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Abstract

This thesis explores the effects of time delays on teleoperated robotic systems in high-risk environments,
specifically focusing on fire reconnaissance applications. In such hazardous environments, time delays can de-
grade an operator’s ability to control a robotic platform accurately and maintain situational awareness, directly
impacting mission success and safety. This research investigates the thresholds at which time delays hinder per-
formance and evaluates mitigation strategies like predictive displays and enhanced interface designs to support
operators. Through controlled simulations involving delayed video feedback and situational awareness tests, this
study assesses cognitive load, efficiency in task completion, and situational awareness accuracy. Findings reveal
that, although operators generally maintained task performance, extended delays notably increased frustration,
emphasizing emotional resilience as a key area for improvement. These insights suggest that teleoperation design
should prioritize frustration management and adaptability to ensure sustained operator performance in delay-
sensitive applications.

Keywords— Situational Awareness (SA), NASA Task Load Index (NASA-TLX), User Workload (UW), Electro-Dermal
Activity (EDA), Unmanned Ground Vehicle (UGV), dHRI (delayed Human Robot Interaction).
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1 Introduction

House fires are an escalating hazard in the Netherlands, with reports indicating a significant rise in incidents in 2023 by the
Netherlands Institute for Public Safety (NIPV). It was estimated that over 4,000 house fires were recorded in the first half
of the year alone, equivalent to almost one fire every hour (Nivera, 2023). This alarming statistic underscores the urgency
of improving fire response strategies in indoor settings, where complex layouts with reduced visibility and structural
instability complicate firefighting efforts. By addressing this need, the current thesis explores the potential of teleoperated
robotic systems for enhancing situational awareness (SA) and enabling remote reconnaissance in high-risk indoor
environments. By providing real-time insights and remote control capabilities, we hope to reduce the direct risks to
firefighters while achieving more efficient interventions.

Teleoperated robotic devices are increasingly being used in hazardous areas to reduce the risks experienced by human
operators, as described by Chacón (2020). One particularly relevant application is in reconnaissance missions for dangerous
fire situations, where rapid response and real-time decision-making are critical. Performance and safety can be significantly
impacted in such settings by operator-robot communication delays as well as the cognitive strain on the operator (Chacón,
2020). The development of such robotic systems highlights the growing importance of teleoperation and autonomous
control in managing life-critical tasks. However, despite advancements in autonomous capabilities, teleoperation remains
essential in situations where human oversight is required to make complex decisions. One of the key challenges in these
teleoperated tasks is the presence of communication delays, which can significantly affect the operator’s ability to maintain
situational awareness (SA) and execute precise control (Moniruzzaman et al., 2022).

Important aspects related to Rots in de Brand’s robotic platform concept were identified and addressed in order to enhance
the use of teleoperation in dangerous fire scenarios. This study looked at several core topics, such as how time delays affect
teleoperation performance, the significance of SA and how to quantify it, and the evaluation of several design approaches to
deal with delay-related problems. To assess SA, operator performance, and user workload levels at different delay intervals,
the experimental design of the study was designed to replicate the delay conditions commonly encountered in teleoperation.
With this strategy, we gained knowledge on how to enhance operator satisfaction and task precision in time-delayed
scenarios, ultimately promoting teleoperation as a workable option for remote control in dangerous environments.

1.1 Context

Teleoperation, the remote control of machines over long distances, allows operators to perform challenging tasks in
hazardous environments using real-time inputs. In the literature, teleoperation is broadly categorized into bilateral and
unilateral types. Bilateral teleoperation provides both control and force feedback: as the robot interacts with its
environment, the operator receives tactile feedback that enhances the realism and control necessary for tasks such as
tele-surgery or precision manipulation (Zhu et al., 2011; Korte et al., 2014). Unilateral teleoperation, by contrast, relies
solely on the operator’s visual inputs to navigate and control the robot in real time, offering an effective solution for
high-risk scenarios where human oversight and precision are critical (Zhu et al., 2011). In this type of teleoperation, visual
cues, rather than tactile feedback, are used to guide the operator’s actions, making it well-suited for reconnaissance in
dangerous, visually compromised environments.

In firefighting applications, teleoperated systems enable remote reconnaissance missions aimed at victim detection and
environment assessment. In situations where visibility is low, such as smoke-filled indoor fires, operators face unique
cognitive demands. Skills such as sense-making and cognitive mapping are crucial, allowing operators to construct mental
maps of unfamiliar environments to navigate effectively under pressure (Dyrks et al., 2008). Firefighters, for instance,
commonly use these cognitive maps to note essential features like entry points, exits, and the number of potential victims,
guiding both the reconnaissance mission and informing the rest of the team of critical details.

Integrating teleoperated robots equipped with advanced sensors, such as LIDAR, IMUs, and depth cameras, can
significantly enhance these cognitive maps by supplying real-time spatial data to the operator. These sensors provide
spatial and situational cues, allowing remote operators to interpret the environment and maintain situational awareness (Hu
et al., 2016). However, the goal of teleoperated systems in such high-stakes settings is to supplement—not replace—human
judgment. Maintaining operator trust and ensuring that technology supports high-level, qualitative decision-making
processes is crucial. When applied to fire reconnaissance, teleoperation platforms can greatly reduce human exposure to
danger while also improving mission outcomes by continuously updating the operator with precise spatial data.

The ”Rots in de Brand” team is dedicated to enhancing the safety and efficiency of fire reconnaissance operations through
the use of teleoperated robotic platforms. Building on the ”FireBot” initiative, their focus is to provide firefighters with
tools that facilitate navigation in hazardous, low-visibility settings, such as fires in underground parking structures. By
deploying teleoperated robots that gather real-time reconnaissance data, the aim is to limit direct human exposure to
dangerous environments. This work aligns with studies like Seo et al. (2023), which assess the impact of delayed
teleoperation on performance and mental workload. Their findings underscore the importance of minimizing operator
cognitive load and maintaining efficient data flow to ensure reliable operation under stressful, delay-affected conditions (Seo
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et al., 2023). Such insights are invaluable as they inform the design of teleoperated systems that support both operational
safety and effectiveness in fire reconnaissance missions.

1.2 Problem Statement

Teleoperation systems are highly sensitive to communication delays, which can severely impact system stability and
operator performance. Time delays pose a particular challenge in high-stakes environments, where even minor delays can
impair situational awareness and decision-making. For example, space teleoperated robots experience round-trip delays of
up to 5 seconds, compromising real-time responsiveness (Penin, 2002). Such delays can affect the operator’s ability to
effectively control the robot, especially with delayed visual-feedback, this relationship is shown in Figure 1. The delay in
this feedback loop disrupts task performance, making remote operations in hazardous environments more challenging
(Wojtusch et al., 2018).

Figure 1: Teleoperation diagram for a delayed scenario between human operator and a telerobotic system (Wojtusch
et al., 2018)

This project, in collaboration with Saxion University, builds upon the ”Rots in de Brand” and ”FireBot” initiatives (Balen
et al., 2023). These projects aim to enhance firefighting reconnaissance through autonomous robots equipped with
advanced sensors (e.g., infrared and RGB cameras) and SLAM technology for navigation and monitoring. However, a key
issue persists: communication delays during remote operation, particularly due to WiFi transmission, which can lead to
latencies as high as 2000 ms. Such delays compromise the operator’s ability to make real-time decisions, posing risks to
mission success and firefighter safety.

Time delays in teleoperation have been studied since the 1960s, with early solutions like the “move and wait” approach
providing stability for delayed systems (Ferrell, 1966; Chen et al., 2007). In visual-based teleoperation, where operators rely
heavily on visual processing and situational awareness to perform tasks, these delays are particularly disruptive (Seo et al.,
2023). Techniques such as predictive displays have been developed to mitigate delay effects, with proven benefits in
improving operational efficiency in high-latency environments (Penin, 2002; Chen et al., 2007).

In this project, overcoming latency in camera feedback remains a major difficulty. As reported by the technical team,
during the thermal image capture and processing, moderate to large delays were found in the visual channel. Figure 2
illustrates the capturing, conversion, merging, and streaming of these images to the operator’s site. According to their
insights, ”the required time from image acquisition to streaming is about 50 ms to 60 ms. The WiFi ping is generally about
5 ms to 20 ms, but it is not always very stable. Random network delays of up to 2000 ms have been experienced due to
interference or range issues.”

1.3 Goal

This project’s main goal is to evaluate how operator performance and cognitive workload are affected by time delays when
operating teleoperated robotic platforms in fire reconnaissance simulations. With an emphasis on detecting the emotional
and mental strain caused by delays, this study specifically examines how different delay durations affect important metrics,
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Figure 2: Data Flow Diagram for Thermal Imaging System from Rots in de Brand, Technical Team

including task completion time, navigation accuracy, environment recreation (SA), and dimensions of cognitive load
(NASA-TLX). The study looks to offer insights into system design and operator support methods that reduce delay-induced
frustration and preserve SA by carrying out a systematic experimental analysis and analyzing pertinent literature. The
results provide a basis for creating useful design principles to improve teleoperation effectiveness under time-delay
circumstances, which can be applied to high-risk situations like firefighting, where real-time decision-making is primordial.

1.4 Research Questions

The research questions in this thesis are designed to address a number of significant challenges related to teleoperating
robotic systems for fire reconnaissance missions. How long can pass before these platforms’ controllability begins to
deteriorate? This is the primary research question. For safe and efficient operation, it is critical to perform well in areas
when lag in communication is unavoidable. The robot platform from this project have reported delays from 80 ms to 1800
ms, so with this in mind we can evaluate this threshold with the ones in literature to compare and evaluate given results or
expectations.

Table 1 contains all of the formulated research questions along with a brief explanation for each one of them:

Research Question Explanation

What is the maximum allowable time
delay for teleoperated robotic platforms
before controllability deteriorates to an
unacceptable level?

This question attempts to determine the point at which time de-
lays in teleoperation become undesirable in terms of performance.
It seeks to determine the point at which delays hinders the oper-
ator’s ability to navigate the robot effectively, which is critical to
establishing robust teleoperated systems.

How can we assess teleoperation perfor-
mance with time delays?

This question looks to investigate what are the most important
factors that have been used to measure performance in other stud-
ies relevant to our project. This can be human factors (e.g., HRV
heart rate variability commonly used to measure stress) or objec-
tive metrics for a specific goal (e.g., completion time and lane-
keeping error during a driving task).

How can we support the operator to op-
erate in time-delay situations?

This question focuses on identifying tools, strategies, and tech-
nologies that can mitigate the negative effects of time delays. The
goal is to explore ways to improve operator performance when de-
lays are inevitable.

Table 1: Research Questions

1.5 Approach

This thesis adopts a structured approach to examine the effects of time delays on teleoperation performance in fire
reconnaissance missions. The methodology spans four primary phases: literature review, theoretical framework
development, simulation-based experimentation, and analysis of findings to guide recommendations for teleoperated
systems in high-stakes environments.

The study begins with a comprehensive literature review to establish a foundation in teleoperation challenges, delay
impacts, and current mitigation techniques. Key studies, such as those by Seo et al. (2023) and Yang and Dorneich (2017),
provide insight into the effects of time delay on workload and spatial complexity handling, respectively. Wojtusch et al.
(2018) further underscore the importance of situational awareness (SA) and cognitive workload as critical metrics for
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evaluating human-robot interaction in delay-affected teleoperation (Wojtusch et al., 2018). This literature informs our
selection of SA and workload as primary metrics for evaluating operator performance, focusing on their role in maintaining
control and decision-making efficiency under delayed feedback conditions.

Building on insights from the literature, a theoretical framework is developed to outline anticipated effects of delay on SA,
cognitive workload, and task accuracy. This framework integrates findings on delay sensitivity and SA thresholds, such as
those proposed by Wojtusch et al. (2018), to hypothesize that increasing delay intervals degrade SA and increase cognitive
load, impacting task performance in complex, low-visibility environments typical of fire reconnaissance missions.

The experimental phase involves a simulation environment where operators control a robot remotely through maze-like
structures, chosen to simulate the spatial challenges and limited visibility encountered in real fire scenarios. Delay intervals
are systematically varied across trials to measure operator SA and workload under controlled conditions. Inspired by
methodologies in Seo et al. (2023) and Yang and Dorneich (2017), this setup uses standardized delay intervals and complex
navigation tasks to capture data on performance, SA, and workload in a realistic teleoperation scenario.

Finally, the analysis synthesizes performance patterns across delay intervals, identifying specific thresholds at which delays
begin to significantly impact SA and workload. These findings guide practical recommendations, such as implementing
predictive displays or adaptive control mechanisms to mitigate delay effects and maintain operator situational awareness.
By addressing the impact of delays on SA and workload, this study contributes valuable insights to teleoperated system
design for high-stakes environments, supporting safer and more effective fire reconnaissance operations.

1.6 Report Outline

This report is organized as follows:

Introduction 1 introduces the context and motivation for the study, presenting the problem statement, research goals, and
the specific research questions addressed throughout the report. Additionally, it outlines the approach taken to investigate
the research questions and provides a road-map for the report structure.

Literature Review 2 provides an extensive review of the literature on teleoperation, with a particular emphasis on the
impact of time delays on operator performance. The review investigates several approaches suggested for reducing the
adverse impacts of delays and discusses pertinent studies that aim at the maximum permitted time delay for teleoperation
before performance deteriorates. The hypotheses that motivate the experimental study are also developed in this section,
along with the gaps in the current body of research.

Experimental Design 3 describes the experimental design used to investigate the effects of time delays on teleoperation
performance. This section details the recruitment of participants, the creation of a simulation environment with specific
time delay conditions, and the tasks used to assess the operator’s performance. It also introduces the dependent and
independent variables, including performance metrics, subjective workload assessments, and time delay conditions.

Results 4 presents the findings of the study. It includes a statistical summary of the data collected from the experiments
and highlights the key results regarding driving performance, maze performance, and subjective workload across varying
time delays. This section also examines the influence of gaming experience on performance and provides a correlation
analysis of all the metrics.

Regression Analysis 4.6 provides a deeper analysis of the results through regression models, exploring the relationships
between operator performance, time delays, and cognitive workload. The regression analysis allows for a more
comprehensive understanding of the effects of time delays on operator performance. This section also discusses the
practical implications of these findings in the context of teleoperation systems.

Conclusion 5 synthesizes the key findings of the research and their theoretical implications. It also acknowledges the
limitations of the study and offers recommendations for future research. The report concludes with final remarks on the
importance of mitigating time delays to enhance operator performance in teleoperation.

Appendix A provides supplementary analysis, based on the principal experiment results. The extra set of experiments was
designed to explore the relationship between varying delay conditions, operator workload, and performance across different
ground speeds previously extracted from studied literature. Doing so, the hope was to further improve our analysis and
prove valuable points from our hypotheses section 2.3.2. This appendix includes a discussion where technical implications,
summary of figures and future work is considered based on these new findings.
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2 Literature Review

The goal of this research is to explore how time delays impact the control of robots used in dangerous fire situations and to
understand how delays affect operator’s performance. By studying these effects, the plan is to improve remote control
strategies, making missions safer and more effective. The following sections will address the research questions previously
formulated starting from ”What is the maximum allowable time delay?”.

In this first section a variety of studies were investigated focusing on the effects that delayed operation has on a given task.
Research focused on finding magnitudes were delays started to affect a human operator on their performance. Starting
from levels where they were barely perceptible to the human brain till they become impossible to ignore and cause
teleoperation to fail.

