and perturbing the best configurations. EAs
are not commonly used in the general HPO field as they require relatively many function
evaluations [57]. However, due to their easy adaptability to multi-objective optimisation,
they are very popular in the MO-HPO field [18, 24].
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Figure 3.4: Overview of the process of (MO-)SMAC.

Furthermore, many MO-HPO methods have been created by extending popular single-
objective HPO methods to the multi-objective setting, resulting in some of the best
MO-HPO algorithms. Examples are MO-ParamILS [12], a multi-objective extension of
ParamILS [49], and MO-SMAC [95], a multi-objective extension of SMAC [71]. To better
understand how an HPO method can be extended to MO-HPO, we will give a broad expla-
nation of the design of MO-SMAC. For a more in-depth explanation of all design choices,
we direct the reader to [95].

MO-SMAC

First, we further introduce SMAC. A global overview of the internal workings of SMAC
can be found in Figure 3.4. SMAC keeps track of the best configuration (the incumbent),
and a history of configurations and the objectives of the instances on which they have been
evaluated. SMAC starts with a default configuration and evaluates this on an instance.
From this point on, an iterative process starts. A model (the EMP) is fitted on the run
history to predict the performance of unseen configurations. Then, new configurations are
generated using a combination of random search and local search. These configurations are
scored with an acquisition function that uses the EMP. A common choice is the expected
improvement, balancing exploration and exploitation. The best configurations are evalu-
ated on instances and compared against the incumbent in the intensification step. If a new
configuration is better than the incumbent, it becomes the new incumbent. Configurations
are not evaluated on multiple instances if they are not competitive with the incumbent.
This process of fitting the EMP, generating configurations, scoring configurations and eval-
uating configurations is repeated while there is budget left, after which the incumbent is
returned.

MO-SMAC changes a few steps of this process but globally consists of the same steps
as in Figure 3.4. First, it keeps track of more than one incumbent configuration to ap-
proximate the Pareto front. Second, it uses the predicted hypervolume improvement as
acquisition function to estimate how a new configuration can improve the approximated
Pareto front. Third, it fits not one but multiple EMPs, one per objective. Finally, the
intensification step is changed. Newly proposed configurations are compared against the
incumbent configuration closest to them by Euclidean distance. If a proposed configura-
tion is non-dominated after evaluation, it is added to the incumbent. If needed, other
configurations are removed from the incumbent.
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3.2.3 HPO and Efficiency

Next to optimising the performance of an ML model, HPO can be used to optimise its
efficiency. In the remainder of this section, we explore studies that have used HPO for
similar goals as ours, i.e. to optimize SNNs and to perform MO-HPO on similar objectives.

HPO on SNNs

To the best of our knowledge, no research has been conducted to apply HPO to static
or dynamic SNN training. However, HPO has been used in other sparse methods, such
as structured pruning. Structured pruning is a special type of pruning in which dense
network topologies are pruned such that the resulting topology remains dense. For example,
AutoCompress [72] is an AutoML structured pruning framework that optimizes network
sparsity and accuracy. Their method can find parameter configurations that achieve an
accuracy-efficiency trade-off that could not be reached before.

Huang et al. [46] perform MO-HPO on pruned architectures using two separate
MOEAs. One optimizes the network architecture, while the other optimizes pruning hyper-
parameters. Combined, they find architectures that have improved accuracy and efficiency
than other optimized methods.

Matthiesen [76] studied the relationship between sparsity, learning rate and weight de-
cay in structured pruning using HPO. By making these last two hyperparameters config-
urable and performing hyperparameter dependence analyses, they found that the learning
rate and weight decay behave similarly when a DNN is trained with structured pruning.

Binder et al. [8] use MO optimization for HPO and feature selection. While they do
not optimize SNNs, they do show that MO Bayesian optimization can be used to find
efficient architectures.

MO-HPO for Efficiency

MO-HPO has been used on many occasions, and many implementations use it to optimize
an objective related to efficiency. Bischl et al. [9] listed over thirty such applications, of
which a handful use a Bayesian optimization optimizer. Here, we highlight the two works
most comparable to our work.

Parsa et al. [89] present PABO. PABO performs Bayesian optimization to propose
configurations for accuracy- and efficiency-related objectives and combines these into a
single configuration using a supervisor agent. They compare their method against the
multi-objective evolutionary algorithm NSGA-II [18] on three MO-HPO problems. In
these problems, the dataset and architecture type (AlexNet [62] or VGG19 [101]) are de-
fined, and the network’s hyperparameters (including its shape and size) are optimized.
All hyperparameters are coded as categorical parameters, in which a few options are pos-
sible to keep the configuration space small. Due to these smaller configuration spaces,
they can compute the true Pareto front for one experiment and show that PABO finds a
close approximation of the Pareto front. Furthermore, they show that PABO, a Bayesian
optimization-based method, can approximate the Pareto front in substantially fewer con-
figuration evaluations than NSGA-II. For example, in a search space of 6912 possibilities,
PABO used 33 evaluations, while NSGA-II used 6000 evaluations.

Abdolshah et al. [2] present MOBO-PC, a method for multi-objective Bayesian opti-
mization with preference-order constraints. Preference-order constraints can be given in the
form of ‘objective A is more important than objective B’, causing MOBO-PC to estimate
only a fraction of the Pareto Front. To show the capabilities of MOBO-PC, they perform
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a couple of experiments and compare the estimated Pareto fronts to those found by ‘nor-
mal’ Bayesian optimization methods, such as ParEGO [59], and another preference-based
method, MOBO-RS [88]. In one of their experiments, they optimize a neural network’s
hyperparameters (including its shape and size) for accuracy and efficiency on the MNIST
dataset with budgets of 100 and 200 evaluations per optimizer. They show that all ‘nor-
mal’ optimizers find very similar trade-offs with a budget of 200 evaluations. Furthermore,
both preference-based optimizers find similar estimations of the restricted Pareto front.
Interestingly, both preference-based optimizers find configurations with better accuracy
and efficiency than the other optimizers. However, this study cannot use these optimizers
as we wish to study the entire trade-off.

3.3 Hyperparameter Importance

HPO is often performed to find one of the best hyperparameter configurations for a given
model and setting. However, sometimes, finding the best configuration is not our goal. In-
stead, we would like to gain a better understanding of the algorithm and its objective(s) to
find directions for future research and development. Such results are generally achieved by
evaluating hyperparameter importance (HPI). HPI research has two primary goals. First,
pinpointing which hyperparameters are most important, i.e. which hyperparameters in
the hyperparameter configuration space have the most significant impact on the objective
space. The second goal is researching hyperparameter influence, i.e. discovering which
values of these hyperparameters have the most potential of resulting in a desired area of
the objective space. The results of HPI can show that certain hyperparameters have little
effect and do not need to be optimized or that hyperparameters have more influence than
previously thought. Furthermore, it can be used to find robust defaults for good over-
all performance or to discover complex relationships between different hyperparameters.
These results can be extracted from evaluated configurations of HPO and are very useful
for future research. However, reaching them is not trivial due to the complex and often
unknown relationships between multiple hyperparameters. An optimizer might change
hundreds of hyperparameters between two evaluations to find very different results, but
just a handful of changed hyperparameters might cause these results [27]. Furthermore,
many approaches carry the risk of finding biased results as HPO converges to and focuses
on local optima [83].

3.3.1 Single-Objective HPI

Much research has been performed into the possibilities of HPI in the single-objective
optimization field, starting in 2014 using the functional analysis of variance (fANOVA)
framework [47], a method to efficiently derive sensitivity indices for random forest models.
Random forest models are a popular choice of surrogate models in Bayesian optimization,
where they model the relationship between hyperparameters and an objective. These
sensitivity indices can be used for fANOVA, modelling the effects of hyperparameters
such that they can quantify the relative importance of each hyperparameter. Another
popular method to find the most important hyperparameters is ablation [27, 7]. Given
two hyperparameter configurations (e.g. defaults vs optimized), ablation constructs an
ablation path of configurations. These configurations represent small individual changes
between the two given configurations and are evaluated to find the individual influence of
each hyperparameter.

Knowing how important a hyperparameter is is the first step in HPI research. With
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this knowledge, researchers can choose not to optimize a certain hyperparameter and use
a default value instead. Probst et al. [91] performed a large-scale HPI study on the
hyperparameters of many popular ML models. By averaging the results of various datasets,
they measure the ‘tunability’ of each hyperparameter. The less tunable a hyperparameter
is, the more sense it makes to leave it at its default value. Furthermore, they use the same
results to define new robust default values for some hyperparameters.

A final aspect of hyperparameter importance is knowing how an important hyperpa-
rameter influences the objective. Intuitively, an important hyperparameter is found to
drastically improve the objective in some ranges and reduce it for others. Or, important
hyperparameters yield good results in certain combinations while yielding much worse re-
sults in other combinations. An approach to show such results is with partial dependence
plots. Moosbauer et al. [83] use the surrogate model of Bayesian optimization to create
partial dependence plots of optimized hyperparameters reliably. This way, they visualize
the influence of hyperparameters on their objective.

3.3.2 Multi-Objective HPI

Similar research can be performed using the insights gained from multi-objective optimiza-
tion. Here, the results found in the objective space can be combined with the respective
configurations in the decision space. From this, we can discover which variables influence
the trade-off between our objectives and how they influence it. Little research has been
put into multi-objective hyperparameter importance, but multi-objective adaptations of
fANOVA and ablation have been introduced recently [109]. In these adaptations (MO-
fANOVA and MO-Ablation), several scales for all objectives are calculated based on the
trade-offs in the approximated Pareto front. Each scale is combined with the objectives to
create a single objective on which single-objective fANOVA or ablation can be performed.
Afterwards, these results can be combined to show the importance of hyperparameters as
one changes the importance of the objectives.

Next to these methods, relevant research for multi-objective HPI can be found in the
field of a posteriori multi-criterion decision-making (MCDM). MCDM methods are often
separated into implicit and explicit methods. Explicit knowledge is presented as structured
and comparable measures, such as descriptive data statistics (e.g. mean and standard
deviation) [5]. On the other hand, implicit knowledge cannot be systematically compared
and is generally presented using visualization methods such as [102].

Visualization techniques are the most popular techniques for the presentation of knowl-
edge in MCDM. However, they often only look at the objective space [103]. To look at the
importance of variables to the different solutions of a multi-objective problem, we must
look at both the objective and the decision space. For such results, biclustering [110]
combined with explicit knowledge statistics or Trend Mining 2.0 [103] could be used.

Unfortunately, many of these methods have been created for and studied in the gen-
eral field of multi-objective optimization, not MO-HPO. Due to expensive evaluations of
ML, MO-HPO results in much fewer evaluations than these methods expect. Therefore,
more work is needed to better support multi-criterion decision making for hyperparameter
importance research.
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Chapter 4

Methodology and Experimental
Setup

This chapter works towards a set of experiments with which we uncover the accuracy-
efficiency trade-off by listing and explaining specific methods used in these experiments.
We start by defining our study’s specific network architectures, resulting in the complete hy-
perparameter configuration space. Then, we concretely define our objectives and introduce
an important statistic, the hypervolume indicator. Finally, we introduce the experiments
and experimental setup.

