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Abstract

Introduction
Pediatric asthma is a common childhood disease significantly impacting quality of life. Current man-
agement is inadequate, resulting in a high prevalence of uncontrolled asthma in children, who face
increased risks of unpredictable exacerbations from various factors. The numerous demographic, clin-
ical, and environmental factors influencing exacerbations, combined with their complex interactions,
underscore the need for machine learning (ML) to identify predictive patterns. However, existing
ML models lack generalizability and clinical implementation. Therefore, the PREDICTA study aims
to develop an ML model for predicting asthma exacerbations that fits into regular pediatric asthma
care.
Methods
This research comprised three parts, the first involved an exploratory literature review to identify ML
studies for predicting pediatric asthma exacerbations. The second part was a retrospective simulation
study to develop LSTM and XGBoost modelz for predicting pediatric asthma exacerbations. It used
electronic patient data from MST, covering 3.5 years and including patient characteristics, clinical
and environmental outcomes, and healthcare utilization. Severe asthma exacerbations were defined
as hospitalizations requiring prednisone or salbutamol nebulization, while moderate exacerbations
involved the same treatments without hospitalization. The third part involved interviews with six
pediatricians about their definitions, expectations, and trust in an ML model for predicting asthma
exacerbations.
Results and Discussion
The literature review revealed a predominant use of XGBoost models, while LSTMs remain underuti-
lized. Key challenges to model accuracy and clinical use included unstandardized definitions, limited
input factors, and inconsistent performance metrics. In the simulation study, the LSTM and XG-
Boost models had low predictive power (sensitivity XGBoost: 0.11, LSTM: indeterminate) due to
class imbalance (129 exacerbations present versus 2.3 million absent). The LSTM offered personalized,
time-dependent predictions, while the XGBoost struggled with individualized predictions. Interviews
revealed that pediatricians expect a model to identify individual risk factors, support decision-making,
and present results transparently. Three applications were highlighted: 1) a personal risk dashboard
for patient self-management, 2) a risk dashboard for pediatricians during outpatient visits, and 3) an
eHealth monitoring tool for at-risk patients.
Conclusion
This research emphasizes the need to standardize asthma exacerbation definitions, as variability
hinders model comparisons and accuracy. The low number of exacerbations challenges model per-
formance, but improving input factors, optimizing parameters, and addressing class imbalance can
enhance it. Enhancing model explainability is crucial for future research and should involve health-
care professionals and patients. The three proposed applications have the potential to enhance and
personalize asthma management, allowing for a more effective, patient-centered approach to manag-
ing pediatric asthma.

Keywords
Pediatric asthma, asthma exacerbation, prediction, Machine Learning, healthcare professional in-
volvement
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1 Introduction

1.1 Pediatric Asthma

Pediatric asthma is a prevalent chronic respiratory condition affecting children and young adolescents
up to 20 years, with an estimated prevalence of approximately 7% in the Netherlands [1, 2]. Asthma
is characterized by clinical manifestations, including inspiratory and expiratory wheezing, dyspnea, and
cough [3, 4]. The clinical manifestation can be chronic and acute and shows an episodic character.

The pathophysiology of asthma involves a chronic inflammatory process triggered by a complex com-
bination of possible factors and triggers, which differ for each patient [3, 4]. Following exposure to these
triggering elements, inflammatory mediators are released within the airways, setting off a cascade of
events that contribute to the acute and chronic symptoms of asthma. This includes the contraction of
smooth muscles, increased mucus secretion, increased vascular permeability, and edema of lung tissue.
These combined effects result in bronchoconstriction and subsequent airway obstruction.

1.1.1 Asthma Exacerbation

In the Global Initiative for Asthma (GINA) guidelines, an asthma exacerbation is defined as ”an episode
characterized by a progressive increase in symptoms of shortness of breath, cough, wheezing or chest
tightness, and progressive decrease in lung function, i.e. it represents a change from the patient’s usual
status that is sufficient to require a change in treatment” [5].

Asthma exacerbations in children have a high clinical impact due to the immediate health risks and
the long-term consequences [6]. The acute effects of asthma exacerbations include (severe) respiratory
distress, increased hospitalizations, and substantial disruption to daily life, including missed school days
and reduced physical activity [7–9]. Preventing exacerbations during childhood is crucial, as it allows for
less time spent ill, leading to improved physical and social development. Moreover, effective management
in the early stage significantly decreases the risk of chronic disease in adulthood. The high prevalence of
uncontrolled asthma further underscores the urgent need for innovative strategies to enhance pediatric
asthma management [10].

The GINA definition of asthma exacerbations is rather broad, making it susceptible to various inter-
pretations in the literature. Furthermore, only the official statement by the American Thoracic Society
(ATS) and European Respiratory Society (ERS) distinguishes between adult and pediatric asthma ex-
acerbation definitions [11]. They highlight that a moderate asthma exacerbation in pediatric asthma is
treated with an increased dose of inhaled corticosteroids (ICS) instead of systemic corticosteroids. The
switch to systemic corticosteroids defines a severe asthma exacerbation.

1.1.2 Pediatric Asthma Care

As highlighted in the GINA guidelines, the primary objective of asthma treatment is to achieve sufficient
symptom control while minimizing the risks of asthma-related mortality, exacerbations, airflow limitation,
and treatment-related side effects [12]. The patient’s needs and priorities complement this overarching
treatment objective.

The medication for pediatric asthma treatment can be divided into controller and reliever medica-
tion. The controller medication is focused on the long-term treatment of inflammation and the reliever
medication is focused on acute relief of symptoms. Furthermore, multiple aspects can influence asthma
management such as therapy adherence to the controller medication, inhalation technique, perception of
symptoms, education, environmental control, lifestyle, comorbidity management, and allergen exposure
control [13–21]. The great variety and varying impact of these influencing factors result in the high
complexity of pediatric asthma management.

1.2 Artificial Intelligence

Artificial Intelligence (AI) encompasses a diverse field in computer science dedicated to developing in-
telligent systems capable of performing tasks traditionally requiring human intelligence [22]. AI has
demonstrated remarkable capabilities in learning patterns from vast and diverse datasets [23,24]. Within
the broad definition of AI, Machine Learning (ML) is a specialized branch where statistical models learn
patterns from data to accomplish specific tasks such as prediction and categorization [23, 24]. In recent
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years, ML models have grown significantly in medicine, leveraging their capacity to handle vast and
multi-dimensional datasets [23,25].

1.2.1 Predicting Asthma Exacerbations

The evolving landscape foresees enhancements through electronic data collection [22, 26]. Zhang et al.
foresee that electronic data collection utilizing smartphone apps linked to digital spirometers and inhalers
can further enhance the predictive capabilities of ML algorithms [22]. However, further studies are crucial
to determine whether these advancements translate into improved clinical outcomes and assess the cost-
effectiveness of predictive algorithms for conditions like asthma [22,25].

Asthma exacerbations substantially burden the affected individuals and contribute significantly to
healthcare utilization and costs [27]. Understanding the influencing factors and their magnitude on
asthma exacerbations is crucial for developing effective preventive strategies [28]. The complexity of these
factors highlights the need for sophisticated analytical tools. Given the multifactorial nature of asthma
exacerbations, the application of ML to analyze big data holds great promise in identifying complex
relationships and predictive patterns [22,29,30]. The ability of ML models to discern subtle interactions
among various contributing factors can provide an opportunity to advance our understanding of the
dynamics leading to asthma exacerbations and provide predictions over time.

Moreover, Van Smeden et al. emphasize the importance of a well-defined prediction horizon, the time
window within which predictions are relevant and actionable [31]. There is no consensus on the optimal
prediction horizon for pediatric asthma exacerbation corresponding to the window of reversibility of
imminent exacerbation which also shows an interpatient variability. The proposed range varies from
hours to days and weeks [31,32]. This variability affects model accuracy and hinders clinical integration.

Existing prediction models for pediatric asthma exacerbation use various AI methodologies, focusing
on single-domain analyses such as genetic, comorbid, biological, environmental, or social factors [28].
These models fail to incorporate the complex interplay between these domains, limiting their predictive
power. These models have not been integrated into standard clinical care [32]. This highlights a research
gap between understanding domain interplays and practical AI model implementation in clinical settings.

1.2.2 Explainable AI

Explainable AI (XAI) focuses on making AI models transparent and understandable, which is crucial
for effective implementation in healthcare settings [33–35]. Current machine learning models lack gener-
alization and practical applicability in predicting pediatric asthma exacerbations due to minimal input
from healthcare professionals and their ”black box” nature, producing outputs without clear reason-
ing [32, 36]. This lack of transparency undermines trust and limits clinical integration, highlighting the
need for XAI to provide decision-making insights [33,35]. Most research has prioritized algorithmic devel-
opment over a user-centered design approach, emphasizing the importance of explainability in building
clinicians’ trust and confirming AI’s practical utility in clinical settings, specifically for the patient as in-
dividual [34,37,38]. Involving healthcare professionals in the design process ensures that AI systems meet
clinical needs, ethical standards, and workflow requirements, leading to more effective and user-friendly
integration [36,39–41].

1.3 Research Objective

The significant impact of asthma exacerbations and the high prevalence of uncontrolled asthma underscore
the urgent need for innovative approaches to enhance asthma management [10]. Moreover, prediction
and prevention of asthma exacerbations are needed to advance and tailor asthma management as current
clinical practice lacks the tools to disentangle and timely identify personal signals preluding asthma
exacerbations [42]. Improving insight into the multitude of factors influencing asthma exacerbations is
crucial for developing effective preventive strategies [28,30].

Thus, this research aims to develop an AI model for predicting pediatric asthma exacerbations that
can be applied to regular asthma care in the pediatric department. Furthermore, this AI model can
determine the personal risk factors at play in the build-up to an asthma exacerbation for each patient.

This research is divided into three sequential parts. The first part consists of literature research, the
second part focuses on simulating machine learning models, and the third part consists of interviews with
healthcare professionals.
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The research questions of the first part aim to answer the following questions from the literature:

• What machine learning models are used in the literature to predict pediatric asthma exacerbations?

• What definitions of asthma exacerbation are used in the literature?

• What time horizons for predicting asthma exacerbations are achieved in the literature?

The research questions of the second part aim to answer the following questions from the machine learning
model simulations:

• What is the performance of machine learning models in predicting pediatric asthma exacerbations?

• How can machine learning models determine risk factors for the individual patient?

• What is the predictive impact of the definition of asthma exacerbations?

• What time horizon for predicting asthma exacerbations can be achieved?

The research questions of the third part aim to answer the following questions from the interviews:

• How would healthcare professionals define asthma exacerbations?

• What time horizons are most useful according to healthcare professionals?

• How do healthcare professionals prefer to integrate asthma exacerbation prediction into their clinical
workflow?

The first part is presented in Chapters 3, 4, 5, the second part in Chapters 6, 7, 8, and the third part in
Chapters 9, 10, 11. In Chapter 12, a general discussion and conclusion are presented, integrating insights
from all three parts to provide an overview of the findings.
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2 Background

2.1 Asthma Exacerbation

As mentioned before, the general definition of an asthma exacerbation as set by the GINA guidelines is
rather broad [5]. To demonstrate the range of interpretations, several definitions from various studies
are shown in Table 2.1, highlighting the differences in the comprehensiveness of each definition. Notably,
the only definitions tailored to pediatric asthma exacerbations are the definitions mentioned by Reddel
et al. [43]. A more extensive explanation of each definition is shown in Appendix A.

Table 2.1: The different definitions of asthma exacerbations throughout the literature.

Reddel et
al. [11]

Altman et
al. [44]

Murray et
al. [28]

Helen et
al. [45]

GINA
2024 [12]

Virchow et
al. [46]

Increase in
symptoms

Moderate
exacerbation

Significant
exacerbation

Exacerbation Moderate
exacerbation

Decrease in
lung func-
tion

Moderate
exacerbation

Exacerbation Moderate
exacerbation

Change in
daily con-
troller medi-
cation

Severe
exacerbation

Moderate
exacerbation

Exacerbation

Need of sys-
temic corti-
costeroids

Severe
exacerbation

Exacerbation Significant
exacerbation

Severe
exacerbation

Hospital ad-
mission

Exacerbation Severe
exacerbation

Life-
threatening

Severe
exacerbation

Emergency
room visit

Severe/moderate
exacerbation

Moderate
exacerbation

Increase in
reliever med-
ication

Moderate
exacerbation

Moderate
exacerbation

Nocturnal
awakening

Moderate
exacerbation

The criteria increase in asthma symptoms and the need for systemic corticosteroids are used most in
the literature although the definition varies from asthma exacerbation to moderate, significant asthma
exacerbation, and severe asthma exacerbations. Interestingly, the need for systemic corticosteroids is
classified as a significant asthma exacerbation together with the criterium of an increase in symptoms by
Murray et al. but classified as severe asthma exacerbation by Helen et al. and Reddel et al. [11, 28, 45].
Furthermore, a distinction is made between a hospital admission and an emergency visit as the severity of
the asthma exacerbation is greater for a hospital admission than for an emergency visit. Moreover, three
criteria are based on medication usage, two on healthcare utilization, and two on asthma symptoms. The
criteria based on the asthma symptoms are mostly classified as the less severe asthma exacerbation [44,46].
Lastly, the criterion based on the decrease in lung function classifies the asthma exacerbation as moderate.
However, Reddel et al. and Virchow et al. do not provide a clear cut-off value, making it difficult to
distinguish between a loss of asthma control and a progression into a more severe exacerbation.
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2.2 Asthma Management

2.2.1 Pharmacological Asthma Management

The medication as part of pediatric asthma treatment consists of controller and reliever medication [5].
Inhalation corticosteroids (ICS) are controller medications and aim to reduce airway inflammation, control
asthma symptoms, and reduce overall risks of asthma exacerbation and a further decline in lung function.
Reliever medication seeks to provide relief of acute asthma symptoms. Reliever medication includes either
short-acting beta-agonists (SABA) or a combination of ICS and formoterol. The mechanism of reliever
medications involves the relaxation of smooth muscles in the airway, effectively widening the airway
for immediate symptom relief. The approach of combining reliever and controller medication is more
compatible with daily practice and not only addresses the underlying inflammatory processes but also
provides tailored relief for acute symptoms. Furthermore, treating asthma exacerbations consists of
repetitive rapid-acting reliever medication, introduction to systemic corticosteroids such as prednisolone
or prednisone, and flow oxygen supplementation.

2.2.2 Non-Pharmacological Asthma Management

Therapy adherence and proper inhalation technique are crucial for effective asthma management [16–18,
47,48]. Non-adherence and incorrect inhalation technique are associated with lower medication deposition
in the lungs, resulting in lower asthma control [16,17]. The variable and episodic nature of asthma, along
with challenges like steroid phobia and the lack of immediate relief from inhaled controller medications,
complicates medication adherence [16,18].

Self-management and education are essential aspects of effective asthma management [17, 49–51].
Asthma self-management empowers patients to achieve treatment goals, monitor and manage symptoms,
and adapt to lifestyle changes associated with chronic illness by avoiding triggers and maximizing therapy
adherence [52]. Education on asthma (management) plays a vital role in equipping patients with the
motivation, skills, and confidence needed to control their asthma through self-management [50,53].

Symptom perception is critical in asthma management as it affects self-management, e.g. how patients
recognize and respond to their symptoms [15,54]. Accurate perception is key for early detection and timely
management of asthma exacerbations.

Managing comorbidities is crucial for effective asthma management, as they impact asthma control [21,
51]. Asthma comorbidities include obesity, (non-) allergic rhinitis, chronic rhinosinusitis, obstructive sleep
apnea, dysfunctional breathing, inducible laryngeal obstruction, and bronchiectasis [19, 21, 51]. Allergic
rhinitis can lead to worsened asthma control and increased asthma symptoms. Additionally, inducible
laryngeal obstructions and dysfunctional breathing reduce exercise tolerance, impacting asthma control.
Effective asthma management must therefore include management of comorbidities.

Allergen and environmental control are critical components of effective asthma management [20,55,56].
Major allergens like house dust mites, pets, molds, and pollen play a significant role in asthma, and
continued exposure can exacerbate asthma symptoms. Allergen avoidance can reduce clinical symptoms,
particularly in patients with allergic rhinitis [57]. Additionally, indoor air pollutants and viral infections
further complicate asthma control [55]. Therefore, allergen and (home) environmental control are essential
aspects of asthma management by reducing asthma symptoms [20,55–57].

Lifestyle and exercise are crucial in asthma management, as they significantly impact asthma con-
trol [19, 58,59]. Decreased physical activity, poor nutrition, and obesity contribute to asthma symptoms
and poor asthma control [19,59]. While exercise can trigger bronchoconstriction, it is safe and beneficial
for pediatric asthma patients [59]. Furthermore, dietary choices, such as consuming a Western diet high
in saturated fats, may worsen asthma symptoms, while a Mediterranean diet rich in fruits and vegeta-
bles increases asthma control [19]. Thus, integrating a healthy lifestyle and regular exercise into asthma
management is essential.

2.2.3 Exercise Challenge Test

In Medisch Spectrum Twente children with asthma visit the AIRCON (Astma Inspanning & Research
Centrum Oost Nederland) approximately once a year as part of standard care. During this visit lung func-
tion, bronchial hyperactivity to an exercise test, and reversibility after reliever medication are measured.
The AIRCON consists of a climate-controlled room in which children complete an exercise provocation
test under a temperature approximating 10 Celsius. For assessing lung function, spirometry and forced
oscillation techniques are used. After baseline measurements, the child exercises for six minutes in the
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climate room at sub-maximal intensity [60]. Lung function measurements are assessed at certain times
after the exercise test. The last measurement is executed after bronchodilator inhalation to assess the
reversibility of bronchoconstriction.

This comprehensive aircon test is used as a diagnostic tool for diagnosing pediatric asthma as well as
common comorbidities. These comorbidities include (non-)allergic rhinitis (prevalence up to 90% [61,62]),
dysfunctional breathing (prevalence up to 30 % [63, 64]), physical deconditioning (prevalence 38% [65]),
and exercise-induced laryngeal obstruction (no specific prevalence known in pediatric asthma popula-
tion [21]). Furthermore, this test allows for assessing asthma control, perception, and exercise tolerance
in a close to real-life setting to further target asthma management.

2.2.4 eHealth Pediatric Asthma Care

Electronic health (eHealth) is defined by Eysenbach as “an emerging field in the intersection of medical
informatics, public health, and business, referring to health services and information delivered or enhanced
through the Internet and related technologies [66]. eHealth constitutes a dynamic domain within health
services and information and spans various domains such as digital apps, telemedicine, electronic health
records, medication tracking, and clinical decision support systems [67,68].

Effective asthma care demands timeliness, accuracy, and patient-tailoring [67]. eHealth applications
have the potential to facilitate proactive care, offering easily accessible and personalized asthma action
plans, particularly beneficial for patients unresponsive to standard treatments and at a higher risk of
asthma exacerbations. Furthermore, technology-supported home care tailored to the individual child and
healthcare system can complement scheduled hospital evaluations [69]. eHealth asthma care, appear-
ing both technically and clinically feasible, enables safe remote care and proves beneficial for pediatric
asthma care regarding health outcomes and healthcare utilization [70]. Notably, home monitoring of phys-
iological parameters correlates with pediatrician-assessed asthma control, as indicated by a constructed
multivariate model, showcasing the high potential for monitoring asthma control and allowing healthcare
professionals to assess it at home [71]. eHealth can aid in therapy by allowing for at-home measurement
of treatment response and compliance and determining personalized asthma action plans [67,68]. More-
over, eHealth can be implemented as a monitoring tool to assess physiological parameters correlating
with asthma control [69, 71]. Also, the loss of asthma control can be timely anticipated using eHealth
care [67].

Pediatric asthma care in Medisch Spectrum Twente (MST) is complemented with eHealth care through
the Puffer app [69]. The Puffer application features a chat function for approachable and easy-access
consultation with a healthcare professional with expertise in pediatric asthma, improving education, skills,
and self-management. Moreover, it allows the patients to send pictures and videos for a more objective
asthma symptom evaluation. Additionally, digital spirometers can be employed at home, with results
conveniently transmitted via the Puffer app, enabling at-home lung function assessments. Presently, 45
patients are enrolled in the Puffer app.

The CIRCUS study is currently ongoing in the MST hospital [72]. This study is a cohort multiple
randomized controlled trial (cmRCT) to assess risk factors in asthma management and compare the effects
of eHealth interventions. This study will help discern risk factors and novel cues of asthma exacerbations,
uniquely compare effective scalable eHealth solutions, and improve overall pediatric asthma management
and care.

2.3 Machine Learning Models

Machine Learning (ML) is a specialized branch of artificial intelligence where statistical models learn
patterns from data to accomplish specific tasks such as prediction and categorization [23,24,73].

ML algorithms can be broadly classified into unsupervised and supervised learning approaches [74,75].
While unsupervised learning enables the exploration of patterns and labels in patient samples without
predefined labels, supervised learning operates on labeled data to make predictions on new samples [76].
In unsupervised learning, the algorithm identifies inherent structures and relationships within the data,
revealing patterns that may not be apparent. In contrast, supervised learning uses a labeled dataset,
where the algorithm learns from known outcomes to make predictions on new, unlabeled samples. The
goal is to discover a pattern from the training data that can be applied to new, unseen samples to make
predictions or classifications [73, 77]. Thus, the model performance is greatly influenced by the labeling
quality and outcome definition [78].
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2.3.1 Model Categories

Probabilistic models, like Bayesian Networks (BN), Lasso Logistic Regression (LLR), and Multinomial
Logistic Regression (MLR), make predictions by handling uncertainties and relationships between vari-
ables [77, 79]. BNs solve predictive problems using conditional probabilities and robustly handle noisy
input data [79]. These ML models are mostly used for clustering and classification tasks.

Decision Trees (DT) and Random Forests (RF) split data recursively to make decisions, with RFs
improving accuracy by averaging results from multiple trees [75, 77]. Each tree consists of nodes and
branches, where nodes represent to-be-classified attributes, and branches represent values used to make
decisions.

Ensemble methods, such as Gradient Boosting Models (GBM) and eXtreme Gradient Boosting
(XGBoost), sequentially train multiple weak learners, each improving on the errors of the previous
ones [77, 80–82]. It is based on the assumption that multiple weak classifiers create one strong clas-
sifier which has learned from all previous classification errors. This method primarily improves model
performance [81,83].

Neural networks, including Artificial Neural Networks (ANN) and Long Short-Term Memory (LSTM)
models, learn complex patterns through interconnected nodes [77]. They consist of algorithms that
recognize underlying associations in a dataset similar to the human brain. LSTMs excel in sequential
data analysis and capture long-term dependencies [84–86]. Their ability to handle irregular data and
missing values makes them valuable in clinical settings.

