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Abstract

Humans have a sense of self and our environment as part of our consciousness. In clinical practice,
we also deal with this phenomenon. This can be in the context of anesthetizing patients, comatose
patients, or other circumstances that influence a patient’s consciousness. Consciousness is evalu-
ated based on behavioral metrics in clinical settings. This comes with disadvantages, however, as
we know that nonreactive patients can be conscious, as in locked-in syndrome.

From modern theories of consciousness, we assume there is a strong connection between high-
level neural dynamics and the conscious state of humans. Recent advances in the calculation of
quantitative EEG have allowed for a resurgence of interest in whole-brain mathematical properties
that can be used to investigate such neural dynamics. Here, we investigate non-linear features
in the EEG related to the edge of criticality hypothesis. It postulates that awake consciousness
lies at the border between chaotic and orderly dynamics where signal complexity and information
processing are maximized. The two main metrics used are the 0-1 chaos test for the estimation
of chaoticity in the signal and the Lempel Ziv complexity to estimate the complexity of the EEG
signal—additional metrics of chaos estimation, fractal dimension, and entropy were used alongside
during the analysis. Our study investigated three different datasets with states where we assume
a change in consciousness: anesthesia, coma, and absence seizures. The aim is to see if prior
findings from the literature can be reproduced in the data as, until now, only small sample sizes have
been investigated.

We found a significant decrease in complexity and chaoticity during coma with good outcomes,
seizures, and anesthesia compared to a waking baseline of similar age. In comas with bad out-
comes, we found a large spread of chaoticity and complexity in the value range of altered and awake
consciousness states. From the known literature, we expected a decrease in complexity in altered
states. This agrees with our findings, except for comas with a poor outcome.

For chaoticity, we found the 0-1 chaos test output to correspond with the literature, with a value of
0.85 for waking baselines. This is close to the edge of criticality, according to Toker. In seizure states,
a reduction is found in agreement with the literature. In anesthesia and comas with good outcomes,
a decrease is also found. This disagrees with findings from the literature, which show that chaoticity
estimates increased in those states. Therefore, our findings partially confirm and partially contradict
earlier findings regarding the edge of criticality.

Our nonlinear metrics were also used to predict and investigate the level of cerebral damage af-
ter cardiac arrest in our coma dataset. The metrics were compared to a pipeline for predicting the
neurological outcome after a coma called the Cerebral Recovery Index (CRI). We could show that
permutation entropy is a promising new metric for classifying and evaluating comatose patients after
cardiac arrest. It significantly increases the prediction performance of the CRI when features of both
methods are combined.

Keywords:
EEG, criticality, complexity, chaos, epilepsy, anesthesia, coma

List of Abbreviations

1. EEG: Electroencephalogram

2. EMG: Electromyography

3. TMS: Transcranial Magnetic Stimulation

4. CPC: cerebral Performance Categories

3



5. rCRI: revised Cerebral Recovery Index

6. LZC: Lempel-Ziv Complexity

7. LLE: Largest Lyapunov Exponent

8. MSE: Multiscale (Sample) Entropy

9. MSPE: Multiscale Permutation Entropy

10. HE: Hurst Exponent

11. FDH: Fractal Dimension Higuchi

12. FDK: Fractal Dimension Katz
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1 Introduction

Consciousness is the central phenomenon that allows us to perceive the world and ourselves. Ob-
serving and inducing altered states of consciousness are everyday routines in clinical contexts. This
can be in the context of anesthetizing patients or pathological states like Seizures or Coma. Con-
sciousness can be described at several different levels. In the clinical context, it is often defined as an
awake or easily arousable state in which individuals can perceive themselves and their surroundings
[4].

So far, behavioral scales like the Glasgow coma scale or Grady coma scale are the golden stan-
dards to assess the level of consciousness in the clinic [4], [15], [33]. However, the current view is that
a patient can be conscious without the ability to react to external stimuli, as in locked-in syndrome.
This limits the applicability of behavioral scales [15]. It creates the need for non-behavioral metrics
of consciousness. Consciousness is so far known to be a mainly subjective and qualitative experi-
ence. This makes it hard to have a quantitative measure of it. However, it might not be impossible as
modern theories of consciousness assume a strong relationship between our neural dynamics and
the phenomenon of consciousness [29].

Theories on how consciousness could arise, like integrated information theory or global workspace
theory, indicate that neural dynamics may be a potential measurement for the level of consciousness
[25], [29], [30], [33]. They view the brain as a complex dynamical system where consciousness is
not based on the individual building blocks but related to the global complex dynamics of the whole
system. This study explores EEG signal properties related to these dynamics and their relationship
to consciousness.

Using features from the EEG as non-behavioral markers of consciousness has seen a rise in
interest over the last few years. One example of a measure of consciousness using EEG measure-
ments of neural complexity is the Perturbational Complexity Index (PCI). It measures the complexity
of the signal in response to a Transcranial Magnetic Stimulation (TMS) impulse and showed promis-
ing results in sleep, anesthesia, and coma patients for the quantification of consciousness [15]. In
another paper, Maschke et al. show that the PCI can be predicted from resting state EEG without
the TMS impulse [33]. They show that higher levels of consciousness show increased complexity
and information transfer in EEG measurements. Increased complexity in awake consciousness was
also demonstrated by Frohlich et al. [25] and Toker et al. [30] in their papers. In systems that can
exhibit chaotic dynamics a point of maximum criticality is often associated with a bifurcation point
between ordered and chaotic dynamics. It is connected to maximized computational efficiency and
information transfer. These properties may also be critical for consciousness. That consciousness
lies at this critical border of maximized information transfer between ordered and chaotic dynamics is
referred to as the edge of criticality hypothesis [3], [24], [30], [33].

The papers mentioned above either use models or small sample sizes of patients. On the one
hand, models are needed for a mechanistic understanding and are favorable due to allowing noise-
free measurements of the system while observing its hidden states [22], [30]. On the other hand,
models can always describe reality only within a constrained framework, especially when dealing
with high-level phenomena in complex systems.

Our work focuses on testing measurements for neural correlates of consciousness in three in-
dependent datasets. We test if we can find a point of maximum criticality during fully awake states
compared to states of altered consciousness. Additionally, we test if this critical point can be related
to a point between order and chaos where seizures represent a deviation in the ordered direction
and anesthesia or coma into the chaotic direction as described by Toker et al. [30].

Then, we use our metrics to predict patients’ Cerebral Performance Category (CPC) after cardiac
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arrest. We are interested to see if there might also be a link to the neurological health of a patient.
We are comparing our complexity-based metrics to an updated Cerebral Recovery Index (CRI) first
published by van Tjepkema et al. [20] in 2017.

Summarizing, we will answer the following two questions: 1. Can we reproduce the findings
from Toker in our datasets on the complexity and chaoticity of EEG signals in anesthesized patients
and patients during a seizure? 2. Can the computed metrics improve the prediction of neurological
outcome after cardiac arrest?
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2 Background

Our work is based mainly on the paper of Toker et al., ”Consciousness is supported by near-critical
slow cortical electrodynamics” [30]. To explore and understand the hypothesis, we elaborate on rele-
vant concepts of criticality and chaoticity and explain their relation to the edge of criticality hypothesis
and consciousness.

Our brain comprises around 86 billion neurons with trillions of connections [35]. The neurons and
synapses connecting the brain are nonlinear in their behavior, making the brain a highly complex
system governed by the interplay of nonlinear subsystems. Systems that fulfill these conditions are
known to exhibit chaotic behavior. Chaotic systems are abundant in nature, with well-known exam-
ples being the weather or population dynamics [28]. What does it mean for a dynamic system to
be chaotic? There are multiple exact definitions of when a system is chaotic, as not all non-linear
systems necessarily need to exhibit chaotic dynamics. We will use a definition for deterministic chaos
here with three necessary conditions the system must fulfill. First, it needs to be composed of nonlin-
ear subsystems or connected in nonlinear ways, causing the whole system to be nonlinear. Second,
the underlying systems must act deterministically and are not driven by stochastic processes. If
someone knew the system’s initial conditions perfectly, he could model the system outcome deter-
ministically. Lastly, tiny changes in the system’s initial condition can cause an unpredictable outcome,
assuming an outside observer does not know everything about the system in detail. This is due to
the exponential divergence of states over time caused by the non-linear dynamics [19]. This makes it
seem almost like a stochastic system to an outside observer who can not know all its initial conditions
perfectly. Unlike in a linear system, these conditions also entail that the system’s global behavior can
not be fully understood by dissecting it into its parts and studying their behavior due to the neces-
sity of understanding all its interactions to understand its behavior [7]. A more precise mathematical
description of chaos can be given, which constrains the attractors of the system [19]. We did not
test the system at the level of its attractors, and the system fulfills the necessary conditions to exhibit
chaotic behavior.