Secondly, the next question will investigate what is being used to mitigate delayed teleoperation. In case that delays
effectively reduce performance to critical levels, we would like to be informed about different methods to mitigate this
negative effects. Most literature talks about how to get rid of these unwanted delays, but in our case we want to see the
options are available in presence of delays. They can come as displays, multi-modal interfaces, side-bars or other kind of
interface to alleviate this effect.

2.1 What is the maximum allowable time delay for teleoperated robotic platforms
before controllability deteriorates to an unacceptable level?

Time delays have been one of the major challenges in teleoperated tasks, particularly affecting workload, decision-making,
and situational awareness (Musicant et al., 2023). In the presence of communication delays, operator’s performance seems
to decrease in almost every case to some degree. These delays can happen frequently in the connection between operator
and teleoperated system. The magnitudes of the delays can vary depending on the communication network and
computational processes. Studies like those by Kohrs et al. (2016) have explored the neurological impacts of these delays.
Through experimentation, it was demonstrated how even slight delays can alter brain activity, affecting the ability of an
operator to respond effectively to dynamic tasks.

It is said by Moniruzzaman et al. (2022) that latency or lag is the time between command input and visual output. As said
in 1, these delays often come from data transfer or fails in communication. This study claims that operators can be affected
by delays as little as 10 to 20 ms. According to their results, if latency increases from 8.3 ms to 225 ms, teleoperator
reaction time increases by 64%, and error rate increases by 214%. One latency goes above 170 ms driving teleoperated
vehicles at velocities of 90 km/h (or 25 m/s) becomes significantly more challenging. And for delays around 300 ms,
teleoperation becomes virtually impossible for that specific condition.

Time delays have a wide range of implications, affecting everything from simple to more complex tasks with
semi-automated and teleoperated systems (Yang and Dorneich, 2017). Teleoperators often rely on visual feedback to make
crucial decisions; therefore, any delay can result in a mismatch between the operator’s actions and the system’s reactions,
complicating job execution and potentially leading to operational failures (Chen et al., 2007). For example, research has
shown that delays beyond a certain threshold significantly impair the ability to follow and react to changes, thereby
increasing cognitive demands and reducing the overall effectiveness of human-machine interaction (Musicant et al., 2023).
This discussion sets the stage for a deeper exploration of specific studies and findings to understand the broader
implications of time delays in teleoperated systems, emphasizing the need for innovative solutions to mitigate their impact.

Kohrs et al. (2016) studied the effects on brain activity when subjected to delayed feedback by conducting three different
fMRI (functional magnetic resonance imaging) experiments. One crucial component of effective human-computer
interactions is the temporal contingency of feedback. The timing of this signal can affect the behavior and neural activity of
an individual, thus tampering any human-machine interaction. As a secondary test for their experiments, they introduced
an auditory categorization task for FM (frequency modulated) tones. Participants were told to respond according to the
direction of the modulated signal. A button was pressed when the FM response went upward and another when it went
downward. Afterwards, a green check mark would appear to indicate the correctness of the participants’ responses. If any
of the participants failed to press the correct button in time (at least 1.5 seconds after FM signal), a red mark would
appear, terminating the test. This auditory categorization task was helpful to determine delay’s thresholds.

The first experiment focused on the effects of unexpected delays in feedback of different magnitudes. In this test, Kohrs
et al. (2016) measured the impact of three delay durations. The test conditions consisted of signals where 85% of the
feedback was immediate (no delay), while the remaining 15% was delayed by 200 ms (5%), 400 ms (5%), or 600 ms (5%).
The main focus of the first test was to identify the noticeable delay of their participants, which was 327.2 ms +/- 89.7.
Their results suggest that delays of 200 ms (as used in the context of their fMRI experimentation) are well below the
noticeable threshold. On the other hand, 400 ms delays lie in the range of just noticeable, and 600 ms delays are situated
above the limit.

The second experiment investigated the adaptability of the users to frequent delays. The results of the second fMRI
demonstrated that frequently occurring delays initiate a process of adaptation. Here, the delays were presented

Raul Arturo Villegas, November 7, 2024 University of Twente



10

pseudo-randomly and equally often as immediate feedback, with an average delay of 500 ms. During these interactions, the
user’s temporal expectation is adjusted, and the additional neural resources for attention and control are no longer used.
Consequently, the difference in brain activity between immediate feedback and frequently delayed feedback is no longer
detectable. This validates the assumption that users can adapt to regular delays by changing their work style (Kohrs et al.,
2016).

Finally, the third experiment studied the effects of the infrequent omission of feedback. During this test, feedback was
omitted in 10% of all trials. In contrast with the second experiment, results showed that there was a greater increase in
brain activity. The authors emphasized that introducing rare omissions of feedback can reduce the system’s
trustworthiness, which leads to an increase of brain activity. Therefore, occasional interruptions in user-system connections
can be more detrimental than more frequent delays when controlling a teleoperated system. These communication failures
are often caused by network problems or internal errors in the system (Kohrs et al., 2016)(Lu et al., 2019).

Yang and Dorneich (2017) studied the effects of intermittent and variable time delays. Their research focused on the link
between human’s emotions and task complexity with different time delays in teleoperation. Variable time delays were found
to be more influential than task complexity, according to their results. It is mentioned how previous research shows that
operators would often resort for a ”move and wait” strategy when time delays range between 0.3 s and 3.2 s (Yang and
Dorneich, 2017). Chen et al. (2007) also suggests that when system latency surpasses 1 s, the participants begin to do the
same strategy, switching their control strategy. During their experiments, participants would often memorize the corners of
the mazes to overcome the time delays. However, when delays surpassed a certain threshold, situational awareness was
significantly affected, making them struggle even with the simplest tasks (Yang and Dorneich, 2017).

The conducted experiments from Yang and Dorneich (2017) consisted of two tasks: target search and alert detection. In
both tasks, the test conditions varied between high and low complexity, with or without a time delay. The target search
task consisted of navigating a teleoperated robot from a remote location using a joystick. Participants were only able to see
through the video stream from the robot’s mounted camera. Two mazes were provided for this task, one more difficult than
the other. Inside these mazes, participants had to identify as many identical cylinders as they could and determine if they
were ”old” or ”new.” In this way, participant’s situational awareness was tested as cognitive load increased. Time delay was
varied via the control inputs and feedback, while task complexity was manipulated through the maze’s design.

The alert detection task was introduced to measure the workload from the participants. This secondary task consisted in
asking the participants to pull a trigger from the joystick control whenever they heard audio beeps. These beeps would
occur every 30 seconds during their navigation task. Additionally, specific goals were provided to the participants to
increase the cognitive load. This task was to identify new or old objects from the maze would force users to navigate
through the whole maze and create a mental map to test their their recollection of the maze. Forcing them to remember
and identify objects from an unknown environment.

Yang and Dorneich (2017) identified four traditional mitigation techniques when time delays are inevitable: the ”move and
wait” strategy, bi-directional control stabilization, the use of predictive displays, and supervisory control. These methods
are commonly used to address the performance impact of constant time delays. However, the main focus of this research
was not only on the operator’s performance but also their emotional responses. By measuring electrodermal activity
(EDA), the authors showed that time delays can affect us on a psychological and emotional level. Anger, frustration, and
increased workload were present whenever variable time lags were introduced into the feedback signals. A proposal was
made for an adaptive system that could be triggered whenever the operator’s emotional response surpassed a certain
threshold. With the hopes of alleviating the negative effects caused by delays.

The research paper titled ”The effects of video frame delay and spatial ability on the operation of multiple
semi-autonomous and tele-operated robots” investigates how video frame delays influence operator performance in military
contexts, where decision-making speed and accuracy are critical (Sloan, 2005). The study hypothesizes that operators with
higher spatial abilities are better suited to challenging control tasks, particularly those involving unmanned aerial vehicles
(UAVs), and that video frame delays could impact their ability to effectively operate these robotic systems.

In the experiment, participants were tasked with controlling multiple teleoperated and semi-autonomous robotic platforms
under various video frame delay conditions. The experiment was designed to replicate real-world military scenarios, where
the precise and timely control of unmanned vehicles is often vital to mission success. The study assessed how delays
affected the cognitive load and overall performance of operators, focusing on their ability to complete time-sensitive tasks,
identify targets, and maintain situational awareness.

The results showed that operators with stronger spatial abilities performed more efficiently, particularly in UAV-related
tasks that required navigation in three-dimensional spaces (Sloan, 2005). These findings highlight the importance of spatial
ability in teleoperating unmanned vehicles, suggesting that it should be a key factor in the recruitment and training of
operators in military and similar settings. Additionally, while video frame delays did not significantly impact performance
across all measures, there was a notable effect on operators with lower situational awareness.

The paper emphasizes the need to consider both technological factors, such as video frame delays and bandwidth
limitations, and human factors, such as situational awareness, in the design and implementation of teleoperated systems. It
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suggests that further research is required to better understand the interaction between these factors and their influence on
operator performance, with the goal of optimizing the control and operation of unmanned vehicles (Sloan, 2005).

Teleoperation is frequently employed in high-risk industries where the combination of high workloads and communication
delays can lead to degraded performance and long-term stress on operators; therefore, workload management is a critical
concern in the operation of unmanned vehicles (Lu et al., 2019). Previous studies have shown that even minor delays can
significantly increase operator workload and degrade task performance (Chen et al., 2007). However, while much research
has focused on the general effects of time delays, there is less information on how delay compensation algorithms,
particularly in high-risk environments, impact operator workload (Lu et al., 2019).

Common causes of time delays include limitations in signal transmission speed, bandwidth, long communication distances,
and the processing time required to send and receive data (Lu et al., 2019). For example, Zheng et al. (2018) found that
delays up to 900 milliseconds in simulated driving tasks dramatically impacted performance, leading to longer task
completion times, increased lane-keeping errors, and a greater need for steering adjustments.

In this study, a human-in-the-loop experiment was conducted where participants teleoperated a military High Mobility
Multipurpose Wheeled Vehicle (HMMWV) while simultaneously performing a secondary task (Lu et al., 2019). The
experiment was designed to test three conditions: delay without compensation, delay with compensation using a model-free
predictor, and no delay. It was hypothesized that communication delays would increase operator workload and reduce task
performance, but that the model-free predictor would help mitigate these effects by reducing the cognitive load on the
operator (Lu et al., 2019).

Participants controlled the HMMWV through simulated tracks using a steering wheel and pedals, while the secondary
task—a one-back auditory memory task—measured cognitive workload. The experiment introduced an 800-millisecond
delay, a magnitude based on typical communication delays in satellite-linked military operations. The delay condition
simulated real-world challenges such as the delays encountered in cross-country teleoperations (Lu et al., 2019).

Results indicated that an 800-millisecond delay significantly increased operator workload and degraded task performance,
as expected. However, the model-free predictor effectively reduced the negative impact of these delays on both workload
and performance (Lu et al., 2019). The study also revealed that participants were more sensitive to perceived workload, as
measured by the NASA-TLX survey, compared to physiological workload indicators. These findings suggest that predictive
displays or compensation models are necessary to maintain optimal performance in teleoperation tasks under significant
delays.

The study from Musicant et al. (2023) investigates the impact of time delays on the performance of teleoperators
controlling vehicles in a simulated environment (Musicant et al., 2023). The experiment focused on how delays influenced
driving performance during a sequence of tasks such as following a lead vehicle, responding to sudden breaks, and
navigating among other simulated vehicles on a highway. Three different delay durations were tested: 50 ms, 150 ms, and
250 ms. Participants’ performance metrics, such as speed consistency, distance to other vehicles, swerving, braking
behavior, and crash rates, were meticulously recorded and analyzed.

To simulate realistic driving conditions, participants engaged in a highly controlled simulation where they followed a lead
vehicle through various maneuvers. These included following the vehicle along a curved path, reacting to its abrupt stops,
and driving in a simulated highway environment with randomized traffic scenarios. The primary measures of operator
performance included variations in speed and distance from the lead vehicle, the incidence of swerving, and the frequency of
crashes. Notably, as the time delay increased, participants displayed a greater standard deviation in speed and distance
when following the lead vehicle on curved roads, indicating decreased control precision (Musicant et al., 2023).

The results demonstrated a significant decrease in driving performance as time delays increased. With a 250 ms delay,
participants exhibited more pronounced swerving on highways and more significant variations in following distance on
curves compared to shorter delays. Although the crash rates did not show statistically significant differences across different
delays, the increased swerving and variability in vehicle control suggest a potential for higher-risk scenarios as delays
increase (Musicant et al., 2023).

Additionally, participants completed the NASA-TLX workload assessment, which revealed a higher perceived workload at
the longest delay (250 ms). This suggests that increased time delays not only affect physical driving performance but also
impact cognitive load, potentially leading to faster fatigue and reduced operator efficiency Musicant et al. (2023). These
findings are critical as they highlight the need for advanced compensation mechanisms in teleoperated driving systems,
especially as teleoperation becomes more prevalent in managing inter-urban vehicle operations.

Recent research highlights the importance of maintaining situational awareness (SA) for effective task performance in
teleoperated systems. Gatsoulis et al. (2010) explored various SA measurement techniques adapted from air traffic control
for use in teleoperation scenarios like urban search and rescue. Their findings suggest that higher delays can severely
degrade SA, leading to slower response times, increased error rates, and reduced task efficiency. By measuring SA using
both objective and subjective metrics, they demonstrated that time delays significantly impact the operator’s ability to
maintain an accurate perception of the environment and plan actions accordingly.
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Studies with their respective findings about different delay thresholds and their implications can be found in Table2:

Study Delay Magnitudes Findings Threshold
(ms)

Moniruzzaman et al. (2022) Delays up to 170 ms are manageable for high-
speed teleoperated driving, but delays over
300 ms make teleoperation impractical.

170-300

Kohrs et al. (2016) The noticeable delay threshold in human-
computer interaction is around 400 ms, with
600 ms causing pronounced cognitive strain.

400-600

Yang and Dorneich (2017) Delays from 300 ms to 3.2 s prompt operators
to adopt a ”move and wait” strategy due to
significant SA degradation.

300-3200

Lu et al. (2019) An 800 ms delay notably increases cognitive
load and decreases task performance, suggest-
ing the need for delay compensation.

800

Musicant et al. (2023) At delays of 250 ms, driving precision and
workload are significantly impacted, highlight-
ing the need for delay mitigation in teleoper-
ated driving.

250

Seo et al. (2023) The study show that time delays not only
reduce the operator’s performance and per-
ceived workload, but also alter control tactics.

1500 - 3000

Table 2: Delay Thresholds and Effects on Teleoperation Performance

2.2 How can we assess teleoperation performance with time delays?

Wojtusch et al. (2018) presents the results of a Delay Human Robot Interaction Expert Survey (dHRI). The goal was to
investigate the most relevant human factors for teleoperation scenarios over to professionals in the field. The survey
involved having a simulated scenario where time delays were critical. The simulation consisted of having a a teleoperated
robot on the moon controlled from Earth. In this scenario, a signal round-trip would take between 3 and 5 seconds. Forcing
a human operator to track the outcome of any given command considering this delay.

Previous studies have talked about human factors such as situational awareness (SA), user workload (UW), and user
experience (UE) for robotic platforms (Wojtusch et al., 2018). However, little is known about the application of these
metrics during an actual delayed operation test. For this reason, an online survey was conducted to systematically select,
rank and weight relevant human factors for teleoperation scenarios with critical time delays based on ratings of experienced
experts in the related field. The different metrics with their respective dimensions and description are shown in Table 3.