Support Vector Machines (SVMs) apply kernel-based methods to perform linear and non-linear clas-
sification simultaneously by identifying optimal hyperplanes for separating classes [75,77]. These models
draw margins between classes with a maximum distance to minimize the classification error.

2.3.2 Performance Metrics

The area under the ROC curve (AU-ROC) is a widely used performance metric in the literature [87,88]. It
evaluates the model’s ability to differentiate between classes across all thresholds, making it independent
of any specific decision threshold [88, 89]. AU-ROC is also interpreted straightforwardly, with higher
values indicating better class discrimination. It remains unaffected by class prevalence, thus maintaining
performance consistency even in cases of class imbalance, though this may not fully reflect real-world
scenarios [90].

Other common metrics include sensitivity (or recall), specificity, and accuracy, which are often pre-
sented together [75,87,91]. Sensitivity measures the proportion of correctly identified true positives (TPs)
to false negatives (FNs). It can be calculated using the following formula:

Sensitivity =
TP

TP + FN
. (2.1)

Both sensitivity and specificity are independent of prevalence, making them reliable in imbalanced
datasets [90]. The specificity reflects the model’s ability to correctly identify the true negatives (TNs) in
relation to false positives (FPs) and can be calculated using:

Specificity =
TN

TN + FP
. (2.2)

Accuracy reflects the overall proportion of correct predictions and is calculated using true positives,
true negatives, false positives, and false negatives:

Accuracy =
TP + TN

TP + TN + FP + FN
(2.3)

In contrast, precision (or positive predictive value) measures the proportion of true positive results
among all positive predictions made by the model, indicating the accuracy of the positive predictions. It
depends on class prevalence, making it particularly useful when dealing with class imbalance. It can be
calculated using:

Precision =
TP

TP + FP
. (2.4)
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Like the AUC-ROC, the AUC-PR assesses the trade-off between precision and recall but is particularly
useful for imbalanced datasets [92, 93]. It provides a clearer view of model performance by focusing on
the precision-recall trade-off. It is less affected by the number of correctly predicted negatives, making it
less likely to exaggerate performance in cases of class imbalance [90,92–94].

The F1 score combines precision and recall into a single metric, balancing both aspects to provide a
comprehensive evaluation, especially important when dealing with imbalanced class distributions [87,95].
It is the weighted mean of precision and recall, reflecting the model’s ability to manage both false positives
and false negatives effectively [90,95]. It can be calculated using:

F1 score = 2 × TP

2TP + FP + FN
. (2.5)

2.3.3 Explainability

Explainability regarding the input features most important for the prediction can be performed in several
ways of which the most used are presented here.

Feature permutation involves permuting the values of a feature and observing the impact on the
model’s performance [96–98]. A significant increase in model error following permutation indicates that
the feature is important for prediction.

SHAP (SHapley Additive exPlanations) assigns each feature a value that represents its contribution to
the prediction [99,100]. By using kernel-based SHAP, feature importance can be computed for a specific
patient and also averaged across the whole population.

Gradient boosting models (GBMs), such as XGBoost, offer built-in feature importance metrics [83,
101], including gain (the improvement in accuracy from a feature split), frequency (how often a feature is
used), and coverage (the number of samples affected by a feature’s splits) which give a global importance
score.

For model-agnostic local feature importance, Local Interpretable Model-agnostic Explanations (LIME)
can be employed [83,102]. LIME generates a synthetic dataset near the observation of interest and trains
a surrogate interpretable model to explain predictions locally. Similarly, Diverse Counterfactual Expla-
nations (DiCE) can be employed for model-agnostic counterfactual explanations [103]. DiCE generates
multiple diverse counterfactual instances by minimally altering feature values to show how small changes
in the input could lead to a different prediction, providing insight into the model’s decision boundaries.

In deep learning models, techniques such as integrated gradients and attention mechanisms can en-
hance interpretability [104]. Integrated gradients attribute a model’s predictions to individual input
features by integrating gradients along a path from a baseline input. Attention mechanisms, commonly
used in sequence models like LSTMs, highlight which parts of the input sequence the model focuses on
for making predictions.

Model uncertainty estimation methods, such as Monte Carlo Dropout, also contribute to explainability
by quantifying the model’s confidence in its predictions [105].

2.4 Factors influencing Asthma Exacerbations

Factors in various domains, including genetic, comorbid, biological, external, environmental, social, and
psychological factors contribute to the heightened risk of recurrent asthma exacerbations in children [28].

2.4.1 Demographics

Within the literature, gender distinctions have been identified as a factor influencing the likelihood of an
asthma exacerbation [106, 107]. Boys demonstrate heightened susceptibility until puberty, after which
females are predisposed to acute asthma exacerbations throughout their lives [108,109].

Finally, social factors, such as lower socioeconomic status, are recognized as contributors to the risk
of asthma exacerbation [108,110,111]. The reasons for this are likely intricate, encompassing either poor
nutrition, exposure to cigarette smoke, air pollution, or a combination of these factors. Additionally, a
history of cigarette smoking, tobacco exposure, and e-cigarettes is associated with an increased risk [106,
112, 113]. Moreover, race and ethnicity can influence the risk of asthma exacerbation with non-Hispanic
black children and African American children having a greater risk of asthma exacerbation, but this is
mostly investigated in the United States [30,106,107,114,115].
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Furthermore, genetic risk factors can influence the asthma exacerbation risk in children as genome-
based studies identified genes predisposing to asthma exacerbations [116,117]. Exacerbation-prone asthma
is a phenotype characterized by metabolic dysfunction which has been associated with elevated levels of
IL-6, which along with eosinophils, has been shown to predict asthma exacerbation risk [116]. Moreover,
gene-environment interactions add complexity to the genetic factors influencing asthma, with evidence
suggesting that these interactions play a role in the severity of rhinovirus-triggered asthma exacerba-
tions [118]. Overall, the genetic predisposition to asthma exacerbations is driven by a complex interplay
of intrinsic asthma-related genes and external environmental factors.

2.4.2 Clinical Factors

Children with poorly controlled asthma have a significantly higher risk of asthma exacerbations, under-
scoring the importance of consistent therapy adherence [30,119]. The frequent use of reliever medication,
particularly salbutamol, for more than two days in two weeks on top of controller medication, is a strong
predictor of future severe asthma exacerbations [30,120]. Poor adherence to asthma treatment, including
improper use of inhaled medications and devices, is linked to an increased risk of asthma exacerbations
and hospital admissions [16,18,30,121–124].

Comorbidities amplifying the risk of asthma exacerbations include obesity, which has been associated
with poor asthma control and severe asthma exacerbations [30,106,115,125,126]. Rhinitis, both allergic
and non-allergic, contributes to poorer asthma control and a higher frequency of asthma exacerbations
which can be indicated with IgE as biomarker [21,106,119,126–128]. Chronic stress and anxiety are also
important factors that can exacerbate asthma symptoms [30,115,129,130].

Previous asthma exacerbations are strong predictors of future asthma exacerbations [30,119,125,131,
132]. The odds for a second asthma exacerbation do not necessarily increase with increasing severity
of an initial exacerbation. [131]. The use of oral corticosteroids and emergency department visits or
hospitalizations for asthma symptoms in the past year are significant indicators of a heightened risk for
subsequent asthma exacerbations [30]. Biomarkers such as blood eosinophil counts and serum IL-6 levels
have been associated with an increased risk of asthma exacerbations [30, 115, 133–137]. Additionally,
higher fractional exhaled nitric oxide (FeNO) levels could indicate a higher risk of asthma exacerbation
but its predictive power is low [138, 139]. However, evidence remains conflicting, and specific volatile
organic compounds (VOCs) patterns in exhaled breath, have shown promise in predicting asthma ex-
acerbations [30, 109, 140]. Lastly, vitamin D insufficiency has been associated with worse lung function
and poor asthma control, although supplementation has not significantly improved the time to the next
severe asthma exacerbation [141,142].

Spirometry measures, particularly a lower FEV1% predicted, are strongly associated with an increased
risk of asthma exacerbations in the subsequent year [30,138,143]. Furthermore, the ratio between FEV1

and FVC had some predictive power for severe asthma exacerbations in children [144] Reversibility to
bronchodilators measured in spirometry heightens the risk of an asthma exacerbation [145, 146]. Oscil-
lometry measures such as the resistance at 5Hz, the resistance difference at 5Hz and 20Hz, the reactance
at 5Hz, and the area under the reactance curve yield some predictive power for predicting asthma exac-
erbations [144,147]

2.4.3 Environmental Factors

Environmental factors contributing to asthma exacerbations include urbanization, which increases out-
door pollution and is particularly evident in high-income countries [113, 117, 148]. Air pollution, specif-
ically particulate matter (PM2.5), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3), is a
significant risk factor for asthma exacerbations in children [30, 44, 115, 119, 149]. Even short-term expo-
sure to high concentrations of these pollutants can significantly elevate the risk of an asthma exacerba-
tion [150]. Lastly, exposure to smoke is another critical environmental factor, as it is associated with
worsening lung function, decreased response to treatment, and increased emergency department visits for
asthma [115,119,151].

Viral infections, particularly human rhinovirus (HRV), are well-established triggers of asthma exac-
erbations in children and may serve as a biomarker for imminent attacks [30, 115, 119, 152–154]. Other
respiratory viruses, such as respiratory syncytial virus (RSV), influenza, and parainfluenza, also con-
tribute to frequent wheezing and severe exacerbations in early childhood, often acting alone or in com-
bination [115,155,156]. Additionally, the return to school in autumn is associated with a rise in asthma
exacerbations, linked to rhinovirus infections and a lack of consistent medication use at school [108].
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Exposure to allergens not only triggers asthma symptoms but also interacts with viruses, further
increasing the risk of asthma exacerbations, particularly in children [30,44,115,119,149]. Elevated allergen
exposure, including pollens influenced by wind speed and rainfall, can heighten airway inflammation,
induce symptoms, and raise the likelihood of asthma exacerbations [57, 157, 158]. Seasonal variations
also play a role, with exacerbations peaking in late spring due to high grass pollen counts and increased
humidity and a second peak occurring around the end of the hay fever season [30].

Meteorological data influences the risk of asthma exacerbations [152, 159]. Cold temperatures and
extreme weather conditions are independent predictors of asthma exacerbations, with lower tempera-
tures particularly associated with higher hospital admission rates for asthma [160, 161]. Humidity and
temperature also hold predictive power for predicting asthma exacerbations [156]. Additionally, weather-
related triggers such as pollen, wind speed, and rainfall are linked to increased asthma exacerbations in
children [152].
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3 Methods - Literature Study

3.1 Literature Research

The literature research was conducted with a scoping approach and aimed to identify relevant studies on
machine learning models for predicting pediatric asthma exacerbations. This scoping literature research
included studies without restriction on publication date. The inclusion criteria are:

• Article is written in English

• Full text of the article is available

• Article is an original research

• Use of an ML model

• Predictions within the asthma domain (e.g. asthma exacerbations, loss of asthma control, asthma
deterioration, or asthma symptoms)

• Inclusion of either children, adults, or both

The search, finalized at the beginning of March 2024, included articles from PubMed, Scopus, and Google
Scholar. The key search terms are shown in Appendix B.

3.2 Data Extraction

The data extraction consisted of article characteristics, machine learning model characteristics, input
data, outcome definition, population characteristics, time horizon, and performance metrics. This is
further elaborated in Table 3.1.

3.3 Data Analysis

Articles are categorized into three distinct groups based on their relevance to the research objectives. This
categorization is determined by the study populations’ age range and the models’ outcome definitions.
For further objectification, the criteria are further elaborated in Table 3.2. This approach ensures that
only the most relevant studies, directly addressing the research objectives, are highlighted in the results.

For each extracted domain, the results are systematically presented using tables and figures, supple-
mented with a descriptive analysis to provide context and interpretation. The visualization of the models’
input characteristics is shown as either present or not present, categorized by the different domains. The
values of the most used model’s performance metrics are visually presented.

Assessing the quality of the included articles is beyond the scope of this literature review, which
primarily focuses on examining the range of models used in the literature.
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Table 3.1: Data extraction of the literature research.

Extraction domain Elaboration*

Article characteristics Year of publication

Machine learning model charac-
teristics

Number of ML methods, different types of ML methods, best-
performing ML method (if multiple methods are presented)

Input data General description of included input domains

Input data: demographics do-
main

Use of age, sex, gender, ethnicity, race, and language

Input data: clinical measure-
ments and vital signs

Use of weight, height, BMI, respiratory rate, heart rate, satura-
tion, blood pressure, temperature, eosinophils, IgE, and other

Input data: asthma characteris-
tics

Use of medication, ACT, symptoms, asthma history, medical
history, lung function (spirometry), FeNO, VOC, tobacco expo-
sure, and family history

Input data: comorbidities Use of allergies, eczema, obesity, and general comorbidities

Input data: healthcare utiliza-
tion

Use of previous exacerbation, ER visits, ER arrival mode, num-
ber of outpatient visits, number of hospitalizations, and other

Input data: social data Use of home area, housing conditions, insurance, household in-
come, and other

Input data: environmental data Use of air pollution, meteorological data, pollen data, virus
data, and other

Input data: at-home measure-
ments

Use of at-home symptoms and at-home spirometry

Outcome definition Description of defined outcome

Population characteristics Number of included patients, age range of included patients

Time horizon Presence and the exact value of time horizon

Performance metrics Use and the exact value of AU-ROC, sensitivity, specificity,
accuracy, recall, positive predictive value, negative predictive
value, AU-PR, and F1 score

* ML = Machine Learning, BMI = Body Mass Index, ACT = Asthma Control Test, FeNO =
Fractional exhaled Nitric Oxide, VOC = Volatile Organic Compounds, ER = Emergency Room,
AU-ROC = Areau Under the Receiver Operator Curve, AU-PR = Area Under the Precision-
Recall curve

Table 3.2: Criteria for articles’ assessment of relevance.

Study populations’
age range

Models’ outcome definitions

Highly relevant Pediatric Asthma exacerbation, hospitalization for exacer-
bation, or ER visit for exacerbation

Moderately relevant Pediatric and adults Asthma control, asthma symptoms, general hos-
pitalizations, general ER visits

Least relevant Adults or unknown Asthma persistence, asthma scores, severity of
asthma exacerbation
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4 Results - Literature Study

4.1 General Results

The number of found articles was not saved in this study. A total of 63 articles were included in the
literature research, of which 16 were excluded during data extraction for not meeting the assessment of
relevance criteria. In total, 13 articles were classified as highly relevant, 20 as moderately relevant, and 14
as least relevant. The highly applicable articles primarily focus on asthma exacerbation outcomes within
pediatric or mixed-age populations. The moderately relevant articles generally use asthma exacerbation
outcomes in adult populations only or hospitalization outcomes (Table C.4 in Appendix C). The least
relevant articles include those articles using outcomes such as asthma control, symptoms, severity of
asthma exacerbation, and readmissions (Table C.6 in Appendix C). The characteristics of the highly
relevant articles, including the population details, machine learning methods, outcome definitions, and
time horizon, are summarized in Table 4.1.

The 13 highly relevant articles range from 2007 to 2023, with 6 published in the last 5 years. The
machine learning method most used is the gradient boosting models, which include the XGBoost models,
followed by random forest models.

The outcomes are asthma exacerbations (moderate or severe), criteria for asthma exacerbations (hos-
pitalization, emergency room visit, or systemic corticosteroids), or non-defined asthma exacerbations.
The non-defined asthma exacerbation is used the most as the outcome, in 6 out of 13 articles. The
age range starts between 2, 6, or even 15 and ends at 18. Five articles did not mention the age range
specifically, two of these articles included both children and adults. The number of included patients
varies greatly from less than 100 in five articles to a few thousand in three articles and even a few ten
thousand in two. For most of the articles, the time horizon of the prediction was not mentioned. In three
articles, the prediction’s time horizon was set at 365 days; in one article, predictions were presented on
multiple time horizons; 30, 90, and 120 days.

4.2 Input Results

Figure 4.1 shows the demographics, clinical characteristics, asthma characteristics, and comorbidities
used as input for the machine learning models in the highly relevant articles. Table C.1 in Appendix C
shows the tabular data. The definitions of input features are elaborated in Appendix D.

Most models use age and sex as demographic input for their model. Alternatively to sex, two models
use gender. Four models use ethnicity as input of which two additionally use race. Respiratory rate,
saturation, weight, and heart rate are the most used clinical measurements and vital signs. Furthermore,
two models from the same group use blood pressure, temperature, eosinophils, immunoglobulin E, and X-
rays as input features. Only one model used genome data as input data. Medication, spirometry measures,
volatile exhaled compounds, asthma history, asthma symptoms, and fractional exhaled nitric oxide are
the most used asthma characteristics. The asthma control questionnaire and the GINA symptoms score
are both scores focussed on asthma symptoms and are used in three models. Allergies are the most used
comorbidities as input for the machine learning models. Overall, there is a variety in the number of
used input features for each model. The models by Luo et al. [168] and [169] use the highest number of
input features overall (both 19 features in total) and also the most demographics and the most clinical
measurements and vital signs. The models by van Vliet et al. [139] and [140] use the most asthma
characteristics and relatively more input features than the other models. The model by Hurst et al. uses
the most comorbidities as input for their model.

Figure 4.2 shows the healthcare utilization, social data, environmental data, and at-home measure-
ments used as input for the machine learning models in the literature. Table C.2 in Appendix C shows
the tabular data of this figure.

The input features from the four domains shown in Figure 4.2 are relatively less used than the input
features shown in Figure 4.1. Three models use healthcare utilization, varying from emergency room
visits, outpatient visits, and hospitalizations to billing codes and chief complaints. Four models include
social data mostly using home area and insurance data. Three models include environmental data using
air pollution, meteorological, virus, and climate data. Three models include at-home measurements of
spirometry and symptoms. The model of Patel et al. uses the most social and environmental input
data [166].
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Table 4.1: The highly relevant literature comparison of machine learning models for predicting pedi-
atric asthma exacerbations.

Source ML
methods*

Outcome* Age range
(number of
patients)

Time
horizon

Dexheimer
et al. 2007
[162]

BN, SVM,
ANN

Asthma exacerbation
(not further defined)

2 – 18 (4023) -

Lee et al.
2011 [163]

DT Asthma exacerbation
(not further defined)

Children (33) -

Xu et al.
2011 [164]

RF Hospitalization or ER
visit

Children (417) -

Robroeks
et al. 2013
[165]

SVM Moderate to severe
asthma exacerbations

6 – 16 (40) -

Van Vliet
et al. 2015
[139]

Conditional
models

Moderate to severe
asthma exacerbations fol-
lowing Reddel et al [43]

6 – 18 (94) -

Van Vliet
et al. 2017
[140]

RF Asthma exacerbation
(not further defined)

6 – 18 (96) -

Patel et al.
2018 [166]

DT, RF,
LLR, GBM

Hospitalization and re-
ceiving systemic corticos-
teroids

2 – 18 (29392) -

Kim et al.
2020 [167]

LSTM,
MNL

Risk for asthma exacer-
bation

6 – 14 (14) -

Luo et al.
2020 [168]

XGBoost Hospitalization or ER
visit

Children and
adults (unknown)

365 days

Luo et al.
2020b [169]

XGBoost Hospitalization or ER
visit

Children and
adults (unknown)

365 days

Hurst et al.
2022 [152]

LLR, RF,
XGBoost

Asthma exacerbation
(not further defined)

5 – 18 (5982) 30, 90, 180
days

Hozawa et
al. 2022
[170]

XGBoost Asthma exacerbation
(not further defined)

15 – 18 (42685) 365 days

Mandana
et al. 2023
[171]

RF Asthma exacerbation
(not further defined)

Children (2042) -

* BN = Bayesian Network, SVM = Support Vector Machine, ANN = Artificial Neural Network,
DT = Decision Tree, RF = Random Forest, LLR = Lasso Logistic Regression, GBM = Gradient
Boosting Models, LSTM = Long-Short Term Memory, MNL = MultiNomal Logistic, XGBoost
= eXtreme Gradient Boosting, ER = Emergency Room

The overall number of input features used in the model varies greatly as the model by Lee et al. [163]
only incorporates 3 input features whereas both the models of Luo et al. [168] and [169] use 19 input
features. The number of features for each model is shown in Figure C.1 in Appendix C. The mean number
of features used is 9.7 features with a standard deviation of 5.5 features.
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Figure 4.1: The input characteristics of the machine learning methods of the demographic, clinical, and
asthma characteristics, and comorbidities domain. BMI = Body Mass Index, IgE = Immunoglobulin E,
VOC = Volatile Exhaled Compounds, ACT = Asthma Control Test, and FeNO = Fractional Exhaled
Nitric Oxide

Figure 4.2: The input characteristics of the machine learning methods of the healthcare utilization, so-
cial, environmental, and at-home measurements domain.
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4.3 Model Performance

Figure 4.3 shows the values of the model performances of the machine learning models in the highly
applicable category. Table C.3 in Appendix C shows the tabular data.

The most used model performance metrics are the area under the receiver operating curve (AUC) (8
articles), sensitivity (7 articles), specificity (6 articles), and accuracy (6 articles). The AUC ranges from
59% to 96%, the sensitivity from 52% to 100%, specificity from 67% to 93%, and accuracy from 52% to
90%. Positive predictive value (PPV) was only presented in two articles. The negative predictive value,
positive likelihood ratio, and negative likelihood ratio were model performance metrics only presented in
one article and are therefore only shown in Table C.3 in Appendix C.

None of the models in the literature applied explainable AI to explain the model and reveal the
predictive power of input features.

Figure 4.3: The model performance of the best-performing model for the most applicable articles. AUC
= Area Under the receiver operating Curve, BN = Bayesian Network, RF = Random Forest, KNN
= K-Nearest Neighbors, GBM = Gradient Boosting Model, XGBoost = eXtreme Gradient Boosting,
SVM = Support Vector Machine, DT = Decision Tree.
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5 Discussion and Conclusion - Literature Study

5.1 Discussion on General Model Characteristics

The literature research reveals that the most frequently utilized models for predicting asthma exacerba-
tions are gradient boosting models (GBM), particularly XGBoost, alongside random forest (RF) models.
A notable challenge arises from the varying definitions of asthma exacerbations for its prediction (see
Table 2.1), leading to broad and sometimes ambiguous outcomes within the literature (see Table 4.1).
Additionally, many studies lack clarity regarding the time horizon of their predictions, which can hinder
clinical applicability.

