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Abstract

Biodiversity data is essential for conservation and ecosystem management, yet
its rapid accumulation from diverse sources presents challenges for integration and
analysis. This study addresses these challenges by applying ontology matching and
knowledge graph techniques to the Barcant Butterfly Collection (BBC), one of the
largest butterfly archives in the Caribbean. The research focuses on transforming and
standardizing the BBC dataset using the Darwin Core (DwC) framework to facilitate
interoperability with global biodiversity information systems.

Through the construction of a domain-specific ontology for the BBC, aligned with
existing biodiversity ontologies such as the Biological Collections Ontology (BCO)
and Taxonomic Rank Ontology (TaxRank), this work creates a structured, interop-
erable knowledge base. The ontology alignment process enhances the consistency
and integration of taxonomic, ecological, and geographic data. A knowledge graph is
generated to reveal hidden connections and patterns within the collection, enabling
advanced querying and analysis.

The results demonstrate the potential of these methodologies to unlock valuable
insights from legacy biological collections, enhancing their utility for conservation ef-
forts and biodiversity research. By aligning traditional taxonomic data with modern
computational techniques, this research contributes to the broader field of biodiver-
sity informatics, setting a precedent for the digitization and semantic enrichment of
biological collections worldwide.

Keywords: Barcant Butterfly Collection, Ontology alignment, knowledge graphs, bio-
diversity informatics.



Chapter 1

Introduction

Biodiversity data is crucial for conservation and ecosystem management. It helps
identify endangered species and at-risk environments, providing key insights for cre-
ating effective conservation strategies tailored to specific ecosystem’s needs. Ad-
vances in information technology and the expansion of open-access data-sharing plat-
forms have significantly increased the availability of biodiversity data. In recent years,
the volume of data has also surged, largely due to crowd sourcing initiatives such
as citizen science programs, environmental monitoring networks, and contributions
from research institutions. These various sources provide detailed information on ge-
netic diversity, species distributions, taxonomic lists, and how species interact within
ecosystems. For example, citizen science programs often add real-time data about lo-
cal ecosystems, offering detailed observations that complement large-scale research.
The integration of these efforts ensures that conservation strategies are built on the
most comprehensive data available, thereby enabling ecosystem sustainability [1].

However, the rapid accumulation of data through such heterogeneous techniques
often leads to discrepancies and ambiguities within the records, so it becomes im-
portant to establish standards for data integration to ensure semantic interoperabil-
ity. A unified approach allows for the seamless combination of data, providing valu-
able insights into the evolutionary history of life on Earth and deepening our under-
standing of species-specific threats, habitat changes, and biodiversity hotspots [2].
These insights enable the development of proactive strategies that protect vulnerable
species and their ecosystems. Furthermore, accurate data on species distributions
and ecosystems is crucial for predicting the impacts of climate change on biodiver-
sity, allowing for the creation of strategies that safeguard habitats [3] [4].

The global digitization of biodiversity collections, led by museums, has signifi-
cantly transformed research methodologies. Traditionally, museums focused on cata-
loging physical specimens, but now they are increasingly digitizing these collections
using advanced methods like DNA sequencing, high-resolution imaging, and data an-
notation. This digital shift, which combines classic taxonomy with modern genomics,
has introduced both new opportunities and challenges in managing and analyzing the
massive datasets that result from this process [5]. One of the major challenges is the
localized or narrow focus of many organizations when compiling and depicting data
[6]. Each institution often uses its own framework, leading to inconsistencies across
datasets. For example, identical species observations may be attributed to multiple
sources, or the same scientific name may be applied to different species, leading to
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confusion and duplication in biodiversity records. Moreover, the sheer abundance of
disparate data sources, ranging from museum collections to research institutions, ex-
acerbates this issue. Integrating these heterogeneous datasets presents significant
challenges due to variations in observational scales, data collection methodologies,
and terminologies. Harmonizing this data collected from such various streams re-
quires the development of universal standards for data integration and classification
to ensure consistency and accuracy.

The Barcant Butterfly Collection (BBC), used in this research, is one such
highly valuable dataset in need of standardization. It documents a wide range of but-
terfly species from Trinidad and Tobago. It is one of the most comprehensive butterfly
archives in the Caribbean, containing many endemic species. Assembled by Malcolm
Barcant over several decades, the collection not only showcases the rich diversity of
butterfly species but also provides critical insights into the ecological dynamics of
the Caribbean [7]. Despite its historical and scientific significance, the full poten-
tial of the Barcant Butterfly Collection remains underutilized in the context of big
data and advanced computational techniques. For this dataset to reach its maximum
utility, it must be integrated into global biodiversity information systems that utilize
standardized frameworks, enabling seamless data interoperability and more sophis-
ticated analyses. Such integration is essential for facilitating accurate comparisons,
drawing reliable conclusions, and enabling meta-studies that combine datasets across
researchers, regions, and time periods.

The integration of traditional taxonomic knowledge with modern data science
methods, such as ontology alignment and knowledge graph construction, can greatly
enhance the usability of the Barcant Butterfly Collection. Ontology alignment is par-
ticularly crucial for harmonizing diverse taxonomic frameworks. By aligning these
frameworks, we can ensure consistent classification across various data sources, mak-
ing it easier to integrate and compare information [8]. By employing these techniques,
we can bridge the gap between analog historical records and contemporary digital
databases. To accurately capture the nuances of butterfly biodiversity within the col-
lection and tackle the challenges of data integration, the research will be guided by
the following research questions:

RQ1: Concepts and Relationships: What specific ontological concepts and
relationships are crucial for developing a comprehensive Barcant Butter-
fly Collection ontology that effectively captures the nuances of butterfly
biodiversity?

RQ1.a: Selection of standard vocabulary and terminologies from existing
ontologies: Which standardized sets of terms can be efficiently repurposed
or adopted from existing ontologies? And, how can these domain-specific
lexicons be leveraged to facilitate the ontology matching processes without
necessitating explicit redefinition or redundancies?

RQ1.b: Identification of an ideal biodiversity ontology for alignment: Among
the wide range of biodiversity ontologies available, which specific ontology
aligns most seamlessly with the intricacies of the Barcant Butterfly Collec-
tion, ensuring optimal relevance and applicability?
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RQ2: Evaluation of the Barcant Butterfly Collection ontology: How can
the Barcant Butterfly Collection ontology be effectively evaluated, and
which specific queries are suitable for assessing its performance, efficacy,
and practical applicability?

The application of advanced techniques to the Barcant Butterfly Collection has the
potential to serve as a model for the digitization and analysis of biological collections
worldwide. Numerous museums and research institutions house extensive archives of
specimens, each with distinct historical and scientific value. However, much like the
Barcant Collection, many of these collections remain underutilized, with their data
trapped in records that are not easily accessible or analyzable [9]. By demonstrating
the value of integrating modern data science methodologies with traditional biological
archives, this research aims to inspire similar digitization efforts across other insti-
tutions, contributing to a broader, global understanding of biodiversity. This aligns
with the "Butterfly Effect" metaphor, wherein small contributions to data accessibility
can significantly enhance the understanding and analysis of regional specimens, po-
tentially leading to far-reaching implications. As global biodiversity faces increasing
threats from climate change and habitat destruction, the need for novel conserva-
tion strategies is more important than ever. By leveraging ontology and knowledge
graphs, this research unlocks the hidden potential of the Barcant Butterfly Collection,
transforming it into a valuable resource for global biodiversity conservation.

The remainder of this thesis is organized as follows: Chapter 2 provides an overview
of fundamental concepts related to ontology and knowledge graphs. Chapter 3 presents
a comprehensive review of existing literature and previous work in the field, high-
lighting their relevance and contributions to this research. Chapter 4 talks about the
dataset used in the research. Chapter 5 outlines the methodology, detailing the im-
plementation process for addressing the research questions. chapter 6 demonstrates
the practical use of the developed methodology in real-world scenarios, showcasing
its effectiveness and relevance. Finally, Chapter 7 concludes the study and suggests
potential directions for future research.
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Chapter 2

Background

2.1 Ontology

In information science and computing, ontology represents a formal framework that
defines a set of concepts and their relationships within a specific domain [10]. This
structured approach facilitates data integration, interoperability, and reasoning, mak-
ing it easier for systems to work with data coherently and efficiently. In computational
fields, ontologies are used to provide a shared and common understanding of a do-
main. This common understanding allows for consistent communication between peo-
ple and software agents, ensuring that different systems interpret data in the same
way despite variations in structure or context. Ontologies are crucial in areas such
as artificial intelligence, semantic web technologies, and bioinformatics, where they
enable semantic interoperability and enhance data management. They are designed
as comprehensive schemas that categorize and define the relationships and proper-
ties of various concepts within a domain. Ontologies serve as a detailed "specification
of a conceptualization" that integrates information from both structured and unstruc-
tured sources [11]. This approach allows ontologies to encapsulate domain-specific
semantics, providing a richer understanding of how concepts relate to one another.

A significant advantage of ontologies is their ability to define a wide array of re-
lationships and properties, which enhances their applicability in complex scenarios
such as reasoning and inference. Ontologies can define classes, relationships be-
tween these classes, and attributes, facilitating advanced querying and data integra-
tion [12]. Ontologies provide descriptions of the following elements [13, 14]:

• Classes or “Things” within different domains of interest

• Relationships among said “Things”

• Properties or attributes the “Things” should possess

Biodiversity Ontology is a specialized application of ontologies in biodiversity sci-
ence that plays a critical role in organizing and standardizing the vast and complex
datasets associated with species, ecosystems, and genetic information. These ontolo-
gies define clear relationships between organisms, their habitats, ecological inter-
actions, and environmental factors, creating a structured framework that enhances
data interoperability [16]. For instance, the Environment Ontology (ENVO) provides
a standardized vocabulary for describing environmental features, ecosystems, and
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Figure 2.1: Ontological representation of the identification process in the Bi-
ological Collections Ontology. Ontologies are abbreviated as “bfo” for Basic
Formal Ontology, “bco” for Biological Collections Ontology, and “dwc” for Dar-
win Core [15]

habitat characteristics. Biodiversity ontologies play a crucial role in the classification
and naming of new species, ensuring standardized descriptions that can be shared
across numerous scientific disciplines [17]. They also facilitate modeling of complex
ecological processes, such as species interactions and migration patterns. The Open
Biomedical Ontologies (OBO) Foundry, which includes biodiversity-related ontologies,
exemplifies how these tools can integrate data across life sciences.

The use of ontologies enhances the management and analysis of large-scale datasets,
such as those collected by the Global Biodiversity Information Facility (GBIF)1. Recent
advancements in machine learning and artificial intelligence have further amplified
the impact of ontologies [18]. These technologies leverage ontologies for automated
species identification, ecosystem monitoring, and predictive modeling, offering new
possibilities for biodiversity conservation and management in response to global chal-
lenges. Ontologies provide a sophisticated approach to knowledge representation,
serving as detailed schemas that categorize and interconnect concepts.

2.2 Ontology Matching

Ontology matching is the process of identifying correspondences between semanti-
cally related entities in different ontologies. These correspondences may represent
relationships such as equivalence, consequence, or disjointness among ontology enti-
ties. Ontology entities typically refer to the named elements within an ontology, such
as classes, properties, or individuals. However, these entities can also encompass
more complex structures like formulas, concept definitions, or term-building expres-
sions [19].

Matchers are the core components of the ontology matching process, responsible
for generating correspondences based on various factors such as entity labels and

1https://www.gbif.org/
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structural relationships [20]. Different types of matchers include:

• Basic matchers - Focus on point-to-point mappings using lexical or structural
similarities. For example, matching "Mammal" in one ontology with "Mammalia"
in another.