4.1 Neural Network Architectures

In our configurable environment, we wish to work with several types of network architec-
tures. Finding such well-working neural network architectures is a challenging and complex
task in itself and can be tackled with a neural architecture search [25]. However, this would
create too large of a search space for this study, and we wish to limit ourselves to a small
number of hyperparameters that define the architecture. Therefore, we choose two popular
neural architecture types that allow for variable shapes and sizes with a few hyperparam-
eters. Similar to the networks studied by Mocanu et al. [82] and Evci et al. [26], we
allow for two different neural network types, multi-layer perceptions (MLPs) and residual
networks (ResNets) [37].

A technical introduction to (sparse) MLPs can be found in Subsection 2.1.3. In SNN
training, all dense network layers can be made sparse by removing weights. We define the
shape of an MLP by four hyperparameters: the number of layers, the size of the first layer,
the size of the last layer and the size of the middlemost layer. The layers between these
three layers are linearly scaled in size. If a shallow neural network of only one or two layers
is chosen, the last and middlemost layers are not considered, respectively. With this setup,
four hyperparameters can define many different MLPs in detail. An illustration of how
this works can be found in Figure 4.1.

ResNets are a type of convolutional neural network and excel in deep learning for image
recognition [37]. They can handle multi-dimensional input and learn patterns irrespective
of their location in the input. Unlike MLPs, ResNets consist of several different types
of layers: convolutional, pooling, and dense. Convolutional layers learn patterns in multi-
dimensional input. Pooling layers change the dimensions of the input. Dense layers are the
same as in MLPs. In SNN training, the parameters of convolutional and dense layers can be
sparsified, and pooling layers are usually ignored. In a ResNet, the convolutional layers are
placed in blocks of variable sizes, followed by pooling layers that result in fixed-size outputs.
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Figure 4.1: Illustration of the range of possible network shapes if we have 4
features and 2 classes. Shapes are determined as (Num MLP layers, Size first MLP
layer, Size middle MLP layer, Size last MLP layer).

Table 4.1: Summary of the ResNet model architecture. The number of layers
in all convolutional block are variable. Identity shortcut connections [37] are used
within the convolutional blocks.

layer name output size layer structure
conv0 32× 32 3× 3, 16, stride 1
conv1_x 32× 32 [3× 3, 16]× conv stage 1
conv2_x 16× 16 [3× 3, 32]× conv stage 2
conv3_x 8× 8 [3× 3, 64]× conv stage 3
dense 1× 1 average pool, dense layer size 10, softmax

In our implementation, we allow for 32×32×3 input images and use a ResNet architecture
consisting of three blocks as detailed in Table 4.1. This is a similar architecture as used
on the CIFAR-10 experiments in [37]. Three hyperparameters determine the number of
convolutional layers per block.

4.1.1 Sparse Training Methods

We will use two dynamic SNN training algorithms, RigL [26] and SET [82], both further
detailed in Figure 2.2.2. RigL is chosen as the state-of-the-art SNN training algorithm, and
its introductory paper lists clear accuracy-efficiency trade-offs in multiple experiments and
methods. Furthermore, we select SET for its simplicity, allowing us to trade off inference
and training efficiency between different SNN training algorithms. As a baseline, we also
include dense training. We use a set of four hyperparameters to initialize RigL and SET
in various ways.
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4.1.2 Hyperparameter Configuration Space

In addition to the shape and sparsity-related hyperparameters, we let neural networks be
optimized using the learning rate, momentum, weight decay, dropout, and label smoothing
hyperparameters. We set ranges to all hyperparameters to search for optimizations within
this hyperparameter configuration space. These ranges have been chosen to capture the
entire configuration range for sparsity hyperparameters, create models that fit in memory
for shape hyperparameters and include typical values for training hyperparameters. Some
hyperparameters are scaled logarithmically if it is known that they are better optimized
that way. Dropout and label smoothing should not always be used and are en/disabled
by auxiliary hyperparameters. In total, this results in a configuration search space of 23
hyperparameters. Their specifics can be found in Table 4.2.

4.2 Objectives

In all experiments, we train (sparse) neural networks and evaluate them on three objectives:
accuracy, inference efficiency, and training efficiency. This section further elaborates on
how we define and calculate these objectives.

4.2.1 Accuracy

In classification problems, a model’s classification accuracy is defined as the percentage
of samples correctly predicted by a trained model. In our experiments, we optimize for
validation accuracy and report test accuracy. Both are calculated by evaluating a model
on an unseen dataset after training the model for a fixed number of epochs on a training
dataset. Since optimization is performed by minimizing the objectives, we often use the
error rate (1−accuracy) instead of accuracy.

4.2.2 Efficiency

As stated in Chapter 2, a popular unit of measurement for network efficiency is the number
of FLOPs needed for a computation. It allows comparison to previous studies and, to
our knowledge, is the best hardware and implementation independent unit of measure
relating to ML sustainability. Unfortunately, it does not always directly translate to the
sustainability of a model. As a solution, we define efficiency by the number of floating point
multiplication operations needed in a computation. Out of all floating point operations,
these are the least energy-efficient [75], making them a better estimator of sustainability
than FLOPs while still being hardware and implementation-independent. For the sake
of simplicity, we still refer to the number of multiplications as FLOPs. We estimate the
multiplications using Algorithm 1, for which we explain the individual components below.

Inference FLOPs

The inference FLOPs represent the number of FLOPs needed to pass a single input sample
through the network, i.e. predict the output label y of one input feature vector x. Each
layer needs a certain number of FLOPs to calculate an output from its input. When
calculating the dense inference FLOPs, we can simply sum the FLOPs required for each
layer. The sparse inference FLOPs only add a single term to this calculation. For all
layer types, dense FLOPs are directly influenced by the number of parameters in that
layer. Therefore, we can calculate the sparse FLOPs of a layer by multiplying the dense
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Table 4.2: Hyperparameter configuration space of our implementation.

Name Type Scaling Range Default
Sparsity hyperparameters

algorithm categorical - [RigL, SET, Dense] SET
if algorithm ̸= Dense

sparsity real linear [0-1] 0.5
update frequency integer linear [1-106] 10
update end real linear [0.1-1] 0.8
sparsity distribution categorical - [Uniform, ERK] Uniform

Network shape hyperparameters
architecture categorical - [MLP, ResNet] MLP

if architecture = MLP
MLP layers integer linear [1-10] 3
size first MLP layer integer linear [1-1000] 100

if MLP layers > 1
size last MLP layer integer linear [1-1000] 100

if MLP layers > 2
size middle MLP layer integer linear [1-1000] 100

if architecture = ResNet
size conv block 1 integer linear [1-4] 2
size conv block 2 integer linear [1-4] 2
size conv block 3 integer linear [1-4] 2

Training hyperparameters
initial learning rate real log [10−5, 1] 0.01
learning rate scheduler categorical - [Constant, Cosine] constant
momentum real log [0-1] 0.9
weight decay real log [10−7, 10−2] 10−3

batch size integer log [4-4096] 256
epochs integer log [1-200] 20
use dropout boolean - True/False False
use label smoothing boolean - True/False False

if use dropout
dropout real linear [0.1-0.5] 0.3

if use label smoothing
label smoothing real linear [0.05-0.25] 0.1
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Algorithm 1 Pseudocode of our efficiency calculation.
flopsd ← 0 ▷ Dense Inference FLOPs
flopss ← 0 ▷ Sparse Inference FLOPs
for every layer L do

Lflops ← 0 ▷ Layer FLOPs
if L is Dense layer then

Lflops ← input size× output size
else if L is Convolutional layer then

Lflops ← kernel width× kernel height× input filters
×output width× output height× output filters

else if L is Pooling layer then
Lflops ← 0

end if
flopsd ← flopsd + Lflops

flopss ← flopss + Lflops × Lsparsity

end for
flops← 0 ▷ Total FLOPs per train step
if algorithm = Dense then

flops← 3× flopsd
else if algorithm = SET then

flops← 3× flopss
else if algorithm = RigL then

flops← (3× flopss ×∆T + 2× flopss + flopsd)÷ (∆T + 1)
end if
return flopss and flops× epochs× train samples ▷ Total Inference and Training
FLOPs
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FLOPs with the layer sparsity. Note that we cannot calculate the sparse inference FLOPs
of the entire network from the dense inference FLOPs, as sparsity is not always uniformly
distributed over all layers.

With a formula for the dense and sparse inference FLOPs, all that remains are formulas
to calculate the dense FLOPs for each layer type. This study allows MLP and ResNet
architectures consisting of dense, convolutional and pooling layers.

Dense Layers

Dense layers consist of several neurons as introduced in Subsection 2.1.3. Each neuron
output is calculated by multiplying all input values by corresponding weights, taking the
sum of these values, and performing a non-linear operation on this result. This non-linear
operation generally consists of a negligible number of multiplications and can be omitted
from the FLOPs calculation. Therefore, the number of multiplications in a dense layer
is equal to the number of weights in that layer and can be calculated by multiplying the
input size with the number of neurons of a layer, i.e. its output size. This results in the
following formula:

flopsdense = input size× output size. (4.1)

Convolutional Layers

Convolutional layers have in- and output in three dimensions: width × height × filters.
For each output point, a two-dimensional kernel is applied to an area of each input filter.
Applying such a kernel to one area needs a number of multiplications equal to the number
of parameters in that kernel, i.e. kernel width × kernel height. Since we apply this to each
input filter, we multiply this by the number of input filters. Then, we multiply this by the
number of output points, resulting in the following formula:

flopsconvolution = kernel width× kernel height× input filters
× output width× output height× output filters.

(4.2)

Pooling layers

A pooling layer calculates its output by aggregating its input over small areas. Generally,
these calculations are simple, do not significantly add to the total FLOP count and are often
omitted when calculating network efficiency. Furthermore, the number and sizes of pooling
layers in our networks are fixed, and they are kept dense in our implementation, causing
their efficiency to be a constant value independent of the hyperparameter configuration
used. Therefore, we omit pooling layers when calculating inference FLOPs by setting their
FLOPs to 0.

Training Efficiency

Similar to the inference efficiency, we measure training efficiency by the number of multi-
plications needed to train a neural network. To compute these FLOPs, we use formulas
introduced in [26]. These formulas use the sparse and dense inference FLOPs to estimate
the total FLOPs needed to train a network. During training, each sample in the training
dataset is used to update the network layers once per epoch. Such an update step consists
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of the forward pass and backward pass. In the forward pass, the sample is passed through
the network once to calculate its loss, costing the inference FLOPs as previously com-
puted. In the backward pass, this loss is used to calculate the gradients of all parameters
and activations, costing approximately two times the inference FLOPs.

