
University of Twente

Faculty of Behavioural, management and Social Sciences

Master Thesis Business Administration: Finance

Trend Price Prediction of the S&P500 Using the VIX index, Moving Average and
Trading Volume in a Combined Random Forest and LSTM Model

Abstract: Accurately predicting stock price movements is a critical objective for financial
analysts to optimize portfolio performance and manage risk. This study investigates the
effectiveness of machine learning models to forecast price trends in the S&P500. Herein, a

Random Forest (RF) and Long Short-Term Memory (LSTM) combined model with technical
indicators such as the VIX index, moving averages, and trading volume, was investigated. A series
of experiments were conducted to evaluate whether these models could outperform traditional
investment strategies such as buy-and-hold or random buy heuristics. The results show that the
LSTM model, without incorporating the VIX index as a feature, achieved the highest F1-score of
68%. Furthermore, it performed better than a random buy strategy. However, both the LSTM

and the Random Forest models were unable to outperform the buy-and-hold strategy.
Furthermore, integrating LSTM predictions as a feature into the Random Forest model did not
enhance predictive accuracy. A notable finding is that shifting the testing periods negatively

affected the models’ predictability indicating that the parameters of the model constantly need to
be updated to remain accurate. These insights highlight the limitations of current approaches,
pointing to areas for improvement such as integrating the VIX index into LSTM models to

enhance prediction accuracy.

Keywords: LSTM Model, Moving Average, Price trend prediction, Random Forest, S&P500,
Trading Volume, VIX index

Student
Ir. T.A. Dissevelt (S2180200)

Supervisor
Dr.Ir. W.J.A. van Heeswijk

Dr. M.R. Machado

October 17, 2024

Contents

1 Introduction 1

2 Literature Review 2
2.1 Introduction 2
2.2 Machine learning 2
2.3 Regression algorithms 3
2.4 Time series forecasting 4
2.5 Deep learning 6
2.6 Ensemble Learning 6
2.7 Financial indicators 8

2.7.1 VIX index 8
2.7.2 Moving average 8
2.7.3 Trading volume 9

2.8 Discussion 9

3 Problem Statement & research
methodology 10
3.1 Objectives 10
3.2 Relevance 11
3.3 Scope & limitations 11
3.4 Methodology 11

4 Results 13
4.1 LSTM solo 14
4.2 Random forest solo 16
4.3 LSTM & Random forest combined

model 16
4.4 Model comparison 18

5 Conclusion & recommendations 20

Appendices 25

A Random forest code 25

B LSTM code 28

C LSTM code for RF feature input 31

D Random forest model in which the
LSTM is used as a feature code 33

E LSTM closing price prediction code 36

1 Introduction

The ability to predict stock price movement is a
persistent desire in financial investment strategy
research. Stock traders and investors are natu-
rally seeking to gain (more) insights into the di-
rection of the future price of a stock or index. The
ability to accurately predict the directions could
significantly impact the trader’ risk management
practices, investments strategies and their portfo-
lio performance. However, the challenge of predict-
ing the future trend of the market is found in the
dynamic and complex nature of the financial mar-
kets, in which market movement depend on numer-
ous factors such as the psychology of traders, pol-
itics, firm performance, economical performance
and exchange rates (Jiao & Jakubowicz, 2017).
Despite the challenges, several studies emphasize
the importance of being able to accurately pre-
dict stock price in financial decision-making. The
understanding of the stock market, in forecast-
ing stock returns, are important for asset pricing
models and investment strategies. Investors and
traders base their strategies on price movements
to maximize returns and minimize risk and thus
require reliable predictive tools (Fama & French,
1992). However, many studies suggest that the
market is driven under the efficient market hypoth-
esis, which assumes that future stock price move-
ments follow a random walk pattern, meaning that
making predictions about stock price movements
practically impossible (Fama & French, 1992). The
efficient market hypothesis can be classified in
three forms: the weak form, the semi-strong form
and the strong form. The weak form is known as
the circumstance in which the current price reflects
all past prices of the financial asset. Herein, other
financial information is not included. Therefore,
some traders might profit using fundamental infor-
mation to predict prices trends (Ţiţan, 2015). The
semi-strong form assumes that the price of finan-
cial assets at any moment reflect all the publicly
available information present on the market, thus
also including historical prices and other publicly
available historical information. Moreover, it is as-
sumed that the prices of the assets change rapidly
and are unbiased towards the incorporation of any
other new public information released on the mar-
ket. This theory therefore suggests that neither
technical nor fundamental analysis can determine
how an investor should divide his funds in order to
obtain a higher profitability than that achieved in
case of investment in a random portfolio of finan-
cial assets. Lastly, the strong form of the efficient

market hypothesis assumes that prices include all
the available information on a market. So in ad-
dition to the semi-strong assumption this assump-
tion also assumes that private information regard-
ing a financial asset is included in the price. Since
all information is incorporated, it is impossible to
predict price movements, and therefore the price
movements are considered to be follow a random
walk(Ţiţan, 2015).
Other studies, for example the ones conducted by
Gallagher and Taylor (2002) and Fama (1991) do
not support the random walk and efficient mar-
ket hypothesis by suggesting that the stock price
movement could be predicted using fundamental
analysis or a technical analysis. Fundamental anal-
ysis examines the underlying value (the true worth
of the stock based on its underlying fundamentals)
of the stock by evaluating the financial condition
of the company by for example by analysing the
earnings, management quality and industry trends
to determine whether a stock is priced attractively
relative to its intrinsic value. Technical analysis
is a evalutation method for future price movement
(development of an asset’s price over time in terms
of up or down trend) that is based on historical
price and volume data. Herein, it relies mainly on
the stock’s price chart and statistical indicators to
identify trends in the movement of the price. On
the price chart the trader tries to find trend lines to
identify the future direction of the trend. Herein,
they use technical indicators analyze the price data
and to create their future price/trend prediction.
Thus, by analyzing charts, patterns, indicators,
and using other technical tools, traders attempt
to forecast market trends and make trading deci-
sions accordingly. However, it must be noted that
technical analysis is subjective and relies on in-
terpretation, so different analysts may reach dif-
ferent conclusions when analyzing the same data
(Thompson, 2023). The study of Gallagher and
Taylor (2002), in which a technical analysis was
conducted, found that by using the inter-day re-
turns, the returns of the intra-day could more ef-
fectively be predicted since during the inter-day
the news stream was eliminated. Therefore, the
market was less exposed to price manipulation due
to news streams during this period. The result
of the majority of tests showed that the inter-day
could help intra-day traders to generate more pre-
cise conclusions and therefore they concluded that
the market is not fully efficient. Subsequently, the
study conducted by Fama (1991) concluded that
the stock returns for both short and long hori-

Page 1

zons are predictable by observing dividend yields,
E/P ratios and default spread of low- over high
grade bond yields (fundamental analysis), which
also suggests that the random-walk hypothesis is
not supported. In a technical analysis the trader
assumes that the market is able to provide the nec-
essary information (such as price and trading vol-
ume time series, trends, chart patterns and the use
of technical indicators) to predict the future price
action. Herein, it is assumed that information is
disseminated to the public in stages, which there-
fore offers the opportunity for traders which might
have early access to data to spot opportunities
early (Kumar, 2015). Together with the idea that
the market is being driven by human psychologies
and how traders interpret the charts to establish
their strategy and that these psychologies/inter-
pretation hardly change, the analysts consider that
the price trends are recurring and thus predictable
(Jiao & Jakubowicz, 2017). This was also found
in the study conducted by Fama (1991) in which
he disagreed with the random-walk hypothesis. In
this study he also found that when an information
event which was planned precisely and which had
an extensive effect on the price was indeed quickly
consumed by the average stock price and thus in
contrast to his previous finding he also thus sup-
ports the efficient market hypothesis (Fama, 1991).
Based on these findings it can be concluded that re-
searchers are divided on how to interpret the mar-
ket. This also indicates that there is no ”one-way
solution” and it indicates that the researchers do
not have an accurate representation of the actual
market. Nevertheless, based on the divided opin-
ions of academics and ability of the technical an-
alysts to outperform the market, the introduction
of machine learning could offer a promising tool
for improving the predictability of price actions in
the stock financial market since machine learning
could capture price patterns and also potentially
eliminated psychological and strategy mistakes of
the trader.
In machine learning, algorithms are used which are
characterized by their ability to detect patterns
in the provided data. These algorithms can de-
tect long term dependencies which, according to
the investors that favour technical analysis, occur
in stock prices (Tsai et al., 2011). Different ma-
chine learning algorithms such as support vector
machines and deep-learning methods allows to ex-
tract meaningful information from vast and large
datasets by narrowing the input dataset down to
a more meaningful data set to better understand

the behavior of the market (Sonkavde, 2023). This
thesis investigates the predictability of the future
price action of the S&P500 using machine learn-
ing techniques and financial indicators. Herein,
a model is created that captures various aspects
of the market behavior using technical indicators
and historical price data in order to reduce the
bias of the model but subsequently possibly in-
creasing the adaptability to the changing market
condition. Herein, we are not seeking to predict an
exact price but we are satisfied with a buy or sell
signal. In Section 2 a literature study will be con-
ducted in which a set of available machine learning
techniques are showcased and explained. Based on
the literature review in Section 3 the research ques-
tion, goals, relevance, scope and research method-
ology of the research will be presented. In Section
4 the results of the study will be presented and
discussed and lastly in Section 5 the conclusion of
the study together with the recommendations will
be presented.

2 Literature Review

2.1 Introduction

Investigating the literature is essential in order to
decide which machine learning algorithm to use
and how the used financial indicators are estab-
lished. Therefore, this study will first start with
a comprehensive overview of the available machine
learning techniques that will be introduced in sec-
tions 2.2-2.7. In these sections also the in the liter-
ature found stock prediction applications, will be
discussed as well as the machine learning technique
its (dis)advantages. In Section 2.8, the VIX index,
volatility, and trading volume as financial indica-
tors are explained, as well as how these are/can
be used in practice to predict the future price ac-
tion. Lastly, in Section 2.9 some technical indica-
tors such the VIX index and moving average will
briefly discussed. Hereafter, a concluding discus-
sion will be made towards this study will devote
its academic efforts to.

2.2 Machine learning

Before diving into how machine learning could be
of support in stock prediction we will first intro-
duce what machine learning is and what kinds of
machine learning types are existent. Firstly, ma-
chine learning is a subfield of artificial intelligence
(AI). Herein, it focuses on enabling computers to
learn from data and use its knowledge to improve

Page 2

over time. Where in traditional programming, a
human programmer writes code, which instructs
the computer how to perform specific tasks, in ma-
chine learning, the algorithms analyze the data in
which they try to find patterns after which it tries
to make predictions or decisions based on that data
without the interference of a human (Oracle, 2024).
In order to do this, there are several learning tech-
niques available in machine learning to make learn
from data and make predictions. Below three types
of learning categories are explained:

1. Supervised learning: In supervised learn-
ing, the algorithm is trained on a labeled
dataset. Herein each data input has its cor-
responding target label (Oracle, 2024). The
algorithm learns to map the input data to
the correct output by generalizing from the
given labeled data. Supervised learning is
commonly deployed to make classification and
regression predictions (Fumo, 2017). There-
fore, it is useful to further delve into the the-
ory since stock price prediction based on ma-
chine learning is often located in the category
of regression problems due to the goal being to
predict a continuous numerical value (future
price of a stock), based on historical data.

2. Unsupervised learning: In unsupervised
learning, the algorithm is given input data
without explicit labels. By doing so the al-
gorithm must find patterns in the data on its
own. The interference of the data scientist
is thus minimal. Typical tasks of such al-
gorithms include clustering (grouping similar
data points together) and dimension reduction
(reducing the number of features in the data
while preserving its structure) (Oracle, 2024).

3. Reinforcement learning: In this method,
an agent learns to make decisions by inter-
acting with an environment through trial and
error. The goal of this algorithm is to learn
to take actions that maximize cumulative re-
wards over time (Bhatt, 2019).

