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Abstract  

Background: Running offers numerous health benefits but unfortunately carries a high risk of 
running-related injuries (RRIs), particularly resulting from overuse. Fatigue monitoring 
methods, such as cardiopulmonary exercise testing (CPET) and lactate concentration 
measuring, are effective but impractical for real-world running conditions. Wearable sensors 
combined with novel machine learning (ML) algorithms offer a promising alternative for 
continuous, real-time fatigue monitoring in realistic, outdoor settings. Methods: Nineteen 
recreational runners participated in this study — fourteen in the first and five in the second 
experimental part. They completed three distinct outdoor running sessions: endurance, 
interval, and a 5 km run. Participants were equipped with seven Inertial Measurement Units 
(IMUs) placed on both tibias, thighs, pelvis, sternum, and wrist, along with a heart rate monitor 
and a smartwatch to collect kinematic and physiological data. During the second experimental 
part, fatigue was measured using the Borg Rating of Perceived Exertion (RPE) scale (0 to 10) 
at specific points during each run, while no such feedback was collected in the first 
experimental part. A Random Forest regression algorithm was trained on the processed 
labeled data from the second experimental part to predict RPE at intervals of 1 second. The 
model was developed using a nested Leave-One-Subject-Out (LOSO) cross-validation 
framework, with hyperparameter tuning conducted via RandomizedSearchCV. This machine 
learning framework was applied to selected IMU sensor combinations to optimize practicality 
and reduce sensor setup. The best-performing model across these sensor configurations was 
further visually validated on an unlabeled dataset from the first experimental part. Results: 
The single-sensor configuration (wrist) achieved the best performance in RPE prediction, with 
an average Mean Square Error (MSE) of 1.89. The two-sensor setup (thighs) had an MSE of 
2.26, while the three-plus sensor setup (tibias, thighs, and pelvis) recorded the highest MSE 
of 2.44. The whole-body configuration, with an MSE of 2.16, did not outperform the wrist 
sensor. Across all sensor configurations, performance was highest in the endurance trial, 
followed by the interval and 5 km trials, with the 5 km trial showing the least accurate 
predictions. Conclusion: The wrist single-sensor configuration achieved the best 
performance, outperforming more complex multi-sensor setups. These findings suggest that 
more sensors do not necessarily improve prediction accuracy, particularly in steady-paced 
endurance runs. Future research should focus on expanding the sample size, integrating 
more biometric data, and validating this system against gold-standard fatigue assessment 
methods, such as electromyography (EMG) and VO2 max.  
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1. Introduction 

Running is a widely popular sport, appreciated 

for its numerous health benefits including weight 

loss, cardiorespiratory fitness, mental health, and 

increased lifespan [61][2]. Due to its low cost and 

minimal equipment, running is worldwide 

accessible. Consequently, its popularity and the 

number of runners have grown substantially over 

the past 50 years [3].  

Despite being an excellent exercise, it does not 

come without challenges, carrying a high risk of 

running-related injuries (RRIs). Studies report 7.7 

running-related injuries (RRIs) for recreational 

runners and 17.8 for novice runners per 1000 hours 

of running [4]. More specifically, 50% of runners 

encounter an injury on a yearly basis that forces 

them to take a break from training, whereas 25% of 

runners are injured at any given moment [5]. 

Approximately 70% to 80% of RRIs come from 

overuse injuries, primarily affecting areas such as 

the knee, ankle/foot, and shank [6][7]. Regardless 

of their type, they require a temporary or permanent 

break from exercise due to recovery. Unfortunately, 

RRIs are one of the major determinants of future 

injuries and the reason why many runners decide to 

quit the sport [8][9]. 

These injuries not only reduce pleasure but also 

result in substantial financial implications. 

Considering the direct and indirect costs (e.g., 

healthcare, absenteeism from work) RRIs pose a 

significant economic burden [10] which is estimated 

to vary between €83 and €174 per RRI and €13 and 

€105 per participant training for an event [11]. 

Additionally, it is estimated that for every 1000 

hours of running, the total cost of RRI is around 

€1849 [10]. 

Given the high prevalence and significant 

impact of running-related injuries, one can conclude 

that RRI represents an important public health 

issue. A good understanding of RRIs, and their 

underlying cause is essential for their prevention, 

optimizing training strategies, and achieving peak 

sports performance [12]. Moreover, managing 

training load and exercise-induced fatigue could be 

a method to reduce the risk of running-related 

injuries [12][13].  

Most RRIs are overuse-related [14], manifest at 

the tissue level, and result from a mechanical 

fatigue phenomenon [15]. During running, the body 

repeatedly endures high-impact forces from foot-

ground collisions, which become difficult to 

attenuate as fatigue accumulates, contributing to 

the risk of overuse injuries [14]. Moreover, repetitive 

loading causes tissue damage accumulation and 

progressive loss of strength, which then triggers 

body adaptation and remodeling. However, if 

loading continues without the incorporation of 

adequate rest and tissue repair, it may lead to 

failure [15]. For example, it is a common practice in 

running training programs to increase load 

according to the overload principle, meaning that 

workload demand on the body should be greater 

than the one to which it is accustomed [16]. While 

on the one hand, this could be beneficial for athletic 

performance, on the other, it could lead to fatigue 

buildup which as a result increases the risk of 

injuries if not timely detected and properly managed 

[17].  

With the help of an effective fatigue feedback 

system, the risk of RRIs could be lowered by 

enabling athletes and coaches to make more 

informed decisions regarding training load and rest 

days. Not only these fatigue monitoring devices 

should provide immediate feedback during exercise 

[18], but they should also be non-invasive, time-

efficient, and minimize any additional loading of the 

athlete [19]. This represents a serious challenge, 

especially due to the lack of single metrics that can 

accurately detect fatigue progression [13].  

Over the past decade, researchers have 

explored various methods for fatigue monitoring 

[20]. In practice, fatigue measurements are task-

specific, and one should carefully consider how to 

define fatigue for a given population and type of 

activity [21]. Nowadays, the most used methods are 

widely accessible tests of direct physiological 

means such as heart rate, blood lactate 

concentration, or self-reports and perception scales 

such as Borg’s Rating of Perceived Exertion (RPE) 

[22][23]. Although it represents a subjective fatigue 

estimate, the RPE scale shows a strong correlation 

with heart rate (r = 0.74) and blood lactate (r = 0.83) 

concentration and is applicable in both controlled 

laboratory settings and real-world conditions [24]. 

Consequently, the RPE has gained increasing 

popularity in running related studies owing to its 

contribution to assessing an individual's training 

load and subsequent - injury risk [25]. Nevertheless, 

there is still a need for more objective measures, 

that could complement subjective assessments of 

fatigue [22][25]. Cardiopulmonary exercise testing 

(CPET) represents the golden standard for 

objective fatigue assessment but requires 

expensive equipment, laboratory settings, and 

trained personnel [24][25]. Since fatigue induces 

changes in running gait kinematics [14] 3D motion 

capture systems could be used to record those 



 

Page 5 of 38 
 

changes, but while accurate, they are costly and 

cumbersome [27]. Additionally, these methods are 

limited to indoor, laboratory testing, which is not 

suitable for fatigue assessment in real-life running 

scenarios. More recently, wearable sensors and 

machine learning (ML) algorithms have emerged as 

effective alternatives, as they offer a promising 

solution by providing ongoing, long-term monitoring 

of physiological signals in a comfortable and non-

intrusive manner [20]. Inertial Measurement Units 

(IMUs), which use accelerometers, gyroscopes, 

and magnetometers, offer continuous, objective 

data collection on movement and can potentially 

bridge the gap between laboratory and everyday 

fatigue assessment [28]. Finally, heart rate monitors 

and GPS-enabled smartwatches can provide heart 

rate (HR) and global positioning information that 

could be valuable for fatigue monitoring. 

This research focuses on predicting running-

induced fatigue using a supervised ML algorithm 

that analyzes data from seven IMUs, a heart rate 

monitor, and a smartwatch during outdoor 

recreational running sessions, supplemented with 

general subject information (e.g., age, weight, 

height) and questionnaires. In this research, 

running-induced fatigue is quantified by the Borg 

Rating of Perceived Exertion (RPE) 0 to 10 scale, 

and the aim is to predict running-induced fatigue in 

the 1-second time intervals, which is defined as a 

multivariate time series regression problem. The 

study is unique in its scope due to its longitudinal 

design, aiming to predict fatigue across three 

distinct running scenarios — endurance, interval, 

and a 5 km run — in uncontrollable outdoor 

conditions, on various outdoor surfaces (e.g., 

athletic track, road). To our knowledge, this is the 

first study to employ this specific setup for fatigue 

forecasting. Furthermore, the study explores the 

feasibility of a minimal IMU sensor setup, 

contributing to wearable medical technology. The 

research questions guiding this study are: 

1. Can machine learning algorithms be effectively 

developed for predicting running-induced 

fatigue in outdoor recreational running during 

different training sessions, utilizing data from 

IMUs, heart rate monitors, and smartwatches? 

2. Additionally, what minimal sensor setup is 

optimal for predicting running-induced fatigue in 

outdoor recreational running? 