Dense Training

Dense neural networks add no overhead to these update steps. Therefore, its training
FLOPs scale with:

flopsdensetraining = 3× flopsdenseinference. (4.3)

SET

When training a network with SET, random connections are grown every ∆T update steps.
In their work, Evci et al. [26] argue that this operation can be done on chip efficiently,
causing the training FLOPs to scale with:

flopssettraining = 3× flopssparseinference. (4.4)

RigL

A network trained with RigL grows connections based on the dense gradients every ∆T
update steps. This does add substantial computational overhead when ∆T is small and
should, therefore, be included in our calculation. This overhead is estimated as 2 ×
flopssparseinference+flopsdenseinference every ∆T update steps. This results in the following formula
for the average FLOPs per update step:

flopsrigltraining =
(3×∆T + 2× flopssparseinference + flopsdenseinference)

(∆T + 1)
. (4.5)

4.2.3 Objective Scaling

With these definitions of inference and training efficiency, we can find variability in orders
of magnitude in our objective space. This can become problematic when comparing the
efficiency of different configurations. For example, suppose we have three different config-
urations with inference efficiencies of 107, 105 and 104 FLOPs. In that case, we want to
capture the vast efficiency improvement between the first two configurations, as well as the
vast improvement between the latter two. To properly capture this, we often take the log-
arithm of the two efficiency objectives before visualization or computation of performance
indicators that combine multiple objective values.

4.3 Hypervolume

Next to showing the accuracy-efficiency trade-offs themselves, we will often compare dif-
ferent trade-offs with each other. This can be done visually, but also by quantifying the
trade-offs to a comparable measure. For this, we always use the hypervolume [33] of the
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approximated Pareto front. The hypervolume is the size of the space between all non-
dominated objectives and a reference point outside of this objective space. It is often used
to assess the quality of MO optimization as a better approximation of the Pareto front
results in a larger hypervolume. Similarly, we can use it to compare the results of our
experiments. First, we take the logarithm of both efficiency objectives, after which we
normalize all objectives between 0 and 1 by the minimum and maximum objective in the
observed trade-off to account for different objective scales. Afterwards, we can calculate
the hypervolume of each resulting trade-off. We always use the reference point (1.1, 1.1,
1.1). This is an arbitrary point just outside the normalized objective space, so no point
in the objective space has a hypervolume of 0. This results in a minimal hypervolume of
(1.1− 1.0)3 = 0.13 = 0.001 and a maximal hypervolume of 1.13 ≈ 1.331.

We use the hypervolume to compare experiments in two ways. First, we can use it to
compare the trade-offs between two datasets. Since all objectives are normalized before
calculating the hypervolumes, they can be directly compared to each other to indicate
the trade-off shape. A larger hypervolume implies a stabler accuracy when increasing the
efficiency. Second, we can use it to compare the trade-offs found between two experiments
on the same dataset. In this case, we normalize with the extremes of both experiments,
and a larger hypervolume indicates a better approximation of the Pareto front.

4.4 Experimental Setup

4.4.1 Experiments

We define three different experiments. These experiments aim to uncover the underlying
accuracy-efficiency trade-off in SNN training in a novel method, compare this method to
the literature and verify the validity of our method. To start, we perform a reproduc-
tion experiment, resulting in a trade-off similar to the results presented in the literature.
The results of these experiments serve as a baseline for the rest of the study. Second,
we perform an optimization experiment on a hyperparameter configuration search space,
allowing configurations similar to the fixed configurations in the reproduction experiments.
By using MO-HPO in a broader environment, we can find a more general trade-off between
our objectives according to the goal of this study. We compared these results to those of
the reproduction experiments to study RQ1.1. As a final step to study the difference
between using fixed configurations and MO-HPO, we perform an evaluation experiment
on a subset of the optimization results. We compare these results with the optimization
and reproduction trade-offs to conclude RQ1. Together, these experiments relate to each
other as visualized in Figure 4.2.
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Figure 4.2: Overview of the different performed experiments and their relations.
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Table 4.3: Chosen benchmark datasets.

Dataset Domain Data Type Features Classes Train Size Test Size
MNIST [64] Digits Images 784 10 60,000 10,000
Fashion MNIST [117] Products Images 784 10 60,000 10,000
Higgs [116] Particles Tabular 28 2 10,500,000 500,000
Elec2 [35] Power prices Tabular 8 2 26,932 11,542
CIFAR-10 [61] Objects Images 3,072 10 50,000 10,000
SVHN [87] Digits Images 3,072 10 73,257 26,032

4.4.2 Datasets

We use six benchmark datasets containing images and tabular data, allowing us to compare
our results to previous SNN research and generalize to several problem cases (RQ1.2).
Three of these have been used for experiments in SNN training literature: MNIST and
Higgs in [82] and CIFAR10 in [26]. The MNIST dataset is a simple image classification
problem with ten classes, the CIFAR10 dataset is a more complicated image classification
problem with ten classes, and the Higgs dataset is a typical tabular classification problem
with two classes for which we know that it is difficult to model with a neural network [32].
To generalize our results in these problem settings, we add three datasets comparable to
these first three, resulting in three dataset pairs: Fashion MNIST for MNIST, Elec2 for
Higgs and SVHN for CIFAR-10. Specifics of these six datasets are detailed in Table 4.3.

Data augmentation in the form of random horizontal flips and random translations of
at most 4 pixels in all directions are included in the training pipelines of CIFAR-10 and
SVHN. All datasets are classification problems with balanced class distributions. We split
all datasets by their recommended train and test split. If no test split was available, we
randomly sampled 70% for training and 30% for testing.

4.4.3 MO-HPO

To approximate the accuracy-efficiency trade-off, we perform MO-HPO with MO-SMAC
[95]. MO-SMAC requires relatively few function evaluations to approximate a Pareto
front, which is necessary for our setting, where evaluating a single configuration can take
a long time. MO-SMAC has many possible settings; we keep most of these at their default
values except for the maximum number of incumbent configurations to keep track of. By
default, this is set to ten, but this limit is often reached when working with more than two
objectives, limiting MO-SMAC’s ability to approximate the entire Pareto front. Therefore,
we set MO-SMAC to track at most twenty incumbent configurations. Furthermore, we
split our training datasets using 5-fold cross-validation and let MO-SMAC use these folds
as problem instances to prevent overfitting. Each run starts with a default configuration,
with default values defined in Table 4.2. MO-HPO optimization runs are usually run
several times as MO-HPO is a stochastic process that can get stuck in local optima. We
repeat each optimization run ten times with different seeds, after which we aggregate the
results. A schematic overview of how MO-SMAC is used in our experiments can be found
in Figure 4.3.

4.4.4 Implementation

We created a fully configurable sparse training environment in Python using Jax [14]. The
environment loads data using Tensorflow Datasets [1], defines a network using Flax [39]
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Figure 4.3: Overview of how the datasets reach results of the different exper-
iments. Configurations are optimized on the folded train set using MO-SMAC.
Selected configurations are evaluated on the complete train and test set with 5
seeds.

and properly trains this with Optax [19] and JaxPruner [67]. After training, the validation
accuracy, inference efficiency and training efficiency are returned and logged. Our code
and results are publicly available on GitHub 1.

The experiments were run on the EEMCS High-Performance Computing Cluster of
the University of Twente. We used different compute nodes with Tesla P100, Tesla A100,
Tesla A40, Tesla L40, Titan-X, GeForce gtx-1080ti, GeForce rtx-2080ti and Quadro rtx-
6000 GPUs. These hardware differences cause differences in the training times but do not
affect any of our objectives. In total, all experiments utilized approximately 7500 CPU
hours and 5000 hours of GPU wall-clock time.

1https://github.com/zwouter/sparse-training-environment/tree/main.
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Chapter 5

Uncovering the Trade-Off

This chapter focuses on our first research question: What does the accuracy-efficiency
trade-off in sparse neural network training look like in a configurable environment? We
further explain the specifics of the three experiments introduced in the previous chapter,
after which we show and interpret each experiment’s results in individual sections.

5.1 Reproduction Experiment

To start our reproduction experiment, we need a well-working hyperparameter configura-
tion for each dataset. We choose configurations similar to the fixed hyperparameters used
for MNIST, Higgs and CIFAR10 in [82] and [26]. The other three datasets are trained on
the same configurations as their most comparable dataset. An overview of these configu-
rations can be found in Appendix A. Within these configurations, we evaluate 15 different
sparsities for SET and RigL. Furthermore, we add one configuration that does not use
SNN training. This results in 31 configurations per dataset. This approach is similar to
how Evci et al. [26] evaluated RigL against other SNN training methods and should yield
somewhat comparable accuracy-efficiency trade-offs.

5.1.1 Results

Plots of all sparsity-accuracy trade-offs resulting from the reproduction experiments can
be found in Figure 5.1. A more detailed overview of the results for the MNIST dataset
is shown Table 5.1. All reproduction experiments show results as expected. Sparsely
trained networks consistently yield comparable or slightly worse accuracies than their dense
counterparts for a sparsity below 0.7. Starting from sparsities of 0.8 or higher, accuracy
can substantially drop. In some cases of MLP networks, this substantial drop is more
considerable when SET is used. For the Elec2 dataset, using SET with a sparsity of 0.99
even drops the accuracy to a random 50%, probably due to this dataset’s small number
of features. Furthermore, we observe less variance in the accuracies of the datasets used
in previous literature. We used fixed hyperparameter configurations initially designed for
the MNIST, Higgs and CIFAR10 datasets and reused these on the Fashion MNIST, Elec2
and SVHN datasets. This could mean that sparsity behaves better in an already optimized
environment or that the datasets used in previous studies are better suited for sparse neural
networks.

Due to configuration and implementation differences, we do not expect these results
to align perfectly with the results of previous studies. This is also not a prerequisite, as
the reproduction experiment only serves as a baseline for our later experiments, which
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Figure 5.1: Results of all reproduction experiments. Average accuracies for 15
different sparsities over 5 runs are plotted for SET and RigL. Sparsities range from
0.1 to 0.99. The average accuracy on the densely trained model for each experiment
is added as a dashed line.
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Table 5.1: MNIST reproduction results with different sparsities and methods.