Comparing the most used ML models based on their theoretic principles reveals their distinct strengths
in handling complex datasets, addressing class imbalances, and managing overfitting for asthma exacerba-
tion classification. GBMs, including XGBoost, are particularly effective for asthma exacerbation classifi-
cation due to their capacity to handle complex, high-dimensional datasets and their robustness in scenarios
involving class imbalances [81, 172]. GBMs excel by iteratively combining weak learners to build strong
predictive models, making them particularly suitable for high-bias or unbalanced datasets [81, 82, 172].
XGBoost enhances this approach by incorporating strategies to reduce overfitting and optimize training
speed, demonstrating scalability and efficiency [81]. Despite these advantages, GBMs are more prone to
overfitting if not properly regularized, and their computational demands can be significant, particularly
with larger datasets [172]. RFs are similarly advantageous, offering high performance with default hyper-
parameters and resilience across various class imbalance scenarios [81, 85]. Their efficiency in managing
large input features with minimal preprocessing makes them well-suited for datasets that include missing
values [172]. However, RFs computational demand can escalate with larger datasets, which is a poten-
tial disadvantage. A relatively unused model in pediatric asthma exacerbation is the Long Short-Term
Memory (LSTM) model. This model is well-suited for capturing the long-term relationship of features
at play in asthma [84–86]. Additionally, LSTM models require no feature engineering making it easier to
implement [85,86]. Nonetheless, the complexity of LSTMs necessitates time-series data, posing practical
limitations.

The asthma exacerbation definitions vary greatly through the included studies. The models by Ro-
broeks et al. [165] and van Vliet et al. [139] both defined asthma exacerbations as moderate to severe.
However, as defined by Reddel et al. moderate and severe asthma exacerbations are rather different as
a severe asthma exacerbation requires hospitalization and a moderate exacerbation requires a step-up in
controller medication [45]. Further, models developed by Lee et al. [163], Luo et al. [168] and [169], and
Patel et al. [166] utilize hospitalization or emergency room (ER) visits as definitions for asthma exac-
erbations. As detailed in the literature (Table2.1), hospitalizations are typically associated with severe
exacerbations, whereas ER visits often indicate moderate to severe exacerbations. This suggests that
these four models may effectively merge two categories of asthma exacerbations. Although research has
not yet fully explored the implications of using different categories of asthma exacerbations, the current
models may combine patterns for predicting moderate and severe exacerbations. This blending of pat-
terns could influence the predictions’ accuracy. The variety in patient numbers used for model training
poses another challenge for the asthma exacerbation definition. The varying age ranges in the included
populations may impact model performance, as studies indicate that the risk of hospitalization for severe
asthma exacerbations decreases with age [157,173,174]. Children under five years old are more likely to
be hospitalized due to their smaller lung capacity and more pronounced symptoms [157].

The reviews by Ekpo et al. [175] and Rodriguez-Martinez et al. [176], focused on pediatric asthma
prediction, indicated a wide range in children’s ages across studies, with many studies not reporting age
specifics; however, neither review examined the impact of this variation. Other reviews, such as those
by Tsang et al. [177], Molfino et al. [178], Xiong et al. [32], Budiarto et al. [179], Khanam et al. [180],
and Sarikloglou et al. [30], did not specifically address the age of included patients and did not focus
explicitly on pediatric asthma. Given the higher risk of hospitalization for severe asthma exacerbation in
younger children [157,173,174], future research should prioritize age group distinctions within the study
population. For more meaningful comparisons of simulation results across studies, every study must
report both age groups and their distribution relative to asthma exacerbations in the findings.

The absence of a clearly defined time horizon in many articles limits clinical applicability, as it restricts
clinicians’ ability to anticipate and intervene during potential exacerbations effectively. Of the four studies
reporting the time horizon of the prediction, three studies used a time horizon of 365 days (models by
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Luo et al. [168] and [169], and model by Hozawa et al. [170]). These predictions are thus more focused
on the long-term control of asthma rather than acute asthma exacerbations. Hurst et al. [152] presented
predictions on multiple time horizons: 30, 90, and 180 days. These time horizons reflect both the acute
and long-term variability of asthma control.

The prediction of exacerbations is also explored in other chronic conditions, such as inflammatory
bowel disease (IBD) and chronic obstructive pulmonary disease (COPD). Similar to the models employed
in asthma exacerbation prediction, methods like XGBoost, random forests (RF), and neural networks are
commonly utilized in the literature [181–185]. Notably, only Gan et al. [185] provided insights into the
most important features for predictions, while the other studies lacked explanations regarding prediction
mechanisms and feature significance. Furthermore, these models primarily focused on population-level
predictions rather than personalized assessments. Zeng et al. were the only researchers to specify a
one-year prediction horizon [181].

5.2 Discussion on Input Features

The input data for the models was categorized into eight domains: demographics, clinical measurements
and vital signs, asthma characteristics, comorbidities, healthcare utilization, social data, environmental
data, and at-home measurements. Most models predominantly utilized the categories of demographics,
clinical measurements and vital signs, asthma characteristics, and comorbidities, which is expected given
that these domains contain well-established risk factors [30] and are relatively easy to extract from
electronic health records. Healthcare utilization data, such as prior hospitalizations and ER visits, was
used in four models as the primary outcome (models by Xu et al. [164], Luo et al. [168] and [169],
and [166]). From these four models, only the model by Patel et al. [166] used healthcare utilization as
input for the model. The exclusion of this input data could impact model performance as past healthcare
utilization could be highly predictive of future hospitalizations or ER visits [30,131].

The social domain, although less explored in the context of asthma exacerbations, could play a signif-
icant role as a secondary risk factor; for example, lower socioeconomic status can lead to higher tobacco
exposure, which is linked to increased risk of asthma exacerbation [106,111]. Despite the strong evidence
linking environmental factors to asthma exacerbations [57,117,152], this domain remains underutilized in
the models, likely due to logistical challenges in data collection and the lack of personalized environmen-
tal exposure data. Environmental data is typically collected from local measurement stations, making
it difficult to accurately reflect an individual patient’s exposure. Finally, at-home measurements, which
could provide valuable real-time data, are only used in two highly relevant studies (and three moder-
ately relevant studies) for predicting pediatric asthma exacerbations but are used for assessing technology
development and patient clustering as indicated by the review of Tsang et al. [177].

Most articles in this research primarily focus on specific domains, neglecting the integration of multiple
domains (see Figure 4.1 and Figure 4.2. This limitation may significantly impact model performance,
as it fails to capture the interplay of features from different domains. A more holistic approach that
considers interactions across various domains could enhance the predictive accuracy and robustness of
the models as it shows increased prediction accuracy compared to single domain prediction [42,186].

5.3 Discussion on Model Performance

The area under the ROC curve (AUC) is a widely used performance metric in the highly applicable
articles and the literature at large [88]. AUC is also interpreted straightforwardly, with higher values
indicating better class discrimination. Other common metrics include sensitivity (or recall), specificity,
and accuracy, which are often presented together [91]. Both sensitivity and specificity are independent
of prevalence, making them reliable in imbalanced datasets, which are often used in asthma exacerbation
prediction [90].

In evaluating model performance, two additional performance metrics are not presented in any of
the articles; the area under the precision-recall curve (AUC-PR) and the F1 score. These performance
metrics are less known from statistical analyses and therefore often neglected in machine learning studies.
Nevertheless, the AUC-PR and F1 score could give a clearer view of model performance in unbalanced
datasets [90,90,92,95].

Although de Hond et al. advise reporting AUC values for clinical predictions without labeling the
interpretation, an AUC value below 75% is mostly considered moderate to poor, and an AUC above 90%
excellent [187]. Most models show moderate to poor AUC except the models by Patel et al. [166], van
Vliet et al. [140], and Dexheimer et al. [162] with an AUC between 84% and 96% (see Figure 4.3). As for
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the sensitivity performance metrics, the models show poor sensitivity indicating misidentifying asthma
exacerbations as no asthma exacerbation. Sensitivity is a trade-off with specificity in which the latter
shows the ability to identify the absence of an asthma exacerbation. In the case of asthma exacerbation,
the sensitivity should be favored above specificity.

None of the models included in this study utilized XAI techniques to clarify the relevance of each
input feature in predicting asthma exacerbations. Consequently, the importance of these features remains
undetermined, limiting the model’s clinical applicability and trustworthiness. This lack of transparency
is a critical concern because, without insight into how and why specific features influence predictions,
clinicians may be reluctant to incorporate AI recommendations into treatment decisions [32,36]. XAI tech-
niques, such as SHAP, LIME, or Grad-CAM (Gradient Class Activation Mapping), can offer feature-level
explanations that enable clinicians to understand the factors most strongly associated with exacerbation
risk [188]. Establishing input feature relevance is therefore essential to foster confidence in AI predictions,
empowering clinicians to interpret model outputs in a way that supports personalized, informed decision-
making in pediatric asthma management. XAI techniques are gradually used more in healthcare, though
their use remains limited. For instance, 25 of the 33 studies on cardiovascular disease risk prediction
incorporated XAI methods in the review by Teshale et al. [189], while only 5 of 22 studies applied XAI
for comorbidity prediction as shown in the review by Alsaleh et al. [190]. Similarly, a review by Loh et
al. [191] highlights that only 99 studies used XAI across healthcare applications between 2018 and March
2022. This limited adoption underscores the need for further integration of XAI to enhance transparency
and trust in predictive models across a wider range of medical conditions.

No direct correlation is apparent between the most commonly used models (GBM, XGBoost, RF) and
their performance outcomes (see Figure 4.3). This indicates that model selection is likely driven more by
usability, personal experience, and specific model features rather than performance alone. Additionally,
there is no clear relationship between the number of patients included in a model and its performance.
This lack of correlation may be due to variations in input characteristics, model types, and outcome def-
initions, which complicate direct comparisons. Similarly, the number of input features is not consistently
correlated with model performance, likely due to model setup and data differences. The absence of clear
correlations between model type, sample size, and feature numbers with performance highlights the need
for future research to pinpoint that specifically the choice (and number) of input features and the ML
model choice most significantly impact predictive accuracy.

5.4 Strengts and Limitations

This review is a pioneering exploration into input feature domains, explainability, and time horizons in
machine learning models for predicting pediatric asthma exacerbations, addressing an age group often
underrepresented in ML studies. By identifying commonly used input features, highlighting research gaps
such as the limited integration of multi-domain data, and including social and environmental factors this
review provides a comprehensive scope that pinpoints areas to enhance model accuracy and clinical rele-
vance [42,186]. The focus on explainability further underscores the importance of transparency, which is
crucial for building trust among healthcare professionals and promoting clinical adoption [33–35]. Addi-
tionally, the review identifies issues with inconsistent definitions of asthma exacerbations and prediction
time horizons, which complicate model comparison and evaluation. Furthermore, one assessor performed
the articles’ relevance assessment, which resulted in uniformity of assessment criteria application. This
reduced the potential for inter-assessor variability and allowed for a more focused approach.

A limitation of this review is that it did not strictly follow the PRISMA guidelines for systematic
reviews [192]. As a result, certain relevant studies may have been missed, limiting the comprehensiveness
of the review. Additionally, the relevance assessment was subjectively conducted due to an absence of
well-defined inclusion criteria, as many studies did not provide clear definitions for their outcomes or
specify the age ranges of their populations. Furthermore, as this field is rapidly advancing, the literature
search was completed in March 2024, meaning studies published after that date are not reflected in the
analysis. Future reviews would benefit from adhering more closely to systematic review guidelines and
including up-to-date literature to provide a more current perspective on this evolving field.

As highlighted by Allgaier et al. [188], patients generally have a limited understanding of commonly
used explainability methods. The understanding of these methods among pediatricians has yet to be
studied, making it an important focus for future research. Enhancing explainability is crucial for fostering
trust in predictive models among pediatricians. Many included studies did not specify a prediction time
horizon. Future reviews could focus on examining prediction horizons beyond the scope of pediatric
asthma. Prediction horizon generally impacts prediction accuracy [193]. For COPD (Chronic Obstructive
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Pulmonary Disease), similar prediction horizons are often used without simulations to assess the effects
of the chosen horizon [194]. In adult asthma exacerbation prediction, prediction horizons vary widely,
ranging from 4 to 30 months [195]. This indicates that specific applications and impact of prediction
horizons remain underexplored and could be an important focus for future reviews. Finally, the clinical
implementation of predictive models was beyond the scope of this review. However, as Kothalawala et
al. [196] reported in 2020, no prediction models had yet been implemented in pediatric asthma care.
Given the recent increase in research on ML models, it would be valuable to investigate which models
have since reached clinical practice. The research questions for future research are composed in Table 5.1.

Table 5.1: Research questions for future literature review studies.

Which XAI techniques are most favorably received in predictive asthma models?

What time horizons are used in general exacerbation prediction across multiple conditions?

Which prediction models are clinically implemented in (pediatric) asthma care?

5.5 Conclusions

There is significant variation in how asthma exacerbations are defined across studies, ranging from hos-
pitalization and ER visits to non-specific asthma exacerbations. This lack of standardization complicates
comparisons across models and may affect the accuracy and applicability of the predictions. Further-
more, many studies fail to specify crucial details such as the prediction’s time horizon and the population
characteristics. This omission limits the clinical applicability of the models.

Most models rely on demographic, clinical, asthma characteristics, and comorbidity data, which are
readily available from electronic health records. However, not many models utilize social, environmental,
and at-home measurement data despite their potential predictive power. Furthermore, most models focus
on specific domains, neglecting the integration of multiple domains. Incorporating factors from multiple
domains could lead to more accurate and contextually relevant models.

Gradient Boosting Models, including XGBoost, and Random Forests are the most commonly used
machine learning methods for predicting pediatric asthma exacerbations. These models are favored
because they can handle complex datasets and deliver strong predictive performance. However, promising
models like LSTMs remain underutilized. The choice of model often seems to be driven more by factors
like usability and specific features than by performance metrics alone.

The area under the ROC curve is the most frequently used performance metric, with most models
demonstrating moderate to poor performance. Other metrics like sensitivity, specificity, and accuracy are
commonly reported whereas the area under the precision-recall curve and F1 score, particularly useful in
handling imbalanced datasets, are rarely used.

Finally, the limited use of XAI techniques further restricts these models’ clinical potential, as a lack
of transparency in feature importance hinders clinicians’ trust and ability to apply model outputs in
practice. Increasing model interpretability is essential to building clinically useful models that support
informed decision-making.

23



6 Methods - Simulation Study

6.1 Study Design and Population

The simulation study aims to develop an ML model for predicting asthma exacerbations and determining
personal risk factors. Furthermore, the asthma exacerbation definitions and time horizon are explored.

The study uses a retrospective patient dataset encompassing all pediatric patients from November
11th, 2020 (the start of the electronic patient dossier) until April 1st, 2024 (the start of the CIRCUS
study). The inclusion criteria include the diagnosis treatment code (diagnose-behandelcombinatie DBC
3202) corresponding to asthma and under treatment at the pediatrics department at MST.

6.2 Data Acquisition and Processing

The retrospective patient data is obtained through a non-WMO request (non-WMO approval acquired
from the non-WMO committee at the MST on February 23th, 2024). The patient data is retrieved on
the 1st of July, 2024 through automated SQL (Structured Query Language) code. The patient data
is structured based on electronic patient file segments such as allergies, appointments, and prescribed
medication. The description of all electronic patient file segments is shown in Apprendix E. For each
segment, a CSV (comma-separated values) file is saved to a secure database. The ICT department sets
up usernames and passwords to restrict database access to researchers only. The CSV files on the server
are loaded and preprocessed using Microsoft Visual Studio 2022 Version 17.11.2 (Microsoft Corporation,
Redmond, Washington, United States). The ecological data CSV files are manually copied from a local
laptop to the server using a USB stick.

The dataset encompasses a comprehensive array of demographic, social, clinical, and environmental
data, as seen in Table 6.1. The number of comorbidities shown is derived from the patient’s medical history
and the number of asthma exacerbations following the definitions stated in Table 6.2. The highlighted
variables are incorporated into the model. A more comprehensive elaboration on the measured ecological
data is shown in Appendix F.

One dataset containing all different input data is constructed with a daily frequency. the variables
with multiple values in one day are averaged into one variable. The variables that do not have a daily
value (applicable for most variables) are padded with daily values (-9999) to ensure that the value is
not interfering with real physiological data and can be detected as a padding value by the model. The
dichotomous variables are padded with the original value to match the length of the time frame.

6.3 Model Development

Following the results from the literature review, an LSTM and XGBoost model are compared. Both
models are implemented in Python 3.9, the XGBoost model is implemented using the Skicit-Learn pack-
age [197], and the LSTM model using the Tensorflow package [198].

The experiments and model training were conducted on a virtual machine on the server. The virtual
machine type used was Standard D8s v3, belonging to the V1 generation and featuring a 64-bit architec-
ture. The machine was equipped with 8 virtual CPUs and 32 GiB of RAM, running on Windows Server
2022 Datacenter as the operating system. These specifications were chosen to ensure sufficient compu-
tational resources for the machine learning tasks performed, balancing performance and cost within the
project’s constraints.

Generative AI (ChatGPT) is utilized to help in debugging the code.

6.3.1 Model Characteristics

The LSTM model incorporates a masking layer to handle missing or padded data, ensuring no interfer-
ence with the learning process of the padded value. The model’s core consists of multiple LSTM layers,
which capture long-term dependencies in the data. These layers allow the model to learn from sequential
information. To prevent overfitting, dropout layers are incorporated, which randomly omit certain con-
nections during training. This regularization technique enhances the model’s generalization ability when
exposed to new data. The output layer uses an activation function that maps the model’s predictions to
a probability of the set outcome. The model is trained using an adaptive optimizer, efficiently adjusting
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learning rates during model training. Additionally, class weights are applied during model construction
to account for the class imbalance, ensuring the model gives proper attention to each class based on their
prevalence in the dataset. In addition to the performance metrics, the computational times of the train-
ing and testing process are measured. The LSTM model is switched to a multi-class classification model
for classifying the severity of the asthma exacerbation. A softmax activation function is incorporated in
the output layer, mapping the model’s predictions to a probability distribution across the three classes
(no asthma exacerbation, moderate asthma exacerbation, and severe asthma exacerbation). The model’s
core remains the same.

The XGBoost model is designed for dichotomous prediction of asthma exacerbations. The time series
data are flattened, transforming each patient’s sequence of timesteps into a tabular format for the model.
XGBoost’s tree-based classifier is employed to handle this structured data. In addition to standard
performance metrics, both training and testing times are recorded to assess the model’s computational
efficiency.

6.3.2 Asthma Exacerbation Definition

Different definitions of asthma exacerbations are considered in which a distinction is made between
moderate and severe asthma exacerbations (see Table 6.2). Firstly, severe asthma exacerbations are used
as a dichotomous outcome in which a severe asthma exacerbation is defined as a hospitalization AND
the prescription of systemic corticosteroids OR nebulization of reliever medication (the exact descriptions
for the derivation of hospitalization and medication are shown in Appendix G). The presence of a severe
asthma exacerbation is indicated as 1, absence as 0. Secondly, both asthma exacerbation classifications
are considered. A moderate asthma exacerbation is defined as an ER visit OR outpatient visit AND the
prescription of systemic corticosteroids OR nebulization of reliever medication. The presence of a severe
asthma exacerbation is indicated as 2, a moderate asthma exacerbation as 1, and the absence of both as
0.

6.3.3 Training and Testing

The complete dataset is split into 80% training and 20% testing datasets. When splitting the data into
training and testing sets, randomness is involved in selecting which data go into each set. This randomness
can lead to different results each time the code is run, affecting the reproducibility of experiments. A
seed value was set for the random number generator used during the data split to ensure consistent splits.
This ensures a consistent split across different script runs, making the results reproducible. It also allows
for a fair comparison between the LSTM and XGBoost models.

6.4 Data Analysis

The data analysis is performed for both the LSTM and XGBoost models for both the dichotomous and
multiclass predictions.

The predictions are shown as patient-specific and averaged over the whole population. The patient-
specific predictions are shown for one particular patient with known asthma exacerbations each time to
improve consistency. Monte Carlo simulations are employed to run the model 20 times, allowing for the
determination of the mean and standard deviation of the predictions, which serves as a measure of the
model’s uncertainty. The models’ performance on different time horizons is assessed through the mean
and standard deviation of the predictions, derived through the Monte Carlo simulations.

6.4.1 Model Statistics

Following the results from the literature review, the following metrics are used to assess models’ perfor-
mances; area under the receiver-operator curve (AU-ROC), sensitivity, specificity, accuracy, area under
the precision-recall curve (AU-PR), and F1 score.

6.4.2 Explainability - Risk Factors

The 10 most important risk factors were determined for one specific patient and averaged across the whole
population. In the LSTM model’s predictions, both feature permutation and SHAP were implemented.
Feature permutation was applied on the whole time range, SHAP only at the last timestep of the model’s
prediction. The XGBoost model has a built-in feature importance function and is applied on the whole
time range.
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Table 6.1: The data acquired in this study. The green highlighted input data are currently taken into
account in the simulation.

Variable Description

Demographic data

Date of birth Birth month and birth year

Postal code

Sex

Ethnicity

Weight , height , and BMI

Clinical data

Asthma-related history Medical history, sports, hobbies, and sleep patterns

Comorbidities

Medication usage Prescribed medication and retrieved medication from pharmacy

Allergies Inhalation allergies and food allergies

Blood tests IgE, CRP, eosinophils, IgMs, leucocytes, neutrophils, basophils,
lymphocytes, and monocytes

Radiology reports Reports on X-ray, MRI, and CT-scans

Healthcare professionals General Physician, main practitioners, and co-practitioners

Asthma control (C-)ACT score

Healthcare utilization Hospital admission, outpatient visits, diagnostic tests, telephonic
consultations, ambulant care levels, total healthcare costs, and
patient additional costs

Lung Function Spirometry and Forced Oscillation Techniques

AIRCON Lung function, perception scores, and therapy compliance

eHealth Chat data, at-home (C-)ACT scores, at-home spirometry mea-
sures, and perception scores

Environmental data

Daily pollen counts Common grass, tree, and plant pollen in the Netherlands

Air quality Common air quality measured in the Netherlands

Virus data Common virus infections measured in the Netherlands

Weather data Common weather metrics measured in the Netherlands

Table 6.2: The considered outcome definitions of the machine learning model.

Asthma Exacer-
bation Classifi-
cation

Condition 1 Condition 2 Result

Severe Hospitalization Prescription of systemic
corticosteroids OR
nebulization of reliever
medication

Severe asthma exacerba-
tion if both condition 1
AND condition 2 are met

Moderate ER visit OR outpatient
visit

Prescription of systemic
corticosteroids OR
nebulization of reliever
medication

Moderate asthma exacer-
bation if both condition 1
AND condition 2 are met

26



7 Results - Simulation Study

7.1 Patient Characteristics

A total of 1858 patients are included in this study, their characteristics are found in Table 7.1. The
population’s age is shown for the start and endpoint of the patient dataset. Figure 7.1 shows the total

Table 7.1: The patients’ characteristics.