 

 

 

2. Related work 

Supervised machine learning has been widely 

used for fatigue detection, where models learn to 

predict outcomes from labeled input (e.g., 

physiological and motion data) and corresponding 

output (e.g., fatigue level) pairs provided during 

training. While these models have demonstrated 

promising results in physical fatigue monitoring in 

workplace settings [29], their application in sports 

research remains limited, primarily focusing on 

movement classification and exercise detection 

[30]-[32]. The use of IMUs for predicting running-

induced fatigue is even less explored, with few 

studies [34] specifically addressing fatigue 

detection in outdoor running conditions.  

Wang et al. developed a Random Forest model 

with a fatigue classification accuracy of 91.10% 

using a combination of tibia and thigh IMUs, while 

in the single sensor configuration, right tibial IMU 

data performed the best with an accuracy of 87.21% 

in running on the athletic track [33]. Marotta et al. 

demonstrated that using a Random Forest 

classification algorithm trained on IMU-derived 

biomechanical features, fatigue could be classified 

with accuracies up to 90.5% during running on an 

athletic track, with the left tibia being the most 

informative sensor location [34]. Buckley et al. 

predicted subject-dependent and subject-

independent binary fatigue levels using data from a 

single IMU and Random Forest model. The study 

showed that the right shank IMU performed the best 

overall in subject-dependent fatigue estimation, and 

IMU on the lumbar spine in subject-independent 

model. The subject-dependent classifier achieved 

a higher accuracy of 100% compared to the 

subject-independent classifier of 75% accuracy 

[35]. Op De Beéck et al. demonstrated that gradient-

boosted regression subject-independent trees 

performed best in predicting the RPE in outdoor 

runners on the athletic track, with wrist-worn IMU 

sensors providing the most accurate predictions in 

the single sensor configuration of mean absolute 

error of 1.89, while a fusion of sensors on tibia, 

wrist, and arm showed only minimal performance 

improvements of 1.84 [36]. 

Among various machine learning techniques, 

Random Forest models are particularly popular in 

fatigue research most likely due to their ease of use, 

robustness, and versatility across diverse tasks 

[20]. They excel at handling noisy data and reducing 

overfitting by averaging multiple decision trees and 

are reliable for both classification and regression 

tasks. Furthermore, they are a good option for 
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problems that exploit non-linear, complex 

relationships between features, and the ability to 

provide feature importance makes them useful for 

understanding key variables in a dataset. Random 

Forests also perform well in high-dimensional 

spaces and are resilient to multicollinearity, 

meaning they remain effective even when features 

are highly correlated, although this may affect the 

interpretability of feature importance [37],[38].  

Despite promising results, the mentioned 

studies highlight the limitations of current methods. 

Most existing fatigue research focuses on 

the binary or three-state classification of fatigue 

[33], which can oversimplify the complexity of 

fatigue potentially limiting opportunities for early 

intervention. Furthermore, this method requires 

reference measure thresholding which can alter 

models’ performance (e.g., maximizing the distance 

between fatigued and non-fatigued stated improves 

model performance) [39]. Continuous monitoring 

through regression models could track the 

accumulation of fatigue providing real-time 

feedback, however, such approaches remain 

underexplored in the current literature [20][36]. 

Additionally, integrating personal information, such 

as age, weight, and height, with physiological and 

motion data has been shown to enhance model 

accuracy [39], yet only a few studies have explored 

this approach [20].  

A significant issue in fatigue research is the lack 

of standardization in research methodology, making 

result comparisons across studies difficult. The 

relevance of fatigue predictors depends on the 

performed task [20] and many studies focus 

primarily on the lower extremities [33][35], often 

overlooking the potential insights from upper limb 

sensor placements. Overall, many of the conducted 

studies were short-term and performed in controlled 

environments. Research has shown that fatigue-

induced kinematic changes significantly differ 

between laboratory treadmill and outdoor running 

[42], therefore, data acquisition should be done 

longitudinally and under realistic, uncontrollable 

conditions, such as diverse weather, running 

surfaces, and training sessions, to ensure the 

model's generalization to real-world settings. 

3. Materials and methods 

To address the research questions this study 

follows the proposed machine learning workflow 

summarized in Figure 1. The workflow involves 3 

key steps: 

Step 1: Data collection and processing, 

including segmentation based on gait cycles and 

feature extraction. This step ensures capturing 

biomechanical and physiological data relevant to 

fatigue, thus addressing the first research question.  

Step 2: Development and fine-tuning of the 

fatigue prediction regressor for 15 different IMU 

sensor combinations, addressing the feasibility of a 

minimal sensor setup (second research question).  

Step 3: Application of the best model from step 

2 on an unlabeled dataset for further visual 

validation, by observing predicted RPE trends 

against collected HR data.  

Each of these steps is explained in more detail 

in the following sections. 

 

Figure 1 Machine learning algorithm workflow. 
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3.1. Experimental design 

Nineteen recreational runners participated in 

the research after signing informed consent. 

Fourteen runners participated in the first 

experimental part (seven males, seven females), 

and five in the second (three males, two females). 

The only distinction between these two 

experimental parts is that, in the second set, 

participants were asked to report their RPE during 

the run, whereas no such feedback was collected in 

the first set. Two participants (S11, S12) were 

excluded from the research due to injury. Runners’ 

characteristics are shown in Table 1. Participants 

were included in the research if they met the 

following criteria: 1) ran at least 20 km per week in 

the last 3 months, 2) ran 2 times per week or more 

on average in the last 3 months, 3) did not have any 

major running-related injuries in the lower 

extremities in the past 6 months, 4) are not 

pregnant. Participants were recruited through local 

athletics and triathlon associations. The protocol 

was approved by the University of Twente’s ethics 

committee.

Table 1 Runners' characteristics 
1STD – standard deviation 

ID Age Gender 
Weight 
(kg) 

Height 
(cm) 

5 km 
pace 

Foot 
strike 
pattern  

HR 
rest 

HR 
max 

Experi
ence 
(years) 

Km/ 
week 

First experimental part 

S01 29 Male 74 193 03:54 
non-
heel 

40 200 10 25 

S02 26 Male 77 195 03:54 Heel 45 180 10 30 

S03 25 Male 74 191 04:07 
non-
heel 

47 188 10 35 

S04 33 Male 81,7 195 03:36 
non-
heel 

46 205 15 80 

S05 23 Female 58,8 173 04:45 Heel 55 206 7 20 

S06 20 Male 86,2 194 04:45 Heel 38 200 1 20 

S07 22 Female 72,2 182 04:50 Heel 55 200 4 25 

S08 44 Female 66,2 176 04:45 Heel 55 185 25 35 

S09 42 Female 55,8 157 04:45 Heel 42 178 20 65 

S10 21 Female 63,3 173  Heel 55 209 10 25 

S11 27 Female 68,2 173  Heel 42 198   

S12 53 Female 67,7 176  Heel 50    

S13 23 Male 74,4 180 03:40 Heel 50 202 4,5 50 

S14 27 Male 81,2 194 04:09 
non-
heel 

42 183 5 55 

Mean±

STD1:  
29,6± 
9,6 

 
71,5± 
8,4 

182,3± 
11,2 

04:17± 
0:02 

71,5± 
8,4 

47,3± 
5,9 

194,9± 
10,2 

10,1± 
6,6 

38,7± 
18,6 

Second experimental part 

S15 53 Male 89 194 04:10 Heel 53 200 1 55 

S16 30 Female 66,5 173 05:00 
non-
heel 

54 205 7 33 

S17 50 Male 87,3 192 03:55 
non-
heel 

40 176 12 55 

S18 30 Male 73,9 184 03:50 
non-
heel 

34 185 12 40 

S19 27 Female 57,7 168 04:24 
non-
heel 

44 195 10 23 

Mean±
STD: 

38,0± 
11,1 

 
74,9± 
12,0 

182,2± 
10,24 

04:15± 
0:02 

 
45± 
7,6 

192,2± 
10,5 

8,4± 
4,1 

41,2± 
12,5 

           

 

3.2. Measurement setup 

During each visit, participants were equipped 

with seven IMU sensors (Xsens DOT, Xsens 

Technologies B.V., Enschede, The Netherlands) 

with a sampling frequency of 120Hz, 3D 

accelerometer range of 16 g, 3D angular velocity 

 

 
 

range of 2000 °/s, along with a smartwatch (Garmin 

Forerunner 55, Olathe, KS. USA) with a recording 

sampling rate of 1 Hz, and a strap-based heart rate 

monitor (Garmin HRM-Dual, Olathe, KS, USA). 

Participants could use their own Garmin 

smartwatch if it was no older than 2018, and any 

compatible heart rate monitor.  
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The IMU sensors were placed on both tibias, 

thighs, pelvis, sternum, and wrist under the 

smartwatch, which was worn on either the left or 

right lower arm, depending on the participant's 

preference (see Figure 2). Double-sided tape and 

additional covering tape were used to secure the 

sensors. Magnetic field calibration and temporal 

synchronization of the sensors were performed 

following the manufacturer’s instructions.  

The warming-up and running pace were 

calculated during their first visit based on their latest 

representative results (5 km or 10 km). If that time 

was unknown, it was estimated with Riegel’s rule 

from another race result. 

Riegel’s rule:  𝑇2 = 𝑇1 (
𝐷2

𝐷1
)1.06 

where T1 and D1 represent the time and distance 

of the known result and T2 and D2 the time and 

distance of the calculated result. 

Next, the time for the sub-maximal 5 km was 

estimated by taking the 5 km time and adding 10%. 