Sparsity Accuracy Training Inference Accuracy Training Inference
FLOPs FLOPs FLOPs FLOPs

Dense 98.7± 0.03 1x 1x
(1.01e14) (2.79e6)

SET RigL
0.100 98.7± 0.06 0.90x 0.90x 98.6± 0.04 0.90x 0.90x
0.200 98.6± 0.06 0.80x 0.80x 98.7± 0.05 0.80x 0.80x
0.300 98.7± 0.04 0.70x 0.70x 98.6± 0.04 0.70x 0.70x
0.400 98.6± 0.02 0.60x 0.60x 98.6± 0.02 0.60x 0.60x
0.500 98.6± 0.06 0.50x 0.50x 98.6± 0.05 0.50x 0.50x
0.600 98.6± 0.06 0.40x 0.40x 98.6± 0.05 0.40x 0.40x
0.700 98.6± 0.04 0.30x 0.30x 98.6± 0.07 0.30x 0.30x
0.750 98.6± 0.03 0.25x 0.25x 98.6± 0.06 0.25x 0.25x
0.800 98.6± 0.04 0.20x 0.20x 98.5± 0.07 0.20x 0.20x
0.850 98.6± 0.06 0.15x 0.15x 98.5± 0.04 0.15x 0.15x
0.900 98.5± 0.03 0.10x 0.10x 98.4± 0.05 0.10x 0.10x
0.925 98.5± 0.07 0.07x 0.07x 98.4± 0.10 0.08x 0.07x
0.950 98.3± 0.05 0.05x 0.05x 98.3± 0.05 0.05x 0.05x
0.975 97.7± 0.05 0.02x 0.03x 97.9± 0.09 0.03x 0.03x
0.990 92.6± 0.63 0.01x 0.01x 97.3± 0.15 0.01x 0.01x

are executed in the same environment. However, the efficiency gains should be roughly
comparable to previous research to ensure the validity of our implementation. Therefore,
we compare our reproduction experiment results to the results of [26] and [82]. First, we
look at the results of [26], where a sparsity-accuracy trade-off is plotted for CIFAR-10 when
training a WideResNet-22-2 [119] with RigL and two other SNN methods (excluding SET).
Overall, the performance of their WideResNet-22-2 is better than that of our ResNet with
20 layers. Furthermore, they evaluate only three sparsities ranging from 0.5 to ≈ 0.95,
making the results hard to compare. However, for both experiments, the accuracy slowly
drops as we increase the sparsity. These accuracy drops become more severe for sparsities
above ≈ 0.8. Second, we compare our results against those of [82], showing the accuracy
and efficiency differences between a dense MLP and an MLP trained with SET with a
sparsity of ≈ 9.95 trained on MNIST and Higgs. Instead of the average accuracy, they
present the best accuracy obtained over an unknown number of evaluations. For both
datasets, the accuracy of our dense models is comparable to that of their dense models,
but our sparse models with comparable sparsities yield slightly lower accuracies than theirs.
This indicates that our implementation of SET is slightly worse than theirs. Still, since
the results lie in a comparable range and otherwise behave as expected, we continue with
our reproduction experiment results as a baseline for the remainder of this study.

As a final inspection of these results, we calculate the hypervolumes of the reproduction
trade-offs and present them in Table 5.2. As introduced in Section 4.3, the hypervolume
is a measure of the trade-off shape. If structurally applied sparsity consistently resulted
in a comparable accuracy loss, we would see comparable hypervolumes across all datasets
in this experiment. However, as could be expected, the observed hypervolumes are highly
variable. From this, we conclude that SNN training introduces a different trade-off for each
dataset, indicating the need to study SNN training in various environments.
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Table 5.2: The highest found accuracy and trade-off hypervolumes for each
dataset in the reproduction experiment.

Dataset Highest Accuracy Hypervolume
MNIST 98.7± 0.03 1.185
Fashion MNIST 90.0± 0.25 0.980
Higgs 77.8± 0.02 0.854
Elec2 78.7± 0.38 1.203
CIFAR-10 90.6± 0.18 0.670
SVHN 96.1± 0.13 0.738

Table 5.3: Hyperparameters with different constant values or ranges for each
dataset.

Dataset Archi- Batch Max Learning Rate Use Use Label
tecture Size Epochs Scheduler Dropout Smoothing

MNIST MLP 128 200 Constant True/False False
Fashion MNIST MLP 128 200 Constant True/False False
Elec2 MLP 128 200 Constant True/False False
Higgs MLP 4096 200 Constant True/False False
CIFAR-10 ResNet 256 150 Cosine False True/False
SVHN ResNet 256 150 Cosine False True/False

5.2 Optimization Experiment

Having a baseline established, we can start approximating a new accuracy-efficiency trade-
off for each dataset. The possible ranges for all hyperparameters are set in Table 4.2,
but we limit some hyperparameters for all experiments. The network architecture type,
batch size and learning rate scheduler are set to constant values to match the reproduction
experiments. Furthermore, dropout and label smoothing are only used if enabled in the
reproduction experiment. Finally, the maximum number of epochs is limited for larger
datasets to speed up the optimization processes, resulting in the hyperparameter ranges in
Table 5.3.

We use MO-SMAC with fixed budgets to approximate the Pareto front. To define our
budgets, we follow a comparable rule of thumb as Horn et al. [44] when performing model-
based MO-HPO, using a budget of 50d, with d defined as the total number of configurable
real-valued hyperparameters and integer-valued hyperparameters with large ranges. Our
experiments with MLP architectures have 11 such hyperparameters and experiments with
ResNet architectures have 8, resulting in budgets of 550 and 400, respectively. We wish to
include categorical and small-range integer-valued hyperparameters in this calculation due
to the large number of such hyperparameters in our configuration space. Therefore, we
extend the rule of thumb to 50d+ 25c, with c being the number of categorical and small-
range integer-valued hyperparameters. This results in budgets of 650 and 550 for the MLP
and ResNet experiments, respectively. We confirmed these budgets to be reasonable with
a small experiment where we optimized with a budget of 2500. Here, we saw the total
hypervolume converge after 500 evaluations.

The results of different seeds are combined after optimization, and configuration ob-
jectives are averaged for each instance they were evaluated on. Not all configurations have
been evaluated on the same instances, making comparing configurations based on these
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Table 5.4: Spearman’s correlation coefficient of each objective combination within
the optimization results.

Dataset Accuracy Accuracy Inference
Inference Training Training

MNIST 0.98 0.98 0.95
Fashion MNIST 0.97 0.99 0.95
Higgs 0.95 0.95 0.94
Elec2 0.95 0.98 0.91
CIFAR-10 0.95 0.98 0.91
SVHN 0.96 0.95 0.88

results difficult. Therefore, we need to re-evaluate all non-dominated configurations on
an equal set. We train them on the complete train set and evaluate them on the unseen
test set. We also do this for the second non-dominated layer, as this might contain better
configurations after re-evaluation due to the stochasticity of network training or overfit-
ting on the validation set. Furthermore, this could strengthen an analysis of the trade-off
later on by creating a larger dataset. Together, this results in our approximation of the
accuracy-efficiency trade-off.

While we use MO-SMAC to approximate the entire trade-off, we are only interested in
configurations resulting in a subset of the objective space. Namely, those that yield high
accuracies. Ultimately, high efficiency is worthless if our model is useless. By design, the
reproduction experiments already focus on this area of the trade-off. Therefore, we filter
our optimization experiment on the configurations with at least the accuracy of the worst
configuration in the reproduction experiment of that dataset. An exception to this rule is
the experiment on the Elec2 dataset, where the worst reproduction configuration produces
near-random results. Here, we take the second-worst-performing configuration as a cut-off
point.

5.2.1 Results

These experiments result in six accuracy-efficiency trade-offs, one for each dataset. These
trade-offs are three-dimensional and are challenging to inspect visually. Therefore, we
visualize them by showing the two-dimensional planes of two objective pairs—one to show
inference efficiency against accuracy and one to show training efficiency against accuracy.
We do not show the inference efficiency against the training efficiency, as these add little
extra information. We scale both efficiency objectives logarithmically in these plots to
highlight the shape of the region of interest and the severity of the trade-offs. As an
example, Appendix B shows how the trade-offs resulting from MO-SMAC map to the
eventually shown plots for the MNIST dataset. All results can be found in Figure 5.2.

Similarly to the reproduction experiment results, these results show that the best-
performing models, accuracy-wise, are often among the least efficient models. To better
show this, we calculate Spearman’s correlation coefficients between all objective combina-
tions and present them in Table 5.4. The correlation coefficient scales between -1 and 1,
with coefficients of -1 or 1 denoting a perfect correlation. As expected, there is a high
correlation between the two efficiency objectives. More interesting is that they show a
comparable or even higher correlation between the accuracy and either efficiency objec-
tive. Since we know that the efficiency objectives scale logarithmically, a linear decrease
in accuracy results in an exponential increase in efficiency.
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Figure 5.2: Results of all optimization experiments and their reproduction ex-
periment results. All configurations are trained on the complete training dataset
and evaluated on the test set. Optimization results are filtered on their error rate.
Efficiency axes are logarithmically scaled.
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Comparison to Reproduction

To answer how the found trade-offs relate to the trade-offs found in previous research
(RQ1.1), we also compared the optimization results to the reproduction results. As can
already be seen in the plots of Figure 5.2, the reproduction experiments are focused on
a small area of the objective space. While the reproduction experiments already show
a large possible increase in efficiency, the optimization experiment shows that efficiency
can often be improved even further with a smaller decrease in accuracy. Interestingly,
the optimization results do not improve inference efficiency for the ResNet architectures
(CIFAR-10 and SVHN). Apparently, finding well-performing architectures that are efficient
at inference is more of a challenge in these models. Still, the training efficiency can be vastly
improved.

To strengthen this visual analysis, we performed a hypervolume analysis. This analysis
normalises the reproduction and optimization experiment to the same space. Relative
hypervolumes of all reproduction and optimization experiments can be found in Table 5.5.
Next to the hypervolume of each experiment, we show the highest accuracy found in each
experiment and how both statistics change between the two experiments.
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Table 5.5: Hypervolume comparison of optimization results with reproduction
results. Objectives are normalized to the same space.

Experiment Reproduction Optimization Improvement
Dataset Highest Hyper- Highest Hyper- Highest Hyper-

Accuracy volume Accuracy volume Accuracy volume
MNIST 98.7± 0.03 0.434 98.6± 0.06 0.955 -0.1%pt 2.20x
Fashion MNIST 90.0± 0.25 0.427 90.1± 0.19 0.893 0.1%pt 2.09x
Higgs 77.8± 0.02 0.196 79.3± 0.08 0.865 1.5%pt 4.41x
Elec2 78.7± 0.38 0.088 80.5± 0.59 0.800 1.8%pt 9.09x
CIFAR-10 90.6± 0.18 0.508 91.6± 0.29 0.731 1.0%pt 1.44x
SVHN 96.1± 0.13 0.558 96.4± 0.07 0.809 0.3%pt 1.45x
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Table 5.6: Statistics of the optimization trade-offs. We calculate the number of
configurations within each trade-off, the highest accuracy, the average sparsity if
RigL or SET was used, the distribution of SNN training algorithms, and the total
hypervolume of the trade-off.