• Terminological matchers - Explore concept labels through string-based or lin-
guistic methods. For instance, matching "Danaus plexippus" (Latin name) with
"Monarch Butterfly" (common name) across biodiversity ontologies.

• Structural matchers, - Analyze relationships between concepts within ontolo-
gies. For example, recognizing that "Monarch Butterfly" is a subclass of "Insect"
and relating these structural relationships across different biodiversity classifi-
cations.

Figure 2.2: Flowchart of Ontology Matching Process

The flowchart in fig. 2.2 illustrates the ontology matching process. In this work-
flow, two ontologies, labeled O1 and O2, are subjected to a matching procedure gov-
erned by a function f , which generates the final matching result M . The matching
function is influenced by several inputs, the ontologies O1 and O2, previously matched
entities or intermediate results, denoted as A′. Additionally, the process is directed by
a set of guidelines or relationships, represented as r and p , which may consist of log-
ical rules or similarity metrics essential for the matching task. These parameters may
include thresholds, weights, or other preferences that define how the function oper-
ates. The function f synthesizes these inputs to produce the final matched ontology
A, ensuring semantic alignment between O1 and O2.

Combining different matcher types improves mapping accuracy by addressing
both terminological and structural variations [21]. For instance, when aligning two
ontologies—O1 and O2—matchers identify relationships such as one-to-one (1:1) equiv-
alences (e.g., ’Species’ and ’Specimen’), one-to-many relationships (e.g., ’Mammal’ as
a subclass of both ’Vertebrate’ and ’Warm-blooded Animal’), or many-to-many rela-
tionships where partial overlap exists between entities (e.g., "Animal" and "Organ-
ism"). Recent advances in ontology matching emphasize the importance of integrat-
ing various matching techniques to improve both accuracy and scalability [22]. In
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bioinformatics and other complex fields, error detection during matching is crucial
for ensuring reliable, high-quality results.

As diverse ontologies continue to be developed without established mappings be-
tween them, effective ontology matching techniques become increasingly important.
One innovative approach is presented by Xingsi Xue et al. [23], who utilized an Evo-
lutionary Algorithm (EA) for ontology alignment. While traditional EA has been ef-
fective, it often struggles with large-scale ontologies and can get trapped in local
optima. To address these limitations, the authors introduced the Adaptive Compact
EA (ACEA), which uses semantic reasoning to filter out negative correspondences,
thus reducing the search space. ACEA dynamically adjusts the search direction to ex-
plore previously unexplored regions, improving the overall effectiveness of the align-
ment. The use of multiple Probability Matrices (PMs) helps guide the search process.
The study’s findings indicate that ACEA-based techniques outperform other EA-based
methods, although they may still have limitations, particularly in detecting correspon-
dences.

Karam et al. [24] explored the matching of various biodiversity ontologies, noting
that many of these ontologies lack inherent connections. One notable exception is
a manual mapping between the Environment Ontology (ENVO) and a portion of the
Semantic Web for Earth and Environment Technology Ontology (SWEET) subdomain.
The reference alignments in this study were created using consensus mappings from
existing systems, manually validated mappings, and expert-generated mappings. The
results revealed that while most systems handled consensus mappings well, expert
mappings posed greater challenges. This highlights the need for specialized domain
expertise to improve ontology alignment in the biodiversity field.

Another promising technique for ontology matching is the use of neural networks,
which have significantly transformed the landscape by leveraging their ability to un-
derstand complex patterns and semantic relationships. In a study by Alexandre Bento
et al. [25], convolutional neural networks (CNNs) were used to perform string match-
ing between class labels through character embeddings. The results demonstrated
state-of-the-art performance on biomedical ontologies and good performance on non-
biomedical ontologies, albeit with some loss of precision. One advantage of this ap-
proach is its domain-agnostic nature, making it applicable across various fields. How-
ever, challenges remain, such as the need for large amounts of labeled data, potential
biases, and the difficulty of maintaining interpretability in complex models. Despite
these challenges, the scalability and automatic feature-learning capabilities of neural
networks position them as a promising tool for advancing ontology matching.

2.3 Knowledge Graphs

A knowledge graph is a graph-based database designed to represent structured knowl-
edge, enabling precise and efficient data retrieval across interconnected entities and
their relationships. It serves as an extensive repository for capturing and organizing
complex real-world relationships, facilitating advanced data integration and analysis.
Knowledge graphs built upon ontologies leverage these ontologies to define both the
structure and semantics of the data, enhancing their ability to connect disparate in-
formation sources. By grounding the knowledge graph in an ontology, the underlying
structure supports logical reasoning, enabling the inference of new knowledge from
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existing data.
The construction of a knowledge graph begins with the acquisition and integra-

tion of data into a predefined ontological framework. Ontologies, which define the
classes, properties, and relationships between concepts, provide the semantic foun-
dation for the graph. Once the data is mapped into an ontology, it is converted into
machine-readable formats such as the Resource Description Framework (RDF) and
the Web Ontology Language (OWL), which are standards for representing and ex-
changing knowledge on the semantic web.

In a knowledge graph, each entity is represented as a node, with attributes and
properties that describe it. For example, a node representing a "Butterfly" might in-
clude attributes such as species name, wing pattern, and habitat preference. Edges
between nodes represent relationships between entities, capturing associations such
as "is a part of," "is located in," or "has a". These relationships enable rich semantic
queries and allow systems to reason over the data. The first step in constructing a
knowledge graph is identifying key concepts and entities relevant to the domain, such
as individuals, organizations, events, or biological species. Relationships between
these entities are then established, creating a comprehensive network of intercon-
nected data points [26].

Figure 2.3: A biodiversity data framework connecting specimens,
publications, and taxonomic information

After the identification of entities and relationships, they are structured and repre-
sented using the "subject-predicate-object" format of the Resource Description Frame-
work (RDF). These triples are then stored in a graph database, which facilitates ef-
ficient querying and traversal of relationships [27]. The graph structure, optimized
for these operations, enhances the performance of applications that rely on complex
data interactions, such as recommendation systems. Knowledge graphs are dynamic,
requiring regular updates and maintenance to reflect the addition of new entities and
relationships. Over time, as the graph expands, it reveals increasingly sophisticated
insights.

By connecting related entities, the Knowledge Graph facilitates exploratory searches,
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offering deeper and more contextually relevant information. The integration of mul-
tiple data sources is essential for building robust knowledge graphs [28]. Scalable
reasoning over large datasets is a critical requirement for dynamically generating
new knowledge from vast and heterogeneous data sources. In another study [29], re-
searchers discuss how knowledge graphs are being used to enhance machine learning
models by enriching them with contextual data, thereby improving their predictive
performance. Additionally, advancements in natural language processing (NLP) have
been linked to the use of knowledge graphs, particularly in improving tasks such as
entity recognition and relationship extraction.

Knowledge graphs significantly enhance information retrieval, entity disambigua-
tion, and provide richer contextual understanding [30]. They provide applications
with a structured understanding of entities and their interrelations within a knowl-
edge domain. However, constructing high-quality knowledge graphs is challenging,
particularly when integrating data from multiple heterogeneous sources. Ontologies
provide the formal foundation by defining concepts, properties, and relationships, en-
suring semantic clarity. The integration of ontologies into knowledge graphs enhances
the graph’s expressiveness, creating a robust system for knowledge representation
that supports advanced reasoning and analysis across diverse domains.
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Chapter 3

Related Work

This section explores ontology modeling, focusing on the creation and structuring of
ontologies. It also covers "Ontology Alignment," which integrates multiple ontolo-
gies by identifying correspondences between them. Followed by a discussion on the
Biological Collections Ontology (BCO) and Taxrank Ontology.

3.1 Ontology Modeling

The ontology modeling process begins with establishing the scope and purpose of the
ontology. This step is crucial as it defines the boundaries and the specific goals that
the ontology is intended to achieve within the domain. After defining the scope, the
next step is to identify the key concepts that are fundamental to the domain. These
concepts are carefully defined to be clear and unambiguous, preventing any misun-
derstandings or misinterpretations down the line. When dealing with more complex
concepts, breaking them down into simpler components can help in creating a more
accurate representation. After defining the key concepts, the focus shifts to estab-
lishing the relationships among them. These relationships are crucial for illustrating
how different entities within the domain are interconnected, contributing to a well-
structured and coherent ontology. The next important step in ontology modeling is
choosing an appropriate language to represent the concepts and relationships. Two
of the most widely used ontology representation languages are the Resource Descrip-
tion Framework (RDF)1 and the Web Ontology Language (OWL)2 [31]. RDF organizes
data into triples, consisting of a subject (resource), a predicate (property), and an ob-
ject (value or another resource), creating a hierarchical structure [32]. The flexibility
of RDF lies in its ability to describe data without assuming any specific application
domain or predefined semantics, making it a versatile tool for various applications.

Building on RDF and RDF Schema (RDFS), OWL offers a more formal and expres-
sive way to define ontologies. OWL is particularly valuable when we need to specify
detailed restrictions and cardinality constraints, which allow for precise modeling of
complex concepts and relationships. This is especially useful in fields like biodiver-
sity, where the relationships among species, habitats, and ecosystems can be quite
intricate. OWL is available in three versions: OWL Lite, OWL DL (Description Logic),
and OWL Full [33, 34]. OWL Lite is a simpler version, ideal for basic classification

1https://www.w3.org/RDF/
2https://www.w3.org/OWL/
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tasks. OWL DL is the most popular choice because it strikes a balance between rich
modeling capabilities and computational efficiency. OWL Full is the most expressive
version, allowing for the greatest flexibility, though it requires more computational
resources. By carefully choosing the right ontology language and rigorously defin-
ing the concepts and relationships, the ontology modeling process creates a powerful
and precise framework. This solid foundation is essential for subsequent tasks like
ontology matching and integration.

Figure 3.1: RDF graph of biodiversity data [35]

Once the appropriate language for the ontology has been selected, the next step is
to implement the ontology using relevant tools and software. This involves converting
the conceptual model into machine-readable format that can be utilized by various
applications. The complexity of the ontology can vary significantly, depending on the
specific requirements of the applications it supports. Essentially, ontologies serve to
structure data in a way that accurately reflects the real-world semantics of the entities
being represented.

A significant example in biodiversity research is the Biological Collections Ontol-
ogy (BCO), developed by Walls et al. [36]. Based on the Basic Formal Ontology (BFO)
[37], BCO was one of the earliest ontologies created for biodiversity data. It facilitates
the semantic exchange of data from various sources, such as museum collections, en-
vironmental samples, and ecological surveys. The BCO provides a logical framework
that connects samples to data derived from them, enabling better tracking as these
samples move through different processes and institutions [38]. This capability is par-
ticularly valuable for managing large and complex datasets in biodiversity research.

Over time, a wide array of new ontologies has been developed in the field of bio-
diversity, each tailored to meet specific needs within the domain. These ontologies
are designed to represent different aspects of biodiversity, from species classification
and genetic data to ecological interactions and environmental conditions. Despite
their shared focus on biodiversity, each ontology is unique in the concepts it repre-
sents and the relationships it defines between those concepts. For example, the Lepi-
doptera Morphology Ontology3 focuses specifically on the terminology related to the
physical characteristics and phenotypes of moths and butterflies. While this ontology
is highly relevant to research on Lepidoptera species, its application to the Barcant
Butterfly Collection (BBC) is somewhat limited. This is because the BBC dataset pri-

3https://obofoundry.org/ontology/lepao.html
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marily contains information about the butterflies’ location and habitat rather than
detailed anatomical data which the ontology represents.

Foundational ontologies like BFO and DOLCE can act as semantic bridges to facil-
itate the matching of domain-specific ontologies. However, most alignments between
foundational and domain ontologies are typically created manually [39, 40].