Now, the question arises of how a phenomenon like consciousness may be connected with these
high-level properties of our brain as a deterministic chaotic system and how that relates to an edge
of criticality. There are many theories on how consciousness may be connected, or even caused, by
our neural dynamics. There is no clear consensus on which one is true or false [29]. Our analysis
assumes an information-theoretic connection between the epiphenomenon of consciousness and our
neural substrate. One theory is that consciousness is associated with maximizing the computational
efficiency of our brain. It is the state we are in most of the day, where we must make decisions,
recall memories, create new ones, and understand relations between them. There is a multitude of
mathematical concepts and measures to classify how well a complex dynamical system can process,
store, and transfer information [27], [33], [36]. Maximizing these processes might be connected to a
critical point of phase transition between order and chaos. This critical point is well known in other
dynamical systems and models in mathematics and physics [21], [36].

The edge-of-chaos criticality, visually depicted in fig 1, connects wakeful brain dynamics with
a phase transition between order and chaos. Operating near a critical edge optimizes information
processing capabilities while being deterministic and predictable to a sufficient degree. To properly
process and utilize information, there must be a balance between storing and integrating informa-
tion and exploring new possibilities. Therefore, the system needs to be deterministic so far that it
can reproduce prior states while also allowing for enough exploration [27], [30], [34], [36]. This bal-
ance is often thought to be optimized around the critical point between order and chaos. As we are
conscious during most of our lives and must be able to integrate and explore new possibilities contin-
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ually, it seems plausible that consciousness would coincide with such a point of optimal information
processing [27], [30], [33], [34].

Figure 1: Depiction of the edge of criticality. The image is taken from Toker et al.’s paper ”Conscious-
ness is supported by near-critical slow cortical electrodynamics” [30]. The x-axis shows an
increase in chaoticity from ordered dynamics (left) to entirely chaotic dynamics (right), with
the critical point in between. The brain’s complexity, or information processing, is depicted
by the black line with a peak at the critical point (red dotted line), decreasing towards the
outer limits.
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3 Materials and Methods

Testing chaoticity and complexity in time series data is not trivial, as we can’t fully understand the
system from its outputs. Adding to that, the output will always be the signal of interest combined with
noise from the measurement. Nonetheless, there have been advancements made in recent years
in developing metrics to estimate complexity and chaoticity in time-series data [5], [10], [21], [28].
We will use these in our datasets to test the edge of criticality hypothesis and the outcome of coma
patients. A summarization of the processing steps can be found in the workflow diagram 2.

3.1 Data sets

Three clinical datasets with different pathologies are used. Table 1 shows an overview of patient
characteristics.

Set A consists of 21 patients who underwent carotid endarterectomy. Two measurements are
done: one before surgery as a baseline while awake with eyes closed and one during propofol
anesthesia. We consider the subjects fully conscious during the waking baseline, comparable to a
healthy adult.

Set S consists of 23 children with absence epilepsy. Each patient’s EEG recording includes
seizures and an awake baseline.

Set C consists of 395 patients in a coma 12 hours after cardiac arrest. No awake baseline
measurement is present for these patients.

Table 1: Overview of patient characteristic. For set A and set S, each patient has both labels. How-
ever, the exact absolute time of annotated data can vary per patient. For Set C, each patient
only has one label, with the following distribution: good outcome (CPC 1: 137, CPC 2: 52),
poor outcome (CPC 3: 10, CPC 5: 196). The CPC scores are assigned six months after
cardiac arrest.

Dataset age (std) sex (m/f) label
Set A 66 (8.4) 14/7 awake, anesthsized
Set S 9 (3.6) 12/11 awake, seizure
Set C 62.7 (13.6) 288/107 poor outcome, good outcome

3.2 Epoch selection

For set A, a neurologist annotated ”Awake eyes closed” states in the baseline and anesthesized parts
during anesthesia. The annotations excluded artifacts like eyeblinks or movements. In our analysis,
we limit ourselves to these annotated data sections spanning roughly 40-200 seconds in length [14].

In set S, we included patients with at least one seizure of 10 seconds or longer. Besides the
seizures, we annotated artifact-free epochs of awake baseline with the help of a neurologist for every
child in the same EEG recording. The data was used prior for another paper investigating visual
attention during absence episodes [31].

In set C, a 5-minute artifact-free epoch was annotated by a neurologist. Six months after cardiac
arrest, a CPC score is assigned for each patient. We split the group into two different outcomes.
A good outcome after a coma due to cardiac arrest is a CPC score of 1 or 2. Patients have no to
moderate cerebral disability. They are regarded as conscious and can work. Sometimes, they require
a protected environment. A poor outcome is a CPC score of 3,4, or 5, indicating severe cerebral
disability, coma/vegetative state, or death. With a CPC score of 3, patients are still considered
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conscious but require assistance in their daily lives. The CPC scores do not directly reflect the EEG
during recording due to the long time between EEG acquisition and CPC scoring. We know that
there are very few subjects with a CPC score of 5 who did not die due to a neurological reason but
of other complications. We did not exclude these patients as a manual revision of the dataset with a
neurologist would be needed. This would have been unfeasible in the timeframe of this work.

3.3 EEG preprocessing

We used mne 1.6.1 [16] with Python 3.11 and Matlab R2023b for all processing of EEG data. Mne
is a Python toolkit specialized for processing MEG and EEG data. It allows easy loading, storing,
and handling of the data like annotations, montages, and filter operations. We bandpass filter the
annotated EEG segments with 0.5 - 25 Hz. We use a low cutoff frequency, omitting some potential
neural signals because muscle artifact noise also increases with higher frequencies. As our mea-
surements can be noise-sensitive, we try to minimize muscle artifacts’ influence. Mne automatically
adapts the filter to keep it stable, with zero lag and a steep cutoff. The signal is referenced to a bipolar
double banana montage and downsampled to 100 Hz. These parameters were determined based on
a preliminary analysis of set A. We found that the metrics significantly changed concerning prepro-
cessing parameters. This includes epoch length, sampling frequency, and filter bands. To minimize
the bias introduced by these parameters, we chose to use unified preprocessing for all metrics. More
extended results of this analysis can be found in appendix A.

It was specifically chosen to keep the data preprocessing minimal. The only goal of the pre-
processing was to keep as much of the raw neural signal as possible. Only known noise sources,
such as EMG artifacts or eye blinks, are removed by filtering and epoch selection. Second, the lit-
erature indicates that minimal preprocessing of EEG can be better than sophisticated preprocessing
depending on the question at hand [32].

The signal was downsampled to 100 Hz. Lower sampling frequencies speed up computations.
This is relevant as the goal was to analyze more EEGs than other studies for robust findings. Since
all signals were initially sampled with more than 100 Hz, downsampling them unified their sampling
frequency. All frequencies of interest are contained within the Nyquist frequency (50 Hz), and there
is enough room for the filter to converge between the 25 Hz cutoff and the 50 Hz.

Figure 2: Workflow diagram of the preprocessing steps. The upper part shows the central process-
ing of the EEGs for metric calculation. Additional steps like downsampling, binarization, or
filtering may be done within the metrics. On the lower level, the metric aggregation and
evaluation are displayed. Above for the edge of criticality analysis and below for the out-
come prediction after the coma.
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3.4 Metric calculation in EEG

We split each previously annotated EEG epoch into 10-second epochs. The remainder will be
dropped if the annotation length is not dividable by 10. Ten seconds are chosen due to the lim-
ited duration of the seizures in the absence dataset. Our preliminary tests showed that some metrics
show a time dependence, making it unfeasible to use annotations of different lengths in the metric
calculation. Therefore, we used the length of the shortest annotations included in the analysis. They
match other papers’ choice of epoch length [30]. For each 10-second epoch, all metrics are calcu-
lated per channel. Then, we average over all channels per metric to get the channel mean. These
means are again averaged over all 10-second epochs per patient and annotation. As the annota-
tions are of very different lengths, the number of averages differs, especially between sets. This was
not circumventable due to the nature of the available data, but it needs to be considered in a later
analysis. We end up with one value for each state of consciousness in a subject per metric.

