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Abstract—To effectively secure an organization, it is essential
to understand its weakness exposure. Datasets frequently utilized
to identify these weaknesses often miss relevant weaknesses in
their labels. We found that a multitude of labeling organizations
have different labeling practices, where in they only classify a
single weakness even if multiple are present. To allow these
dataset to be used for cybersecurity purposes adding these
missing labels through reclassification is crucial, but doing so
manually is impractical. A method that can automatically add
these weaknesses labels could address this issue, therefore we
propose a novel method to semi-automatically produce these extra
labels.

We do so through a classification model that generates an
abundance of relevant weakness labels, in our experiments this
abundance of labels already create significant F1-score improve-
ment, however with a lower precision. We then use these generated
labels as suggestions for experts to review, generating a new set
of expert curated labels. These curated labels then become new
dataset labels and are used retraining our classification model
thresholds. Our experiments demonstrate that utilizing even small
datasets of expert evaluations can lead to a significant precision
improvement while maintaining a similar F1-score compared
abundance of labels. Our methods both also managed to out
perform the current NVD labels according to the expert labels,
suggesting that this method can serve as an effective yet low-effort
approach for reclassifying weakness labels.

Index Terms—Cybersecurity, Weakness Classification, Com-
mon Weakness Enumeration (CWE), Dataset Quality, Automated
Reclassification

I. INTRODUCTION

In the realm of cybersecurity, managing and understanding
vulnerability and weakness exposure is crucial for maintaining
the integrity and security of systems. The Common Vulnera-
bilities and Exposures (CVE)® system serves as a reference
for publicly known information-security vulnerabilities and
exposures, aiding organizations in identifying and addressing
security threats [8]. The Common Weakness Enumeration
(CWE) is a similar standard which creates a categorization
of software weaknesses which can be derived from CVEs.
CWEs provide a structured way to classify vulnerabilities,
offering organizations clear insight into the specific weaknesses
affecting their systems. [7]

Despite its importance, the process of labeling CWEs in
commonly used datasets such as the National Vulnerability
Database (NVD) and MITRE remains manual and flawed. The
manual process is time-consuming and susceptible to human
error, resulting in inconsistencies and inefficiencies in weak-
ness management. That 23.6% of CVEs remain unclassified
with any CWE indicates these limitations, this situation is ex-
acerbated by the significant increase in reported CVEs in recent

years. Additionally, 9.2% of the CVEs are duplicates, and at
times these duplicates are classified with different weaknesses,
highlighting possible human error in this process. Additionally,
prior studies have raised concerns regarding the validity of
NVD labels, indicating that CVEs frequently correlate with
multiple CWEs; however, this is rarely observed in the NVD
dataset. [2]

The issues present in the current dataset underscore the
necessity for reclassification. However, given that the current
experts already have difficulty keeping up with the demand
for manual labels, manually adding the missing labels to the
entire dataset would be even more impractical. Introducing
automation into this process may enhance efficiency for ex-
perts, allowing them to label more weaknesses more efficiently.
Furthermore, automation may enhance labeling efficiency and
accuracy, facilitating improved management of weaknesses.

Recent advancements in automated classification methods
for CWEs have demonstrated high accuracy rates [1], [16],
[14]. However, these methods have not garnered widespread
adoption among experts. Accessibility, complexity, and trust
in automated outcomes may contribute to this disparity.

We propose a novel technique to address the need for
an automated reclassification method. This approach involves
training previous state-of-the-art methods to generate a large
number of weakness labels by relaxing precision constraints. A
group of experts subsequently evaluates the validity of a set of
generated labels, resulting in a new set of assessed labels. The
assessed labels serve to refine the dataset and, importantly, to
fine-tune the classification model. This process improves the
model’s effectiveness for classifying weaknesses. The evalua-
tion results demonstrate that the model outperforms the existing
NVD labels in terms of performance. Consequently, through
utilizing a limited set of expert-assessed labels this model can
effectively reclassify the weaknesses identified in the NVD.

Automating CWE reclassification with a model that sur-
passes the accuracy of the NVD can enhance existing datasets,
resulting in greater completeness and accuracy. This model can
be further refined through additional expert-evaluated labels,
which may lead to enhanced performance. With more accurate
and comprehensive labels, security specialists accessing these
datasets will have a greater understanding of their exposure. It
also opens the door to further possibilities, such as including
automatic or aided labeling when reviewers are submitting
CVEs, which might remove human error and result in better
labels on CVEs submitted.



A. Research questions

The challenges associated with automating the reclassifi-
cation process are complex, necessitating a careful balance
among data quality, automation techniques, and manual inter-
vention. Ideally, a solution to this challenge would meet all
three criteria by developing a fully automated reclassification
technique that is able to use poor quality data and requires
minimal manual effort. This paper addresses the following
questions.
RQ1 What specific inaccuracies and inconsistencies exist in

the NVD manual CWE classifications regarding accuracy
and consistency?

RQ2 To what extend can we measure the performance of a
classification model in the presence of missing labels in
the dataset?

RQ3 To what extend is it possible to recommend relevant
weakness labels that can be used in expert assisted
labeling?

RQ4 Can subsequently fine-tuning a model using a restricted
set of expert-validated labels improve model perfor-
mance?

II. BACKGROUND AND RELATED WORK

The CVE Program collaborates with partners (vendors, re-
searchers, etc.) around the world as CVE Number Authorities
(CNAs) to assign CVE IDs and publish CVE Records for
vulnerabilities within their agreed upon scope [10]. When
vulnerabilities are first discovered they are then reported to
the CVE Program, to request a CVE ID. Once the record is
confirmed, through the identification of minimum required data
elements, the record is published to the CVE List [9].

Once a CVE is published in the CVE List, it can also
be associated with a CWE. CWE defines a ”weakness” in
a component (software, firmware, hardware, etc.) that may
lead to security implications under specific conditions. NIST
and MITRE provide standards and datasets for classifying
CWEs; however, the NIST dataset (NVD) is significantly more
comprehensive, encompassing over 250,000 classified CVEs.
We utilize this NVD dataset for our experiments because of its
completeness.

The National Vulnerability Dataset (NVD) enhances the
Common Vulnerabilities and Exposures (CVE) List by pro-
viding additional information on published CVEs. NVD staff
are responsible for enhancing CVEs by compiling data points
from the description, provided references, and any publicly
available supplemental information regarding a CVE at the
time. This enrichment process involves classifiers based on the
Common Weakness Enumeration (CWE), Common Platform
Enumeration (CPE), and Common Vulnerability Scoring Sys-
tem (CVSS). Our research utilizes CVE descriptions as input
for classification purposes, and the CWE classifications from
the NVD database serve as the training labels.

Since weaknesses can be defined at many abstraction levels,
CWEs are organized in a hierarchical structure that allows
for several levels of abstraction. The CWEs at higher levels
provide a broader view of a vulnerability, whilst the CWEs at
lower levels provide finer granularity and greater specificity.
An example of this is the abstract Class ”CWE-330: Use of
Insufficiently Random Values” which is connected with the
more specific Base CWE ”CWE-338: Use of Weak PRNG”.

The defined abstraction levels for these hierarchical classes are
pillar, class, base, and variant. Defined as follows:

• Pillar: is theme for all class/base/variant weaknesses
related to it.

• Class: is a weakness also described in a very abstract
fashion, typically independent of any specific technology.

• Base: is a weakness described in terms of 2 or 3 of
the following dimensions: behavior, property, technology,
language, and resource

• Variant: is more specific than a base and is linked
to a product, typically involving a specific language or
technology

NVD analysts classify CVE vulnerabilities by utilizing a
standardized selection of both broad-grained and fine-grained
CWEs. The NVD currently utilizes CWE-1003, which com-
prises 130 unique CWEs, enabling analysts to classify the
majority of CVEs. If the expert is unable to classify a specific
CWE due to the weakness not aligning with the CWE-1003
standard or insufficient information in the CVE, they utilize
identifiers such as NVD-CWE-noinfo.1. [13], [12]

A. CWE classification

In past years, researchers have thoroughly investigated the
classification of CVEs into CWE categories, resulting in no-
table advancements in accuracy.