As we have learned from section 1, academics
are divided about if stock prices follow a random
walk or not. Prices tend to shift constantly, which
makes it rather difficult to deploy a trial and error
due to the output not being static. Therefore, the
more interesting types of learning techniques for
this study which also will be further examined in
the following sections will be the supervised learn-
ing techniques. In the following sections we will

delve into the integration of machine learning algo-
rithms to forecast stock market trends, highlight-
ing the opportunities and challenges in this dy-
namic and complex domain. Machine learning has
emerged as a powerful tool in the domain of stock
trading, revolutionizing traditional approaches to
forecasting the trend of the market (Reddy, 2018).
By using advanced algorithms, machine learning
can be used to analyze dense datasets containing
historical data of the stock market, identifying pat-
terns within the data and to make predictions re-
garding future trends. In Figure 1 an overview is
given of the various available machine learning al-
gorithms. In the next sections for each category of
machine learning algorithms one algorithm is cho-
sen which will be explained based on their classifi-
cation, there mechanism and their (dis)advantages.

2.3 Regression algorithms

Regression algorithms can be used as a type of
supervised machine learning technique used to
predict the relationship between dependent and
independent variables. Herein, they utilizes histor-
ical data to learn patterns and make predictions
(Enke et al., 2011). Regression algorithms are
used to predict the future price of the stock by
analyzing at least one attribute. Such attributes
can be the closed price, open price, volume, etc.
(Sonkavde, 2023). An example of a regression
algorithm is a Support Vector Machine (SVM)
which operates by identifying a hyperplane that
separates data/observation into different classes
based in patterns of information also known also
features. The hyperplane can in its turn be used
to determine the most suitable hyperplane for
unseen data (Pisner & Schnyer, 2020). In Figure
2 an example is given of how SVM separates
the data into the classes whereas the classes
are separated using the hyperplane (Grigoryan,
2017/05). In the context of stock price prediction
using machine learning, the aim is to build a
model that can analyze historical stock price data
to make predictions about future price action.
It thus depends on what the desired output it
of the model. The SVM is e.g. not optimal
to reconginize paterns and relationships in the
data making it a difficult to make actual price
predictions.

Nevertheless, it was found that SVM can be
useful in the context of stock price predictions
since it was found that it could be effectively
used as a regression model and to determine stock
trends (Sonkavde, 2023). SVMs can be used to

Page 3

Figure 1: Overview of the different available machine learning algorithms for stock price forecasting
(Sonkavde, 2023).

Figure 2: Figure of the hyperplane separating the
support vectors corresponding to the two to be pre-
dicted classes (Pisner & Schnyer, 2020)

classify whether the stock price will increase or
decrease or to predict the future stock price on a
continuous scale. Herein, an advantage of SVM in
stock prediction is that SVM is able to find global
optimum’s whereas a neural network, which will
later (in section 2.6) be discussed may only find
local optimums for the prediction which due to
non-linearity in the price development could cause
problems in the prediction. Herein, SVM solves
this problem by making determination errors
during the learning phase in order to minimize the
error during testing whereas neural networks dur-
ing training already try to minimize determination
error (Madge & Bhatt, 2015). Moreover, SVMs

have the ability to handle non-linear relationships
in the data. However, SVMs are sensitive to
noise, and the selection of appropriate parameters
such as gamma and kernel functions are crucial
for optimal performance (Bustos et al., 2017).
Herein, the gamma parameter determines the
reach of the individual support vectors where a
small gamma value gives a wide reach and a soft
decision boundary, which makes the model more
tolerant and smoother to wrong classifications
and vice versa for a high value for gamma. By
choosing the ”appropriate” gamma value over-
or under-fitting can be prevented and is thus a
crucial step in the process of setting up the algo-
rithm. The kernel function allows the algorithm
to operate in a higher dimensional space without
the necessity to calculate the exact coordinates of
this higher dimensional space and therefore avoids
computational cost (Scikit, 2024).

2.4 Time series forecasting

Time series analysis in machine learning examine
and forecast data points which are chronologically
ordered. Within the data the algorithm tries to
find temporal trends, patterns and/or seasonality.
Stock price data are considered to be continuous.
Therefore, it is worthwhile to examine this method
(Sonkavde, 2023).

Page 4

The Auto regressive integrated moving average
(ARIMA) is a model that uses time series fore-
casting to predict future stock prices. ARIMA is
a form of regression analysis which measures the
strength of a single independent variable relative
to changing independent variables. Herein the AR
term refers to the model that show the indepen-
dent variable regressing on its own variables. The
I term refers to the differentiation of the raw data
points which allows the time series to be station-
ary and therefore removes trends from the data,
removing trends is an important step since trends
that are not removed could be picked up by the
AR component of the model. This component in
its turn can then dominate the model making it dif-
ficult to capture other patterns and make accurate
predictions. Lastly the moving average (MA) term
refers to the usage of the dependency between the
observation and the residual error from the moving
average to on lagged observations in other words
the MA component accounts for the random shocks
or short-term fluctuations in the time series that
cannot be explained using the AR part. Therefore,
3 different parameters are used namely, p, d and q.
The p parameter is the order of the AR component.
The p parameter can be determined by observing
the partial auto-correlation function (PACF) that
measures the correlation between the current and
past observations while excluding the intermediate
lag (Hayes, 2023). Herein, the outstanding spikes
in plot at specific lags could potentially indicate
values that can be used as the p parameter. The d
parameter is the order of differencing required to
make the data stationary and the q parameter is
the order of the MA component and signifies the
number of lagged observations of the residual er-
rors to be included in the model. To determine the
d parameter we can use the Augmented Dickey-
fuller (ADF) test to test the stationarity of the
data (edX, 2023), where adifferencing is applied
and the p-value of the test is checked. If it is less
than the set significance level then it can be con-
cluded that stationarity has been achieved. The
q parameter can be determined by analyzing the
auto-correlation function (ACF) plot of the differ-
enced time series. Herein, spikes at certain lags
could indicate values for that can be used as the
q parameter (Hayes, 2023). According to previ-
ous studies it is demonstrated that the ARIMA
model fits the stock market index due to it nature
of first identifying, estimating and lastly diagnos-
ing the data. As such the algorithm can be used
to forecast any financial market (Devi et al., 2013;

Khanderwal & Mohanty, 2021).
In order to increase the capabilities of the
ARIMA algorithm, the algorithm can be combined
with another algorithm called symmetric gener-
alized autoregressive conditional heteroskedastic-
ity (SGARCH) (Sonkavde, 2023). SGARCH is
based on two models; the Autoregressive Condi-
tional Heteroskedasticity (ARCH) and the Gener-
alized Auto-regressive Conditional Heteroskedas-
ticity (GARCH) of which the GARCH model is an
addition to the GARCH model. Herein the ARCH
model is used to capture the time-varying volatil-
ity in financial returns. It assumes that the con-
ditional variance of the series is a function of past
squared observations, whereas the GARCH model
builds on the ARCH model by including the lagged
conditional variances combined with the lagged
squared observations (Engle, 1982). It introduces
an auto-regressive component to capture the per-
sistence of the volatility (Bollerslev, 1986). Finally,
the SGARCH model elaborates on the GARCH
model by introducing a stochastic (random) com-
ponent into the conditional variance equation. The
random component in the variance equation aids in
capturing the random fluctuations in the volatility
and therefore could improve the prediction perfor-
mance. The SGARCH algorithm was modeled and
back tested on the S&P500 index. Herein, it was
found that the algorithm was able to outperform
the benchmark performance of BUY&HOLD the
S&P500. Therefore, SGARCH is an effective mea-
sure to predict the price trend since the model was
more efficient than the market (Vo & Ślepaczuk,
2022). Nevertheless, due to this algorithm being
vulnerable against lag, it could result in a large
number of parameters to be estimated if too much
lag is present. In general for a increasing number
of parameters to be estimated the difficulty tends
to increase which cause a higher time consump-
tion to set up the model and could eventually de-
teriorate the accuracy of the prediction made by
the model. Moreover, this algorithm is rather un-
able to react to relatively large price shocks (sud-
den large change in trend) since it assumes that
these shocks should show the same effect on the
volatility meaning sudden drops and rises (Vo &
Ślepaczuk, 2022). Thus, although SGARCH has
shown a promising performance by being able to
outperform benchmark strategies, it is not immune
to challenges such as parameter estimation com-
plexity and limited responsiveness to sudden price
shocks. These methodologies are critical in stock
prediction. Therefore, we will continue the explo-

Page 5

ration of other promising machine learning tech-
niques.

2.5 Deep learning

Deep learning models are recognized across dif-
ferent domains in science and engineering. Their
recognition is also observed in the domain of stock
price forecasting/trend prediction. This is due to
their ability to capture complex patterns, manag-
ing dense datasets, engaging in feature learning
and representation, and their ability to adapt to
dynamic market conditions (Sonkavde, 2023).
Long short term memory (LSTM) is an example
of a deep learning method and which is based on
an advanced recurring neural networks (RNN) ar-
chitecture. The advantage of this algorithm is
that it is able to handle long historical data se-
quences while avoiding vanishing/exploding gradi-
ents which can be occurring in traditional RNNs.
(R)NNs are based on weights, biases and activa-
tion functions in which information passes through
by using data from previous data points. Herein,
during back propagation in the activation function
the gradients are calculated which are used to up-
date the parameters of the model. However, due
to the constant weights and biases being multi-
plied with the gradient it could cause that overtime
the gradient decreases or increases exponentially
for the increasing number of layers. This could
subsequently lead to the parameter’s of the model
overtime will be minimally updated. This limits
the ability of the model to learn long-term depen-
dencies. This results in the model being rather
complex and potentially causing problems such as
over-fitting when the available training data is in-
sufficient. Moreover, the required computational
power subsequently increase within increasing the
complexity of the model which potentially could
cause memory problems (Srivatsavaya, 2023).
The power of the LSTM is found in its capability
of managing lengthy sequences of data, and thus
can for example be used for stock price time series.
Unlike other types of neural networks, LSTMs have
memory cells and gates, which allow the model to
retain relevant data for a extended period of time
while also updating the model with ”current” data.
In Figure 3 an example of an LSTM cell is given
whereas it can be seen that it consists of 3 gates,
namely, the input gate, the forgotten gate and the
output gate (Sonkavde, 2023). The outputs of ev-
ery gate are determined by sigmoid activation func-
tions which controls the adaptability of the model
to changing market. Herein, the output of the for-

gotten gate determines how much of the long term
memory should be forgotten, the input gate up-
dates the long term memory and the output gate
updates the short term memory (Siami-Namini &
Namin, 2018). Since it is assumed that for stock
trading both historical and recent data is impor-
tant, this model could be well-suited for predict-
ing stock trends (Ahmed et al., 2023). Neverthe-
less, the capabilities of LSTM networks, including
their adaptability in capturing complex patterns,
managing extensive datasets, engaging in feature
learning, and adaptability to dynamic market con-
ditions, makes LSTM a promising method for mak-
ing accurate stock predictions. Moreover, LSTM
networks are able to address critical challenges en-
countered in traditional recurrent neural networks
(RNNs), such as vanishing/exploding gradients,
which enables a more effective learning method for
learning long-term dependencies and coping with
issues such as over-fitting. These attributes show
the suitability and potential of LSTM networks be-
ing deployed in order to make accurate and reliable
stock prediction models.

2.6 Ensemble Learning

Ensemble learning techniques use a series of clas-
sifiers. Classifiers are algorithms that orders data
into classes (Bi et al., 2019). The classifier tries to
recognize and classify patterns in the data and tries
to draw a conclusion on how these patterns should
be labeled (IBM, 2024b). In the context of stock
price prediction the ensemble learning serves the
purpose of improving prediction accuracy and ro-
bustness by combining the predictions of multiple
individual models. By leveraging the predictions of
multiple models, ensemble learning reduces the risk
of over-fitting the data and increases the ability to
generalize the data, thus providing investors and
analysts with more accurate insights for informed
decision-making in financial markets (Mehta et al.,
2019). An example of such a classifier is a decision
tree, with its predictions contributing to determin-
ing the most favourable outcome. The most popu-
lar ensemble methods include bagging and boost-
ing. In bagging a random sample of data is selected
from a training set with replacement, allowing in-
dividual data points to be chosen more than once.
Subsequently, multiple data samples are generated,
resulting in individually trained data models. De-
pending on the classification the average or ma-
jority of these predictions provides a more precise
prediction. This type of machine learning is widely
used to cope with variance in datasets which are

Page 6

Figure 3: Representation of the composition of an ordinary architecture of an LSTM Unit (Calzone, 2018)

known to contain noise (IBM, 2024a).
A well known Ensemble learning method is a Ran-
dom forest. Random forest is a learning method lo-
cated in which finds its efficiency in solving classifi-
cation and regression problems (Sonkavde, 2023).
The random forest algorithm is a concept which
bases its predictions on decision trees (Sadorsky,
2021). In figure 4 a random forest is shown, herein
it can be seen that the random forest follows the
following generic steps to make a prediction:

1. N random data points are picked in chrono-
logical order to avoid leakage (test data being
used as training data).

2. A decision tree is built based on the N inputs.

3. The number trees that will be considered is de-
termined. This step is rather important since
this determines the processing time, memory
usage and the average area under the receiv-
ing operating curve (ROC) curve (AUC) and
its optimum value is found to be between 64-
128 trees (Oshiro et al., 2012). The ROC and
AUC performance measures are explained be-
low.