SA can be described as the ability of the human operator to maintain enough understanding of its surroundings when
performing a remote task. UW is the relationship between the mental, physical, and temporal resources that the operator
needs to complete the task. Lastly, the user experience UE is the feeling a user experience when using a device or a system,
and it can be described in terms of human emotions and attitudes (Wojtusch et al., 2018).

For the dHRI survey, the authors considered three main dimensions for SA: attention demand SA1, attention supply SA2,
and understanding SA3. These dimensions were used to approach the different aspects of situational awareness and they
align with Endsley (1995) definition of SA. For UW, the authors addressed six different factors: mental demand UW1,
physical demand UW2, temporal demand UW3, performance UW4, effort UW5, and frustration UW6. These factors were
derived from the NASA Task Load Index (NASA TLX) which is a common metric to assess subjective cognition load of a
given task (Wojtusch et al., 2018). This index has been used in many other studies to evaluate the cognitive workload
based on a series of questions that . For UE, they also considered six different factors: attractiveness, perspicuity, efficiency,
dependability, stimulation, and novelty (Wojtusch et al., 2018). At the end of the survey, test participants would have to
rate each one of these factors to determine which one was more important for each category.

According to Wojtusch et al. (2018), the results indicated that understanding (SA3), performance (UW4), and
dependability (UE4) were rated as the most important factors from each dimension. For situational awareness, SA3 mainly
focused on comprehension and control of the situation. While for user workload, UW4 measures the overall success of the
task from the operator’s point of view. And finally, for user experience assessment, UE4 is the factor that rates to what
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extent operators feel in control of the interaction.. Their findings suggest that concepts like situational awareness, user
workload, and user experience are highly relevant for teleoperated tasks (Wojtusch et al., 2018). Another factor that was
considered essential was efficiency (UE3), with a rating surpassing the 75%.

In conclusion, Wojtusch et al. (2018) delivered a systematic approach for selecting, ranking, and evaluating human factors
in evaluating delayed human-robot interaction. These findings show that comprehending and monitoring the present
surroundings, as well as reducing extra efforts, are critical design factors for teleoperation effectiveness. Integrating these
critical human factors—situational awareness, user workload, and user experience—into teleoperation systems allows for
more robust and effective designs. This method is especially useful in high-stakes settings where delays are unavoidable,
since it highlights the importance of interfaces that enable operator adaptation, situational knowledge, and decision-making
precision.

Situational Awareness

SA1 - Attentional Demand Factor that rates the amount of attentional resources demanded by the interface
or situation, i.e., complexity, variability and instability of the situation.

SA2 - Attentional Supply Factor that rates the amount of attentional resources supplied by the interface
or situation, i.e., division of attention, arousal, concentration and spare mental
capacity.

SA3 - Understanding Factor that rates the understanding of the situation, i.e., information quantity,
information quality and degree of acquaintance with situation experience.

User Workload

UW1 - Mental Demand Factor that rates how much mental and perceptual activity, e.g., thinking,
deciding or remembering, is required for the task.

UW2 - Physical Demand Factor that rates how much physical activity, e.g., pushing, pulling or turning,
is required for the task.

UW3 - Temporal Demand Factor that rates how much time pressure the operator feels due to the rate at
which task elements occur.

UW4 - Performance Factor that rates how successful the operator is in accomplishing the goals of
the task.

UW5 - Effort Factor that rates how hard the specific operator has to work mentally and
physically to accomplish a certain level of performance.

UW6 - Frustration Factor that rates how frustrated, i.e., insecure, discouraged, irritated, stressed
and annoyed, the operator feels during the task.

User Experience

UE1 - Attractiveness Factor that rates how much operators like or dislike the interface.

UE2 - Perspicuity Factor that rates how easy it is to get familiar with the interface.

UE3 - Efficiency Factor that rates to what extent operators can solve their tasks with the inter-
face without unnecessary effort.

UE4 - Dependability Factor that rates to what extent operators feel in control of the interaction.

UE5 - Stimulation Factor that rates how exciting and motivating it is to use the interface.

UE6 - Novelty Factor that rates how innovative and creative the interface is.

Table 3: Definitions of the Preselected Human Factors (Wojtusch et al., 2018)

Seo et al. (2023) presents a detailed evaluation of performance and mental workload in delayed teleoperation scenarios,
specifically focusing on tasks relevant to lunar surface construction. The study investigates how visual feedback delays
impact the operator’s situational awareness (SA) and cognitive workload, critical metrics previously highlighted by
Wojtusch et al. (2018) as fundamental for effective teleoperation. Seo et al. (2023) conducted a set of controlled
experiments with operators navigating complex, delay-sensitive tasks. Using delay intervals to simulate the effect of
communication lag on task performance, they examined how increased latency influenced the operator’s ability to interpret
visual cues and make precise navigational decisions.
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Central to Seo et al. (2023) approach is the emphasis on mental workload under delayed conditions, which they measured
using established cognitive workload assessment tools, including the NASA Task Load Index (NASA-TLX). This aligns
with the metrics for user workload (UW) proposed by Wojtusch et al. (2018), who identified mental demand, temporal
demand, and frustration as key components. Seo et al. (2023) observed that as delays increased, operators reported
heightened mental demand and frustration, corroborating Wojtusch et al. (2018)’s findings on the impact of delay on UW
factors. This results are shown in Figure 3, extracted from Seo et al. (2023)’s report.

Notably, the authors found that operators were more prone to making cautious, calculated movements in high-delay
scenarios, which resulted in better task accuracy but increased the overall task time and UW. SA was emphasized as a
critical factor influenced by delayed visual feedback. In alignment with Wojtusch et al. (2018), they observed that SA
deteriorated as delays increased, particularly in terms of understanding (SA3), since operators reported struggles to
maintain accurate mental maps of the environment. This decrease in SA under delayed feedback further shows the need for
adaptive teleoperation systems that support operator decision-making by minimizing SA loss through predictive visual aids
or other delay-compensation mechanisms.

Figure 3: User Workload dimensions: Mental demand and frustration measured with NASA-TLX survey against
different delays (Seo et al., 2023)

The findings from Seo et al. (2023) are particularly relevant for our teleoperation scenario, where effective navigation and
timely decision-making are crucial despite potential delays. Their approach demonstrates that workload and SA are not
only essential metrics for evaluating teleoperation under delay but also critical for identifying effective delay-mitigation
strategies. By assessing these factors, Seo et al. (2023) offer a systematic framework for understanding how operators adapt
to delay environments.

What is situational awareness and how can it be measured in the context of teleoperated robotic
platforms?

Situational awareness (SA) for teleoperated control, which is of crucial importance in dynamic threats such as those faced
with dangerous fire situations. Gatsoulis et al. (2010) also mentioned that there had been inadequate SA in human-robot
interaction, which led to sub optimal performance of the urban search and rescue (USAR) tasks. These were existing
methods of formally measuring SA that had been applied in air traffic control and other domains, with the goal to
guarantee operators retained high-fidelity mental representations of their environment so they could make effective
decisions acutely under pressure.

In teleoperation, SA refers to the operator’s ability to comprehend the spatial and operational dynamics of the environment
through remote sensory feedback. According to Endsley (1995) three-tier model (table 4), SA can be broken down into
three primary levels:

In the context of a teleoperated platform, SA is directly related to how well operators can perceive and interpret visual
data from the remote environment and navigate efficiently under varying levels of time delay. For firefighting practices, a
maze reconstruction task poses a challenge for operators to create an accurate cognitive map of an unknown environment’s
layout, keep track of their navigation, and plan their movements accordingly to avoid dead-ends or delays.

In teleoperated scenarios like fire reconnaissance, maintaining high levels of SA is critical for task success, especially under
time delays, which introduce an additional cognitive burden. High delays can disrupt the operator’s perception of robot
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SA Level Description

Level 1: Perception Recognizing key spatial elements such as obstacles, robot position,
and target locations.

Level 2: Comprehension Understanding the significance of the perceived elements in the
context of the task at hand.

Level 3: Projection Anticipating the future states of the system and the environment
based on current data and movement patterns.

Table 4: Three Levels of Situational Awareness (SA) in Teleoperation

movements and environmental feedback, making it difficult to anticipate outcomes or adjust strategies dynamically. As
such, low situational awareness is often linked to poor task performance and increased operator workload.

How does high cognitive load affect performance when operating a robotic platform?

User workload (UW) in teleoperation refers to the mental, physical, and temporal demands placed on an operator while
controlling a robotic platform remotely. It encompasses the cognitive resources required to interpret sensory feedback, make
decisions, and execute control commands effectively. High user workload can significantly impact operator performance,
particularly in high-stress, time-sensitive environments such as fire reconnaissance, where maintaining a manageable
workload is essential for success.

Workload can be systematically measured using various established methods. One of the most widely recognized tools is
the NASA Task Load Index (NASA-TLX) (explained in Table 5, which evaluates workload across six dimensions: mental
demand, physical demand, temporal demand, performance, effort, and frustration (Hart, 1988). This method provides a
subjective measure of an operator’s perceived workload by having them rate their experience across these dimensions,
offering insights into the specific aspects of a task that contribute most to the overall workload.

Dimension Question Scale (1-100)

Mental Demand How much mental and perceptual activity was
required (e.g., thinking, deciding, remember-
ing, looking, searching)? Was the task simple
or complex?

1 (Low) - 100 (High)

Physical Demand How much physical activity was required (e.g.,
pushing, pulling, turning, controlling)? Was
the task easy or physically demanding?

1 (Low) - 100 (High)

Temporal Demand How much time pressure did you feel due to
the pace at which the task elements occurred?
Was the pace slow or fast?

1 (Low) - 100 (High)

Performance How successful do you think you were in ac-
complishing the task goals? How satisfied
were you with your performance?

1 (Perfect) - 100 (Failure)

Effort How hard did you have to work (mentally and
physically) to accomplish your level of perfor-
mance?

1 (Low) - 100 (High)

Frustration How insecure, discouraged, irritated, stressed,
and annoyed did you feel during the task?

1 (Low) - 100 (High)

Table 5: NASA Task Load Index (NASA-TLX) Survey Dimensions, Questions, and Scale

In the context of teleoperated robotic platforms, workload measurement is crucial for understanding how different
factors—such as interface design, time delays, and task complexity—affect an operator’s capacity to manage tasks
effectively. For instance, Wojtusch et al. (2018) emphasizes the importance of evaluating workload to optimize
teleoperation interfaces and reduce the cognitive burden on operators. High workload can lead to decreased situational
awareness, slower decision-making, and increased error rates, all of which are detrimental in critical operations.

Moreover, Seo et al. (2023) highlighted the impact of delayed feedback on operator workload in teleoperation, showing that
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as delays increase, the cognitive demand on operators also rises, leading to potential performance decrements. This
relationship underscores the need for effective workload management strategies, such as adaptive interfaces or assistive
technologies, to support operators under varying conditions of delay and task difficulty.

Ultimately, measuring and understanding user workload in teleoperated systems are essential for designing platforms that
enhance operator performance, maintain high levels of situational awareness, and ensure successful mission outcomes in
challenging environments.
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2.3 How can we support the operator to operate in time-delay situations?

A wide variety of robotics and teleoperation applications have been developed, ranging from space missions and military
operations to unmanned ground vehicles in urban environments. Some of the major challenges for these applications
include latency, channel corruption, and bandwidth, which limit teleoperation efficacy Farajiparvar et al. (2020). Even
though several military robots are being designed with semi-autonomous systems, teleoperations will still be an essential
element for the foreseeable future. It is said that teleoperations will be the default mode for military robotic systems with a
significant role, even for those capable of semi-autonomous and fully autonomous modalities Chen et al. (2007). For safety
measures, (Musicant et al., 2023) suggests to separate technological assistance for the operator, such as obstacle avoidance
and lane keeping, from the autonomous driving system and keep teleoperation as an alternative. Another recommendation
from the same authors is the implementation of predictive and multi-modal displays to enhance teleoperation systems.

Time lags are also known to reduce the control and accuracy of human operators. Performance is heavily affected by the
operator’s inability to predict the outcome of their actions (Davis et al., 2010). Without this ability, adapting to time lags
in control systems can be a very difficult task. Several mechanisms have been studied for the mitigation of time delays,
including mathematical predictors, mathematical filters, predictive displays, and command displays (Davis et al., 2010).
Predictive displays can provide immediate feedback to the operator to help offset the effects of time delays by using a
model representation of the robotic system. This method has proven to significantly reduce lane offset and increase
vehicle’s speed in driving simulations with both fixed and variable time delays. The use of predictive displays has also been
shown to be effective in diminishing operator’s perceived workload during teleoperation tasks (Musicant et al., 2023).

Time-delays in teleoperation can be simulated using various methods, each influencing system response and operator
performance differently. Rahman (2020) categorizes time-delays as discrete, distributed, or mixed, each adding unique
dynamic effects on stability and control accuracy (Rahman, 2020). For this experiment, we implemented a first-order lag
through Unreal Engine’s camera settings to simulate realistic network latency encountered in remote robotic control
scenarios. This approach allows the video feedback to gradually update based on the delay condition, which, while not
strictly discrete or distributed, provides a smoother feedback model for operators and reflects real-world latency more
closely.

Since the early 1970s, the design and implementation of teleoperation interfaces have been explored (Tener and Lanir,
2022). Robotic vehicles are often used in hazardous situations where human involvement may be dangerous, inconvenient,
or impossible. As it was mentioned earlier in this chapter 2.3, one of the main applications for such robotic platforms is in
military and space contexts. The operator’s situational awareness have been shown to be crucial when teleoperating in the
presence of time delays (Wojtusch et al., 2018). The ability to perceive and comprehend their surroundings is crucial for a
successful teleoperation task. Works from Chen et al. (2007) addressed the study of various human performance issues and
user interface design for teleoperation interfaces, including decision-making and issue commands. They addressed how to
increase spatial orientation, object identification, and the effect of reliability, field of view, and depth perception of video
images on human performance (Tener and Lanir, 2022).

Delays in the control loop have motivated the development of predictive displays since the 1990s (Moniruzzaman et al.,
2022). In teleoperated systems, even the smallest delay in visual feedback can negatively affect task performance (Hu et al.,
2016). The study from (Musicant et al., 2023) provided a summary of previous investigations according to time delays and
driving tasks. Some of these papers would present different kinds of predictive displays to improve the performance of a
teleoperated task. Davis et al. (2010) studied the effect of predictive displays using three conditions: fixed delay on 70 ms,
700 ms, and varied delay between 400 and 1100 ms (average delay = 700 ms). The driving task of their experiment
consisted of lane following, sharp turns, and slalom manoeuvres. Besides navigating the vehicle, an additional condition
was implemented to test the effectiveness of their predictive display. The driving speed was about 31 km/h. Their results
showed that without a predictive display, the lane offset was significantly greater, especially with varying time delays. The
driving speed was higher when the display was available, even with the greater delays. A 3 survey was also used, and it
showed that the use of the predictive display had better scores than without, and the 70 ms delay condition outscored the
other conditions (Davis et al., 2010)(Musicant et al., 2023).