The initial method examined is ThreatZoom [1], which
employs a hierarchical framework to identify vulnerabilities.
This approach distinguishes between coarse-grained and fine-
grained weaknesses based on whether the identified CWE
is classified as a Base class or a higher class, with the
former representing fine-grained and the latter coarse-grained
vulnerabilities. Aghaei et al. attained a classification accuracy
of 92% for 116 CWEs using this method.

Wang et al. [16] proposed an alternative classification ap-
proach utilizing a BERT model, achieving an accuracy of
90.74% while categorizing only the 10 most prevalent CWEs.
And another promising method was proposed by Pan et al.
[14] which integrates a bidirectional Gated Recurrent Unit (Bi-
GRU) with a Text Convolutional Neural Network (TextCNN),
achieving an accuracy of 90.01% on a dataset containing 158
Common Weakness Enumerations (CWEs).

It is difficult to accurately compare the performance of
different approaches because they classify varying amounts
of CWE classes. To address this disparity, we choose to
utilize CWE-1003 standard, which is also the latest used NVD
labeling standard. However, another issue with current research
approaches is that they do not address CWE classification as a
multi-label classification problem, as they categorize only one
weakness per vulnerability.

However, it is critical to address the fact that vulnerabilities
can typically exploit more than one weaknesses. In the NVD
dataset this is also partially represented, where around 5% of
CVEs are identified with multiple CWEs. However, Aota et al.
[2] found in their research that still many CVEs labeled with
a single CWE could be labeled with multiple CWEs instead,
suggesting that the NVD dataset may be incomplete. They also
continue to state the importance of this since correctly labeling

1Example of a CVE with the ’NVD-CWE-noinfo’ CWE classifier:
https://nvd.nist.gov/vuln/detail/CVE-2023-5038

https://nvd.nist.gov/vuln/detail/CVE-2023-5038
https://nvd.nist.gov/vuln/detail/CVE-2023-5038


a CVE with multiple CWEs can highlight important security
considerations for systems[2].

Unspecified vulnerability in Microsoft Excel 2000 SP3
through 2003 SP2, Viewer 2003, and Office for Mac
2004 allows user-assisted remote attackers to execute
arbitrary code via crafted Style records that trigger
memory corruption.

Figure 1. CVE-2008-0114 Description with weakness related text highlighted

In their paper Aota et al. also highlighted this finding with
the Positive Unlabeled (PU) learning multi-label classification
model proposed. Figure 1 illustrates an example they had
given of CVE-2008-0114 which was initially categorized in the
NVD as CWE-94 (Code Injection). However, their model also
classified next to CWE-94 also CWE-119 (Improper Memory
Buffer Restriction), which appears to be appropriate in this
scenario. For this case if a security expert only considered
the single-label of CWE-94, they would be missing important
context.

Recently, in another article we have fine-tuned a large
language ’T5’ model on CWE using both PU learning and
Contrastive learning, introducing the CWE-GEM models. In
this research we where able to compare these models in similar
environments to the previous state-of-the-art BiGRU model,
and found noticeable performance improvements. However,
this research had significant limitations in regards to multi-label
performance legitimacy since it was difficult to define a proper
prediction thresholds using the limited amount of multi-label
samples in the dataset. Which severely affects the legitimacy
and applicability of the model. In this research we propose a
solution for this limitation by purposefully generating to many
weakness labels, and determine new thresholds using expert
evaluation.

III. PRELIMINARY RESEARCH

In order to better grasp the existing issues in the NVD and
the current limitations of the manual CWE labels, we first
perform a preliminary analysis on the dataset’s manual labels.
We expect that the NVD dataset may be of low quality and
want to explore to what extent this dataset contains errors
or inconsistencies. By performing a preliminary analysis we
intend to measure the quality of this dataset, which allows
us to reason about how it can be used in a (semi-)automatic
labeling pipeline and how we can ensure that the proposed
approach and subsequent evaluation yield trustworthy results.
To this end, we perform 3 basic experiments:

• We examine duplicate samples in the dataset
• We compare labeling behaviours of different CVE Nam-

ing Authorities (CNAs)
• We examine inaccuracies with NVD unique labels (NVD-

CWE-noinfo, NVD-CWE-Other)

A. Dataset

We utilize the NVD dataset as our dataset. The NVD is a
repository of standards-based vulnerability management data
represented using the Security Content Automation Protocol

(SCAP). This data enables automation of vulnerability man-
agement, security measurement, and compliance. The NVD
includes databases of security checklist references, security-
related software flaws, product names, and impact metrics.
The NVD provides information of vulnerabilities, but also
assigns a CVSS and identifies related CWEs. The Common
Vulnerability Scoring System (CVSS) is a method used to
supply a qualitative measure of severity, and CWE provides
a common language of discourse for discussing, finding and
dealing with the causes of software security vulnerabilities as
they are found in code, design, or system architecture.

A typical CVE entry in the NVD consist of the following
components: CVE Identifier, Status, Description, Additional
References, Known Affected Software Configurations, CVSS,
and CWE classification.

Through the NVD API we obtained 240.000 CVEs on
August 28, 2024. The amount of CVE in the NVD has
increased dramatically in recent years, shown in Figure 2.

Figure 2. NVD classified CVEs by year

Status CVE Amount
Analyzed 129.398
Modified 95.131
Rejected 13.999

Awaiting Analysis 1.455
Undergoing Analysis 17

Table I
CVE STATUSES

Each CVE in the NVD has an associated status, as shown
in Table I. This status indicates the stage of the CVE within
the NVD life-cycle2. We take this into consideration for our
pre-processing, through filtering out all Rejected CVEs. These
CVEs have been rejected in the CVE list, and therefore would
also not be relevant for our research. We still consider CVEs
from other parts of the life-cycle, such as ’Modified’ or
’Awaiting Analysis’, because if these CVEs have an associated
CWE, they still contain useful information for training.

Additionally we identify another 1.961 CVEs without any
CWE label, this lack of labels highlights an inconsistency in the
dataset. After removing these we are left with 224.040 CVEs.

2https://nvd.nist.gov/vuln/vulnerability-status

https://nvd.nist.gov/vuln/vulnerability-status


The remaining CVEs on average have 1.16 CWE labels, with
the distribution shown in Table II.

#CWE CVE Amount
1 190.759
2 31.834
3 1.154
4 266
5 22
6 4
7 1

Table II
CWE PER CVE DISTRIBUTION

B. Duplicate CVE descriptions

Evaluating the CVE description we find that 4.18% of the
CVE descriptions in our dataset are duplicates. Further, within
these duplicates 26.70% have different CWE labels compared
to their duplicates. This shows a serious problem in the dataset,
the existence of samples with the exact same information but a
different classification. This could be caused by many different
reasons, but in our case studies we identify two particular
reasons.

The first reason is the use of a generic CVE description
for different vulnerabilities involving different weaknesses
(Appendix C). This CVE is then classified by the CNA and
NVD using extra external information, outside of the NVD.
Or the CVE could be classified as ’NVD-CWE-noinfo’, since
the CVE does not clearly specify any weakness information.

The second reason is generating multiple CVE entries for
labeling multiple weaknesses (Appendix B). In this case a CNA
generates multiple CVE entries for one vulnerability, each entry
is then only identified with one of the weaknesses exploited.
This CNA does not consider that this could also have been
achieved through one CVE entry with multiple CWE labels.