4. Prediction (Sonkavde, 2023). This is done for
a regression problem, by averaging the indi-
vidual decision trees, whereas for a classifi-
cation problem, the most frequent categorical
variable will be used as the predicted class. af-
ter which, the out-of-bag sample is then used

for cross-validation, which finalizing the pre-
diction (IBM, 2024a).

An ROC plot is a graph which shows the per-
formance of a classification model across different
classification thresholds. It plots two parameters,
the true positive rate (TPR) and the false posi-
tive rate (FPR). The TPR is also known as the
recall which is defined as the fraction of the true
relevant instances over all relevant retrieved in-
stances, whereas the FPR is defined as the frac-
tion of the not true relevant instance over all rel-
evant retrieved instances. The ROC graph plots
the TPR against the FPR at different classifica-
tion thresholds. The points on the ROC curve
are computed by evaluating a logistic regression
model several times with different classification
thresholds. However, this method is highly ineffi-
cient therefore, AUC can be used. AUC measures
the entire area under the ROC curve and there-
fore provides an aggregate measure of the perfor-
mance across all possible classification thresholds
(Google, 2024). To determine the number of trees
to be picked the ROC curve should be examined by
identify the number of classifications required until
the AUC does not show a significant change any-
more. By lowering the classification threshold, the
algorithm classifies more items as positive, which
can increase both the ability of the random forest
to handle large, noisy datasets contributes to the
robustness of the performance in the prediction of
complex domains such as the stock market (Pavan
Kumar Illa, 2022). However this could also mean

Page 7

Figure 4: Example of a random forest (Sonkavde, 2023)

that since also the number of false positives are in-
creasing the accuracy of the model is lost (Google,
2024).
In addition to this disadvantage, an advantage of
using a random forest is that it is possible to ob-
serve the importance of the features included in the
prediction. This gives valuable insights of which
features to include and which could potentially be
discarded to decrease the complexity of the model,
reduce the required computational power, and re-
duce noise. However, a disadvantage could be
that due to the increasing complexity over time in
which the decision tree becomes larger the comput-
ing time to make a prediction drastically increases
(Donges, 2023). Moreover, since a random forest
uses several decision trees the model is more com-
plex and more difficult to interpret than a model
based on a single tree (IBM, 2024a).

2.7 Financial indicators

In order to train the Machine learning model, be-
sides the return series, financial indicators of the
index can be used to train the model with data to
make more accurate predictions than if the model
is only fed with raw price data. In the following
sections, the indicators VIX index, moving aver-
age, and trading volume will be discussed how it
can aid the model.

2.7.1 VIX index

The volatility index (VIX), also known as the fear
index, was first introduced in 1993 by the Chicago
Board Options Exchange (CBOE). The VIX index
indicates the market’s expectations for the relative
strength of near-term price changes of the S&P
500 Index in which it generates a 30-day future
projection of volatility, since it is derived from the
options on the S&P500 which are set to expire in
a period of 23 to 37 days (Kuepper, 2023). Herein,
only the “out of the money” options, which are op-
tions which when triggered have no effect for the
option holder, are included in the calculation and
should therefore, give more insight about future
volatility (Giro, 2024). This index is widely recog-
nized by traders and investors since it is considered
that this index can both show the market’s volatil-
ity expectations and reflect the investor sentiment
and risk aversion (Ahoniemi, 2008). Therefore, the
VIX index thus can be a be a promising technical
indicator to be observed to be of aid in the traders’
risk management.

2.7.2 Moving average

The Moving average (MA) is a widely used techni-
cal indicator used in technical analysis, which pro-
vides the average value of the price change of a
stock or index. In this paper, a rising trend is found
when prices move beyond the MA and a downtrend

Page 8

is found when the price falls below the MA (Hari
& Dewi, 2018). The advantage of the moving aver-
age is that it offers smoothed line of the price his-
tory which is less prone to temporary price swings.
Thus, when trying to make long-term (30-day) pre-
dictions, the moving average could give rather in-
sightful information. However, due to its temper-
ing behavior, the MA is slow to detect rather rapid
price changes that often appear at market reversal
points, which could lead to lag in prediction (Mav-
erick, 2022).

2.7.3 Trading volume

The trading volume is the total number of shares /
contracts exchanged between buyers and sellers for
a specific security during trading hours on a given
day. Here, when the security is actively traded,
the volume is high, and vice versa. Herein, the
price is more like to change more frequently when
the volume is high. The volume thus gives infor-
mation regarding the activity of traders on the se-
curity and the amount of liquidity present. High
volumes could indicate specific trading catalysts
(Twin, 2022). In this paper, previous studies argue
that volume induces price changes because more
investors are influenced to trade in the same di-
rection. However, this argument would make the
statement that the price implies a random walk
invalid (Brailsford, 1996). Since traders were able
to make predictions about the trends of the stock
market by using technical analysis and previous
studies indicating that the random-walk behavior
of the market could be invalid. It could be use-
ful to use the trading volume as a feature in the
random forest model to both spot long and short
term trends in the volume of the stock. By us-
ing the trading volume as an input for the random
forest, the model enrichment could help the model
make the prediction of the future stock price which
could mean that an opportunity for enhancing pre-
dictive accuracy and gaining insights into market
dynamics and potential price movements has been
found.

2.8 Discussion

Despite considerable academic efforts to imple-
ment machine learning models such as Random
Forest and LSTM for financial forecasting, and to
explore the impact of individual financial indica-
tors like the VIX index, moving averages, and trad-
ing volume on stock price prediction, researchers
have yet to discover a highly accurate model. Fur-

thermore, the potential benefits of combining these
indicators across models have received little atten-
tion, particularly in how they might complement
each other and improve predictive accuracy.

A noteworthy aspect of technical indicators is
the role of the VIX index, which has been argued
to help traders gauge market sentiment, thus en-
abling models to form a more informed bias to-
ward predicting positive or negative market trends
(Giot, 2005). Additionally, moving averages are
frequently used to smooth out short-term price
fluctuations, while trading volume highlights the
strength of price movements. The combination of
these three indicators offers the opportunity for
models to capture both market sentiment and tech-
nical price patterns, providing a more comprehen-
sive dataset that could enhance prediction accu-
racy.

Random Forest models are well-suited for han-
dling noisy or high-dimensional financial data,
making them effective for identifying non-linear
relationships among the VIX index, moving av-
erages, and trading volume. On the other hand,
LSTM models are particularly adept at predicting
time-series data, making them ideal for recogniz-
ing sequential dependencies in S&P500 price move-
ments. By integrating these models, their com-
plementary strengths can be leveraged to improve
predictive performance.

A significant gap in the literature lies in the fact
that prior studies have largely overlooked the in-
clusion of the VIX index as a technical indicator in
machine learning models, particularly those com-
bining Random Forest and LSTM. Moreover, few
studies have explored the potential of using the
output of a Random Forest model as an input for
an LSTM model. In response to these findings,
Section 3 of this paper will introduce the study’s
contribution to the literature by addressing these
gaps.

The combination of Random Forest and LSTM
is proposed due to the unique strengths of each
model: Random Forest excels in managing non-
linear relationships among multiple financial indi-
cators, while LSTM is highly effective at capturing
temporal patterns. By integrating these models,
a more holistic approach is achieved, where the
weaknesses of one model are compensated by the
strengths of the other.

This decision to combine Random Forest and
LSTM stems from the limitations identified in pre-
vious research, where single models have struggled
to capture both complex non-linear relationships

Page 9

between financial indicators and the temporal pat-
terns of stock price movements. By employing a
hybrid model, this study aims to overcome these
challenges, drawing on recent advancements in hy-
brid model design for financial forecasting.

3 Problem Statement & research
methodology

This study aims to contribute to research of stock
price prediction by investigating the predictabil-
ity of the future price action of the S&P500 us-
ing machine learning techniques, where the VIX
index, volatility, and trading volume are used as
the financial indicators for the model to predict
the future price action. Herein, the VIX index is
chosen since the VIX index reflects the volatility
of the market. This data could be of great use
to the model since the volatility could show re-
versal in the market trend because high volatility
often mirrors downtrend in the market which could
aid the model mitigate risk (Kuepper, 2023). On
the other hand the moving average smooths the
price movement by filtering out the noise due to
random large short-term price fluctuations (volatil-
ity) and thus revealing the underlying trend of the
market (Mitchell, 2023a). Lastly, the volume of
the market will be used since the volume indicates
the number of shares or contracts being traded.
This thus serves as an indicator of the strength-
/activity of the market (Mitchell, 2023b). Unusual
volume spikes could give the model more informa-
tion about long and/or short term sentiments of
the market (Plachý, 2014). The idea is to use the
three indicators together with the ordinary price
data of the S&P500 to feed the model and thus
not only an average indication of the market trend,
but also potential trend reversal indicators. Poten-
tially being able to early spot reversal in the trend
of the market by using the VIX index, confirm-
ing of supporting the idea using the volume data,
while benefiting from the fluctuation noise reduc-
tion using the moving average. The model will thus
perform an automated technical analysis by using
the VIX index, moving average, trading volume
and the historical prices to form price trend pre-
dictions. In summary, capturing various aspects of
the market behavior in order to reduce the bias of
the model but subsequently possibly increasing the
adaptability to the changing market condition. As
such the following research question is constructed:
”Does the combination of the VIX index, moving
average, and trading volume, as the financial indi-

cators, affect the predictive accuracy and trading
performance when used in a combined random for-
est and LSTM model, compared to a BUY&HOLD
strategy, individual Random Forest and LSTM
models and a random buy heuristic?”

Herein, we divide the main question into sub-
question:

• How does the combination of the VIX index,
moving average, trading volume, and LSTM
predictions as inputs for the Random Forest
affect the predictability of future stock price
movements? How does this compare to using
these inputs individually in the Random For-
est model?

• What is the predictive performance of the
combined Random Forest and LSTM model
when compared to individual Random For-
est and LSTM models? How does the hybrid
model leverage the strengths of each to im-
prove prediction accuracy?

• How does the combined model’s trad-
ing performance compare to a traditional
BUY&HOLD strategy? Does the model lead
to better financial outcomes in terms of prof-
itability and risk management?

• How does the combined model compare to a
random buy heuristic in terms of predictive
accuracy and trading performance?

3.1 Objectives

The objectives of this research are

1) Determine if the proposed combined model
consisting of the random forest with the LSTM
predictions, VIX index, moving average, and
trading volume as features of the Random for-
est leads to an enhanced performance in pre-
diction compared to standard LSTM and ran-
dom forest prediction models with moving av-
erage, and trading volume as features. Fur-
thermore, to determine if the combined model
leads to a higher return on investment than
traditional BUY HOLD strategy. This will be
assessed over the testing period from January
1, 2010, to January 1, 2024.

2) The proposed model is able to have a higher
performance in terms of the percentage of
number of correct predictions made compared
to the percentage of correct predictions of the
price trend of the S&P500 using a random

Page 10

buying/selling heuristic over the testing pe-
riod which starts on the January 1st 2010 and
range till January 1st of 2024.

3.2 Relevance

This study explores the impact of using the VIX in-
dex, moving average, and trading volume as finan-
cial indicators in a hybrid machine learning model
composed of Random Forest and LSTM. By in-
vestigating the combination of these specific finan-
cial indicators in the combined random forest and
LSTM model, this research adds to the academic
literature on financial forecasting. Although many
studies have focused on individual models and/or
indicators, this study provides insights into how
combining both machine learning models (Random
Forest and LSTM) and different financial indica-
tors (VIX index, moving averages, trading volume)
affects the predictabillity. This study fills a gap in
the existing literature by offering a new approach
to integrating market sentiment, technical indica-
tors, and machine learning, potentially advancing
the understanding of hybrid model performance
in financial contexts, where if the model in fact
does shows an improved predictabillity, it could
have significant real-world applications for port-
folio management and investment strategies. Ac-
curate predictions of stock price movements using
this model could enhance the performance of in-
vestment portfolios by informing better buy/sell
decisions, thus optimizing returns while manag-
ing risks. In practice, financial institutions, in-
vestors, and algorithmic traders could leverage the
findings to develop more robust trading strategies
that outperform traditional methods such as the
BUY&HOLD strategy or random heuristics.