Predictive displays are able to use the operator’s input commands to simulate the kinematics of the vehicle without delays
and immediately display graphically the system output, usually superimposed on the display of the delayed video. Some
predictive displays employ a virtual environment (VE), in which an after-image of the robot would behave accordingly to
the teleoperator’s commands in real-time (Chen et al., 2007). Although disturbances may exist in the real environment,
predictive displays have shown a decrease of 50% to 150% on task time performance (Chen et al., 2007). Ricks et al. (2004)
reported that their predictive display (ecological display) made navigation tasks 17% faster and had only 1/5 of collisions
compared with standard interfaces like maps, streaming video, or status panels. With the ecological display presented by
Ricks et al. (2004), the operator is given an intuitive way of visualizing a robot’s position relative to the obstacles around it
using range sensors. First, a representation of the robot is shown in a world of obstacles coming from the range sensor’s
data. The second display element is the video feedback coming from the robot’s camera. Lastly, the display is ”quickened.”
This is accomplished by moving the camera and the robot in the virtual world, allowing the operator to see the effects of
his actions right away (Ricks et al., 2004).
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Davis et al. (2010) reported increased vehicle speeds of about 12% and decreased lane offset by about 26% using a
predictive display. These results are consistent with previous research on mitigating time delays. The enhanced speed and
accuracy were likely due to the ability to reproduce almost immediate feedback to the operator. This research not only
studies the effects of time delays but also examines their effects in the presence of subjective workload (Davis et al., 2010).
Incorporating the predictive display resulted in significantly lower reports of mental workload and temporal demand from
their participants. Even though the authors considered this method to be feasible, it comes with a set of challenges that
need to be addressed before implementing it in real-world situations. For instance, the predictive display would require
constant calibration based on the measured misalignment between the predicted and current positions of the vehicle. It is
also suggested that for shorter time delays or slow driving speeds, a predictive display that consumes less of the visual field
of the operator may be more beneficial (Davis et al., 2010). The relative size of the predictive display in their experiments
was proportional to its relative proximity to the operator, and the semi-transparent image consumed most of the operator’s
visual field. Future work is considered to study the operator’s attention focus when predictive displays are present.
Eye-tracking data could be useful to test this phenomenon.

Moniruzzaman et al. (2022) presented a teleoperation simulator that can replicate high latency teleoperation driving tasks
and can be used to test the effectiveness of assistive interfaces. Their research investigated two 2D visual feedback-based
interfaces (sliding-only, and sliding-and-zooming windows) (Moniruzzaman et al., 2022). These assistive interface apply
simple but effective video transformations to enhance teleoperation tasks. An operator survey was realized to evaluate the
results of the experiments, with and without assistance. The survey showed that delays above 900 ms increased task
completion time by 205% for an on-road and 147% for an off-road driving track (Moniruzzaman et al., 2022). Additionally,
the over correction-induced oscillations increased to 718%. Their results concluded that a sliding-only predictive window
would decrease task completion time by up to 25.53% and oscillation count by up to 66.28%. Meanwhile the
sliding-and-zooming interface reduces the task completion time by 21.82% and the oscillation count by 75.58%
(Moniruzzaman et al., 2022). This qualitative feedback demonstrates that both interfaces offer better visual situational
awareness, comfort, and control, and significantly reduce the negative effects of time delays and intermittency on the
teleoperation task.

Time delay, as defined by Yang and Dorneich (2015), can lead to increased frustration, anger, and arousal, while
diminishing user satisfaction (Yang and Dorneich, 2015). This is particularly relevant in high-stress environments where
delayed responses could lead to compromised decision-making and emotional strain. In teleoperation, managing such
emotional factors is critical, as they can substantially affect task performance and operator resilience under time delay. By
understanding and mitigating these emotional responses, we aim to improve operator experience, which in turn could lead
to enhanced task performance.

In a 2022 study titled Analytic Review of Using Augmented Reality for Situational Awareness, Woodward and Ruiz analyze
how augmented reality (AR) technologies impact users’ situational awareness (SA), especially within high-stakes and
complex environments like navigation, aviation, and driving Woodward and Ruiz (2022).This paper provides a
comprehensive review of recent research exploring how AR enhances situational awareness, which is critical for effective
decision-making and task performance in dynamic situations.

The work by Woodward and Ruiz (2022) also explores a number of mitigating strategies intended to improve situational
awareness in AR interfaces. They point out typical issues that can impair a user’s capacity to retain SA, include cognitive
workload, information overload, and perceptual misalignment. These researchers assess methods like adaptive display
approaches, which modify the type and quantity of information presented according to the user’s cognitive load or setting,
in order to address these problems. Another approach is ”information overlapping,” which lets users choose what they see
depending on the needs of a task by separating important information from secondary material, aligning with studies like
Ricks et al. (2004); Yang and Dorneich (2015). They also go over how visual and auditory signals help focus attention on
important regions, lower cognitive demands, and improve memory. By analyzing these mitigation techniques, Woodward
and Ruiz (2022) provide valuable insights into how AR systems can be optimized to support situational awareness across
different applications and contexts.

Raul Arturo Villegas, November 7, 2024 University of Twente



19

Table 6, summarizes the reviewed mitigation technologies, outlining the challenges they aim to address and the methods
used to support SA and UW in teleoperated missions:

Challenge Mitigation Technique Description

Latency Predictive Displays Simulates immediate feedback using a robotic
system model, helping operators anticipate
the effects of commands despite visual delays
Davis et al. (2010); Musicant et al. (2023).

Control Accuracy Ecological Displays Provides intuitive representations of the
robot’s environment, such as obstacle prox-
imity and spatial orientation, reducing navi-
gation errors and improving task completion
Ricks et al. (2004).

Operator Perceived
Workload

Adaptive Visual Cues Employs visual cues that dynamically adjust
based on task demands and user workload to
prevent cognitive overload, enhancing control
Woodward and Ruiz (2022).

Task Performance Sliding-and-Zooming Interface A visual feedback system with sliding and
zooming functions to help operators compen-
sate for time delays, reducing oscillation er-
rors and improving task completion times
Moniruzzaman et al. (2022).

Visual Feedback Virtual Environment (VE)
Based Predictive Display

Creates a virtual after-image of the robot
that responds in real-time to operator com-
mands, allowing operators to see action out-
comes without delay Chen et al. (2007).

Emotional Strain Multi-Modal Feedback Integrates auditory and visual feedback to re-
duce frustration and mental strain, supporting
smoother operation under high-latency condi-
tions Yang and Dorneich (2015).

Table 6: Time-Delay Mitigation Techniques for Teleoperation

To sum up, the existing literature highlights the significant effects that time delays have on the cognitive load,
decision-making, and situational awareness of operators in teleoperated systems. As evidenced by studies such as those
conducted by Kohrs et al. (2016), minimal delays can significantly disrupt operator performance, creating cognitive effort
and potentially decreasing performance. These results are corroborated by Stark et al. (1988), who highlights the
neurological challenges posed by delays, disrupting the human-machine interaction. Furthermore, Yang and Dorneich
(2017) and Wojtusch et al. (2018) highlighted the importance of situational awareness and important User Workload
factors, while also offering ways to improve system design and mitigate the negative effects of time delays through training.
Lastly, addressing these delays through technological developments and improved operator training is necessary to increase
the efficacy and safety of teleoperated systems in a variety of operating scenarios.
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2.3.1 Gaps in Knowledge

The current literature on time delays in teleoperated systems provides a solid foundation for understanding the basic
impacts on operator performance, UW and SA. However, several critical knowledge gaps remain, particularly regarding
how these effects translate to real-world conditions and different robotic applications. Addressing these gaps is crucial for
advancing teleoperation safety and efficacy, especially with high-risk scenarios like dangerous fire situations.

One significant gap is the limited understanding of how different types of delays impact operator performance under
realistic conditions. While most studies have investigated discrete, consistent delays, real-world teleoperation often involves
more complex delay patterns, such as intermittent, distributed, or mixed delays due to fluctuating network connectivity
and environmental interferences (Rahman, 2020). This gap is especially relevant for unmanned ground vehicles (UGVs)
operating in challenging environments where network conditions can vary unpredictably. For our experimental design, we
adopted a wider range of delays, employing smoother distributed delays to simulate more realistic network conditions
rather than discrete delays, therefore providing a more robust analysis that better reflects real-world operations.

Additionally, a notable limitation in existing research is the lack of insights into how moderate time delays affect UGVs
operating at lower speeds. Much of the current literature has focused either on scenarios with high velocities and low delays
(e.g., military or aviation applications) (Musicant et al., 2023; Moniruzzaman et al., 2022) or low velocities with significant
delays (e.g., space exploration) (Seo et al., 2023; Wojtusch et al., 2018). However, UGVs in reconnaissance missions often
operate at low to moderate speeds where moderate delays may still impair decision-making and control accuracy. This
research gap underscores the need for a specific analysis for UGVs under moderate to high delay conditions, since findings
from high-velocity scenarios may not directly translate to lower-speed operations.

Furthermore, while predictive and multimodal interfaces have demonstrated promise in controlled conditions, there is
insufficient evidence to support their effectiveness in a variety of practical situations. Studies by Musicant et al. (2023) and
Davis et al. (2010) indicate that predictive displays can reduce UW and improve task performance under time delay
conditions, yet the variability of situations with fluctuating network latency and unforeseen obstacles (e.g., limited visibility
caused by smoke from a burning building) remains largely unexamined (Dyrks et al., 2008). More scientific research is
needed to test these measures in unknown real-world settings, especially where operator mental demand and frustration are
more prominent.

Lastly, individual operator differences, including experience and situational awareness (SA) capabilities, are lacking in the
literature. Although evidence suggests that individuals with stronger spatial abilities perform better under delayed
conditions (Sloan, 2005), there is limited knowledge about how training or adaptive interfaces could enhance the
performance of operators with varying SA and experience levels. A better understanding of these individual differences
could inform the development of tailored training programs and interface designs that optimize performance and safety in
teleoperated systems.

In conclusion, addressing these knowledge gaps, particularly in terms of mitigation strategies and individual factors, will be
essential for advancing teleoperation capabilities. Such progress will enhance the efficacy of teleoperated robotic platforms
while providing safer operator experiences in hazardous environments.
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2.3.2 Hypotheses

Our study project’s goal is to examine and lessen the impact of different time delays on robotic locomotion teleoperated
control, with an emphasis on fire reconnaissance scenarios. The impact of increasing delay magnitudes on operator
performance, task success, and situational awareness in fire response scenarios can be methodically investigated by
developing focused hypotheses. In order to improve the efficacy of teleoperation and strategic planning for high-risk
scenarios, each hypothesis is designed to guide the experimental setting and data analysis.

H1: Delay Threshold of Perceptible Impact: As demonstrated by Kohrs et al. (2016) and Yang and Dorneich (2017), delays
from 300 ms up to 600 ms can cause significant decrease in navigation precision and situational awareness (SA). After
reaching 300 ms of delays, a modest decrease in performance should be noticeable, and after 900 ms performance will drop
to an unacceptable level.

H2: Incremental Effects of Time Delay after 1 second: Based on findings by Chen et al. (2007) and Seo et al. (2023), we
hypothesize that incremental increases in time delay length have a linearly proportional impact on task completion time
after 1000 ms. Chen et al. (2007) emphasizes that when system latency exceeds this magnitude, operators tend to shift
their control technique to a ”move and wait,” strategy rather than driving with continuous commands. We hypothesize
that this will cause a higher recorded times during the navigation experiments.

H3: Effects of Time Delays on User Workload: In line with the research by Lu et al. (2019), Wojtusch et al. (2018) and Seo
et al. (2023), we hypothesize that as time delays increase, cognitive load will also increase. Results in similar teleoperation
tasks (Seo et al., 2023) have shown that user workload (UW) dimensions: mental demand and frustration were significantly
impacted by delayed conditions.

H4: Time Delays Impact for Rots in de Brand: Given the delays reported by the Rots in de Brand project (80 ms to
1800ms) and the maximum speed of the vehicle (2 m/s), driving performance should not be significantly affected by low
and moderate delays (170 ms to 400 ms)(Moniruzzaman et al., 2022; Kohrs et al., 2016). This is based in prior research on
minimal delay thresholds where the working speeds were around 6 m/s (Musicant et al., 2023).

These hypotheses are structured to assess how delayed teleoperation affects driving, situational awareness, and the
subjective user workload in a teleoperation tasks in the presence of time delays. Through a series of controlled experiments
simulated delay conditions, the influence of how delays affect operator performance across key variables will be studied.
The robotic platform used in the Rots in de Brand project is designed for high-risk environments where precise control and
accuracy is vital for mission success. Like most UGVs with similar applications, this robotic platform features a unilateral
control configuration, which means that only visual feedback is received from the operator’s side (Zhu et al., 2011). With a
robot moving at speeds as low as 2 m/s (7 km/h), this vehicle provides a slower pace than previously studied systems,
offering a unique opportunity to analyze delays under conditions not previously studied in teleoperation research.
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3 Experimental Design

To test the formulated hypotheses in section 2.3.2, a series of tasks were designed to evaluate the impact of time delays on
a teleoperated environment. The primary task consisted of a driving course where operators faced different delays from the
robot’s video feedback. It involved driving a simulated UGV through a maze using simulation software Unreal Engine 4
(UE4). After each run, a secondary task was introduced to test the participant’s situational awareness (SA). This task
required the participants to recreate the maze based on their recollection of the driving test. Finally, a NASA-TLX (NASA
Task Load Index) survey was given to the participants to measure their cognitive workload (UW) and use these results to
analyze the effects for each delay condition.

The duration of each test was set between 30 to 45 minutes including briefing, test runs, driving test, SA test, UW
assessment and de-briefing. To increment the robustness of our experiments, a decision was made to have participants test
the experiment multiple times with different randomized delays. Each measure (completion time, SA and UW) was taken
three times per participant, since the goal of this experiment is to have a score for all different delays and to minimize
individual factors and variability on the results.

3.1 Recruitment

Sixteen participants were recruited specifically for the experiment, most participants were students and workers from the
University of Twente due to practical and methodological considerations. Since participants were close to the experimental
site making the experimental set up more efficient. The sample size was chosen carefully to balance between practical
constraints and a robust analysis. For each participant, 3 different randomized delay conditions (0 to 1800 ms) were tested
along with SA and UW assessment making. Given that a total of 12 different delays were tested, this sums up to 48
observations in total for each metric.

Before each test, each participant was asked wether they have gaming experience or not. As discussed in Section 2.3.1, it
was hypothesized by Sloan (2005) that people with more experience (or spatial abilities) might perform better than the
rest. To determine if their gaming experience was significant or not, we asked them the frequency and amount of time that
they played any video game in the present year. The majority of the participants revealed to have considerable gaming
experience, but there is still a number of those who did not have any experience.

3.2 Consideration of Time Delay Thresholds in Experimental Design

As Korte et al. (2014) demonstrate, time delays exceeding 1.5 seconds typically lead to a degradation in task performance
as operators adopt a move-and-wait strategy to maintain accuracy under delay conditions (Korte et al., 2014; Chen et al.,
2007). For our study, we chose time delays within the minimum and maximum magnitude reported from Rots in de Brand
which ranged from 80 ms to 1800 ms. This range of delays was randomly distributed among participants. In difference
from reviewed literature, this study takes more delays into consideration with the hopes of obtaining more accurate results.
The analyzed delays consists of: 0, 80, 160, 320, 400, 600, 800, 1000, 1200, 1400, 1600 and 1800 ms.