The existence of these duplicates and the potential causes
which are discussed in the case studies, highlight a point of
contention in the NVD dataset. The fact that the same CVE
description is associated with multiple unique vulnerabilities,
ads a lot of noise to the data that can make it difficult for
an automated method to classify, or even worse make it more
fault-prone for an expert to use, this highlights the need for
further automation in the generating and classification of CVEs
so that these human errors can be prevented.

C. CNA comparison

The NVD dataset combines the CVEs and labels from many
different CVE Naming Authorities (CNAs). We explore the
differences in labeling from these different CNAs to highlight

another dimension of inconsistencies with the data, again
highlighting the need for automation and standardization. The
dataset contains CVEs from 309 unique CNAs, but to keep
good oversight in our comparison we only look at 10 CNAs that
labeled the most CVEs. In Table III, we first show the number
of CVEs that CNA has published, to be able to highlight the
distribution of CVEs. Secondly, the percentage of duplicate
descriptions within the CNAs CVE list. After this, the number
of distinct CWEs utilized on labeling the CNAs CVEs, this
can be done by the CNA itself or other entities such as NVD.
Then we show the percentage of CVEs with multiple CWEs,
this is to show how many of the CNAs CVEs are multi-label.
And finally we show the 3 most common CWEs labeled on
the CNAs CVEs, this is to show the distribution within the
weaknesses.

The first thing to observe is that the vast majority of CVEs
(101.512) is are classified by MITRE, followed by Redhat
which has identified 10.173. This is also understandable given
that MITRE created the CVE database.

The duplicate description percentage is insignificantly low
for most of the CNAs. However, this is not the case for
Adobe and Microsoft where 32.1% and 28.4% of their CVE
descriptions are duplicates, respectively. The variation in the
number of duplicates can be explained by the organizations’
use of different labeling practices. An explanation for this can
be that Microsoft and Adobe tend to use more generalized
descriptions for their CVEs, as discussed in Section III-B.

The number of distinct CWEs used by the organisations
varies significantly, ranging from 51 to 326. This large differ-
ence in CWEs is important to highlight for our method since
this difference is another inconsistency between CNAs. This
does not necessarily imply that the labeling only evaluated a
few CWE; it is also possible that certain organizations CVE
leveraged a wider range of weaknesses than others.

In the multi-label column in the Table, you can again see
that there are some outliers. For MITRE, Oracle, and Apple
all have less than 1.6% of their CVEs being associated with
multiple CWEs. While for GitHub and Cisco 55.2% and 53.3%
of their CVEs respectively are multi-label. This can suggest
that their vulnerabilities are more complicated and involve
combining multiple CWEs, or that some organisations consider
multiple CWE together less with their CVEs, or more likely a
combination of multiple reasons.

Finally, we identify the top three CWEs utilized on the CVE,
which, like the preceding two factors, vary greatly from vendor
to vendor. One thing to keep in mind is that, in most of these
circumstances, NIST marks its CVE in addition to the vendor’s.
So, in some circumstances, NIST can add the label NVD-

CNA #CVE Dupl. #CWE Multi. Top 3 CWE
MITRE 101.512 0.4% 208 1.6% CWE-Other (23%) CWE-79 (13%) CWE-89 (7%)
Redhat 10.173 0.1% 282 24.4% CWE-79 (9%) CWE-20 (9%) CWE-264 (8%)
Microsoft 9.312 28.4% 136 11.4% CWE-noinfo (44%) CWE-119 (11%) CWE-200 (5%)
Oracle 7.611 12.4% 51 0.2% CWE-noinfo (95%) CWE-200 (1%) CWE-284 (1%)
IBM 5.571 0.6% 129 6.4% CWE-79 (22%) CWE-noinfo (13%) CWE-200 (11%)
Cisco 5.442 10.5% 233 53.3% CWE-20 (24%) CWE-79 (17%) CWE-399 (9%)
Apple 5.590 16.8% 93 1.4% CWE-119 (25%) CWE-noinfo (20%) CWE-787 (8%)
Adobe 5.222 32.1% 92 10.1% CWE-119 (18%) CWE-125 (17%) CWE-787 (15%)
Github 4.961 0.3% 326 55.2% CWE-79 (17%) CWE-200 (6%) CWE-22 (6%)
Android 4.468 0.4% 96 6.8% CWE-noinfo (14%) CWE-787 (14%) CWE-125 (12%)

Table III
COMPARISON OF CNA LABELING (DUPL. = DUPLICATES & MULTI. = MULTI-LABEL)



CWE-Other when it exploits a weakness that MITRE does not
use for classification, or it can use NVD-CWE-noinfo when
no direct information is available on which CWE is exploited.
Oracle and Microsoft have a high percentage of NVD-CWE-
noinfo labels (95% and 44%), which may indicate that their
descriptions lack clarity on the weakness exploited.

These differences between CNAs show that the type of
vulnerabilities and weaknesses can vary significantly. Some
CNAs provide a lot of CVEs which according to NVD often
contain too little information to classify a CWE, such as Oracle
with 95% of their CVEs having ’CWE-noinfo’. While with
other CNAs significant portions of their CVE descriptions
are duplicates, such as Oracle 32.1%. This signifies a high
amount of human error in the data from these CNAs, which
makes their data more questionable. However, other CNAs
show indications of more high quality data. In our case Redhat
has a low percentage of duplicates, high percentage of multi-
label data, and a more evenly distributed top-3 CWEs. These
indicators show good quality data since duplicates are a sign
of human error, multi-label data is realistic for complex CVEs,
and that an even distribution of weaknesses also shows a
good variance of types of weaknesses exploited within the
vulnerabilities.

D. Incorrect NIST labels

Even though in the entire dataset NIST assigns labels to
CVE as well. It is important to note that this is not without its
flaws. We have already discussed the 2 unique labels created
by NIST ’NVD-CWE-Other’ and ’NVD-CWE-noinfo’. ’NVD-
CWE-Other’ specifies the case where the CVE exploits a weak-
ness that is not within current labels NVD uses (CWE-1003
standard). ’NVD-CWE-noinfo’ is the case where the CVE
does not give any information about the weakness exploited.
However there are 3 interesting cases of things that can happen
here:

• NIST identifies NVD-CWE-noinfo, but a CNA actually
does label a CWE

• NIST identifies NVD-CWE-Other, but a CNA actually
does label a CWE from the CWE-1003 Standard.

• NIST identifies NVD-CWE-noinfo or NVD-CWE-Other,
but NVD also classifies another CWE.

For the first case in our dataset we measured 2.492 occur-
rences, which is 9.1% of all NVD-CWE-noinfo labels (27.457).
This means that it happens that the CNA can distinguish a
CWE while NVD cannot. This does not mean that this CWE is
actually specified in the description or actually happens, since
this data can still also be mislabeled.

For the second case in our dataset we measured 1.612
occurrences, which is 5.6% of all NVD-CWE-Other labels
(28.809). This could mean that it still often can be labeled
as another CWE outside the scope of CWE-1003 or the NVD
labels. However, we also still found 335 cases where the CNA
labeled it with a CWE-1003 standard label while NVD labeled
it as NVD-CWE-Other. Which is interesting to consider since
this should not be the case.

Finally for the third case we measured 635 occurrences
where NVD labeled multiple labels next to either NVD-CWE-
noinfo or NVD-CWE-Other. This also highlights the fact that
NVD in their own labels is rather inconsistent as well.

This shows that there are often places where NIST disagrees
with others labels, these labels can either be identified by other
CNAs or by NIST itself. This means that even though NIST
applies the label of ’noinfo’ or ’Other’ that it still could be
possible to identify a CWE. For each of these cases, we further
discuss case studies in detail in the Appendix C. And this
shows that NIST labels by itself can also be questioned.

E. Proposed considerations

The highlighted case studies show that there are clear
problems with the consistency and clarity of both weaknesses
and vulnerabilities in the NVD dataset. For this reason there
are certain considerations that need to be made with the data
to ensure best results with training but also develop a method
to create the possibility to improve and re-label the NVD in
the future.