In the following, we will briefly introduce the metrics we used to test for the edge of criticality.
Explaining the metrics in detail here would go beyond the scope of this paper, but a reference with
more information will be added to each metric for the interested reader. We use two Python toolboxes
to compute the metrics. The first one is neurokit2 [23]. It focuses on estimating physiological signals’
complexity, entropy, and fractality. It is open-source and free to use. The second one is edgeofpy.
It is a smaller open-source Python package for chaoticity and avalanche criticality metrics. Both
packages are also used for the analysis of chaoticity, entropy, complexity, and fractality by Maschke
et al. [33] in their paper.

Lempel Ziv Complexity

Lempel Ziv complexity (LZC) measures the complexity of a time series. It is one of the two metrics
that Toker bases the observations for the edge of criticality on [30]. It determines how large the
vocabulary of a system needs to be to reproduce the time series. A small amount of repeated vocab-
ulary can construct a regular time series. The more complex a time series is, the less repeatability
it has. One downside of the method is that a long sequence automatically has a higher chance of
being classified as complex than a short sequence. This follows from the property that a complex
sequence is built up of more parts than a simple sequence [1]. We use mean symbolization because
Lempel Ziv complexity is designed for binarized signals. Every value above the signal mean is as-
signed a one, and every value below the signal mean is assigned a 0. It is the most common mode
of symbolization used.

0-1 chaos test

The 0-1 chaos test is the primary metric that Toker uses to estimate the chaoticity of the EEG signals
to test the edge of criticality hypothesis. He applies it in a pipeline that first tests the signal to
determine if it has a deterministic basis and is not purely stochastic, then denoises it using Schreiber’s
denoising algorithm [6], and lastly, downsamples it by only keeping the local minima and maxima of
the series. Then, the 0-1 chaos test is applied to the processed signal, which returns a number
between 0 (ordered) and 1 (chaotic)[10], [21]. Toker relates the critical point to a value of around
0.85 [30]. In our analysis, we will not use the exact pipeline Toker used, which is implemented in
Matlab, but instead, a Python translation of it from edgeofpy, which was also used by Maschke et al.
in their paper [33]. Here, we also omit the first step of checking for the stochasticity of the signal as
we know its source. One difference to the other metrics is that we have to filter the signal again for
this one, as both Toker and Maschke used it for low-frequency dynamics. Toker et al. used a FOOOF
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algorithm to filter with a cutoff coinciding with the first spectral peak under 6 Hz [30]. Instead, we use
a constant filter of 4 Hz, as Maschke et al. did [33], for ease of use and to keep the analysis simple.

Multiscale Sample Entropy

Multiscale Sample Entropy (MSE) is the multiscale version of Sample Entropy. Sample Entropy
was explicitly designed for physiological signals to be robust to measurement noise [9]. We are
interested in testing it as an additional measure for the chaoticity of our signal as it showed an almost
perfect significant positive correlation to low-frequency (< 6 Hz) chaotic dynamics measured by the
0-1 chaos test in the paper by Maschke et al. [33]. Sample Entropy is based on an embedding
approach where different embeddings of the signal are compared. See the following paper for details
on the procedure [9]. In multiscale approaches, the entropy is calculated on multiple downsampled
signal versions and averaged over all results. This is called different granularities. For the different
granularities, we use the ’default’ scale, which calculates the various factors used to divide the signal
length by the following formula range( len(signal)

dimension+10 ). With a dimension of three, the default value from
neurokit2, and a signal length of 1000 samples, that becomes range(76), which means 76 different
granularities per signal.

Largest Lyapunov Exponent

The Largest Lyapunov exponent (LLE) measures how fast (infinitesimally small) changes in initial
conditions lead to a divergence in the systems states. One typical behavior of chaotic systems is
the exponential diverge of states due to infinitesimal small changes in initial conditions. The Largest
Lyapunov exponent of a system is the largest positive exponent of such an exponential growth.

LLEs are the primary metric in simulations to judge the nonlinear behavior of chaotic dynamics.
We are interested in whether their values, when estimated in data, will coincide with our other mea-
sures of chaoticity. One known problem of estimating LLEs in data is that noise significantly impacts
the estimation of the LLE. In our paper, we use Rosensteins’ estimation of the LLE, commonly used
in literature. It claims to be robust against noise [5]. It is based on a time delay embedding of the
signal. The parameters we use for the time delay embedding are one sample of delay with two
embedding dimensions. We decided against optimizing time delay and embedding dimension and
stuck to the toolkit’s default values. First, this has computational reasons, as the computations are
costly and must be redone for every signal. Second, we found in an initial embedding test (appendix
A) that different versions of calculating the embeddings and time delays come up with vastly differ-
ent values. Next, each channel of a single EEG also showed a vast value spread, especially in the
embedding delay. These findings make the added value of these computational costs questionable,
as the choice of which function to use for approximating the dimensions and delays would again be
arbitrary. Therefore, we decided to stick to the standard parameters with low dimensions and time
delay.

3.5 Testing the edge of criticality

To test the edge of criticality hypothesis, we first evaluate the complexity of the different states of
consciousness with the LZC. Then, we evaluate the different states’ chaoticity using the 0-1 chaos
test. Using these two measures, we try to see if, in our datasets, we can recreate the characteristic
inverse U shape that Toker found with chaos on the x and complexity on the y-axis. For detailed
information, see the Literature section 2. Additionally, we test chaoticity using the LLE and MSE.
MSE showed good representative quality for low-frequency (< 6 Hz) chaotic dynamics in Maschke et
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al.’s papers [33]. Therefore, we expect it to show the same differences as the 0-1 chaos test. LLEs
are the primary measure to judge chaoticity in simulations and perfectly match the 0-1 chaos test in
simulated noise-free data in Toker et al.’s paper [30]. However, they are noise-sensitive. We want to
know if they behave like the 0-1 chaos test in measured physiological signal data or show diverging
behavior. We will compare all three different chaoticity measures concerning their relative differences
within and between datasets.

3.6 Prediction of coma outcome

To test the predictive value for neurological outcomes after coma due to cardiac arrest, we predict
the CPC score of a patient from our metrics. For this, the metrics from above are used, and an
additional set of metrics, which were also used in Maschke et al.s paper [33]. The metrics are closely
connected to chaos and complexity and consist of two fractal dimension estimates, Hurst exponent
and permutation entropy. We limit ourselves to the binary problem of predicting a good (CPC 1 or 2)
and poor (CPC 3,4 or 5) outcome. Only EEGs 12 hours after the cardiac arrest are included. This
time point was optimal for predicting poor outcomes in van Tjepkema et al.’s paper on the Cerebral
Recover Index (CRI) [20] that we use in this analysis as well.

We aggregate the metrics. This time, we aggregate per channel all measurements across the 10-
second epochs per annotation. Then, we aggregate the metrics over the channels using the median,
mean, standard deviation, minimum, and maximum. We use more different aggregation methods
here, as we know from our initial hyperparameter tests (appendix A) that there are differences across
the channels. This way, there is a tradeoff between using every channel for every metric and losing
all information about the variance within the different channels.

We compare our criticality-related metrics with an updated version of the CRI [20], where some
additional metrics were added. We calculated the features for the same subjects. The CRI features
internally aggregate over the EEG channels and epochs, so we only have one set of metrics per
subject.

Lastly, we create a metric set consisting of the combination of the criticality-related and the CRI
features. This way, we can test whether combining feature sets performs better than individually.