3.3 Scope & limitations

This study focuses on the effectiveness of intro-
ducing the VIX index along with the moving av-
erage and trading volume in machine learning to
accurately predict the stock trend of the S&P500.
Other technical indicators will not be considered.
With respect to the machine learning algorithms
used, this study will limit it self to the use of only
random forest and LSTM learning methods to pre-
dict the future trend of the S&P500 since a com-
bination of the 2 learning techniques has not been
tested yet in the literature. Furthermore, in this
study we are not seeking to predict an exact price
but we are satisfied with a buy or sell signal.

3.4 Methodology

In order to investigate the effectiveness of the
technical indicators such as the VIX index on
the stock price prediction of the S&P500 using
machine learning. The first step of this study is to
collect the required data. This data will originate
from yahoo finance (Yahoo, 2024). From this
website we will import the historical data of not
only the price but also the technical indicators
and the VIX index. The period that will be used
starts from January 1st 1990 until January 1st of
2024. Of this data the tradeable days between
January 1st 1990 and January 1st 2010 will be
used as the training set for the models remaining
part of the data will be used for back-testing the
model. From the data stock splits and dividends
will be discarded as well by using the adjusted
closing price. The data will be imported to
the python file in which the random forest and
LSTM are modelled. Hereafter, we will establish
a LSTM which is trained on historical prices of
the S&P500. This model will make based on the
historical price data a prediction of the trend for
the price difference between today’s price and
tomorrow’s price. Herein, the predicted price
difference is translated to a downward market
trend in which the output of the model is 0 (sell)
or an upward market trend in which the output of
the model is 1 (buy). These actions will be used
next to the historical price data, moving average,
trading volumes and corresponding VIX index of
the S&P500 as the input for the random forest.
The random forest will predict the next day price
price difference which will be translated to a 0
value if the difference is negative or 1 value if the
difference is positive in which a 0 is a downtrend
prediction and a 1 is a uptrend prediction. The
performance of the model will be determined by
comparing the returns made from the prediction
by the random forest with the returns of a simple
BUY&HOLD of the S&P500. The BUY&HOLD
is used as a baseline for the return. This method
is the easiest trading method for an investor
since it requires no skill. Therefore, the model
becomes interesting if it can ”beat” the market in
other words outperform the BUY&HOLD of the
S&P500. Herein, we compare the returns made
for both methods. Moreover, we will also compare
by only observing the performance of the random
forest and LSTM. The LSTM is not affected by
the other random forest and thus the performance
can directly be observed. For the random forest
a model will be established which is the similar

Page 11

Figure 5: Experimental overview

to the combined model however in this model the
input of the LSTM is discarded.
The predictability performance of the models will
be examined by observing the F1-scores of the
models and by providing the standard deviation
of predictions we can show also determine the
fluctuation of the model. Since we determine
the F-scores we also determine the precision and
recall of the model since the F1-score is based on
these two. The precision determines the propor-
tion of correctly predicted predictions out of all
predictions. The accuracy determines the overall
correctness of the model’s predictions. Recall
measures the ability of the model to capture
all positive instances by taking the fraction of
correctly predicted observations over the total of
actual positives. The F1-score is on its turn the
harmonic mean of the precision and the recall
and will primarily be used since the recall and
precision can than simultaneously be used (Fehst
et al., 2018). For the random forest, also the
ROC and AUC will determined. Based on these
measures the performance of the model will be
judged. Beneath the methodolgy is shown in a
stepwise manner for the different models.

LSTM model

1. Collect the adjusted closing price historical
price data, volume and VIX index data of the
S&P500 from Yahoo finance ranging January
1st of 1990 till January 1st of 2024. The data
ranging from January 1st of 1990 till January
1st of 2010 is used as training data and the
data ranging from January 2st of 2010 till Jan-
uary 1st of 2024 is used for testing.

2. Model an LSTM model which predicts the
next day’s price difference of the S&P500 us-
ing the adjusted closing price, volume, moving
average and (VIX index).

3. Determine the predictive performance of the
model by determining the F1-score, accu-
racy, precision, recall and mean squared error
(MSE).

4. Translate the predicted price difference to a 0
(sell) if the difference is negative or a 1 (buy)
if the difference is positive.

5. If a 1 signal is given the model should buy 1
stock at the current market price and sell at
the end of the day at the closing price. The
return is difference in stock price on that day.

6. Sum all buy signals returns to obtain the fi-

Page 12

nal return made by the model over the testing
period.

7. Compare the return of the model against a
buy&hold and a random buy heuristic and the
other models.

Random forest model

1. Collect the adjusted closing price historical
price data, volume and VIX index data of the
S&P500 from Yahoo finance ranging January
1st of 1990 till January 1st of 2024. The data
ranging from January 1st of 1990 till January
1st of 2010 is used as training data and the
data ranging from January 2st of 2010 till Jan-
uary 1st of 2024 is used for testing.

2. Model random forest model which predicts the
next day’s price difference of the S&P500 us-
ing the adjusted closing price, volume, moving
average and (VIX index).

3. Determine the predictive performance of the
model by determining the F1-score, accuracy,
precision, recall and area under the curve
(AUC).

4. Translate the predicted price difference to a 0
(sell) if the difference is negative or a 1 (buy)
if the difference is positive.

5. If a 1 signal is given, the model should buy 1
stock at the current market price and sell at
the end of the day at the closing price. The
return is difference in stock price on that day.

6. Sum all buy signals returns to obtain the fi-
nal return made by the model over the testing
period.

7. Compare the return of the model against a
buy&hold and a random buy heuristic and the
other models.

Combined Random forest and LSTM
model

1. Collect the adjusted closing price historical
price data, volume and VIX index data of the
S&P500 from Yahoo finance ranging January
1st of 1990 till January 1st of 2024. The data
ranging from January 1st of 1990 till January
1st of 2010 is used as training data and the
data ranging from January 2st of 2010 till Jan-
uary 1st of 2024 is used for testing.

2. Model an LSTM model with a rolling hori-
zon which predicts the next day’s price differ-
ence of the S&P500 using the adjusted closing
price, volume, moving average and (VIX in-
dex) over a horizon of January 1st of 2004 till
January 1st of 2024. The rest of the predic-
tions from January 1st of 1990 till December
31st of 2003 will be 0 values.

3. Model random forest model which predicts the
next day’s price difference of the S&P500 us-
ing the adjusted closing price, volume, moving
average, (VIX index) and the LSTM predic-
tions.

4. Determine the predictive performance of the
model by determining the F1-score, accuracy,
precision, recall and area under the curve
(AUC).

5. Translate the predicted price difference to a 0
(sell) if the difference is negative or a 1 (buy)
if the difference is positive.

6. If a 1 signal is given the model should buy 1
stock at the current market price and sell at
the end of the day at the closing price. The
return is difference in stock price on that day.

7. Sum all buy signals returns to obtain the fi-
nal return made by the model over the testing
period.

8. Compare the return of the model against a
buy&hold and a random buy heuristic and the
other models.

In conclusion, in this study a combined model is
established in which an LSTM model’s predictions
are used as a feature input for a random forest
along side other features. The random forest makes
predictions of the next days price difference of the
S&P500 based on historical price data.

4 Results

In this chapter the results of the proposed models
are presented. This section is structured as fol-
lows: First, in section 4.1 the performance of the
standalone models LSTM and Random Forest in
predicting the future price changes of the S&P500
is evaluated. Then, in section 4.2 the performance
of the combined model, where LSTM predictions
are integrated into the Random Forest model as
input features is presented. And finally, in section

Page 13

4.3 we compare all models (LSTM, Random For-
est, and the combined model) against the bench-
mark strategies namely the Buy&Hold (B&H) and
the Random Buy (RB) heuristic. Throughout
this chapter, a distinction must be made between
two key concepts of predictions, namely classifica-
tion and regression. This also affects the type of
used key performance indicators (KPIs) to evalu-
ate model performance. Here, for a classification
in which the focus is on predicting if the price of
the SP500 will go up or down, which is essential
for making buy/sell decisions, the following KPIs
are used:

• Accuracy: Measures the percentage of cor-
rect directional predictions (up or down move-
ment).

• Precision: The proportion of predicted up-
trends that were correct (true positives / (true
positives + false positives)).

• Recall: The ability of the model to correctly
identify actual uptrends (true positives / (true
positives + false negatives)).

• F1-Score: The harmonic mean of precision
and recall, representing the balance between
these two metrics.

While for regression the focus is on predicting the
actual price or the price difference. While this is
more detailed, it is often more challenging and sen-
sitive to volatility. Therefore, the following KPI is
used to evaluated the perfomance:

• Mean Squared Error (MSE): The average
squared difference between predicted and ac-
tual prices, which is used for regression tasks.

Lastly, all models are examined by the return.
The return measures the financial outcome if the
model’s predictions were used for trading (buy on
predicted uptrend, sell on predicted downtrend).
The return is modeled as when the model pre-
dicts a buy signal fictively 1 share at the at that
time current market price is bought and sold at
that days closing price. This continues over the
full testing period. Hereafter, all returns (nega-
tive and positive) are summed which results in the
final return of the model. In this chapter we fo-
cus primarily on classification metrics (accuracy,
precision, recall, and F1-score) for evaluating the
models’ ability to predict market direction. How-
ever, we also assess regression performance using
MSE as a supplementary metric to understand the

accuracy of price-level predictions. Furthermore,
the returns of the models are examined to observe
the financial efficiency of the models.

4.1 LSTM solo

With the establishment of the solo LSTM we try to
make predictions in price change for the next day
for the S&P500. Since we would like to observe the
effect on the predictability of a random forest of in-
tegrating the predictions of an LSTM in the input
of the random forest we first have to observe the
predictability of a LSTM model. We established
a model in which we used historical price data of
the S&P500 from 01-01-1994 until 01-01-2024 of
which 80% was given to do model as ”training”
data, while the remaining 20% was used for test-
ing the predictability of the model. In order to
further enhance the predictability we used the fol-
lowing features:

• price difference defined as today’s price – yes-
terday’s price

• volume difference defined as today’s volume –
yesterday’s volume

• 20 day exponential moving average

• 60 day exponential moving average

• 90 day exponential moving average

• 120 day exponential moving average

• 150 day exponential moving average

By targeting the next days closing price, we ob-
tained the following results which are compromised
in figure 6. In this figure, we can clearly observe a
trend recognition by the LSTM with an accuracy of
78.96% with a mean squared error of 0.504. The
LSTM was able to rather copy the chart of the
S&P500. However, by further observing the data
points and chart we observed something interest-
ing. The graph of the LSTM predictions seemed to
be a copy of the graph of the S&P500 however with
a lag of few days. Since the increase and decrease
of the absolute prices per day are absolutely seen
rather small (difference in price compared to base
price) the LSTM could make a prediction that is
close to the price of the previous day which will in
a first observation look promising. Since the price
difference per day is relatively small compared to
the base price if the LSTM makes an off prediction.
However, the prediction is close to the base price

Page 14

Figure 6: LSTM closing price prediction

Figure 7: Daily LSTM predictions of the price dif-
ference and S&P500 actual price difference per day
over the testing period.

the mean squared error will return as small. Pos-
sibly meaning that the LSTM is just extrapolated
historical prices, rather than making actual accu-
rate predictions of future price changes. In order
to observe this the prediction target was changed
from close price to close price difference in which
close price difference is defined as tomorrow’s clos-
ing price - today’s closing price. Herein, the same
LSTM model and inputs as was used for the clos-
ing price prediction however, we re-examined the
hyperparameters. By tuning those we used the fol-
lowing parameters:

• LSTM Layer Hyperparameters:

– Units (LSTM Neurons): 180

• Dense Layer Hyperparameters:

– Units: 1

• Input Sequence Length:

– Backcandles: 30

• Training Hyperparameters:

– Batch Size: 15

– Epochs: 30

• Optimizer:

– Optimizer: Adam

• Loss Function:

– Loss Function: Mean Squared Error
(MSE)

• Validation Split:

– Validation Split: 0.07

• Feature Scaling:

– Scaler: MinMaxScaler with feature
range (-1, 1)

• Random Seed:

– NumPy: 42

– TensorFlow: 42

– Random: 42

• Dataset Split:

Page 15

– Train/Test Split: 80% training, 20%
testing

By using those parameters the model obtained
its best results. In figure 7 the prediction made by
the LSTM on the price difference against the ac-
tual price difference of the S&P500 (in the graph
depicted as test) is displayed. Herein, it can be
seen that the LSTM makes quite restrained pre-
diction, since the predicted absolute price differ-
ences are small. Furthermore, it can be observed
that when the market had an increased volatility
the LSTM tried to adjust but still the predicted
price change were still always smaller than the ac-
tual market. This may be caused by the loss func-
tion of the model which could be argued to have
a too small sensitivity to catch larger differences.
These points however, should not be a problem
for this study since we are only interested in the
model being able to correctly spot a positive or
negative future price change. However, it is clear
from our observations that the LSTM struggles to
accurately predict the absolute future price differ-
ence. This is further emphasized by evaluating the
performance metrics of both models, as shown in
Table 1. Here, it becomes evident that the perfor-
mance of the LSTM predicting the price difference
was significantly lower than that of the LSTM pre-
dicting the closing price.