This time was discussed with the participant and 

could be changed if he/she desired, making sure 

the speed offered a challenging intensity run while 

allowing participants to complete the sessions 

without excessive fatigue, thus enabling consistent 

data collection. The determined speeds were 

recorded in a measurement form (Appendix B) 

along with general participant information. Body 

mass was measured after sensor placement using 

a calibrated scale. Before and after each run, as 

well as the day after the run, subjects filled in a 

questionnaire, with questions regarding 

participants' perceived levels of muscle, tendon, 

and joint stiffness or pain, as well as overall fatigue 

and readiness for physical activity (Appendix C). 

Before each run was performed, Borg’s Rate of 

Perceived Exertion scale was explained to the 

participant as described in Table 2. During the 

warming-up participant’s feet were video recorded 

with a smartphone to determine their foot strike 

pattern (heel or non-heel striker).  

Figure 2 Measurement setup. Sensor placement points: both tibias (1), thighs (2), pelvis (3), sternum (4) and wrist (5), and 
the sensor coordinate system. 

3.3. Running protocol  

Each participant ran an endurance, interval, 

and 5k submaximal running protocol in 3 separate 

visits, with at least one rest day in between. After 

the placement of the sensors, the recording was 

started, followed by the sensor calibration 

movements: 

• 3 good morning movements  

• 3 squats  

• 3 knee flexes (right and left)  

• 3 elbow flexes (arm with a sensor only)  

• N-pose for 5 seconds: ensuring the 

participant stood straight with feet 

shoulder-width apart and knees at a 180-

degree angle. 

Once the calibration was complete, the 

participant performed a jump, starting the 

smartwatch as they landed, and immediately began 

their run. 

1) The endurance run (45 minutes of running), 

consisted of 4 laps (4x400 meters) warming-up 

pace on the athletic track, directly followed by 

running on the predefined route on the 

University of Twente campus (see Figure 3). 

The endurance run pace was the same as their 

warming-up pace. 

1 

2 
3 

4 

5 
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2) The interval run consisted of 4 laps (4x400 

meters) warming-up pace on the athletic track, 

directly followed by 5 intervals of 1000 meters 

on the athletic track, with 2-minute breaks in 

between intervals. During the break, 

participants were free to either jog or walk, 

ensuring they maintained the same activity 

during each break. After the break, they either 

returned to where they had finished the 

previous interval (thus walk/jog forward and 

then come back to the interval finishing line) or 

started at the place where they had begun the 

1000 m (thus walk/jog 200 m forward to the 

interval starting line). The interval run pace was 

the same as the 5 km sub-maximal pace. 

3) 5 km sub-maximal run consisted of 4 laps 

(4x400 m) warming-up pace on the athletic 

track, followed by a 5 km run (2 laps) on the 

predefined route on campus (see Figure 3). 

After the warming-up, they could use a 2-minute 

break. They run their 5 km sub-maximal pace. 

During the second set of experiments, 

participants were asked to rate their fatigue level 

from 0 to 10, based on the Borg’s Rate of Perceived 

Exertion scale (Table 2) each lap during a warm-up 

and,  

• 2 times during each lap of the 5 km and 

endurance session (0 km and 1,4 km 

points, see Figure 3), and 

• each lap of the interval run.  

This was considered an appropriate interval for 
capturing changes in fatigue without negatively 
impacting the runner’s performance, such as by 
introducing distractions from more frequent RPE 
assessments. 

 
Figure 3 Running route, with marked places in red where 

RPE was collected. 

Table 2 RPE scale 

RPE Example 

0 No effort 

1 Barely any effort 

2 Very light effort 

3 Easy 

4 Comfortable 

5 Somewhat difficult 

6 Difficult 

7 Hard 

8 Very hard 

9 Extremely hard 

10 Maximal exhaustion 

3.4. Data processing 

Python software (Wilmington, Delaware, US) 

was used for data processing. The dataset was 

cleaned by identifying extreme values in the IMU 

sensor data and replacing them with interpolated 

values, to reduce noise and ensure more accurate 

model predictions. Specifically, values exceeding 

predefined thresholds for quaternions (1.1), 

accelerometer readings (200 m/s²), and gyroscope 

readings (3000 °/s) were flagged as outliers. 

Running gait segmentation was performed by 

detecting peaks in the vertical tibial accelerometer 

data for both legs and each subject and trial. Peaks 

were identified based on a minimum peak height of 

40 m/s², and a minimum distance calculated from a 

typical running cadence (105 steps per minute). The 

detected peaks were used to define the boundaries 

of individual gait cycles. Then the IMU data was 

decimated from 120 Hz to 1 Hz by averaging every 

120 samples, to reduce the ML model's complexity 

and eliminate potential noise that could lead to 

overfitting. In practice, providing feedback at 1-

second intervals is more realistic for real-time 

fatigue monitoring, as runners do not require 

updates more frequently. 

The number of possible sensor combinations is 

127 (2𝑛 − 1, 𝑛 = 7). Because it would be too 

computationally demanding to analyze all of them in 

this research, four different sensor configuration 

categories were defined (see Table 3). This was 

done based on the assumption that some IMU 

sensors are more valuable than others [34]. 

Data was labeled using the collected RPE data 

at a given time point; thus, the target variable in the 

dataset is continuous, ranging from 0 to 10. 

Samples between known time points were labeled 

using a forward-fill method. 
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Figure 4 IMU codes: STE-sternum, PEL-pelvis, LLA-left lower arm, RUL-right upper leg (right tight), LUL-left upper leg (left 
tight), RLL-right lower leg (right tibia), LLL-left lower leg (left tibia). 

3.5. Feature extraction 

A total of 221 features (Table 4) were extracted 

for each subject, including 91 features from IMU 

sensors across 7 body segments (left and right tibia, 

left and right thigh, pelvis, sternum, and wrist), 105 

statistical features from acceleration data 

calculated from each gait cycle, 6 features from a 

smartwatch, 4 from questionnaires, 10 from general 

subject information, and 5 other (e.g., time, RPE). 

The final labeled dataset included 30628 samples, 

while the final unlabeled dataset had 70493 

samples. 

Right lower arm features were renamed and 

merged with left lower arm features to reduce 

dataset complexity. Non-numerical features were 

converted into numerical ones. In questionnaire 

data: 'Don't know' was changed to ‘0’, 'Strongly 

disagree' to ‘1’, 'Disagree' to ‘2’, 'Neutral' to ‘3’, 

'Agree' to ‘4’, 'Strongly agree' to ‘5’. Trial numbers 

were defined: endurance as ‘1’, interval as ‘2’, and 

5 km as ‘3’, to capture the influence of different 

running scenarios on ‘RPE’. Moreover, 'non-heel' 

was defined as ‘0’, 'Heel' as ‘1’, 'Male' as ‘0’, and 

'Female' as ‘1’. 

The IMU sensor on the left tibia failed to record 

during the interval run of the S16 participant, and 

half of the endurance run of participant S19. For this 

reason, missing values in the dataset were replaced 

by zeros.

Table 4 Extracted features from all data sources in this study. 
 2 STD = standard deviation; IQR = inter-quartile range; Skew = skewness; Kurt = kurtosis 

Body segments 

STE PEL LLA RUL LUL RLL LLL 

IMU features 

Quaternions 
X,Y,Z 

Quaternions 
X,Y,Z 

Quaternions 
X,Y,Z 

Quaternions 
X,Y,Z 

Quaternions 
X,Y,Z 

Quaternions 
X,Y,Z 

Quaternions 
X,Y,Z 

Gyroscope 
X,Y,Z 

Gyroscope 
X,Y,Z 

Gyroscope 
X,Y,Z 

Gyroscope 
X,Y,Z 

Gyroscope 
X,Y,Z 

Gyroscope 
X,Y,Z 

Gyroscope 
X,Y,Z 

Acceleration 
X,Y,Z 

Acceleration 
X,Y,Z 

Acceleration 
X,Y,Z 

Acceleration 
X,Y,Z 

Acceleration 
X,Y,Z 

Acceleration 
X,Y,Z 

Acceleration 
X,Y,Z 

Magnetometer 
X,Y,Z 

Magnetometer 
X,Y,Z 

Magnetometer 
X,Y,Z 

Magnetometer 
X,Y,Z 

Magnetometer 
X,Y,Z 

Magnetometer 
X,Y,Z 

Magnetometer 
X,Y,Z 

Statistical features 

Mean 
acceleration 

Mean 
acceleration 

Mean 
acceleration 

Mean 
acceleration 

Mean 
acceleration 

Mean 
acceleration 

Mean 
acceleration 

STD2  
acceleration 

STD 
acceleration 

STD 
acceleration 

STD 
acceleration 

STD 
acceleration 

STD 
acceleration 

STD 
acceleration 

IQR 
acceleration 

IQR 
acceleration 

IQR 
acceleration 

IQR 
acceleration 

IQR 
acceleration 

IQR 
acceleration 

IQR 
acceleration 

Skew. 
acceleration 

Skew. 
acceleration 

Skew. 
acceleration 

Skew. 
acceleration 

Skew. 
acceleration 

Skew. 
acceleration 

Skew. 
acceleration 

Kurt. 
acceleration 

Kurt. 
acceleration 

Kurt. 
acceleration 

Kurt. 
acceleration 

Kurt. 
acceleration 

Kurt. 
acceleration 

Kurt. 
acceleration 

Smartwatch features 

Latitude, Longitude, Altitude Meters, Distance Meters, Speed, Heart Rate 

Table 3 Different sensor configurations 

1 sensor 2 sensors 3+sensors Whole body 

LLA RLL+LLL PEL+LLL+RLL STE+PEL+LLA+LLL+RLL+RUL+LUL 

LLL RUL+LUL PEL+LUL+RUL  

RLL  STE+ PEL+LLL+RLL  

LUL  LLA+ STE+ PEL+LLL+RLL  

RUL  PEL+LUL+RUL+LLL+RLL  

PEL    

STE    
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General subject information 

Age, Gender, Weight (kg), Height (cm), Foot strike pattern, HR resting HR max, Experience (years), Km they run per 
week 

Questionnaire features 

Before readiness level, before tiredness level, before stiffness level, before muscle soreness 

Other features 

Left-right stride difference, RPE, Subject number, Time, type of run 

 

3.6. Machine learning pipeline 

To optimize and evaluate the Random Forest 

Regressor, this study used a nested Leave-One-

Subject-Out (LOSO) cross-validation framework 

(Figure 5). The outer LOSO loop assessed the 

model’s generalization performance, while an inner 

LOSO loop within each outer fold handled 

hyperparameter tuning and feature importance 

extraction.  