3.2 Ontology Alignment

The outcome of the ontology matching process is referred to as an ontology alignment.
An alignment defines the relationships between entities from distinct ontologies, cap-
turing them with varying levels of precision. These alignments can be used for a wide
range of purposes, including ontology merging, query answering, data translation,
and navigating the semantic web. It provides a structured set of correspondences be-
tween two or more ontologies. This alignment enables the systems involved to com-
municate effectively, ensuring consistency and coherence across heterogeneous data
sources [20]. Ontology alignment is essential for achieving semantic interoperability,
allowing independently developed systems and datasets to work together seamlessly.
Ontologies, which define structured representations of knowledge through classes,
properties, and relationships, often reflect different perspectives and methodologies,
especially in complex domains such as healthcare, bioinformatics, and biodiversity. As
multiple ontologies emerge across different fields and regions, integration becomes
challenging due to differences in structure, scope, and terminology [41].

The goal of ontology alignment is to establish correspondences - such as equiv-
alence, subsumption, or relatedness - between the elements of different ontologies
[42]. This enables systems to communicate effectively and analyze data across plat-
forms despite these structural and terminological differences. For example, in health-
care, ontology alignment enables the integration of medical data by mapping clinical
terms across different ontologies like SNOMED CT and ICD [43], which are structured
differently but represent overlapping information. Similarly, in biodiversity research,
aligning ontologies such as the Biological Collections Ontology (BCO) with vocabular-
ies like Darwin Core (DwC) allows species data to be integrated and analyzed across
systems and regions.

In the context of the semantic web, [44] ontology alignment connects vast amounts
of web data from different services, allowing for more meaningful data exchange be-
tween systems that use distinct ontologies. Ontology alignment identifies and maps
relationships between entities and concepts in different ontologies, addressing se-
mantic heterogeneity. Automated ontology mapping tools typically leverage both lexi-
cal features, such as names and synonyms, and structural features, like relationships
between concepts.

When modeling a domain, various levels of complexity need to be considered.
These levels range from understanding the meaning and intent behind the words
people use when discussing a subject to creating a formal specification of how data
is recorded, structured, and exchanged. An ontology modeling technique needs to
be able to explain how the terms differ in complexity while highlighting how they
can be aligned to infer information across different systems. At the core of this is
the concept of "Formal Semantics", which plays a vital role in establishing a clear,
precise, and unambiguous interpretation of the intended meaning of concepts. Formal
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semantics rely on standard vocabularies to define firm relationships between entities,
allowing for consistency in interpretation. While links between ontologies are based
on actual properties, they can often uncover new or additional information through
inference. For instance, if two ontologies share some information about the same
concept but one of them includes more detailed attributes or relationships, the formal
link between them enables the integration of that additional information. This makes
formal semantics particularly useful in cases where two ontologies overlap, as they
provide a mechanism to enhance one ontology with information from the other [45].

In practice, this means that by establishing links with formal semantics, ontologies
can be expanded or enriched with additional properties or attributes that were not
originally present, facilitating deeper insights and more accurate representations of
the domain.

3.2.1 Matching Methods

This section provides a overview of the methods used for ontology matching, elaborat-
ing on how and when these techniques should be employed. While not an exhaustive
list, it outlines key methods adapted from best practices in ontology matching.

Element-Level Matching

Element-level matching techniques focus on individual ontology entities or their in-
stances, without considering their relationships to other entities. These techniques
operate at the level of the entity itself, aiming to match similar or related entities
across different ontologies [46].

String-Based Matching

This technique relies on comparing the names or descriptions of entities to identify
matches. The underlying principle is that entities with similar string patterns are
likely to denote the same or related concepts. String-based matching is often a first
step in ontology alignment and is widely used because of its simplicity and speed [47].

Linguistic-Based Matching

This approach leverages natural language processing (NLP) tools, lexicons, or domain-
specific thesauri to identify relationships between words. It focuses on linguistic
properties such as synonymy (different words with the same meaning), homonymy
(the same word with different meanings), and partonomy (part-whole relationships).
By exploring these linguistic relations, this method improves the accuracy of match-
ing entities, especially in complex domains where the same concept may be described
differently [48].

Ontology modeling and alignment involve multiple layers of complexity, from defin-
ing the meaning of concepts to specifying how data should be recorded and ex-
changed. Formal semantics provide the structure for integrating additional infor-
mation between ontologies, while element-level matching techniques offer practical
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methods for identifying and aligning entities across different systems. These tech-
niques, when applied correctly, enhance interoperability and allow for more sophisti-
cated knowledge integration across domains [21].

3.2.2 Challenges in Ontology Alignment

• Semantic Heterogeneity: Concepts, terms, and relationships are defined dif-
ferently across ontologies [49]. For instance, the concept of "habitat" may be
defined differently, or organisms might be categorized in ways that do not align
directly across ontologies. Resolving these differences requires a deep under-
standing of the context in which the terms are used. Addressing semantic het-
erogeneity is complex and often resource-intensive, as it requires careful inter-
pretation of domain-specific semantics.

• Structural Variations: Ontologies can vary greatly in structure, with some
having a flat hierarchy, while others include complex, multi-layered subclass
relationships. Aligning these structures requires sophisticated algorithms that
can identify similarities across different abstraction levels. The challenge lies in
accurately mapping concepts despite these structural differences [50]. For in-
stance, aligning the Darwin Core (DwC) vocabulary, which is relatively flat, with
the more detailed Biodiversity Collections Ontology (BCO) requires recognizing
not only direct matches but also complex relationships, such as those involving
specimen collection methods.

• Granularity Mismatches: Granularity mismatches occur when one ontology
provides a more detailed or granular representation of a concept compared
to another [51]. For instance, an ontology might categorize birds into specific
species, whereas another ontology might only have a general "bird" class. This
mismatch makes it difficult to map concepts precisely, requiring alignment al-
gorithms to strike a balance between oversimplification and retaining necessary
complexity for accurate representation.

• Context Sensitivity: The meaning of terms within an ontology can shift based
on context. For instance, "habitat" in marine biodiversity may refer to ocean
depth or salinity, while in terrestrial biodiversity, it might mean forest type or
soil conditions. Accurately aligning such terms requires understanding these
contextual differences. Aligning the Marine Metadata Interoperability Ontology
with the Environment Ontology (ENVO) would need careful mapping to ensure
consistency across marine and terrestrial data.

• Scalability: As the number and size of ontologies grow, scaling the alignment
process becomes increasingly challenging. Large ontologies with thousands
of concepts require significant computational resources, and the complexity of
alignment increases exponentially. Developing scalable solutions that can ef-
ficiently manage large-scale ontology alignment remains an ongoing research
problem [52].

• Inconsistencies and Conflicts: After alignment, inconsistencies and conflicts
may arise, particularly when integrating data from ontologies with conflicting
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definitions or relationships. Addressing these inconsistencies often requires
establishing formal rules for handling mismatches and prioritizing certain re-
lationships over others [53]. These conflicts are especially pronounced when
ontologies represent divergent scientific viewpoints or disciplinary priorities.

3.3 TaxRank and Biological Collections Ontology

In the context of biodiversity informatics and ontology development, TaxRank and the
Biological Collections Ontology (BCO) are two crucial ontologies that contribute to
organizing and enhancing biodiversity data.

3.3.1 Biological Collections Ontology (BCO)

The Biological Collections Ontology (BCO)4 plays a crucial role in advancing biodiver-
sity informatics by providing a standardized framework for organizing, integrating,
and sharing data related to biological collections. Over the years, many frameworks
and ontologies have been developed to improve data management in biodiversity re-
search. Among these, BCO stands out for its ability to connect diverse biological data,
making it an essential tool for the organization of biological collections and their as-
sociated metadata [54].

BCO is built upon the Basic Formal Ontology (BFO), which offers general con-
cepts like "objects," "qualities," and "processes" that are applicable across various
scientific domains. BFO has been widely adopted in fields such as biology, where it
serves as a foundation for domain-specific ontologies. Researchers [55] have exten-
sively promoted the use of BFO in biological data representation, and BCO extends
this foundational framework to meet the specific needs of biological collections. By
incorporating these principles, BCO has become a cornerstone in biodiversity data
management, allowing for the integration of complex biological information across
various platforms.

The development of ontologies such as ENVO (Environmental Ontology) and OBO
Foundry Ontologies laid the groundwork for the representation of biodiversity data.
These early efforts provided ways to represent complex environmental data, biologi-
cal specimens, and collection events [56]. However, they lacked the comprehensive
integration capabilities of BCO, which emerged as a more robust framework capable
of handling a wider range of data types, including genetic, taxonomic, and ecological
information. Early studies in biodiversity informatics were limited to taxonomic clas-
sifications or basic environmental parameters, but BCO filled the gap by offering a
structured approach to organizing and prioritizing biological collections in a holistic
manner.

BCO has been applied in various biological domains, including museum collec-
tions, genetic repositories, and ecological surveys. Notable work by Walls et al.[36]
demonstrated how BCO facilitates the semantic exchange of data from multiple sources,
enabling researchers to effectively track and manage biological samples. This success
laid the foundation for other researchers to adopt BCO in their biodiversity related
projects [57]. Platforms such as DataONE have integrated BCO to enhance the acces-

4https://obofoundry.org/ontology/bco.html
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sibility and usability of biodiversity data, further underscoring its importance in man-
aging biological collections. By utilizing BCO, platforms enable researchers around
the world to share and query biological collection data more efficiently, streamlining
the research process.

In addition to its broad applicability, BCO provides a flexible framework for cap-
turing complex relationships between different types of biological data, such as taxo-
nomic information, genetic sequences, and phenotypic traits. This versatility is cru-
cial in biodiversity studies, where data from diverse sources must be seamlessly inte-
grated to facilitate in-depth ecological and conservation analyses. For example, the
Lepidoptera Morphology Ontology focuses on detailed phenotypic data related to but-
terflies and moths, but its scope is limited to specific use cases, such as morphological
studies. In contrast, BCO is capable of accommodating a broader range of data types,
including those related to collection events, environmental conditions, and genetic
sequences, making it a more comprehensive solution for biodiversity research [58].

Building on this foundation, BCO is applied to the Barcant Butterfly Collection
(BBC) to transform the valuable dataset into a machine-readable format. By using
BCO, the collection’s metadata—such as specimen data, collection events, and en-
vironmental conditions—are well-structured and semantically linked. This enables
better querying, cross-referencing, and integration with other biodiversity datasets.
By leveraging BCO’s capacity to capture complex data relationships, this research
aims to enhance the accessibility and usability of the BBC dataset for researchers
engaged in biodiversity and conservation efforts. The decision to use BCO for this
project stems from its adaptability and scalability in handling various types of bio-
diversity data. Unlike more domain-specific ontologies, which may focus solely on
taxonomy or environmental data, BCO provides a flexible and comprehensive solution
for managing biological collections and their associated processes. This adaptabil-
ity is crucial for the BBC, a large dataset containing thousands of specimens, each
with unique attributes such as habitat, geographical location, and collection details.
BCO’s foundation on BFO also ensures interoperability across platforms, an essential
feature in biodiversity informatics. Additionally, BCO has a proven track record in
large biodiversity projects, giving confidence that it will effectively handle the BBC
dataset.

The research adapts the BCO framework to specifically address the needs of but-
terfly collections. It incorporates attributes such as habitat data, geographical lo-
cations, and collection event specifics, which provide a more focused framework for
butterfly research. This customization allows for more accurate data representation,
making the BBC dataset more valuable to researchers studying butterflies. Further-
more, it ensures that the BBC dataset, once structured using BCO, is interoperable
with major biodiversity platforms like GBIF and DataONE, facilitating easier access
and use by researchers across multiple fields, including ecology, genetics, and taxon-
omy. By transforming the Barcant Butterfly Collection (BBC) dataset into a machine-
readable format using BCO, this effort not only improves its accessibility but also
enhances its potential for conservation efforts and research prioritization. This trans-
formation will enable researchers to identify species at risk, study migration patterns,
and analyze the effects of environmental changes on butterfly populations. Addition-
ally, this work contributes to the broader field of biodiversity informatics by demon-
strating how BCO can be applied to other biological collections, providing a frame-
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work that can be replicated or adapted by other institutions seeking to improve their
management of biodiversity data.