Firstly, we discuss what consideration we have taken for
the data based on our results. To manage the duplicates in
the dataset we have decided to combine all the duplicates
together into one CVE with the CWE labels associated with all
duplicates. This is useful considering the second case discussed
in Section III-B, where one CVE can have multiple entries with
different CWE labels. However, it does not work for the case
of a generic CVE description used for different vulnerabilities.
Therefore, we want to ad the measure that if a CVE contains
either ’NVD-CWE-noinfo’ or ’NVD-CWE-Other’ label that
we discard the CVE from our dataset. This is also expected to
mitigate the cases of generic CVE descriptions, since these are
more likely to include any of these generic labels. Secondly,
this also deals with the edge cases where a there are other labels
next to ’NVD-CWE-noinfo’ or ’NVD-CWE-Other’, since these
are discarded as well. This improves the quality of the dataset
by removing the cases of conflicting labels.

IV. METHODOLOGY

To address the challenges of automating the reclassification
process of missing weakness labels, as specified in the Re-
search Questions (Section I-A), we have developed a model
pipeline containing 4 steps shown in Figure 3.

• The first step shown in the pipeline is the data pre-
processing, this is done using the considerations given
after the preliminary experiments in Section III-E, where
identify the issues with the current manual NVD labels
(RQ1).

• The second step is training the models using PU learn-
ing methods, which will aid the models for identifying
relevant labels as missing label recommendations.

• The third step is computing the classification thresholds
for the models, this is done using the FBR-algorithm
which will be introduced in Section IV-C. This is essential
to be able to recommend relevant weakness labels for the
expert assisted labeling (RQ3).

• The fourth step is the expert evaluation, here the generated
labels will get manually evaluated for validity, which will
result in new expert curated labels. These expert curated
labels are used for measuring the metrics and performance
of models (RQ2). Additionally, these expert labels are
used as new training data for calculating the thresholds in
the third step, resulting in new expert curated thresholds.



Allowing us to measure whether this will improve the
model performance (RQ4)

It is important to note that the Fine-tuning can be done
over many iterations, potentially iteratively improving the
performance. However, we only did one iteration of this cycle
since we were limited in the amount of expert evaluation. We
will now elaborate on each step in more detail.

A. Pre-processing

In the pre-processing the goal is to prepare the data ap-
propriately so that we can get the best performance out of
the model for the reclassification of the labels. For this we
first consider the recommendations that resulted from the
preliminary research. In this we found that the presence of
duplicates should be considered and to mitigate this we can
combine the duplicate data points together into one sample,
combining the labels together too. The second consideration
is for the NIST created quality weakness labels of ’NVD-
CWE-noinfo’ and ’NVD-CWE-Other’, these labels are given
to weaknesses if the vulnerability does not contain enough
information or if the weakness is outside the scope of NIST.
For this the consideration is that if a sample is labeled with
any of these weaknesses that the sample will not be used for
training. This is to ensure data quality since according to NIST
these samples are invalid for labeling with an actual weakness.

Next in the back it was established that previous methods
classified an inconsistent amount of weaknesses. To solve
this we will use the already discussed standard of CWE-
1003, encompassing 130 CWEs at two granularity levels.
This standard was chosen to ensure broad applicability across
various scenarios and is also adopted by the NVD itself, where
98% of CVEs are classified using these CWEs.

The labeled datasets created was done like in the prelim-
inary research using the CVE API from NVD3, containing
approximately 240k CVE records. Then as stated we merge
the duplicate entries and filtered out the samples with ’NVD-
CWE-noinfo’ and ’NVD-CWE-Other’ labels. Then all other
labels from weaknesses outside the CWE-1003 standard were
filtered out, resulting in the dataset composition given in Table
IV.

B. Model training

For our method we trained 3 models: TextCNN[5], [14],
BiGRU-TextCNN[3], [14], and CWE-GEM[11], [15]. These
models have shown state-of-the-art performance on CWE
classification before. The inclusion of multiple models allows
us to compare performance in between the models and select

3NVD API: accessed on 28th of August 2024

Table IV
DATASET COMPOSITION

# classes 129*

# CVEs 144,928
# CWEs 151,557 (4.6%)

Train-test split 90% - 10%
* Excluded CWE-920, since it only
occurs 3 times.

the best performing model for generating the eventual relevant
weakness labels.

These three models all operate in two stages, first the feature
extraction and secondly through a fully connected layer for
the classification. This is a modification form the original
CWE-GEM model, which originally classified samples based
on cosine similarity between the sample and weaknesses.
We made this modification since in the initial testing the
performance was slightly better using a fully connected layer as
classification method. The training of the CWE-GEM feature
extractor was done using a Positive Unlabeled version of the
Binary Cross Entropy (BCE) loss, which is different than the
fully connected layer. This is because the implementation of the
CWE-GEM was made using the Instructor framework which
only supports a BCE loss.

1) PU learning: Aota et al. [2] and the CWE-GEM method
have shown using Positive Unlabeled learning outperforms
other previous methods on CWE classification. In our research
we also utilize PU learning for its potential to find missing
labels. For this we utilize the ’Hill’ loss introduced by Zang
et al [17], which alleviates the effect of missing labels through
a robust loss that is insensitive to false negatives. In their
research the ’Hill’ loss outperformed other losses specifically
at the task of being able to correctly label missing labels. This
is also the reason we utilize it for our method on the fully
connected layers, BiGRU, and Text-CNN models. As this loss
could potentially also recommend missing relevant weaknesses
labels, which can then be classified by the experts as a new
curated label.

C. FBR-algorithm

For the multi-label classification to be able to determine the
rejection region, we need to optimize the probability threshold.
To achieve this the FBR (F-beta Ratio) algorithm[4], [6] can
be utilized, due to its capability to optimize thresholds for
each label independently. The original FBR-algorithm is quite
simple where it calculates an optimal threshold for every
class over a k-fold using the F-Beta measure, in our case
we used a stratified 5 k-fold split. The F-Beta measure here
is a variant of the F-score where another Beta variable is

Figure 3. The pipeline of our methodology

https://nvd.nist.gov/developers/vulnerabilities


added. This Beta variable enables us to adjust the balance
between recall and precision, making it particularly suitable for
assisted labeling tasks while also accommodating the needs of
automated processes.

It was found in further research that the original FBR
algorithm (SCut), while being a reasonable approach can easily
over-fit or uncommon labels. This is important to note for
our dataset since the CWE labels are unbalanced with a long-
tail distribution, and some classes are very rare. For this Yu-
Len Jin and Chih-Jen Lin, found that through smoothing the
F-measure their algorithm had significant improved handling
underrepresented labels, ensuring that less common labels in
the unbalanced data are not disadvantaged. [6]

In our initial experiments, we confirmed the findings of Yu-
Len Jin and Chih-Jen Lin, with the improved FBR-heuristic
having a noticeable improvement on the macro performance
of our models. Therefore, we chose to use this heuristic for
our initial FBR threshold tuning. The FBR-algorithm aids
in recommending relevant weakness labels, since restricting
the precision and increasing the recall will allow for the
classification of more weaknesses. During the expert evaluation
we will be able to determine the relevancy of these labels, by
whether they get classified by the experts.

D. EXPERT evaluation

After using the FBR algorithm to increase the classification
threshold and hence increasing the amount of weakness labels,
we need to find the relevant labels. For this we select a
subset of CVEs to be labeled by expert reviewers, this will
establish a new ground-truth through the majority vote of the
expert. Finally this new ground-truth is used to measure the
performance of the classification model and the original NVD
labels. Here we will observe both the weighted and the macro
of the F1-score, precision, and recall metrics. These metrics
will give a full overview of the model performance with the
weighted results showing the overall performance, and the
macro results showing the per class performance, which will
allow for a comprehensive evaluation of the results.