In each iteration of the outer loop, one subject 

was excluded as the test set, while the remaining 

subjects were split in the inner loop, with one 

subject excluded for validation and the rest used for 

training. RandomizedSearchCV with 10-fold cross-

validation was then employed to perform 

hyperparameter optimization. In other words, 

testing 10 different hyperparameter combinations 

for each inner fold split. The hyperparameters 

tested included 'n_estimators', 'min_samples_split', 

'min_samples_leaf', 'max_features', and 

'max_depth'. The model with the lowest MSE in the 

inner loop was selected as optimal. Then that model 

was trained on the twenty most relevant features 

from the combined training and validation data and 

subsequently tested on the subject left out in the 

outer loop. This was repeated until all 5 subjects 

were used as a test set once. The Mean Squared 

Error (MSE) was calculated for each outer fold to 

assess model performance. These MSE values 

were then aggregated and averaged to obtain the 

overall model performance in predicting RPE. This 

nested LOSO approach ensures that 

hyperparameter tuning is performed independently 

of the test set, effectively preventing data leakage 

and estimating model performance. 

The described machine learning pipeline was 

applied to all IMU sensor combinations. One of the 

five models that performed the best in the outer 

loop, across all IMU configuration groups, was then 

trained on the entire labeled dataset and tested on 

the unlabeled dataset. This allowed for visually 

evaluating the model's performance on completely 

unseen data. 

 

 
Figure 5 Nested Leave one Subject Out Cros Validation diagram. 
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4. Results  

This chapter outlines the results of the 
experiments. The first section evaluates HR and 
RPE trends across different running scenarios and 
investigates correlations between RPE and various 
features to identify factors influencing fatigue 
perception. The second section presents machine 
learning model results of different IMU sensor 
configurations. 

4.1. Exploratory data analysis 

Mean RPE and HR increased across all three 

runs (Figure 6), with a slight decrease in both 

measures after the warmup in the 5 km run during a 

2-minute rest, as well as during rest periods after 

running intervals in the interval run. The 5 km run 

demonstrated the highest increase in perceived 

exertion due to its high intensity, with an RPE range 

from 0 to 9 (median 4), making it the most 

challenging run of the three (Appendix A Figure 13). 

The interval run showed moderate RPE levels with 

a range from 0 to 8 (median 4), indicating more 

consistent exertion among participants. In contrast, 

the endurance run showed a more gradual increase 

in RPE, with a range from 0 to 5 (median 3), making 

it the least demanding trial overall. The lower 

variability in RPE during the endurance run 

suggests it was less taxing and more steady-paced 

compared to the other trials. These results align 

with expectations for each running scenario, 

demonstrating that the experimental setup and 

protocol were effective. 

The correlations between RPE and various 

subject characteristics, as well as kinematic 

features derived from IMU sensor data, were 

calculated to better understand the factors 

influencing perceived exertion (Appendix A, Figures 

15, 16, and 17). These correlations were obtained 

by applying Pearson’s correlation coefficient to the 

data, where RPE was the target variable, and other 

features were predictors. Below are the key findings 

with Pearson’s correlation coefficient indicated in 

brackets: 

 

Subject characteristics and smartwatch features: 

Distance (0.50) and Heart Rate (0.34) show a 

positive correlation with RPE, therefore as distance 

and heart rate increase, so does RPE. At the same 

time, pre-exercise factors like before tiredness level 

(0.36) and before stiffness level (0.27) similarly 

contribute to higher fatigue levels. The positive 

correlation with gender (0.35) suggests women 

generally reported higher exertion than men. In 

contrast, negative correlations with age (-0.48), 

weight (-0.46), and km run per week (-0.47) imply 

that older, lighter, and more trained participants 

perceive less exertion. Trial type (0.31) positively 

correlates with RPE, suggesting that different 

exercise formats influence fatigue levels. In other 

words, participants experienced higher fatigue 

levels during the 5 km run than endurance. 

Additionally, heel foot strike pattern (-0.26) and 

greater before readiness level (-0.26) correlate with 

reduced RPE, suggesting that non-heel strikers 

tend to experience higher RPE levels.  

 

Kinematic features from IMU sensors: 

The right tibia (RLL) shows notable 

associations with increased exertion, particularly 

through mean Z-axis acceleration (-0.32) and high 

variability across all axes (STD X: 0.30, Y: 0.32, Z: 

0.25). Similarly, the left tibia (LLL) is relevant, with 

reduced mean acceleration in the X (-0.20) and Y (-

0.25) axes, reflecting increased fatigue. 

For the right tight (RUL), the model shows 

strong correlations with RPE through negative 

mean Z-axis acceleration (-0.41), high variability 

(IQR Z: 0.34, STD Z: 0.28), and asymmetry in the 

Y-axis (SKEW Y: -0.27). The left tight (LUL) follows 

a similar trend with negative mean Z-axis 

acceleration (-0.39), moderate variability (IQR Z: 

0.29), and asymmetry in the Y-axis (SKEW Y: -

0.24). 

The left lower arm (LLA) demonstrates a 

positive correlation in the Y-axis mean acceleration 

(0.24), suggesting that lateral arm movement 

increases with exertion. The pelvis (PEL) and 

sternum (STE) also reveal significant findings, 

where the Z-axis variability (IQR PEL Z: 0.37, IQR 

STE Z: -0.31) indicates that stability in these areas 

correlates with lower perceived exertion. 

Additionally, Z-axis variability in the sternum (STD 

Z: -0.20) further supports the importance of upper 

body stability in managing exertion. 
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Figure 6 HR (red) and RPE (blue), over distance, averaged for all 5 subjects for a) 5 km sub-maximal, b) interval, and c) 

endurance runs.

4.2. Machine learning model results 

The regression analysis in this chapter aimed to 

identify the best-performing sensor configurations 

for predicting RPE, comparing single, dual, and 

multi-sensor setups to determine the optimal 

approach for real-life scenario fatigue monitoring.  

4.2.1. Model tuning  

The nested LOSO cross-validation approach 
allowed for tailored model tuning across different 
sensor configurations, optimizing parameters for 
each sensor setup and outer fold. Table 5 
summarizes the best hyperparameters for each 
configuration. Table 6 details fold-specific 
hyperparameters for the LLA configuration, 
reflecting how model tuning varied across outer 
folds to adapt to differences between subjects. 

4.2.2. Feature Importance Across 
Configurations 

To understand which features drive RPE 
prediction, Table 7 ranks the top 20 features of 
the best model of each configuration chosen by the 
Random Forest model. DistanceMeters 
consistently emerged as the most important feature, 
with HeartRate and Speed also ranking highly 
across all setups. In the whole-body setup, specific 

motion features like Mean_RLL_Acc_Z and 
Std_LLL_Acc_Z were particularly relevant. Other 
influential features included demographic and trial-
related variables such as Age, Km/week, and 
Trial_numeric. 

4.2.3. Model performance evaluation 

Table 8 shows the average model performance 

metrics for the IMU sensor setup with the lowest 

average MSE within each sensor configuration 

category. The single-sensor configuration using the 

left lower arm (LLA) achieved the best overall 

performance, with an average MSE of 1.89. In 

contrast, the two-sensor combination (RUL+LUL) 

produced a slightly higher average MSE of 2.26, 

while the three-plus sensor setup 

(PEL+LUL+RUL+LLL+RLL) had the highest 

average MSE of 2.44. Interestingly, the whole-body 

configuration, while incorporating most sensors, 

improved performance slightly compared to other 

multi-sensor configurations with an MSE of 2.16, 

but did not outperform the LLA sensor alone. Across 

all configurations, the model yielded the best 

average MSE results for the endurance running 

session, and the worst for 5 km sub-maximal 

sessions. 
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Table 5 Hyperparameters for the IMU sensor setup model with the lowest overall MSE across outer folds for each sensor 
configuration category. 