Figure 3.2: Visualization of the BCO Ontology

3.3.2 TaxRank

Taxonomic classification has long been central to biodiversity research, offering a sys-
tematic way to organize species based on their evolutionary relationships and charac-
teristics. However, as biodiversity datasets grow in complexity, traditional methods of
classification are no longer sufficient to address the growing need to prioritize species
for research, conservation, and ecological management. To meet these needs, new
methods such as Phylogenetic Diversity (PD) and Evolutionary Distinctiveness (ED)
have been developed, which rank species based on their evolutionary significance
within the phylogenetic tree [59]. These approaches allow to identify species that
play key roles in evolutionary history, guiding efforts to conserve those that are most
critical to preserving biodiversity.

In the field of conservation, prioritization has become a key challenge. Tools like
the Species Prioritization Index (SPI) are specifically designed to identify species at
the greatest risk of extinction or those that play vital ecological roles. However, these
tools are limited to conservation-focused contexts. This is where TaxRank, a method
for ranking species by their taxonomic relevance within large biodiversity datasets,
becomes essential. TaxRank extends beyond conservation, offering a comprehensive
way to prioritize species across different research domains. Its ability to filter and
rank species by various criteria helps researchers and conservationists target the
most relevant species, streamlining decision-making processes in biodiversity man-
agement [60].

While ontologies such as the Environment Ontology (ENVO) and the Biological
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Collections Ontology (BCO) have advanced the structuring and sharing of biodiver-
sity data, they lack built-in mechanisms for ranking species based on their impor-
tance. These ontologies provide a framework for connecting diverse datasets but do
not emphasize the prioritization of species according to their taxonomic or ecological
relevance [61]. TaxRank addresses this gap by introducing a ranking system within
the framework of these ontologies, ensuring that significant species are highlighted
in biodiversity research. By incorporating a ranking mechanism into ontology-driven
databases, TaxRank enhances the utility of these tools, providing a more targeted ap-
proach to managing biodiversity information [62]. In the context of the semantic web
and biodiversity knowledge graphs, which are designed to integrate taxonomic data
across multiple platforms, the sheer volume of species data can be overwhelming [63].
While knowledge graphs facilitate data interoperability, they can make it difficult for
researchers to focus on the most critical species. TaxRank plays a crucial role in
managing complexity by introducing a method for prioritizing taxa within these inter-
connected systems. TaxRank ensures that the most important species are brought to
the forefront of analysis. This integration of TaxRank into semantic technologies and
ontologies not only enhances the organization of biodiversity data but also strength-
ens efforts to conserve and study the species that are most vital to ecological and
evolutionary processes.

The decision to focus on TaxRank stems from its scalability and adaptability, which
align with the objectives of managing and prioritizing species within extensive biodi-
versity datasets, such as the Barcant Butterfly Collection (BBC). TaxRank’s inherent
flexibility in ranking taxa based on variouus criteria such as relevance, ecological im-
portance, or conservation status makes it particularly useful for handling datasets
that encompass thousands of species. Its ability to integrate seamlessly with biodi-
versity ontologies allows for more sophisticated querying and enhanced data interop-
erability, positioning it for large-scale biodiversity research.

The TaxRank methodology is being refined to better address specific attributes
of biodiversity datasets, such as species vulnerability, geographical significance, and
ecological roles. This will enhance the system’s ability to provide precise prioritiza-
tion, particularly in datasets like the BBC, which are critical for conservation strate-
gies and research initiatives. The methodology is also integrated with existing bio-
diversity ontologies, such as the Biological Collections Ontology (BCO), enhancing
interoperability and streamlined data management. TaxRank’s applicability to bio-
diversity knowledge graphs is expanded, ensuring that ranked datasets are accessi-
ble and usable within semantic web environments. This integration with knowledge
graphs enhances TaxRank’s role in biodiversity research by making data more usable
and relevant for large-scale studies. Automated processes within TaxRank are devel-
oped to scale the methodology for handling large datasets, reducing manual workload
and ensuring accurate and efficient taxonomic data management.
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Chapter 4

Dataset

4.1 Dataset Description

The primary dataset for this research is the Barcant Butterfly Collection (BBC), sourced
from the Global Biodiversity Information Facility (GBIF)1, a global platform for aggre-
gating and analyzing biodiversity data. GBIF provides a vast array of records, from
historical museum specimens dating back centuries to modern DNA barcodes and
digital images. This platform, supported by contributions from over 107 countries,
serves as a comprehensive repository for species occurrence and distribution data
worldwide.

The BBC is the largest butterfly collection in the Caribbean, with over 5,000 spec-
imens representing nearly 700 species native to Trinidad and Tobago. This collection
was curated over 50 years by Malcolm Barcant, a Trinidadian entomologist, and is
thoroughly documented in his work, Butterflies of Trinidad and Tobago [64]. Housed
at the Angostura Museum and Butterfly Collection in Port of Spain since its acqui-
sition by Angostura in 19742, the BBC offers invaluable insights into the region’s
butterfly fauna, highlighting many rare and endemic species that play essential roles
in ecosystem health and biodiversity.

With support from the University of the West Indies Zoology Museum (UWIZM),
the collection was digitized, enabling the transcription of specimen data from hand-
written labels for accessibility on the GBIF portal. The BBC is highly valued in
scientific circles for its detailed documentation, including field notes, photographs,
and records on butterfly morphology, coloration, and patterns. This makes it a cru-
cial resource for taxonomic and ecological research, offering an extensive and well-
preserved snapshot of Trinidad and Tobago’s butterfly diversity.

4.2 Significance of the Collection in Biodiversity Research

As a comprehensive record of butterfly species in Trinidad and Tobago, the collection
provides essential baseline data that help researchers monitor changes in species di-
versity and distribution over time. Such data are critical for assessing the impact
of environmental changes and human activities on local biodiversity [7]. The collec-
tion’s significance is further underscored by its contributions to taxonomic studies.

1https://www.gbif.org
2https://www.angostura.com/tours
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Specimens from the Barcant Collection have been instrumental in describing new
species and refining the classification of existing ones, offering valuable insights into
the evolutionary relationships among butterfly species. The collection contributed to
the revision of species within the Heliconiini and Morphinae groups of butterflies,
leading to the identification of new species and a better understanding of their phy-
logeny. Additionally, studies using the Barcant Collection have provided essential
data for constructing evolutionary trees, offering insights into how butterfly species
have diversified over time. Research publications from entomologists like Norman C.
Owen [10] and related papers on Neotropical butterfly systematics often reference
the Barcant Collection in their work. The historical nature of the collection allows
researchers to compare past and present species distributions. Recently, efforts have
been made to digitize the Barcant Collection, making it accessible to researchers
worldwide. This digital availability has expanded the collection’s impact, facilitating
comparative studies across different regions and promoting collaborative research in
biodiversity science.

The application of ontologies and knowledge graphs can significantly enhance
data management and analysis of the Barcant Butterfly Collection. Ontologies pro-
vide a standardized framework for describing butterfly morphology, taxonomy, and
distribution, enhancing data accuracy and clarity. Knowledge graphs, built on these
ontologies, create interconnected networks that reveal complex relationships among
species, enabling advanced analyses and helps uncover hidden patterns [65]. This
integration boosts the accessibility and utility of the digitized collection, supporting
more effective and collaborative research.

4.3 Structure of the Dataset

The collection is thoughtfully categorized into six distinct family groups:

1. Hesperiidae3 - Known as skippers, these small, fast-flying butterflies are dis-
tinguished by their hooked antennae. Notable species include the Long-tailed
Skipper and the Red-banded Hairstreak.

2. Pieridae4 - This family is renowned for its brightly colored members such as the
Cloudless Sulphur and Orange-barred Sulphur, which are common in the region.

3. Nymphalidae5 - The largest butterfly family, often referred to as brush-footed
butterflies, includes species like the Blue Emperor and the Malachite. Nymphal-
idae are known for their striking wing patterns and colors.

4. Papilionidae6 - Some of the largest butterflies, commonly known as Swallow-
tails, characterized by their tail-like extensions on the hindwings. The Zebra
Longwing is a prominent species in this family.

3https://www.gbif.org/dataset/a4b2035f-fa9d-4d80-97dc-f5d58ec4ef51
4https://www.gbif.org/dataset/438245ee-99e3-4417-bd4f-4ef7ecc16660
5https://www.gbif.org/dataset/641196ce-d154-456a-8af1-a306b0f81895
6https://www.gbif.org/dataset/a65807ea-c9e7-4173-8ed2-8c41e1b3a0fe
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5. Lycaenidae7 - These small, often iridescent butterflies include species such as
Clench’s Greenstreak and Cassius Blue, highlighting the delicate beauty of the
collection.

6. Riodinidae8 - Often called Metalmarks due to their metallic wing markings, this
family includes species like the Metallic-tipped Flasher and the Doris Longwing,
adding to the visual diversity of the collection.

Family Notable Species

Hesperiidae Long-tailed Skipper, Red-banded Hairstreak

Pieridae Cloudless Sulphur, Orange-barred Sulphur

Nymphalidae Blue Emperor, Malachite

Papilionidae Zebra Longwing

Lycaenidae Clench’s Greenstreak, Cassius Blue

Riodinidae Metallic-tipped Flasher, Doris Longwing

Table 4.1: Notable Butterfly Species by Family

Each entry in the dataset contains comprehensive information about specific but-
terfly specimens. The attributes for each entry are as follows:

• occurrenceID: A unique identifier for each specimen occurrence.

• scientificName: The full scientific name of the butterfly

• taxonRank: The taxonomic rank of the most specific name in the scientific-
Name.

• decimalLatitude and decimalLongitude: The geographic coordinates where
the specimen was recorded.

• identifiedBy: The name of the person who identified the specimen.

• dateIdentified: The date when the identification was made.

• eventDate: The date when the specimen was collected, defining the temporal
aspect of occurrences.

• locality: The specific locality where the specimen was collected, providing de-
tailed location context.

• family: The taxonomic family to which the organism belongs, aiding in hierar-
chical classification.

• genus: The genus within the taxonomic hierarchy, further refining the classifi-
cation.

• species: The specific epithet within the genus, representing the organism at
the species level.

7https://www.gbif.org/dataset/2e8e59ba-4132-47ab-9923-dfc0c046683b
8https://www.gbif.org/dataset/8497849e-773d-4d4b-b89c-221166879406
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4.4 Data Visualization

Data visualization plays a crucial role in simplifying complex data, revealing patterns,
and improving retention. It supports predictive analysis, enhances storytelling, and
increases productivity by encouraging exploration. Transforming large datasets into
visual formats makes information more understandable and engaging, enabling quick
insight generation and informed decision-making.

Figure 4.1: Species count per family

Figure 4.2: Proportion of Species by Butterfly Family

The bar and pie charts in fig. 4.1 and fig. 4.2 provide a detailed visualization of
species distribution among butterfly families, highlighting both numerical counts and
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proportional significance. Nymphalidae stands out as the most dominant family, rep-
resenting 31.5% of the total species with 1,288 recorded individuals, while Papilion-
idae shows the smallest count among the six families, with 173 species. This domi-
nance of Nymphalidae aligns with its broad ecological range and adaptability across
diverse habitats, from tropical to temperate ecosystems, affirming its recognized im-
portance in biodiversity studies. The combined graphical representation underscores
the critical role that Nymphalidae plays in butterfly biodiversity within the dataset,
while also highlighting the contributions of other families such as Riodinidae, Ly-
caenidae, and Pieridae.