E. Fine-tuning

The expert curated labels will also be used as new training
data for the FBR-algorithm, to generate a new of more curated
thresholds. These expert fine-tuned thresholds will then again
be evaluated by experts on another set of CVEs. This subset
of CVEs will contains different CVEs having the same distri-
bution of CWEs, and will be evaluated by a different group
of experts. Finally, we compare the performance metrics of
the expert fine-tuned thresholds against the original thresholds
and NVD labels, to see if the expert fine-tuning impact the
performance.

To give a better understanding of the fine-tuning process
we can look at the example explaining this process, given
in Figure 4. In the visualization you can see an weaknesses
labeled for CVE-2007-3008, which is described in Figure
5. This CVE is classified by NVD as CWE-79: Cross-site
Scripting and CWE-200: Exposure of Sensitive Information to
an Unauthorized Actor. The CWE-ASSIST model with β = 1
has a stricter threshold and only classifies CWE-200. While,
the CWE-ASSIST model with β = 4 would identify CWE-79,

CWE-200, CWE-203 as Observable Discrepancy and CWE-
20 as Improper Input Validation. Finally, an expert associated
this CVE with CWE-79, CWE-200, and CWE-749: Exposed
Dangerous Method or Function. This demonstrates that both
NVD and CWE-ASSIST identified CWEs incorrectly, and as
a result, we alter the CWE-ASSIST model’s thresholds based
on these expert labels.

Figure 4. Example of CVE-2007-3008 thresholds

For the expert fine-tuning we have a considerable limitation,
which is the amount of CVEs we can have labeled by the
human experts. The test-set alone consists of more than 11.000
samples and a 129 classes. To keep the amount of CVEs man-
ageable for the experts the subset contains 125 CVEs, which
maintains the same distribution of classes as the entire test-
set, since the dataset is unbalanced this only includes 73 CWE
classes. The distribution of CWE classes is displayed as the
Train set in the Figure 6, and in more detail in the Appendix.
For the fine-tuning of the thresholds we found that for such a
small set of samples that the smoothed F-measure decreased
the performance and made the model more unpredictable.
Therefore we chose to use the original FBR algorithm for the
expert-label FBR threshold tuning. To evaluate the expert fine-
tuned thresholds, we select another subset of 125 CVEs with
the same distribution of classes which can be seen as the Test
set in the figure.

V. EVALUATION

To validate our method, we compare the F1-score, recall, and
precision of several approaches. The metrics chosen are used
to address performance in terms of accuracy and consistency,
as well as to investigate the influence of the FBR algorithm on
enhancing performance, as defined in RQ3. We then evaluate
the framework’s performance against the current NVD labels,
using expert labels as new ground truth to address RQ2.

Mbedthis AppWeb before 2.2.2 enables the HTTP
TRACE method, which has unspecified impact probably
related to remote information leaks and cross-site
tracing (XST) attacks, a related issue to CVE-2004-
2320 and CVE-2005-3398.

Figure 5. CVE-2007-3008 Description with weakness-related text highlighted



Figure 6. Expert fine-tuning dataset CWE distribution

Finally, we fine-tune the thresholds based on the expert labels
and re-evaluate the model to determine whether this improves
performance, which addresses RQ4.

A. Experimental Setup

In our experiments, we compare the model’s multi-label
recall and precision. We compare the TextCNN, BiGRU,
TextCNN-BiGRU, and CWE-GEM models. After the training,
we use the enhanced FBR algorithm to optimize the models’
thresholds on a training dataset. For the FBR optimization, we
experiment with two Beta values, 1 and 4, to examine if it
is indeed possible to recommend more relevant weaknesses to
solve the missing label problem. This is followed by expert
evaluation on a test dataset, further fine-tuning of the thresh-
olds, and another expert evaluation to observe any performance
changes.

B. Experiment Results

The results of our experiments are summarized in Table
V, where we compare the performance of different models
across two Beta values (1 and 4). The findings are presented
using both weighted and macro-averaged precision and recall
to provide a balanced picture of model performance across
frequent and infrequent classes.

The effect of the Beta parameter in the FBR method is
visible in all models. Increasing Beta from 1 to 4 improves
recall but reduces precision. For TextCNN this is seen with
Beta=4 where the weighted recall is 84.73% and precision
is 58.41%, with Beta=1 these are 59.24% and 66.58% re-
spectfully. This demonstrates that a larger Beta, which focuses
more on recall, helps capture more CWEs but also introduces
more false positives. Similar patterns can be seen for the

BiGRU-TextCNN model, a Beta of 4 results in a macro recall
of 57.78% and precision of 41.94%, with Beta=1 these are
48.12% and 51.38% respectfully. This stresses the importance
of correctly choosing the appropriate Beta value for a certain
use case. For instanced with fully automated classification you
would ideally require both recall and precision to be high, here
a Beta=1 would make sense. However, for assisted labeling
which is more similar to our expert you would not mind a
lower precision if this results in a higher recall, in this case a
higher Beta of for instance 4 could be used.

Finally, the performance of the CWE-GEM model appears
to fluctuate more considerably between the two Betas. With a
Beta=1, the weighted precision is 82.95% while the recall is
only 67.02%, for the macro these are 62.45% and 35.78% in
comparison. In both these cases the precision is significantly
higher than the other models, while the recall performs similar
if not worse. This completely changes for the Beta=4, where
the model does manage to outperform on weighted recall but
scores very similarly on all other metrics. Which actually
shows that for the Beta=4, the differences in performance are
actually less. However, since CWE-GEM model consistently
outperforms the other models in the metrics, is this model also
the one used for expert evaluation and fine-tuning.

C. Expert evaluation

To continue with evaluation and fine-tuning or model we
first need to establish a new ground-truth. As discussed in
Section IV-D, this is achieved by making a group of experts
manually evaluate the generated labels on 125 CVEs, here
at least 3 experts label each CVE and weaknesses that got
a vote from majority of the experts is established as new
ground-truth. These labels are all unique labels from the NVD
and CWE-GEM at beta=1 and beta=4. For this 3 experts to
classified a sub-set of 125 vulnerabilities with the selected
CWEs from both CWE-ASSIST and NVD. Finally we compare
the performance of the NVD predictions and CWE-ASSIST
performance on the new ground-truth, depicted in Table VI.

Table VI
EXPERT EVALUATION (R = RECALL; P = PRECISION)

Weighted Macro
Model β F1 R P F1 R P
NVD labels 48.52 43.06 66.30 37.66 36.27 43.48

CWE-GEM 1 28.95 27.78 36.64 24.08 23.73 26.31
4 69.70 90.97 60.53 47.85 59.55 43.28

The first thing to note in the evaluation, is the performance
of the NVD labels. While NVD manages to get the highest
precision, it achieves a low recall with a score 42.41% and
37.40%, on weighted and macro recall respectively. This shows
that according to the experts a significant amount of the labels
are missing from the NVD. For the CWE-GEM method, the

Table V
EXPERIMENT RESULTS (R = RECALL; P = PRECISION)

β = 1 β = 4
Weighted Macro Weighted Macro

Model R P R P R P R P
TextCNN 59.24 66.58 40.37 49.61 84.73 58.41 59.86 40.94
BiGRU-TextCNN 66.92 64.90 48.12 51.38 83.69 59.33 57.78 41.94
CWE-GEM 67.02 82.95 35.78 62.45 88.57 59.87 59.89 41.31



differences in the performance is again quite different for
the different Beta’s. The Beta=1 model has by far the worst
performance, with none of the metrics higher than 37% the
performance is way worse of what would be expected based on
the performance on the NVD labels. This also clear indication
that only evaluating the models against the NVD labels does
not show the full picture. For the CWE-GEM Beta=4 model it
manages to excel on recall, with it being 90.97% and 59.55%
on weighted and macro averages respectively. This is to be
expected since this model significantly over-labels the data,
providing most of the labels seen by the experts. However,
while the precision is worse than NVD it still manages to
improve the precision of the Beta=1 version. This highlights
how badly missing labels can effect model performance. In this
case over-labeling clearly improved the performance according
to the expert labels.