Ultimately, the LSTM model predicting price
differences achieved an accuracy of 52.68% with a
mean squared error (MSE) of 0.0356. These results
suggest that while the model demonstrates some
predictive capability in identifying market trends,
it may primarily be extrapolating historical data
rather than making accurate predictions about fu-
ture price changes.

4.2 Random forest solo

The ”solo” random forest was established to
serve as a benchmark performance to observe
predictability on next day’s price change of the
S&P500 without introducing the VIX-index and
LSTM predictions. Herein, the same features and
training and testing periods are used as in the solo
LSTM model. For the hyper parameters of the
model we have used 100 estimators, no maximum
layer depth and 100 minimum sample splits. The
combination of the features and these hyper pa-
rameter settings resulted in the performance dis-
played in table 1 column RF. Herein, we find a
baseline performance in which we have an accu-
racy of 53.7%, a F1-score of 63% and a projected

return if the 1 calls were bought and sold at the
end of the day, of 572.30$. These results are rel-
atively poor compared to the LSTM performance.
However, it must be considered that the next day’s
price prediction of a stock is better considered as
an regression model rather than a solely classifica-
tion problem. Therefore, in order to try to improve
the performance of the random forest we introduce
the VIX index. Herein, we have introduced the
VIX index to the model as a ratio of today’s VIX
value divided by yesterdays VIX value. Herein,
we thus either find a relative increase or decrease
in the VIX ratio which is more informative to the
model rather than the VIX values which from day-
to-day were varying rather much. Moreover, by
comparing the VIX charts with the price charts of
the S&P500 we observed that change in the VIX
value did not necessarily result in a drastic decrease
or increase of the price of the S&P500. Therefore,
to also decrease the effect of the VIX value grad-
ually going up we decided to use the ratio instead
of the plane VIX-value as an additional feature for
the random forest model. This additional feature
increased the accuracy of the model from 53.7% to
55%, the F1-score from 63% to 64.8% and the re-
turn from 572.30$ to 899.63$. Although the perfor-
mance of the random forest has increased and the
accuracy being higher than the accuracy of the solo
LSTM the return of the random forest is still 50%
lower than the return of the LSTM solo. Neverthe-
less, the increases that were found due to the ad-
dition of the VIX ratio are a good benchmark per-
formance for the eventual combined model which
will be discussed in the following section. In which
we will add the LSTM predictions to the current
feature list of the random forest.

4.3 LSTM & Random forest combined
model

In order to observe whether the predictability of
the random forest can be enhanced by including
LSTM predictions as a feature it was necessary to
prepare the LSTM model. This was due to the
training and testing period required for the ran-
dom forest. The LSTM prediction data set had to
be of the same length as the data input of random
forest to ensure that the predictions generated were
aligned with the length of the data input required
for the random forest. Increasing the prediction
period at the expense of the training data did not
solve this problem since it drastically impacted the
predictability of the LSTM, causing the learning
period to be too small and therefore, the model was

Page 16

Metrics LSTM RF RF+VIX LSTM+RF LSTM+RF+VIX B&H RB

Accuracy 0.527 0.537 0.550 0.505 0.507 - 0.506

Precision 0.530 0.559 0.566 0.541 0.542 - 0.554

F1-score 0.68 0.63 0.648 0.59 0.598 - 0.529

Recall 0.949 0.722 0.758 0.564 0.666 - 0.507

AUC - 0.533 0.546 0.483 0.490 - -

MSE 0.036 - - - - - -

TP 727 606 607 450 449 - 410

TN 50 186 190 295 299 - 336

FP 632 478 474 382 381 - 330

FN 66 205 204 348 346 - 399

Predictions 1475 1475 1475 1475 1475 - 1475

Return 1116.27$ 572.30$ 899.63$ 251.67$ 468.27$ 2067.09$ 755.36$

Table 1: Performance evaluation of the different established models

Figure 8: Solo LSTM predictions on the price dif-
ference in which 50% of the input data was used as
the learning data and 50% as the validation data

unable to get familiar with the data which resulted
in losing the trend overtime which can be observed
in figure 8. Therefore, hyperparameter tuning did
not result in a better performance. This problem
is solved with the introduction of a rolling horizon
to the model. Herein, constantly 6 years of data of
which 80% is training data. Each time the model
has learned and tested the window is reset and
shifted to the next period. By doing so the LSTM
can be updated with shifting data. Since the price
of the S&P500 is not stationary and over the years
has shown a continuous upwards trend the model
also have to be updated accordingly. This prob-
lem is likely to be caused by the LSTM taking into
account too much ”old” data which causes it to
lose sight of the trend overtime which can be ob-
served in figure 8. In figure 9 the predictions of the
LSTM with a rolling window is displayed. Herein,
it can be seen that the model able to maintain the
trend better than the model used in figure 8. Us-
ing the rolling horizon we have thus also decreased
the trend loss issue.

Figure 9: Daily LSTM predictions of the price dif-
ference and S&P500 actual price difference per day
using a rolling window

With the LSTM model established, its predic-
tions were incorporated as features into the ran-
dom forest model. For the random forest, the same
model architecture was used as in the solo ran-
dom forest approach. Despite efforts to improve
the model through hyperparameter tuning testing
different numbers of estimators, maximum depths,
and minimum sample splits no significant improve-
ments in accuracy or precision were observed. Con-
sequently, the parameters from the solo random
forest model (100 estimators, no maximum layer
depth, and a minimum sample split of 100) were
retained.
In table 1 the results of the combined model is
displayed in column LSTM+RF. Herein, it can be
observed that the model was able to obtain an ac-
curacy of 50.05% meaning that only half of the
predictions of the next day’s closing price up or
downward directions were made correctly. Fur-
thermore, the model was examined on the precision
score herein it was found that the model is 54.1% of
the cases it made a buy prediction, the prediction

Page 17

was indeed a upwards move in the market. In trad-
ing it is important to have a high precision on your
to avoid wrong market interpretations. Comparing
the accuracy and precision of the model, it can be
observed that the model is more accurate result is
found when we only observe the buy predictions,
which is in line with our strategy since we do not
short the market. On the other side we observe the
recall of this model in which we obtained 56.4%.
In order to observe the balance between the recall
and the precision of this model, the F1-score can be
observed. For this model an F1-score of 59% was
found indicating a fairly balance between the pre-
cision and the recall, meaning that the model was
reasonably able to identify uptrends while manag-
ing false uptrends and downtrends. Herein, the
ability of the model to manage false uptrends is
important since the model only enters the mar-
ket when it predicts an uptrend. False downtrends
will only cause a loss in potential profit which is
less worse then making a loss due to a falsely buy
signal. The performance of the model has resulted
in, if all uptrends calls were bought on the call day
and sold before the market closes during the period
of 01-01-2018 till 01-01-2024, a return of 251.67$.
Efforts to enhance the performance of the model
by adding the VIX index as a feature to this model
showed a slightly increase in performance. In par-
ticular the model was more able to identify actual
up trends than the model that did not include the
VIX index. The results of this model are displayed
in table 1 in column LSTM+RF+VIX. Also, the
return of the model including the VIX index as a
feature increased by approximately 85%. indicat-
ing that including the VIX index indeed enhanced
the performance of the model.

4.4 Model comparison

In order to observe the overall effectiveness of
using the machine learning models used to predict
the next days price difference of the S&P500, we
will compare the performance of solo LSTM model
with the solo random forest (RF), the combined
RF models, Buy&Hold (B&H) and random buy
(RB). First of all, it must be noted that the only
actual predictions that are of interest to us are the
”true positive” and ”false positive” predictions.
This is because in case of a negative prediction, a
0 signal, the model will not buy nor sell and will
continue to the next day. Therefore, we will, in the
worst case scenario, miss out on positive return
but we are protected for negative return. When
we get a positive prediction, a 1 signal, we are not

protected against negative return since the model
will then enter the market and place a position.
Therefore, the most interesting metric is actually
the precision score since this metric analysis the
ration between the ”true positive” and ”false pos-
itive” predictions. However, this metric can easily
be misinterpreted. This is because we thus also
still have the ”false negative” and ”true negative”
predictions if the number of those predictions are
high, we are still able to obtain a high precision
score but we still get a poor return since the
model will not enter the market in this situation.
In order to obtain the highest return we therefore
must find the largest number of ”True positives”
but at the same time obtain the lowest number of
”False positives”. We can observe this phenomena
by looking at table 1 in this table we can observe
the ”True positive” (TP), ”True negative” (TN),
”False positive” (FP) and the ”False negative”
(FN) predictions of the models. Herein, we can
see that the Random forest with the VIX index as
a feature (RF+VIX) model obtained the highest
precision score of 56.6%, however obtains a lower
return then the LSTM which has a precision
53%. The higher return can be explained by
the fact that the LSTM was able to predict 120
more TP predictions than the RF+VIX model,
which means that we obtain returns for 120 extra
days. However, the LSTM also 158 more FP
predictions than the RF+VIX which could be
interpreted as the benefit of the large number of
TP being canceled out, since also the precision
score is lower than the RF+VIX. However, when
analysing the chart of the S&P500 over the period
of 1994-01-01 till 2024-01-01 which is displayed in
figure 10 it can be seen that over the period the
S&P500 experienced a rather continues upwards
trend in which the price has experienced a climb
of approximately 10x in its price, increasing from
471$ on 1994-01-01 to 4743$ on 2024-01-02. This
means that the upwards price trend is stronger
than the downwards price trend. Projecting this
finding back to the TP and FP predictions of ours
models that would mean that the FP predictions
should have less impact on the return than the
TP predictions in general otherwise we would not
obtain the ordinary upwards price trend urge of
the S&P500. Therefore, up to a certain point
it can be considered that it is more important
to increase the number of TP predictions rather
than optimizing the precision score. This also due
to the fact that in order to make the model an
interesting investment method it should be able

Page 18

Figure 10: Price movement of the S&P500 over the training and testing period (Yahoo, 2024)

to obtain a higher return than at least the RB
but more importantly the B&H. Herein, in table
1 by first observing the RF models, it can be
observed that the return of the RF is enhanced
when the VIX index is included to the features
list of the models, whereas when the LSTM is
added the return and performance are drastically
decreased to less than half of the returns found
in the models that did not include the LSTM.
This can be the result of the LSTM input already
introducing an implied error to the model due
to faulty predictions. Furthermore, these faulty
predictions have an increased impact on the model
due to the input of the LSTM being a classified
input meaning the input is either a 1 or a 0 value.
Therefore, the RF can easily be too biased towards
the faulty prediction of the LSTM. Therefore,
it can be concluded that introducing LSTM
predictions of price difference as an additional
input feature for the RF model to be an ineffective
measure to improve the predictability of the RF
model to predict the next day’s closing price
difference of S&P500. Furthermore, comparing
the returns of the RF models with the returns of
the B&H it can be observed that the models were
not able to outperform the return of the B&H in
which the B&H realized an approximately 130%
higher return than the best performing RF model
(RF+VIX) during the same period. Neverthe-
less, the return over a 6-year period is still low
compared to the Buy&Hold (B&H) return which
is displayed in table 1 in column B&H. The buy
and hold was able to obtain a return of 2067.09$
in the same period. Furthermore, observing the

returns of a random buy (RB), which can be
observed in table 1 column RB, which turned
out to be 755.36$ during the same period. These
results not only indicate that our models were
not able to outperform the B&H which should
be outperformed to consider the models as a
meaningful trading strategy, but also that only
the solo LSTM and RF+VIX models were able
to out perform the RB. Meaning that including
the LSTM predictions in the features of the RF
feature list did not result in the forseen increased
predictability as expected. Furthermore, when
we increase the testing period from 01-01-2024 to
01-06-2024 we observe that all models further lose
their predictability. In Table 2 we have displayed
the LSTM solo and the RF+VIX which were the
2 best performing models for the testing period
till 01-01-2024.