Figure 4.3: Latitudinal distribution of species occurrences across butterfly
families

The boxplot in fig. 4.3 represents the distribution of species occurrence by fam-
ily based on latitude. Six families are depicted: Pieridae, Riodinidae, Nymphalidae,
Lycaenidae, Hesperiidae, and Papilionidae. Each box plot displays the interquartile
range (IQR), median, and spread of latitudes for species occurrences within each
family. The species in the Pieridae family demonstrate the largest range in latitude,
with some data points extending beyond 11.2. Conversely, Papilionidae species have
a more constrained distribution. Outliers are present, particularly for Hesperiidae,
suggesting some variability in species occurrences. This visualization helps highlight
the latitudinal distribution and variability of different butterfly families.

Upon analysis of the line graph fig. 4.4, it is evident that the dataset is well-
structured, exhibiting minimal instances of missing or null values across the con-
sidered columns. The line graph depicts the number of species names against the
proportion of null values for each of the six distinct butterfly families. The family
Pieridae notably has the highest occurrence of null values, indicating a potential data
gap that warrants closer scrutiny.

In contrast, the Riodinidae family presents a notable anomaly within the dataset,
characterized by the inclusion of 349 null values in the family column and the pres-
ence of other families within the same dataset. This atypical observation is captured
and highlighted in the accompanying bar chart fig. 4.5.
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Figure 4.4: Trend of null values with respect to species count

Figure 4.5: Riodinidae collection with count
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Chapter 5

Methodology

This chapter provides a comprehensive overview of the research methodologies and
strategies used to address the main research question at hand:

RQ1: Concepts and Relationships: What specific ontological concepts and
relationships are crucial for developing a comprehensive Barcant Butter-
fly Collection ontology that effectively captures the nuances of butterfly
biodiversity?

The following serves as the chapter’s framework:

1. Transform the Barcant Butterfly Collection (BBC) dataset into the Darwin Core
(DwC) vocabulary to standardize biodiversity data. This ensures that the data
follows a widely-accepted format for biodiversity information.

2. Convert the standardized DwC data into RDF (Resource Description Frame-
work) format to enhance data interoperability and enable advanced querying
capabilities. This process can be done by creating and designing ontology for
the dataset

3. Apply ontology alignment techniques to match the created BBC ontology with
existing biodiversity ontologies, such as the Biological Collections Ontology (BCO)
and the Taxonomic Rank Ontology (TaxRank).

4. Construct a knowledge graph using the aligned ontology data for advanced anal-
ysis, enabling more in-depth exploration and querying of the BBC dataset within
a broader ecological and environmental context.

5. Ecological range maps are generated to visualize the geographic distribution of
butterfly species in the BBC dataset, offering insights into species habitats and
spatial patterns. These maps are crucial for conservation planning, as they help
identify areas of species richness and regions where biodiversity may be at risk.

6. Compare the Barcant Butterfly Collection (BBC) with the World Database on Pro-
tected Areas (WDPA), with focus on identifying butterfly species from the BBC
that are found within the geographic boundaries of protected areas listed in the
WDPA. This will enrich the present dataset and can aid conservation strategies

25



5.1 Data Transformation and Standardization to Darwin
Core (DwC)

To ensure that the dataset is compatible with other biodiversity datasets and can be
easily integrated into global databases, it is essential to map the attributes to the Dar-
win Core (DwC) vocabulary. Darwin Core is a standardized framework used widely
for representing biodiversity data. By mapping the dataset’s attributes to DwC terms,
the data becomes more accessible and interoperable with other datasets in the scien-
tific community. It allows the data to be shared, compared, and analyzed alongside
other datasets from different regions or projects. This standardization is crucial for
large-scale biodiversity assessments, species distribution modeling, and conservation
planning. Based on the attributes, the Darwin Core terms for BBC dataset are given
as:

• scientificName → dwc:scientificName

• locality → dwc:locality

• eventDate → dwc:eventDate

• recordedBy → dwc:recordedBy

• decimalLatitude → dwc:decimalLatitude

• decimalLongitude → dwc:decimalLongitude

• coordinateUncertaintyInMeters → dwc:coordinateUncertaintyInMeters

• countryCode → dwc:country

• verbatimScientificName → dwc:verbatimScientificName

• basisOfRecord → dwc:basisOfRecord

• institutionCode → dwc:institutionCode

• countryCode → dwc:country

• collectionCode → dwc:collectionCode

• catalogNumber → dwc:catalogNumber

• identifiedBy → dwc:identifiedBy

• dateIdentified → dwc:dateIdentified

5.2 Ontology Construction

The ontology for the Barcant Butterfly Collection (BBC) is meticulously constructed
using RDF and OWL standards, focusing on the integration and standardization of di-
verse datasets, each with unique aspects. This section outlines the ontology creation
process, highlighting its design, application, classes, properties, and the mapping of
entities to ensure compatibility and interoperability with existing ontologies in the
domain of biodiversity research.
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5.2.1 Ontology Design

The formal ontology framework presented in this research involves creating struc-
tured classes, properties, and relationships. The ontology enables the systematic rep-
resentation of butterfly species, their taxonomic classification, geographic locations,
and observation data.

1. Classes
The ontology is composed of several core classes, which represent taxonomic
ranks and geographic locations. These classes ensure that the ontology can
capture both biological and geospatial information related to butterfly observa-
tions. Each class is designed to capture specific information, corresponding to
the unique characteristics of the datasets.

• Taxonomy: The Taxonomy class organizes the taxonomic hierarchy with
subclasses such as Kingdom, Phylum, Class, Order, Family, Genus, and
Species. Each of these classes follows a hierarchical structure that en-
sures the accurate classification of butterfly species from the most general
(Kingdom) to the most specific (Species).

• ScientificName: A class representing the scientific name of a species. This
class is essential for species identification following the binomial nomencla-
ture system

• GeographicLocation: This class captures the spatial data of observations,
including latitude and longitude. The geographic location class is used to
record where a butterfly species has been observed.

• Observation: Represents data about specimen observations, such as the
date of observation and the observer.

Figure 5.1: Diagram of ontology structure

2. Properties
The properties in the ontology define the relationships between the taxonomic
categories, geographic locations, and observational data. These properties are
essential for linking instances of classes and ensuring that the ontology captures
the full complexity of butterfly species data.

• hasScientificName: This object property links a Species instance to its
scientific name, represented in the ScientificName class. This property
ensures the formal identification of species within the ontology.
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• observedIn: This property links an instance of the Species class to an
instance of the GeographicLocation class, indicating the specific location
where the butterfly was observed.

• Taxonomic Relationships: Properties such as hasPhylum, hasClass, ha-
sOrder, hasFamily, hasGenus, and hasSpecies are defined to link species to
their respective taxonomic categories, ensuring the accurate representa-
tion of the biological hierarchy.

Figure 5.2: View of the Species Entity in the BBC Ontology

Figure 5.2 presents a detailed diagram of the "Species" entity in the Bar-
cant Butterfly Collection ontology. In this figure, the Species entity realizes
the core function related to a set of attributes and related entities via spe-
cific relationships.

• HasGenus: Links the species to its Genus, situating it within the broader
taxonomic hierarchy.

• HasFamily: Connects the species to its Family, further defining its taxo-
nomic classification.

• HasLocation: Relates the species to its GeographicalLocation, integrating
geographical context into the species profile.

3. Hierarchy

The taxonomic hierarchy is a critical part of ontology, ensuring that species are
correctly classified according to the biological system. The isSubclassOf prop-
erty is used to establish this hierarchy, linking broader taxonomic categories to
more specific ones. This property defines the relationship between taxonomic
classes. For example, the Species class is a subclass of the Genus class, the
Genus class is a subclass of the Family class, and so on. This hierarchical struc-
ture preserves the natural biological classification of butterfly species.
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Figure 5.3: Ontology Structure Diagram of the Barcant Butterfly Collection

The hierarchical structure of the ontology is depicted in fig. 5.3, illustrating
how the main classes and their subclasses are organized. This diagram serves
as a foundational visual representation of the ontology, demonstrating how it
categorizes and organizes taxonomic information. It facilitates accurate data
representation and supports complex queries and data integration.

4. Instances
Instances in the ontology correspond to specific data points, including individ-
ual butterfly species, geographic locations, and observations. These instances
are essential for populating the ontology with real-world data, which enables
researchers to analyze species distribution and track biodiversity trends. Each
butterfly observation is instantiated as a member of the Species class, with con-
nections to relevant taxonomic classes and geographic information. Each in-
stance is assigned a unique URI, often sourced from external datasets like the
Global Biodiversity Information Facility (GBIF), ensuring precise identification

29



and integration.

5.2.2 Ontology Population

Populating the ontology is a crucial step in turning a conceptual model into a data-
rich framework that can be used for real-world analysis. In this case, the ontology
is populated with biodiversity data related to butterfly species, including taxonomic
classification, geographic location, and specimen observation information. The data
is drawn from a CSV file that contains various attributes for each observed speci-
men. The ontology used in the research project is a custom biodiversity ontology
focused on representing taxonomic classifications and specimen observations of but-
terfly species. It’s built using RDF (Resource Description Framework) and OWL (Web
Ontology Language) to organize biodiversity data.

Figure 5.4 represents a biodiversity ontology designed to manage butterfly speci-
men data, focusing on taxonomic classification, geographic location, and observation
details. The ButterflySpecimen class captures individual butterfly data, including
its unique identifier, scientific name, and metadata such as geographic coordinates
and observation dates. Each specimen is linked to a hierarchical Taxonomy class,
which categorizes it under biological ranks such as Kingdom, Phylum, and Species.
The GeographicLocation class holds information about where the specimen was ob-
served, while the Taxonomy class provides external mappings to the widely-used NCBI
taxonomy database, ensuring data interoperability. The QueryService interface sup-
ports data queries, allowing users to retrieve information about specimens, their clas-
sifications, locations, and observation metadata, which helps facilitate biodiversity
research and analysis. The process of populating the ontology involves creating indi-
vidual instances for each specimen and linking them to relevant properties, such as
their position in the biological taxonomy, the location where they were observed, and
other relevant metadata (e.g., the observer and the date of identification).

1. Instance Creation
The .csv file contains detailed information about butterfly specimens, including
attributes like gbifID, phylum, class, order, family, genus, and geographic co-
ordinates such as decimalLatitude and decimalLongitude. For each row in the
CSV file, the RDF graph creates an instance of the Species class, using the gbi-
fID as a unique identifier for the specimen. The URI for each specimen instance
is dynamically generated based on its gbifID to ensure each instance is uniquely
represented in the graph.