We predict the coma outcome using random forest classifiers implemented in Python 3.11 with
Scikit learn 1.4.1 [13]. The data is divided into a train and test split. Overall, we have data from
patients from 6 different hospitals. We used 240 patients from 4 different hospitals in the train set and
133 patients from the other two hospitals in the test set. Twenty-two patients from the 395 patients
of set C were excluded due to the inability to calculate all metrics on their EEGs. Ten from the train
and twelve from the test split. No preselection or visual investigation of the data was performed prior.
Using only data from the train split, we tuned the random forest using 5-fold cross-validation. We did
not perform a systematic grid search but instead tuned the forest hyperparameters manually, opti-
mizing the prediction accuracy of all metric sets simultaneously. A change that influenced only one
specific metric set was not used. We ended up with the following hyperparameters: criterion=entropy,
n estimators=200, min impurit decrease=0.01 and max features=0.25. Everything else is left as de-
fault.

Using the tuned random forest, we train on the complete train set and validate on the test set.
We compare the performance of the three different metric sets on the final test set using Receiver
Operator Curves (ROC). After tuning, we investigate each set’s feature importance using the mean
entropy decrease in a 5-fold cross-validation of the train set.
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3.7 Statistical evaluation

Finally, we will conduct statistical tests on the differences within the datasets for the edge of criticality
hypothesis and between the classifiers for predicting the neurological outcome.

Edge of criticality

We use a Wilcoxon signed-rank test to identify significant systematic differences in signal complexity
and chaoticity within sets A and S. These sets are too small to assume a normal distribution based
on the central limit theorem and have related samples. We use a Mann-Whitney U test between sets
for statistical differences in the mean. Sixteen tests are done. Bonferroni correction with factor 16 is
applied to the p-values to correct for the increased chance of finding false positives.

Neurological outcome

To compare the outcomes of the three different classifiers, we use a permutation test with 100 permu-
tations. The original AUC score is calculated and then compared to permuted AUC scores, where the
prediction probabilities of the classifiers are randomly shuffled with each other. Bonferroni correction
is applied with a factor of 3 for the three comparisons between classifiers.

3.8 Data and Code availability

A version of the pipeline used for analysis can be found under EEGAnalyzer on my GitHub. Parts of
the analysis were removed for privacy reasons. All study data and the full analysis code are saved
and may be made available by contacting the CNPH group of the University of Twente upon valid
request.
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4 Results

First, exploring the edge of criticality, we investigate the relationship of the conscious state with
complexity and chaoticity estimated from the EEG signals. Then, in the following subsection, we
investigate how our metrics relate to the neurological outcome of patients after cardiac arrest and
how they compare to the established CRI metric.

4.1 Edge of criticality

Some examples of analyzed EEG signals are shown in figure 3, including their complexity (LZC) and
chaoticity (K). These can not reflect all the possible patterns encountered during this analysis, but
they show differences between the EEG for the different patient groups and their altered states of
consciousness.

(a) Set A: Awake (b) Set S: Awake (c) Set C: Good outcome

(d) Set A: Anesthetized (e) Set S: Absence seizure (f) Set C: Poor outcome

Figure 3: EEG signal examples for all conditions analyzed in this paper. The complexity (LZC) and
chaoticity (K) of the respective sample are displayed in the top right. All samples included
around 10s of the signal used in the analysis. Samples were chosen to reflect the median
value of LZC in the analysis per condition. All EEGs have the same scaling for amplitude
besides the Seizure signal (e). We downscaled the signal by the factor 40

727.6 to display the
EEG, because it has much higher amplitudes. This factor was determined by the internal
steps used in mne to display the EEG. Next to the higher amplitudes, the seizures also
show a high degree of inter-channel synchrony with very regular patterns. All the EEGs
are visually distinct. This includes the two EEGs in awake states recorded once in an adult
population (top left) and once in a pediatric population (top middle).

We compare if the LZC and 0-1 chaos test can reflect the edge of the criticality hypothesis regard-
ing the change in complexity and chaoticity. During that, we will also note differences to the analysis
conducted by Toker et al. [30] and Maschke et al. [33]. Then, we compare whether different methods
of chaos estimation yield comparable results or if they differ considerably.
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Lempel Ziv complexity

The change in complexity across the different patient conditions is depicted in figure 4a using the
LZC. Awake states show significantly higher complexity than seizure, anesthesized, and coma states
with good outcomes. The two awake states of adults and children show a significant difference with
lower complexity in awake children. The reduction in complexity from awake to altered states of
consciousness coincides with the theoretical curve from the edge of criticality hypothesis. Toker and
Maschke observed a decrease in complexity during anesthesia in their research. Toker also observed
a reduction during seizure states, which is the same as ours. Comas with poor outcomes are vastly
spread across the metric in both ranges associated with awake and altered states of consciousness.
Coma was neither tested by Toker nor Maschke, so we can not make a direct comparison here.

Chaos estimation with the 0-1 chaos test

The results from the 0-1 chaos test are depicted in figure 4b. Before comparing the chaoticity of the
Sets, it was found that the 0-1 chaos test is not calculable on every time series. Our results found
that many of the EEGs in the coma patients could not be calculated. This reduced the data in the
poor cases by 56.8% and the good cases by 45.9%. For Set A, we lost 2.2% of data in the awake
cases. For the anesthetized cases of Set A and the whole Set S, no data was lost during the 0-1
chaos test calculation. This could lead to a systematic bias in the results, especially in Set C.

There is a significant decrease in chaoticity in seizures compared to the awake baseline. Toker
also found this in their analysis. The awake baselines of children and adults are on par, showing
no significant differences. The median values of the awake children lie at 0.84 and the adults at
0.85. This coincided with Toker’s hypothesized edge of criticality in their analysis. Comas with good
outcomes and anesthesia show a significant decrease in chaoticity. The deviation from baseline is
lower than that for the seizure states. This contradicts findings from both Toker and Maschke, which
found that chaoticity increased during propofol anesthesia. As mentioned above, we can not be sure
about the distribution of the coma results due to the high data loss while calculating them.

Secondary chaos measures

Our secondary measures of chaoticity are depicted in figure 4c using the LLE and figure 4d for the
MSE, respectively. Both metrics show a significant increase in estimated chaoticity under anesthesia
and coma compared to awake adults. This differs from the 0-1 chaos test in our results but matches
the findings from Toker and Maschke. Comas with poor outcomes show lower values of chaoticity on
par with healthy adults. This is similar to what we found in our LZC measures, where comas with poor
outcomes covered both regions of awake and altered states of consciousness. For the children with
absence epilepsy, the metrics differ. LLE increases during the seizures compared to the children’s
baseline measurements. This contradicts both the 0-1 chaos test and the original hypothesis. MSE
decreases like in the 0-1 chaos test. There is a difference in baseline measures of adults and children
with lower chaoticity in the children. This also differs from the 0-1 chaos test results.
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(a) Lempel Ziv complexity (b) 0-1 chaos test

(c) Largest Lyapunov exponent (d) Multiscale sample entropy

Figure 4: Comparison of chaoticity and complexity estimates on the Absence (red), EIRatio (green),
and Coma (blue) datasets. Graphs represent the distribution of values across the labels
of the datasets for the according metrics. Subsets that are compared to each other are
indicated with the bars above. The significance in differences of the population means
after Bonferroni correction with a factor of 16 is indicated by the asterisk: * p < 0.05, **
p < 0.01, *** p < 0.001. In the 0-1 chaos test, around half of the EEGs for Set C were
not computable in both labels. On top, the two main metrics for the edge of criticality
hypothesis are displayed. On the bottom are the two additional chaoticity estimations.

4.2 Prediction of neurological outcome after coma

Next to investigating the edge of criticality hypothesis using our calculated metrics, we also use them
to predict the neurological outcome after coma due to cardiac arrest to gain more insight into their
connection to possible brain damage in a patient. We compare our metrics to the ones from the CRI
[20]. We are interested in the importance of our features during the training process and if they can
benefit the outcome prediction.

Table 2 shows the feature importance during the training. In the criticality-related features, per-
mutation entropy dominates over the other metrics, but LLE and MSE also show predictive value.
Permutation entropy stays the strongest predictor when combining the features of the CRI and the
criticality-related features. Besides permutation entropy, the alpha-delta ratio and the brain continuity
index from the CRI are strong predictors for the CPC after coma.
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Table 2: Feature importance based on the average decrease in entropy in the five-fold cross-
validation. Feature importance was calculated for each forest. Features are sorted in de-
creasing order by their average entropy decrease in a forest. 5/5 top 5 features means the
feature was under the top 5 in every tree. 4/5 top 10 features mean features were in 4/5
trees in the top 10.