Age at November 11th, 2020 in mean (std) 7.6 (5.2)

Age at April 1st, 2024 in mean (std) 11.0 (5.2)

Sex in number males (%) 1097 (59%)

Comorbidities in number (%)

* Eczema

* (Non-)allergic rhinitis

* Dysfunctional breathing

* 30 (2%)

* 36 (2%)

* 64 (3%)

Asthma exacerbations in number

* Severe

* Moderate

129

* 71

* 58

number of asthma exacerbations in the dataset as a function of the patient’s age for severe and moderate
asthma exacerbations. In the dichotomous asthma exacerbation prediction, the definition of a severe
asthma exacerbation is used as the outcome. The mean age of severe asthma exacerbation is 7.2 years,
the standard deviation is 4.2 years. The mean age of moderate asthma exacerbation is 9.6 years, the
standard deviation is 4.6 years.

Figure 7.1: The number of asthma exacerbations as a function of the patient’s age for the dichotomous
classification of asthma exacerbation.

27



7.2 General Results of Models Simulations

The model performance’s differences between the LSTM and XGBoost model for the dichotomous pre-
diction can be seen in Table 7.2. The training and testing time of the LSTM model is higher than the
XGBoost model. The test loss can not be determined in the XGBoost model. The test accuracy of both
models is equal. The AU-ROC, AU-PR, sensitivity, specificity, and F1 score could not be determined in
the LSTM model.

Table 7.2: Performance metrics of the dichotomous prediction using the LSTM and XGBoost models.

Model performance metric LSTM model XGBoost model

Training time (seconds) 525 8

Testing time (seconds) 4 1

Test loss 0.001 -

Test accuracy 0.999 0.999

Test AU-ROC Indeterminate 0.979

Test AU-PR Indeterminate 0.050

Test sensitivity Indeterminate 0.111

Test specificity Indeterminate 0.999

F1 score Indeterminate 0.133

Figures 7.2 and 7.3 show the Monte Carlo simulation of the LSTM model for one specific patient and
averaged across the whole population respectively. For one patient, the mean prediction for an asthma
exacerbation is 0.24 with a standard deviation of 0.06. For the whole population, the mean prediction
of an asthma exacerbation is lower than for the specific patient with a mean of 0.0006, and a standard
deviation of 0.003. Figure 7.4 shows the Monte Carlo predictions of the XGBoost simulation averaged
across the whole population. The mean prediction of an asthma exacerbation is 0.0003, similar to the
population prediction of the LSTM model.

Figure 7.2: The prediction of asthma exacerbations for one specific patient over sample index (time).
The mean and standard deviation are derived using 20 Monte Carlo simulations. The y-axis represents
the prediction value of an asthma exacerbation (e.g. 0.25 corresponds to a 25% chance of an asthma
exacerbation).
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Figure 7.3: The prediction of asthma exacerbations averaged across the whole population over sample
index (time). The mean and standard deviation are derived using 20 Monte Carlo simulations. The
y-axis represents the prediction value of an asthma exacerbation (e.g. 0.0006 corresponds to a 0.06%
chance of an asthma exacerbation).

Figure 7.4: The prediction of asthma exacerbations averaged across the whole population over
timesteps (time). The mean and standard deviation are derived using 20 Monte Carlo simulations. The
y-axis represents the exacerbation probability of an asthma exacerbation (e.g. 0.0010 corresponds to a
0.1% chance of an asthma exacerbation).

Figure 7.5 shows the 10 input features with the highest predictive power determined by feature
permutation of the LSTM model, Figure 7.6 determined by SHAP. It can be seen that there is a difference
in the feature importance derived from the different methods. The input features derived by feature
permutation all have a positive correlation to the prediction of asthma exacerbation, e.g. the presence of
pet allergy indicates a higher risk of asthma exacerbations. The BMI, weight, and height have a negative
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correlation with the asthma exacerbation prediction, indicating that lower values for these input features
pose a lower risk of asthma exacerbations.

Figure 7.5: The feature importance of the input features determined for one specific patient using fea-
ture permutation of the LSTM model.

Figure 7.6: The feature importance of the input features determined for one specific patient using
SHAP on the LSTM model.

The 10 most important features averaged over the whole population determined using feature permu-
tation of the LSTM model are obesity and grass allergy positively correlated and cat allergy, no comor-
bidities, dust mite allergy, weed allergy, allergic rhinitis, rodent allergy, non-allergic rhinitis, and postal
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code negatively correlated (Figure H.1 in Appendix H). The 10 most important features determined using
SHAP are all negatively correlated and include BMI, weight, length, tree allergy, dysfunctional breathing,
rodent allergy, hay fever, dust mite allergy, age, and no comorbidities (Figure H.2 in Appendix H).

Figure 7.7 shows the global feature importance of the XGBoost model. These features have a positive
correlation with a higher asthma exacerbation prediction. Indicating that the presence of a dust mite
allergy results in a higher asthma exacerbation risk, contrary to the SHAP feature importance derived
by the LSTM model.

Figure 7.7: The global feature importance of the XGBoost model predictions.

7.3 Results of Outcome Definitions Simulations

The model performance’s differences between the LSTM and XGBoost model for the multiclass prediction
can be seen in Table 7.3. The training time of the LSTM model is higher than the XGBoost model, with
the testing time higher as well. The test loss can not be determined in the XGBoost model. The test
accuracy of both models is similar. The AU-ROC, AU-PR, sensitivity, specificity, and F1 score could not
be determined in the LSTM model.

Table 7.3: Performance metrics of the multiclass prediction using the LSTM and XGBoost models.

Model performance metric LSTM model XGBoost model

Training time (seconds) 714 25

Testing time (seconds) 5 1

Test loss 0.607 -

Test accuracy 0.975 0.999

Test AU-ROC Indeterminate 0.934

Test AU-PR Indeterminate 0.351

Test sensitivity Indeterminate 0.333

Test specificity Indeterminate 0.666

F1 score Indeterminate 0.999
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Figure 7.8 shows the LSTM model’s prediction of all classes for one specific patient over time, and
Figure 7.9 shows it averaged across the whole population. For a particular patient, the highest prediction
is for no asthma exacerbation at approximately 70%, which decreases when the prediction for a moderate
asthma exacerbation increases. The risk for a severe asthma exacerbation stays similar over time around
20%. In the predictions averaged across the whole population, the prediction for moderate asthma
exacerbations has the highest probability at approximately 45%. Again, the prediction for severe asthma
exacerbation has the lowest probability at around 10%. Starting at the end of 2021, the probability of
moderate asthma exacerbation decreases as the probability of no asthma exacerbations increases.

Figure 7.8: The LSTM model’s predictions for the three classes for one specific patient over time. The
y-axis represents the class probability, where 0 corresponds to no asthma exacerbation, 1 to moderate
asthma exacerbation, and 2 to severe asthma exacerbation (e.g. 0.20 for class 2 corresponds to a 20%
chance of a severe asthma exacerbation).

Figure 7.9: The LSTM model’s predictions for the three classes averaged across the whole population
over time. The y-axis represents the class probability, where 0 corresponds to no asthma exacerbation,
1 to moderate asthma exacerbation, and 2 to severe asthma exacerbation (e.g. 0.45 for class 1 corre-
sponds to a 45% chance of a moderate asthma exacerbation).
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Figure 7.10 shows the XGBoost model’s prediction of all classes averaged across the whole population
over time. The prediction for no asthma exacerbation stays the same at almost 100% probability, while
both the moderate and severe asthma exacerbation are approximately at 0%. The indication of moderate
exacerbation is at the same level as the severe asthma exacerbation, which is why it cannot be seen in
the Figure.

Figure 7.10: The XGBoost model’s predictions for the three classes averaged across the whole popu-
lation over time. The y-axis represents the predicted probability, where 0 corresponds to no asthma
exacerbation, 1 to moderate asthma exacerbation, and 2 to severe asthma exacerbation (e.g. 1 for class
0 corresponds to a 100% chance of no asthma exacerbation).

7.4 Results of Time Horizon Simulations

Figure 7.11 shows the 7-day forecasted prediction for one patient, and Figure 7.12 the 28-day forecasted
prediction. It can be seen that for both time horizons, the asthma exacerbation predictions stay equal
over time in mean and standard deviation. The mean asthma exacerbation risk for 7 days is 0.397
with a standard deviation of 0.395 and for 28 days 0.48 with a standard deviation of 0.46. The time
horizon predictions for the population are shown in Appendix H, Figure H.3 shows the 7-day forecasted
prediction, and Figure H.4 shows the 28-day forecasted prediction.
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Figure 7.11: The prediction of asthma exacerbations in one specific patient 7 days ahead of the time
frame with the mean and standard deviation. The y-axis represents the prediction of an asthma exac-
erbation (e.g. 0.4 corresponds to a 40% chance of an asthma exacerbation).

Figure 7.12: The prediction of asthma exacerbations in one specific patient 28 days ahead of the time
frame with the mean and standard deviation. The y-axis represents the prediction of an asthma exac-
erbation (e.g. 0.45 corresponds to a 45% chance of an asthma exacerbation).
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8 Discussion and Conclusion - Simulation Study

8.1 Discussion on Model Simulations

The simulation study reveals that the XGboost and LSTM model architecture allows for asthma exac-
erbation prediction but that the prediction’s accuracy fails with the current input variables. The LSTM
model’s simulation revealed personalized predictions, whereas the XGBoost model’s simulation in this
study only revealed population-level predictions. The personal and population risk factors of the LSTM’s
predictions were determined using both feature permutation and SHAP but were inconclusive due to
low accuracy. The risk factors of the XGBoost’s predictions were determined on a global level using
the built-in function of XGBoost. Due to the limited accuracy, the outcome definition and time horizon
simulations did not yield significant results in this study. However, the LSTM’s and XGBoost’s model
architecture allows for multiclass prediction and future prediction

This research’s results show that the distribution of severe and moderate asthma exacerbations is not
evenly spread across age groups (Figure 7.1), which may introduce bias in the predictions. Additionally,
the number of asthma exacerbations is low in general (Table 7.1); among the 2.3 million data points from
1858 patients and 1238 time steps, only 71 are labeled as severe and 58 as moderate asthma exacerbations.
This class imbalance poses a significant challenge for accurate prediction.

Comparing the performance metrics of the LSTM model to those of the XGBoost model is difficult
because many metrics could not be determined for the LSTM model (Table 7.2 and Table 7.3). While
the LSTM model’s training time is notably longer than the XGBoost model’s, this could be attributed
to the XGBoost model only making predictions at the population level, not on a patient-specific basis.
Though the accuracy appears high, it is misleading due to class imbalance. More insightful metrics,
such as AU-PR, sensitivity, and F1 score, reveal that both models struggle to accurately predict asthma
exacerbations (dichotomous and multiclass) with the current input variables. Furthermore, in the in-
dividual asthma exacerbation predictions of the LSTM model, the standard deviation across multiple
Monte Carlo simulation runs is reasonable for individual patients (Figure 7.2) but quite large across the
entire population for both the LSTM and XGBoost models (Figure 7.3 and Figure 7.4). However, further
interpretation is limited due to the overall low accuracy of the models.

Feature importance varies between the two methods applied to the LSTM model, as shown by the
differences in feature permutation and SHAP results (Figure 7.5 and Figure 7.6). This discrepancy may
stem from the models’ low accuracy. Notably, XGBoost’s feature importance remained consistent in
each simulation (Figure 7.7), indicating robustness, but its global feature importance is not suited for
patient-specific predictions as they are on a general level [83, 101]. The large negative SHAP values in
Figure 7.6 for BMI, height, and weight may be a result of these features being among the few variables
that change over time, while most other input features are dichotomous. The measurement frequency
of a feature influences its SHAP values by affecting how contributions to predictions are captured [?].
Features measured frequently (e.g., daily) reflect more variability and dynamic impacts, while infrequently
measured features (e.g., quarterly) may not adequately represent temporal effects, potentially skewing
their perceived importance.

The LSTM model’s class prediction for a specific patient seems reasonable, as the risk for no asthma
exacerbation is the highest and decreases at certain points that the risk of a moderate asthma exacerbation
increases (Figure 7.8). Interestingly, the LSTM model’s class prediction values averaged across the whole
population show a higher probability for moderate exacerbation than for no exacerbation (Figure 7.9).
This may result from the significant class imbalance, where moderate and severe exacerbations are much
less frequent than no exacerbation.

Finally, while the LSTM model incorporates the concept of time and can predict across different time
horizons, the XGBoost model cannot. Despite this advantage, the LSTM model does not deliver realistic
forecasts for 7- or 28-day predictions, as the model’s output remains unchanged over time (Figure 7.11
and Figure 7.12. This constant prediction may stem from several factors, including insufficient temporal
features that fail to capture daily variations and a lack of variation in the training samples [199]. Moreover,
the high standard deviation across the forecasts points to substantial uncertainty in the predictions.
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8.2 Strengths

This research has several strengths that set it apart from existing work in the field. With a sample size
of 1858 patients, the study utilizes an average number of patients as compared to the other models in
the literature (Table 4.1). Computational demands, while not often mentioned in comparable studies,
were manageable in this case (Table 7.2 and Table 7.3). This indicates the potential for optimizing the
model’s accuracy. However, the current models did not incorporate all input variables, decreasing the
computational demands. Notably, this work pioneers in comparing model performance based on changes
in exacerbation definitions, an area that has seen little attention. Furthermore, the model’s incorporation
of a time horizon simulation distinguishes it as an early step toward potential clinical application, unlike
most models in the literature that do not consider time-based predictions. While models developed by
Luo et al. [168,169] and Hozawa et al. [170] utilized a broad time horizon of 365 days, this study adopts
a 7 and 28-day time frame, which aligns with the approach taken by Hurst et al. [152]. This shorter time
horizon enhances the applicability of the model in clinical settings.

8.3 Limitations

This research has several limitations that could impact the models’ performance in predicting pediatric
asthma exacerbations. The number of comorbidities and allergies included in the model was lower than
expected, likely since these were based on only one aspect of the medical patient file, which made them
highly dependent on how thoroughly healthcare professionals filled in the records. The completeness and
quality of the database entries were outside the scope of this research but could be important factors
to incorporate in future research. Additionally, environmental data was deliberately excluded from the
day-by-day prediction model due to its significantly higher measurement frequency than other features,
which disproportionately influenced the model’s outcomes. Due to time constraints, several important
risk factors known from the literature, such as symptom scores, lung function, therapy adherence, and
tobacco exposure, were not included [30, 112, 113, 147]. This omission likely contributed to the model’s
lack of accuracy in predicting asthma exacerbations. Further, all patients in the dataset were from a
single hospital, which could introduce bias and limit the generalizability of the model’s predictions to
broader populations [41].

Another limitation of this research is the strict definitions of asthma exacerbations, which may have
led to a small number of identified cases in the dataset as the prevalence of severe asthma exacerbations
following these criteria is low in this dataset. Although class weights were applied in the LSTM model to
address the class imbalance, the LSTM model could still not accurately predict the asthma exacerbations.
These strict criteria might have excluded patients who experienced less severe exacerbations but were
sent home with a reliever medication scheme (salbutamol afbouwschema).

While the accuracy of the LSTM and XGBoost models appear high (Table 7.2 and Table 7.3), this
is primarily due to the correct predictions of the absence of asthma exacerbations. Since the asthma
exacerbations occurrence is so low, the misclassification of these events constitutes a relatively small
portion of all predictions across patients and timesteps, resulting in a high overall accuracy. Another
explanation lies in the models’ daily prediction setup, while the patient-related features were recorded
at a much lower frequency (monthly at best), making it hard for the model to accurately predict events
daily [199]. As a result, the model failed to identify any asthma exacerbations, leading to zero true
positives and consequently, performance metrics that returned indeterminate values for the LSTM model.
Lastly, the time horizon predictions have not yet been checked against prospective data, and while this is
currently irrelevant given the model’s inability to predict asthma exacerbations, it remains an area that
needs to be addressed in future work.

In this simulation study, the proposed XGBoost was not able to determine personalized predictions
but the literature shows that the model’s architecture does allow personalized predictions [200]. In this
simulation study, the LSTM was able to make personalized predictions. Furthermore, the LSTM model
understands the concept of time and can directly predict a time horizon. The XGBoost model has no
concept of time and rather works with a sequence of values, rather than a time series this makes it less
suitable for forecasting predictions [77,81,200].
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8.4 Future Directives

Future directives for this research include several key areas for improvement and expansion. First, to
achieve the objectives of this research the model’s input variables should be extended to the available input
variables from the electronic health record and at-home measurements. Second, the asthma exacerbation
definition, prediction time horizon, and personalized risk factors should be assessed again based on the
inclusion of all the input variables.

Furthermore, given the correlation between electronic health record completeness and patient health
status [201], data quality assessments should be integrated into model development. For example, the
completeness of electronic health records can be evaluated using the Data Completeness Analysis Pack-
age [202], and overall data quality can be assessed using the Aggregate Data Quality score proposed
by Salati et al. [203]. Further improvements involve incorporating additional risk factors known from
the literature, such as symptom scoring, therapy adherence, and lung function measurements [30, 147].
Lastly, implementing natural language processing (NLP) techniques, such as Word2Vector [204] or BERT
(Bidirectional Encoder Representations from Transformers) models, could enhance the analysis of med-
ical reports on tobacco exposure and facilitate tracking of symptom trajectories over time, potentially
improving asthma exacerbation prediction [205–208]. This approach has already shown promise in COPD
exacerbation predictions [209].

Moreover, optimizing the definition of asthma exacerbation to match the model’s clinical application
could improve the accuracy and usability. The prediction of severe asthma exacerbation could be more
relevant for high-risk patients while the prediction of loss of asthma control could be more relevant to
patients with mild asthma and low risk of asthma exacerbation. With this same reasoning, the prediction
timing can be matched to the model’s clinical application. The severe asthma exacerbation prediction
might need a more timely prediction time horizon (daily) whereas the loss of asthma control might
suffice with monthly predictions. Future research should focus on the needs of patients and healthcare
professionals as well as the effect of the prediction time horizon on the model’s accuracy. Incorporating
additional monthly questionnaires, such as the (C-)ACT from the CIRCUS study [72], could help assess
their possible potential as indicators for predicting and preventing asthma exacerbations.

To effectively address class imbalance, more advanced techniques should be employed in addition to
class weights [41, 210]. One effective method is SMOTE (Synthetic Minority Over-sampling Technique),
which generates synthetic samples for the minority class, increasing its representation [211]. Additionally,
using focal loss can help the model focus on hard-to-classify examples while under-sampling the majority
class, or using cluster-based approaches can maintain data distribution while balancing the dataset [212].
Implementing these strategies can significantly improve the model’s predictive performance for underrep-
resented classes.

The model’s accuracy can also be improved through hyperparameter optimization [213]. Hyperpa-
rameter optimization (tuning) involves adjusting the model architecture’s key parameters to enhance
predictive performance by systematically selecting the best values for each. Li et al. propose the HELP
algorithm, which structures hyperparameter optimization for LSTM models and improves the efficiency
of this process [214]. Some hyperparameters that can be optimized include the number of nodes, the
number of hidden LSTM layers, units in the dense layer, decay rate, learning rate, batch size, and layer
weight.

Another directive is to analyze the entire patient population to identify risk groups sharing similar
risk factors [215]. This has shown potential in COPD [216]. Dividing these factors into modifiable and
non-modifiable categories will allow for targeted advice to patients on aspects they can actively manage.
Additionally, simple models like logistic regression (LR) can be applied as a gold standard for comparison,
providing a benchmark to assess the desired accuracy of the model [41,217].

The research questions for future simulation studies are composed in Table 8.1, with the order reflect-
ing the recommended sequence for the next steps of this project.
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Table 8.1: Research questions for future model simulation studies.

Improving the models’ prediction performance

What accuracy and sensitivity can be achieved when incorporating all available known risk factors?

What is the predictive impact of the definition of asthma exacerbations when incorporating all
available known risk factors?

What accuracy and sensitivity can be achieved when predicting mild exacerbation or loss of asthma
control?

What accuracy and sensitivity can be achieved after adjustment for class imbalance?

What accuracy and sensitivity can be achieved when optimizing the models’ hyperparameters?

What time horizon for predicting asthma exacerbations can be achieved when incorporating all
available known risk factors?

How can the XGBoost model’s architecture be fitted to make personalized predictions?

Steps towards clinical implementation

What is the completeness and quality of the input data derived from the electronic health record?

What accuracy and sensitivity can be achieved when externally validating the models?

What temporal frequency of input variables yields the model’s best accuracy?

How can risk groups in the patient population be identified using the models’ predictions?

8.5 Conclusions

In conclusion, this research highlights the potential of the LSTM model for predicting pediatric asthma
exacerbations as its model architecture allows for identifying individual risk factors and predicting indi-
vidual asthma exacerbation risks over time. With the current XGBoost’s model structure, no individual
predictions and risk factors could be determined. Additionally, with the current input, the LSTM and
XGBoost models struggle with accuracy and sensitivity due to class imbalance and a limited number of
asthma exacerbations in the dataset. Therefore, the exact influence of multiple asthma exacerbations and
prediction time horizons on the models’ accuracy and sensitivity could not be determined. Overall, this
study underscores the need for further refinement of the models to improve accuracy by optimizing the
input data, class imbalance, and model hyperparameters, thus enhancing their applicability in regular
pediatric asthma care. After these refinements, the predictive impact of the multiple asthma exacerbation
definitions and prediction time horizons can be assessed.
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9 Methods - Interview Study

9.1 Interviews with Healthcare Professionals

The main goal of the one-on-one semi-structured interviews is to gather insights from a group of pediatri-
cians (n=6) at MST regarding the integration and use of the machine learning model as developed in part
2. Each pediatrician will participate in a one-on-one 30-minute semi-structured interview complemented
by follow-up questions. All interviews were conducted in Dutch so the interviewees could speak more
easily. Each interviewee granted permission to record the interviews. The questions and quotes in this
report are translated into English for better readability. Furthermore, the pediatricians’ ages and years
of experience as pediatricians are gathered.

Appendix I (in Dutch) shows the structured overview of the interview and the exact questions. The
interview begins with a summary of the project to provide context and to allow for even background in-
formation for each of the interviewees. The project summary covers the research aim, model input data,
and interview goals. The interview is subdivided into multiple research topics, starting with the definition
of asthma exacerbations. Subsequently, the model’s expectations and requirements are discussed includ-
ing trusting an AI model, using the AI model as a base for medical policy change, and explainability.
Then, the interview continues on the optimal time horizon for the model’s predictions from their clinical
perspective, aiming to determine the most valuable timing for patient care. Next, possible applications
of the model are discussed. Lastly, interviewees can give general input that was not already discussed
during the interview.