2. Property Assignment
Once the instance for each specimen is created, various properties are assigned
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Figure 5.4: Class diagram of the ontology used

to it based on the data available in the CSV file. These properties include both
taxonomic information (e.g., Phylum, Class, Order) and geographical informa-
tion (e.g., decimalLatitude, decimalLongitude). Each property is only added if
there is data present for it in the CSV file, which is checked using the pd.notna()
function to avoid adding empty or missing values.
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5.3 Ontology Alignment

Ontology alignment is a critical step in integrating multiple ontologies or datasets,
ensuring that equivalent or similar concepts are linked across different sources while
maintaining semantic consistency. The primary goal of aligning the BBC Ontology
(Barcant Butterfly Collection Ontology ) with the Biological Collections Ontology (BCO)
and the Taxonomic Rank Ontology (TaxRank) is to facilitate seamless integration of
taxonomic, biological collection, and observational data across diverse sources. This
alignment enhances interoperability, allowing compatibility with existing biodiversity
data infrastructures and enabling streamlined data exchange and reuse across insti-
tutions. By linking specimen observations from BBC with taxonomic information from
TaxRank and specimen-level data from BCO, the dataset is enriched. Consistency is
achieved by mapping equivalent classes and properties, ensuring uniform representa-
tion of key concepts, which simplifies data retrieval and integration. Additionally, the
alignment process strengthens the ontology’s querying and reasoning capabilities,
enabling sophisticated queries that span taxonomic, specimen collection, and obser-
vational data. This comprehensive approach supports interoperability and advanced
reasoning in biodiversity informatics.
The Biological Collections Ontology (BCO) is a specialized framework designed to
standardize the representation of data associated with biological collections, includ-
ing specimen information, collection events, taxonomic details, and the preservation
and curation of specimens. It is widely used by institutions like natural history muse-
ums, herbaria, and biological repositories to ensure consistency in how they manage
and share information about their collections. BCO enables the structured documen-
tation of specimen data, encompassing key attributes such as taxonomic classification
(species, genus, family), physical traits, and scientific names. Additionally, it captures
critical information about collection events, including the date and location of spec-
imen collection, the individuals involved, and the methods used. The ontology also
provides a structured means of representing taxonomic information, ensuring com-
patibility with other taxonomic data systems. Further, BCO outlines how specimens
are preserved and curated, ensuring long-term data continuity and access. Its pri-
mary goal is to create a uniform structure for biological collections data, facilitating
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the integration of datasets from multiple institutions, ultimately promoting more effi-
cient data exchange and reuse in biodiversity research.

The Taxonomic Rank Ontology has been structured to represent the hierarchical
system of biological classification, ranging from broad categories such as kingdom
to specific ranks like species. The ontology models each taxonomic level as a sub-
class of the parent class taxonomic_rank, reflecting the natural progression of bio-
logical categorization. The main taxonomic ranks include kingdom, phylum, class,
order, family, genus, and species, ensuring that the system adheres to standard tax-
onomy conventions. Additionally, specialized and infraranks such as infrakingdom,
infraorder, cultivar, and subspecies have been incorporated to offer greater granu-
larity in classifications, particularly in botany. This structured hierarchy enhances
the ontology’s ability to support detailed representation and analysis of biodiversity,
facilitating research in species relationships and taxonomic studies.

Figure 5.5: Taxonomic Hierarchy Diagram

5.3.1 Ontology Alignment Proces

The following steps outline the process of aligning the BBC Ontology with BCO and
ENVO. Each step involves extracting classes, matching them using string similarity,
aligning taxonomic and environmental data, and saving the aligned ontology.

1. Loading and Parsing Ontology Files
The first step in ontology alignment is the creation of RDF (Resource Descrip-
tion Framework) graphs, which represent the relationships between entities in
a structured format. RDF is a widely-used data model that allows for the or-
ganization and integration of information, particularly for semantic data and
web applications. The RDF model describes data as triples, consisting of a sub-
ject, predicate, and object, allowing for clear representation of relationships
between resources. For example, in a butterfly ontology, a triple states that
a species belongs to a specific genus: (Species A) — [hasGenus] —> (Genus
B). This structure enables complex relationships to be modeled and integrated
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across different datasets.
RDF triples are foundational for ontology alignment because they capture not
only the entities in an ontology but also the relationships between them. The
subject represents the entity being described, the predicate defines the prop-
erty or relationship, and the object can either be another entity or a literal value
such as a string or number. By building RDF graphs from these triples, we can
represent intricate networks of relationships between taxonomic and biological
collection data. In a biodiversity context, RDF graphs can illustrate how species
relate to their habitats, taxonomic categories, or specimen data, forming the
basis for alignment between different ontologies. Ontology alignment aims to
link equivalent concepts across multiple datasets to ensure consistent represen-
tation and interpretation of data. RDF graphs are instrumental in achieving this
alignment. When aligning the BBC Ontology with the Biological Collections On-
tology (BCO) and the TaxRank Ontology, RDF triples serve as a mechanism to
map similar or identical concepts. For instance, RDF can represent a butterfly
species from the BBC Ontology as semantically equivalent to the same species
in BCO. By creating these mappings, the alignment process ensures semantic
consistency across datasets, allowing for integrated querying and data reuse.
Equivalence in ontology alignment is established through RDF triples by linking
classes and properties that share the same meaning across ontologies. For ex-
ample, a triple might represent the alignment of a Species class from the BBC
Ontology with the corresponding Species class in BCO. The predicate in this
case could be owl:equivalentClass, indicating that these two classes are consid-
ered semantically identical. This type of mapping not only ensures consistency
in class definitions but also allows reasoning engines and queries to recognize
these entities as the same, regardless of the ontology in which they originated.
RDF graphs also support the alignment of properties and relationships, extend-
ing the ontology integration beyond just classes. For instance, properties like
hasGenus or hasSpecies in BBC can be aligned with similar properties in BCO
and TaxRank. Using RDF to represent these connections facilitates the cre-
ation of a unified ontology that allows researchers to conduct comprehensive
biodiversity analyses. By leveraging RDF graphs, ontologies like BBC, BCO, and
TaxRank can be linked in a way that preserves semantic meaning while support-
ing advanced reasoning and interoperability across diverse datasets.

2. Extracting Classes from the Ontologies
In ontology alignment, extracting classes from RDF graphs is crucial, as these
classes represent the primary concepts within a domain. Extracting and aligning
the core taxonomic and biological collection classes ensures that key entities can
be accurately represented and connected, which is essential for building a con-
sistent and interoperable system across diverse ontologies. Taxonomic classes
like Species and Genus are vital for biological ontologies because they provide
the hierarchical framework for categorizing organisms. By defining how species
relate to genera and other taxonomic ranks, these classes help maintain sci-
entific consistency when describing biological entities. Likewise, classes like
Sample and MaterialSample in BCO are essential for representing biological
specimens collected during research. Aligning these taxonomic and biological
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collection classes across ontologies like BBC, BCO, and TaxRank ensures that
data from different sources can be seamlessly integrated, allowing researchers
to make cross-dataset queries and conduct comprehensive analyses. The align-
ment process begins with classes because they define the ontology’s fundamen-
tal structure, which all properties and relationships are built upon. Once the
classes are aligned, the relationships between them,such as a species’ connec-
tion to its genus or a sample’s link to an organism can also be mapped. This ap-
proach allows individuals (instances of these classes) to be consistently aligned
across datasets. By focusing on class alignment first, the ontology alignment
process establishes a solid foundation that facilitates the mapping of properties,
relationships, and individuals, ensuring interoperability and data consistency
across diverse datasets.

3. String-Based and Semantic Similarity Matching for Class and Property
Alignment
In ontology alignment, identifying equivalent classes and properties across dif-
ferent ontologies is critical for ensuring consistent data representation and in-
terpretation. This process involves determining whether classes like "Species"
in the BBC Ontology correspond to the same class in other ontologies, such
as the Biological Collections Ontology (BCO) or TaxRank. Both string-based
similarity and semantic similarity techniques are employed to identify potential
equivalence between classes. These methods help reconcile different naming
conventions and terminological variations across ontologies, thus facilitating ef-
fective data integration.

String-based similarity matching involves directly comparing the names of classes
from different ontologies to assess how closely they align. For example, an on-
tology might use "Species_A" while another uses "BCO_SpeciesA" to refer to
the same concept. Using algorithms SequenceMatcher from the difflib mod-
ule, a similarity score ranging from 0.0 (no similarity) to 1.0 (perfect match)
is computed to evaluate the match between two strings. A threshold, typically
set around 0.7, helps determine when two classes are likely equivalent. This
ensures that minor naming variations are captured, reducing the risk of false
positives or negatives in the alignment process.

While string-based matching focuses on the syntactical alignment of class names,
semantic similarity goes deeper by comparing the underlying meanings of those
names. This approach is especially useful when different ontologies use distinct
terms for the same concept. Tools like WordNet — a lexical database of English
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Figure 5.6: Similarity Matching Process

— allow for the calculation of semantic similarity by identifying the relationships
between the words’ synsets (sets of synonyms). Using algorithms such as Wu-
Palmer similarity, the distance between meanings of class names is measured.
Even if two class names do not match perfectly in terms of string similarity, their
conceptual alignment can still be established if they share similar meanings in
their synsets.

Combining string-based and semantic similarity enhances the robustness of the
ontology alignment process. String similarity captures small variations in nam-
ing conventions, while semantic similarity addresses conceptual differences that
string matching alone cannot detect. For example, a high string similarity score
between "Species_A" and "BCO_SpeciesA," combined with a strong semantic
match in WordNet synsets, ensures that these classes are recognized as equiv-
alent. This comprehensive approach allows for more accurate alignment of on-
tologies within BBC, BCO, and TaxRank.

4. Mapping Aligned Classes and Properties
Once matching classes and properties are identified during the ontology align-
ment process, the next step is to map these aligned entities to ensure they are
recognized as semantically equivalent across different ontologies. This mapping
involves linking taxonomic entities (e.g., species, genus) and specific instances
(e.g., butterfly specimens) to their corresponding concepts in other ontologies,
such as the Biological Collections Ontology (BCO) and TaxRank. Establishing
these mappings is essential for enabling consistent, unified querying and analy-
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sis across different datasets.

Figure 5.7: Class Matching Diagram

To formalize the equivalence of the entities, the OWL properties OWL.equivalentClass
and OWL.equivalentProperty is used. OWL.equivalentClass is used to declare
that two classes from different ontologies represent the same concept even if
the class name is different, while OWL.equivalentProperty indicates that two
properties have the same meaning and can be used interchangeably. By apply-
ing these properties, reasoning engines and query systems can treat the linked
classes and properties as identical, regardless of differences in their naming or
structure across ontologies. The mapping process starts by identifying equiv-
alent classes and properties for taxonomic entities. Once these equivalences
are established, they are mapped into an RDF graph using the OWL properties
mentioned earlier. If the class BBC is found to be equivalent to BCO, this rela-
tionship is formalized in the RDF graph using OWL.equivalentClass. Similarly,
properties like BBC and BCO are linked using OWL.equivalentProperty to en-
sure they are treated as equivalent across the ontologies. By mapping aligned
classes and properties in this way, the RDF graph creates a formalized repre-
sentation of equivalence. This ensures that the same concepts and relationships
are recognized across all involved ontologies.

The above steps can be simplified and shown in the form of a flowchart. Figure 5.8
illustrates this flowchart briefing all the steps in the ontology alignment process.
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5.3.2 Classes Used in the Ontology Alignment Process

The integration of ontologies for the Barcant Butterfly Collection involves aligning
classes from the BBC Ontology (Butterfly Biodiversity and Observation Ontology),
BCO (Biological Collections Ontology), and TaxRank Ontology (Taxonomic Rank On-
tology). These ontologies each contribute critical classes that serve distinct roles in
capturing taxonomic, observational, and specimen data, enabling comprehensive and
detailed biodiversity research. Below is a detailed breakdown of the classes used
from each ontology and their role in this integration.

1. Classes from the BBC Ontology
The BBC Ontology focuses on modeling taxonomic and observational data specif-
ically related to butterflies. Key classes from this ontology include TaxonKey and
SpeciesKey, which serve as unique identifiers for taxa (genus or species) and
species, respectively. The ScientificName class represents the official scientific
name of butterfly species, ensuring taxonomic accuracy. Observation-related
details are captured through classes like EventDate, which records the date of
the butterfly observation, and GeographicalLocation, which specifies where the
observation took place. Additionally, RecordedBy and IdentifiedBy attribute the
observation and identification of the butterfly to the responsible person or en-
tity. The Observation class encapsulates the entire observational event, includ-
ing details such as butterfly behavior and environmental factors. These classes
establish the backbone for linking taxonomic data with specific observational
metadata.