Even when observing the F1-scores of these models the
CWE-GEM Beta=4 model scores significantly higher with a
20% weighted F1 improvement and a 10% macro F1 improve-
ment over the NVD. This already shows that according to the
generally accepted F1-metric our over-labeling model is better
than the NVD. However, this does not show the fact that the
precision is worse than the NVD.

D. Expert fine-tuning

Using the expert curated label from the evaluation for
fine-tuning, can show whether the expert feedback can help
improve model performance. For this we used the FBR-
algorithm without smoothing, since with only 125 samples the
smoothing seemed to worsen performance. This new CWE-
GEM expert fine-tuned model is then also evaluated against the
other models, by manual labeling of another group of experts
on different CVEs, with the results depicted in Table VII.

Table VII
FINE-TUNED EVALUATION (R = RECALL; P = PRECISION)

Weighted Macro
Model β F1 R P F1 R P
NVD labels 57.57 50.00 76.49 44.64 42.86 51.71
Original 1 33.63 30.90 42.82 21.98 20.91 25.61
Expert 1 62.31 66.29 75.13 48.09 54.86 47.13
Original 4 73.87 91.57 64.14 49.62 57.33 45.83
Expert 4 72.89 84.83 68.28 48.85 57.53 45.99

This table we can observe that the original models from the
first evaluation vary up to 10% on the metrics in this evaluation.
This variance could be from our evaluation sets being too
small, or that the new group of experts has a significant
different opinion than the previous group. However, for Beta=1
the expert model shows a more consolidated performance,
with both the precision and recall improving significantly from
the model before, showing a very balanced model which is
competitive to the NVD on both recall and precision and even
outperforming on F1-score. However, the expert Beta=4 model
very similar performance to the original Beta=4 model. For this
model, the precision was marginally higher for a slight drop in
recall while keeping the F1 score very similar. These results
show that while the expert evaluation can result in proper
model for Beta=1, that it does not improve the performance
noticeably of the over-labeled model with Beta=4.

1) Label evaluation: Looking into the assigned of labels
by model can also more insights into whether the different
methods generate more labels, shown in Figure 7. The blue
bars show how how many percent of the labels are assigned
by each model. Here you can see that compared to the NVD
the FBR Beta=1 model generates less labels, while the Beta=4
model generates significantly more labels. After fine-tuning the
thresholds of the models we can see with the gray bars that
the expert Beta=1 model also generates more labels than NVD.
Showing that fine-tuning the thresholds achieves the goal of
being able to compensate for the missing labels. For the Beta=4
model the fine-tuning seemed to lower the amount of assigned
labels, which can also explain the lower recall on this model.
These results also seem to be representative from what we saw
in the evaluation in Table VII.

Figure 7. Model label distribution

VI. DISCUSSION

The goal of this study was to improve the automation
of CWE classification by tackling four main problems: the
problems with manual labels (RQ1); the difficulty in mea-
suring performance on a dataset with missing labels (RQ2);
finding methods to suggest relevant missing weakness labels
(RQ3); and making a classification model better by using
chosen expert labels (RQ4). The findings of our study provide
valuable insights into potential problems and solutions for
weakness classification, which are also more generally relevant
for practical Natural Language Processing (NLP) within other
cybersecurity applications.

A. Manual label limitations (RQ1)

In our preliminary research, we addressed several limitations
of the NVD dataset. This step is crucial for automating CWE
labeling, as the performance of a model depends on the data
used for training, and a high level of inconsistencies in the data
could potentially reduce the method’s overall performance. A
clear case for this is that 4.18% of the CVE descriptions are du-
plicates and occur more than once. Of these duplicates, 26.70%
have different labels for the duplicate description, which is al-
ready conflicting data. When a model undergoes training using
these descriptions, the varying labels could significantly effect
the learning process and limit the model’s performance. The
second established limitation is the significant differences in
labeling practices between different CVE Naming Authorities
(CNAs) for their respective CVEs. This is shown with some



CNAs having 0.1% duplicate descriptions, while others have
over 30%. Similarly, some CNAs only have 51 CWEs labeling
their CVEs, while others have 326, a significant range that
creates a lot of variance in the dataset. Finally, we showed
that inconsistent application of the NIST unique labels ’NVD-
CWE-Other’ and ’NVD-CWE-noinfo’ can result in incorrect
classification of a CVE. The NVD dataset uses these labels
over 56.266 times, which is a significant portion of the 224.040
CVEs we analyzed, highlighting the importance of these labels.

We have tried to mitigate the effects of these limitations in
two main ways. Firstly, we added all duplicate CVEs together
to become one comprehensive CVE. Secondly, we eliminated
all ’NVD-CWE-Other’ and ’NVD-CWE-noinfo’ labels due to
their abstract and inconsistent nature. This made our data
more uniform; however, it does not fully address the structural
problems with the NVD dataset and varying labeling methods
between CNAs. The decision to filter out the ’NVD-CWE-
noinfo’ label does affect the labeling capabilities of the model.
When the model encounters real-world CVEs, it might not
specify any weakness information. However, in the absence of
an ’NVD-CWE-noinfo’ label or a similar substitute, the model
would incorrectly attempt to classify a weakness. The risk of
this mislabeling should be carefully considered before using
the model without an expert in the loop.

Another aspect that was not implemented in this model
is the inclusion of information beyond the CVE description
for the CWE classification. Recommending weaknesses while
taking into account the CNA who posted the CVE could lead
to more relevant recommendations. Additionally, CVE’s are
usually posted into the NVD with references to sources; these
sources were also not utilized in this method. External sources,
in addition to the CVE description of the NVD, could provide
crucial information about the weaknesses, potentially leading
to improved performance.

While simply merging the duplicates and excluding ’non-
relevant’ CWE labels does limit the scope and capability of
our model, it does provide a simple method for cleaning up the
dataset. In some cases, duplicate CVE descriptions do address
different vulnerabilities, and ideally the model would be able
to address these as such; however, this would require more
sources and a structured approach to solve. Within the scope of
our research, the analysis of the NVD dataset clearly revealed
some potential causes and symptoms of the bad labels. We
utilized this knowledge in the pre-processing of our model,
which likely helped create a more competitive model to the
NVD labels based on our evaluation.

B. Measuring performance (RQ2)

We were able to evaluate our model more independently by
using manual labels created by experts, as opposed to the NVD
labels. Previously, methods would rely solely on NVD labels
as the ground truth, despite the limitations of these labels, as
shown in our preliminary experiments. Despite the inherent
flaws in our expert manual labeling process, such as over-
labeling and other common human biases, we argue that many
of these biases are also present in current manual NVD labels.
Additionally, we would argue that in the realm of security,
we prefer false positives over false negatives, particularly in
the area of high-risk weaknesses. Our evaluated CWE-GEM
Beta=4 clearly adheres to this concept, which is shown by its

high recall in sacrifice for a lower precision, a key characteristic
of having many false positives.

Our manual evaluation method for measuring performance is
not without its own biases. The majority of labels assigned to
the participants were for models with more generous thresh-
olds. This can create a bias that, through random selection
by the experts, these models might seem to perform better.
A consideration could have been adding an additional fake
label as a fail-safe to be able to see if the experts filled it
in genuinely. However, implementing this would require some
nuance, as it remains possible for an expert to interpret the
’fake’ weakness label as relevant. For this reason, the failsafe
was not implemented, which sadly did not allow us to measure
the validity of the expert labelers. Furthermore, we should
not underestimate the abstract semantics involved in assigning
weakness labels. This was also observable in our evaluation
because there are multiple cases of three experts each assigning
a different weakness label, as shown in Appendix D.