LLA RUL+LUL PEL+LUL+RUL+LLL+RLL Whole body 

'n_estimators':100,  

'min_samples_split':10,  

'min_samples_leaf': 4,  

'max_features': 'sqrt', 

'max_depth': 15 

'n_estimators':150, 

'min_samples_split':10, 

'min_samples_leaf':2, 

'max_features':'sqrt', 

'max_depth': 10 

'n_estimators': 150, 

'min_samples_split': 15, 

'min_samples_leaf': 4,  

'max_features': 'sqrt', 'max_depth': 15 

'n_estimators':100, 

'min_samples_split':10, 

'min_samples_leaf':4, 

'max_features':'sqrt'  

'max_depth': 15 

 

Table 6 Hyperparameters for the LLA sensor configuration model with the lowest inner fold MSE, for each outer fold. 

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 

'n_estimators':100 

'min_samples_split':10 

'min_samples_leaf': 4 

'max_features':'sqrt' 

'max_depth': 15 

'n_estimators':200 

'min_samples_split':5 

'min_samples_leaf':8 

'max_features':0.5 

'max_depth':15 

'n_estimators':100 

'min_samples_split':10 

'min_samples_leaf':2 

'max_features':0.5 

'max_depth': 10 

'n_estimators':150 

'min_samples_split': 5 

'min_samples_leaf':4 

'max_features':'sqrt'  

'max_depth':15 

'n_estimators':100 

'min_samples_split': 15 

'min_samples_leaf':4 

'max_features':0.5 

'max_depth':None 

Table 7 Twenty most important features per sensor configuration. 

Feature rank LLA RUL+LUL PEL+LUL+RUL+LLL+RLL Whole body 

1 DistanceMeters DistanceMeters DistanceMeters DistanceMeters 
2 Trial_numeric Speed HeartRate Mean_RLL_Acc_Z 
3 HeartRate HeartRate Speed HeartRate 
4 Age Age Std_RLL_Acc_X Mean_LLL_Acc_Z 
5 Km/week Mean_RUL_acc_Z Km/week Mean_RUL_Acc_Z 

6 Speed Km/week Age Std_RLL_Acc_X 

7 AltitudeMeters Trial_numeric Mean_RUL_Acc_Z Speed 

8 Std_LLA_Acc_Z Mean_LUL_Acc_Z Mean_RLL_Acc_Z Std_LLL_Acc_Z 

9 mean_LLA_Acc_Y Skew_LUL_Acc_Y Trial_numeric Iqr_LLL_Acc_X 

10 Iqr__LLA_Acc_Y Mean_RUL_Acc_X Mean_LLL_Acc_Z Std_LLL_Acc_X 

11 Mean_LLA_Acc_X RUL_Acc_Z Std_PEL_Acc_Y Height (cm) 

12 std _LLA_Acc_X Mean_LUL_Acc_Y Skew_LUL_Acc_Y Std_PEL_Acc_Y 

13 HR max Iqr_RUL_Acc_X Mean_PEL_Acc_Y Std_LLA_Acc_Z 

14 iqr _LLA_Acc_X Iqr_LUL_Acc_X Iqr_RUL_Acc_X Weight (kg) 

15 kurtosis _LLA_Acc_X AltitudeMeters Mean_LLL_Acc_Y Mean_LLA_Acc_Y 

16 kurtosis _LLA_Acc_Z RUL_Quat_X Mean_LUL_Acc_Z Km/week 

17 skew _LLA_Acc_Z HR max AltitudeMeters Age 

18 mean _LLA_Acc_Z Latitude Latitude Skew_LUL_Acc_Y 

19 iqr _LLA_Acc_Z Before_muscle_sorness HR max Iqr_LLA_Acc_Z 

20 skew _LLA_Acc_Y Longitude Before_muscle_soreness Skew_LLA_Acc_Z 

Table 8 Average model performance metrics for the IMU sensor setup with the lowest average MSE within each sensor 
configuration category. 

Category Best IMU combination Average MSE Average MSE per trial 

 
1 sensor 

 
LLA 

 
1.89±1.59 

5K: 2.07±1.98 
END: 1.58±1.22 
INT: 2.05±1.56 

 
2 sensors 

 
RUL+LUL 

 
2.26±1.36 

5K: 2.90±1.72 
END: 1.75±0.94 
INT: 2.08±1.41 

 
3+sensors 

 
PEL+LUL+RUL+LLL+RLL 

 
2.44±1.36 

5K: 3.25±1.66 
END: 1.55 ±0.97 

INT: 2.44±1.44 

 
Whole body 

 
STE+PEL+LLA+LLL+RLL+RUL+LUL 

 
2.16±1.65 

5K: 2.30 ±1.71 
END: 1.68 ±1.53 
INT: 2.39±1.71 
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Figure 7 shows the MSE distribution across 

outer folds for both validation (inner_fold_mse) and 

test (outer_fold_mse) sets, providing insights into 

model consistency across subjects. Furthermore, 

omitting additional subject-specific information 

(e.g., age, weight, height) and pre-exercise 

questionnaire responses resulted in notable 

performance decreases, as seen in Figure 8. This 

performance is expected given the feature 

importance of subject information that was 

previously discussed in Chapter 4.1. Furthermore, 

it can be observed that the differences in 

performance between LLA, RUL, and RUL+LUL 

sensor configurations are minimal. The RUL sensor 

configuration is particularly interesting, with 

consistent stability in its results, demonstrating the 

smallest MSE difference, with and without subject-

specific information and questionnaire data. 

To further investigate the dynamics captured by 

these sensors, Figure 9 displays the acceleration 

data and its rolling variance across the X and Y 

axes for the LLA, RUL, and LUL sensors during the 

5 km trials, averaged across 5 subjects. Focusing 

on acceleration data is motivated by prior 

correlation analyses, which showed that 

acceleration metrics had the highest correlation 

with the RPE reported by participants. This analysis 

revealed distinct trends, especially during the 5 km 

trial. For the LLA sensor, a notable decreasing 

linear trend was observed in the X-axis 

acceleration. Likewise, the RUL sensor showed a 

consistent decrease in Z-axis acceleration, 

paralleling the trends observed in the LUL 

measurements, and supporting findings of 

diminishing acceleration as fatigue progressed. 

Additionally, variability trends increased across all 

sensors, particularly towards the end of the run, 

indicating more erratic movement patterns as 

fatigue set in. 

Lastly, the predictive performance of the LLA 

configuration model trained on the labeled data 

from 5 subjects and tested on the unlabeled dataset 

of 12 subjects is visualized in Figure 10.  

 
Figure 7 LLA configuration MSE results for 

each outer fold and the average MSE across all 

inner folds. 

 
Figure 8 Average model MSE for all sensor combinations, with and without general subject information (e.g., age, weight, 

height, etc.), and before the run questionnaire. 
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Figure 9 Acceleration data and rolling variance across the X and Z axes for the left lower arm (LLA), right upper leg (RUL), 
and left upper leg (LUL) sensors during the 5 km trials, averaged across 5 subjects. 

 
Figure 10 Mean RPE prediction and HR values of 12 subjects, and 3 trials: a) 5 km sub-maximal, b) interval, c) endurance, 

using the best LLA sensor configuration model.
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5. Discussion 

The primary goal of this study was to develop a 

machine learning-based system to predict running-

induced fatigue within 1-second intervals during 

outdoor recreational running sessions, using data 

from wearable sensors such as IMUs, heart rate 

monitors, and smartwatches. Fatigue was 

quantified through the Borg Rating of Perceived 

Exertion (RPE) scale across endurance, interval, 

and 5 km running scenarios. 

Current literature on outdoor running-induced 

fatigue monitoring is limited. Most studies are cross-

sectional [33-35] rather than longitudinal and often 

rely on two- or three-state classifications of fatigue 

(e.g., fatigued vs. non-fatigued) [20,33-35], which 

oversimplifies its complex nature [20]. Furthermore, 

these studies are typically conducted on a single 

running surface, such as an athletic track, over 

shorter distances within controlled scenarios [33-

36], and lack the variability of realistic training 

conditions. Individual characteristics such as age, 

fitness level, and training history are frequently 

overlooked, with a predominant focus on lower-

body sensors and minimal attention to upper-limb 

data [33-35]. 

This study addresses these shortcomings by 

employing a broader range of commercially 

available, wearable sensors, for capturing data 

across different running scenarios (endurance, 

interval, and 5 km) and surfaces (e.g. athletic track, 

road), enabling continuous fatigue tracking beyond 

controlled environments. By integrating individual 

subject characteristics (e.g., age, fitness level) and 

pre-run questionnaire data assessing subjective 

readiness, this study captures both physiological 

and situational factors contributing to fatigue, 

enhancing model accuracy in real-world conditions. 

Unlike prior studies with simplified fatigue 

classifications, this study uses a 0-10 scale for 

a more detailed analysis of fatigue progression. 

Furthermore, it employs a nested Leave-One-

Subject-Out Cross-Validation framework, a robust 

validation method often absent in similar studies 

[20]. Together, these features make this study a 

unique and valuable contribution to the field, 

addressing gaps in the current literature. 

Direct comparisons across studies are 

challenging due to variations in sensor placement, 

sensor quantity, and different ML models used. The 

study most comparable to ours is De Beeck et al., 

which is also longitudinal, focuses on outdoor 

running, employs a 0-10 RPE regression scale, and 

incorporates a wrist-worn IMU. Consistent with this 

study’s findings, they identified the wrist IMU as the 

most effective single-sensor configuration [36]. 