Page 19

Metrics LSTM RF+VIX B&H RB

Accuracy 0.463 0.513 - 0.473

Precision 0.500 0.525 - 0.497

F1-score 0.36 0.61 - 0.485

Recall 0.280 0.727 -

AUC - 0.512 - -

MSE 0.025 - - -

TP 227 606 - 410

TN 464 186 - 336

FP 225 478 - 330

FN 576 205 - 399

Predictions 1492 1492 - 1492

Return 593.43$ -98.89$ 2133.72$ -552.57$

Table 2: Performance evaluation of the shifted testing period for the solo LSTM and RF+VIX models

5 Conclusion & recommenda-
tions

The primary purpose of this study was to deter-
mine whether machine learning models specifically,
Random Forest (RF) and Long Short-Term Mem-
ory (LSTM) combined with technical indicators
such as the VIX index, moving averages, and trad-
ing volume, can accurately predict price trends in
the S&P500 index. The main research question
was whether the combination of the VIX index,
moving average, and trading volume, as the finan-
cial indicators, used in a combined random forest
and LSTMmodel could have a better performance,
compared to a BUY&HOLD strategy, individual
Random Forest and LSTM models and a random
buy heuristic. This was investigated by buying
and or doing nothing the day after in terms of
predictive accuracy and returns. The results indi-
cate that the LSTM model alone, without the VIX
index, achieved a prediction accuracy of 52.68%,
with an F1-score of 68%. It correctly predicted
the up or down movement of the S&P500 price
slightly more than half of the time, outperforming
a random buy strategy. However, despite its pre-
dictive accuracy, the LSTM model did not exceed
the performance of a simple buy&hold strategy.
The buy&hold yielded 130% higher returns over
the same period than the LSTM model. The Ran-
dom Forest model, when incorporating the VIX in-
dex improved accuracy to 55%, with an F1-score of
64.8%. Herein, the VIX index was used to capture
market sentiment and volatility trends, providing
insights into potential market reversals. Despite
this, the Random Forest model still fell short of
outperforming the buy-and-hold strategy in terms

of overall returns. Moreover, the attempt to com-
bine LSTM predictions as a feature for the Ran-
dom Forest model did not result in an improved
performance. Instead, it reduced the models pre-
dictive accuracy to 50.5%, indicating that the in-
tegration of LSTM predictions into the Random
Forest did not enhance the model’s ability to pre-
dict stock price trends effectively. One significant
finding was that using a ”newer” testing period
with the same model inputs negatively affected the
models’ performance, reducing their predictabil-
ity when applied to different market conditions.
This highlights the importance of model robust-
ness across various time frames, particularly in
high-volatility phases of the market. In answer
to the main research question, while the machine
learning models showed moderate success in pre-
dicting price trends, they did not outperform the
traditional buy-and-hold strategy in terms of to-
tal returns. Thus although the models being rea-
sonably accurate, they struggled to provide better
results than straightforward investment strategies
such as a buy&hold. Based on the findings, we
recommend further exploration of how the VIX in-
dex, along with other technical indicators like mov-
ing averages and trading volume, can be better
integrated into machine learning models such as
LSTM. While the VIX index improved the accu-
racy of the model, additional research is needed to
explore how to leverage it more effectively for trend
prediction. We also suggest examining the impact
of testing period shifts more closely in terms of
what is the optimum testing time frame before the
hyperparamters have to be adjusted, as these can
significantly influence model robustness and pre-
dictive accuracy due to influence of old data. The

Page 20

model could retain too much of this data causing it
to be unable to make accurate predictions. There-
fore, it is worthwhile to study the what the opti-
mum input data length is before the models it’s
input and hyperparameters must be re-examined.
Additionally, future studies should focus on opti-
mizing these machine learning models to outper-
form not only random buy strategies but also sim-
ple investment strategies like buy-and-hold. En-
hancing model resilience across different market
conditions and time periods will be crucial for their
practical application in stock market prediction.
Furthermore, future research can be conducted to-
wards the ethical and legal aspect of the use of
machine learning in stock price prediction to be
used in stock trading.

Page 21

References

Ahmed, S., Alam, M. S., Hassan, M., Rodela, M., Ishtiak, T., Rafa, N., Rahman, M. M., Ali, A. B. M. S.,
& Gandomi, A. (2023). Deep learning modelling techniques: Current progress, applications, advan-
tages, and challenges. Artificial Intelligence Review, 56. https://doi.org/10.1007/s10462-023-10466-
8

Ahoniemi, K. (2008). Modeling and forecasting the vix index. Available at SSRN 1033812.
Bhatt, S. (2019, April). Reinforcement learning 101. https : / / towardsdatascience . com/ reinforcement -

learning-101-e24b50e1d292
Bi, Q., Goodman, K. E., Kaminsky, J., & Lessler, J. (2019). What is machine learning? a primer for the

epidemiologist. American Journal of Epidemiology. https://doi.org/10.1093/aje/kwz189
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics,

31 (3), 307–327. https://doi.org/10.1016/0304-4076(86)90063-1
Brailsford, T. J. (1996). The empirical relationship between trading volume, returns and volatility. Ac-

counting & Finance, 36 (1), 89–111.
Bustos, O., Pomares, A., & Gonzalez, E. (2017). A comparison between svm and multilayer perceptron in

predicting an emerging financial market: Colombian stock market, 1–6.
Calzone, O. (2018). An intuitive explanation of lstm [Medium]. https://medium.com/@ottaviocalzone/an-

intuitive-explanation-of-lstm-a035eb6ab42c
Devi, B. U., Sundar, D., & Alli, P. (2013). An effective time series analysis for stock trend prediction using

arima model for nifty midcap-50. International Journal of Data Mining & Knowledge Management
Process, 3 (1), 65.

Donges, N. (2023, September). Random forest: A complete guide for machine learning. https://builtin.
com/data-science/random-forest-algorithm

edX. (2023, December). Arima modeling. https://www.mastersindatascience.org/learning/statistics-data-
science/what-is-arima-modeling/

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of united
kingdom inflation. Econometrica, 50 (4), 987–1007. Retrieved February 4, 2024, from http://www.
jstor.org/stable/1912773

Enke, D., Grauer, M., & Mehdiyev, N. (2011). Stock market prediction with multiple regression, fuzzy
type-2 clustering and neural networks. Procedia Computer Science, 6, 201–206. https://doi.org/10.
1016/j.procs.2011.08.038

Fama, E. F. (1991). Efficient capital markets: Ii. The Journal of Finance, 46 (5), 1575–1617. https://doi.
org/10.1111/j.1540-6261.1991.tb04636.x

Fama, E. F., & French, K. R. (1992). The cross-section of expected stock returns. The Journal of Finance,
47 (2), 427–465.

Fehst, V., La, H., Nghiem, T.-D., Mayer, B., Englert, P., & Fiebig, K.-H. (2018). Automatic vs. manual
feature engineering for anomaly detection of drinking-water quality, 5–6. https://doi.org/10.1145/
3205651.3208204

Fumo, J. (2017, August). Types of machine learning algorithms you should know. https : / /
towardsdatascience.com/types-of-machine-learning-algorithms-you-should-know-953a08248861

Gallagher, L. A., & Taylor, M. P. (2002). Permanent and temporary components of stock prices: Evidence
from assessing macroeconomic shocks. Southern Economic Journal, 69 (2), 345. https://doi.org/10.
2307/1061676

Giot, P. (2005). Relationships between implied volatility indices and stock index returns. Journal of Port-
folio Management, 31 (3), 92–100.

Giro, D. (2024). Wat is de vix index? https://www.degiro.nl/leren-beleggen/beleggersacademie/beginner-
cursus/vix-index

Google. (2024, February). Classification: Roc curve and auc — machine learning — google for developers.
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc

Grigoryan, H. (2017/05). Stock market trend prediction using support vector machines and variable selec-
tion methods, 210–213. https://doi.org/10.2991/ammsa-17.2017.45

Hari, Y., & Dewi, L. P. (2018). Forecasting system approach for stock trading with relative strength index
and moving average indicator [Doctoral dissertation, Petra Christian University].

Page 22

https://doi.org/10.1007/s10462-023-10466-8
https://doi.org/10.1007/s10462-023-10466-8
https://towardsdatascience.com/reinforcement-learning-101-e24b50e1d292
https://towardsdatascience.com/reinforcement-learning-101-e24b50e1d292
https://doi.org/10.1093/aje/kwz189
https://doi.org/10.1016/0304-4076(86)90063-1
https://medium.com/@ottaviocalzone/an-intuitive-explanation-of-lstm-a035eb6ab42c
https://medium.com/@ottaviocalzone/an-intuitive-explanation-of-lstm-a035eb6ab42c
https://builtin.com/data-science/random-forest-algorithm
https://builtin.com/data-science/random-forest-algorithm
https://www.mastersindatascience.org/learning/statistics-data-science/what-is-arima-modeling/
https://www.mastersindatascience.org/learning/statistics-data-science/what-is-arima-modeling/
http://www.jstor.org/stable/1912773
http://www.jstor.org/stable/1912773
https://doi.org/10.1016/j.procs.2011.08.038
https://doi.org/10.1016/j.procs.2011.08.038
https://doi.org/10.1111/j.1540-6261.1991.tb04636.x
https://doi.org/10.1111/j.1540-6261.1991.tb04636.x
https://doi.org/10.1145/3205651.3208204
https://doi.org/10.1145/3205651.3208204
https://towardsdatascience.com/types-of-machine-learning-algorithms-you-should-know-953a08248861
https://towardsdatascience.com/types-of-machine-learning-algorithms-you-should-know-953a08248861
https://doi.org/10.2307/1061676
https://doi.org/10.2307/1061676
https://www.degiro.nl/leren-beleggen/beleggersacademie/beginner-cursus/vix-index
https://www.degiro.nl/leren-beleggen/beleggersacademie/beginner-cursus/vix-index
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
https://doi.org/10.2991/ammsa-17.2017.45

Hayes, A. (2023, September). Autoregressive integrated moving average (arima) prediction model. https:
//www.investopedia.com/terms/a/autoregressive-integrated-moving-average-arima.asp

IBM. (2024a). Random forest - ibm [IBM Website]. https://www.ibm.com/topics/random-forest
IBM. (2024b). What is Supervised Learning? — IBM — ibm.com [[Accessed 29-01-2024]].
Jiao, Y., & Jakubowicz, J. (2017). Predicting stock movement direction with machine learning: An extensive

study on sp 500 stocks, 4705–4713. https://doi.org/10.1109/BigData.2017.8258518
Khanderwal, S., & Mohanty, D. (2021). Stock price prediction using arima model. International Journal

of Marketing & Human Resource Research, 2 (2), 98–107.
Kuepper, J. (2023, December). Cboe volatility index (vix): What does it measure in investing? https :

//www.investopedia.com/terms/v/vix.asp
Kumar, R. (2015, November). Efficient capital markets and its implications. https://www.sciencedirect.

com/science/article/abs/pii/B9780128023037000036?via%3Dihub
Madge, S., & Bhatt, S. (2015). Predicting stock price direction using support vector machines. Independent

work report spring, 45.
Maverick, J. (2022). What are the main advantages and disadvantages of using a simple moving average

(sma)? https://www.investopedia.com/ask/answers/013015/what- are-main- advantages- and-
disadvantages-using-simple-moving-average-sma.asp

Mehta, S., Rana, P., Singh, S., Sharma, A., & Agarwal, P. (2019). Ensemble learning approach for enhanced
stock prediction. 2019 Twelfth International Conference on Contemporary Computing (IC3), 1–5.
https://doi.org/10.1109/IC3.2019.8844891

Mitchell, C. (2023a, September). How to use a moving average to buy stocks. https://www.investopedia.
com/articles/active- trading/052014/how-use-moving-average-buy- stocks.asp#:∼:text=The%
20moving%20average%20(MA)%20is,time%20period%20the%20trader%20chooses.