3.3 Simulation Environment

The virtual environment was created with Unreal Engine 4 (UE4) to imitate the Rots in de Brand robotic platform, with a
first-person view and a remote controller. This game engine was chosen for its ability to deliver high realistic graphics and
physics simulations, which have been proved crucial for modeling real-world conditions in teleoperation tasks. UE4 allows
for seamless control of environment variables like lightning and textures, thus facilitating the virtual simulation of
environments with low visibility, unknown structures, such as the ones presented in fire situations.

For consistency with the Rots in de Brand platform’s real performance, the robot’s velocity was set at 2 m/s as specified in
the real technical specifications of the robotic platform (see Table 7). Within the simulated environment, a simple maze
layout was designed inspired by the studies from Yang and Dorneich (2017) for their task analysis. Their findings suggested
that increasing task complexity coming from different maze layouts have an impact in both driving task and UW (Yang
and Dorneich, 2017). Hopefully, the control of this variable will allow the study to isolate and accurately measure the
impact of various delay intervals on task performance, situational awareness, and operator workload.

Furthermore, the type of time delays introduced from the simulation are differ from the ones reviewed from literature.
Instead of having discrete or fixed delays, which are not realistic for real-world scenarios (Rahman, 2020), a choice was
made to include distributed delays within UE4. With this novel approach, the simulation is closer to a real-world scenario
where delays magnitudes are still the same, but delivered differently.

3.3.1 Camera Lag in UE4’s Spring Arm Component

According to UE4’s documentation, the camera lag effect can create smooth transitions between the camera’s position and
target position using the Spring Arm component Unreal Engine Documentation (2023). This technique is especially useful
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Figure 4: Simulation Environment. A screenshot of the UE4-based simulation environment used for the teleopera-
tion task, showing the robot’s perspective during the maze navigation task.

in third-person POV games, where a slight lag in camera movement relative to the player pawn adds a modest delay that
enhances gameplay. After experimenting with different approaches, such as ”Emulating bad Network Connectivity” and
”Buffering camera frames,” we found that the Spring Arm component produced a delay effect that closely matched our
intended requirements for creating a first-order lag.

However, it is essential to note that our implementation is not fully aligned with the distributed delay approach described
by Rahman (2020), which simulates delays more realistically by distributing them across different networks to replicate
varied delay behaviors. In our instance, we used UE4’s Spring Arm component to implement a more seamless, continuous
delay that was dependent on the target’s position in relation to the cameras’. Despite this distinction, the Spring Arm
component provides a close approximation suitable for simulating a controlled delay effect. This allows consistent testing of
operator performance under modest, adjustable delay conditions.

With this configuration, by adjusting the alpha parameter fixed delay values can be approximated. For example, an alpha
value of 1 would result in the camera reaching the target position in approximately 1 second, effectively simulating a 1000
ms delay (Unreal Engine Documentation, 2023). Operator responses to incremental delay conditions can be systematically
tested thanks to this controlled approach. Although this is not the same as distributed network latencies in the real world,
the configuration offers important information on how users adjust and how well tasks operate at different delay levels. In
order to confirm these results in settings with varying, dispersed delays, future research could expand on this by using more
intricate delay models.

This implementation can provide valuable insights, especially when testing gradual delay effects and smooth response
adjustments rather than fixed or discrete delays (Rahman, 2020). In alignment with this study, our focus is to explore how
operators respond to real-world network fluctuations. Hence, the decision was made to include this addition to the
simulated environment of our project.

The behavior of Unreal Engine’s Spring Arm component, is modeled by the following formula. While a lower α introduces
more lag, a higher α value causes a faster camera response.

pcamera(t+∆t) = pcamera(t) + α · (ptarget(t)− pcamera(t)) ·∆t

where:

• pcamera(t) is the current camera position at time t,

• ptarget(t) is the target’s position at time t,

• α is the lag speed factor, determining how quickly the camera catches up to the target,

• ∆t is the time step for each update.
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Figure 5 compares the effect of simulated delays on target and camera movement, comparing responses with and without
smoothing across different delay values. The plot displays the target’s movement simulating a wait and move maneuver,
overlaid with delayed responses under both models. Solid lines show fixed delays without smoothing, with the response
trailing sharply behind the goal, resulting in a more abrupt, ramped effect as the target moves. Dotted lines show the
smoothed delay model, using exponential smoothing with different delay settings (e.g., 50 ms, 500 ms, and 1000 ms).
Smoothing inserts a steady, continuous lag into the reaction, making it appear more fluid and allowing the delayed position
to gradually catch up to the target.

Figure 5: Delays with and without exponential smoothing with respect on target’s position.
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3.4 Navigation Task

The primary task involved navigating the robot through a maze (see Figure 6 ). Driving performance was assessed by
measuring the time taken to complete the track in each run, which served as an indicator of the participant’s proficiency in
controlling the robot under different time-delay conditions. Participants had to rely on video feedback from the robot’s
camera to navigate the maze, mimicking real-world teleoperation scenarios such as search and rescue missions or
reconnaissance in dangerous environments (Seo et al., 2023).

Thanks to the game engine, we were able to design a stop-watch component and an action block for securely measure each
and every run. Using keyboard actions, a trigger was made to apply the delay condition to the robot’s camera and starting
a stop-watch at the top of the screen. Before pressing this key, participant’s movement is set locked to prevent false starts
in the test. Additionally, to precisely record each run, UE4 permits us to create a programmable object which we can
assign all set of rules and behaviors. In our case, we created an instance of a box with transparent material placed at the
end of the maze. Inside the blueprint (or programming blocks), from the stop watch component, we added a collision
condition that whenever the pawn-actor (the robot) comes into contact with this box, the stop-watch stops allowing us to
record the exact results of the driving test to the millisecond.

To ensure that the experiment closely simulated real-world conditions, the robot’s speed and dimensions were adjusted to
match the technical specifications of the robotic platform used by the Rots in de Brand. Specifically, the experimental
robot was designed to emulate the ClearPath Jackal UGV, the same model used by our research team (Figure 7).

Technical Specifications

Size and Weight

External Dimensions 508 x 430 x 250 mm (20 x 17 x 10 in)

Internal Dimensions 250 x 100 x 85 mm (10 x 4 x 3 in)

Weight 17 kg (37 lbs)

Maximum Payload 20 kg (44 lbs)

Speed and Performance

Max Speed 2.0 m/s (6.6 ft/s)

Runtime (Basic Usage) 4 hours

User Power 5V at 5A, 12V at 10A, 24V at 20A

Drivers and API ROS Melodic, ROS Kinetic, Windows 10, Mathworks

Table 7: Rots in de Brand Platform Technical Specifications

The driving task replicates the type of challenges encountered in real-world high-risk teleoperation, particularly in
environments where operators must rely on delayed visual feedback. Where time delays can significantly affect driving
performance, as they introduce a lag between the operator’s commands and what the operator’s perceives. For this task,
the max speed was set at 2.0 m/s which is significantly lower from previous studies with similar delay magnitudes
(Musicant et al., 2023; Moniruzzaman et al., 2022). The speed, however, is congruent with UGVs in mapping or
reconnaissance missions where unknown conditions and/or obstacles might be present (e.g., smoke, debris, walls).

Driving through a long-distance course is completely different than navigating a robot in an enclosed environment where
the operator does not have a complete view of the layout. Musicant et al. (2023), for example, created a simulation for a
teleoperated car in an urban setting at high velocities with different delay conditions. For this experiment, however, the
velocity and the track dimensions were chosen to comply with the project reported specifications. So, it is possible that the
results from our experiments does not align completely to their findings because of the velocity condition. And the same
applies for Seo et al. (2023), where the authors simulated a robotic platform with similar physical and speed conditions, but
with delays higher than ours.
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3.5 Situational Awareness assessed by Maze Reconstruction Task

The maze task was used to assess the participant’s SA during teleoperation. After each driving session under varying delay
conditions, participants were required to reconstruct the maze from the driving course on a 7x7 grid (Figure 6). This task
tests their ability to remember and recreate the environment. As delay increases, it is expected that SA scores will
deteriorate, which aligns with Hypothesis 3 from Section 2.3.2.

The maze layout (Figure 6a) was generated using a recursive backtracking algorithm, and its dimensions were carefully
chosen to allow a single run to take around one minute when no delay is applied. As mentioned in Experimental Design 3
the maze design was kept consistent across all runs, with this it was possible to compare the effects of time delay under
identical driving conditions. Participants’ SA was evaluated with their accuracy at reconstructing the maze from the grid
blocks using a weighted error formula, taking into account both incorrect and missed selections (Figure 6b).

(a) Maze Layout used in the driving task. (b) Maze reconstruction by a participant.

Figure 6: Comparison of the maze layout and a participant’s reconstruction.

SA was measured based on the framework proposed by Endsley (1995):

• SA1- Perception involves the recognition of key spatial elements, such as obstacles, pathways, and the operator’s
current position.

• SA2- Comprehension refers to understanding the significance of these elements in relation to the task, such as
determining the correct path through the maze.

• SA3- Projection requires anticipating future movements, particularly how time delays will affect the robot’s
navigation and actions.

The maze task (Figure 6a) is designed to evaluate situational awareness (SA) by assessing participants’ ability to
reconstruct the maze after each run. With time delays introduced into the visual feedback, it is theorized that the
recreation of the maze would be significantly more challenging than without them. The reliance on spatial memory makes
the maze reconstruction an effective method for examining how well participants maintain SA particularly at the
SA2-comprehension level.

The maze reconstruction offers an objective metric for SA assessment. By taking into account how well the participant is
able to recreate and understand the environment, we can compare this results with variables like time delays and the
navigation ability. Additionally, the use of subjective measures like User Workload (UW) can give valuable insights on their
relation with maze accuracy and overall SA. The following section describes how UW was assessed in this project.
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3.6 Subjective metric: User Workload (UW)

NASA Task Load Index (NASA TLX) introduced Hart (1988) is a widely used tool for assessing perceived workload (UW)
under teleoperation tasks (Wojtusch et al., 2018).

To provide a better understanding of the different factors affecting user workload (UW) during teleoperation, a brief review
of the UW dimensions is outlined below:

• Mental Demand: The amount of mental and cognitive effort required.

• Physical Demand: The level of physical effort required.

• Temporal Demand: The time pressure experienced.

• Performance: The perceived success in accomplishing the task. Where a score of 1 is being considered perfect and
100 failure.

• Effort: The amount of effort expended.

• Frustration: The level of stress and frustration felt.

For this experiment, an equally-weighted NASA-TLX survey was used to evaluate overall user workload (UW). Each of the
six NASA-TLX dimensions: mental demand, physical demand, temporal demand, performance, effort, and frustration were
included into our analysis. Each dimension offers a different perspective of the UW perceived from each participant.

After each driving and SA assessment, each participant is asked to rate each dimension on a scale from 0 to 100. This
rating provides a subjective assessment of UW, where higher scores indicated increased demand or frustration in that area.
Each workload component can contribute equally to the final workload score providing a balanced view of participants’
subjective UW. With this approach, we can obtain knowledge about the particular characteristics of teleoperation that are
most affected by time delays in an emotional level by examining these NASA-TLX ratings.

For our experiments, and easier application of the survey, we utilized a programming GUI (Graphical User Interface)
offered by Tkinter and implemented with Python. Thanks to this method, the data processing for each participant was
considerably more efficient and easier to analyze once the experiments are done. This was particularly useful, since our
approach consists on making the analysis of UW once for each run, resulting in 48 samples considering 16 participants are
assigned to 3 different conditions.

In general, the NASA-TLX survey will be used to quantify the cognitive load associated with the delayed teleoperation,
offering a comprehensive measure of UW. With this approach, we aim to identify the areas where delays have the greatest
impact, allowing for a better design and user interface improvements to mitigate these effects.
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4 Results: Interpretation of Findings

4.1 Summarized Statistics

Measure Count Mean Std Min 25% 50% 75% Max

Mental Demand 45.00 38.64 22.89 5.00 20.00 40.00 60.00 80.00

Physical Demand 45.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Temporal Demand 45.00 25.11 23.66 0.00 5.00 20.00 40.00 80.00

Performance 45.00 33.02 20.59 0.00 20.00 30.00 40.00 80.00

Effort 45.00 39.67 25.17 0.00 15.00 40.00 60.00 80.00

Frustration 45.00 22.07 24.84 0.00 0.00 10.00 35.00 85.00

NASA-TLX Overall Score 45.00 26.47 13.04 3.17 18.33 24.17 31.67 58.17

Delays (ms) 45.00 784.00 602.50 0.00 320.00 800.00 1200.00 1800.00

Completion Time (s) 45.00 69.86 14.01 56.80 60.23 63.96 74.63 119.29

SA score (%) 45.00 55.85 17.49 35.89 43.06 50.24 65.61 100.00

Table 8: Descriptive Statistics for NASA-TLX, Delays, Time Scores, and Maze Performance

Descriptive statistics for the test performance measures are shown in Table 8. A total of 45 observations were recorded for
each measure, providing enough data to support a reliable analysis of completion time, SA and UW.

The average mental demand was 38.64 and a high standard deviation (Std = 22.89), indicating that participants reported a
moderate mental demand with high variability between themselves. Physical demand was consistently rated at 0.00 by all
participants, suggesting that the tasks were not perceived as physically demanding. The average temporal demand was
25.11, with a significant variation in responses (Std = 23.66), showing that participants did not feel rushed by the pace of
the experiment.

The subjective assessment of UW performance produced a mean score of 33.02, indicating that individuals thought their
performance was somewhat above average. Effort has a mean of 39.67, but the highest Std (= 39.67) out of all subjective
metrics. Highlighting the diverse responses from participants in this dimension. Frustration reported one of the lowest
averages with 22.07 and a Std of 24.84, but it also counts with a reported max value of 85%.

The NASA-TLX Overall Score had a mean of 26.47, and a Std of 24.47. This indicates a relatively low overall UW from
the test participants, with the lowest value recorded being of 3.17% and the highest 58.17%.

The completion time score, had an average of 69.86 seconds, with a relatively small Std of 14.01, suggesting that most
participants completed the task in a similar time frame just above the one minute mark. And the maximum value reported
was just under two minutes (119.29 s).

Finally, SA score, measured by the maze reconstruction task, averaged 55.85% with a Std of 17.49 indicating moderate SA
performance across participants, with some obtaining higher scores than others with a reported max score of 100% and the
lowest at 35.89%.

4.2 Objective Metrics: Completion Time and Situational Awareness (SA)

The driving task results under high delay conditions align with Korte et al. (2014), who identified a threshold of 1.5–2.0
seconds, beyond which teleoperators typically adopt a cautious move-and-pause approach resulting in higher completion
time. However, in our study, we observed that both driving and SA metrics were barely affected by the lowest delays. In
fact, the results suggested that even with delays as high as 1000 ms participants still were able to achieve compelling
driving results. But for SA assessment, there was no clear indicator that increasing delays had any effect on this metric.
The maze scores fluctuate across the board even with increasing delays, with no signal of correlation between both
variables. This comparative analysis highlights the importance of different underlying factors that could have come into
play when fulfilling this set of experiments.