However, their study lacks multiple running 

scenarios and surfaces, subject-specific data (e.g., 

age, weight, height), and heart rate integration, all 

of which are included in this paper’s approach. 

This study shows the variability in model 

performance across different running trials — where 

the endurance run yielded the most accurate 

predictions, followed by interval and 5 km runs. The 

superior performance in endurance trials can be 

attributed to the steady pacing and rhythm 

maintained throughout the run. The more constant 

RPE values observed in the endurance trials 

provided a stable target for the model to learn from. 

In contrast, 5K trials introduce higher pacing 

variability, complicating the prediction model's 

accuracy. While interval trials are more structured 

with alternating effort and rest phases, they still 

involve significant variability compared to 

endurance runs. 

The prominence of Distance across all sensor 

configurations suggests that the total distance 

covered during a run is a key factor in predicting 

fatigue. This aligns with the general understanding 

that physical and mental exhaustion also rise as 

running distance increases [43]. The significance of 

Heart Rate and speed further emphasizes the role 

of physiological load in fatigue development. Higher 

heart rates and running speeds are commonly 

associated with increased exertion [36], making 

these metrics valid indicators of fatigue. In the 

whole-body sensor setup, lower limb acceleration 

features, especially in the sagittal plane (Z-axis), 

were highly ranked, indicating that biomechanical 

changes are important for identifying fatigue. For 

example, the tibial IMU Z-axis in this setup 

corresponds to the sagittal plane, it captures 

changes in stride dynamics, such as propulsion and 

braking forces, which tend to vary as fatigue 

progresses, making the Z-axis sensitive to 

adjustments in running efficiency.  

Moreover, the decrease in model performance 

after omitting the before-run questionnaire such as 

tiredness, readiness, and muscle stiffness levels, 

and general subject information, such as age, 

gender, and training history, suggests that these 

factors play an important role in enhancing 

prediction accuracy. These factors allowed the 

model to account for individual differences in 

physical capabilities, tailoring fatigue predictions to 

each subject’s unique characteristics and 

significantly enhancing overall performance. While 

time of day could also influence fatigue levels, this 
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feature was not implemented in the current study 

due to dataset imbalances. Most 5K runs were 

conducted in the morning, which could have 

skewed the results. Future research should explore 

a more balanced dataset by including data collected 

at different times of day (morning, afternoon, 

evening) in equal proportions to evaluate the 

potential impact of time of day on fatigue 

predictions.  

In this study, each model in the Leave-One-

Subject-Out Cross-Validation (LOSO CV) 

framework was tuned to different hyperparameters. 

This variation in hyperparameters occurred 

because each fold excluded a different subject, 

resulting in unique training data for each iteration. 

As a result, the model adapted its complexity and 

feature selection based on the distinct patterns, 

characteristics, and variability of the remaining 

subjects. This indicates that no single model was 

universally superior, but rather, the model is 

adjusting to the individual characteristics of 

subjects. The challenge of subject-independent 

fatigue detection comes from the variability in 

motion signals, which can differ both between 

individuals and within the same individual across 

different trials [20]. Furthermore, the outer and inner 

fold MSE varies across models, as shown in Figure 

7, due to differences in the training and test data for 

each fold, primarily influenced by the distinct test 

subjects used. This variability is especially 

pronounced in the fifth model, where a notable 

discrepancy between the outer and inner fold MSE 

arises from data quality issues. In this case, the test 

subject’s data was compromised by a fall during 

recording, introducing inaccuracies.  

The findings indicate that the wrist sensor 

configuration alone achieved the highest prediction 

accuracy (MSE = 1.89), outperforming multi-sensor 

setups, suggesting that more sensors do not 

necessarily improve model performance, potentially 

due to an increase in noise and complexity. Given 

the minimal difference in error rates between the 

models, however, the value of this comparison is 

limited. Notably, as RPE increased, the wrist 

sensor's X-axis (forward-backward arm swing) 

acceleration linearly decreased while variance rose, 

suggesting reduced arm drive and more erratic 

movement with fatigue. This change likely provided 

identifiable patterns, making it easier for the model 

to capture fatigue progression. Next, it is crucial to 

note marginal differences in performance among 

the models utilizing LLA, RUL, and the combined 

RUL + LUL sensors. RUL sensor demonstrates the 

smallest error difference when used with and 

without subject information, highlighting the strong 

importance of its features, which further aligns with 

correlation findings in Chapter 4.1. Therefore, while 

the LLA sensor demonstrated competitive 

performance in terms of error measurement, the 

stability of results provided by the RUL sensor — its 

strong correlation with RPE and minimal error 

differences regardless of subject information — 

positions it as a potentially superior choice in this 

analysis. The observed trends in acceleration 

further support the argument that RUL may be the 

best sensor in this context. Nevertheless, these 

findings demonstrate that machine learning can 

effectively be used to predict running-induced 

fatigue in outdoor settings with varied training 

sessions (research question 1), indicating that 

single IMU setups (wrist, right tight) can yield low 

prediction errors, potentially reducing the need for 

multiple sensors (research question 2). Further 

research should focus on refining sensor selection 

and placement to optimize fatigue prediction and 

model reliability. Moreover, the required MSE 

threshold remains subjective, as accuracy 

expectations may vary. For example, experienced 

runners may demand higher precision, while others 

may find moderate accuracy sufficient. Additionally, 

it is worth questioning if 1-second sampling is overly 

frequent; reducing the sampling interval could likely 

reduce errors, potentially enhancing model stability 

without sacrificing useful insights. 

Lastly, the predictive performance of the LLA 

configuration model, tested on the unlabeled 

dataset of 12 subjects, again shows that the 

endurance trial shows the most stable predictions, 

whereas the model struggled more with the interval 

and 5K trials, which involve greater variability in 

effort. Good validation is indicated by consistent 

patterns, such as predicted RPE increasing with 

elevated HR, and stable predictions without erratic 

fluctuations. Although the endurance trial yielded 

better estimations, fluctuations are still present. 

Overall, the results are visually reasonable, 

especially considering the limited training data, 

indicating the model’s potential to generalize across 

subjects. 

5.1. Challenges and limitations 

Despite the promising results of this study, 

several limitations need to be considered:  

 

Small sample size 

The study’s sample size of five subjects limits 

the generalizability of the findings, as the model 
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may not fully capture the variability in running-

induced fatigue across a broader population. 

Individual differences such as weight, height, 

fitness level, readiness, and training background 

introduce unique running styles that affect key 

biomechanical parameters like step length, step 

frequency, and arm movement [36]. With a larger 

sample, the model could better account for these 

inter-individual variations, improving its ability to 

generalize to diverse groups of runners. 

Additionally, a larger dataset would enhance model 

reliability by reducing overfitting, as it would provide 

more data points for training and validation. In such 

a scenario, the wrist (LLA) sensor configuration, 

which performed best in this study, might not remain 

the most effective option. Furthermore, a larger 

sample would likely yield more consistent 

hyperparameters across folds, allowing the model 

to generalize more effectively. 

 

RPE scale 

While the machine learning model used various 

objective and subjective input data, the target 

variable (RPE scale) represents a subjective fatigue 

estimate. First, individual differences in interpreting 

exertion mean that each runner’s perception of 

fatigue can vary, making it difficult to capture subtle, 

gradual changes. Some participants struggled with 

understanding the RPE scale, finding it unintuitive; 

they were often unsure about which number to 

report and tended to select a value that seemed 

expected or logical rather than accurately reflecting 

their true exertion. Additionally, as participants 

became more familiar with the scale across tests, 

their ratings likely evolved, potentially introducing 

further variability. Another limitation is that RPE was 

recorded only at specific points during each running 

trial, while the model predicts fatigue every second. 

This discrepancy between the prediction frequency 

and the actual RPE data collection may have 

impacted the model’s accuracy, as the target data 

lacked the granularity needed to align with the 

model’s continuous predictions.  

 

Lack of controlled fatiguing protocol 

Unlike many fatigue studies, this research did 

not include a controlled fatiguing protocol, which is 

typically used to ensure that each participant 

reaches a comparable level of fatigue under 

standardized conditions. While the used approach 

reflects real-world conditions more accurately, it 

results in an imbalanced dataset, as high fatigue 

states are underrepresented relative to moderate or 

low fatigue levels. This imbalance can limit 

the model’s ability to predict a full range of fatigue 

levels. 

 

Technical limitations 

A technical limitation occurred with the failure of 

the left tibial (LLL) sensor for one subject during the 

interval run and for another during half of the 

endurance run. Imputation of the missing data was 

necessary, which may have introduced bias into the 

analysis.  

 

Random Forest Regressor 

While Random Forests handle complex, non-

linear relationships effectively, they are difficult to 

interpret due to their complexity, complicating 

efforts to explain the model’s decision-making. 

Random Forests are also computationally 

demanding, which may limit usability in real-time 

applications like continuous fatigue monitoring. 

Overfitting, especially in small datasets, poses 

another challenge, as it may cause the model to 

capture noise instead of meaningful patterns, 

reducing its generalizability. Additionally, the 

algorithm may introduce bias in feature importance, 

favoring continuous variables like distance or heart 

rate, and may not perform well in cases where 

fatigue data is imbalanced (e.g., fewer instances of 

high-fatigue levels) [37][38], such as the case in this 

research.  