This method of manual expert evaluation provides a solution
for measuring label performance in the presence of missing
labels in the dataset. However, the need to rely on the expertise
of expert reviewers and the potential for varying interpretations
pose significant limitations. This also might seem slightly
hypocritical after elaborating on how the manual labeling of
NVD is a cause for concern. Despite this, this method proved
sufficient for the scope of our research, enabling us to obtain
new curated labels and address the research question.

C. Solving missing labels (RQ3)

Enhancing the recall is essential when transitioning from
single-label data, such as the current NVD, to a more rep-
resentative multi-label scenario. The issue of missing labels
presents a significant challenge in this field, prompting the
use of PU learning and the FBR algorithm to enhance recall.
The key advantage of PU learning, particularly for training
data with missing labels, is its noise resistance, which limits
the negative impact of missing labels on model performance.
This aligns perfectly with the FBR algorithm, enabling us to
prioritize recall over precision. Even though PU learning aids
in labeling missing labels, the chosen thresholds ultimately
dictate the classification process. Missing labels also negatively
impact this process, as the threshold calculation does not take
into account the absence of labels. Therefore, in our research,
we showed that by using the FBR algorithm with an increased
beta of 4, it is possible to increase the recall performance of
our models. In this case, we want to lower our false negatives
by increasing our false positives, which is not ideal but would
help significantly with assisted labeling.

The idea of using PU learning along with over-labeling is
based on the idea that the NVD’s positive labels are broad
enough to let the model converge on identifying the right
weaknesses. The validity evaluation of the NVD labels (RQ1)
already casts doubt on whether this assumption holds true in the
current dataset. In addition, certain weaknesses, like CWE-920,
are extremely rare, appearing only three times in total. Other
techniques, like combining self-learning with active learning,
could potentially enhance performance, enabling experts to
assist the model only in situations of extreme uncertainty.
This could have been a more promising approach for further
improvements. The current approach of positive unlabeled



learning was shown to be effective in previous research for
finding missing labels; this allowed us to experiment with
the effect of over-labeling using the FBR-algorithm. In our
research, we found that the over-labeling method outperformed
the previous methods on both recall and F1 scores, addressing
the question of whether it is possible to recommend relevant
missing labels.

D. Expert fine-tuning (RQ4)

We also introduce considerations for preventing excessive
over-labeling by introducing active learning in the form of
using expert evaluated labels for fine-tuning. After refining
the models using expert labels and reevaluating them again,
we observed a significant improvement on both recall and
precision compared to the NVD. This feedback mechanism
enables us to develop a method that performs similar, if not
better, than the NVD in both metrics. This means that this
method is a low-effort way to build a model that can sometimes
improve on the original dataset, utilizing only a limited number
of manually assigned expert labels.

It should be noted that this situation exacerbates the limita-
tions discussed for the manual evaluation (RQ2). Poor labeling
by experts on the expert-curated labels used for the training
could potentially deteriorate the model’s performance. This is
a big issue for this method and can even happen when the
experts are genuine but have certain biases. Using more experts
and generating more labels can mitigate this issue, ultimately
resulting in a stabilizing effect that enhances predictability and
accuracy in the model’s performance, potentially leading to
a significantly improved model. However, in our method, we
found that using a small subset of the labels to generate fine-
tuned thresholds resulted in slight improvements in precision,
and the model scored higher on both recall and precision
compared to previous iterations. Which does prove that expert
evaluation could be used for improving the model; however,
this definitely depends on the quality of the labels assigned by
the experts and the amount of labels used.

E. Limitations

Several limitations in this study warrant discussion. The
reliance on the accuracy and completeness of labels from the
CWE-1003 standard and the CVE entries was a significant
constraint. The case studies discussed in SectionIII showed that
key information can be missing or unclear in CVE descriptions.
This could hinder the model’s ability to identify a weakness,
leading to a decline in the model’s performance. Also, some
loss functions, like Positive Unlabeled (PU) learning, can help
with uneven data, but they might not always be able to handle
poorly labeled or irrelevant CWEs well, which could lead to
wrong classifications.

Another big limitation of this research was that it focused
more on a model-centric approach for solving the missing
labels than a data-centric approach. Machine learning research
has consistently demonstrated in recent years that data quality
is the bottleneck, commonly referred to as the ’garbage in
equals garbage out’ phenomenon. Our method tried to work
around the low-quality data by adapting it to compensate for
the shortcomings, such as missing labels. However, in a data-
centric approach, a more thorough filtering of bad quality data
would be used. Such as generating more labels through regex

or automated labeling through more traditional active learning
methods.

Lastly, we suffer from the limitations of the Common
Weakness Enumeration itself. Discussing the limitations of
single-label CWEs with experts from the CISCO Talos group,
we found that the protocol they use only wants them to label a
CVE with the most important CWE. They proposed that other
forms of integrating CWEs could allow for a more thorough
understanding of the relationship between the weaknesses. A
good example for this is TALOS-2024-20044, which involves
both CWE-125: Out-of-bounds Read and CWE-200: Uncon-
trolled Resource Consumption. Experts prioritize CWE-125
because it triggers the CWE-200 vulnerability, leading to the
labeling of this vulnerability solely with CWE-125. According
to those experts, this could be mitigated by creating a relational
format within the listing of CWEs, such as a tree where CWE-
125 facilitates CWE-200. Such a new format would allow
researchers to create chains of weaknesses, which then allow
for deeper understanding.

F. Future Work

Looking ahead, there are several promising avenues to
further enhance CWE classification. A natural extension of this
research would be to evaluate if the performance improvements
we observed with expert feedback persist across more itera-
tions. By continuing this feedback loop, we could fine-tune
model predictions and incrementally improve both recall and
precision in a systematic way.

Integrating more traditional active learning with self-learning
methods could significantly expand the labeled dataset. For
example, the model could label high-confidence predictions
from unlabeled CVEs, which would help increase the dataset
size. For low-confidence cases, expert reviewers could provide
manual labels, similarly to our method, allowing the model to
iteratively improve its labels and generate more accurate CWE
classifications.

Another crucial area for future research is improving data
quality. As demonstrated in this study, data inconsistencies,
such as duplicate CVEs and differing CNA labeling practices,
impact model performance. Another approach could involve
leveraging regex-based methods to generate additional CWE
labels based on the CVE descriptions. In our experiments, this
approach yielded a 5% improvement in model performance by
adding approximately 15,000 new labels. However, future work
should focus on validating these labels to minimize the risk of
inadequate quality data and ensuring data integrity.

The ultimate objective is to implement these methods in
the industry. Deploying small, explainable models could aid
experts in labeling CWEs during the creation of CVEs. These
models could then also be integrated directly into the CVE life-
cycle, providing real-time feedback and improving the quality
of the data over time. By continuously improving these models
based on both human input and feedback learning, we can
improve performance and reliability.

VII. CONCLUSION

In this research, we introduced the CWE-ASSIST framework
for automating CWE classification, addressing key issues in

4https://talosintelligence.com/vulnerability reports/TALOS-2024-2004
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manual labeling, and improving the recall using expert feed-
back. Our findings demonstrate that CWE-ASSIST not only
competes but can outperform current NVD labels, providing
a semi-automated tool for generating relevant weakness la-
bels. Within these advancements, certain limitations remain.
Variations in labeling practices across different CVE Naming
Authorities (CNAs) and structural issues within the CWE
system still pose challenges. Future improvements could focus
on addressing these inconsistencies through more data-driven
approaches, such as active learning and self-learning, which
could further improve model accuracy and performance. How-
ever, the CWE-ASSIST framework has significant potential for
real-world application. Through integrating assisted labeling
models into the CVE life-cycle, professionals could automate
and improve on the CWE labeling, ultimately improving the
quality and consistency of CVE data.
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APPENDIX

A. Generic CVE Descriptions

The CVE description: ’Windows Kernel Elevation of Priv-
ilege Vulnerability’, which has 78 distinct CVE-IDs linked to
17 distinct CWEs, is an extreme example of a duplicate (Figure
A). Given the generic nature of the description, it is likely that
these vulnerabilities were unique, but the description did not
adequately address this. This notion is supported by the fact
that the CVE description spans five different years.