Following subsections show the results of the objective metrics: navigation and SA performance against the introduced
time delays (Figure 7) and reported levels of User Workload (UW) (Figure 8). With these results we can study the effects
of delays and UW in delayed teleoperation.
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4.2.1 Objective Metrics vs Delays

The experimental results from the driving task, as visualized in Figure 7a, shows fluctuating results until the 1000 ms
mark. After that, there exists a linear increased in the completion time reported by participants. This discovery aligns with
what was previously stated in 2.3.2, which hypothesizes that after 1000 ms, the completion time of the teleoperation task
will increase proportionally to the delays.

(a) Completion time (normalized) vs Time Delays (ms)

(b) SA scores vs Time Delays (ms)

Figure 7: Effect of Time Delays on Navigation and SA Scores

Figure 7a illustrates the participants’ driving performance, measured in task completion time, across varying delay
conditions. Time delays, ranging from 0 ms to 1000 ms, did not result in slower times or reduced performance. Participants’
navigation results fluctuated but remained relatively stable even under low-moderate delays, indicating that some
individuals were able to adjust to the increased lags without significant loss of performance. However, there is a modest
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increase of this measure when delays surpassed 1000 ms, with the highest average time scores being reported at the 1800
ms delay, following a linear relationship after the 1200-1400 ms delays corroborating with findings from Korte et al. (2014).

These results also confirmed previous hypotheses (H3), that due to the velocity of our vehicle we might not find a
significant decline in the driving performance. This is also corroborated by Rahman (2020) who shares that under
moderate delayed conditions, cognitive and emotional load are often more affected than the control accuracy. On the other
hand, our navigation results are somewhat comparable with studies that utilized delays as high as 1.5 s and 3.0 s (Seo
et al., 2023; Yang and Dorneich, 2017) which used a similar experimental design as ours.

Figure 7b illustrates the Situational Awareness (SA) score using maze reconstruction, which was notably unaffected by
growing time delays. SA scores, which reflect how accurately participants were able to rebuild the maze, varied depending
on the delay condition and did not decrease as delays progressed. The 800 and 1800 ms delay categories had the lowest
marks, while the 320 and 1000 ms delay categories had the highest.

4.2.2 Objective Metrics vs User Workload (UW)

The following figures (Figure 8) illustrate the relationship between completion time and Situational Awareness (SA) with
the overall NASA TLX scores, which provides a measure of the perceived workload across the different objective metrics.
These visualizations help in analyzing how task performance (measured in terms of normalized completion time and SA)
correlates with the perceived cognitive as captured by the NASA TLX survey.

In Figure 8a, the normalized completion time is compared against the overall recorded UW. With low UW (0.0 - 0.6), the
time results fluctuate without a clear increasing pattern. However, after reaching higher UW (0.6-1.0) a linear increase for
the driving results is made visible. This trend implies that participants who reported higher cognitive took longer to
complete the maze, indicating a potential relationship between perceived workload and task efficiency. Or that participants
who did poorly in the driving test, recorded higher UW.

In Figure 8b, the SA score is compared against the overall UW.SA results were consistent across almost all degrees of UW.
The maze reconstruction accuracy did not seem to decrease when participants experienced low to moderate UW. However,
the SA scores experienced a significant plummet when UW was at its, suggesting that higher perceived workload may
correlate with lower SA results. Nevertheless, further analysis needs is needed in order to confirm (or deny) the relation
between these two metrics for this specific experiment.

4.3 Subjective Metric: User Workload vs Delays

The UW scores across different time delays reveal some important patterns in cognitive and workload-related dimensions
during teleoperated tasks (as shown in Figure 9). Mental demand fluctuates across delay conditions but generally decreases
as delays increase. For instance, the median mental demand is higher at 0 ms and 80 ms but decreases noticeably at delays
of 400 ms and above. This trend suggests that participants experienced a slight reduction in perceived cognitive load as they
adjusted to the delays, perhaps due to the slower pace or more deliberate actions taken during the tasks with higher delays.

Temporal demand, on the other hand, shows a sharp decline with increasing delays. The highest temporal demand is
observed at 0 ms, but as delays increase, particularly from 400 ms onward, temporal demand steadily drops. This pattern
indicates that participants felt less time pressure with longer delays, likely because they adapted their behavior, taking
more time to ensure correct inputs when faced with delayed responses.

Subjective performance (Figure 9) shows a varied pattern across delay conditions. While performance is relatively low at 0
ms, it increases at intermediate delays (160-800 ms) and then decreases again at the highest delays (1400 ms and 1800 ms).
This non-linear trend suggests that participants perceived their performance as improving slightly at moderate delays but
felt it declined significantly at the highest delays, likely due to increased difficulty in managing control at very high
latencies.

Effort follows a more erratic pattern. It is higher at shorter delays (0 ms, 80 ms) but decreases as delays increase,
stabilizing at moderate levels (400 ms to 1000 ms) before rising again at the longest delays (1600 ms, 1800 ms). This
suggests that participants initially exerted more effort at lower delays but required less effort to maintain performance at
moderate delays, with effort increasing once more as delays became extreme.

Frustration levels generally follow the same pattern as effort, with participants reporting higher frustration at shorter
delays and moderate levels of frustration at delays between 400 ms and 1000 ms. Frustration increases again at 1600 ms
and 1800 ms, indicating that long delays led to higher emotional strain and difficulty in controlling the task effectively.

The overall UW score reflects these patterns as well, with scores decreasing steadily from 0 ms to around 1000 ms, then
increasing sharply at the highest delays (1600 ms and 1800 ms). This trend suggests that participants found the task less
demanding as delays increased to a moderate level, but the highest delays significantly impacted their perceived workload
and performance.
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(a) Relationship between Normalized Completion Time and Overall NASA TLX Scores.

(b) Relationship between SA score and Overall NASA TLX Scores.

Figure 8: Comparative analysis of SA score and Normalized Completion Time in relation to Overall NASA TLX
Scores. (a) shows the normalized completion time from the driving task and (b) shows the normalized SA scores,
both across NASA-TLX score.
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Figure 9: User Workload vs Delays

Physical demand, was not significant enough to be included since it was consistently low across all delay conditions,
highlights that the tasks were primarily cognitively and emotionally challenging, with minimal physical exertion required
from participants. Which is expected coming from a simulation environment where no physical task is asked from the
participants.

In summary, Figure 9 shows that while participants did not reported higher UW overall results, frustration and effort
increased significantly at the highest delays. This suggests that time delays primarily affect frustration and perceived effort
above all metrics for this specific application, with participants adjusting well to moderate delays but struggling to cope
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with extreme latencies.

The significant increase in frustration with prolonged time delays is consistent with the findings by Yang and Dorneich
(2015), who observed increased emotional arousal and reduced user satisfaction in human-robot interaction with time
delays (Yang and Dorneich, 2015). This suggests that time delay in teleoperation not only impacts task performance but
also has considerable emotional and cognitive effects on the operator. Understanding these emotional impacts is essential
for designing teleoperation systems that support user well-being in high-latency scenarios. This results also align with
studies from Seo et al. (2023) where the author made had similar results from a simulated teleoperation task that also
involved time delays from 0 to 3s in 1.5s increments. The author reported that frustration and mental demand from UW
assessment using NASA-TLOX resulted to be the most influenced dimensions from UW along with their completion time
and success rate from their simulated task.

4.4 Impact of Gaming Experience on Performance

An important factor in assessing participants’ driving and spatial abilities was gaming experience, which has been shown to
influence performance in interactive, delay-sensitive environments (Claypool and Claypool, 2010). The analysis compared
individuals with and without prior experience in similar locomotion control across the three core performance metrics: task
completion time, situational awareness (SA), and user workload (UW). The impact of different time delays and increased
cognitive strain on participants with gaming experience is illustrated in the following figures, providing insights into how
previous exposure to interactive virtual environments can shape teleoperation performance. For this analysis, all delays
were categorized from insignificant to very high for better visualization and understanding of the results.

Figure 10 shows the influence completion time of those with and without gaming experience. Starting from the left part of
the graph, participants who claimed not having game experience reported the longest completion time when delays were
insignificant or very high relative to the others. These participants recorded the best driving results when the delay was in
the ”High” category, and had worst results with a lower delay condition. These results suggests that there is not a
proportional effect in performance in comparison with delays for this group, the plot shows inconsistency and variability
among the time scores reported in all delay conditions.

In the right side of Figure 10 , participants with prior experience reported lower completion time results. The worst
performance from this group was also encountered when delays reached the upper limit of the specified range (0- 1800 ms).
The lowest time achieved, however, can be seen in the ”Moderate” delay category (1000 ms). After the moderate delays,
the completion of the task augmented as the delays went up, in contrast with the other participants of the study. This
could suggest that individuals with gaming experience can perform better under moderate to low delays than the ones
without, but are more sensitive to bigger delays in the visual feedback.

Figure 10: Comparison of task completion time between individuals with and without gaming experience with
different delay conditions.
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In the next Figure 11, a comparison of SA results, assessed by the maze reconstruction task, was made between participants
with and without prior game experience. By taking a glance a this figure, results from SA are significantly higher for
participants who have game experience. Participants who do not, reported the lowest results across all delay conditions
with little variability from each other. In contrast, participants with prior experience recorded scores twice as big as the
former group. Interestingly, the lowest average SA score, for this group, was recorded at the highest delay condition.
Showing us again that delays could have a more significant impact with the more experienced sector of participants.

Figure 11: Comparison of SA between individuals with and without game experience and increasing delay conditions.

Figure 12 shows the different levels of perceived UW detected by participants with different game experience under
increasing delay conditions. In both cases, the highest UW was recorded at the highest delay level. Participants with prior
experience, recorded their lowest UW when delays were moderate, and the other group when the condition was in the low
category. Against all expectations, game experienced participants recorded higher UW in most delay categories. Signaling
that even with better objective performance in navigation and SA tests, the cognition load perceived from these individuals
was more sensitive to increasing delays during teleoperation. For the other group, participants recorded lower and more
variable UW results. This highlights the subjective and individual differences from the tested individuals.

In summary, results show that participants with gaming experience generally performed better in the objective tests. Task
completion time (Figure 10) was lower for participants with gaming experience, indicating faster task completion and
greater adaptability in teleoperation scenarios. Participants with gaming experience also achieved higher situational
awareness (SA) scores (Figure 11), demonstrating improved spatial awareness and navigation capabilities. However,
participants with gaming experience reported higher levels of subjective UW than the ones who do not (Figure12). This
result could indicate high sensibility for more prepared operators than for the general population, highlighting the
importance for mitigation practices based on perceived UW in delayed operations (Musicant et al., 2023).
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Figure 12: UW overall score from participants with and without prior game experience at different delay conditions.

4.5 Correlation Analysis

The correlation heatmap (Figure 13) provides a comprehensive view of the relationships between key variables measured in
the experiment, including the dimensions for UW: time delays, mental demand, performance, temporal demand, effort,
frustration, and overall UW score. Along with the objective metrics: navigation task completion time and SA score . The
correlation values range from -1 (indicating a strong negative relationship) to +1 (indicating a strong positive relationship),
with stronger correlations represented by darker shades.

Looking from the delays column, the highest positive correlation (r = 0.45) is correlated with the UW frustration,
indicating that participants experienced higher frustration levels as time delays increased. This aligns with previous
findings that prolonged time delays negatively impact user emotion and lead to higher frustration levels, as suggested by
Yang and Dorneich (2015). And supports the hypothesis that mental workload increases under time-delayed conditions, as
discussed in the study by Musicant et al. (2023).

The second highest positive relation between time delays and the rest of the variables was the Time Scores, or completion
time of the task with a (r = 0.28). This shows that the completion time of the navigation task was moderately affected by
time delays. Even though the relation was not as considerable as we expected, it is important to consider when we look at
the results from higher delays. Especially if we take a look back at Figure 7a shows that delays beyond 1000 ms result in a
small linear rise in time results. Even though participants produced the lowest results with a 1000 ms delay, this quickly
changed as the delays increased to 1800 ms.

Overall UW and performance reported similar magnitudes of positive relation with delays (r = 0.23 and r = 0.20
respectively). This results suggests that there was a mild positive impact on overall workload and the UW performance
dimension. This corresponds to participants rating their performance as less successful and reporting a higher work across
every UW factor.

In the other hand, there is a significant negative relation between UW performance and SA results with (r = −0.45).
Meaning that participants who did very well on the maze reconstruction task, reported a lower (better) score in their
performance assessment during the NASA-TLX survey.

To visualize these two metrics better, a plot shown in Figure 14 was made to compare the results of UW performance
(inverted results for easier comprehension) and SA scores. This figure shows that participants with higher maze results
tend to report higher UW performance as well. Even more than with the completion time test. This aligns with the
correlation map results and highlights the importance of the performance metric when looking at SA to measure delayed
teleoperation results (Wojtusch et al., 2018).

Looking at the time scores column from the correlation map 13, the strongest relation in magnitude comes directly from
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Figure 13: Correlation Heatmap of Time Delays, Task Performance, and NASA TLX Metrics

the SA (or maze score) variable with (r = −0.34). Meaning that participants with lowest navigation times also reported the
highest SA scores. This is shown in Figure 15 where the normalized completion time was divided into 4 different categories
for better comparison with the SA results. The plot also shows how participants with the poorest performance in the
navigation task had relatively lower SA scores as well. The following results aligns with the claim that faster operators
maintained better SAs, which has also been observed in prior studies on operator performance under time delay conditions
(Sloan, 2005).

The overall score for UW situated on the bottom row from the correlation map, also shows interesting results. Evidently,
there exists high correlations within the UW metrics since they are part of the overall score metric. However, mental
demand showed the highest relation with (r = 0.84) making it the biggest predictor for UW compared to the other
dimensions. And performance resulted the lowest indicator from the UW dimensions with a correlation of (r = 0.31).
Interesting enough, performance was voted as one of the most important metric to consider according to (Wojtusch et al.,
2018) when assessing delayed telerobotic systems.

For the objective metrics, the UW had slight positive and negative correlation with completion time (r = 0.17) and SA
(r = −0.16). As show in Figure 8a and Figure 8b, the completion time increased when participants reported high UW (0.4
+). And the same goes for the SA results, where the lowest maze scores reported are aligned with the highest UW (0.8-1.0).

In summary, the correlation map reveals that time delays are closely associated with increased frustration, while UW
factors such as mental demand, effort, and temporal demand are strongly related with each other and not to the objective
metrics like completion time and SA. SA scores are linked to both navigation and perceived task performance, with faster
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Figure 14: UW overall score vs SA results

Figure 15: SA scores vs Completion Time

completion times generally correlating with better situational awareness and higher sense of task success. Delays proved to
be insignificant to SA scores with a (r = −0.05). Nonetheless, they did had a modest relation with the navigation task and
overall UW. As shown in Figure 7a, when delays surpassed 1000 ms the completion time followed a modest increase.

In order to have a better overview of the results and extract their statistical significance between each variable, there exist
a variety of methods to make this analysis more robust. The correlation map is a great visual tool to see how each variable
affect each other, but it it does not show if these correlations provide probabilistic importance. A number of studies from
our literature review, one of them being Lu et al. (2019), performed statistical models (ANOVA test) to further analysis the
importance of their results. For this motive, in the next section Section4.6 a statistical model (OLS regression model) is
employed to check the impact of time delays faced with the objective and subjective variables.
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4.6 Regression Analysis Results

A Regression analysis model was applied to explore the relationships between various dependent variables measured during
the experiment, including all UW dimensions: mental demand, temporal demand, performance, effort, frustration, overall
score. And the objective metrics: completion time and SA score. Ordinary Least Squares (OLS) regression was chosen to
estimate the strength and significance of these relationships, providing insight into which variables were most affected by
time delays.