Dataset Config- Highest Average Hyper- Algorithm Percentages
urations Accuracy Sparsity volume RigL SET Dense

MNIST 176 98.6± 0.06 0.52 0.887 38.07 51.14 10.8
Fashion MNIST 111 90.1± 0.19 0.61 0.818 44.14 51.35 4.50
Higgs 206 79.3± 0.08 0.51 0.835 33.50 58.74 7.77
Elec2 57 80.5± 0.59 0.41 0.797 33.33 47.37 19.30
CIFAR-10 165 91.6± 0.29 0.79 0.799 52.12 43.03 4.85
SVHN 105 96.4± 0.07 0.70 0.912 50.48 40.00 9.52

From this table, we can see a few trends. First, we see that the hypervolume of all
optimization experiments is substantially larger than that of the reproduction experiments.
This means that our approximation of the Pareto front is closer to the actual Pareto
front. This is as expected, as previous studies never meant to approximate the entire
Pareto front and only show the possibilities of SNN training. Second, we see comparable
hypervolume improvements in each dataset pair’s two experiments. This indicates that
even though the fixed hyperparameter configurations in the reproduction experiment were
not designed for all datasets, they created trade-offs of comparable quality. Third, we see
that the highest accuracy in the optimization experiments is often similar to that in the
reproduction experiments. This means that the fixed configurations in the reproduction
experiments were well-optimized configurations that could not be improved much, but we
did find configurations that performed comparably. If we combine these observations with
a visual inspection of Figure 5.2, we can say that our optimization trade-offs not only
better cover the true Pareto front but actually dominate the reproduction trade-off. With
this, we conclude that MO-HPO finds a better and more realistic accuracy-efficiency trade-
off. Furthermore, the best-performing models are often comparable to the best multi-layer
perceptron or ResNet in literature [113, 108, 70, 32, 84].

Trade-Off Statistics

Before further diving into the influence of all hyperparameters in Chapter 6, we already
start by looking at the effect of SNN training in the optimized trade-offs. We show several
statistics of the optimisation results in Table 5.6. First, we look at the distribution of SNN
training algorithms in the resulting trade-off. Two notable conclusions can be drawn from
this. First, all trade-offs include only a few dense networks. This indicates that the best
way to improve efficiency in our environment is by using SNN training algorithms instead
of smaller, dense networks. Second, there seems to be no clear preference for SET or RigL
if we use SNN training. Both algorithms are often equally distributed in all trade-offs,
making them both viable options if we only consider our three objectives.

Given that most configurations use SNN training, we are interested in which values
of sparsities were found. First, we look at the average sparsity in Table 5.6, where we
can see that the average sparsity of datasets optimized with MLPs is considerably lower
than those optimized with ResNets (CIFAR-10 and SVHN). To further inspect this, we
colour map the accuracy-training efficiency trade-offs by the configuration’s sparsities in
Figure 5.3. This shows how most configurations in the trade-offs of MLP datasets use a
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sparsity between 0.3 and 0.8. In contrast, previous literature focused on sparsities of 0.8
or higher to highlight the potential of SNN training. While a higher sparsity increases the
efficiency even further, we must not neglect the effect of sparsity on lower values.

To conclude, we look at the hypervolumes of all trade-offs. Just like in the reproduction
experiments, these values can be used to compare the shapes of the trade-offs as they have
been normalized to similar spaces. All hypervolumes lie close to each other, showing that
the general shape of the accuracy-efficiency trade-off is similar in all datasets.

5.3 Evaluation Experiment

A final step in finding the trade-off is the evaluation experiment. Here, we evaluate con-
figurations found by MO-SMAC with different SNN algorithms and sparsities as we did
with the reproduction experiments. In doing so, we can discover whether the trade-off
incurred by SNN training is similar in arbitrary well-performing networks. Furthermore,
this step serves as a validation step of the quality of the approximated Pareto front. Since
this is an expensive operation, we do this only on the ‘most interesting’ configurations in
the Pareto set: those with the 20 highest accuracies. We defined 31 configurations with
varying sparsities and SNN training algorithms in the reproduction experiment. To limit
the number of configurations, we decrease that to 17 configurations for this experiment:
one dense configuration and eight different sparsities for SET and RigL. Like in previous
experiments, these configurations are trained and evaluated on the full train and test sets.

We compare the evaluation experiment against the optimization and the reproduction
experiment. In comparing against the optimization experiment, we compare the objectives
of the resulting 340 configurations with the optimization results. This shows the effect of
a structured application of SNN training on optimized configurations. To compare the
evaluation experiment to the reproduction experiment, we individually examine the 20
trade-offs resulting from the original 20 configurations. We are interested in two things.
First, did our optimization experiment find hyperparameter configurations in which SNN
training excels? Second, does this predefined set of SNN configurations result in similar
trade-offs for arbitrary configurations? To answer this, we look at the highest accuracy in
the trade-off, the sparsity of that configuration and the hypervolume of that trade-off after
normalization.

5.3.1 Results

Configurations

First, we look at the initial sparsities of the configurations that we further investigate.
This data can be found in Table 5.7. We can see that most high-accuracy configurations
selected for the evaluation experiment are sparsely trained models.

Compared to Optimization

Figure 5.4 shows the trade-offs from the evaluation experiments against the optimization
experiments, and Table 5.8 shows a hypervolume comparison between the two results.
For the MLP datasets, the general shape of the trade-off remains similar to that of the
optimization experiment. However, we see an improvement in the minimal error rate for
Fashion MNIST, Higgs, and Elec2. These improvements are at the low-efficiency (high
FLOPs) regions, which is where we sourced our configurations from, showing that our
optimization trade-offs can be further improved by structurally applying sparsity. In the
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Table 5.7: Number of dense configurations and information on the sparsities
within the 20 configurations selected for further analysis in the evaluation experi-
ment.

Dataset Dense Sparsity
Configs Min Max Mean Std Dev

MNIST 5 0.37 0.95 0.54 0.16
Fashion MNIST 1 0.07 0.95 0.72 0.22
Higgs 2 0.09 0.68 0.51 0.13
Elec2 3 0.01 0.79 0.46 0.15
CIFAR10 4 0.15 0.83 0.61 0.19
SVHN 5 0.07 0.89 0.59 0.30

Table 5.8: Hypervolume comparison of evaluation results with optimization re-
sults. Objectives are normalized to the same space.

Experiment Optimization Evaluation Improvement
Dataset Highest Hyper- Highest Hyper- Highest Hyper-

Accuracy volume Accuracy volume Accuracy volume
MNIST 98.6± 0.06 0.894 98.7± 0.05 0.835 0.1%pt 0.93x
Fashion MNIST 90.1± 0.19 0.818 90.5± 0.00 0.836 0.4%pt 1.02x
Higgs 79.3± 0.08 0.824 79.5± 0.06 0.680 0.2%pt 0.83x
Elec2 80.5± 0.59 0.631 81.5± 0.00 0.761 1.0%pt 1.21x
CIFAR-10 91.6± 0.29 0.758 91.7± 0.22 0.832 0.1%pt 1.10x
SVHN 96.4± 0.07 0.881 96.4± 0.11 0.996 0.0%pt 1.13x

ResNet experiments, we do not see this effect, most probably because the configurations
with the best error rate were already dense. However, we do see that the inference efficien-
cies of the evaluation experiment surpass those of the optimization experiment. This shows
that the configurations optimized for their error rate yield better results when trained with
sparsity than those optimized for their efficiency.

In Section 3.2, we argued that automated HPO finds better configurations than man-
ual optimization and that automated MO-HPO is the best way to approximate the Pareto
front when dealing with conflicting objectives. Therefore, the fact that our optimized re-
sults can be improved with manual adaptations is surprising. This gives us enough reason
to believe that the optimization experiment could have approximated a better trade-off if
better initialized. We see several potential problems: first, the hyperparameter configura-
tion space might be too complex or improperly defined to find the desired configurations.
We are optimizing 14 or 15 hyperparameters simultaneously, which all have complex ef-
fects on each other. While we believe that we have chosen ranges and scales for these
hyperparameters such that well-performing configurations could be easily found, it might
be well possible that improvements can be made here. Second, the given budget might
be too low. The hyperparameter configuration space is complex to grasp, and a higher
budget can improve the surrogate models understanding of it. While we have evaluated
the effect of a larger budget on a small scale and noticed little potential improvements, the
determined budgets and 50d + 25c rule could still be too little. A side note to increasing
the budget is its potential negative effects. Even though we used k-fold cross-validation
to prevent overfitting on the train set, an optimizer might still overfit on the different
folds if the budget is too large. Third, MO-SMAC might be initialized differently. Even
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Figure 5.4: Results of the evaluation experiment compared to the optimization
experiment. All configurations are trained on the complete training dataset and
evaluated on the test set. Results are filtered on their error rate. Efficiency axes
are logarithmically scaled.
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though optimizers have the goal of reducing the manual optimization of hyperparameters,
they add new hyperparameters themselves, too. Non-default settings such as evaluating
configurations on different seeds, logarithmically scaled objectives, or modified objective
surrogate models could further improve its ability to approximate the Pareto front.

Compared to Reproduction

To compare the evaluation experiment against the reproduction experiment, we look at the
20 individual trade-offs resulting from the 20 configurations on which the evaluation experi-
ment is based. Figure 5.5 plots the highest accuracy per trade-off against the hypervolume
of each trade-off. First, we examine whether the configurations for one dataset result
in comparable hypervolumes. This would mean that we can expect a specific accuracy-
efficiency trade-off when applying sparsity to an optimized configuration and that the
reproduction experiment is a valid method to test the effect of an SNN training method.
Overall, we cannot say that this is the case. We see relatively comparable hypervolumes in
the CIFAR-10 dataset, but this pattern does not return in the SVHN dataset. Therefore,
we can conclude that the effect of SNN training cannot easily be predicted by or captured
within the simple constraints of the reproduction experiment.

Furthermore, we look at the sparsities of the configuration with the highest accuracy of
each trade-off. We primarily see dense or low-sparsity models reaching the highest accuracy
in these trade-offs, especially in our datasets trained with ResNets. Even though most of
these configurations were selected for SNN training in the optimization experiment, dense
training often results in the best accuracy. There also seems to be little coherence in the
trade-offs in which highly sparse configurations excel, further showing its unpredictability.
For example, the two configurations with the sparsities resulting from the Higgs dataset
are on opposing ends of the accuracy axis and come from trade-offs with substantially
different hypervolumes.
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plot the accuracy of the best of these 17 configurations against the hypervolume of
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Chapter 6

Hyperparameter Analysis

The previous chapter created accuracy-efficiency trade-offs with different experiments for
every dataset. Until now, we have focused on studying the objective space resulting from
these trade-offs and briefly analyzed the sparsities used to reach this. However, valuable
insights can be learned by studying the hyperparameter configurations behind these trade-
offs. In this chapter, we perform additional analyses on the optimization results to learn
more about the nature of the accuracy-efficiency trade-off. First, we perform a hyperpa-
rameter importance analysis to determine influential hyperparameters. Then, we further
dive into the optimal value ranges for all hyperparameters using hyperparameter influence
methods.