NVD created a class named ’NVD-CWE-noinfo’ for cir-
cumstances where a CVE does not provide enough information
to be classed. However, as demonstrated in our example, this
designation is not always used appropriately.

Furthermore, NVD includes additional sources for investi-
gation, such as Microsoft’s supplementary documentation 5,
although mostly contain identical information. Additionally,
some of these CVEs include an Analysis Description, which
frequently merely mentions the following. ”There is a vul-
nerability in the Windows kernel that allows for privilege
elevation. This CVE ID is separate from: CVE-2023-21747,...”,

5https://msrc.microsoft.com/update-guide/vulnerability/CVE-2023-21675

https://msrc.microsoft.com/update-guide/vulnerability/CVE-2023-21675


CVE ID CWE
CVE-2020-17035 NVD-CWE-noinfo
CVE-2021-1682 CWE-269
CVE-2021-31979 CWE-119
CVE-2022-21881 CWE-362
CVE-2022-34707 CWE-416
CVE-2023-21675 CWE-843, NVD-CWE-noinfo
CVE-2023-21749 CWE-20, NVD-CWE-noinfo
CVE-2023-21750 CWE-284, NVD-CWE-noinfo
CVE-2023-21754 CWE-190, NVD-CWE-noinfo
CVE-2023-21772 CWE-125, CWE-269
CVE-2023-28222 CWE-59, NVD-CWE-noinfo
CVE-2023-28236 CWE-591, NVD-CWE-noinfo
CVE-2023-28272 CWE-191, NVD-CWE-noinfo
CVE-2023-35304 CWE-122, NVD-CWE-noinfo
CVE-2023-35359 CWE-23, NVD-CWE-noinfo
CVE-2023-38141 CWE-367, NVD-CWE-noinfo
CVE-2024-21338 CWE-822, NVD-CWE-noinfo

Table VIII
DUPLICATE GENERAL CVE DESCRIPTIONS WITH DIFFERENT CWE LABELS

which does not help our analysis. It is possible that certain
information was accessible to NVD and Microsoft for classifi-
cation but was not made public. CVE-2024-21338, labeled by
NVD as ’NVD-CWE-noinfo’ and by Microsoft as ’CWE-822’
(Untrusted pointer de-reference), is a sample that demonstrates
this.

For this vulnerability, the NVD page says that the CVE
has also been disclosed in the ’CISA’s Known Exploited
Vulnerabilities Catalog’, which also provides mitigating advice.
The CISA Catalog gives the following additional information:
”Microsoft Windows Kernel contains an exposed IOCTL with
insufficient access control vulnerability within the IOCTL
(input and output control) dispatcher in appid.sys that al-
lows a local attacker to achieve privilege escalation.” This
description is undoubtedly helpful, and it is unclear why it
was not included in the initial CVE description. As additional
information the NVD page also includes a link to a blog6 that
goes into great detail about how the Lazarus Group exploited
this vulnerability as a zero-day, allowing them to perform direct
’kernel object manipulation’.

B. Multi CVE labeling

It is also possible for highly particular vulnerability to be
classified with distinct CWE. The vulnerability described as
’CLUSTERPRO X Ver5.1 and earlier and EXPRESSCLUS-
TER X 5.1 and earlier, CLUSTERPRO X SingleServerSafe 5.1
and earlier, EXPRESSCLUSTER X SingleServerSafe 5.1 and
earlier allows a attacker to log in to the product may execute
an arbitrary command.’ has 5 unique CVE-IDs associated with
6 different CWE (Figure IX). As revealed on their website
7, it appears that the relevant CNA, the ’NEC Corporation’,
creates a new CVE for each vulnerability exploited. This is, of
course, not what was expected, as according to NVD protocol,
this should be designated as a single CVE ID that corresponds
to numerous CWEs.

C. NVD mislabeling

A clear example of the first case is shown in CVE-
2023-44253, which NIST labeled as ’NVD-CWE-noinfo’ and

6https://decoded.avast.io/janvojtesek/lazarus-and-the-fudmodule-rootkit-beyond-byovd-with-an-admin-to-kernel-zero-day/
7https://jpn.nec.com/security-info/secinfo/nv23-009 en.html

Table IX
DUPLICATE SPECIFIC CVE DESCRIPTIONS WITH DIFFERENT CWE LABELS

CVE ID CWE
CVE-2023-39544 CWE-862
CVE-2023-39545 CWE-552
CVE-2023-39546 NVD-CWE-noinfo, CWE-836
CVE-2023-39547 CWE-294
CVE-2023-39548 CWE-434

Fortinet as ’CWE-200’, here CWE-200 was specified in the de-
scription. ”An exposure of sensitive information to an unautho-
rized actor vulnerability [CWE-200] in Fortinet FortiManager
version 7.4.0 through 7.4.1 and before 7.2.5, FortiAnalyzer
version 7.4.0 through 7.4.1 and before 7.2.5 and FortiAnalyzer-
BigData before 7.2.5 allows an adom administrator to enumer-
ate other adoms and device names via crafted HTTP or HTTPS
requests.”

However a bad example of the first case is shown CVE-2024-
21371, which NIST again labeled as ’NVD-CWE-noinfo’and
Windows as ’CWE-367’, but there is no weakness specified.
”Windows Kernel Elevation of Privilege Vulnerability”

A clear example of the second case is shown in CVE-1999-
0059, here NIST labeled it as ’NVD-CWE-Other’ while CISA-
ADP correctly labeled it as ’CWE-200’. ”IRIX fam service
allows an attacker to obtain a list of all files on the server.”

However a bad example of the second case is shown in
CVE-2020-35167, which NIST labeled as ’NVD-CWE-Other’
while Dell as ’CWE-200’ which is incorrect in this case. ”Dell
BSAFE Crypto-C Micro Edition, versions before 4.1.5, and
Dell BSAFE Micro Edition Suite, versions before 4.6, contain
an Observable Timing Discrepancy Vulnerability.”

A clear example of the third case is shown in CVE-2002-
2374, here NIST labeled it as ’NVD-CWE-noinfo’, ’CWE-59’,
’CWE-362’. ”Unspecified vulnerability in pprosetup in Sun
PatchPro 2.0 has unknown impact and attack vectors related to
”unsafe use of temporary files.””

Another example of the third case is shown in CVE-2022-
33715, here NIST labels it as ’NVD-CWE-Other’, ’CWE-
22’ and Samsung labels it as ’CWE-22’. Where ’CWE-22’
and ’CWE-20’ are correct. ”Improper access control and path
traversal vulnerability in LauncherProvider prior to SMR Aug-
2022 Release 1 allow local attacker to access files of One UI.”

D. Experts disagreeing

In our evaluation we have multiple samples in which each
of the 3 experts selected a different weakness. Two of these
cases are given below Figure 8 and Figure 9, these highlight
that through semantic ambiguity and different interpretations
experts can disagree on relevant weaknesses.

https://decoded.avast.io/janvojtesek/lazarus-and-the-fudmodule-rootkit-beyond-byovd-with-an-admin-to-kernel-zero-day/
https://jpn.nec.com/security-info/secinfo/nv23-009_en.html


Figure 8. First sample of experts disagreeing

Figure 9. Second sample of experts disagreeing
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