2. Classes from the Biological Collections Ontology (BCO)
The BCO Ontology provides a framework for capturing information about bio-
logical specimen collections and associated events. The Sample and Material-
Sample classes refer to the biological specimen collected, specifying the type
of sample, such as preserved, fossilized, or living. The Event class represents
the occurrence during which the specimen was collected, while EventAttribute
records specific attributes of the event, such as environmental conditions. The
Location and GeologicalContext classes provide geographical and environmen-
tal context, detailing where the collection occurred and describing factors. Oc-
currence and Organism represent the occurrence of the specimen and describe
the organism from which the sample was collected, respectively. These classes
are crucial for linking specimen data with environmental metadata and event
details.

3. Classes from the TaxRank Ontology
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Figure 5.8: Flowchart of ontology alignment process

The TaxRank Ontology plays a central role in organizing taxonomic informa-
tion by capturing the hierarchical structure of biological classification. The
Taxonomic_Rank class serves as the top-level concept, encompassing various
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taxonomic levels such as Kingdom, Phylum, Class, Order, Family, Genus, and
Species. These ranks define the relationships between different levels of bi-
ological classification, ensuring a consistent and structured representation of
species data. Further granularity is achieved with classes like Subspecies, In-
fraspecies, and Varieties, which represent finer taxonomic divisions. These taxo-
nomic classes are foundational to ensuring that species are correctly organized
and classified within the ontology, aligning closely with the biological classifica-
tion system.

5.4 Generating knowledge graphs

Generating a knowledge graph from an OWL (Web Ontology Language) ontology pro-
vides a structured way to visualize relationships between entities in a dataset. OWL
ontologies encode hierarchical and semantic links, and Python libraries such as ‘owl-
ready2‘ and ‘networkx‘ allow for efficient construction and visualization of these re-
lationships as directed graphs. This method enables researchers to interpret the on-
tology’s structure by transforming abstract classes and relationships into an intuitive
graphical format.

Using ‘owlready2‘, the ontology is loaded and parsed, extracting entities (nodes)
and their relationships (edges), such as subclass hierarchies. With ‘networkx‘, these
entities and relationships are represented as a directed graph, where each class be-
comes a node and subclass relationships form the edges. Visualization through ‘mat-
plotlib‘ helps to clearly depict the hierarchical and relational structure of the ontology,
making the data easier to explore and analyze.

This approach allows for a clearer understanding of complex datasets, especially
in fields like biodiversity, where taxonomy and hierarchical relationships are key. Visu-
alizing the ontology as a graph highlights critical relationships, enabling researchers
to quickly identify patterns and connections.

In summary, generating knowledge graphs from OWL ontologies offers an effec-
tive means of exploring complex data structures. This technique provides a clear,
interactive view of the underlying relationships, making it a valuable tool for both
data analysis and decision-making in research contexts.

Figure 5.9 presents a densely interconnected knowledge graph generated from
the ontology, with nodes representing entities like "species," "sample," and "obser-
vation," and edges denoting relationships among them. The hierarchical structure,
depicted in a circular layout, positions general concepts at the center, with specific
ones radiating outward. The identifiers such as "TAXARANK" and "BCO" suggest a
focus on biodiversity and taxonomy, aiding researchers in exploring classifications
and connections within the ontology. By integrating reasoning via an OWL reasoner
like Pellet through the owlready2 library, additional relationships such as subclasses
and equivalences can be inferred based on logical axioms. This reasoning enriches
the knowledge graph by revealing hidden connections, ensuring consistency, and en-
hancing query capabilities.
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Figure 5.9: The resulting knowledge graph
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Chapter 6

Applications

In this chapter, we explore the practical applications of the methodologies and tech-
niques developed throughout this research. By applying these methods in real-world
contexts, we aim to demonstrate the utility and relevance of our approach in address-
ing challenges within the domain. This application not only validates the theoretical
concepts but also provides insights into their effectiveness and adaptability across
various scenarios. Through this chapter, we illustrate how the research outcomes can
be translated into actionable solutions, offering potential benefits for practitioners
and stakeholders in the field.

6.1 Ecological Range Mapping from BBC Ontology

Ecological range maps offer a data-driven approach to visualizing species distribu-
tions by combining species occurrence data with environmental variables such as
climate, habitat type, and ecological interactions. These maps capture the dynamic
nature of species distributions in response to changing environmental conditions. The
maps are generated using real-time data and computational models, providing a scal-
able solution for biodiversity research and conservation.

6.1.1 Strengths of Ecological Range Maps

Ecological range maps offer a data-driven approach to visualizing species distribu-
tions by combining species occurrence data with environmental variables such as
climate, habitat type, and ecological interactions. These maps are particularly valu-
able in capturing the dynamic and complex nature of species distributions in response
to changing environmental conditions. They are generated through the integration of
real-time data and computational models, providing a flexible and scalable solution
for biodiversity research and conservation.

One of the key strengths of ecological range maps lies in their ability to incor-
porate large datasets from diverse sources, such as species occurrence records, cli-
mate data, and habitat information. This data-driven approach enables the creation of
maps that reflect the most up-to-date and comprehensive information available. Un-
like expert range maps, which rely heavily on expert interpretation, ecological range
maps are grounded in empirical data, reducing the potential for bias and subjective
errors. This leads to a more objective representation of species distributions that
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can be continuously updated as new data becomes available. Ecological range maps
are inherently adaptable, making them better suited to reflect the dynamic nature
of ecosystems. As environmental conditions change, these maps can be quickly up-
dated to account for new data, ensuring that they remain relevant and accurate. This
adaptability is particularly important in the context of climate change, where species
distributions are rapidly shifting. By using ecological range maps, researchers and
conservationists can more effectively monitor and respond to these changes, ensuring
that conservation strategies are based on the most current information.The computa-
tional methods used in ecological range mapping, such as species distribution models,
allow for scalability across different spatial and temporal scales. This makes ecolog-
ical range maps highly versatile, applicable to both local and global studies. The
ability to model potential distributions based on various environmental scenarios also
provides valuable insights into future species distributions under different climate
change models. This scalability and broad applicability make ecological range maps a
powerful tool for addressing complex ecological questions and informing conservation
efforts on multiple levels.

Ecological range maps benefit from the continuous integration of new data sources,
including citizen science contributions, remote sensing data, and advances in ecologi-
cal modeling techniques. This constant influx of data enables the maps to evolve over
time, improving their accuracy and predictive power. In contrast, expert range maps
may become outdated as they rely on static knowledge bases that may not be as fre-
quently updated. The ability of ecological range maps to incorporate new information
in real-time makes them more relevant in rapidly changing environments.

In the Barcant Butterfly Collection the ontology has classes and properties to cap-
ture data about species locations, such as GeographicLocation, DecimalLatitude, Dec-
imalLongitude and EventDate. Next, maps are generated to display butterfly occur-
rences using data from the ontologies, stored in RDF format. First, load the RDF
graph from the created ontologies, extract the names of various species and their lo-
cations, and then organize this information into a GeoDataFrame using GeoPandas.
Assign the GeoDataFrame a Coordinate Reference System (CRS) of WGS84 to align
with global positioning standards. Next, plot the data on a map, using Matplotlib to
display red dots at each butterfly sighting location. A background map from Open-
StreetMap is added using Contextily to provide geographical context. The view is
zoomed in on Trinidad and Tobago to enhance readability. These maps illustrate the
distribution of various butterfly species.

In the course of generating biodiversity maps from the Barcant Butterfly Collection
RDF dataset, we initially anticipated producing six maps, each representing a unique
family of butterfly species. However, upon execution of the mapping algorithm, ten
maps were generated, indicating a higher number of unique families than expected.
This discrepancy required further investigation into the dataset’s structure.

To understand the distribution of species across families, the dataset was exam-
ined by grouping species according to their family names and counting the species
associated with each family. The families obtained were Pieridae, Lycaenidae, Hes-
periidae, Nymphalidae, Sesiidae, Papilionidae, Riodinidae, Ephydridae, Noctuidae,
Zygaenidae. Since the objective was to generate six numbers of maps with main
families, the code was adjusted accordingly.

The unexpected generation of additional maps highlights the importance of thor-
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(a) Ecological Range Map of the
Pieridae Family

(b) Ecological Range Map of the
Riodinidae Family

(c) Ecological Range Map of the
Hesperiidae Family

(d) Ecological Range Map of the
Nymphalidae Family

(e) Ecological Range Map of the
Papilionidae Family

(f) Ecological Range Map of the
Lycaenidae Family

Figure 6.1: Ecological Range Maps of the Butterfly Occurrences in Various
Families
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ough data validation in biodiversity research. The presence of more families than
expected could indicate a inconsistent dataset, it underscores the potential for errors
due to inconsistent taxonomy. By investigating the family distribution and standard-
izing family names, we can ensure accurate and consistent visualizations of species
distribution.

6.2 Comparing BBC with WDPA Database

The Protected Planet (WDPA) dataset provides detailed information about protected
areas around the world. It includes metadata on each protected area, such as its
name, designation, IUCN category, and geographical location. Specifically, the dataset
focuses on conservation areas like nature reserves and national parks, categoriz-
ing them by their protection status and management authority. In the case of the
Trinidad and Tobago (TTO) dataset, it contains information on protected areas like
the "Rochard Douglas Reserve" and the "Tacarigua Reserve," providing details such
as the designation type (e.g., nature reserve, national park), IUCN category, and other
administrative data like ownership and management.(Obtained from [66])

The comparison of species from the Barcant Butterfly Collection with those found
within specific protected areas in the Trinidad and Tobago (TTO) region offers critical
insights into the biodiversity preserved within these zones. By analyzing the geo-
graphic coordinates and the distribution of butterfly species across various protected
areas, we can gauge how effectively these zones are maintaining species diversity.The
comparison reveals which protected areas host the most diverse populations of but-
terflies, showing areas of high conservation success. It also allows for identifying
gaps where certain species may be underrepresented or where protected zones are
not fully safeguarding the full range of species documented in Barcant’s collection.
This can be vital for refining conservation strategies and prioritizing areas that re-
quire additional protection or resource allocation.

Figure 6.2: Number of Unique Species in Each Protected Area

The bar chart illustrates the distribution of butterfly species across four protected
areas: Tacarigua Reserve, Erin Reserve, Central Range Reserve, and Rochard Dou-
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glas Reserve. The Tacarigua Reserve holds the largest number of species, with nearly
250 species recorded, followed by the Erin Reserve with approximately 150 species.
Both Central Range Reserve and Rochard Douglas Reserve show significantly fewer
species, with under 50 species each. This visualization highlights the biodiversity
richness in Tacarigua and Erin Reserves compared to the other protected areas, em-
phasizing their importance in conservation efforts.

Figure 6.3: Species Distribution by Family in Protected Areas

The pie chart displays the representation of the butterfly families within the pro-
tected areas. The Nymphalidae family dominates, accounting for 35.3% of the total
species, followed by Lycaenidae with 26.9%, and Hesperiidae with 15.8%. Pieridae
represents 10.3% of the species, while Riodinidae and Papilionidae are less promi-
nent, contributing 8.7% and 3.0%, respectively. This breakdown highlights the sig-
nificant diversity within the Nymphalidae and Lycaenidae families in comparison to
the other families, suggesting their strong presence in the protected areas covered
by the dataset.

The scatter plot displays the geographic distribution of butterfly species based
on their latitude and longitude. The species are spread across a range of latitudes
from around 10.1 to 10.7 and longitudes from approximately -61.7 to -61.2. This
visualization shows clusters of species in certain areas, indicating regions with higher
species density. The spread of species across these coordinates reflect variations in
habitat suitability or protection efforts within these geographical zones. Such a plot
is useful for identifying biodiversity hotspots and understanding the spatial patterns
of species distribution in relation to environmental factors or conservation areas.