The interview results are analyzed using a quick, practical approach, focusing on distilling each re-
sponse to a specific, concrete answer. These responses were then compared across participants to identify
any commonalities or differences. This method enabled a straightforward synthesis of key points with-
out in-depth thematic coding. The interview results are presented descriptively and, where possible,
supported by objective measures. Additionally, translated quotes are included to enrich the findings.
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10 Results - Interview Study

A total of six pediatricians are interviewed. The interviewees were (33%) male, and had a mean age of
43 years (standard deviation of 9.5 years), and a mean years of experience as a pediatrician of 13.5 years
(standard deviation of 9 years).

10.1 Asthma Exacerbation Definition

The interviewed pediatricians primarily defined asthma exacerbations as the acute increase in symptoms.
They also emphasized the need for medical intervention as a key distinction between a loss of asthma
control and an exacerbation. Additionally, some pediatricians noted that an asthma diagnosis is some-
times made only after an exacerbation, with family history and the patient’s clinical status playing a role
in the assessment.

”An asthma exacerbation is an acute episode of heightened symptoms that cannot be solved with their
standard reliever medication.”

Feedback on the provided definitions of asthma exacerbation highlighted the use of salbutamol neb-
ulization, which is currently being considered an indicator of an asthma exacerbation. However, this
medication is sometimes used to treat conditions like pneumonia or bronchiolitis, complicating its role as
a definitive marker for asthma exacerbations. Furthermore, salbutamol inhalators are often used to treat
asthma exacerbations and are now omitted from the asthma exacerbation definition. The total doses
per day were suggested to differentiate between severe and moderate asthma exacerbations. Healthcare
utilization, such as ER visits, was noted to vary significantly among patients, with some seeking care
sooner due to anxiety, while others delay seeking care despite more severe symptoms. Hospitalization
and step-up in treatment decisions also differ between pediatricians, adding another layer of variability.
Lastly, while this research does not account for the rare cases of intensive care hospitalizations, it was
mentioned that this omission is acceptable for this patient population. The use of a reliever medication
schedule (salbutamol afbouwschema) was suggested as a potential indicator for moderate asthma exac-
erbations. The step-up in daily controller medication was suggested as a potential indicator for loss of
asthma control.

”The start of systemic corticosteroids like prednisone as a treatment for an asthma exacerbation greatly
depends on the attending pediatrician.”

”I would distinguish a moderate asthma exacerbation from loss of asthma control if a patient uses the
highest step on the reliever medication schedule.”

10.2 Model Expectations

The pediatricians’ expectations are primarily centered on how the model can support their decision-
making, with a focus on understanding individual patient risk factors rather than on precise predictions.
However, in an outpatient setting, knowing the season when a patient might require more medication could
be useful. Additionally, the model’s monitoring capability was mentioned to potentially aid in preventing
asthma exacerbations by alerting pediatricians to early signs of asthma control loss. Ultimately, the
question arose whether incorporating patient-reported outcomes could further enhance the model’s quality
and make it more acceptable to users by reflecting patient perspectives.

”I would want the AI model to support me in finding the blind spots in a patient’s asthma management.”

”I want a model that doesn’t take up my time but saves me time.”

The desired outcomes from the model’s predictions vary. Some pediatricians preferred seeing a per-
centage risk of an asthma exacerbation along with a summary of the patient’s history that supports the
prediction, while others were more interested in the personalized risk factors. The presented outcome for-
mats supported this, with 5 out of 6 pediatricians preferring the visualization and 1 favoring the textual
explanation. Regarding the number of features displayed, preferences ranged between three and five risk
factors, with a distinction between modifiable and fixed risk factors. Furthermore, the possibility to get
more information on specific feature importance or predictive values was mentioned to increase explain-
ability. Additionally, it was mentioned that also the absence of certain risk factors could be informative
to show. All pediatricians used the descriptive term dashboard for using the model in the clinic.
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”I want to see the patient’s risk factors in one glance.”

”I am seeing all kinds of feature importance values which I do not understand, I need an explanation
from the model.”

Overall, pediatricians indicated they would trust the model and incorporate its insights into medical
decision-making, provided the identified risk factors are reasonable. An accuracy level of 80% to 90%
as well as a sensitivity of 80 % were suggested as acceptable. Four out of six pediatricians did not
specify a minimum accuracy level; two described it as needing to be as good as a pediatrician, while the
other two felt it could be somewhat less accurate than a pediatrician. Furthermore, two pediatricians
mentioned that a pilot phase, where pediatricians could familiarize themselves with the model, would
help build trust. For explainability, it was recommended that the model include an option to request
further explanation on how the predictions are derived.

”I expect the AI model to have a broader oversight than the clinician, therefore being more accurate.”

”I cannot expect the AI model to be always right, I also make mistakes. But I want the model to be
approximately as good as the average doctor.”

10.3 Prediction Time Horizon

It was mentioned that the prediction time horizon highly depends on the implementation and clinical
context. For patients presenting with acute symptoms, the suggested prediction window ranged from 1 to
3 weeks to assess the need for initiating systemic corticosteroids. In contrast, during routine outpatient
visits, monthly, quarterly, and biyearly predictions were considered to guide treatment adjustments,
allowing pediatricians to step up medication during high-risk months and decrease medication during
lower-risk periods. Furthermore, it was suggested that a year timeline be visualized in which the asthma
exacerbation risk and the influence of the risk factors over time are presented.

”I want the AI model to guide me in accurately stepping up the medication when needed and safely stepping
down the medication when not needed anymore.”

”The time horizon of the model’s prediction should still leave me some room to do something about a
high-risk prediction.”

10.4 Model Applications

Four pediatricians proposed an application that involves either the patients, pediatricians, or both re-
ceiving an alarm notification when a patient is at high risk for an asthma exacerbation, enabling them to
contact each other to discuss further medical management. Two pediatricians also suggested the applica-
tion to give advice corresponding to the patient’s risk factors based on medical guidelines. An additional
proposed application was for general practitioners to have the ability to refer the patients back to the
GP with additional monitoring.

Four out of six pediatricians favored the proposed eHealth application, and all pediatricians supported
its use in both patient-specific contexts and during outpatient visits.

For the patient-specific application, improvements were suggested, such as using a traffic light system
to indicate risk levels, with generic advice for an orange alert, while ensuring the option to contact a
doctor remains available. It was also suggested that the patient’s and parents’ educational level should
be considered by incorporating icons and images to explain risk factors and advice, making it as simple
and accessible as possible. Furthermore, in light of sustainability and data storage, it was mentioned that
not all pediatric asthma patients should receive this application, but only those patients interested and
who have still some room for improvement in their asthma management. Although another pediatrician
mentioned that the application could be offered to every pediatric asthma patient and to let the patient
decide whether or not they want to use it, to further promote self-management.

”This application could stimulate patients to improve their asthma self-management.”

Additionally, it was emphasized that it’s important to assess where the greatest benefit can be
achieved. EHealth patients are already well-monitored, and many no longer experience exacerbations. In
such cases, it raises the question of whether a supplemental eHealth AI model is necessary.
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11 Discussion and Conclusion - Interview Study

11.1 Discussion on Interviews

The interview results provide valuable insights into the expectations, definitions, and potential applica-
tions of an AI model designed to predict asthma exacerbations in pediatric patients. The interviewed
pediatricians primarily defined asthma exacerbations as an acute increase in symptoms that necessitates
medical intervention, distinguishing it from a mere loss of asthma control. However, these clinically ori-
ented aspects are often subjective and challenging to quantify objectively, making it difficult to extract
them directly from the data.

Furthermore, pediatricians emphasized the importance of understanding individual patient risk fac-
tors rather than relying solely on precise predictions. This highlights the need for a model that supports
clinical decision-making by identifying areas where intervention may be required, especially during out-
patient visits. This corresponds to the findings of Nair et al. who showed that physicians prefer to have
an AI model as a clinical decision support system during the treatment follow-up consultations [218].
Furthermore, the variability in preferred output formats, from risk percentages to detailed explanations
of risk factors, indicates that pediatricians may be uncertain about which format would work best in
daily clinical practice.

Regarding model trust, the pediatricians suggested that acceptable accuracy levels would range be-
tween 80% and 90%, or a sensitivity of 80%. Opinions were evenly split between those who expected
the model to perform better than or as accurately as a pediatrician. In contrast, Hummelsberger et al.
found that high performance was essential for physicians to consider implementing AI models in prac-
tice [219]. The possibility of piloting the model to build confidence and trust among pediatricians aligns
with findings that early physician training results in better model understanding [219–222]. Additionally,
involving stakeholders early in the AI model development process helps ensure clinical relevance and
alignment with the clinical workflow [218,223].

The pediatricians preferred visual explanations of the model’s asthma exacerbation risks alongside
personal risk factors. This aligns with literature, as Hughes et al. demonstrate that model explainability
enhances trust and awareness of model limitations [224]. Similarly, Lesley et al. found that clinicians
favor thorough explanations of predictions, with scientific references further increasing trust and reducing
uncertainty [35]. This demand for explainability highlights the value of incorporating user-friendly fea-
tures. However, Gould et al. reported an even split among clinicians between prioritizing interpretability
and model accuracy [225].

The suggested prediction time horizons ranged from a few weeks to multiple months and were highly
dependent on the corresponding application the pediatrician proposed. The prediction of acute symptoms
was mentioned for the prediction time horizon of a few weeks and the prediction of long-term asthma
control for a couple of months. The prediction of a couple of months corresponds to the prediction time
horizon of Hurst et al. [152] who showed prediction time horizons of one, three, and six months. The
proposed year timeline corresponds to the prediction time horizons of Luo et al. [168], [169], and Hozawa
et al. [170]. Weekly predictions of (asthma) exacerbation risk or associated risk factors have not yet been
explored in the literature. This may be due to the practical challenges involved, as weekly predictions
would require input variables measured at intervals shorter than a week. These intervals could, however,
be made possible through eHealth devices that measure key input variables at home [177].

The proposed patient-specific application, featuring a traffic light system for assessing asthma exac-
erbation risk, was met with interest. However, concerns were raised about its utility for well-monitored
patients who no longer experience exacerbations. This suggests that the AI model should focus on patients
who may benefit from additional asthma management support. For well-monitored patients without cur-
rent symptoms, a simple ’all clear’ message indicating that their asthma is under control could be more
appropriate, alongside general asthma management tips. When the risk of an exacerbation increases, the
application could then highlight the specific risk factors needing attention. This approach ensures that
the AI model remains both targeted and adaptable to individual patient needs, aligning with findings in
the literature that show AI-based applications can improve self-management skills and increase healthcare
engagement [226–228]. Such a system could empower patients to actively manage their asthma.
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11.2 Strengths

A key strength of this research lies in its close collaboration with pediatricians, fostering a sense of
involvement and accountability in the model’s development. By interviewing pediatricians and incor-
porating their expectations and clinical perspectives, this research bridges the gap between simulation
studies of the ML models and their clinical application, enhancing both motivation and willingness for
adoption [220]. The structured interview format ensured consistency, with each pediatrician answering
the same questions, strengthening the gathered insights’ reliability. Additionally, the study considered
a diverse range of participants in terms of age and years of clinical experience, yielding a well-rounded
understanding of the potential for model implementation in pediatric asthma care [35]. This diversity
also highlights the need for ongoing design iterations with clinicians and other users to address specific
needs, from model design to system integration and the overall implementation process [218]. Creating
’AI alignment’, or ‘human-AI cooperation,’ between AI design and the end users’ values and needs is
crucial to its success [222].

11.3 Limitations

One limitation of this research is the involvement of a limited number of pediatricians, all from a single
hospital, which may introduce bias and limit the generalizability of the findings. Additionally, one of the
pediatricians had a higher baseline knowledge due to their prior involvement in the research, potentially
influencing their responses. While structured interviews were used to mitigate this bias, it may still
have impacted the uniformity of perspectives gathered. The interview results are presented descriptively,
which aligns with the purpose of this study but could benefit from thematic analysis to reveal deeper,
underlying themes. Such themes might align with those identified by Gould et al., who outlined three main
themes expectations (responsibility, judgment, process), empowerment (understanding, values, power),
and partnership (trust, awareness, prognosis), each offering valuable subthemes that could further enrich
our understanding [225].

11.4 Future Directives

For future research, it is important to interview a broader range of pediatricians, including technical
physicians, nurse specialists, and asthma nurses, who may also use the model in practice. To improve the
generalizability of the findings, interviews should be conducted across multiple hospitals. Additionally,
involving all potential end-users, including patients, in the interview process will provide valuable insights
into the model’s real-world applications. Expanding the research to include focus groups and use cases
will further enhance understanding and ensure the model’s practicality in clinical settings. The research
questions for future simulation studies are composed in Table 11.1.

Table 11.1: Research questions for future interview studies.

What key themes emerge from pediatricians’ perspectives on implementing AI models for asthma
management?

How do technical physicians, nurse specialists, and asthma nurses prefer to integrate asthma exacer-
bation into their clinical workflow?

How do patients (and their parents) prefer to use an AI model in their asthma management?

What practical considerations impact healthcare professionals’ and patients’ engagement with an AI
application during a pilot phase?
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11.5 Conclusion

This study explored the expectations, definitions, and potential applications of an AI model for predicting
asthma exacerbations in pediatric asthma patients, based on insights from pediatricians. Asthma exac-
erbations were consistently defined as acute episodes that require medical intervention, highlighting the
need for precise criteria to distinguish between exacerbation and loss of asthma control. The time hori-
zon for predictions was recognized as highly context-dependent, with weekly predictions being useful for
acute care and monthly predictions preferred in outpatient settings for adjusting long-term management
strategies.

Pediatricians emphasized the importance of a model that supports decision-making by identifying
personalized risk factors, rather than focusing solely on prediction accuracy. Model transparency and
explainability were also deemed crucial, with pediatricians expressing a preference for visualizations with
the possibility of further explanations. The applications for providing patients insight into their risk
factors and supporting pediatricians during outpatient visits were favored and could improve asthma
management.
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12 General Discussion and Conclusion

12.1 Principal Findings

This research aimed to develop an AI model for predicting pediatric asthma exacerbations that can be
integrated into routine pediatric asthma care within the pediatric department while identifying personal
risk factors for each patient. This research consisted of three parts; a literature review, a simulation
study, and an interview study.

The exploratory literature review revealed considerable variability in how asthma exacerbations are
defined across studies, complicating model comparisons and potentially affecting prediction accuracy.
Most models primarily utilized demographic and clinical data from electronic health records, yet often
overlooked social, environmental, and at-home factors that could enhance predictive capability. While
Gradient Boosting Models and Random Forests were frequently chosen for their capacity to handle
complex data, the promising potential of LSTMs remained underutilized.

The simulation study highlighted the potential of the LSTM model, which identified personalized risk
factors and predicted individual asthma exacerbation risks over time. These capabilities were lacking
in the current XGBoost model. Both models encountered challenges with accuracy and sensitivity due
to class imbalance and a limited number of asthma exacerbations in the dataset. This indicates a need
for model improvements, such as refined input data, techniques for compensating class imbalances, and
hyperparameter optimization, to increase accuracy and applicability in pediatric asthma care. These
refinements could also enable more precise evaluations of the influence of various exacerbation definitions
and prediction time horizons.

The interview study showed pediatricians’ insight into the necessity for model transparency and per-
sonalized risk factor identification to support clinical decision-making. Pediatricians consistently defined
exacerbations as acute episodes requiring medical intervention, emphasizing the need for clear criteria to
distinguish them from general loss of asthma control. They identified different prediction time horizons
for specific contexts, with weekly predictions suitable for acute care and monthly predictions beneficial
for long-term asthma management.

12.2 Future Directives

This research adopted a clinically focused approach, beyond predicting pediatric asthma exacerbations to
emphasize practical implementation in pediatric asthma care. This approach collaborates with pediatri-
cians and focuses on explainability rather than solely on performance metrics. This study aimed to create
a more comprehensive and clinically applicable model for managing pediatric asthma exacerbations by
evaluating various machine learning models, refining asthma definitions, and testing different prediction
time horizons. A broader approach is used to predict exacerbations and incorporate diverse risk factors
to provide a holistic view of patient health [42, 186]. The interviews helped identify key applications for
the AI model, including a personal risk dashboard for patients, a dashboard for pediatricians to support
outpatient care, and an eHealth tool to enhance the monitoring of high-risk patients. Each of these
applications will guide the model’s structure and parameters, as each requires different features. For
example, an outpatient visit tool could enhance accuracy with less frequent predictions (e.g. monthly)
while an eHealth tool might rely on more frequent at-home measurements. These eHealth applications
can be evaluated by healthcare professionals in pilot studies with concept applications.

Explainability emerged as a central theme across all three research parts. The exploratory literature
review highlighted that none of the existing models included explainability, which limits their clinical
utility [33, 34, 41]. The simulation study demonstrated that the LSTM model could provide personal-
ized identification of individual risk factors, supporting model explainability, while the XGBoost models
illustrated the global importance of input features. Interviews with pediatricians revealed a strong pref-
erence for visual explanations of model predictions that highlight risk factors, with a clear distinction
between modifiable risk factors (treatable traits) and non-modifiable risk factors. Thus, the literature
and interview studies underscored the importance of model explainability, while the simulation study
confirmed the LSTM model’s capability to support it. Future research should aim to determine optimal
explainability techniques for presenting risk factors that are understandable for healthcare professionals
and patients, as the literature shows understanding of common explainability techniques is limited [188].
A pilot study involving end-users, including pediatricians and patients, could refine the practical appli-
cation of these visualizations. Additional details are provided in Appendix J, which outlines a grant
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proposal (Pioneers In HealthCare) for an AI-based personal risk dashboard to help patients understand
their asthma exacerbation risks and associated risk factors.

The literature study identified models with acceptable to good accuracy and sensitivity; however,
these models were unable to continuously predict asthma exacerbations over time. The simulation study
also showed satisfactory accuracy, though this was misleading due to an imbalance between specificity
and sensitivity. Because asthma exacerbations are relatively infrequent, the model’s accuracy is elevated
by correctly predicting their absence. However, detecting the presence of exacerbations is most critical,
highlighting the need to improve sensitivity. In the interviews, there was no consensus on a specific
accuracy threshold for the model; while some suggested acceptable accuracy levels of 80-90% or sensitivity
of 80%, others preferred a model that performs at least as well as, if not better than, a pediatrician.
Additionally, the specific application of the model could influence the required accuracy level, which was
not discussed in interviews. After further refinements, the model’s accuracy and sensitivity should be
reassessed by pediatricians for each intended use. Furthermore, the definition of asthma exacerbation is
closely related to model accuracy. As noted in the literature study, definitions vary significantly between
models, making direct comparisons difficult and heavily influencing model accuracy. In the simulation
study, a strict definition of severe exacerbation was applied, resulting in fewer exacerbation events in the
dataset, leading to class imbalance and lower sensitivity. In the interviews, pediatricians suggested refining
moderate asthma exacerbation definitions by using parameters such as a reliever medication schedule
(salbutamol afbouwschema). Additionally, predicting loss of asthma control by determining increases in
daily controller medication was suggested. Although not mentioned in the interviews, other potential
indicators of moderate exacerbation could include the initiation of prednisone following a consultation
by phone or eHealth contact. With these revised definitions, model accuracy and sensitivity should be
reassessed.

As mentioned earlier in this paragraph, three applications of the AI model are determined as further
follow-up of this research. These applications are 1) a personal risk dashboard for patients at home,
2) a risk dashboard for pediatricians to support outpatient visits, and 3) an AI-based monitoring tool
for eHealth care. The first application, detailed further in Appendix J, aims to empower patients to
manage their asthma by showing them their modifiable personal risk factors (treatable traits) for asthma
exacerbations [229]. The second application is designed to support pediatricians during outpatient visits,
highlighting key risk factors for each patient and predicting the risk of an asthma exacerbation over the
coming period (e.g. the months leading up to the next visit). This information allows pediatricians to
tailor asthma management based on individualized risk assessments. The third application focuses on
enhanced monitoring for high-risk patients in eHealth care, who provide more frequent data through
symptom tracking (chat) and, in some cases, at-home spirometry. This enables the AI model to deliver
more specific asthma exacerbation predictions on a shorter time horizon (e.g. daily). The identified
risk factors from this application can also contribute to a database that matches eHealth interventions
to specific risk factors. This database allows healthcare professionals to offer patients targeted eHealth
interventions tailored to their most important risk factors, making self-management more efficient, per-
sonalized, and effective. Additionally, the model can identify patient subgroups with similar risk profiles,
helping prioritize the development of eHealth interventions targeting key risk factors. The effectiveness of
these targeted interventions could be evaluated through an RCT study within the CIRCUS cohort [72].
The research questions following each part of this research are shown in Tables 5.1, 8.1, and 11.1. Fig-
ure 12.1 shows an overview of the whole project.
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Figure 12.1: An overview of the follow-up projects of the AI model for predicting pediatric asthma ex-
acerbations.

12.3 Conclusion

In conclusion, this research represents pioneering work in predicting pediatric asthma exacerbations over
time while identifying individualized risk factors, showing potential for clinical application. The proposed
model builds on literature-based risk factors and insights from interviews, aligning well with clinical needs
to support pediatric asthma management through personalized care.

Future work should focus on enhancing the model’s sensitivity in detecting asthma exacerbations by
incorporating diverse input data, addressing class imbalances, and optimizing model parameters. These
improvements will enable a more accurate assessment of the clinical definitions of asthma exacerbations
and enable prediction time horizons tailored to specific applications. Potential applications are 1) a
personal risk dashboard for patient self-management, 2) a risk dashboard for pediatricians to guide
outpatient visits, and 3) an eHealth monitoring tool. Pilot studies with healthcare professionals and
patients will evaluate these applications on their accuracy, clinical utility, and feasibility, ensuring that
they deliver actionable insights that enhance both prevention and treatment strategies.

Through these applications, the model offers a pathway toward more responsive and individualized
asthma management, ultimately supporting better (long-term) asthma outcomes and empowering pa-
tients and clinicians to manage asthma more effectively.
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13 Dankwoord

Wat een jaar is het geweest... Zoals iedereen mij kent ben ik vanuit mijzelf heel enthousiast en op deze
manier ben ik dus ook aan mijn M3 begonnen, en heb ik dit ook wel volgehouden hoor ;). Binnen mijn
afstuderen heb ik ontzettend veel geleerd over het onderwerp zelf, het uitvoeren van onderzoek en heel
veel over alles wat er rondom onderzoek speelt. Maar ik heb naast al het serieuze leerwerk ook zeker heel
veel plezier gehad tijdens mijn afstuderen!