 

Sensor combinations and placement variability 

Lastly, only 15 out of 127 potential IMU sensor 

combinations were tested in this study. 

Furthermore, consistent sensor placement across 

participants and sessions is challenging. Variations 

in placement, both among different participants and 

across sessions for the same participant, may 

introduce inconsistencies in the data. 

5.2. Applications and Future 
Research 

The algorithm developed in this study shows 

potential for real-world applications of fatigue 

monitoring devices in outdoor recreational running. 

This allows athletes and coaches to receive real-

time feedback on fatigue levels, helping to adjust 

training loads, prevent overuse injuries, and 

optimize recovery plans. 
Recent advances in commercial fitness 

devices, such as Garmin's Performance Condition 

[44] and Apple Watch's Training Load [45], highlight 
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the growing interest in fitness monitoring and 

fatigue detection. While these devices work based 

on metrics like heart rate, VO2 Max, age, height, 

weight, and GPS data, details of their algorithms 

remain proprietary. The presented study explores 

the algorithm's ability to function with a minimal 

sensor setup, for potentially enabling integration 

into commercial smartwatches for a wider audience 

of recreational runners. 

In addition to real-time fatigue monitoring, 

integrating post-run and day-after questionnaires 

could further enhance the algorithm's predictive 

capabilities, and provide more personalized 

feedback. Incorporating this information could 

refine the RPE estimates, thus helping athletes 

make more informed decisions about their recovery 

and readiness for the next running sessions [46]. 

Additionally, integrating advanced biometric data, 

such as sleep patterns, and stress levels, could be 

beneficial for providing meaningful insights into an 

athlete’s overall condition. Further research could 

also explore the long-term predictive capabilities of 

this system by incorporating historical data from 

multiple training sessions.  

Future studies should also consider collecting 

RPE data at more frequent intervals to improve the 

model’s responsiveness to real-time changes in 

fatigue. While this study’s approach is inherently 

reactive, capturing fatigue after it has already 

impacted performance, an ideal model would 

predict performance-based fatigue indicators first, 

and then use those to estimate perceived fatigue 

levels. This proactive framework could be achieved 

by leveraging time-series forecasting models, like 

attention-based Transformers, to predict short-term 

fatigue trends in real-time [13]. Moreover, 

unsupervised learning techniques could identify 

fatigue patterns without explicit RPE labeling, 

supporting a non-intrusive, predictive solution. 

Future research should explore additional 

sensor configurations to find an optimal balance 

between sensor count and predictive accuracy. For 

practical applications where tibial sensors might be 

excluded, alternative methods for gait cycle 

extraction should be considered. 

Finally, it would be best to validate the 

effectiveness of IMU-based techniques by 

comparing them against established objective 

methods for physical fatigue assessment, such as 

electromyography (EMG) or maximal oxygen 

consumption (VO2 max). 

 

 

 

6. Conclusion 

This study demonstrates the potential of 

machine learning algorithms, combined with 

wearable sensors, for predicting running-induced 

fatigue in outdoor settings. With IMUs, heart rate 

monitors, and smartwatches, the system provides 

non-intrusive monitoring that could help prevent 

injuries and optimize recovery strategies for 

runners. Notably, the best-performing sensor setup, 

using a single left wrist (LLA) sensor, achieved an 

average MSE of 1.89, outperforming more complex 

multi-sensor configurations. This result highlights 

the feasibility of reducing the sensor setup and 

the potential for integration into consumer fitness 

devices like smartwatches. However, the study’s 

small sample size and reliance on subjective fatigue 

measures, such as the Borg Rating of Perceived 

Exertion, indicate the need for further research with 

larger, more diverse populations. Future studies 

should incorporate additional biometric data and 

validate the system against gold-standard fatigue 

assessment methods, such as electromyography 

(EMG) or VO2 max, to improve the model’s 

generalizability and precision. 
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9. Appendix 

The appendix provides supplementary 
information that supports the findings and 
discussions presented in the main body of this 
research paper. It includes explanations of 
concepts such as fatigue and its physiological 
models, as well as additional data, figures, and 
forms used throughout the study. Sections 9.1 
through 9.3 offer a deeper dive into the mechanisms 
and models of fatigue. Additionally, Appendices A, 
B, and C contain used participant measurement 
forms, and supporting figures related to the study’s 
objectives.  

9.1. Understanding fatigue 

Fatigue is a complex phenomenon and a 
common non-specific symptom that is often 
characterized as an overwhelming feeling of 
exhaustion and translates to difficulty in performing 
voluntary tasks. If not resolved, over time can lead 
to overwork, chronic fatigue syndrome, endocrine 
and immunity dysfunction, a threat to overall human 
health, and in sports – overtraining syndrome and 
injuries [47]. This chapter describes some of the 
important factors that contribute to fatigue 
development. 

9.2. Fatigue from a physiological 
perspective 

According to its duration, fatigue can be divided 
into acute (can be quickly resolved by rest or 
lifestyle change) and chronic (lasting several 
months and is not resolved by rest). Furthermore, 
there is mental fatigue, which is a cognitive fatigue 
aspect, and physical fatigue which refers to the 
performance of the human motor system [47]. 

Muscle fatigue can be simply characterized as 
a decrease in maximal voluntary contraction. Based 
on its origin in the motor pathway, it is usually 
classified as central and peripheral. As the name 
suggests, the first one is produced in the central 
nervous system (CNS) and it decreases its ability to 
recruit motor units, while the latter is due to the 
biochemical changes in the working muscle, at or 
distal to the neuromuscular junction. The muscle 
contractile mechanism is responsible for muscle 
production, but any failure in nervous, ion, vascular, 
or energy systems leads to its decrease [47].  

When voluntarily contracted, muscles usually 
fire at 50-60 Hz, and a decrease in these firing rates 
translates to the loss of force thus marking fatigue. 
From the neural perspective, impaired calcium ion 
(Ca2+) release has been identified as a contributor 
to fatigue in isolated skeletal muscle fibers, since it 
plays a key role in cross-bridge cycling [47][48]. 
Moreover, the so-called central fatigue hypothesis 
states that changes in the concentration of certain 

neurotransmitters such as serotonin (5-HT), 
dopamine (DA), and norepinephrine (NA) are 
responsible for fatigue development during 
prolonged exercise. For instance, an increase in the 
serotonin-dopamine ratio is linked to feelings of 
lethargy and tiredness, marking the onset of fatigue, 
whereas a low ratio promotes motivation and 
arousal [49].  

Another factor is blood flow which is essential 
for the removal of by-products of metabolic 
processes and brings oxygen to the working muscle 
that is necessary for aerobic adenosine 
triphosphate (ATP) production. As the muscle 
contracts, it increases the mean arterial blood 
pressure and decreases the net blood flow to the 
muscle, therefore leading to fatigue. Moreover, 
enriched oxygen uptake and ATP production are 
increased until the VO2max (maximal oxygen 
consumption) is reached. This means that if the 
athlete is exercising at a very high intensity, the 
VO2max is already reached, and there is a demand 
for more ATP that cannot be met by oxygen 
delivery, which eventually leads to fatigue [47]. 

To contract, muscles need energy – a ready 
supply of ATP, which is used for Ca2+ release, 
reuptake, and Na+/K+-pump function. To produce 
ATP, human bodies use glycogen, a carbohydrate 
fuel for muscle force production. Once its stores are 
depleted the exercise cannot continue. Lastly, 
during muscle contraction, the accumulation of 
metabolic factors such as hydrogen (H+) ions, 
lactate, inorganic phosphate (Pi), reactive oxygen 
species (ROS), heat shock protein (HSP), and 
orosomucoid (ORM) plays a role in muscle fatigue 
production since they contribute to changes in 
cross-bridge cycling [47]. 

Even though it is easy to know when we are 
fatigued, it is hard to understand exactly which 
physiological processes led to such a condition. 
Consequently, there are no official 
recommendations for muscle fatigue treatment. 
Nonetheless, some nonspecific treatments are 
used, mainly in sports and the military, to enhance 
physical performance by manipulating 
an individual’s physiological processes. They can 
be either synthetic (e.g. amphetamine, caffeine) or 
natural products (e.g. ginseng, garlic), but also 
nutritional supplements (e.g. vitamins, creatine, 
protein powder) [47]. However, it should be noted 
that the use of certain stimulants raises alarming 
ethical and safety concerns [50][51]. 

9.3. Fatigue models 

Much research fails to define fatigue due to it 
being a complex, multi-factorial problem, but also 
due to the common assumption that the term fatigue 
is known to all, and the use of a wide range of 
definitions [52]. The challenge is to create a model 
that encompasses the most relevant factors that 
describe fatigue. This chapter explains some of the 
proposed fatigue models in the literature. 
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Italian physiologist Angelo Mosso is known as 
one of the pioneers in fatigue research for 
publishing his book “La Fatica” in the late nineteenth 
century. He developed the ergograph, the 
instrument he used to measure muscle fatigue by 
recording the muscle contractions during repetitive 
tasks. His statement “fatigue of the brain reduces 
the strength of the muscles” distinguishes central 
(e.g., the will, mental) and peripheral (muscular) 
fatigue from each other [53]. Since then, his two-
domain concept of fatigue has served as an 
inspiration for further research, and his original 
fatigue scheme has been broadened. 