6.1 Hyperparameter Importance

Before further looking into how specific optimized hyperparameters influence the trade-off,
we wish to know which hyperparameters are most relevant to optimize. Some hyperparam-
eters might not have much of an effect on any of our objectives, and some only on specific
parts of our trade-off. We can use a hyperparameter importance (HPI) analysis to discover
this. Such an analysis gives each hyperparameter in a hyperparameter configuration space
a relative importance score. This importance score in itself carries little value but can be
compared with the importance scores of other hyperparameters in the same configuration
space. Instinctively, a hyperparameter with greater importance has a greater influence on
the specified objective. In multi-objective optimization, we do not calculate this impor-
tance score for a single objective, but we calculate multiple importance scores for different
parts of the trade-off.

We used MO-fANOVA [109] to quantify the importance of each hyperparameter in
each trade-off section. MO-fANOVA (further introduced in Subsection 3.3.2) needs a set
of hyperparameter configurations with corresponding objective scores, where a more ex-
tensive set results in better analysis. We have created such a dataset in our optimization
experiments. However, this data can contain a bias towards some areas of the trade-off
induced by the exploitation of MO-SMAC [83], which could cause MO-fANOVA to give bi-
ased results. Therefore, we evaluated 2000 configurations (similar to the number of unique
configurations found in each optimization experiment) generated by a random search with
Latin hypercube sampling for each dataset. Unlike the results of the optimization experi-
ments, we did not filter on a specific subset of the objective space. We took the logarithm
of the two efficiency objectives to capture the trade-off better, after which we performed
data preparation as described in [109].

In the work of Theodorakopoulos et al. [109], MO-fANOVA is limited to two objectives.
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This allows them to present the results in an interpretable two-dimensional plot directly.
While the MO-fANOVA approach can be directly extended to three objectives by showing
the results in a three-dimensional plot, we prefer two-dimensional plots since they are more
readable. Therefore, we slightly modified their approach to plot three objectives in a single
two-dimensional graph, which we dub the importance scale.

As a first step, we perform MO-fANOVA three times: once on the error rate and
inference efficiency, once on the inference and training efficiency, and once on the training
efficiency and error rate. This results in three plots, showing the relative importance of
our hyperparameters when we scale between two objectives. For example, the first graph
scales from the error rate to the inference efficiency. Here, the leftmost points show the
relative importance if we set the error rate as our sole objective. Then, we see how the
relative importance changes as we focus more and more on inference efficiency. Halfway
through, this graph shows which hyperparameters are most essential to optimize when we
are equally interested in error rate and inference efficiency. From this point on, we scale
to the end of the graph, where the inference efficiency is our sole objective. The second
graph scales from the inference to the training efficiency, with the first points showing the
relative hyperparameter importance if inference efficiency is our sole objective. As these
importances are equal to those at the end of the first graph, we can concatenate the first
two graphs. Similarly, we can concatenate the last two graphs. In total, this results in a
single graph, the importance scale, where we plot the relative hyperparameter importance
as we scale from a sole focus on the error rate to the inference efficiency, to the training
efficiency, and back to the error rate. The error rate can be found on both extremes of
the scale such that all areas are included. Note that the plotted points in these scales are
not evenly distributed throughout the x-axes and might be concentrated in small ranges.
This happens when the objective space is not evenly covered, which is often the case in
multi-objective optimization.

In addition to the plotted MO-fANOVA results, we present the single-objective fANOVA
results for all three objectives. These show how the results would differ if we focused on
only one objective and serve as a way to evaluate hyperparameters independently of the
other objectives.

6.1.1 Results

The resulting MO-fANOVA importance scales are presented in Figure 6.1. The single-
objective HPI values for the error rate in Table 6.1 and for the efficiency objectives in
Appendix D. Plots showing the random search results from which we calculated these
importances can be found in Appendix C. Hyperparameters with a relative importance
near zero are not shown in the importance scales and HPI tables. These are all constant
hyperparameters, dropout, label smoothing and the sparsity update frequency. What
remains are 15 hyperparameters with varying importance. In the remainder of this section,
we look at several interesting hyperparameters individually.

Algorithm

Surprisingly, the choice in the SNN training algorithm seems to be an unimportant hy-
perparameter throughout most of the importance scale. When zooming in, we can see a
few non-zero values, such as at the end of the error-inference scale in MNIST and Fashion
MNIST. There is no logical explanation as to why the algorithm would be more important
at these spots and we account for these values as noise in the MO-fANOVA results.
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Figure 6.1: MO-fANOVA results. Each plot (i.e. objective scale) shows the
relative importance of each hyperparameter in three different objective sections. In
the first section of each plot, the importance of each hyperparameter on the error
rate is slowly scaled towards the importance of the inference efficiency, showing
how different hyperparameters are more important on different parts of that trade-
off. The following two sections scale from inference to training efficiency and from
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Table 6.1: Relative hyperparameter importance for the error rate for all config-
urable hyperparameters. The three greatest hyperparameter importances for each
dataset are marked in bold.

Hyperparameter MNIST Fashion Higgs Elec2 CIFAR10 SVHN
MNIST

algorithm 0.000 0.000 0.000 0.000 0.000 0.000
sparsity 0.066 0.049 0.097 0.029 0.076 0.020
sparsity distribution 0.002 0.000 0.000 0.001 0.013 0.000
update end 0.001 0.005 0.003 0.002 0.001 0.002
initial learning rate 0.083 0.136 0.032 0.128 0.114 0.111
momentum 0.034 0.022 0.011 0.016 0.023 0.053
weight decay 0.001 0.002 0.087 0.057 0.168 0.280
epochs 0.002 0.004 0.008 0.008 0.241 0.139
MLP layers 0.243 0.129 0.063 0.073 - -
size first MLP layer 0.004 0.006 0.004 0.008 - -
size middle MLP layer 0.005 0.005 0.003 0.006 - -
size last MLP layer 0.002 0.006 0.007 0.009 - -
size conv block 1 - - - - 0.000 0.000
size conv block 2 - - - - 0.000 0.000
size conv block 3 - - - - 0.001 0.000

Sparsity

The fact that the SNN training algorithm is of little importance does not mean that
sparsity is of little importance. On the contrary, sparsity plays a pivotal role throughout
the entirety of all importance scales. Sparsity is the most important hyperparameter in
determining inference and training efficiency. Furthermore, sparsity remains an important
hyperparameter when we focus more on the error rate and is nearly as important as the
learning rate when solely focusing on the error rate.

Sparsity Distribution

We allow for two different sparsity distributions: uniform or ERK (Erdös Rényi Kernel
[26]). Previous studies show that ERK distributions sometimes increase the accuracy at the
cost of a worse efficiency [26, 67]. In our results, the sparsity distribution is of negligible
importance to the error rate on all datasets and of little importance to the efficiency
objectives when using ResNets.

MLP Size

We examine the number of MLP layers and the three hyperparameters to determine layer
sizes together. In all experiments, the number of MLP layers is the most important hy-
perparameter when optimizing for error rate and inference efficiency. This shows that the
network’s depth significantly impacts its accuracy and efficiency.

Furthermore, we see that the sizes of the layers show similar patterns over all MLP
experiments. All are of little importance to the error rate, showing that most network
sizes found by random search can result in well-performing models. Even though all three
hyperparameters play a pivotal role in determining efficiency, not all are equally important.
The size of the first MLP layer is always more important than the other two hyperparam-
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eters, which can be explained by the conditional nature of these variables, which are not
considered in the fANOVA tests.

ResNet Size

The hyperparameters determining ResNet size (size conv block 1-3) play a small role for
all objective scales. For the error rate, this means that the chosen classification problems
were ‘simple’ enough for the smallest possible networks in our configuration space. For the
efficiency objectives, this either means that our hyperparameter ranges did not allow for
too much diversity in network size or that sparsity-related hyperparameters are just that
much more important for efficiency. Either way, the best way to guide efficiency within
these ResNets is by optimizing sparsity, not model size.

Epochs

All scales show similar results for the number of epochs. Although it has some effect on the
error rate, it is most relevant in determining the training efficiency. This makes sense, as
the training efficiency formula involves multiplying the inference efficiency by the number
of training steps, which is directly related to the number of epochs. Its influence on the
training efficiency is so large that it is the hyperparameter one should tweak if one wants
to minimize training efficiency. All other hyperparameters are comparably important for
inference and training efficiency.

Learning Rate

Traditionally, the learning rate is considered to be the most important hyperparameter
when optimizing for neural network performance. We show that the network size is even
more important for MLPs, and the weight decay and number of epochs are more important
for ResNets. Other than that, we confirm this common assumption. Additionally, when we
scale towards an increasing focus on efficiency, the importance of the learning rate remains
stable for a long time and only becomes unimportant when we focus primarily on efficiency.

Weight Decay

The weight decay hyperparameter is used to update weight values in SGD and should
affect the error rate. Its importance differs between the different datasets with MLPs but
is often near zero, even when only focusing on the error rate. Interestingly, it plays a
much more vital role in the datasets with ResNets, where it is one of the most important
hyperparameters to optimize.

6.2 Hyperparameter Influence

The previous section investigated which hyperparameters are most influential in our con-
figuration space. We concluded that sparsity is one of the most important hyperparam-
eters for all objectives. Furthermore, most other sparsity-related hyperparameters were
relatively unimportant to the trade-off. In this section, we will extend these insights by
analyzing the hyperparameter values found in the optimization experiment results. We
perform this analysis in two ways. First, we estimate the probability distributions of all
optimized hyperparameters, i.e. the hyperparameters as found in the trade-offs resulting
from the optimization experiment. This might reveal ideal default hyperparameter val-
ues or relevant configuration ranges. Second, we research the effect of sparsity-related
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hyperparameters on the trade-off using the trade-off hypervolume. This can indicate how
different hyperparameter values are distributed over the trade-off and how we can optimize
for either objective.

6.2.1 Hyperparameter Distributions

We use kernel density estimations with Scott’s bandwidth estimation for real and large
integer-valued hyperparameters to estimate the probability distributions of our optimized
hyperparameters. These results are plotted in Figure 6.2. It is important to note that some
trends (e.g. the dip in the peak of the CIFAR10 epochs plot, potentially) of these distri-
butions might be artefacts of the KDE algorithm or MO-SMAC’s optimization process.
Therefore, we should be careful when interpreting these results.

Distributions of categorical and small integer-valued hyperparameters are estimated by
calculating the percentage of configurations having each possible value. Resulting distri-
butions for these optimized hyperparameters are plotted in Figure 6.3.

The number of samples for each dataset is stated in the first column of Table 5.6. We
only consider the values of conditional hyperparameters if they are active. Therefore, the
conditional hyperparameters (i.e. dropout, label smoothing, size middle/last MLP layer,
sparsity distribution) have fewer samples.