Ik wil graag iedereen bedanken die mij tijdens dit jaar heeft geholpen, op wat voor manier dan ook
om dit onderzoek tot een succes te brengen! Allereerst wil ik Mattiènne bedanken voor alle begeleiding
die je mij dit jaar hebt gegeven. Van de inhoudelijke discussies tot het pushen van de juiste mensen,
maar ook de supervisie van mijn klinische activiteiten bij het aircon en het meegaan naar het congres in
Amerika. Naast alle serieuze activiteiten hebben we ook ontzettend veel kunnen lachen; die ene moeilijke
wandeling in Salt Lake City of de Saboteur spelletjes in Wenen.

Verder wil ik ook Boony bedanken voor jouw begeleiding tijdens dit jaar. Je hebt mij ontzettend veel
geleerd over kinderen in het algemeen, astma en klinisch redeneren. Je staat altijd voor mij klaar om
mee te denken, om mijn stukken van feedback te voorzien of om te overleggen over een patiënt. Jouw
enthousiasme werkt aanstekelijk en heeft er echt voor gezorgd dat ik met meer vertrouwen de kliniek
in kan! Ook heb jij altijd de tijd om het over van alles en nog wat te hebben, zoals je meest recente
wielrenrondje of grapjes die we uit willen halen.

Frans jou wil ik ook bedanken voor alle hulp en begeleiding die je hebt geboden tijdens mijn afstuderen.
Jij kon altijd echt met een goede kritische blik naar mijn verslagen, onderzoeksvragen of methode kijken,
waardoor het onderzoek echt een stuk sterker wordt. Wat ik verder echt ontzettend kan waarderen is dat
ik altijd van jou op aan kan; hoe druk je ook bent, je hebt altijd een moment om mijn verslagen te lezen
of om een meeting in te plannen, dankjewel hiervoor!

Ik wil daarnaast ook graag de andere leden van mijn afstudeercommissie bedanken; Monique, Lieke
en Marijn. Monique ik wil je graag bedanken voor de scherpe feedback die je altijd kunt geven op mijn
verslagen, je kijkt er altijd weer met een vernieuwende blik naar, waardoor ik het stuk nog concreter kan
maken; voor mijn verslag, het CIRCUS artikel, maar ook voor de subsidie-aanvragen ben je altijd bereid
om mee te denken. Lieke ik wil jou ook bedanken voor alle fijne begeleiding (vanaf de M2 al!) tijdens en
buiten de intervisies waarin je altijd heel open bent, wilt meedenken en er altijd voor zorgt dat ik weer
verder kan. Tot slot wil ik jou nog bedanken Marijn, dat je zo enthousiast en bereidwillig was om mee te
lezen (en luisteren) als buitenlid van mijn afstudeercommissie.

Verder wil ik ook iedereen van de Kindergeneeskunde afdeling bedanken. Iedereen hier staat altijd
open om mee te denken over het onderzoek of om mee te lopen op de kliniek. Specifiek wil ik ook nog
iedereen van het AIRCON team bedanken (Boony, Mark, Mattiènne, Pascal, Pamela en Miranda) voor
jullie openheid, betrokkenheid en enthousiasme waarin jullie mij hebben ondersteund in het zelfstandig
uitvoeren van de aircon inspanningstesten. Ik voelde mij al snel echt onderdeel van het team en ik
kan altijd bij jullie terecht met vragen, leuke verhaaltjes (supertjes!) en soms wat geklaag. Verder wil ik
Deborah bedanken voor al jouw betrokkenheid bij mijn afstuderen en alle hulp bij het CIRCUS onderzoek.
Tijdens (en na) onze theepauzes kunnen we naast alle belangrijke zaken ook altijd lekker kletsen over
eigenlijk alles. Tot slot natuurlijk ook alle stagiaires, naast alle inhoudelijke discussies was er ook altijd
tijd om gewoon lekker te kletsen, veel te lachen en leuke dingen samen te doen!

Tot slot wil ik natuurlijk ook nog (mijn) Mark bedanken voor alle steun, aanmoediging en geduld
die je mij hebt geboden tijdens mijn afstuderen. Het maakte niet uit met wat voor verhalen, geklaag of
dolenthousiasme ik thuis kwam, je was er altijd voor mij. Dit heeft er voor gezorgd dat ik dit jaar zo
mooi kan afronden, dankjewel!
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A. Hernández, A. M. Páez, and M. D. P. Delgado, “Virus and Mycoplasma pneumoniae prevalence
in a selected pediatric population with acute asthma exacerbation,” Journal of Asthma, vol. 53,
pp. 253–260, 3 2016.

[156] H. Hwang, J. H. Jang, E. Lee, H. S. Park, and J. Y. Lee, “Prediction of the number of asthma
patients using environmental factors based on deep learning algorithms,” Respiratory Research,
vol. 24, pp. 1–9, 12 2023.

[157] K. Larsen, J. Zhu, L. Y. Feldman, J. Simatovic, S. Dell, A. S. Gershon, and T. To, “The annual
September peak in asthma exacerbation rates still a reality?,” Annals of the American Thoracic
Society, vol. 13, pp. 231–239, 2 2016.

[158] M. A. Tosca, S. Ruffoni, G. W. Canonica, and G. Ciprandi, “Asthma exacerbation in children:
Relationship among pollens, weather, and air pollution,” Allergologia et Immunopathologia, vol. 42,
pp. 362–368, 7 2014.

[159] S. B. Ho, R. Haque, I. Chai, and A. Abdullah, “Optimised deep neural network model to predict
asthma exacerbation based on personalised weather triggers,” F1000Research, vol. 10, p. 911, 9
2021.

[160] Y. Zhang, L. Peng, H. Kan, J. Xu, R. Chen, Y. Liu, and W. Wang, “Effects of meteorological
factors on daily hospital admissions for asthma in adults: A time-series analysis,” PLoS ONE,
vol. 9, p. e102475, 7 2014.

[161] A. Han, S. Deng, J. Yu, Y. Zhang, B. Jalaludin, and C. Huang, “Asthma triggered by extreme
temperatures: From epidemiological evidence to biological plausibility,” Environmental Research,
vol. 216, p. 114489, 1 2023.

[162] J. W. Dexheimer, L. E. Brown, J. Leegon, and D. Aronsky, “Comparing decision support methodolo-
gies for identifying asthma exacerbations,” Studies in Health Technology and Informatics, vol. 129,
pp. 880–884, 2007.

[163] C. H. Lee, J. C. Y. Chen, and V. S. Tseng, “A novel data mining mechanism considering bio-
signal and environmental data with applications on asthma monitoring,” Computer Methods and
Programs in Biomedicine, vol. 101, pp. 44–61, 1 2011.

[164] M. Xu, K. G. Tantisira, A. Wu, A. A. Litonjua, J. H. Chu, B. E. Himes, A. Damask, and S. T.
Weiss, “Genome Wide Association Study to predict severe asthma exacerbations in children using
random forests classifiers,” BMC Medical Genetics, vol. 12, pp. 1–8, 6 2011.
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Appendix A: Definitions of Asthma Exacerbations

An explanation on the different definitions mentioned in Table 2.1.

Altman et al. use asthma exacerbations as a clinical endpoint by defining it as requiring systemic
corticosteroids, hospital admission, or a combination of both [44].

Murray et al. further distinguished loss of asthma control and asthma exacerbation by a limitation
of 48 hours for loss of asthma control [28]. Furthermore, a significant asthma exacerbation is defined as
troublesome symptoms lasting for at least 48 hours and ultimately resulting in treatment with systemic
corticosteroids. A status asthmaticus is defined as a severe asthma exacerbation that cannot be relieved
with acute care in an emergency department, that requires hospital admission, and that can be life-
threatening.

Helen et al. provide a more elaborate definition of asthma exacerbation [45]. An asthma exacerbation
is defined as an event characterized by a change from the patient’s previous status which is further
divided into severe and moderate asthma exacerbations. A severe asthma exacerbation is defined as an
event that requires an acute effort of both patient and physician to avert a serious consequence such
as hospitalization and death. A moderate asthma exacerbation is defined as a troublesome event that
prompts a need for a modification in treatment. This is clinically specified by being past the patient’s
standard range of day-to-day variation of asthma.

An official statement from the American Thoracic Society (ATS) and European Respiratory Society
(ERS) from Reddel et al. distinguishes between severe, moderate, and mild asthma exacerbations [11].
Severe asthma exacerbations are defined as needing urgent intervention to prevent hospitalization or
death. This can be further explained by the use of systemic corticosteroids for at least three days, or an
increased dose from a stable maintenance level, and by hospitalization or emergency room visits requiring
systemic corticosteroids. Moderate asthma exacerbations are defined as a temporary treatment change
to prevent escalation. They are defined by a deterioration in symptoms, decline in lung function, or
increased rescue bronchodilator use, persisting for two or more days but not severe enough for systemic
corticosteroids or hospitalization. ER visits not requiring systemic corticosteroids may also be classified
as moderate. Mild exacerbations lack a justifiable definition as symptoms or flow rate changes are minor
and may reflect transient loss of asthma control rather than a precursor to severe exacerbations.

Virchow et al. derive further clinical endpoints for moderate exacerbations using the official statement
of the ATS/ERS [46]. They state four criteria and when fulfilling at least two of those that result in
a change in treatment, the event is considered a moderate asthma exacerbation. These criteria are 1)
nocturnal awakening due to asthma and requiring reliever medication for two consecutive nights or an
increase of at least 0.75 in the daily symptom score for two consecutive days, 2) increase of at least 4
puffs a day in reliever medication use on two executive days, 3) increase of at least 20% in PEF or FEV1
on at least two consecutive days, and 4) visit to the emergency room for asthma treatment not requiring
systemic corticosteroids.
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Appendix B: Literature Search Strategy

To ensure a comprehensive review of relevant literature, a systematic search strategy was employed
across multiple academic databases, including PubMed, Scopus, and Google Scholar. The search aimed
to identify studies related to the use of artificial intelligence in predicting pediatric asthma exacerbations.

The following keywords and Boolean operators were used to refine the search:

• (”Artificial Intelligence” OR ”AI” OR ”Machine Learning” OR ”ML” OR ”model”)

• AND (”predicting” OR ”forecasting”

• AND (”asthma exacerbations” OR ”asthma attacks”)

• AND (”pediatric” OR ”child”)

Only studies available in English were included. Additionally, the search strategy included reviewing
reference lists from key articles to identify further relevant studies.
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Appendix C: Machine Learning Models in the Literature to
predict Asthma Exacerbations

C.1 Highly Relevant ML Models

Table C.1 shows the demographics, clinical characteristics, asthma characteristics, and comorbidities used
as input for the machine learning models in the literature categorized as most relevant. The demograph-
ics are used most as input for the ML models, followed by asthma characteristics, comorbidities, and
clinical measurements. However, the specific features within each domain vary greatly in the asthma
characteristics domain.

Table C.2 shows the healthcare utilization, social data, environmental data, and at home-measurements
used as input for the machine learning models in the literature categorized as most relevant. It can be
seen that these domains are used less as compared to the domains in Table C.1. Healthcare utilization
is used in most of the models, but the domains of social, environmental, and at-home data are relatively
unused.

Figure C.1 shows the number of input features for each of the included articles. It can be seen that
the number of input features varies greatly with a mean of 9.7 features and a standard deviation of 4.6
features.

Figure C.1: The number of input features used in the models from the literature.

Table C.3 shows the machine learning methods, best-performing model, outcome definitions, and
model performances for each of the highly relevant models. No clear correlation can be determined from
the ML method used and the model performance.
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Table C.1: The input characteristics of the machine learning methods of the demographic, clinical, and
asthma characteristics, and comorbidities domain.

Source Demographics Clinical
Measurements
and Vital Signs*

Asthma
Characteristics*

Comorbidities

Dexheimer
et al. [162]

Age, sex Respiratory rate, satura-
tion

History -

Lee et al.
[163]

- - Symptoms -

Xu et al.
[164]

Age, sex Genome data History, spirometry -

Robroeks et
al. [165]

Age, sex Height, weight Spirometry, VOC Allergies

Van Vliet et
al. [139]

Age, sex - ACT, symptoms,
spirometry, FeNO,
VOC, GINA symp-
tom score

Allergies

Van Vliet et
al. [140]

- - ACT, symptoms,
spirometry, FeNO,
VOC, previous
asthma exacer-
bation

Allergies

Patel et al.
[166]

Age, sex Weight, respiratory rate,
heart rate, saturation

- -

Kim et al.
[167]

Age, sex - - -

Luo et al.
[168]

Age, gender,
ethnicity, race

Weight, BMI, respiratory
rate, heart rate, satu-
ration, blood pressure,
temperature, eosinophils,
IgE, X-rays

Undefined
diagnosis-related
features

Allergies

Luo et al.
[169]

Age, gender,
ethnicity, race

Weight, BMI, respiratory
rate, heart rate, satu-
ration, blood pressure,
temperature, eosinophils,
IgE, X-rays

Undefined
diagnosis-related
features

Allergies

Hurst et al.
[152]

Age, sex, eth-
nicity

- Previous asthma
exacerbation

Allergies,
Eczema, obe-
sity

Hozawa et
al. [170]

Age, sex - History, spirome-
try, VOC

Allergies, gen-
eral comorbidi-
ties

Mandana et
al. [171]

Age, sex, eth-
nicity

- Lung function,
FeNO

General comor-
bidities

* BMI = Body Mass Index, IgE = Immunoglobulin E, VOC = Volatile Exhaled Compounds,
ACT = Asthma Control Test, FeNO = Fractional Exhaled Nitric Oxide
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Table C.2: The input characteristics of the machine learning methods of the healthcare utilization, so-
cial, environmental, and at-home measurements domain.

Source Healthcare
Utilization

Social Data Environmental
Data*

At-home
Measurements*

Dexheimer
et al. [162]

Medication,
billing codes,
chief complaints

- - -

Lee et al.
[163]

- - Air pollution, me-
teorological data
(humidity, temper-
ature)

-

Xu et al.
[164]

Medication - - -

Robroeks et
al. [165]

Medication - - -

Van Vliet et
al. [139]

- - - Daily spirometry,
daily symptoms

Van Vliet et
al. [140]

- - - FEV1, symptoms

Patel et al.
[166]

Patient acuity
at triage

Housing conditions, in-
surance, socioeconomic
status

Meteorological
data, virus data
(community viral
load data), climate
data

-

Kim et al.
[167]

- - Air pollution
(PM2.5, PM10)

Bidaily PEF,
asthma question-
naires

Luo et al.
[168]

Medication Home area, insurance - -

Luo et al.
[169]

Medication Home area, insurance - -

Hurst et al.
[152]

Emergency
room visits,
outpatient vis-
its

- - -

Hozawa et
al. [170]

Medication Home area - -

Mandana et
al. [171]

Emergency
room visits,
hospitalizations

- - -

* PM2.5 = Particulate Matter 2.5, PM10 = Particulate Matter 10, FEV1 = Forced Expira-
tory Volume in 1 second, and PEF = Peak Expiratory Flow
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Table C.3: The model metrics of the highly relevant literature models. The machine learning models in
Italic font were the best-performing models in those articles, only those model performances are pre-
sented in the table.

Source ML methods* Outcome* Model performance*

Dexheimer et
al. 2007 [162]

BN, SVM,
ANN

Exacerbation (not further
defined)

AUC 95.9%, sensitivity 90%,
specificity 88.2%, PPV 44.7%,
NPV 98.9%, PLR 7.69, NLR
0.11

Lee et al.
2011 [163]

DT Exacerbation (not further
defined)

Accuracy 87.52%, Sensitivity
85.59%

Xu et al.
2011 [164]

RF Hospitalization or ER
visit

AUC 66%

Robroeks et al.
2013 [165]

SVM Moderate to severe exac-
erbations

Sensitivity 100%, specificity
93%, accuracy 96%

Van Vliet et al.
2015 [139]

KNN Moderate to severe exac-
erbations following Red-
del et al.

AUC 58.54%, accuracy 52%

Van Vliet et al.
2017 [140]

RF Exacerbation (not further
defined)

AUC 90%, sensitivity 62%,
specificity 67%, accuracy 67%

Patel et al.
2018 [166]

DT, RF, LLR,
GBM

Hospitalization and re-
ceiving systemic corticos-
teroids

AUC 84%

Kim et al.
2020 [167]

LSTM, MNL Risk for exacerbation PPV no exact value

Luo et al.
2020 [168]

XGBoost Hospitalization or ER
visit

Sensitivity 53.7%, specificity
91.93%, accuracy 90.31%

Luo et al.
2020b [169]

XGBoost Hospitalization or ER
visit

Sensitivity 51.9%, specificity
90.91%, accuracy 90.08%

Hurst et al.
2022 [152]

LLR, RF, XG-
Boost

Exacerbation (not further
defined)

AUC 73.9%, sensitivity 70%,
PPV 13.8%

Hozawa et al.
2022 [170]

XGBoost Exacerbation (not further
defined)

AUC 65.6%

Mandana et al.
2023 [171]

RF Exacerbation (not further
defined)

AUC 72%, sensitivity 55%,
specificity 78%

* BN = Bayesian Network, SVM = Support Vector Machine, ANN = Artificial Neural Net-
work, DT = Decision Tree, RF = Random Forest, KNN = K-Nearest Neighbor, LLR = Lasso
Logistic Regression, GBM = Gradient Boosting Model, LSTM = Long-Short Term Memory,
MNL = MultiNomial Logistic Regression, XGBoost = eXtreme Gradient Boosting, ER =
Emergency Room, AUC = Area under the Receiver-Operative Curve, PPV = Positive Pre-
dictive Value, NPV = Negative Predictive Value, PLR = Positive Likelihood Ratio, NLR =
Negative Likelihood Ratio
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C.2 Moderately Relevant ML Models

Table C.4 shows the article characteristics, population details, time horizon, and outcome definitions of
the moderately relevant machine learning models. It can be seen that a great variety of ML methods is
applied in this category as is the same in the outcome definition. The definitions in this category are
more focused on measures of asthma control rather than asthma exacerbations. Furthermore, the models
with an asthma exacerbation as an outcome did not further define this outcome and only included adults
in their studies. The time horizon presented in some of the studies ranges greatly from only two weeks
to one year. The comparison of these models on clinical applicability is therefore rather difficult.

Table C.4: The moderately relevant literature comparison of machine learning models for predicting
pediatric asthma exacerbations.

Source ML methods* Outcome* Age range (nr.
of patients)

Time
horizon

Lieu et al.
1998 [230]

DT Hospitalization or ER
visit

0 – 14 (16520) -

Luo et al.
2015 [231]

MBDS, SVM, DL,
NB, KNN, RF

Asthma control deteriora-
tion

2 – 8 (210) -

Hosseini et al.
2017 [232]

RF Risk of asthma exacerba-
tions

Child and adult
(2)

-

Das et al.
2017 [233]

LR, DT, RF, SVM Frequent ER use (more
than 2)

Children (2691) -

Deng et al.
2019 [234]

GBM Asthma symptoms Children (4548) -

Xiang et al.
2020 [84]

ANN Asthma exacerbation
(not further defined)

Adults (31433) 365 days

Cobian et al.
2020 [235]

semi-Markov Asthma exacerbation
(not further defined)

Adults (28101) 90 days

Tong et al.
2021 [236]

XGBoost Hospitalization or ER for
asthma

Adults (Unknown) 365 days

Sills et al.
2021 [237]

RF, LR, autoML Hospitalization from ER
visit

Children (9069) -

Lisspers et al.
2021 [238]

XGBoost, RF,
LightGBM, GLM-
Net

Asthma exacerbation
(not further defined)

Adults (29396) 15 days

Zein et al.
2021 [239]

LR, RF, Light-
GBM

Non-severe and severe
asthma exacerbation

Adults (12093) 28 days

Haque et al.
2021 [240]

DNN ACT score Unknown (10) -

Seol et al.
2021 [241]

BN Asthma exacerbation
within 1 year of start
study

Children (99) -

Hogan et al.
2022 [242]

Cox, LR, ANN Asthma exacerbation
readmission within 180
days after diagnosis

5 – 18 (18489) 180 days

Lugogo et al.
2022 [243]

GBM Moderate and severe
asthma exacerbation

Adults (360) -

Continued on next page
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Table C.4: (Continued) The moderately relevant literature comparison of machine learning models for
predicting pediatric asthma exacerbations.

Source ML methods Outcome Age range (nr.
of patients)

Time
horizon

Alsaad et al.
2022 [244]

RNN (BiLSTM,
BiGRU, RETAIN),
LR

Risk for (repeated) ER
visits

0 – 18 (87413) -

Hond et al.
2022 [245]

XGBoost, SVM,
LR

Severe asthma exacerba-
tion

Adults (266) -

Inselman et al.
2023 [246]

GLMnet, RF, XG-
Boost

Asthma exacerbation
(not further defined)

Adults (3057) 180 days

Gorham et al.
2023 [247]

LLR Asthma emergency risk
score

2 – 18 (26008) -

Huang et al.
2023 [248]

XGBoost Predictors of asthma ex-
acerbation

Adults (7922) -

* DT = Decision Tree, MBDS = , SVM = Support Vector Machine, DL = Deep Learning,
NB = Näıve Bayes, KNN = K-Nearest Neighbor, RF = Random Forest, LR = Logistic
Regression, GBM = Gradient Boosting model, ANN = Artificial Neural Network, MBDS
= MultiBoost with Decision Stumps, GLM = Gradient Light model, DNN = Deep Neural
Network Regression, RNN = Recurrent Neural Network, BiLSTM = Bidirectional Long-
Short Term Memory, BiGRU = Bidirectional Gated Recurrent Unit, RETAIN = REverse
Time AttentIoN model, LLR = Lasso Logistic Regression, ER = Emergency Room

Figure C.2 shows the input data used in the moderately relevant machine learning models. Overall,
input features in the demographics domain are used most, followed by features from the asthma charac-
teristics and clinical measurements & vital signs domains. The input feature medication in the asthma
characteristics domain is by far the most used within this domain, followed by tobacco exposure and the
asthma control test (ACT). Moreover, as opposed to the comorbidities used in the highly relevant models
(see Figure 4.1), the general comorbidities are the most used and not the allergies.

Table C.5 shows the machine learning methods, best-performing model, outcome definitions, and
model performances for each of the moderately relevant models. It shows that multiple ML methods are
used, but no correlation can directly be determined between the ML method and the model performance
or the definition of the model’s outcome.