Given that Trinidad and Tobago is home to unique ecosystems and rich biodiver-
sity, understanding how well its protected areas conserve butterfly species can be a
benchmark for broader conservation efforts in the region. The findings from this com-
parison may help policymakers and conservationists adjust management practices to
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Figure 6.4: Species Count by Geographic Latitude and Longitude

improve butterfly preservation, contribute to long-term biodiversity goals, and ensure
that the rich natural heritage of TTO is sustained. Furthermore, these insights can
be used to monitor changes in butterfly populations over time, helping to track the
impacts of environmental changes, human activities, and climate on species distribu-
tion. This holistic understanding of species conservation in the TTO region not only
benefits butterflies but also plays a crucial role in the broader ecosystem health of the
islands.

6.3 Evaluation of the Aligned Ontology

A robust and thorough evaluation of an ontology is essential to ensure its quality,
usability, and adherence to the domain it seeks to model. To assess the developed on-
tology, a task-based evaluation approach was employed, leveraging SPARQL queries
to inspect critical components such as class definitions, instance data, property rela-
tionships, and overall structural consistency. This section outlines the key evaluation
tasks, discussing both the methodology and results obtained during the process.

6.3.1 SPARQL Query for Retrieving Class Details from Ontology

The provided SPARQL query is designed to retrieve unique classes, along with their
labels and comments, from an ontology using RDF (Resource Description Framework)
and OWL (Web Ontology Language) prefixes. The query focuses on selecting distinct
classes defined within the ontology (identified by the ‘?class‘ variable) by specifying
that each ‘?class‘ is of type ‘owl:Class‘. It then attempts to retrieve associated labels
and comments for these classes, if available, by using the ‘OPTIONAL‘ keyword to
include ‘rdfs:label‘ and ‘rdfs:comment‘ properties. This query can be particularly
useful for ontology documentation, as it allows users to get descriptive information
about each class, making it easier to understand the ontology structure and the roles
of various classes without needing to delve into each class individually. The use of
‘DISTINCT‘ ensures that each class is listed only once, avoiding redundancy in the
output.
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PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX ex: <http://example.org/merged_ontology.owl#>

SELECT DISTINCT ?class ?label ?comment
WHERE {

?class a owl:Class .
OPTIONAL { ?class rdfs:label ?label }
OPTIONAL { ?class rdfs:comment ?comment }

}

6.3.2 SPARQL Query for Retrieving Instances and Their Classes from
Ontology

This SPARQL query is designed to extract unique instances and their corresponding
classes from an RDF-based ontology. By selecting distinct pairs of ‘?instance‘ and
‘?class‘, it identifies each instance in the ontology along with its associated class type,
defined through the ‘rdf:type‘ relationship. The ‘?instance‘ variable represents in-
dividual instances within the ontology, while ‘?class‘ represents the class that each
instance belongs to. This query is useful for obtaining a structured view of the data
within an ontology, as it outlines the types of instances present and their classifica-
tions, providing insight into the data model and instance distributions across classes.
The use of ‘DISTINCT‘ ensures that each instance-class pair is listed only once in the
results.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT DISTINCT ?instance ?class
WHERE {

?instance rdf:type ?class .
}

6.3.3 SPARQL Query for Retrieving All Triples in an RDF Dataset

This SPARQL query is structured to retrieve all unique triples from an RDF (Resource
Description Framework) dataset. Each triple consists of a ‘?subject‘, ‘?property‘, and
‘?object‘, representing the core components of RDF statements where ‘?subject‘ is the
resource being described, ‘?property‘ is the predicate or attribute of the subject, and
‘?object‘ is the value associated with that property. By selecting distinct combinations
of these variables, the query provides a comprehensive view of all relationships and
data points within the RDF dataset. This approach is valuable for obtaining a complete
snapshot of the data structure, enabling users to analyze connections and understand
the overall dataset organization. The ‘DISTINCT‘ keyword ensures that each triple is
returned only once, preventing duplicate entries in the output.

SELECT DISTINCT ?subject ?property ?object
WHERE {
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?subject ?property ?object .
}

6.3.4 SPARQL Query for Retrieving Subclass and Superclass Relation-
ships in an Ontology

This SPARQL query is designed to retrieve subclass-superclass relationships within
an ontology. Using the ‘rdfs:subClassOf‘ property, it identifies each ‘?subClass‘ and
its corresponding ‘?superClass‘. The ‘?subClass‘ variable represents a more specific
class within the ontology, while ‘?superClass‘ denotes a more general class that the
subclass inherits from or extends. This hierarchical structure, commonly found in
ontologies, helps organize concepts from general to specific. This query is especially
useful for understanding the class hierarchy and for applications that require travers-
ing these relationships, such as reasoning engines or ontology visualization tools.

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT ?subClass ?superClass
WHERE {

?subClass rdfs:subClassOf ?superClass .
}

6.3.5 SPARQL Query for Retrieving Individuals Not Classified as Classes

This SPARQL query aims to identify unique individuals in an RDF dataset that are
not themselves classified as classes. The ‘?individual‘ variable represents entities
with a specified type (‘rdf:type ?type‘), but the query applies a filter to exclude any
individuals whose type is defined as an ‘rdfs:Class‘. This distinction is made using
the ‘FILTER NOT EXISTS‘ clause, which removes any entries where ‘?type‘ has an
‘rdf:type‘ of ‘rdfs:Class‘. This query is particularly useful in cases where we need to
focus on instances or objects in the dataset without including ontology structures or
classes, effectively narrowing down the output to concrete individual data points.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT DISTINCT ?individual
WHERE {

?individual rdf:type ?type .
FILTER NOT EXISTS { ?type rdf:type rdfs:Class }

}

The results from each of these SPARQL queries were extracted and saved in CSV
format to facilitate ease of access and further analysis. These CSV files, contain-
ing comprehensive data on class hierarchies, instance classifications, and subclass-
superclass relationships, were subsequently uploaded to a GitHub repository along-
side the SPARQL query codes and additional documentation. This repository serves
as a consolidated resource for all relevant data and code utilized in this research. In-
terested readers and researchers can access these files directly at the following link:
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https://github.com/raksh07/Thesis. By providing open access to these materials,
we aim to support reproducibility and enable further exploration and validation of our
findings.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

This study explores the potential of ontology matching and knowledge graph tech-
niques to improve the analysis and utility of biodiversity data from historical collec-
tions, with a specific focus on the Barcant Butterfly Collection. In response to RQ1,
the Barcant Butterfly Collection ontology was designed to incorporate essential onto-
logical concepts and relationships needed to capture the nuanced details of butterfly
biodiversity. Key concepts in this ontology include taxonomic hierarchy, which encom-
passes classification levels from family to species; geographical distribution, mapping
butterfly population locations; and ecological interactions, connecting butterflies with
habitats and associated species. Together, these concepts ensure a robust framework
capable of representing both scientific and ecological complexities within the butter-
fly data.

Addressing RQ1.a, the study carefully selected standardized vocabularies and ter-
minologies from established ontologies, notably Darwin Core (DwC) and the Biological
Collections Ontology (BCO). These vocabularies provided a set of terms that could be
seamlessly integrated without redefinition, thereby minimizing redundancy and facil-
itating compatibility with broader biodiversity data platforms. These lexicons were
particularly valuable as they encompass taxonomic and ecological terminology well-
suited to butterfly collection data.

In response to RQ1.b, among the array of available biodiversity ontologies, Darwin
Core and BCO emerged as the most compatible frameworks for the Barcant Butter-
fly Collection due to their established structure, widespread use, and suitability for
historical taxonomic data. Additionally, the TaxRank ontology was selected for its em-
phasis on hierarchical taxonomic data, aligning closely with the detailed classification
requirements of butterfly biodiversity. This combination of ontologies proved optimal
for enhancing the relevance of the Barcant Collection and enabling its integration
with modern biodiversity databases.

Through the alignment of these ontologies, the study produced knowledge graphs
that uncovered previously hidden relationships, enabling sophisticated querying ca-
pabilities to explore species interactions, habitat overlaps, and broader biodiversity
patterns. The generation of ecological range maps further enriched the analysis, pro-
viding powerful visualization tools for assessing species distribution, highlighting the
collection’s potential for identifying biodiversity hotspots, and underscoring its ap-
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plicability to conservation efforts, including integration with the World Database on
Protected Areas (WDPA).

The evaluation of the Barcant Butterfly Collection ontology addressed RQ2 through
specific performance metrics and targeted queries, designed to assess taxonomic
precision, efficacy in species distribution analysis, and relevance to conservation re-
search. Queries examining species-habitat relationships, taxonomic hierarchies, and
distribution-based hotspot identification demonstrated the ontology’s practical utility
and robustness. These evaluation results affirmed the ontology’s value as a bridge be-
tween historical taxonomic records and contemporary biodiversity science, opening
new avenues for conservation and scientific research.

7.2 Future Work

Several promising avenues for future research have been identified as a result of this
study. First, while the ontology alignment in this work focused on taxonomic and
geographic data, future efforts could extend this to include more complex ecological
interactions, such as species competition, symbiosis, and predation. Incorporating
these ecological dimensions into the ontology would enable a more comprehensive
understanding of biodiversity dynamics.

Second, there is significant potential for enhancing the scalability of ontology
alignment and knowledge graph generation by incorporating machine learning and
artificial intelligence (AI) techniques. The use of automated tools such as machine
learning classifiers and natural language processing (NLP) could streamline the ontol-
ogy alignment process, improving both speed and accuracy when dealing with large,
heterogeneous datasets. In particular, AI could assist in identifying complex semantic
relationships between entities that are not immediately apparent through traditional
matching techniques.

Additionally, this research could be extended by incorporating real-time data streams
from citizen science platforms, environmental monitoring networks, and remote sens-
ing technologies. By integrating dynamic data sources, the knowledge graphs could
be continuously updated, allowing for real-time analysis of biodiversity changes and
enabling more timely conservation interventions. This would also facilitate predictive
modeling, enabling researchers to forecast potential changes in species distributions
and ecosystem health in response to factors such as climate change and habitat loss.

Another potential extension is the application of this methodology to other histor-
ical and contemporary biological collections globally. The successful alignment and
enrichment of the Barcant Butterfly Collection demonstrate that similar techniques
could be applied to other underutilized biological datasets, contributing to the cre-
ation of a comprehensive, globally integrated biodiversity knowledge system. This
would not only enhance scientific research but also support conservation initiatives
by making biodiversity data more accessible, interoperable, and actionable.

Lastly, future work should focus on enhancing the visualization tools used for bio-
diversity analysis. While the current study utilized ecological range maps, more so-
phisticated visualization techniques such as interactive knowledge graphs, geospatial
heatmaps, and 3D modeling could provide deeper insights and improve stakeholder
engagement. Such tools could facilitate communication between researchers, con-
servationists, and policymakers, thereby enhancing the impact of biodiversity data on
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decision-making processes.
In conclusion, this research lays the groundwork for the continued development of

ontology-driven biodiversity informatics, with significant implications for global biodi-
versity research and conservation. By refining and expanding the methods and tech-
nologies presented here, future studies can further bridge the gap between historical
biological records and modern conservation strategies, ensuring the preservation of
global biodiversity for generations to come.
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Appendix: Repository of Code and Results

All files associated with this research, including SPARQL query codes, OWL files, CSV
results, and additional data, are compiled in a GitHub repository. This repository
contains the full range of outputs from the analysis, such as ontology files (in OWL
format), result datasets in CSV, and all SPARQL queries used for data extraction and
analysis. These resources are provided to facilitate reproducibility, allow for in-depth
review, and support further research applications. The complete set of files is openly
accessible at https://github.com/raksh07/Thesis, ensuring transparency and
ease of access for any readers or researchers interested in extending or examining
this work.
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