The OLS regression results offer coefficients that quantify the magnitude and direction of the relationship between time
delays (independent variable) and the dependent variables. Additionally, statistical measures such as the standard error,
t-value, and p-value were used to assess the reliability of these estimates. The results below include a clear distinction
between statistically significant and non-significant findings, allowing us to identify which factors were most impacted by
time delays.

To determine the statistical significance of each connection between time delays (independent variable) and various
dependent variables, we use two fundamental metrics: the t-value and the p-value.

A high t-value implies that the observed difference is less likely to be related to random chance, implying a stronger link
between the independent and dependent variables. In the context of this research, a higher t-value indicates a greater
connection between time delays and the dependent variable.

The p-value, on the other hand, shows the likelihood that the observed effect could occur by chance if there’s no true
relationship between the variables. A p-value ¡ 0.05 suggests statistical significance, implying that the observed connection
is less than 5% chance. In this analysis, a low p-value indicates that time delays have a statistically significant influence on
the dependent variable, whereas a higher p-value indicates that the effect is not statistically significant.

These parameters, taken together, contribute to the reliability of the observed correlations in the regression model. Only
statistically significant results (low p-values and high t-values) are regarded strong evidence of an effect, allowing us to
determine which factors are most affected by time delays.

Dependent Variable Coefficient Standard Error t-Value P >|t| Significance

Time Scores 0.0066 0.0034 1.9392 0.0591 Marginal

SA Score -0.0016 0.0044 -0.3578 0.7222 Not Significant

Mental Demand -0.0027 0.0058 -0.4743 0.6377 Not Significant

Temporal Demand 0.0035 0.0060 0.5845 0.5619 Not Significant

Performance 0.0069 0.0051 1.3565 0.1820 Not Significant

Effort 0.0037 0.0063 0.5818 0.5638 Not Significant

Frustration 0.0184 0.0056 3.2593 0.0022 Significant

Overall Score 0.0050 0.0032 1.5658 0.1247 Not Significant

Table 9: OLS Regression Results

The OLS results in Table 9 present the coefficients, standard errors, t-values, p-values, and whether the results were
statistically significant or not. Figure 16 shows the plots for each dimension against time delays from the regression analysis
for better visualization.

For mental demand, the coefficient is -0.0027, suggesting a small negative relationship with time delays, but this result is
not statistically significant (p = 0.638). Similarly, for temporal demand, the coefficient of 0.0035 reflects a minor positive
association, but it is also statistically insignificant (p = 0.562).

The coefficient for performance is 0.0069, indicating a positive relationship, but this result is not significant (p = 0.182).
Effort, with a coefficient of 0.0037, also shows a minor positive relationship, but it is not statistically significant (p = 0.564).

For overall NASA-TLX scores, the coefficient of 0.0050 suggests a positive relationship, but the result is not statistically
significant (p = 0.125). Time scores have a coefficient of 0.0066 and are close to statistical significance (p = 0.059),
indicating a marginal relationship between time delays and task completion time.

The SA score coefficient is -0.0016, and the result is statistically insignificant (p = 0.722), showing no meaningful effect of
time delays on maze performance.
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The time scores, or completion time, showed a positive coefficient of 0.0066, a standard error of 0.0034 and a t-Value of
1.9392. The significance was marked as ”Marginal” since the P-value was very close to 5% (0.0591). So it is not meaningful
according to our condition of 5% or below to be considered significant, but it was closer than any other metrics.

Frustration was the only result showing a statistically significant relationship with time delays (coefficient = 0.0184, t-value
= 3.25930 and p-value = 0.0022). This suggests that higher time delays are a meaningful variable when it comes to users’
frustration in delayed teleoperation.

In summary, frustration remains the only significant variable impacted by time delays, with higher delays consistently
increasing frustration levels. Other variables such as mental demand, temporal demand, and performance were not
significantly affected by time delays, though time scores were marginally affected. This suggests that among the various
factors analyzed, frustration was the most strongly influenced by delays, aligning with Seo et al. (2023)’s results. These
results could point to a key area for improving operator experiences under delayed conditions by considering frustration
levels as a design element.

Figure 16: Regression plots: Completion Time and Frustration metrics against delays
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4.7 Regression Analysis for Delays Surpassing 1000 ms

Based on the previous section, we noticed that the navigation scores where very close to be statistically relevant to the
increased time delays. That is why a second regression analysis was made, this time only considering delays from 1000 ms
up to 1800 ms. This results will help us confirm hypothesis 2.3.2 where we hypothesized that after 1000 ms, there would be
a significant increase in completion time. Due to the participants’ change in their control strategy (Chen et al., 2007).

The table bellow (Table 10) shows the complete regression analysis between the independent variable (Delays) and the
previous studied metrics, including SA and UW dimensions.

Dependent Variable Coefficient Standard Error t-Value P>—t— Significant

Completion Time 0.000482 0.000193 2.495 0.023 Yes

SA score -0.000308 0.000235 -1.312 0.207 No

UW Overall Score 0.000348 0.000205 1.693 0.109 No

Mental Demand 0.000222 0.000245 0.904 0.379 No

Temporal Demand 0.000266 0.000244 1.087 0.292 No

Performance 0.000328 0.000226 1.454 0.164 No

Effort 0.000164 0.000273 0.602 0.555 No

Frustration 0.000434 0.000268 1.620 0.124 No

Overall Score 0.000348 0.000205 1.693 0.109 No

Table 10: OLS Regression Results: Larger Delays from 1000 ms up to 1800 ms)

Effectively, the results in the table show that the completion time of the navigation task is more sensitive to higher delays.
The table outputs a t-value of 2.495 and a p-value of 0.023, suggesting that now time delays posses a greater statistical
importance in the context driving performance. This result is illustrated by Figure 17. However, the table also shows that
Delays above 1000 ms lost their statistical importance to all the other variables, including Frustration which was the
highest in previous analysis.

Figure 17: Regression plots: Completion time scores against Delays from 1000 ms to 1800 ms
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5 Conclusion

The goal of this study was to investigate the effects of time delays on teleoperated robotic platforms, particularly operators
performance, situational awareness, and user workload in simulated reconnaissance mission. This study tried to better
understand the impact of delays on operators’ abilities to navigate, make judgments, and maintain control in teleoperated
systems with delayed feedback by introducing delays ranging from 0 to 1800 ms.

5.1 Synthesis of Findings and Hypotheses Evaluation

Through this study, several hypotheses (Section 2.3.2) were developed and tested to study the impact of time delays on
teleoperation performance, resulting in a mix of confirmed discoveries and unforeseen results. These findings offer new
perspectives on the adaptive capabilities of operators under delay conditions, and the influence of individual factors like
prior experience.

The first hypothesis, predicted that delays of 300 ms up to 900 ms would significantly impair task performance and
situational awareness (SA), was not supported by our results. Objective performance metrics, such as completion time and
SA scores, showed minimal impact across delay conditions, even at delays as long as 1800 ms. This stability in
performance, suggests that operators could have employed compensatory strategies to counterbalance the delay effects. For
instance, operators would often resort to reconstruct the maze starting from the starting and ending positions of the grid,
and then proceed to fill up the gaps. It was also observed that people would often go for the move and wait strategy
mentioned in literature (Chen et al., 2007). According to the regression analysis made, while delays did increase
frustration, they did not degrade SA or task completion time, underscoring an adaptive capacity in operators and
challenging our initial assumptions for H1.

The second hypothesis predicted a linear association between delay duration and task completion time when delays
surpassed 1000 ms, as prior research observed a change to ”move and wait” methods in high-delay environments (Chen
et al., 2007). While completion times increased with larger delays, the increase was not truly linear. Instead, operators
appeared to change their navigational tactics to account for these delays, implying that slower speeds allowed for more
adaptability in managing delayed feedback. This subtle delay-completion time relationship, especially at lower speeds,
partially confirms H2 but reveals a more intricate interaction than previously thought. The additional trials reported in the
appendix back up these findings, demonstrating that lower speeds may reduce mental workload while navigating with
delayed feedback.

Our third hypothesis, which proposed that time delays would increase user workload, particularly frustration and mental
demand, was partially supported by the results. As delay durations increased, participants consistently reported heightened
frustration. This aligns with findings from Yang and Dorneich (2015) and Seo et al. (2023), who similarly observed
increased cognitive load under delay in teleoperated environments. The significant frustration results imply that while task
performance may remain stable, the experienced user workload from the operator is a primary effect of delayed feedback.
This is especially true, when considering the results from more experienced operators in the main set of experiments over
the rest of the population. This supports H3 and suggests that future systems could benefit from frustration-managing
systems to help operators control their emotional stress and effort in high-delay situations.

Finally, the final hypothesis predicted that smaller delays between 170 ms and 400 ms would have little effect on
performance due to the task’s moderate speeds (2 m/s) and simplicity. However, while SA scores and task completion times
were consistent during the modest delays, annoyance levels increased. This study underscores the importance of
user-centered delay management, even at reduced delay thresholds (Yang and Dorneich, 2017). These results are consistent
with our study’s primary findings, as depicted in Figure 16, showing that even moderate delays can affect operator
experience. This partially challenges H4, suggesting that low delays may not be as negligible as initially anticipated,
particularly in terms of the emotional response of users.

5.2 Linking Findings to the Appendix and Experimental Insights

The additional analysis in the Appendix (Section A) provided further insight into how variations in speed and delay
influence operator performance. Higher velocities (up to 6 m/s) resulted in significant increases in completion time and
workload, validating earlier research indicating that speed can amplify the negative impact of delays (Musicant et al.,
2023). These supplementary findings reinforce the primary experiment, emphasizing the practical importance of adaptive
control factors that can manage speed and delays, especially in high-stakes teleoperated missions.

Additionally, the lack of significant SA impact across varying delay and velocity conditions (Figure 19b) aligns with the
idea that situational awareness may be maintained through compensatory techniques even as mental demand or effort
increases (Endsley, 1995). This insight emphasizes the importance of designing teleoperation interfaces that not only
address performance with respect to objective metrics (navigation and SA results) but also subjective metrics such as UW
to assess emotional responses to delay.
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5.3 Theoretical and Practical Implications

The findings expand teleoperation research by emphasizing the complex interaction of emotional responses and cognitive
load in delayed situations. While much of the literature has focused on performance degradation as a direct result of time
delays, our findings indicate that frustration may be a more pressing worry, particularly for low-speed teleoperation. This
supports Seo et al. (2023), who recognized the vulnerability of frustration and mental demand during delay, and proposes
that mental resilience techniques could be useful.

The steady performance measures (SA and completion time) even under delayed conditions suggest that slower speeds
could be used as a mitigating approach. This is a very useful factor for teleoperation in reconnaissance or mapping, when
high accuracy is required but pace can be regulated to facilitate decision-making during delays (Zhu et al., 2011).
Integrating adaptive speed controls, predictive displays, and other visual aids, such as sliding-and-zooming interfaces, VR
or AR(Davis et al., 2010; Moniruzzaman et al., 2022), can enhance control and minimize UW, improving operator
performance in delay-prone conditions.

5.4 Limitations and Future Directions

The study’s narrow speed range (2 m/s in the main experiment) may have influenced the low impact of delays on task
performance, as prior studies indicate more significant delay effects at greater speeds (Moniruzzaman et al., 2022). Future
study should incorporate greater diversity of velocities and more advanced task designs to adequately represent the
problems of teleoperation under different settings, as demonstrated in the Appendix experiments.

The use of the same maze layout for SA assessment might have severely limited the results for this metric. The decision for
using the same maze design for every run was heavily influenced by Yang and Dorneich (2017) results, which suggested that
maze complexity and changes on the navigation task can affect the overall results; even the subjective measures. However,
at the moment of starting experimentation, it was evident that some of the participants would rely mostly on their memory
from previous attempts, creating a learning effect, making SA assessment more complicated. Additionally, some of the
participants took significantly longer periods of time to complete the SA in comparison with others. Controlling this metric
by incorporating a time limit or measure, can provide valuable insights for SA assessment and also for User Workload
measurement.

Applying User Experience surveys, as mentioned by Wojtusch et al. (2018), could be greater beneficial for future iterations.
For our specific case, where no mitigation technique or novel design system was implemented to mitigate this delays, UE
was not considered to take part of the experimental design subjective metrics. However, looking back at our results and
data, it could have been a nice addition for grading the experimental assignment and to rate our approaches for future
work. Asking about the type of delay introduced, the maze layout, the vehicle’s dimension, or just general feedback. Even
adding time components on the maze or driving task could have been more insightful, especially for UW assessment.

The relatively small sample size of 15 participants, following data exclusion, restricts generalization, and additional studies
with larger, more diverse samples could validate these findings. Simulated environments, while controlled, may also lack
certain real-world complexities encountered in teleoperation, such as sensory limitations or variable network conditions, as
highlighted in studies of fire reconnaissance (Dyrks et al., 2008). In accordance to this, our delays implementation based on
Unreal Engine Spring Arm Component, might not fully cover the idea of a realistic variable time delay due to connectivity
issues. We also explored the possibility of Emulating Network retard-ness into the system, but the chose was made for the
former option in hopes to get more valuable insight and to avoid inconclusive results that could not be compared with the
literature research.

5.5 Final Remarks

In conclusion, time delays did not markedly degrade SA or task completion times but they did significantly increase
frustration, supporting the idea that user workload’s dimensions from delayed feedback is a key area for improvement.
Teleoperated systems, like those in Rots in de Brand, have more problems with communication delays as they resort to
cutting-edge technologies like SLAM, thermal imaging, and virtual reality. This is especially true in emergency situations
where delays are inevitable and while streaming and operating at long-range distances. Based on this, addressing frustration
and speed control through adaptive interfaces and lag compensation strategies could be essential for long-term operator
well-being and efficiency. The study advances the understanding of teleoperation under delay conditions, emphasizing the
need for better system designs that address both performance and emotional load in teleoperated environments.
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A Appendix: Additional Experiment on Time Delays with Varying
Velocities

This appendix provides supplementary analysis conducted with four different velocities and five types of time delays. This
experiment was designed to explore the relationship between varying delay conditions, operator workload, and performance
across different velocities. The velocity ranges were carefully chosen based on based on reported speed rates on reviewed
literature (Musicant et al., 2023).

A number of 7 participants were recruited to take part of this additional experiment. Each one of them, like in the main
tests, would take 3 different tests with varying independent conditions. In contrast with the previous iteration, we included
different velocities (4 in total) and time delays (5 in total). The steps in delays was reduced to simplify the testing and
analysis of the results, but the threshold range was kept almost identical, starting from no delay to 2000 ms.

In light that previous experiments showed that low to moderate delays did not have significant impact on any of the task
outcomes, we decided to showcase what effects does varying velocity brings to the table. Musicant et al. (2023) offers an
analytical table with multiple studies involving teleoperation in delay conditions. The goal of this table, however, was to
compare different techniques to mitigate time delays (e.g., Predictive Displays, AR,..). The authors also made remarks
about specific time delay thresholds based on their experimental results, suggesting that delays between 300 ms to 600 ms
already have a significant impact on UW and navigation performance (Musicant et al., 2023). Nevertheless, in contrast to
our experiments, the speed of their simulated vehicle (around 19 km/h = 6.0 m/s) was considerably higher than the ones
simulated by us (2 m/s). For this reason, the extra set of experiments for velocities ranging from 2 m/s to 6 m/s was
consider ideal for testing our hypothesis.