Table C.5: The model metrics of the moderately relevant literature models. The machine learning
models in Italic font were the best-performing models in those articles, only those model performances
are presented in the table.

Source ML methods Outcome Model performance

Lieu et al.
1998 [230]

DT Hospitalization or ER
visit

Sensitivity (32%), specificity
(94%), PPV (7%)

Luo et al.
2015 [231]

MBDS, SVM,
DL, NB, KNN,
RF

Asthma control deteriora-
tion

AUC (75.7%), sensitivity
(73.8%), specificity (71.4%),
accuracy (71.8%)

Hosseini et al.
2017 [232]

RF Risk of asthma exacerba-
tions

Accuracy (80.1%)

Das et al.
2017 [233]

LR, DT, RF,
SVM

Frequent ER use (more
than 2)

AUC (86%), sensitivity (23%),
PPV (56%), calibration (13%)

Continued on next page
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Table C.5 – continued from previous page

Source ML methods* Outcome Model performance*

Deng et al.
2019 [234]

GBM Asthma symptoms AUC (78%)

Xiang et al.
2020 [84]

ANN Asthma exacerbation
(not further defined)

AUC (70.03%)

Cobian et al.
2020 [235]

semi-Markov Asthma exacerbation
(not further defined)

AUC (77%)

Tong et al.
2021 [236]

XGBoost Hospitalization or ER for
asthma

AUC (90.2%), sensitivity
(70.2%), specificity (90.91%),
accuracy (90.6%)

Sills et al.
2021 [237]

RF, LR Hospitalization from ER
visit

AUC (91.4%)

Lisspers et al.
2021 [238]

XGBoost,
LightGBM, RF,
GLMNet

Asthma exacerbation
(not further defined)

AUC (0.7%)

Zein et al.
2021 [239]

LR, RF, Light
GBM

Non-severe and severe
asthma exacerbation

AUC (85%)

Haque et al.
2021 [240]

DNN ACT score Sensitivity (94%), Mean abso-
lute error (0.2), Mean squared
error (0.9)

Seol et al.
2021 [249]

BN Asthma exacerbation
within 1 year of study

No model performance given

Hogan et al.
2022 [242]

Cox, LR, ANN Asthma exacerbation
readmission within 180
days after diagnosis

AUC (63.7%)

Lugogo et al.
2022 [243]

GBM Moderate and severe
asthma exacerbation

AUC (83%)

Alsaad et al.
2022 [244]

RNN (BiL-
STM, BiGRU,
RETAIN), LR

Risk for (repeated) ER
visits

AUC (85%), AU PR-curve
(74%), F1-score (0.61)

Hond et al.
2022 [245]

XGBoost,
SVM, LR

Severe asthma exacerba-
tion

AUC (85%), sensitivity (59%),
accuracy (89%), PPV (2%),
NPV (100%)

Inselman et al.
2023 [246]

GLMnet, RF,
XGBoost

Asthma exacerbation
(not further defined)

AUC (74%)

Gorham et al.
2023 [247]

LASSO Asthma emergency risk
score

AUC (73.7%)

Huang et al.
2023 [248]

XGBoost Predictors of asthma ex-
acerbation

AUC (73.7%), sensitivity (96%),
NPV (96.7%)

* DT = Decision Tree, MBDS = MultiBoost with Decision Stumps, SVM = Support Vector
Machine, NB = Näıve Bayes, KNN = K-Nearest Neighbor, RF = Random Forest, LR = Lo-
gistic Regression, GBM = Gradient Boosting model, ANN = Artificial Neural Network, DNN
= Deep Neural Network, RNN = Recurrent Neural Network, BiLSTM = Bidirectional Long-
Short Term Memory, BiGRU = Bidirectional Gated Recurrent Unit, RETAIN = REverse
Time AttentIoN model, LLR = Lasso Logistic Regression, PPV = Positive Predictive Value,
AUC = Area Under the Receiver-Operating Curve, AU-PR = Area Under the Precision-
Recall Curve, NPV = Negative Predictive Value
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Figure C.2: The input data for the moderately relevant machine learning models per input domain.
The frequency of the input data is shown as a percentage of the total number of articles in this cate-
gory (n=21).

C.3 Least Relevant ML Models

Table C.6 shows the article characteristics, population details, time horizon, and outcome definitions
of the least relevant machine learning models. A great variety of ML methods is used in the literature,
similar to the ML methods used in the highly and moderately relevant models. The outcomes used in this
category are very broad focussing on asthma control, risk factors, severity of the asthma exacerbation,
or the persistence of asthma. The age range varies greatly in this category as is the number of included
patients, starting at only 16 patients and reaching 100 thousand. No model in this category presented a
time horizon.

Figure C.3 shows the input data used in the moderately relevant machine learning models. Overall,
input features in asthma characteristics, clinical measurements & vital signs, and demographics domains
are used most. In this category of models, the features from the asthma characteristics domain are used
most, as opposed to the highly and moderately relevant models in which demographics are used most.
The asthma characteristics are followed by the clinical measurements & vital signs, and demographics. In
the asthma characteristics domain, again medication is the most used feature. The domains of healthcare
utilization, social data, and environmental data are rarely used and the domain of at-home measurements
is not used at all.

Table C.7 shows the machine learning methods, best-performing model, outcome definitions, and
model performances for each of the moderately relevant models. Again, no correlation can be seen
between the ML methods used in these articles and their model performance.
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Figure C.3: The input data for the least relevant machine learning models per input domain. The
frequency of the input data is shown as a percentage of the total number of articles in this category
(n=21).
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Table C.6: The least relevant literature comparison of machine learning models for predicting pediatric
asthma exacerbations.

Source ML methods* Outcome* Age range
(number of pa-
tients)

Time horizon

Farion et al.
2010 [250]

DT Severity of asthma exac-
erbation after ER presen-
tation

1 – 17 (341) -

Farion et al.
2013 [251]

NB, DT, SVM Severity of asthma exac-
erbation

Children (291) -

Chatzimichail
et al.
2013 [252]

SVM Asthma outcome (not
further defined)

7 – 14 (112) -

Blakey et al.
2017 [253]

LR Risk of recurrent asthma
exacerbation

12 – 80 (118981) -

Goto et al.
2018 [254]

LLR, RM, XG-
Boost, DNN

Risk of hospitalization for
asthma or COPD

Adults (3206) -

Spyroglou
et al.
2018 [255]

NB Asthma persistence Children (147) -

Huffakker
et al.
2018 [256]

RF Asthma symptoms 5 – 18 (16) -

Khasha
et al.
2019 [257]

MNLR, SVM,
RF, XGBoost,
KNN, DT, GN

Asthma control level 5+ (96) -

Harvey et al.
2019 [258]

KNN, LR, DT,
RF, NB

Asthma development Children (Un-
known)

-

Messinger
et al.
2019 [259]

ANN Objective respiratory
score for asthma

Children (128) -

Deliu et al.
2020 [260]

LR Risk factors for asthma
exacerbation

Children (887) -

Bose et al.
2021 [261]

XGBoost, NB,
LR, KNN, RF

Asthma persistence 5 – 10 (9934) -

Lan et al.
2021 [262]

RF, DT ED or inpatient visits for
respiratory issues, includ-
ing asthma

Unknown (Un-
known)

-

Halner et al.
2021 [263]

RF Need for additional sys-
temic corticosteroids
and/or antibiotics, hospi-
tal readmission, or death
within 30 days of initial
asthma exacerbation

Adults (81) -

Overgaard
et al.
2022 [264]

LR, SVM, RF,
GN

Asthma exacerbation risk 6 – 17 (Unknown) -

* DT = Decision Tree, NB = Naive Bayes, SVM = Support Vector Machine, LR = Logistic
Regression, LLR = Lasso Logistic Regression, XGBoost = eXtreme Gradient Boosting, DNN
= Deep Neural Network, RF = Random Forest, MNLR = MultinNomial Logistic Regression,
KNN = K-Nearest Neighbor, ANN = Artificial Neural Network, ER = Emergency Room,
COPD = Chronic Obstructive Pulmonary Disease
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Table C.7: The model metrics of the least relevant literature models. The machine learning models in
Italic font were the best-performing models in those articles, only those model performances are pre-
sented in the table.

Source ML methods* Outcome* Model performance*

Farion et al.
2010 [250]

DT Severity of asthma exac-
erbation after ER presen-
tation

AUC (83%), sensitivity (84%),
specificity (71%), Brier score
(0.18)

Farion et al.
2013 [251]

NB, DT, SVM Severity of asthma exac-
erbation

Accuracy (70.7%)

Chatzimichail
et al. 2013 [252]

SVM Asthma outcome (not
further defined)

Sensitivity (95.45%), specificity
(95.59%), accuracy (95.54%)

Blakey et al.
2017 [253]

LR Risk of recurrent asthma
exacerbation

AUC (86.7%)

Goto et al.
2018 [254]

LLR, RF, XG-
Boost, DNN

Risk of hospitalization for
asthma or COPD

Sensitivity (75%), C-statistics
(0.83), Reclassification improve-
ment (92%)

Spyroglou et al.
2018 [255]

BN Asthma persistence Sensitivity (87.25%), specificity
(85.52%), accuracy (86.37%)

Huffakker et al.
2018 [256]

RF Asthma symptoms Sensitivity (47.2%), specificity
(96.3%), accuracy (87.4%)

Khasha et al.
2019 [257]

MNLR, SVM,
RF, XGBoost,
KNN, DT, GN

Asthma control level Accuracy (91.66%)

Harvey et al.
2019 [258]

KNN, LR, DT,
RF, NB

Asthma development Accuracy (90.9%)

Messinger et al.
2019 [259]

ANN Objective respiratory
score for asthma

Accuracy (80%)

Bose et al.
2021 [261]

XGBoost, NB,
LR, KNN, RF

Asthma persistence Average NPV-Specificity area
(0.43)

Lan et al.
2021 [262]

RF, DT ED or inpatient visits for
respiratory issues, includ-
ing asthma

No model performance given

Halner et al.
2021 [263]

RF Need for additional sys-
temic corticosteroids
and/or antibiotics, hospi-
tal readmission or death
within 30 days of initial
asthma exacerbation

AUC (68%)

Overgaard et
al. 2022 [264]

LR, SVM, RF,
GN

Asthma exacerbation risk AUC (80%)

* DT = Decision Tree, NB = Naive Bayes, SVM = Support Vector Machine, LR = Logis-
tic Regression, LLR = Lasso Logistic Regression, XGBoost = eXtreme Gradient Boosting,
DNN = Deep Neural Network, RF = Random Forest, MNLR = MultinNomial Logistic Re-
gression, KNN = K-Nearest Neighbor, ANN = Artificial Neural Network, ER = Emergency
Room, COPD = Chronic Obstructive Pulmonary Disease, AUC = Areau Under the Receiver-
Operating Curve, NPV = Negative Predictive Value
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Appendix D: Definition of Input Features

• Demographic domain

– Age: age either in years, months, or days

– Sex: female or male

– Gender: more broad gender identities including bigender, genderfluid, etc.

– Ethnicity: caucasian, African American, etc

– Race: white, black, Asian, etc

• Clinical measurements and vital signs domain

– Respiratory rate, saturation, heart rate, blood pressure: (dis)continuously measured

– Genome data: presence of specific genes or more broad genome data

– Height, weight, BMI, temperature: measured in either the hospital or at-home setting

– Eosinophils, Ige: measured value or labeled as elevated/normal

– X-rays: image or conclusion

• Asthma characteristics

– Medication: prescribed, retrieved, or a measure of taken medication

– History: dichotomous annotation of asthma-related history (symptoms, cues, triggers, etc)

– Symptoms: description or dichotomous annotation of previous or present symptoms

– Spirometry, VOC, FeNO: specific values or conclusion

– ACT (asthma control test), GINA symptom score: total score or individual question answers

– Previous asthma exacerbation: dichotomous or time series

– Undefined diagnosis-related features: not further defined in the literature

– Lung function: undefined lung function; values or conclusion

• Comorbidities

– Allergies, eczema, obesity: dichotomous annotation, time series, severity

– General comorbidities: dichotomous annotation or number of comorbidities

• Healthcare utilization

– Billing codes, chief complaints: mentioned as such in electronic patient file

– ER visits, outpatient visits, hospitalizations: dichotomous annotation, time series or duration

• Social data

– Home area: description of the district, categorized based on income, or area code

– Insurance: dichotomous annotation of healthcare insurance, type, additional insurance

– Socioeconomic status: categorization based on income

– Housing conditions: dichotomous annotation of air quality, neighborhood type, mold presence

• Environmental data:

– Air pollution, meteorological data, climate data: time series of closest measurement station

– Virus data: time series based on dichotomous annotation or closest measurements station

• At-home measurements

– Spirometry: specific values or conclusion

– Symptoms: description or dichotomous annotation of previous or present symptoms
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Appendix E: Electronic Patient File Segments

The electronic patient file is divided into the following segments:

• Appointments: outpatient visits categorized per department, containing information regarding date
and time of appointment, date time registered, healthcare professional, location, appointment type,
and dichotomous annotation of show/no show

• Allergies: allergy name and registration date

• Practitioner: name of practitioner, type of practitioner, start date practitioner

• Medical report (naslag): report text per subsection: requested additional tests, additional tests de-
scription, current medication, advises, allergies, anamnesis, medical policy, medical course (beloop),
complications, conclusions, correspondence, diagnosis, endoscopic report, family anamnesis, func-
tional tests description, informed consent, intoxication, lab tests description, physical examination,
medication, microbiology, nuclear tests description, overdracht, other actions, differential diagnoses,
pathology tests description, radiology tests description, reason of visit, summary, social anamnesis,
tracts anamnesis, performed operation (uitgevoerde verrichting), vital functions, medical history

• Documents: creation date, send date, specialty, document type, author, co-author, document text

• Function tests: date of function test, dichotomous annotation of show/no show, description of
functional test, report of functional tests, performer of functional test

• General practitioners: name of practitioner, type of practitioner

• Lab tests: lab measurement name, lab measurement type, lab measurement value, date of retrieval,
date of result

• Pharmacy request (LSP): medication, dosage, type, delivered until, start date, stop date, route of
medication administration

• Prescribed medication: medication, dosage, type, delivered until, start date, stop date, route of
medication administration, practitioner name

• Medical points of interest: practitioner name, practitioner specialty, medical points of interest text,
start date, registration date, dichotomous annotation of expiration

• Measurements: measurement date time, measurement value, measurement label, measurement de-
scription, measurement unit, extra information

• Questionnaires: questionnaire name, questionnaire subquestions, answers to subquestions, date
time of answers, questionnaire category

• Demographics: birth year, birth month, sex, postal code, diagnosis

• Operations (verrichtingen): DBC (diagnose-behandelcombinatie number, start year, start month,
date of operation, operator, number of operations, operation description

• Radiology: date of radiology test, date of conclusion input, dichotomous annotation performed
yes/no, operation number, indication, conclusions, healthcare professional

• Medical history: medical history, corresponding DBC, healthcare professional, healthcare profes-
sional specialty, registration date, dichotomous annotation of expiration, medical history type
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Appendix F: Elaboration on Environmental Data

The daily pollen counts are measured through Leiden University Medical Center and Elkerliek Hospital
[265,266]. The measured pollen are seen in Table F.1.

Table F.1: The measured grass, tree, and plant pollen, measured trough [265,266].

Poaceae Hornbeam Sea-buckthorn Apiaceae

Cyperaceae Beech Holly Brassicaceae

Hazel Oak Elder Rumex

Alder Horse-chestnut Privet Plantago

Cypress Walnut Juncaceae Urtica

Iep Maple Ericaceae Amaranthaceae

Poplar Platanus Rosaceae Artemisia

Ash Pine tree Ragged-Robin Hops

Willow Sweet-chestnut Asteraceae

Birch Linden Buttercup

The air quality metrics are measured through the RIVM [267] and are seen in Table F.2.

Table F.2: The measured quality metrics, measured through [267].

Ammonia Naphthalene Particulate matter 10 Toluene

Benzene Nitric oxide Particulate matter 2.5 Ultra-fine particles

Carbon monoxide Nitrogen dioxide Soot Xylene

Hydrogen sulfide Ozone Sulfur dioxide

The virological data is measured through the NVMO and RIVM [268, 269] and is measured in the
number of positive tests. The measured viruses are seen in Table F.3.

The meteorological data is measured through the KNMI [270] and is seen in Table F.4.
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Table F.3: The measured virologic data, measured through [268,269].

Adenovirus 40/41 Hepatitis C virus Parainfluenza virus type 1

Adenovirus no type Hepatitis D virus Parainfluenza virus type 2

Adenovirus not 40/41 Hepatitis E virus Parainfluenza virus type 3

Astrovirus Human immunodeficiency virus
type 1

Parainfluenza virus type 4

Bocavirus Human immunodeficiency virus
type 2

Parechovirus

Chikungunya virus Human metapneumovirus Parvovirus

Chlamydia no type Human T-lymphotropic virus Respiratory syncytial virus

Chlamydia no type possible Influenza A virus Rhinovirus

Chlamydia pneumoniae Influenza B virus Rickettsiae

Chlamydia psittaci Influenza C virus Rotavirus

Chlamydia trachomatis Measles virus Rubella virus

Corona virus excluding SARS-
CoV-2

Mumphs virus Sapovirus

Coxiella burnetii Mycoplasma pneumonia Sars-CoV-2

Enterovirus Norovirus West Nile virus

Hantavirus Other Zika virus

Hepatitis A virus Parainfluenza virus no type

Hepatitis B virus Parainfluenza virus no type pos-
sible

Table F.4: The meteorological weather data, measured through [270].

Mean wind direction (every hour) Rain duration

Mean wind velocity (every hour) The daily sum of rain amount

Daily mean wind velocity Daily maximum rain amount and timing

Highest daily mean wind velocity and timing Daily mean atmospheric pressure

Highest gust and timing Daily maximum atmospheric pressure and timing

Daily mean temperature Daily minimum atmospheric pressure and timing

Daily minimum temperature and timing Minimum sight and timing

Daily maximum temperature and timing Maximum sight and timing

Daily minimum temperature at 10 cm height
and timing

Daily mean cloud cover

Sunshine duration Daily mean humidity

Percentage of sunshine duration Daily maximum humidity and timing

Global duration Daily minimum humidity and timing
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Appendix G: Elaboration on Outcome Definition

The definition of hospitalizations in operations (verrichtingen) is (in Dutch) Klinische opname.

The definitions of ER visits are enumerated below (in Dutch):

• Spoedeisende hulp contact buiten de SEH afdeling, elders in het ziekenhuis.

• spoedeisendehulp-contact buiten spoedeisende hulp afdeling

• eerste consult op spoedeisende hulp afdeling

• herhaalconsult op spoedeisende hulp afdeling

In the medication list, the systemic corticosteroids are listed as (in Dutch):

• PREDNISOLON SANDOZ TABLET 20MG

• PREDNISOLON CAPSULE 25MG

• PREDNISOLON DRANK 5MG/ML

• PREDNISOLON TABLET 20MG

• PREDNISOLON 25 mg

• PREDNISOLON DRANK 1MG/ML DMB

• PREDNISOLON DRANK 5MG/ML CEB

• PREDNISOLON DRANK 5MG/ML DMB

• PREDNISOLON SANDOZ TABLET 30MG

• PREDNISOLON TEVA TABLET 20MG

• PREDNISOLON TABLET 30MG

• PREDNISOLON DRANK 5MG/ML ACE

• PREDNISOLON CF TABLET 5MG

• PREDNISOLON MYLAN TABLET 30MG

• PREDNISOLON TEVA TABLET 30MG

• PREDNISOLON TEVA TABLET 5MG

• PREDNISOLON SANDOZ TABLET 5MG

• PREDNISOLON MYLAN TABLET 20MG

• PREDNISOLON RP TABLET 5MG

• PREDNISOLON DRANK 1MG/ML

• PREDNISOLON DRANK 1MG/ML CEB

• PREDNISOLON TABLET 5MG

• PREDNISOLON DRANK 1MG/ML ACE

• PREDNISON TABLET 20MG

• PREDNISOLON 25 mg/2 ml

• PREDNISOLON 25 mg/1 ml

In the medication list, the nebulizations are listed as (in Dutch):

• SALBUTAMOL VERNEVELVLST 1MG/ML PATR 2,5ML

• IPRATROPIUM VERNEVELVLST 250UG/ML PATR 2ML

• SALBUTAMOL/IPRATROPIUM VERNEVELVLST 1/0,2MG/ML FL

• IPRATRO BR/SALBUT SDZ UD VERNOPL 0,5/2,5MG FL2,5ML
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• SALAMOL STERI-NEB VERNOPL 2MG/ML AMPUL 2,5ML

• ATROVENT UNIT DOSE VERNEVELOPL 125MCG/ML FL 2ML

• SALBUTAMOL 5 mg/50 ml (0,1 mg/ml) (pomp: 5mg=50ml)

• SALBUTAMOL INJVLST 0,5MG/ML AMP 1ML

• IPRATRO BR/SALBUT CIP UD VERNOPL 0,5/2,5MG FL2,5ML

• SALBUTAMOL VERNEVELVLST 1,25 MG/ED 2,5 ML (import)

• SALBUTAMOL INFOPL CONC 1MG/ML AMP 5ML

• SALBUTAMOL VERNEVELVLST 5MG/ML

• ATROVENT UNIT DOSE VERNEVELOPL 250MCG/ML FL 2ML

• BUDESONIDE TEVA STERI-NEB VERNS 0,125MG/ML AMP 2ML

• SALBUTAMOL/IPRATROPIUM VERNEVELVLST 1/0,1MG/ML

• SALBUTAMOL/IPRATROPIUM 1 ml
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Appendix H: Additional Model Results

Figure H.1 shows the most important features in the prediction averaged across the whole population
determined through feature permutation, Figure H.2 determined through SHAP. The most input features
from the feature permutation are obesity, grass allergy, age, no comorbidities, dust mite allergy, weed
allergy, allergic rhinitis, rodent allergy, non-allergic rhinitis, and postal code. The most important features
from the SHAP are BMI, weight, length, tree allergy, dysfunctional breathing, rodent allergy, hayfever,
dust mite allergy, age, and no comorbidities.

Figure H.1: The feature importance of the input features averaged across the whole population using
feature permutation.

Figure H.2: The feature importance of the input features averaged across the whole population using
SHAP.
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Figure H.3 shows the 7-day forecasted prediction of dichotomous asthma exacerbation averaged across
the whole population, Figure H.4 the 28-day forecasted prediction both.

Figure H.3: The 7-day forecasted prediction of asthma exacerbation averaged across the whole popula-
tion. The mean and standard deviation are shown. The y-axis represents the prediction of an asthma
exacerbation (e.g. 0.00047 corresponds to a 0.047% chance of an asthma exacerbation).