Feature set 5/5 top 5 features 4/5 top 10 features

complex Features PE-median, Pe-mean, PE-min PE-max, LLE-median, MSE-min, LZC-max
CRI Features ADR, BCI, BPM SE, BSAR, CRI, mean-BC

combined Features PE-mean, PE-median, PE-min, ADR PE-max, BCI

To test the performance of the metrics in unseen data, we use the test set with data from different
hospitals. The results for the test set are depicted in fig 5. In the sets including the complexity-related
metrics, we find better sensitivity at 100% specificity. The only significant difference in AUC scores
was between the combined and the CRI features.

Figure 5: Comparison of the three feature sets on the left out external test set. A statistically signif-
icant difference in AUC score is found between the combined and the CRI approach with
p = 0.03 after correction.
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5 Discussion

First, we discuss our criticality-related metrics, focusing on the paper of Toker et al. [30], which
mainly postulated the edge of criticality hypothesis, and the paper of Maschke et al. [33] who did an
extensive testing of criticality related metrics in their analysis. Then, we will discuss the predictive
value of our metrics in coma after cardiac arrest cases.

5.1 Edge of critcality

We tested the hypothesis postulated in Toker et al.’s paper on consciousness lying on the edge of
criticality. Entailing that awake consciousness lies at a maximum complexity between chaotic and
regular dynamics [30]. Both Toker and Maschke showed this to be testable in data. They used
small sample populations of mainly anesthetized patients and some patients with seizures [30], [33].
To retest that hypothesis, we used three different datasets. We computed several criticality-related
metrics and will compare them to the original results.

Complexity in EEG signals

Starting with LZC, the main metric in our and Toker et al.’s paper to estimate the complexity of the
EEG [30]. We found a correlation between the level of consciousness and complexity. Anesthesia
and Seizures showed the anticipated significant decrease in complexity compared to awake base-
lines. Additionally, in our study, we also found this in patients with a good neurological outcome in
a coma after cardiac arrest. This maps the inverse U shape of the Toker hypothesis, where awake
consciousness lies at the top, and states of reduced consciousness like seizures or anesthesia would
show a lower complexity due to less active information processing [30]. Maschke et al. also made
the same finding for awake and anesthetized patients[33]. However, we also found high values of
complexity in a coma with a poor neurological outcome. This could contradict the one-to-one correla-
tion between the level of consciousness and LZC. It seems unlikely, from our current understanding
of coma, that persons with a worse neurological outcome would show a higher degree of conscious-
ness during coma comparable to awake states. Next, we also found significant changes between
different age groups, with higher values in adults than in children. According to the hypothesis, this
could mean adults are more conscious, but from interacting with children and adults, one knows both
tend to have a vivid inner life and are conscious about their surroundings. Therefore, it is more likely
that factors other than the level of consciousness also play a role in the complexity of the EEG sig-
nal. However, it is not impossible that there might be differences in information processing between
children and adults or that at least some patients in a coma with a bad neurological outcome have a
vivid inner life. A lot of the neurological bad outcomes had a CPC of 5, meaning the patients died.
Factors influencing the measurements may be different noise components in the EEG acquisitions.
We also observed differences in EEG amplitude between groups, potentially impacting the metrics
and signal-to-noise ratios. Due to time constraints, no further testing was done on this.

Chaoticity in EEG signals

The second part of Toker’s thesis regarding the edge of criticality is that the chaoticity of the signal
needs to be at a critical point between order and chaos to achieve this maximized point of information
processing indicated by the signal complexity [30]. We used the same metric as toker with the 0-1
chaos test. However, we simplified our measurements by filtering with a standard lowpass of 4 Hz
instead of using the FOOOF algorithm to find a particular peak under 6 Hz to determine the filter
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cutoff. However, Maschke et al. did show that both methods should yield only minimal deviations in
results [33]. First, we found that our awake subjects, children and adults, had chaoticity estimates
that matched the critical edge Toker found with a K value of 0.85 [30]. That waking baselines confine
to values associated with the critical edge while also showing maximized complexity values strength-
ens the claim towards optimal information processing being related to it. We also saw a significant
decrease in chaoticity in seizure states. This supports the hypothesis that seizures reduce conscious-
ness due to moving it toward more ordered dynamics away from the critical edge. This makes sense
as seizures are known to be caused by synchronization, where neurons fire in synchronized and
regular patterns [17]. In anesthesia patients, we also found a significant decrease in chaoticity. This
contradicts the results Toker and Mascke found in their papers, where the chaoticity of slow cortical
dynamics increased during exposure to propofol [30], [33]. We do not have a conclusive explanation
of where this difference comes from. Patients in a coma with good neurological outcomes also show
the same behavior of significantly decreased chaoticity in our experiments. However, we also expe-
rienced technical difficulties during this calculation, so we can not exclude some systematic bias in
the coma data introduced by left-out EEGs.

However, our secondary metrics for the chaoticity of the signals, the MSE and the LLE, did find
the expected increase of chaoticity during anesthesia and coma with good outcomes. On the one
hand, this could show that maybe something went wrong in our experiment’s estimation of chaoticity
using the 0-1 chaos test. There were slight deviations in our data preprocessing compared to Toker
and Maschke’s papers. On the other hand, we also found varying results for the awake baselines
and seizure states using these secondary metrics. In MSE and LLE, a significant difference exists
between the awake states of children and adults with children showing higher chaoticity in LLE and
lower in MSE. We even found an increased chaoticity during seizure states in LLE measurements di-
rectly contradicting the 0-1 chaos test results in both our experiments as well as Toker and Maschke’s
experiments [30], [33].

This widespread and contradictory behavior of results in chaos estimation shows that estimating
a signal’s chaoticity seems complicated and could be a limiting factor in this kind of analysis. The
metrics are often abstract, and it is hard to predict how they will react to specific patterns in data.
Further research would be needed to understand where the contradiction in results between our
analysis and Toker’s analysis comes from. These unknown differences and the complexity of chaos
estimation metrics also reduce their interpretability on physiological signals, an essential factor for
acceptance into clinical routine [26].

Ground truth problem

Next to the unknowns mentioned above, there is also a general ground truth problem regarding the
interpretability of results. We are interested in finding a nonbehavioural metric for consciousness
but can only use behavioral outcomes to investigate possible methods. This limits the certainty we
can have in making claims on the results. Nevertheless, showing apparent differences between the
groups can still indicate the potential for finding a nonbehavioural metric.

5.2 Prediction of neurological outcome

Besides investigating the edge of criticality, we used our complexity-based metrics to predict the
cerebral damage people suffer after a coma due to cardiac arrest. In that process, we were inter-
ested in connecting our metrics to patients’ neurological health. Showing a clear link between the
predictive quality of neurological outcomes and our metrics could indicate that they reflect more than
the patient’s conscious state.
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We found that our metrics could predict the neurological outcome on par with the metrics from
the CRI. On an external test set with data from other hospitals, we found a significant increase
in prediction accuracy when combining our complexity-based metrics with the CRI metrics versus
just using the CRI. Permutation entropy was the strongest predictor in the trees, independent of
using only the complexity-based or if combined with the CRI metrics. However, LZC, LLE, and MSE
were among the strongest predictors when using only complexity-based metrics. Regarding the
absolute performance of our classifiers, only very minimal tuning and feature selection were made. A
dedicated analysis of hyperparameters in the machine learning model and training data could further
improve prediction results. As we tuned the forests by hand, this may have introduced a bias towards
specific metrics, even though the tuning goal was to reach the highest prediction accuracy among all
metric sets.

We conclude from the results that our metrics, especially permutation entropy, seem valuable in
predicting neurological outcomes after a coma. The metrics seem to, in different degrees, also reflect
the neurological health of the cerebral tissue in a patient. If this is due to a link between a patient’s
consciousness and his level of brain damage or due to other reasons, can not be concluded based on
this analysis. So far, the literature has focused mainly on patient groups under anesthesia or epilepsy
patients in an investigation of consciousness [15], [30], [33]. This limits a possible comparison to
other findings in the literature.