Kluger et al. define fatigue as a neurological 
illness and divide it into two components. They 
argue the importance of the distinction between the 
terms fatigue, which refers to subjective sensations, 
and fatigability which refers to objective changes in 
performance. The first is influenced by homeostatic 
factors (e.g. depletion of glycogen and 
phosphocreatine, accumulation of lactate) and 
psychological factors (e.g. perceptions of effort, 
expectations, motivation, mood), whereas the latter 
is affected by peripheral (e.g. physiologic changes 
in muscle, the neuromuscular junction, and 
peripheral nerves) and central (e.g. disruptions in 
the CNS mechanisms) factors. According to this 
theory, the perception of fatigue and performance 
fatigability are not only distinct but also potentially 
independent. Moreover, they influence each other 
and are influenced by central and peripheral 
dysfunction or illness [52].  

Similarly to Kluger et al., Enoka and Duchateau 
argue that fatigue is a disabling symptom consisting 

of two components: perceived fatigability and 
performance fatigability, and as such can only be 
measured by self-report (Figure 11). Perceived 
fatigability is affected by homeostasis (e.g. 
neurotransmitters, temperature, metabolites) and 
psychological state (e.g. mood, motivation, 
performance feedback), while performance 
fatigability is defined by contractile function and 
muscle activation [54]. 

T.D. Noakes argues that fatigue is no more than 
a brain-derived emotion that protects the body's 
homeostasis by regulating exercise behavior. He 
explains The Central Governor Model of Exercise 
Regulation scheme whose center is the brain which 
manages exercise performance by continuously 
adjusting the number of motor units activated in the 
working muscles. This regulation is influenced by 
both conscious and subconscious factors present 
before and during exercise, e.g. emotional state, 
sleep deprivation, level of motivation and 
experience, etc. The purpose of this control is to 
ensure that individuals always stop exercising 
before there is a risk of severe homeostatic 
disruption. As a result, every exercise is 
submaximal due to unused motor units in the 
working muscle. According to this model, the best 
performances are achieved by athletes who 
effectively manage these deceptive fatigue signals 
during exercise. He hypothesizes that in the case of 
a close finish, physiology does not decide who wins 
the race, but the athlete’s brain “decides” to win [55]. 

 

 
Figure 11 Fatigue model, adapted from Enoka and Duchateau [54]. 

9.4. Fatigue assessment methods 

Difficulties in defining fatigue directly translate 
to challenges in its measuring and monitoring. In 
practice, fatigue measurements are task-specific, 
and one should carefully consider how to define 
fatigue for a given population and type of activity 
[21]. That said, fatigue in sports is commonly 
measured by widely accessible tests of direct 
physiological means such as heart rate, blood 
lactate concentration, or psychological 
questionnaires [22][23].  

Mood changes are associated with training load 
and fatigue; therefore, self-report methods can be 
utilized as a straightforward and inexpensive way to 
capture the cognitive and emotional aspects of 
fatigue. Even though there are many validated 
questionnaires in the literature, sports organizations 
often choose their own, customized self-reports, 
due to existing questionnaires in the literature 
lacking sports specificity [22].In general sports 
research, the most used and practical tool for 
fatigue identification is the Borg Rating of Perceived 
Exertion (RPE) scale [21]. It represents a subjective 
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fatigue indication but also shows a strong 
correlation with heart rate (r = 0.74) and blood 
lactate (r = 0.83) concentration and is applicable in 
both controlled laboratory settings and real-world 
conditions [23][24]. One study indicated that RPE 
serves as a more sensitive measure of acute stress 
levels, such as fatigue, compared to objective 
measures like blood lactate concentration and heart 
rate. This is because RPE captures both the 
psychological and physiological aspects of fatigue 
[22]. Consequently, the Rating of Perceived 
Exertion has gained increasing popularity in studies 
related to running injuries and clinical settings, 
owing to its contribution to accurately assessing an 
individual's training load and subsequent - injury 
risk [25]. It should be noted that subjective 
questionnaires are not a robust indicator of the 
athlete’s performance, and conclusions drawn from 
self-report measures must be considered with 
caution, Finally, there is a need for more objective 
measures of fatigue [21].  

One such example is cardiopulmonary exercise 
testing (CPET) which represents the golden 
standard for fatigue determination [23].It is a 
valuable tool in sports for measuring fatigue as it 
provides comprehensive data on an athlete's 
aerobic capacity and efficiency, ventilatory 
thresholds, and overall endurance. However, this 
method comes with a high cost and a complex 
laboratory setting [29]. In addition, physiological 
markers of fatigue and recovery provide insight into 
an athlete’s response to workload. Unfortunately, 
only a limited number of these markers have strong 
scientific support for their use, and there is not one 
conclusive marker of fatigue. Moreover, many of the 
proposed markers such as biochemical (e.g. 
lactate, urea, creatine kinase), immunological 
(antibodies, cytokines, glutamine) and endocrine 
(e.g. stress hormone level) require laboratory 
analyses and cannot provide immediate fatigue 
status. On the other hand, heart rate, heart rate 
recovery, and variability are widely used markers in 
sports science since their alternations coincide with 
hormonal changes seen during training-induced 

fatigue [21]. During running heart rate can be 
monitored accurately, non-invasively, and 
continuously in real-time using heart-rate sensors 
[56]. It should be noted that, while HR monitoring 
provides valuable insights into the cardiovascular 
response during running, it may not fully capture the 
musculoskeletal fatigue that contributes to overuse 
injuries. At low to medium aerobic intensities, a 
runner’s biomechanical loading can gradually 
accumulate, leading to movement compensations 
even when HR remains relatively stable. This 
indicates a potential mismatch between 
musculoskeletal and cardiovascular fatigue levels. 
Therefore, solely relying on HR is not sufficient for 
effective fatigue monitoring [36]. 

Wearable systems offer highly promising 

solutions for fatigue monitoring by allowing 

continuous, long-term tracking of biomedical 

signals in sports environments, ensuring the 

necessary comfort and non-intrusiveness [19]. It 

has been shown in research that motion analysis 

can serve as a valuable tool for injury prevention 

[18][19]. Motion capture systems, such as optical or 

inertial sensors can provide an accurate estimation 

of human motion, but they are expensive and not 

suited for outdoor applications [27]. As an 

alternative, Inertial Measurement Units could be 

employed for motion tracking and provide a better 

understanding of how running form and athlete’s 

kinematic variables change with the fatigue 

progression. For example, some research found 

that peak tibial accelerations increase during 

running due to fatigue [57][58] and it is believed that 

higher peak accelerations indicate a higher load on 

the body and increase the injury risk, though this 

needs further research [59]. Although IMUs may be 

affected by noise, this can be managed through 

proper calibration and filtering techniques [60][61].  
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9.5. Appendix A 

 

 
Figure 12 Distribution of time of the day samples per trial when the recording was done. 

 

 
Figure 13 RPE scores distribution per trial. 

 
 

Figure 14 Prediction and true values averaged across all 5 subjects, and 3 trials, using the best LLA 
sensor configuration model. 
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Figure 15 Correlation with subject characteristics with RPE. 



 

Page 29 of 38 
 

 
Figure 16 Correlation of IMU features with RPE. 
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Figure 16 Correlation of statistical IMU features with RPE. 
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9.6. Appendix B 

Measurement form 
Personal information 

Participant code: 

Date: 

 

Parameter Value 

Age  

Gender M / V  

 

Inclusion criteria 

Criterium Answer 

Did you run the last 3 months at least 

20km/week? 
Yes / No 

Did you run the last 3 months 2 times a 

week or more on average? 
Yes / No 

Did you had a major running injury in the 

lower extremities the past 6 months? 
Yes / No 

Are you pregnant? Yes / No 

 

General information 

Question Answer 

Max heart rate (if known)  

Resting heart rate (if known)  
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Question Answer 

How often do you run per week?   

How many kilometers do you run per week?  

How many years of running experience do 

you have? 
 

Dominant leg (kick a ball) Left / Right 

Shoe brand / type  

Did you had any running injuries, causing 4 

or more weeks of no running? If yes, which? 
 

Do you do other sports at this moment?  

Representative 5 or 10km race result  

Endurance and warming-up pace _____________ min/km 

Target time and pace 5km sub-maximal ____________           _________ min/km 

 

Question Answer 

Body height (cm)  

Body weight (kg), with clothing and sensors  
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Measurement information 

 

Sensor placement 

Location Sensor ID 

LLL  

RLL  

LUL  

RUL  

PEL  

STE  

LLA / RLA  

Watch and heart rate monitor  

 

 

Additional remarks 

 

 

Measurement information 

Participant code: 

Session: END – INT – 5K 

Date: 

Location: 

Participant code: Date: 
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Sensor placement 

Location Sensor ID 

LLL  

RLL  

LUL  

RUL  

PEL  

STE  

LLA / RLA  

Watch and heart rate monitor  

 

 

Additional remarks 

 

 

Measurement information 

 

Session: END – INT – 5K Location: 

Participant code: 

Session: END – INT – 5K 

Date: 

Location: 
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Sensor placement 

Location Sensor ID 

LLL  

RLL  

LUL  

RUL  

PEL  

STE  

LLA / RLA  

Watch and heart rate monitor  

 

 

Additional remarks 

 

 

 

9.7. Appendix C 
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