General

Most hyperparameters cover most of their configuration space, and their distributions
resemble beta distributions. This could be an effect of MO-SMAC, which samples its
hyperparameters from a configuration space with beta distributions. Furthermore, it could
be an effect of the KDE algorithm. In the remainder of this subsection, we will cover
interesting insights from these results.

Initial Learning Rate

The lower bound for the initial learning rate was set at 10−5. These results show that
this lower bound could have been set at least a factor of 102 higher, as the learning rate is
never set below 10−3. Furthermore, we can see that the initial learning rate for the ResNet
experiments is generally larger than that of the other experiments. This is as expected, as
the ResNet datasets use a cosine decay learning rate scheduler, whereas the MLP datasets
have a constant learning rate.

Epochs

Most models are trained for less than 100 epochs. Apparently, accuracy has severely
converged at this point, making further training unnecessary. The models trained for Elec2
are an exception to this. This could result from the small dataset size of Elec2, making
the number of epochs less influential on efficiency, or models just need to be trained for
longer on this dataset.

Dropout

The dropout hyperparameter was limited to a small region centred at 0.3. Unsurprisingly,
we see that this hyperparameter’s density is centred around 0.3 for the MNIST and Fash-
ion MNIST datasets. More surprising is the dropout behaviour in our tabular datasets,
Higgs and Elec2. In both these trade-offs, with 206 and 57 configurations each, only one

55



0 0.5 1

0

1

2

3

sparsity
0.5 1

0

1

2

update end
0 0.5 1 ·106

0

1

2

·10−6

update frequency

10−5 10−3 10−1

0

1

2

initial learning rate
10−9 10−5 10−1

0

0.2

0.4

0.6

weight decay
0 0.5 1

0

1

2

3

momentum

0 100 200

0

0.01

0.02

epochs
0.2 0.4

0

1

2

dropout
0.1 0.2

0

2

4

6

8

label smoothing

0 500 1,000

0

0.001

0.002

0.003

size first MLP layer
0 500 1,000

0

0.005

0.01

size middle MLP layer
0 500 1,000

0

0.002

0.004

0.006

0.008

size last MLP layer

D
en

si
ty

MNIST (M) Fashion MNIST (M)
Higgs (M) Elec2 (M)

CIFAR-10 (R) SVHN (R)
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rameters in the optimization results. The number of samples for each dataset is
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configuration uses dropout. This is against our expectations, as a recent study has shown
that regularization techniques such as dropout can substantially improve neural network
performance on tabular datasets [56].

We do not know why dropout is optimized this way, but we believe it could indicate
three things. First, our hyperparameter configuration space could somehow favour not
using dropout in these problem settings. Second, these specific tabular datasets might
behave differently from other tabular datasets. The Higgs dataset was already shown to
be one of the datasets for which dropout could not improve accuracy in [56]. Third, dropout
could have an unexpected relationship with SNN training methods in these datasets.

MLP Model Size

For all datasets modelled with MLPs, networks of only a few layers are sufficient. A
small percentage of networks have over four layers, primarily in the tabular datasets.
Furthermore, the sizes of these layers are kept at low values as well. Generally, the first
layer is the largest, and the middle layer is the smallest. Our upper bound for each layer was
set at 1000 neurons, equal to the sizes of all layers in [82]. However, this shows that much
smaller networks are sufficient to model these datasets, with or without SNN training.

ResNet Model Size

The distributions of the ResNet model sizes are very comparable in both datasets. Here, we
see two trends: the first convolutional block generally only has fewer layers than average,
while the third block has more. This indicates that our optimized ResNets have increasing
block sizes. This differs from how ResNets are initialized in [37], where the block sizes of
small ResNets, such as ours, are kept equal.

6.2.2 Hypervolume Analysis - Method

We performed further analyses on the sparsity-related hyperparameters (SNN algorithm,
sparsity, sparsity distribution, update frequency and update end) using the trade-off hyper-
volume. In these analyses, we filter on subsets of the configurations in the approximated
Pareto fronts of the optimization experiment. We calculate the hypervolume for each
subset and compare it to the hypervolume of all configurations. This shows which hyper-
parameter ranges cause the largest hypervolume improvements, i.e. give the best coverage
of the trade-off.

When we analyze any hyperparameter, we can perform this analysis in four ways. First,
we filter on all values and gradually increase the minimum value, causing a gradual decrease
in hypervolume. Second, we can reverse this process, starting from only the lowest value
and slowly increasing the maximum. Third, we can bin the hyperparameter space and
calculate the hypervolume of each bin. In this analysis, the choice of cutoff points for the
bins might have a major impact on the result, but an idea of the most relevant ranges can
be extracted. Finally, we can calculate the hypervolume of all possible hyperparameter
values, but this is only viable for categorical and small integer-valued hyperparameters.

6.2.3 Hypervolume Analysis - Results

Sparsity

First, we analyze sparsity. We conducted three analyses: increasing the minimal sparsity to
demonstrate the extent of the trade-off that can be captured with sparsely trained models,
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increasing the maximal sparsity to emphasize the importance of high sparsity in covering
the trade-off, and examining the distribution of sparsities over the trade-off in a binned
hyperparameter space.

Results of these analyses can be found in Figure 6.4. By looking at Figure 6.4a where
we filter by increasing the minimal sparsity, we see that near-maximal hypervolume is
maintained up to a sparsity of 0.5 in all datasets. Thus, we can cover almost the entire
trade-off with a sparsity of 0.5 or above. From this point on, the hypervolume starts to
drop for most datasets at differing rates. An exception is the SVHN dataset, where near-
maximal hypervolume is maintained until a sparsity of ≈ 0.8. By looking at Figure 6.4b,
we filter by increasing the maximal sparsity, we see most datasets converging slightly after
a sparsity of 0.5 again, where SVHN needs sparsities of over 0.9 to near its complete
hypervolume. We can also see how the datasets optimized with MLP architectures show a
concave relationship between the maximal sparsity and hypervolume, whereas the ResNet
datasets show a convex relationship. Finally, we see some repeating patterns with the
previous graphs when looking at Figure 6.4c where we bin the sparsity range. The majority
of the trade-off can be covered by using sparsities between 0.5 and 0.6 for most datasets.
Exceptions to this are Elec2, for which we need slightly lower sparsities or (near) densely
trained networks, and SVHN, where we capture the largest hypervolume between a sparsity
of 0.8 and 0.9.

Algorithm

Results of an analysis of the possible values for the SNN algorithm can be found in Fig-
ure 6.5a. The distribution of hypervolume over the different algorithms slightly differs from
the distributions of the different algorithms themselves (Table 5.6). Where we previously
saw a preference for SET or RigL in some datasets, here, the total hypervolume of SET
and RigL is comparable in all datasets. This shows that every trade-off region that can
be reached with one of the two methods can also be reached with the other. Furthermore,
densely trained algorithms create a trade-off with a much smaller hypervolume comparable
to their lesser prominence in Table 5.6.

Sparsity Distribution

Results of an analysis of the possible values for the sparsity distribution can be found in
Figure 6.5b. For each dataset, we see that one of the two distributions nearly covers the
entire trade-off (ERK for MNIST, Fashion MNIST and Elec2, uniform for Higgs, CIFAR-
10 and SVHN). This might indicate that uniform sparsity distributions are better suited
for problems that are inherently less efficient; the optimized efficiency FLOPs for Higgs,
CIFAR-10 and SVHN are an order of magnitude higher than those of the other datasets
due to larger dataset sizes. However, the other sparsity distribution also always covers a
substantial portion of the trade-off. Both distributions are relevant in all cases, making it
hard to draw such a conclusion from these results.

Furthermore, these results contradict the findings of Evci et al. [26], showing that ERK
distributions yield higher accuracies and lower efficiencies compared to uniform distribu-
tions. If this were consistently the case, ERK distributions should not cover the entire
trade-off, as they would primarily be present in the highest accuracy - lowest efficiency
region of the trade-off.
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Figure 6.4: Total hypervolume of the optimization experiment results if we focus
on specified sparsity values. (a) an increasing minimal sparsity. (b) an increasing
maximal sparsity. (c) sparsity within fixed windows, with maximum hypervolumes
added as dashed lines. The network architecture used for each dataset is specified
as (M)LP and (R)esNet.
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Update Frequency & Update End

Three types of hypervolume analyses on the update frequency and update end hyperpa-
rameters are shown in Figure 6.6. These plots seem to mirror the results of the density
estimations in Figure 6.2, focusing on low update frequency and high update end values.

6.2.4 Subset Selection

To further study the optimal values of these hyperparameters, we have used a biclustering
algorithm to perform subset selection on the configuration and objective space simulta-
neously. For this, we implemented1 PAN [110], an algorithm specifically designed to find
subsets in a multi-objective optimization trade-off. Unfortunately, this did not lead to
clear subsets, indicating the need to perform hyperparameter optimization if we wish to
find a configuration on the trade-off.

6.2.5 Summary

Together, these results lead us to answer our second research question: how do sparsity and
other hyperparameters influence the accuracy-efficiency trade-off in sparse neural network
training? Whereas multiple hyperparameters are essential in determining neural network
performance, sparsity is the most important hyperparameter to trade off accuracy for
efficiency. Dense neural networks should only be trained if efficiency is not one of our
objectives. Otherwise, configurations optimized for both objectives can be defined with
either SET or RigL, with preferred sparsities ranging from 0.4 to 0.8 for MLP architectures
and 0.7 to 0.99 for ResNet architectures. The influence on the trade-off is more subtle for
other hyperparameters. Optimal values for these hyperparameters differ greatly per use
case, and we have shown that our ranges allow HPO to find these optimal values.

1Available at https://pypi.org/project/pan-biclustering/
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Figure 6.6: Total hypervolume of the optimization experiment results if we focus
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Chapter 7

Conclusions and Discussion

This research aimed to improve our knowledge of the sustainability of deep neural networks.
These networks require a lot of energy to be trained and used but can be made more efficient
with SNN training. However, it was previously unknown how much more efficient these
models could become and how this would affect their performance. Therefore, we set out to
answer two research questions: what does the accuracy-efficiency trade-off in sparse neural
network training look like in an environment with many configurable hyperparameters?
And how do sparsity and other hyperparameters influence the accuracy-efficiency trade-off
in sparse neural network training? To answer these questions, we have selected six bench-
mark classification datasets and performed three experiments on them. These experiments
show a novel way to investigate multi-objective technologies using MO-HPO. We evaluated
the results of current literature on SNN training, sought an accuracy-efficiency trade-off
using MO-HPO and evaluated our method against that of previous research. Furthermore,
we performed multiple analyses on the objective and hyperparameter configuration spaces
of these results, gaining valuable insights into the possibilities of SNN training. In this
chapter, we conclude on our findings and give directions for future research.