Permutation entropy was the main predictor for brain damage and was not one of the metrics used
for edge of criticality assessment. Therefore, we might be able to disentangle the two phenomena by
carefully investigating and choosing metrics and correcting terms. However, this is very speculative
and requires a lot of further research!

5.3 Limitations

Our study has several limitations that need to be discussed in light of the current findings. This
concerns the analysis’s technical aspects and the interpretability of the found results.

Metric calculation in EEG

Regarding calculating metrics in the EEG, we encountered very different lengths of EEG segments
for the various datasets and labels. To counteract this, as we knew that the length of an analyzed
EEG segment could influence the metrics, we split each into 10-second epochs and averaged the
results per segment over these epochs. However, the number of epochs we average over differs per
segment. We are not sure what influence this could have precisely on the analysis, but it can not be
excluded that statistical differences could arise due to this. We applied Bonferroni correction to the
results to make our findings as rigid as possible. We reported significant levels with three different
p-value thresholds. Both these measures aim to keep the statistical analysis rigid despite possible
influences of unknown nature.

Concerning the prior, there is an assumption of stationarity underlying this method of epoching
and averaging where we assume it makes sense to average the EEG over timeframes of 10-240
seconds. Stationarity in EEG is a widely discussed topic [11], and most EEG analyses assume some
stationarity. However, this does not need to be accurate, especially for the longer analysis segments,
such as in the coma cases.

Furthermore, different metric calculations may fail on a physiological signal because they en-
counter division by zero errors or other calculation problems, making the results unusable. We ex-
plicitly mentioned and discussed these cases throughout our analysis if they happened, but it still
limits the comparability of the metrics and results.
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Unexpected results or uncalculatable EEG segments may, in part, be caused by leftover artifacts
in the data, especially in the coma data, where no manual revision of all EEGs was done due to time
limitations and the amount of EEG data available. Other neurologists made a preselection to exclude
artifacts in the coma data, but sometimes, not all artifacts could be removed, as the best possible
epoch had to be chosen.

Last, regarding metrics calculation, a certain level of educated guessing is needed to determine
an optimal set of preprocessing and metrics parameters for calculating the metrics. Even though we
tried to find valid reasons for each parameter and conducted prior research on how these metrics
could react to differences in acquisition parameters, there are no fixed golden standards established
in the literature, and every paper has slight differences in how exactly data should be preprocessed
and which parameters should be used within metrics. In our analysis, we tried to choose a simplistic
and computationally efficient preprocessing and metric calculation method. This makes our results
easily reproducible on the same or other datasets. It could, however, limit the comparability to other
datasets like the ones from Toker [30] or Maschke [33] where additional steps like ICA were used in
preprocessing.

Interpretation of results

Finally, to interpret results, one needs to be cautious in what the findings from our analysis mean.
We can confidently say that we used similar patient populations regarding the altered states of con-
sciousness as Toker et al. [30] did but could not fully replicate their results. However, saying that
this would disprove their thesis or make the metrics invalid as a potential nonbehavioral metric would
be speculative. We did not have the same patients or the same acquisition parameters. We showed
clearly that many things need to be considered in how these metrics are calculated, and some things,
like the 0-1 chaos test chain multiple analysis steps together with refiltering, downsampling, denois-
ing, and then calculating the metric, which makes them very complex and can cause failure in the
calculation.

5.4 Conclusion

Our research aimed to answer two questions: 1. Can we reproduce Toker’s finding in EEG regarding
the edge of criticality hypothesis? 2. Can our metrics aid in the prediction of outcomes after coma due
to cardiac arrest? Additionally, we tested how our metrics react to acquisition and EEG preprocessing
to evaluate these questions. Reporting these as accurately as possible is vital due to their influence
on the metrics.

In an Ockhams’s razor manner, we tried to design as simple as possible preprocessing and metric
acquisition parameters to test the edge of criticality hypothesis in new and prior untested data with
patients undergoing the same conditions or procedures as in the original paper, namely seizures and
anesthesia with propofol. We extended these experiments with a large coma cohort with good and
poor neurological outcomes. Regarding question 1, we could not reproduce all findings from Toker.
In our analysis, we could find parallels to the results of Toker in seizure patients, which showed
decreases in chaoticity and complexity values based on their EEG. We found contradictions in the
case of anesthesized patients, which showed the anticipated decrease in complexity but no increase
in chaoticity, but a decrease. This would falsify the hypothesis, at least on a data-driven basis. Coma
patients with a good outcome showed similar behavior to anesthesized patients during the analysis.

In contrast, coma patients with a bad outcome showed large variability within metrics both span-
ning awake and altered states of consciousness of the other two sets. This could have multiple
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possible sources. The chaoticity and complexity metrics also capture dynamics unrelated to the con-
scious level. Complexity and chaoticity are also influenced by brain damage in ways that were not
anticipated beforehand, showing dynamics similar to those of the awake state. Alternatively, we may
miss insights into the conscious state, especially in a coma with bad outcomes. Which of these is the
case can not be verified from EEG data alone.

Regarding question 2, we showed that our set of nonlinear metrics related to the entropy, frac-
tality, chaoticity, and complexity of the data performed on par with the Cerebral Recover Index (CRI)
in predicting the outcome of coma patients after cardiac arrest. A significant increase in the CRI
was found when combining the CRI and our metrics. This indicates a potential connection of our
metrics beyond the conscious state and to patients’ neurological health. Permutation entropy was
the strongest predictor of neurological outcome in our tested metrics.

We concluded that further research regarding the validity of the edge of criticality hypothesis
will be needed. We believe that the field of understanding nonlinear dynamics will only increase in
importance over the coming years, especially in understanding complex and high-level phenomena
like consciousness, which can not be explained on a level of individual building blocks of the complex
system of our brain.

5.5 Future outlook

Based on the findings and the experience gained in this study, some steps should be carried out in
future research. These steps will help to resolve possible ambiguities, create a more rigid and fair
comparison to the original papers we compared to, and deepen our general understanding of these
nonlinear metrics.

Recreate experiments of Toker using his pipeline on new data

First, use the same data and try to recreate the exact experimental conditions used by Toker and
Maschke and recalculate, especially the 0-1 chaos test, to see if this will yield the same results or
if the differences between our findings persist. Similarly, using their data and applying our analysis
would deepen our understanding of the metrics and their relation to EEG processing. This can give
insight into the different outcomes in our study compared to existing literature and what caused them.

Extend research with more states of consciousness

Analyzing more different and diverse datasets will be needed in general. This is the first study that
applied EEG analysis regarding the edge of criticality hypothesis in this scale. To make findings
rigid, they should be expanded to include more different states of consciousness, including medi-
tation or psychedelic substances, which we know can change the state of consciousness and be
communicated by the individual. Sleep might also be an exciting direction in which to carry out re-
search. These findings need to be replicated by individual research groups to create a clear and
consensus-based picture regarding the edge of the criticality hypothesis. During that, a consensus
on preprocessing steps and metric calculation should be made.

Investigation of non-linear EEG metrics in cardiac arrest

Second, one can further investigate our complexity-based markers’ predictive qualities in coma after
cardiac arrest. Even though we already showed increased prediction accuracy compared to CRI
features alone, we did not optimize the process or do an in-depth comparison to the original CRI
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paper. There will be differences in signal processing and maybe even slight differences caused
by our Python translation of the original code. Further investigation could shed more light on the
potential of our metrics and how they could increase the predictive value of EEG metrics in cardiac
arrest patients.
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A Hyperparameter exploration

At the beginning of our research, we investigated the sensitivity of the acquisition parameters using
set A. This is not done systematically, as its purpose lies in getting familiar with the metrics before
a structure analysis. It was done to understand the sensitivity of parameters towards epoch length,
sampling frequency, different filter cutoffs, and whether there are regional differences within the brain.
Lastly, we also tested various methods of estimating optimal time delays and embedding dimensions,
as this can be done for some features, especially time embedding-dependent ones like the LLE. The
different tests and results are described below.

Starting with the montage, we found significant differences in absolute values between a common
average and bipolar double banana montage.