Figure H.4: The 28-day forecasted prediction of asthma exacerbation averaged across the whole popu-
lation.The mean and standard deviation are shown. The y-axis represents the prediction of an asthma
exacerbation (e.g. 0.00047 corresponds to a 0.047% chance of an asthma exacerbation).
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Appendix I: Interview Structure Outline

Het hoofddoel van de interviews is om inzichten te verzamelen van kinderartsen over de integratie van
een AI-model dat astma-exacerbaties bij kinderen voorspelt.

Binnen dit onderzoek ben ik bezig met het ontwikkelen van een AI model om astma exacerbaties bij
kinderen te voorspellen en hierin de persoonlijke risicofactoren te bepalen. Voor dit model gebruik ik alle
medische gegevens van de patiënten uit HiX, maar ook algemene gegevens zoals het weer, pollentellingen,
luchtkwaliteit en virologie data. Voor de gehele populatie zijn er veel risicofactoren bekend, maar juist
de bijdrage van elk van deze risicofactoren voor elke individuele patiënten zijn vaak nog onbekend. Om
er ook voor te zorgen dat het uiteindelijk een model wordt dat jij als kinderarts ook zou kunnen en willen
gebruiken interview ik een aantal kinderartsen om jullie visie en verwachtingen in kaart te brengen.

Table I.1: Interview structure of the semi-structured interviews.

Onderzoeksonderwerp Interview vraag

Astma exacerbatie definitie Welke definitie van astma exacerbatie zou jij willen ge-
bruiken voor het voorspel model?
In dit onderzoek maak ik voor nu onderscheid tussen ern-
stige en matige exacerbaties:
Matig: presentatie SEH of poli met start prednison of
salbutamol vernevelingen
Ernstig: ziekenhuisopname met start prednison of salbu-
tamol vernevelingen
Wat vind je van deze definities en het onderscheid tussen
de twee?
Hoe zou je deze definities aan willen passen?

Model verwachtingen Wat zijn je verwachtingen van dit AI model?
Hoe zou je dit AI model willen gebruiken op de poli?
Wat zou je van dit model willen weten/zien als uitkomst?
Waar zou je de resultaten van dit AI model willen zien?
Hoe zou je de resultaten willen zien?
Voorbeelden XAI uitkomsten laten zien bij de volgende
casus: patiënt Tom heeft een kans van 40% op een astma
exacerbatie en zijn 5 belangrijkste risicofactoren zijn ther-
apietrouw, boompollen, BLWI, voetbalwedstrijd en in-
halatietechniek.
Hoe zou je de waarde voor kans op exacerbatie willen
zien?
Hoeveel van de belangrijkste risicofactoren zou je willen
zien?
Hoe zou je willen zien hoe belangrijk een risicofactor is?
Hoe accuraat verwacht je dat het model is?
Zou je dit model vertrouwen en op de resultaten je beleid
aan durven passen?

Voorspellingstijd In welk(e) tijdsbestek(ken) voor een astma exacerbatie wil
je de voorspelling van het model krijgen?
Hoe zou je beleid aan willen/kunnen passen op basis van
een voorspelling op dat tijdsbestek?

Continued on next page
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Table I.1: Interview structure of the semi-structured interviews (continued).

Onderzoeksonderwerp Interview vraag

Model toepassingen In wat voor applicatie zou jij het AI model willen ge-
bruiken?
Voor nu hebben we drie applicaties gedefinieerd:
1) AI model voor op de poli; geeft bij elke patiënt de be-
langrijkste risicofactoren en het risico op astma exacer-
batie in een bepaalde tijdsduur
2) AI model voor eHealth zorg; voorspelling astma exac-
erbatie over tijd bij de intensievere monitoring van at-risk
patiënten
3) AI model voor patiënten thuis: stoplicht als indicatie
kans op astma exacerbatie met hierbij de belangrijkste
bëınvloedbare risicofactoren
Wat vind je van deze applicaties en zou je de modellen op
deze manier willen gebruiken?

Overig Heb je nog andere aspecten die belangrijk vindt die nog
niet aan bod zijn gekomen?

“Het AI model voorspelt een astma exacerbatie voor Tom in de komende 3 weken met een kans van 40%.
De 5 belangrijkste risicofactoren voor Tom zijn: therapietrouw (0.14 op basis van [specifieke methode]),
aanwezigheid boompollen (0.10), voetbalwedstrijd (0.9), BLWI (0.5) en inhalatietechniek (0.3).”
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Appendix J: Pioneers in HealthCare (PIHC) Subsidy Call -
Personal Risk Dashboard

Titel
PREVENT (Persoonlijke risico evaluatie van astma exacerbatie op basis van multimodale data m.b.v. AI)

Publieke samenvatting
Instabiel kinderastma komt veel voor, en kan leiden tot ernstige aanvallen en ziekenhuisopnames. Het
risico op een aanval wordt door veel factoren bëınvloed, zoals allergenen, virusinfecties, medicijngebruik,
weersveranderingen etc. De bijdrage van verschillende factoren op het risico op een astma aanval is voor
een individueel kind vaak niet direct evident. In dit project verzamelen we deze factoren over de tijd in
relatie tot klachten en longfunctie en ontwikkelen we m.b.v. geavanceerde kunstmatige intelligentie (AI)
technieken een persoonlijk risico dashboard. Dit biedt artsen en patiënten inzicht in de belangrijkste
risicofactoren, waardoor astma beter, tijdiger en gerichter kan worden behandeld.

Klinische en maatschappelijke relevantie
Kinderastma is een chronisch ziektebeeld dat bij ongeveer 7% van de Nederlandse kinderen voorkomt.
Astma heeft een grote impact op de kwaliteit van leven, ze kunnen niet goed fysiek meekomen met hun
leeftijdsgenoten, slapen vaak slecht en hebben meer schoolverzuim. Ongecontroleerd astma verhoogt
het risico op astma aanvallen waarvoor ziekenhuisopnames noodzakelijk kunnen zijn. Er worden steeds
meer factoren ontdekt die een rol spelen in het uitlokken van aanvallen. Sommige factoren zijn patiënt-
gerelateerd, zoals BMI, therapietrouw, longfunctie schommelingen, comorbiditeiten, zelfmanagement en
symptoomperceptie. Andere omgeving gerelateerd, zoals meteorologische omstandigheden, pollen, luchtk-
waliteit en virusdata [1]. In de dagelijkse klinische praktijk wordt aan de hand van klachten over de tijd
en klinische observaties gekeken welke factoren het astma bëınvloeden. Het is echter vaak lastig om op
empirische wijze te ontrafelen welke combinatie van factoren voor een individuele patiënt het meest bijdra-
gen. Daarom wordt (volgens de huidige GINA-richtlijnen) veelal gekozen voor een generieke aanpak van
behandeling en brede trigger vermijding. Met de opkomst van AI-technieken die diverse datasoorten over
tijd analyseren, en de groeiende kwaliteit van databronnen binnen en buiten het elektronisch patiënten-
dossier, kunnen we het leerproces voor patiënten en zorgprofessionals versnellen en verbeteren. Door de
unieke eHealth data van het MST met thuismetingen (klachtenpatroon, therapietrouw en longfuncties) te
gebruiken, kunnen monitoring en behandeling nog gerichter worden ondersteund. Onderzoeksvraag: Hoe
kan een AI-model patiëntgerichte risicofactoren en de kans op een astma aanval voorspellen en weergeven
in een persoonlijk risico dashboard? Binnen dit project willen we dit persoonlijke risico dashboard op
zo’n manier inzetten dat deze impact heeft voor de patiënt en ouders, door alleen de risicofactoren te
laten zien die de patiënt zelf kan verbeteren (treatable traits), zoals het trouw innemen van de puffen.
Hierdoor krijgt de patiënt de mogelijkheid en motivatie om zelf controle te nemen over zijn/haar astma
management [2]. Verder geeft het de kinderarts handvatten voor het verbeteren van het astma manage-
ment samen met de patiënt. De toegevoegde waarde is dat het astma management overzichtelijker wordt
waarbij de complexiteit van de uitlokkende factoren wordt doorgrond. Hierbij kunnen eHealth interven-
ties ingezet worden passend bij de persoonlijke risicofactoren, waardoor de astmazorg doelmatiger wordt.

Uitdaging
Dit project valt onder de categorie “Technologisch pionieren in de zorg” omdat we een LSTM-model
(Long-Short Term Memory) gaan ontwikkelen, optimaliseren en evalueren voor de predictie van astma
aanvallen bij kinderen om de kinderastmazorg te personaliseren. De huidige literatuur laat een grote
variatie in modeltypes, input data en uitkomstmaten zien waarbij LSTM-modellen een opmars laten zien
voor het maken van tijdsgebonden voorspellingen [3]. Deze modellen zijn echter nog niet eerder ingezet
in de (kinder)astmazorg en missen de personalisatie en de klinische uitlegbaarheid die nodig is voor
toepassing in de praktijk. Vanuit de lopende masterthesis van Tamara Ruuls is er een opzet gemaakt voor
een LSTM-model, dat de kans op astma aanvallen en persoonlijke risicofactoren voorspelt. Om de verdere
ontwikkeling en implementatie mogelijk te maken moeten de volgende technologisch-wetenschappelijke
uitdagingen in dit project worden overbrugd:

1. Datasoorten: Het combineren van continue en discrete variabelen maakt de LSTM-architectuur
complexer doordat er verschillende modellagen nodig zijn om deze datatypes te integreren.

2. Tijdsindicatie: De voorspellingstermijn vaststellen, toegespitst op het klinische doel.

88



3. Accuraatheid: We onderzoeken of een sensitiviteit van 90% haalbaar is, met als doel deze zo hoog
mogelijk te krijgen. Het correct voorspellen van astma aanvallen is namelijk belangrijker dan het
voorspellen van het uitblijven ervan.

4. Generaliseerbaarheid: Het model moet breed inzetbaar zijn, waarvoor validatie (intern en extern)
nodig is. Om toekomstige opschaling te faciliteren, gebruiken we (inter)nationale informaties-
tandaarden zoals SNOMED CT en LOINC.

5. Visualisatie: De modeluitkomsten moeten duidelijk en begrijpelijk worden gepresenteerd aan patiënten,
ouders en zorgverleners in een persoonlijk risico dashboard. Voor het weergeven van de persoonlijke
risicofactoren zetten we explainable AI-technieken zoals SHAP, LIME of LSTM attention layers in
om de belangrijkste input variabelen voor de voorspelling te ontrafelen.

Synergie tussen de technologische en klinische partners
De synergie tussen de technologische en klinische partners van dit consortium is essentieel voor het succes
van dit project, waarbij de expertises van de partners elkaar aanvullen. Tamara Ruuls is expert in het
LSTM-model en de optimalisatie en validatie hiervan. Zij zal het project coördineren en de verbindende
schakel vormen tussen de verschillende partners. Dr. Boony Thio en dr. Mattiènne van der Kamp (MST)
brengen ervaring in de klinische kinderastmazorg aangevuld met de implementatie van het eHealth zorg-
pad in de kinderastmazorg, waar al jarenlang continue data wordt verzameld. Hiermee dragen zij bij
aan de complexiteit en uitgebreidheid van de input data voor het model alsook de aansluiting van het
persoonlijk risico dashboard op de huidige kinderastmazorg. Prof. Monique Tabak (UT) heeft expertise
op het gebied van monitoring en shared decision support in eHealth technologie wat bijdraagt aan o.a.
het opstellen van de requirementsanalyse en het uitvoeren van de pilot studie. Verder coördineert zij
het RESAMPLE project, gericht op AI-modellen voor COPD-patiënten, wat potentiële samenwerkingen
teweeg kan brengen. Anouk Veldhuis, MSc en ing. Jeroen Geerdink (ZGT), met een bewezen track-
record in AI-implementatie in de zorg, zullen samen met hun junior onderzoeker een sterke adviserende
rol vervullen voor de model optimalisatie en generalisatie. Daniëlle Ekkel, MSc en Cornelieke Graat-van
Steenbeek, MSc, van het AI-lab in het MST, dragen bij met expertise in wet- en regelgeving omtrent AI
en dataprivacy. De externe validatie zal plaatsvinden d.m.v. data uit DZ en ZGT, hierbij zal Tamara het
voortouw nemen en samenwerken met kinderarts drs. Monique Gorissen (DZ) met haar jarenlange er-
varing als kinderarts en met onderzoek. Monique de Jong-Rouweler, MSc en dr. Vera Bulsink vanuit het
Waarde gedreven zorg team brengen expertise in de opschaling van projecten naar Santeon ziekenhuizen
en in de data-gedreven evaluatie van de effecten op de zorg. Evidencio is een softwarebedrijf in de regio
dat gespecialiseerd is in het ontwikkelen en implementeren van AI-algoritmes in de zorg met hierbij ook
veel ervaring op het gebied van wet- en regelgeving en beschikbare standaarden rondom AI-software als
medisch hulpmiddel. Zij zullen vanaf de start van het project aansluiten en waken dat alle processtappen
volgens de huidige standaarden gedocumenteerd worden zodat de implementatie versneld kan worden.
Het MST is de aangewezen plek om dit project te leiden, omdat dit onderzoek plaatsvindt binnen de
uitgebreide (eHealth) kinderastma onderzoekslijn. Hierbij is dit onderzoek een nieuwe tak gericht op het
optimaliseren, personaliseren en efficiënter maken van de kinderastmazorg.

Plan van aanpak
Er wordt in dit onderzoek gebruik gemaakt van data vanuit twee reeds goedgekeurde studies:

• PREDICTA: In het MST wordt retrospectieve data van de volledige populatie kinderastmapatiënten
(> 1800) verzameld. De dataset omvat medische, milieu en eHealth data.

• CIRCUS: In het MST wordt prospectieve data verzameld van 300 patiënten (30% van de MST
jaarpopulatie) in de CIRCUS studie, een cohort multiple randomized controlled trial (cmRCT). De
studie verzamelt naast de data van de PREDICTA studie ook maandelijks.

Vervolgens zal dit onderzoek in vier opvolgende fases worden uitgevoerd (zie Figuur J.1);

1. Model optimalisatie; Het optimaliseren van het AI-model tot maximale sensitiviteit. Toevoegen
van input data, zoals textmining van de medische naslag, therapietrouw, eHealth data en longfunc-
tiemetingen over tijd. Verder uitvoeren van hyperparameter tuning o.b.v. het aantal nodes, units
in de dense laag, epochs, batch size en gewicht van lagen. Daarnaast ook het optimaliseren van de
frequentie van de continue variabelen (dagelijks, wekelijks of maandelijks).

2. Model generalisatie; Het generaliseren van het AI-model d.m.v. interne validatie (CIRCUS studie,
MST) en externa validatie (retrospectieve data, ZGT en DZ). Hiervoor wordt allereerst een niet-
WMO aanvraag geschreven voor de externa validatie.
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3. Model applicatie; Opstellen van een requirementsanalyse voor een persoonlijk risico dashboard
(d.m.v. de methodiek gepresenteerd door van Velsen [4]). De requirementsanalyse wordt opgesteld
o.b.v. 2 focusgroepen van 1) 10 kinderartsen (5 van MST en 5 van DZ) en 2) 10 deelnemers van
het patiëntenpanel (5 kinderen en 5 ouders). Op basis hiervan wordt een concept applicatie van het
persoonlijk risico dashboard gebouwd.

4. Pilot studie; Het testen van de applicatie met de eindgebruikers. Hiervoor wordt een pilot studie
opgezet waarvoor een niet-WMO aanvraag geschreven wordt. De pilot studie bestaat uit 2 focus-
groepen die tweemaal de applicatie evalueren; 1) bestaat uit 10 kinderartsen (MST en DZ) en 2) uit
10 deelnemers van het patiëntenpanel (MST). In de pilot studie wordt het persoonlijk risico dash-
board van 5 geanonimiseerde digital twins getoond, waarbij de interactie met de applicatie wordt
gemeten via audio-video opnames en de deelnemers via een semigestructureerd beoordelingsfor-
mulier het dashboard evalueren op o.a. gebruiksvriendelijkheid, toepasbaarheid en verbeterpunten.
Op basis van deze resultaten wordt de applicatie verbeterd en opnieuw geëvalueerd. Op basis van
deze resultaten wordt een stappenplan tot implementatie uitgewerkt.

De betrokken partijen en de leidende partij in dikgedrukte stijl zijn weergegeven alsmede de tijdsplanning
in onderstaand figuur. Tamara zal hierin de coördinator zijn.

Figure J.1: De tijdlijn van het project.

Verwachte korte termijn doelstellingen, resultaten en uitkomsten van het project
Dit onderzoek zal resulteren in 1) een geoptimaliseerd AI-model die 2) gegeneraliseerd wordt o.b.v. in-
terne en externa validatie. Er wordt in samenwerking met de eindgebruikers een 3) requirementsanalyse
rapport opgesteld vanuit waar er een 4) concept applicatie opgesteld wordt die een persoonlijk risico
dashboard geeft van risicofactoren en de kans op een astma aanval. Deze concept applicatie wordt in
een pilot studie geëvalueerd om de 5) evaluatie rapport op te stellen en tot een 6) stappenplan tot im-
plementatie te komen. Binnen dit onderzoek worden vier HBO en WO (student)projecten ingezet op
1) het uitvoeren van de hyperparameter tuning (model optimalisatie), 2) het uitvoeren van de interne
validatie, 3) het uitvoeren van de focusgroep met het patiëntenpanel (requirementsanalyse) en 4) het
opzetten van de pilot studie. De kennisdisseminatie van de 4 verschillende stappen van dit project zal
plaatsvinden middels posters of mondelinge presentaties op internationale AI en (kinder)long congressen
of symposia en publicatie(s) in een Q1 tijdschrift. Hierbij zullen de partners een workshop organis-
eren over de toepassing van het model en het persoonlijk risico dashboard op het European Respiratory
Congress (ERS). Verder zal er kennisgeving aan de doelgroep zijn d.m.v. het patiëntenpanel, de CIRCUS
studie nieuwsbrief en patiënt-verenigingen (Longfonds, VND). Ook is er kennisgeving aan collega’s via
instellingsnieuwsbrieven, websites, TechMed, zorgmarkt en wetenschapsdagen, met verdere verspreiding
via het Reggeborgh Research Fellowship netwerk.

Duurzame samenwerking, voortzetting van het project
MST (kindergeneeskunde, AI-lab en Waarde Gedreven Zorg team) en UT (BSS vakgroep en eCMC)
hebben een sterke samenwerking door eerdere succesvolle projecten. Dit project breidt de samenwerking
uit met ZGT, dat ervaring heeft in AI-implementaties. Binnen MST werken technisch geneeskundigen
en kinderartsen samen aan zorginnovaties en waarborgen ze de klinische toepassing van AI-modellen.
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De CIRCUS-studie, goedgekeurd in februari 2024, biedt een raamwerk voor een toekomstige RCT-studie
om de effectiviteit van het persoonlijk risico dashboard te evalueren. De reeds bestaande internationale
samenwerking (BLOOM consortium) met MST en UT gericht op het verbeteren van lange termijn uitkom-
sten en zelfmanagement voor kinderen met chronische aandoeningen via eHealth zoekt actief naar ver-
volgfinanciering waarbinnen dit project ook kan vallen, waaronder EU Horizon-subsidieaanvragen. Dit
onderzoek valt binnen de huidige onderzoekslijn gericht op het verbeteren van de kinderastmazorg mid-
dels eHealth applicaties. Binnen deze onderzoekslijn wordt actief gezocht naar vervolgsubsidies zoals
het stichting astma bestrijding, ZonMW doelmatigheidonderzoek en MedZO. Het model biedt potentie
tot uitbreiding naar andere afdelingen zoals longgeneeskunde. De bestaande ICT-infrastructuur maakt
veilige analyse van patiëntgegevens mogelijk en biedt mogelijkheid voor implementatie in Santeon zieken-
huizen via het waarde gedreven zorg team.

Impact op de zorg en lange termijn uitkomsten
De duurzame inzet van het eHealth zorgpad geeft reeds kwalitatieve verbetering (verbeterde astma
uitkomsten en zelfmanagement) en doelmatigheid van de huidige kinderastmazorg [5]. Het AI-model
biedt zorgverleners, patiënten en ouders inzicht in persoonlijke risicofactoren voor astma aanvallen. Hi-
erdoor kunnen monitoring en behandeling gepersonaliseerd en minimaal belastend worden ingezet d.m.v.
passende eHealth interventies. Dit kan leiden tot minder klachten, betere kwaliteit van leven, en een
afname van zorgverbruik waarbij zelfregie van patiënten wordt versterkt. Deze effecten kunnen in een
opvolgende RCT-effectstudie worden geobjectiveerd. Daarna kan bij succesvol doorlopen o.b.v. de docu-
mentatie en betrokkenheid van Evidencio worden overgaan tot valorisatie en implementatie. De doelgroep
is de gehele kinderastmapopulatie (per jaar ongeveer 1000 kinderen in het MST). Via waarde gedreven
zorg (standaardiseren, personaliseren en digitaliseren) worden de impact en medische zorguitkomsten
geëvalueerd en kan er een zorgpad ontworpen worden waarbij eHealth interventies ingezet worden passend
bij de persoonlijke risicofactoren om de astmazorg doelmatiger te maken. Dit sluit ook aan bij de IZA-
doelstellingen voor zorgtransformatie en versterking van zelfregie. Benchmarking met andere ziekenhuizen
borgt de kwaliteit van de zorg. Naast de innovatieve ontwikkelingen wordt dit project ook wetenschap-
pelijk ingebed middels het promotie traject van Tamara Ruuls, wat de kans op toekomstige opname van
de resultaten in behandelrichtlijnen voor astma vergroot.

(Potentie tot) valorisatie of implementatie
Bij de start van dit project is er reeds een AI-model met TRL2 dat binnen het project ontwikkeld zal
worden tot TRL6 in de pilotstudie. Het uiteindelijke product zal vallen onder de EU AI Act en de MDR
klasse IIa, waarvoor wordt samengewerkt met Evidencio waarbij dit model opgenomen kan worden in
hun bibliotheek van (MDR-gecertificeerde) medische algoritmes. De resultaten van dit onderzoek kunnen
een basis vormen voor het ontwikkelen van een businessplan in samenwerking met eCMC, NovelT en
de verschillende partners. Daarnaast worden partijen zoals de patiëntverenigingen actief op de hoogte
gehouden om de aansluiting op de behoeften van patiënten te waarborgen en te versterken, met het oog
op een succesvolle toekomstige implementatie. Hierbij wordt de infrastructuur zo opgesteld dat deze
gemakkelijk uit te breiden is naar andere ziekenhuizen.
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