7.1 Conclusions

We have used MO-HPO in a hyperparameter configuration space with SNN training to
present an approximated Pareto front for three objectives: accuracy, inference efficiency
and training efficiency. We compared these results against the results when approximating
this trade-off in a traditional way; by structurally applying SNN training to an already
optimized configuration. Our results (Section 5.2) show that our method finds a much
better approximation of the true accuracy-efficiency trade-off, giving us more insights into
the possibilities when optimizing efficiency. However, we also see that these optimization
results are not guaranteed to find configurations that yield higher accuracies than the con-
figurations used in traditional research. Furthermore, we have seen that a combination of
these two techniques (Section 5.3) often finds the best results, a comparable approximation
of the trade-off, with better-performing configurations if we can afford a low efficiency. By
analysis of the effect of SNN training on these results, we see that we cannot generalize
the effects of increasing sparsity in arbitrary optimized configurations. Still, SNN training
plays a vital role in all our approximated accuracy-efficiency trade-offs and allows for a
larger increase in efficiency with a small decrease in accuracy than using smaller dense
networks (Section 6.2).

Combined, we conclude that the accuracy-efficiency trade-off in an SNN training en-
vironment is of an exponential nature. The networks with the highest accuracy are often
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trained dense or with low sparsity. However, if we are willing to trade off a portion of
this accuracy for a higher efficiency, a linear decrease in accuracy can cause an expo-
nential increase in efficiency. The best way to find such configurations is by generating
several well-performing configurations using HPO and by testing several desired sparsities
on these configurations. Here, SET and RigL are both valid options. Furthermore, we see
that inference and training efficiency are strongly correlated in these trade-offs, and the
only way to reduce training efficiency compared to inference efficiency is by lowering the
number of training epochs. These trade-offs behave similarly for all datasets and network
architectures, but SNN training has a stronger influence on ResNets than MLPs.

7.2 Limitations and Future Work

In this section, we list several limitations in our research that should be taken into consid-
eration when reading this work. Many of these limitations directly point toward potential
directions for future research to improve our findings. Furthermore, we elaborate on po-
tential other interesting future research directions for which this work can provide a basis.

Hardware Limitations of Sparse Matrices

Due to the practical implications of SNN training, our results might need to be taken with
a grain of salt. We calculate efficiency using the required number of FLOPs. However,
we know that sparse matrix calculations and sparse matrix storage are not as optimized
as this estimation (Subsection 2.2.1). The efficiency gain of sparse matrix calculations
depends heavily on implementation details and hardware specifics and is difficult to predict.
Furthermore, sparse matrices can often be stored at a reduced size if their sparsity exceeds
≈ 0.66 (Subsection 2.2.1). Our results find that useful sparsity values often lie below this
threshold, causing little to no improvement in the storage of these networks, limiting the
advantages of SNNs.

Measuring Neural Network Efficiency

While the FLOPs measurement makes our results most comparable to previous research,
it does not fully capture efficiency in practice. Still, it is currently the best measurement
for neural network efficiency. A more realistic efficiency measurement could be defined,
incorporating, for example, the overhead of sparse matrix storage and multiplication and
inefficiency of memory accesses. Using such a measurement in approximating the trade-off
could favour certain configurations which are now estimated as inefficient or find that the
trade-off is not as clear as our results make it seem.

Generalization of Problem Space

We have chosen benchmark datasets to make the results generalizable to future research.
However, we still limited ourselves to balanced classification problems consisting of two
data types. Many real-life applications of deep learning differ in these restrictions, and
we do not know whether SNN training behaves differently in such environments. Future
research could study different problem settings and how the effect of SNN training results
differs. Options that might be considered are imbalanced datasets or regression problems.
Furthermore, we have focused on the top-1 accuracy of classification problems while each
neural network outputs a probability distribution for all classes. The effect of SNN training
on this complete distribution, as opposed to merely the accuracy, remains unknown.
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Initializing MO-HPO

The optimization process can be altered in several ways to generate more realistic and gen-
eralizable results. First, AAC frameworks have many options and initialization settings
that affect their performance. Examples of such options in MO-SMAC are the number of
instances, maximum budget, default configuration and the number of incumbents to keep
track of. Currently, it is hard to ensure that MO-SMAC finds the best configurations as
little research has been put into how these settings should be chosen. Future work could
further investigate the effects of MO-HPO settings and how they should be initialized. Sec-
ond, we have approximated the entire trade-off, whereas we later only focused on a smaller
region of the trade-off since we are not interested in models with unusable accuracies. For
this reason, it could be worthwhile to focus our trade-off optimization on this trade-off
region. This could be achieved with a preference-based MO-HPO optimizer.

Extended Hyperparameter Configuration Space

The configuration space could be further altered to better represent the model architectures
used in reality. Furthermore, such a study could further study the topological features of
the network structures found in the accuracy-efficiency trade-off and their relation to SNN
training. While this is difficult to incorporate in a fixed hyperparameter configuration space
as defined in Appendix A, more complex architectures can be found using a complete NAS
[25]. Other than implementing a NAS, other architectural types can also be added to
the configuration space. We limited ourselves to MLPs and ResNets, but an extension to
architectures such as recurrent neural networks could provide useful insights depending on
the datasets studied.

Furthermore, a broader range of efficiency-improving methods could be studied. We
focused on two dynamic sparse training algorithms compared to dense training in neural
networks. We have shown that the SNN algorithms are comparable in many cases and
that there is no clear preference for one or the other. Other methods might produce
better results in certain instances or have a greater impact on the trade-off between the
two efficiency objectives. Examples are static sparse training or post-training pruning,
dense efficiency-improving techniques such as ensembling or knowledge distillation, or even
alternative ML algorithms such as decision trees and SVMs.

Hyperparameter Analysis

We have performed a global analysis on the optimal distributions and relative importance
of all hyperparameters and performed a more thorough analysis focused on the sparsity-
related hyperparameters. However, we believe that many more insights can be drawn
from our results, such as the relationships between different hyperparameters. To aid such
research, we have published all evaluated configurations and their objectives1.

7.3 Final Thoughts

To conclude, we believe there is still much to be studied before we fully understand the
complex effects of SNN training. However, we have made substantial progress by showing
that sparse training is the best way to increase model efficiency and that dynamic sparse
training almost always reduces model accuracy compared to dense training. Furthermore,
we have explored a new way to evaluate complex algorithms influencing multiple objectives

1Available at https://github.com/zwouter/sparse-training-environment/tree/main
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by using MO-AAC to approximate the underlying trade-off and use this in further analysis.
This study opens the field of efficient neural network training to an abundance of potential
future research and paves the way for structural analysis of complex algorithms.
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Chapter A
Reproduction Configurations

Table A.1: Hyperparameter configurations used for each reproduction experiment. Update frequency
and batch size values differ between Higgs and Elec2 due to the large difference in training samples. In
these cases, values are given as ‘<Higgs> & <Elec2>’.

Name (Fashion) MNIST Higgs & Elec2 CIFAR10 & SVHN

Sparsity hyperparameters
algorithm - - -
sparsity - - -
update frequency 420 2563 & 300 100
update end 0.8 0.8 0.75
sparsity distribution uniform uniform erk

Network shape hyperparameters
architecture MLP MLP ResNet
MLP layers 3 3 -
size first MLP layer 1000 1000 -
size last MLP layer 1000 1000 -
size middle MLP layer 1000 1000 -
size conv block 1 - - 3
size conv block 2 - - 3
size conv block 3 - - 3

Training hyperparameters
initial learning rate 0.01 0.01 0.1
learning rate scheduler constant constant cosine
momentum 0.9 0.9 0.9
weight decay 0.0002 0.0002 0.0001
batch size 128 4096 & 128 256
epochs 200 200 135
use dropout true true false
dropout 0.3 0.3 -
use label smoothing false false true
label smoothing - - 0.1
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Chapter B
Optimization Results in Different Perspectives
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Figure B.1: Results of the optimization experiment on MNIST, plotted in several dimensions. The first
four plots show the aggregated results of MO-SMAC, where accuracy is averaged over all validation folds
on which a configuration was evaluated. The last two plots show the final trade-off after re-evaluating
the first two non-dominated layers on the complete train and test set and filtering on the best performing
configurations.
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Chapter C
Hyperparameter Importance Random Search Experiment Plots
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Figure C.1: Plots of all random search experiments created for the MO-fANOVA hyperparameter
importance analysis. Results are not filtered on error rate. Efficiency axes are logarithmically scaled.
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Chapter D
Single-Objective Hyperparameter Importance of Efficiency Objectives

Table D.1: Relative hyperparameter importance for the inference efficiency for all configurable hyper-
parameters. The three greatest hyperparameter importances for each dataset are marked in bold.

Hyperparameter MNIST Fashion Higgs Elec2 CIFAR10 SVHN
MNIST

algorithm 0.000 0.007 0.000 0.003 0.000 0.000
sparsity 0.476 0.474 0.352 0.255 0.752 0.793
sparsity distribution 0.000 0.000 0.000 0.000 0.025 0.030
update end 0.001 0.000 0.000 0.003 0.021 0.006
initial learning rate 0.000 0.000 0.000 0.000 0.000 0.000
momentum 0.000 0.000 0.000 0.000 0.000 0.000
weight decay 0.000 0.000 0.000 0.000 0.000 0.000
epochs 0.000 0.000 0.000 0.000 0.000 0.000
MLP layers 0.097 0.101 0.231 0.279 - -
size first MLP layer 0.085 0.081 0.017 0.021 - -
size middle MLP layer 0.092 0.083 0.149 0.154 - -
size last MLP layer 0.014 0.014 0.028 0.042 - -
size conv block 1 - - - - 0.018 0.019
size conv block 2 - - - - 0.011 0.008
size conv block 3 - - - - 0.017 0.016

Table D.2: Relative hyperparameter importance for the training efficiency for all configurable hyper-
parameters. The three greatest hyperparameter importances for each dataset are marked in bold.

Hyperparameter MNIST Fashion Higgs Elec2 CIFAR10 SVHN
MNIST

algorithm 0.000 0.000 0.000 0.000 0.000 0.000
sparsity 0.276 0.174 0.322 0.191 0.383 0.403
sparsity distribution 0.000 0.000 0.000 0.000 0.008 0.001
update end 0.000 0.001 0.000 0.000 0.001 0.003
initial learning rate 0.000 0.000 0.000 0.000 0.000 0.000
momentum 0.001 0.000 0.000 0.000 0.000 0.000
weight decay 0.000 0.000 0.000 0.000 0.000 0.000
epochs 0.306 0.268 0.297 0.218 0.464 0.457
MLP layers 0.051 0.149 0.036 0.183 - -
size first MLP layer 0.043 0.008 0.037 0.006 - -
size middle MLP layer 0.038 0.110 0.049 0.109 - -
size last MLP layer 0.005 0.015 0.003 0.017 - -
size conv block 1 - - - - 0.018 0.002
size conv block 2 - - - - 0.011 0.000
size conv block 3 - - - - 0.017 0.002
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