Figure 6: Comparison of montages using differences in z-scores. Montages show differences in
absolute values between metrics.

For epoch length in seconds, we found a significant negative correlation of time and metric value
in multiscale sample entropy and Hurst exponent using person correlations. Only in anesthesized
states is a significant positive correlation between Multiscale permutation entropy and epoch length.
Additionally, we found indications of a positive correlation with time for the fractal dimension using
Katz’s estimation, but it was not significant. For this analysis, we used the data’s natural differences
in annotation length. In our final analysis, we decided to unify the length to the shortest annotations
used.

Figure 7: Influence of sample length on metrics. Significant decrease in metric for MSE and Hurst
exponent. Significant increase in anesthesia for Multiscale permutation entropy.
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We always used a 0.5 Hz highpass filter for the different frequency bands with a 4, 25, and 35
Hz lowpass filter, respectively. Lower cutoff frequencies reduce the variance in the metrics. At 4
Hz, we found a decrease in absolute values, except for the chaoticity estimation using the Largest
Lyapunov exponents. In addition to lower variance and absolute values, the separability of classes
also decreased, as can be seen by the minor separation in the boxplots for the 4 Hz lowpass filter.
We also analyzed the typical EEG bands, including delta, theta, alpha, and low beta, but we will omit
the results here. They all showed differences in absolute values and the separability of classes, but
no advantage was found in using the individual bands for further analysis.

Figure 8: Different z-scores between metrics for a direct comparison of filter bands influence on
metrics.

Figure 9: Comparison of the Anesthesized and Awake state based on lowpass frequency to show
differences in the separability of states.

We compared 50 and 100 Hz sampling frequencies. At 50 Hz, we found better separability of
classes only in the fractal dimension using Higuchi’s method. At 100 Hz, we found better separability
in classes for LZC and LLE. It should be mentioned here that, in hindsight, 50Hz resampling was not
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a good choice as the Nyquist frequency and the filter cutoff frequency now overlap, which can cause
aliasing.

Figure 10: Comparison of z-scores between different sampling frequencies

Regarding the different channels, we found apparent local differences in metrics. For a selection
of metrics, we display the change in local difference and change between labels in fig 11.

Figure 11: Visualization of the z-score for a selection of metrics for awake baseline (bottom) and
anesthesized patients (top). Means and variances were calculated per metric across
both labels.

To calculate metrics dependent on time delay embeddings or using time delays in general to
estimate signal characteristics, such as LLEs or PE, neurokit2 provides different algorithms for cal-
culating the ’optimal’ parameter for the given time series. To check how ambiguous this parameter
is, we tested the agreement of various methods in choosing this optimal embedding dimension and
time delay. We found vastly different results across both time delays and embedding dimensions,
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with a clear minority of time series in which they agreed. We define an agreement by the difference
in metrics being 0. In figure 12, one can see the difference in embedding dimensions between the
three methods used. In figure 13, one can see the difference in time delay (in samples) for the three
estimation methods. The names used for labeling correspond to the names in neurokit2.

Figure 12: Differences in embedding dimension estimations using three different methods provided
by neurokit2. Not all signals were processable for this purpose, which explains the large
difference in absolute counts between the first and the second two graphs. There is
very little agreement between methods on the optimal embedding dimension for a signal.
Differences were only calculated on the same signals, individual EEG channels.

Figure 13: Differences in embedding delay estimations using three different methods provided by
neurokit2. There is little agreement between methods on the optimal embedding delay for
a signal. Differences were only calculated on the same signals, individual EEG channels.

Summarizing, one can say that these nonlinear metrics depend on the parameters used to pro-
cess the signal. Our analysis is not structured and encompassing enough to decide what optimal
parameters would be, but further investigation of these differences should be encouraged. Under-
standing the relations between acquisition parameters and metrics can aid in understanding what
the metrics represent, especially concerning our physiological signals. It also is a clear argument for
why it is important to accurately report on all parameters used in signal processing to make studies
and results comparable. Understanding regional differences in metrics can also help connect them
to current ideas from the literature on how consciousness and neural signals are linked. They often
include assumptions that focus on specific brain regions over others [29].
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B Correlation between metrics

We check how different fractality, complexity, entropy, and chaoticity metrics correlate. We compare
our findings to the paper of Maschke et al. [33] to see if their findings on the correlation of complex-
ity, fractality, and chaoticity can be replicated. They found the fractal dimension to be significantly
positively correlated to complexity. There is a significant negative correlation between chaoticity and
complexity. A significant but weak positive correlation of Multiscale Sample Entropy and Largest
Lyapunov exponents.

We calculate the Pearson correlation between all metrics to test how the metrics correlate and if
the findings from Maschke et al. [33] can be reproduced.

Figure 14 depicts the correlation between the different metrics. We find a significant positive cor-
relation between the fractal dimension estimation in both Katz and Higuchi’s methods with LZC and
each other. A strong negative correlation exists between LZC and the LLE. We found no correlation
between MSE and the LLE. We also found no correlation between the single scale and multiscale
permutation entropy.

Figure 14: Correlation results of all the different metrics used in the analysis. Significance values
of the person correlation after Bonferroni correction with a factor of 28: * p < 0.05, **
p < 0.01, *** p < 0.001, n.s. means no significance was found.

Lemepl Ziv’s complexity and the fractal dimension using Higuchis and Katz’s methods showed a
significant positive correlation. Fractality is one of the primary mechanisms by which complex struc-
tures can emerge from simple instructions and are found widely in nature [2]. For a more thorough
understanding of how complexity and fractality are linked, it is not sufficient to show correlations
in data. Modeling or in vitro experiments would be needed to investigate what might cause these
changes and how fractal properties could be included further in the investigation of brain signal
emergence.

C Fractal Dimension

In this section, the focus is on metrics related to the fractal dimension of the signals. First, two
fractal dimension estimation methods, the Higuchis and Katz methods, will be compared. Then, the
estimated fractal dimension is related to the Hurst exponent, which is mathematically linearly related
to the fractal dimension of a signal.

33



C.1 Katz vs Higuchi

We test two different methods for estimating the fractal dimension, previously compared by Raghaven-
dra et al. [12]. They found differences between the two methods in simulated data and EEG mea-
surements during sleep. Katz’s method is biased towards higher dimensions, which surpass the
theoretical maximum dimension of 2 for a one-dimensional time series. Both had averages within
the theoretical limit. Interclass differences regarding the investigated sleep stages in their EEG were
more prominent using the Higuchis method.

The fractal dimension is an alternative way of describing the symmetries and properties of ge-
ometrical structures and is built around the principles of symmetries and roughness or jaggedness
[37]. Initially, the term fractal was coined by Benoit Mandelbrot to describe self-similar, infinitely com-
plex structures often observed in nature. Opposite to Euclidian geometry, fractal dimensions are not
restricted to the Natural numbers but give dimensionality as a fraction [2]. The fractal dimension
is between one and two for a one-dimensional time series. One would refer to a perfectly contin-
uous and smooth signal. Two would describe a wholly random and unstructured signal. 1.5 is the
dimension of a random walk. An alternative description often used is to define a higher fractal di-
mension with a more room-filling quality where a fractal dimension closer to 2 becomes almost as
room-filling as a plane [37]. Additionally, the fractal dimension is not restricted to perfectly self-similar
structures. There are stochastic fractals where there is only a certain level of self-similarity across
different scales of the signal [7].

We use two different methods to estimate the fractal dimension of our time series. Similar to com-
plexity and chaoticity, we can only estimate the dimensionality of a measured signal. Both methods
are implemented in neurokit2 [23]. The first one is Katz’s method for estimation due to its supposed
robustness towards noise [33]. It is, however, known to be better at estimating relative differences
in fractal dimension than the absolute value of it [12]. The other method we use is Higuchis method
with a k of 10. It is sometimes said to be less robust towards noise than Katz’s method but better
at estimating the absolute fractal dimension and more computationally efficient, especially for longer
time series [12].

Figure 15 compares the two fractal dimension estimators. It shows that the relative differences,
as shown in the correlation analysis, are very similar, with differences in significance level between
classes. The absolute values differ with higher values in the Katz method.