Below is a summary of the findings along with the relevant figures and tables.

Measure Count Mean Std Min 25% 50% 75% Max

Velocity(m/s) 21 4.29 1.49 2.20 3.60 5.00 6.00 6.00
Delay(ms) 21 690.48 741.22 0.00 0.00 500.00 1000.00 2000.00
Completion Time (seconds) 21 48.21 18.98 22.88 31.78 42.55 62.25 88.29
SA score 21 73.81 21.49 35.89 50.15 78.02 89.47 100.00
Mental Demand 21 45.48 24.95 10.00 20.00 50.00 70.00 80.00
Temporal Demand 21 38.81 28.76 0.00 15.00 40.00 60.00 90.00
Performance 21 31.67 20.88 5.00 20.00 20.00 50.00 70.00
Effort 21 48.57 29.16 10.00 20.00 50.00 75.00 100.00
Frustration 21 22.86 26.86 0.00 5.00 10.00 40.00 100.00
Overall Score 21 31.23 16.49 7.50 20.00 31.67 37.50 71.67

Table 11: Descriptive Statistics of Task Metrics: the teleoperated task was conducted with velocities of 2.2 m/s,
3.6 m/s, 5.0 m/s, and 6.0 m/s, and time delays of 0 ms, 250 ms, 500 ms, 1000 ms, and 2000 ms. The tests aimed
to observe how increasing time delays affect completion time, cognitive workload, and performance at different
speeds. Key workload metrics such as mental demand, temporal demand, performance, effort, frustration, and
overall NASA-TLX scores were evaluated.
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A.1 Correlation Analysis

Figure 18: Correlation Heatmap of all metrics with delays and velocity included as variables. In this set of
experiments, Delays demonstrated a significant positive relation (r = 0.71) with the completion time of the task.
Frustration, effort and overall workload were also greatly affected by this condition. Velocity had a significant
negative impact (r = −0.64) with the navigation task a modest positive relation with temporal demand. Both of
these results suggest that as speed increased the completion time was lower and the temporal demand experienced
by participants was higher.

Raul Arturo Villegas, November 7, 2024 University of Twente



45

A.2 3D Surface Plots for Completion Time and SA vs Delays and Velocity

(a) 3D Surface Plot of Completion Time vs. Delay and Velocity: the com-
pletion time of the driving task incremented as time delays got closer to
2000 ms and velocity diminished.

(b) 3D Surface Plot of SA score vs. Delay and Velocity: the SA score
fluctuates without any indication of co linearity with any of the independent
variables.

Figure 19: Comparison of 3D Surface Plots: (a) Completion Time vs. Delay and Velocity, (b) SA Score vs. Delay
and Velocity
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A.3 Bar Plots: Completion Time and SA vs Delays and Velocity

(a) Impact of Delay on Task Completion Time: This plot shows how task completion time varies
with increasing time delays for different robot velocities. Higher delays generally lead to longer
completion times, particularly at slower velocities.

(b) Effect of Delay on Maze Navigation Score: This plot illustrates the effect of increasing delay
on maze navigation scores across different velocities. SA scores fluctuations are observed across all
delays and speeds, so there is no indication of reduced navigation performance just by observing
this graph.

Figure 20: Comparison of Delay Effects on Task Completion Time and Navigation Accuracy: These subfigures
highlight how varying levels of delay impact task performance across different velocities in a teleoperated navigation
task.
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A.4 User Workload (UW) vs Time Delays and Different Velocities

Figure 21: Effect of time delays with varying velocities in perceived User Workload (UW) overall score. The analysis
was made to corroborate previous findings that stated that with increasing delay conditions UW increases. For this
experiment in particular, we put that theory into test with augmenting velocities to investigate the changes that
this variable provides to operator’s cognitive strain.
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A.5 Completion Time and SA vs Different Levels of UW

(a) Relationship between Normalized Completion Time and Overall UW Scores.

(b) Relationship between SA score and Overall UW Scores.

Figure 22: Comparative analysis of SA score and normalized completion time in relation to Overall UW. (a) shows
the normalized completion time from the driving task and (b) shows the normalized SA scores, both compared to
the perceived UW.
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A.6 Regression Analysis Summary

In this section, we summarize the findings from the Ordinary Least Squares (OLS) regression analysis conducted to
evaluate the effects of delay (ms) and velocity (m/s) on task completion time, SA score, and NASA-TLX workload
dimensions (mental demand, temporal demand, performance, effort, frustration, and overall score).

A.6.1 Regression Results with Time Delays as the independent variable

Dependent Variable Coefficient Standard Error t-Value P > —t— Significance

Time (s) 0.0171 0.0023 7.4750 0.0000 Significant
SA Score -0.0001 0.0001 -0.7277 0.4762 Not Significant
UW Overall Score 0.0141 0.0039 3.6148 0.0020 Significant
Mental Demand 0.0143 0.0068 2.0866 0.0514 Borderline Significant
Temporal Demand 0.0071 0.0081 0.8677 0.3970 Not Significant
Performance 0.0115 0.0060 1.9089 0.0723 Marginally Significant
Effort 0.0250 0.0071 3.5077 0.0025 Significant
Frustration 0.0268 0.0058 4.6580 0.0002 Significant

Table 12: OLS Regression results with delays as independent variable

Figure 23: Plots of regression analysis of all dependent variables across delays
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A.6.2 Regression Analysis of Delays at different fixed velocities

This section presents the Ordinary Least Squares (OLS) regression results for various dependent variables with delay as the
independent variable, conducted at fixed velocities. The tables below summarize the results for each velocity.

Dependent Variable Coefficient Standard Error t-Value P > —t— 95% Confidence Interval Significant

Time (s) 0.0124 0.0032 3.8240 0.0315 [0.002, 0.023] Yes
SA score -0.0281 0.0081 -3.4762 0.0402 [-0.054, -0.002] Yes
Mental Demand 0.0050 0.0187 0.2676 0.8063 [-0.054, 0.064] No
Temporal Demand -0.0010 0.0122 -0.0819 0.9399 [-0.040, 0.038] No
Performance 0.0150 0.0175 0.8589 0.4535 [-0.041, 0.071] No
Effort 0.0345 0.0142 2.4360 0.0928 [-0.011, 0.080] No
Frustration 0.0005 0.0141 0.0354 0.9740 [-0.044, 0.045] No
UW Overall Score 0.0090 0.0077 1.1713 0.3260 [-0.015, 0.033] No

Table 13: OLS Regression Results for Velocity = 2.2 m/s

Dependent Variable Coefficient Standard Error t-Value P > —t— 95% Confidence Interval Significant

Time(s) 0.022492 0.004499 4.999401 0.015397 [0.008, 0.037] Yes
SA score 0.000478 0.009921 0.048179 0.964602 [-0.031, 0.032] No
Mental Demand 0.032500 0.007112 4.569615 0.019661 [0.010, 0.055] Yes
Temporal Demand 0.013500 0.017027 0.792861 0.485775 [-0.041, 0.068] No
Performance 0.012500 0.012593 0.992616 0.394067 [-0.028, 0.053] No
Effort 0.031500 0.007654 4.115509 0.025991 [0.007, 0.056] Yes
Frustration 0.020000 0.006532 3.061862 0.054913 [-0.001, 0.041] No
UW Overall Score 0.018333 0.005875 3.120437 0.052454 [-0.000, 0.037] No

Table 14: OLS Regression Results for Velocity = 3.6 m/s

Dependent Variable Coefficient Standard Error t-Value P > —t— 95% Confidence Interval Significant

Time (s) 0.0150 0.0035 4.2584 0.0237 [0.004, 0.026] Yes
SA score -0.0032 0.0171 -0.1891 0.8621 [-0.058, 0.051] No
Mental Demand 0.0167 0.0111 1.4990 0.2308 [-0.019, 0.052] No
Temporal Demand -0.0014 0.0146 -0.0932 0.9316 [-0.048, 0.045] No
Performance 0.0058 0.0069 0.8345 0.4652 [-0.016, 0.028] No
Effort 0.0225 0.0116 1.9515 0.1461 [-0.014, 0.059] No
Frustration 0.0345 0.0068 5.0645 0.0149 [0.013, 0.056] Yes
UW Overall Score 0.0130 0.0075 1.7442 0.1795 [-0.011, 0.037] No

Table 15: OLS Regression Results for Velocity = 5.0 m/s

Dependent Variable Coefficient Standard Error t-Value P > —t— 95% Confidence Interval Significant

Time (s) 0.0187 0.0029 6.4300 0.0030 [0.011, 0.027] Yes
SA score 0.0075 0.0127 0.5865 0.5890 [-0.028, 0.043] No
Mental Demand 0.0053 0.0155 0.3404 0.7507 [-0.038, 0.048] No
Temporal Demand 0.0166 0.0190 0.8740 0.4314 [-0.036, 0.069] No
Performance 0.0139 0.0141 0.9821 0.3816 [-0.025, 0.053] No
Effort 0.0156 0.0168 0.9258 0.4070 [-0.031, 0.062] No
Frustration 0.0476 0.0066 7.2403 0.0019 [0.029, 0.066] Yes
UW Overall Score 0.0165 0.0107 1.5346 0.1997 [-0.013, 0.046] No

Table 16: OLS Regression Results for Velocity = 6.0 m/s
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A.6.3 Regression Results with Velocity (m/s) as Independent variable

Dependent Variable Coefficient Standard Error t-Value P > —t— Significance

Time (s) -7.5939 1.1376 -6.6756 0.0000 Significant
SA score 0.0765 0.1943 0.3937 0.6984 Not Significant
UW Overall Score 2.9387 1.9453 1.5107 0.1482 Not Significant
Mental Demand 5.3198 3.4072 1.5613 0.1359 Not Significant
Temporal Demand 8.5068 4.0482 2.1014 0.0500 Borderline Significant
Performance -1.0175 3.0079 -0.3383 0.7391 Not Significant
Effort 2.6804 3.5555 0.7539 0.4607 Not Significant
Frustration 2.1430 2.8670 0.7475 0.4644 Not Significant

Table 17: OLS Regression Results with Velocity as independent variable: Velocity had a significant effect on
completion time (p > 0.001), with higher speeds resulting in faster task completion. However, velocity did not
significantly impact SA score, mental demand, frustration, or overall workload.

Figure 24: Regression lines figures from OLS analysis with velocity as independent variable
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A.7 Discussion of the Appendix

This appendix explores how different time delays and velocities affect task completion time, situational awareness (SA),
and user workload (UW) during teleoperation scenarios. By adjusting the delay from 0 ms to 2000 ms and velocity rate
from 2.2 m/s to 6.0 m/s, this experiment simulated real-world conditions where network latency and control speed often
fluctuate. The following discussion analyzes significant data from the tables and figures, with a focus on understanding the
consequences for remote operations in challenging scenarios.

Table 11 provides an overview of core performance metrics. The average task completion time was 48.21 seconds, but
ranged from 22.88 to 88.29 seconds, suggesting high sensibility to the independent variables (delays & velocities). SA scores
appeared to be high overall (mean = 73.81), but the repetition of the task invites the user to remember their previous
missteps disregarding the navigation task to remember the layout of the maze and using only their memory to succeed in
this task. Increased mental demand and effort at lower velocities and higher delays also point to a rise in cognitive load
under these conditions, implying that slower speeds combined with greater delays introduce more mental strain.

Figure 18, which displays a correlation-map, reveals strong correlations between delay and completion time (r = 0.71), as
well as notable correlation with frustration, effort, and overall UW score. These findings indicate that increased delays can
lead to extended task times and higher cognitive demands, while greater speeds generally reduce task completion time
(r = −0.64). Interestingly, velocity’s correlation with temporal demand (r = 0.43) suggests that faster rates could raise
experienced urgency, emphasizing the necessity to balance regulate velocities for better teleoperation experiences.

Figures 19a and 19b further illustrate how delay and velocity interact with completion time and SA scores. As delay
increases and speed decreases, task completion time rises (Figure 19a), highlighting how these factors together affect task
duration. In contrast, SA scores (Figure 19b) do not show a clear correlation with either of these variables, suggesting that
SA may be less affected by changes in delay or speed than task completion time, possibly due to compensatory strategies
adopted by operators. This statement aligns with findings from Endsley (1995) and Yang and Dorneich (2017), who
discussed how SA can be maintained even with higher delays and task complexity.

In Figure 20, the effect of delay on task completion time and SA scores is further investigated. Completion time consistently
increases with higher delays across all velocities, with slower speeds amplifying this effect (Figure 20a). However, SA scores,
as shown in Figure 20b, do not exhibit a straightforward relationship with delay, indicating that navigation accuracy does
not necessarily suffer with increased delay—underscoring that while delay impacts efficiency, it may not directly impair SA.

Figure 21, shows the results of experienced workload against different delay and velocity conditions. In this image we can
see how as delays reach their highest value of 2000 ms, the perceived UW increases proportionally with the velocity
condition. Suggesting that participants felt the most annoyed during the teleoperation experiment with higher control
complexity and delays condition (Yang and Dorneich, 2017). This also suggests that excessive speed can cause difficulties
when working with teleoperated platforms. Finally, if we look at the 0 ms delay, it shows that the perceived UW was
greater with velocities of 5 m/s and 6 m/s.

Finally, Figure 22a and Figure22b examine the relationship between workload (measured from NASA-TLX) and the
objective performance metrics (navigation and maze tasks). Notably, completion time (Figure 22a) correlates positively
with perceived workload, especially at moderate rates (+ 0.2). This indicates that participants who took more time
completing the maze reported higher degrees of UW. However, SA scores (Figure 22b) show no consistent trend with
workload, suggesting that a high cognitive load does not inherently diminish situational awareness, a finding consistent
with previous studies on the resilience of SA in teleoperation tasks (Yang and Dorneich, 2017; Endsley, 1995).

The regression analyses further illustrate these relationships. Table 12 shows that delay significantly impacts task
completion time (p-value = 0.000, t-value = 7.475), workload (p-value = 0.002, t-value = 3.615), effort (p-value = 0.0025,
t-value = 3.508) and frustration (p-value = 0.0002, t-value = 4.658). Interestingly, SA scores revealed no significant
relationship with delay, replicating the observations from Figures 19b and 20b. When focusing on fixed velocities (Tables 13
- 16), delays showed a greater impact with higher velocities by looking how p and t values decrease and increase,
respectively, suggesting that managing delays is crucial in teleoperated control at higher speeds.

Overall, this analysis highlights the need for teleoperation interfaces that prioritize efficiency and User workload mitigation
techniques, especially under high-delay conditions. To address these issues, several strategies identified in our literature
research, such as predictive displays (Davis et al., 2010; Musicant et al., 2023) and sliding-and-zooming interfaces
(Moniruzzaman et al., 2022), where considered. However, these strategies may have limited applications in scenarios
specific to our study, such as dangerous fire situations, where limited visibility caused by smoke complicates the visual
feedback channel. This is a challenge where Rots in de Brand aims to make important improvements.

These findings provide useful information to develop teleoperated systems’ interfaces, pointing out the significance of
controlling speed and delay to improve operator performance and workload management. Integrating alternative mitigation
approaches, focusing on the operator’s response rather than only focusing on task performance, can make room for major
improvements and raise the technology readiness level (TRL) for teleoperated control of locomotion with time delays for
reconnaissance in dangerous fire situations.
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