(a) Fractal Dimension Higuchi (b) Fractal Dimension Katz

Figure 15: Comparison of Katz and Higuchi’s methods to estimate fractal dimensions in the EEG
data. Relative differences within Katz and Higuchi’s estimation method show the same
trends at different absolute values.
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In our analysis, we found that, in relative terms, both Katz’s and Higuchi’s methods seem to
capture similar differences between the different states. Katz’s method shows higher absolute values,
surpassing the theoretical maximum for the fractal dimension of a time series. Higuchi’s method
stays bounded between the theoretically feasible values of one and two. In their investigation of
EEG data, Raghavendra et al., [12] found bounded average values in both methods. They also
found EEG segments using Katz method with dimensionality surpassing the theoretical bound of
two. Their maximums were more bounded than ours. One possible reason for the differences is that
we downsampled our signals to 100 Hz. This is lower than in their analysis. They also showed a
significant negative correlation between sampling frequency and fractal dimension estimation in the
Katz method. This is a possible cause of the overestimation of fractal dimension in our EEG data as
Raghavendra also showed an increase in dimensionality with lower sampling frequencies. It may not
be the only difference that causes the discrepancy in dimensionality in the Katz method. The Higuchi
method seems more stable in this regard and shows good class separation.

C.2 Hurst exponent

Also belonging to the family of fractal dimension estimators is the Hurst exponent. It measures long-
range autocorrelation in the data and is a metric commonly used to predict how complex time series
like stock markets will develop knowing their history. It is theoretically related to the fractal dimension
by the formula H = 2-D, where H is the Hurst exponent, and D is the fractal dimension of the time
series. A Hurst exponent of < 0.5 means the series is anti-persistent: A current trend is unlikely to
continue. A value of 0.5 refers to a random walk process. A Hurst exponent of > 0.5 indicates trend
stability where a signal is more likely to follow its current trend [37]. It should be noted that these
properties do not describe fast fluctuations of the signal but the global trajectories around which the
signal fluctuates. Here again, the implementation of neurokit2 [23] is used to estimate the Hurst
exponent in the data.

We used the Higuchi fractal dimension estimation and calculated the Hurst exponent based on
the above formula. We will compare it to the Hurst exponent estimated directly from the data. We
omitted the Katz method from this analysis as the fractal dimension was not in the limit between one
and two. The comparison is depicted in figure 16.

(a) Hurst exponent calculated from Higuchis fractal dimension (b) Hurst exponent estimated from data directly

Figure 16: Comparison of the estimated Hurst exponent from data directly and by using the theo-
retical connection between fractal dimension and Hurst exponent. There is a significant
difference between the two estimations
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We did not find a connection between the two. Neither the absolute values nor the relative dif-
ferences within the datasets match. This could be because both metrics are influenced by noise.
It would be interesting to see if the relationship could be found in a system with a known fractal
dimension.

D Permutation entropy as chaoticity estimator

Permutation entropy is a simple entropy measure. It is not used for our edge of criticality measure
but was used prior in EEG studies [18]. It is straightforward and fast to compute. We were primarily
interested in its role as a possible secondary chaoticity estimator similar to MSE. In their original
paper on PE, Bandt et al. [8] show similar behavior of permutation entropy and positive LLEs on an
audio recording.

Like LZC, permutation entropy operates based on a vocabulary of repeating patterns in the data.
However, computation is different as the vocabulary consists of a set of limited substrings, permu-
tations of a fixed series. The six permutations of a time series of 3 subsequent points are used by
default. It calculates the rate of occurrence for each substring and uses an average of the surprise for
each as its final metric. It claims to be robust to noise and signal length. We used the implementation
from neurokit2 [23] with an embedding delay of 1 and a series length of 3. We used the normalized
version of permutation entropy to confine the output to 0-1 and make it independent of the size of the
sampled signal.
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(a) Permutation entropy (b) Largest Lyapunov exponent

(c) Multiscale Permutation entropy

Figure 17: Comparison of permutation entropy (PE), multiscale permutation entropy (MSPE), and
Largest Lyapunov exponents (LLE). Testing if the LLE and PE behave similarly as they
did in Bandt et al.’s paper [8]. No similar behavior of LLE and PE could be found, neither
in the single nor the multiscale variant.

As depicted in figure 17, PE and LLE did not show similar behavior in the EEG data. Our cor-
relation analysis also confirmed this, where they showed a significant negative correlation B. Next
to comparing the PE to LLE, we also compared the single and multiscale version of it. Our cor-
relation analysis showed no correlation between the two metrics despite using the same entropy
estimation method. This fact, along with the results from the hyperparameter tests, shows that per-
mutation entropy is a sampling frequency-sensitive metric. This might have to do with the number
of monotonous segments increasing and decreasing between local maxima and minima, changing
with different sampling frequencies. The overall shape of the signal should not be influenced as long
as the sampling frequency is higher than twice the filter cutoff containing all relevant frequencies of
the signal. This would lead to an increase in monotonous sections compared to local maxima and
minima. This hypothesis would need rigorous mathematical testing in artificial and real data.

The most striking feature of permutation entropy in our analysis was its strong predictive value
in the neurological outcome of coma patients after cardiac arrest. Permutation entropy showed in
our study of features the best predictive quality, even surpassing metrics from the Cerebral Recover
Index [20].
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E Supplementary material for neurological outcome prediction

The following figures were used to create table 2 on the importance of features in the results section.
They show the average entropy decrease in a tree per forest and the standard deviation of that
feature’s importance. Each subsection of the figures represents one forest trained per 5-fold cross-
validation split.

Figure 18: Feature importance for the five forests using complexity related features. Blue graphs
show the average decrease of entropy in a tree. The white line indicates the standard
deviation across the 100 trees of a forest. The forests are individually represented in the
five figures.
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Figure 19: Feature importance for the five forests using the CRI features. Blue graphs show the
average decrease of entropy in a tree. The white line indicates the standard deviation
across the 100 trees of a forest. The forests are individually represented in the five
figures.

Figure 20: Feature importance for the five forests using combined features. Blue graphs show the
average decrease of entropy in a tree. The white line indicates the standard deviation
across the 100 trees of a forest. The forests are individually represented in the five
figures.
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F EEG analysis

EEG processing pipeline

I developed my processing pipeline to process many EEGs from different sources. The main parts
of the code are in my Github repo. The pipeline easily adapts to almost any metrics computed on a
one-dimensional time series. Every channel of an EEG is seen as an individual 1d time series in that
regard. It consists of three main components. A config file in the form of a yaml document. A Python
file where the metrics that should be used are listed. Lastly, two pipeline files combine the config file,
the metric file, and the EEGs. One version uses EEG files on local storage in BIDS format. The other
one uses a CSV file from which the file paths of the EEGs can be inferred.

In big data projects, a clearly defined standard must be used for storing the EEGs and the results
computed from them. For this, we use an internationally common standard called BIDS. It allows us
to store the EEGs and metrics calculated from them in an organized manner based on a hierarchy of
datasets and subjects.

As many of the experiments are similar but differ in the EEG processing parameters, I use a
config file for most settings. A sample config file with an explanation of the individual parameters is
included in the complementary codebase. Some settings include where the EEGs are stored, filter
frequencies, sampling frequencies, multiprocessing parameters, which metric set should be used,
and where the results are stored. This allows maximum reusability between different experiments and
implicitly keeps track of essential hyperparameters when combined with a sensible naming scheme.

An extra Python file contains lists of metrics. Three lists are combined. The first has the functions,
the second is a dictionary of optional parameters, and the third is the names for the functions as they
are saved in the metrics CSV files computed for later analysis.

The process’s main file is the pipeline file. It uses parameters from the config and metric files to
load and process the EEG, compute all metrics per channel, and save the results to the desired path
in a CSV.

Metrics analysis

After computation from EEG, the metrics are stored as small CSV files in a folder specific to the
subject. The file path is assigned in the config file. I load the individual CSVs into a big data frame
to analyze the metrics. From there, I can do plots, statistical analysis, and aggregation as I want. For
convenience, I save the data frames I frequently need into a SQLite database so I can reuse them
without recreating them every time.
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https://github.com/SoenkevL/EEGAnalyzer.git
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