Mitchell, C. (2023b, September). How to use a moving average to buy stocks. https://www.investopedia.
com/articles/active- trading/052014/how-use-moving-average-buy- stocks.asp#:∼:text=The%
20moving%20average%20(MA)%20is,time%20period%20the%20trader%20chooses.

Oracle. (2024). Wat is machine learning? https://www.oracle.com/nl/artificial- intelligence/machine-
learning/what-is-machine-learning/

Oshiro, T., Perez, P., & Baranauskas, J. (2012). How many trees in a random forest? Lecture notes in
computer science, 7376. https://doi.org/10.1007/978-3-642-31537-4 13

Pavan Kumar Illa, A. K. S., Balakesavareddy Parvathala. (2022). Stock price prediction methodology using
random forest algorithm and support vector machine. Materials Today: Proceedings, 56 (4), 1776–
1782. https://doi.org/https://doi.org/10.1016/j.matpr.2021.10.460

Pisner, D. A., & Schnyer, D. M. (2020). Support vector machine. In Machine learning (pp. 101–121).
Elsevier.

Plachý, R. (2014). Impact of trading volume on prediction of stock market development. Acta Universitatis
Agriculturae et Silviculturae Mendelianae Brunensis, 62, 1373–1380. https://doi.org/10.11118/
actaun201462061373

Reddy, V. K. S. (2018). Stock market prediction using machine learning. International Research Journal
of Engineering and Technology (IRJET), 5 (10), 1033–1035.

Sadorsky, P. (2021). A random forests approach to predicting clean energy stock prices. Journal of Risk
and Financial Management, 14 (2), 48.

Scikit. (2024, January). Rbf svm parameters. https://scikit-learn.org/stable/auto examples/svm/plot rbf
parameters.html

Siami-Namini, S., & Namin, A. S. (2018). A comparison of arima and lstm in forecasting time series. arXiv
preprint arXiv:1803.06386. https://arxiv.org/abs/1803.06386

Sonkavde, G. (2023). Forecasting stock market prices using machine learning. Cryptography, 11 (3), 94.
https://www.mdpi.com/2227-7072/11/3/94

Srivatsavaya, P. (2023). Lstm — implementation, advantages and diadvantages. https://medium.com/
@prudhviraju.srivatsavaya/lstm-implementation-advantages-and-diadvantages-914a96fa0acb

Thompson, C. (2023, December). Fundamental vs. technical analysis: What’s the difference? https://www.
investopedia.com/ask/answers/difference-between-fundamental-and-technical-analysis/

Page 23

https://www.investopedia.com/terms/a/autoregressive-integrated-moving-average-arima.asp
https://www.investopedia.com/terms/a/autoregressive-integrated-moving-average-arima.asp
https://www.ibm.com/topics/random-forest
https://doi.org/10.1109/BigData.2017.8258518
https://www.investopedia.com/terms/v/vix.asp
https://www.investopedia.com/terms/v/vix.asp
https://www.sciencedirect.com/science/article/abs/pii/B9780128023037000036?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/B9780128023037000036?via%3Dihub
https://www.investopedia.com/ask/answers/013015/what-are-main-advantages-and-disadvantages-using-simple-moving-average-sma.asp
https://www.investopedia.com/ask/answers/013015/what-are-main-advantages-and-disadvantages-using-simple-moving-average-sma.asp
https://doi.org/10.1109/IC3.2019.8844891
https://www.investopedia.com/articles/active-trading/052014/how-use-moving-average-buy-stocks.asp#:~:text=The%20moving%20average%20(MA)%20is,time%20period%20the%20trader%20chooses.
https://www.investopedia.com/articles/active-trading/052014/how-use-moving-average-buy-stocks.asp#:~:text=The%20moving%20average%20(MA)%20is,time%20period%20the%20trader%20chooses.
https://www.investopedia.com/articles/active-trading/052014/how-use-moving-average-buy-stocks.asp#:~:text=The%20moving%20average%20(MA)%20is,time%20period%20the%20trader%20chooses.
https://www.investopedia.com/articles/active-trading/052014/how-use-moving-average-buy-stocks.asp#:~:text=The%20moving%20average%20(MA)%20is,time%20period%20the%20trader%20chooses.
https://www.investopedia.com/articles/active-trading/052014/how-use-moving-average-buy-stocks.asp#:~:text=The%20moving%20average%20(MA)%20is,time%20period%20the%20trader%20chooses.
https://www.investopedia.com/articles/active-trading/052014/how-use-moving-average-buy-stocks.asp#:~:text=The%20moving%20average%20(MA)%20is,time%20period%20the%20trader%20chooses.
https://www.oracle.com/nl/artificial-intelligence/machine-learning/what-is-machine-learning/
https://www.oracle.com/nl/artificial-intelligence/machine-learning/what-is-machine-learning/
https://doi.org/10.1007/978-3-642-31537-4_13
https://doi.org/https://doi.org/10.1016/j.matpr.2021.10.460
https://doi.org/10.11118/actaun201462061373
https://doi.org/10.11118/actaun201462061373
https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html
https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html
https://arxiv.org/abs/1803.06386
https://www.mdpi.com/2227-7072/11/3/94
https://medium.com/@prudhviraju.srivatsavaya/lstm-implementation-advantages-and-diadvantages-914a96fa0acb
https://medium.com/@prudhviraju.srivatsavaya/lstm-implementation-advantages-and-diadvantages-914a96fa0acb
https://www.investopedia.com/ask/answers/difference-between-fundamental-and-technical-analysis/
https://www.investopedia.com/ask/answers/difference-between-fundamental-and-technical-analysis/

Ţiţan, A. G. (2015). The efficient market hypothesis: Review of specialized literature and empirical research.
Procedia Economics and Finance, 32, 442–449. https://doi.org/10.1016/s2212-5671(15)01416-1

Tsai, C.-F., Hsu, Y.-C., & Wu, S.-C. (2011). Using machine learning to assess information in stock prices.
Expert Systems with Applications, 38 (10), 12759–12766.

Twin, A. (2022, January). Volume of trade: How it works, what it means, and examples. https://www.
investopedia.com/terms/v/volumeoftrade.asp

Vo, N., & Ślepaczuk, R. (2022). Applying hybrid arima-sgarch in algorithmic investment strategies on
s&p500 index. Entropy, 24 (2), 158.

Yahoo. (2024). Yahoo finance - stock market live, quotes, business finance news. https://finance.yahoo.
com/

Page 24

https://doi.org/10.1016/s2212-5671(15)01416-1
https://www.investopedia.com/terms/v/volumeoftrade.asp
https://www.investopedia.com/terms/v/volumeoftrade.asp
https://finance.yahoo.com/
https://finance.yahoo.com/

Appendices

A Random forest code

1 # -*- coding: utf-8 -*-

2 """

3 Created on Mon Jan 15 21:56:09 2024

4

5 @author: Gebruiker

6 """

7

8 import yfinance as yf

9 import pandas as pd

10 import numpy as np

11 import pandas_ta as ta

12 from sklearn.ensemble import RandomForestClassifier

13 from sklearn.metrics import precision_score, accuracy_score, f1_score, mean_squared_error,

roc_curve, auc, confusion_matrix↪→

14 from sklearn.model_selection import train_test_split

15 from sklearn.impute import SimpleImputer

16 import matplotlib.pyplot as plt

17 import random

18

19 # Set seeds for reproducibility

20 np.random.seed(42)

21 random.seed(42)

22

23 # Download S&P 500 data

24 sp500 = yf.download('^GSPC', start='1994-01-01', end='2024-06-01')

25 vix = yf.download('^VIX', start='1994-01-01', end='2024-06-01')

26

27 # Create target columns

28 sp500["Tomorrow"] = sp500["Close"].shift(-1)

29 sp500["Target_diff"] = sp500["Tomorrow"] - sp500["Close"]

30 sp500["Target_class"] = (sp500["Target_diff"] > 0).astype(int)

31

32 # Data preprocessing

33 sp500["yesterday_diff"] = sp500["Close"] - sp500["Close"].shift(1)

34 sp500["yesterday_vol_diff"] = sp500["Volume"] - sp500["Volume"].shift(1)

35 sp500["MA20"] = ta.ema(sp500.Close, length=20)

36 sp500["MA60"] = ta.ema(sp500.Close, length=60)

37 sp500["MA90"] = ta.ema(sp500.Close, length=90)

38 sp500["MA120"] = ta.ema(sp500.Close, length=120)

39 sp500["MA150"] = ta.ema(sp500.Close, length=150)

40

41 # Merge with VIX data

42 vix.rename(columns={'Close': 'VIX'}, inplace=True)

43 sp500 = sp500.merge(vix[['VIX']], left_index=True, right_index=True, how='left')

44 sp500['Ratio_vix'] = sp500["VIX"] / sp500["Close"]

45

46 # Add rolling means for ratios

47 sp500['MMA20'] = sp500["Close"] / sp500["Close"].rolling(20).mean()

48 sp500['MMA60'] = sp500["Close"] / sp500["Close"].rolling(60).mean()

49 sp500['MMA90'] = sp500["Close"] / sp500["Close"].rolling(90).mean()

50 sp500['MMA120'] = sp500["Close"] / sp500["Close"].rolling(120).mean()

51 sp500['MMA150'] = sp500["Close"] / sp500["Close"].rolling(150).mean()

52

53 # Drop rows with NaN values

54 sp500.dropna(inplace=True)

Page 25

55

56 # Add trends

57 sp500['10day_trend'] = sp500['Target_diff'].shift(1).rolling(10).sum() / 10

58 sp500['30day_trend'] = sp500['Target_diff'].shift(1).rolling(30).sum() / 30

59 sp500['50day_trend'] = sp500['Target_diff'].shift(1).rolling(50).sum() / 50

60

61 # Filter data from 1990 onwards

62 sp500 = sp500.loc["1990-01-01":].copy()

63

64 # Define predictors and target

65 predictors = ["Close", "Volume", 'MA20', 'MA60', 'MA90', 'MA120', 'MA150', '10day_trend',

'30day_trend', '50day_trend','Ratio_vix']↪→

66 X = sp500[predictors]

67 y = sp500["Target_class"] # Use the binary classification target

68

69 # Split data into train and test sets (80-20 split)

70 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

71

72 # Handle NaN values using SimpleImputer

73 imputer = SimpleImputer(strategy='mean')

74 X_train_imputed = imputer.fit_transform(X_train)

75 X_test_imputed = imputer.transform(X_test)

76

77 # Define and train the model

78 model = RandomForestClassifier(n_estimators=100, min_samples_split=100, random_state=1)

79 model.fit(X_train_imputed, y_train)

80

81 # Make predictions

82 preds = model.predict(X_test_imputed)

83

84 # Predict probabilities for ROC calculation

85 y_probs = model.predict_proba(X_test_imputed)[:, 1]

86

87 # Calculate ROC curve

88 fpr, tpr, thresholds = roc_curve(y_test, y_probs)

89

90 # Calculate AUC

91 roc_auc = auc(fpr, tpr)

92

93 # Plot ROC curve

94 plt.figure()

95 plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' % roc_auc)

96 plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')

97 plt.xlim([0.0, 1.0])

98 plt.ylim([0.0, 1.05])

99 plt.xlabel('False Positive Rate')

100 plt.ylabel('True Positive Rate')

101 plt.title('Receiver Operating Characteristic')

102 plt.legend(loc="lower right")

103 plt.show()

104

105 # Make random predictions (0 or 1)

106 random_preds = np.random.choice([0, 1], size=len(preds))

107

108 # Calculate performance metrics for the test set based on predicted values

109 predicted_target_diff = []

110 total_predicted_diff = 0 # To accumulate total predicted differences

111

112 random_predicted_target_diff = []

Page 26

113 total_random_predicted_diff = 0 # To accumulate total predicted differences for random

predictions↪→

114

115 test_indices = X_test.index # Get the indices from X_test which align with y_test

116

117 for i in range(len(preds)):

118 index = test_indices[i]

119 if preds[i] == 1:

120 predicted_diff = sp500.loc[index, "Target_diff"]

121 predicted_target_diff.append(predicted_diff)

122 total_predicted_diff += predicted_diff

123 else:

124 predicted_target_diff.append(0)

125

126 # Calculate for random predictions

127 if random_preds[i] == 1:

128 random_predicted_diff = sp500.loc[index, "Target_diff"]

129 random_predicted_target_diff.append(random_predicted_diff)

130 total_random_predicted_diff += random_predicted_diff

131 else:

132 random_predicted_target_diff.append(0)

133

134 # Calculate performance metrics for the test set

135 precision = precision_score(y_test, preds)

136 accuracy = accuracy_score(y_test, preds)

137 f1 = f1_score(y_test, preds)

138 # For MSE, we need to calculate it manually since it's a regression metric, not

classification↪→

139 mse = mean_squared_error(y_test, predicted_target_diff)

140

141 # Calculate performance metrics for random predictions

142 random_precision = precision_score(y_test, random_preds)

143 random_accuracy = accuracy_score(y_test, random_preds)

144 random_f1 = f1_score(y_test, random_preds)

145 random_mse = mean_squared_error(y_test, random_predicted_target_diff)

146

147 # Calculate confusion matrix to get TP, TN, FP, and FN

148 cm = confusion_matrix(y_test, preds)

149 tn, fp, fn, tp = cm.ravel()

150

151 # Print performance metrics for the test set

152 print("\nTest Set Performance Metrics:")

153 print(f"Precision: {precision:.4f}")

154 print(f"Accuracy: {accuracy:.4f}")

155 print(f"F1 Score: {f1:.4f}")

156 print(f"MSE: {mse:.4f}")

157 print(f"Total Predicted Difference: {total_predicted_diff:.4f}")

158

159 # Print TP, TN, FP, and FN

160 print("\nConfusion Matrix:")

161 print(f"TP: {tp}, TN: {tn}, FP: {fp}, FN: {fn}")

162

163 # Print ROC and AUC

164 print(f"ROC AUC: {roc_auc:.4f}")

165

166 print("\nRandom Predictions Performance Metrics:")

167 print(f"Precision: {random_precision:.4f}")

168 print(f"Accuracy: {random_accuracy:.4f}")

169 print(f"F1 Score: {random_f1:.4f}")

170 print(f"MSE: {random_mse:.4f}")

Page 27

171 print(f"Total Random Predicted Difference: {total_random_predicted_diff:.4f}")

172

173 # Print the periods of predictions

174 start_date = X_test.index.min()

175 end_date = X_test.index.max()

176 print(f"\nPredictions made between {start_date} and {end_date}")

B LSTM code

1 # -*- coding: utf-8 -*-

2 """

3 Created on Sun Jun 9 13:23:02 2024

4

5 @author: Gebruiker

6 """

7

8 import numpy as np

9 import yfinance as yf

10 import pandas as pd

11 import pandas_ta as ta

12 import matplotlib.pyplot as plt

13 from sklearn.preprocessing import MinMaxScaler

14 from sklearn.metrics import mean_squared_error, precision_score, recall_score, f1_score

15 from tensorflow.keras.models import Sequential, Model

16 from tensorflow.keras.layers import LSTM, Dense, Dropout, Input, Activation

17 from tensorflow.keras.optimizers import Adam

18 import tensorflow as tf

19 import random

20

21 # Download S&P 500 data

22 sp500 = yf.download('^GSPC', start='1994-02-01', end='2024-06-01')

23 vix = yf.download('^VIX', start='1994-02-01', end='2024-06-01')

24

25 # Set seeds for reproducibility

26 np.random.seed(42)

27 tf.random.set_seed(42)

28 random.seed(42)

29

30 # Data preprocessing

31 sp500.drop(columns=["High", "Low", "Adj Close"], inplace=True)

32 vix.rename(columns={'Close': 'VIX'}, inplace=True)

33 sp500 = sp500.merge(vix[['VIX']], left_index=True, right_index=True, how='left')

34 sp500['Ratio_vix'] = sp500["VIX"] / sp500["Close"]

35 sp500["yesterday_diff"] = sp500["Close"] - sp500["Close"].shift(1)

36 sp500["yesterday_vol_diff"] = sp500["Volume"] - sp500["Volume"].shift(1)

37 sp500["MA20"] = ta.ema(sp500.Close, length=20)

38 sp500["MA60"] = ta.ema(sp500.Close, length=60)

39 sp500["MA90"] = ta.ema(sp500.Close, length=90)

40 sp500["MA120"] = ta.ema(sp500.Close, length=120)

41 sp500["MA150"] = ta.ema(sp500.Close, length=150)

42 sp500["Tomorrow"] = sp500["Close"].shift(-1)

43 sp500["Target_diff"] = sp500["Tomorrow"] - sp500["Close"]

44 sp500["Target"] = (sp500["Tomorrow"] > sp500["Close"]).astype(int)

45

46 sp500.dropna(inplace=True)

47 sp500.reset_index(inplace=True)

48

49 # Define backcandles before using it

Page 28

50 backcandles = 30

51

52 # Feature scaling

53 data_set = sp500.iloc[:, 1:15]

54 sc = MinMaxScaler(feature_range=(-1, 1))

55 data_scaled = sc.fit_transform(data_set)

56

57 # Prepare the dataset for LSTM

58 X = []

59 for j in range(11): # -1 to exclude the target column

60 X.append([])

61 for i in range(backcandles, data_scaled.shape[0]):

62 X[j].append(data_scaled[i - backcandles:i, j])

63

64 X = np.moveaxis(X, [0], [2])

65 X, yi = np.array(X), np.array(data_scaled[backcandles:, -1])

66 y = np.reshape(yi, (len(yi), 1))

67

68 # Split data into train and test sets

69 splitlimit = int(len(X) * 0.8)

70 X_train, X_test = X[:splitlimit], X[splitlimit:]

71 y_train, y_test = y[:splitlimit], y[splitlimit:]

72

73 # Correct the input shape for the LSTM layer

74 n_features = X_train.shape[2]

75

76 # LSTM model

77 lstm_input = Input(shape=(backcandles, n_features), name='lstm_input')

78 inputs = LSTM(180, name='lstm_layer')(lstm_input)

79 inputs = Dense(1, name='dense_layer')(inputs)

80 output = Activation('linear', name='output')(inputs)

81 model = Model(inputs=lstm_input, outputs=output)

82

83 # Compile and train the model

84 adam = Adam()

85 model.compile(optimizer=adam, loss='mse')

86 model.fit(x=X_train, y=y_train, batch_size=15, epochs=30, shuffle=True,

validation_split=0.07)↪→

87

88 # Predictions

89 y_pred = model.predict(X_test)

90

91 # Print the start date of the test period

92 # Extract dates for the test set (match length with y_test_unscaled)

93 dates = sp500['Date'][backcandles:].reset_index(drop=True)

94 dates_test = dates[splitlimit:].reset_index(drop=True) # Reset the index to align with the

test data↪→

95

96 start_date_test_period = dates_test.iloc[0]

97 print(f'Start Date of Test Period: {start_date_test_period}')

98

99 # Print predictions and true values

100 for i in range(11):

101 print(y_pred[i], y_test[i])

102

103 # Evaluate the model

104 mse = mean_squared_error(y_test, y_pred)

105 print(f'Mean Squared Error: {mse}')

106

Page 29

107 data_test_scaled = data_scaled[splitlimit + backcandles:, :-1] # Match the length of

y_test and y_pred↪→

108 y_test_unscaled = sc.inverse_transform(np.concatenate((data_test_scaled, y_test),

axis=1))[:, -1]↪→

109 y_pred_unscaled = sc.inverse_transform(np.concatenate((data_test_scaled, y_pred),

axis=1))[:, -1]↪→

110

111 # Print unscaled predictions and true values

112 for i in range(10):

113 print(f'Predicted: {y_pred_unscaled[i]}, Actual: {y_test_unscaled[i]}')

114

115 y_test_target = np.where(y_test_unscaled > 0, 1, 0)

116 y_pred_target = np.where(y_pred_unscaled > 0, 1, 0)

117

118 # Calculate total predicted difference

119 total_predicted_diff = 0 # To accumulate total predicted differences

120

121 for i in range(len(y_pred_target)):

122 if y_pred_target[i] == 1:

123 index = splitlimit + backcandles + i

124 predicted_diff = sp500.loc[index, "Target_diff"]

125 total_predicted_diff += predicted_diff

126

127 print(f'Total Predicted Difference: {total_predicted_diff}')

128

129 # Summation of price differences from the prediction period

130 total_price_diff = sp500.loc[splitlimit + backcandles:, "Target_diff"].sum()

131 print(f'Summation of Price Difference from Prediction Period: {total_price_diff}')

132

133 # Calculate TP, TN, FP, and FN

134 TP = np.sum((y_pred_target == 1) & (y_test_target == 1))

135 TN = np.sum((y_pred_target == 0) & (y_test_target == 0))

136 FP = np.sum((y_pred_target == 1) & (y_test_target == 0))

137 FN = np.sum((y_pred_target == 0) & (y_test_target == 1))

138

139 print(f'Total Predictions: {len(y_pred_target)}')

140 print(f'True Positives: {TP}')

141 print(f'True Negatives: {TN}')

142 print(f'False Positives: {FP}')

143 print(f'False Negatives: {FN}')

144

145 # Plot results with dates on the x-axis

146 plt.figure(figsize=(16, 8))

147 plt.plot(dates_test, y_test_unscaled, color='black', label='Test')

148 plt.plot(dates_test, y_pred_unscaled, color='green', label='Predicted')

149 plt.legend()

150 plt.xlabel('Date')

151 plt.ylabel('Price')

152 plt.title('S&P 500 Prediction vs Actual')

153 plt.xticks(rotation=45)

154 plt.grid(True)

155 plt.show()

156

157 # Calculate accuracy

158 accuracy = (y_pred_target == y_test_target).mean() * 100

159 print(f'Accuracy: {accuracy:.2f}%')

160

161 # Calculate precision, recall, and F1-score

162 precision = precision_score(y_test_target, y_pred_target)

163 recall = recall_score(y_test_target, y_pred_target)

Page 30

164 f1 = f1_score(y_test_target, y_pred_target)

165

166 print(f'Precision: {precision:.2f}')

167 print(f'Recall: {recall:.2f}')

168 print(f'F1-score: {f1:.2f}')

169

170 results_df = pd.DataFrame({

171 'True Target': y_test_target.flatten(),

172 'Predicted Target': y_pred_target.flatten()

173 })

C LSTM code for RF feature input

1 # -*- coding: utf-8 -*-

2 """

3 Created on Sun Jun 16 18:49:18 2024

4

5 @author: Gebruiker

6 """

7

8 # -*- coding: utf-8 -*-

9 """

10 Created on Sun Jun 9 13:23:02 2024

11

12 @author: Gebruiker

13 """

14

15 import numpy as np

16 import yfinance as yf

17 import pandas as pd

18 import pandas_ta as ta

19 import matplotlib.pyplot as plt

20 from sklearn.preprocessing import MinMaxScaler

21 from sklearn.metrics import mean_squared_error

22 from tensorflow.keras.models import Model

23 from tensorflow.keras.layers import LSTM, Dense, Input, Activation

24 from tensorflow.keras.optimizers import Adam

25 import tensorflow as tf

26 import random

27

28 # Download S&P 500 data

29 sp500 = yf.download('^GSPC', start='1994-01-01', end='2024-01-01')

30

31 # Set seeds for reproducibility

32 np.random.seed(42)

33 tf.random.set_seed(42)

34 random.seed(42)

35

36 # Data preprocessing

37 sp500.drop(columns=["High", "Low", "Adj Close"], inplace=True)

38 sp500["yesterday_diff"] = sp500["Close"] - sp500["Close"].shift(1)

39 sp500["yesterday_vol_diff"] = sp500["Volume"] - sp500["Volume"].shift(1)

40 sp500["MA20"] = ta.ema(sp500.Close, length=20)

41 sp500["MA60"] = ta.ema(sp500.Close, length=60)

42 sp500["MA90"] = ta.ema(sp500.Close, length=90)

43 sp500["MA120"] = ta.ema(sp500.Close, length=120)

44 sp500["MA150"] = ta.ema(sp500.Close, length=150)

45 sp500["Tomorrow"] = sp500["Close"].shift(-1)

Page 31

46 sp500["Target"] = (sp500["Tomorrow"] > sp500["Close"]).astype(int)

47 sp500["Target_diff"] = sp500["Tomorrow"] - sp500["Close"]

48

49 sp500.dropna(inplace=True)

50 sp500.reset_index(inplace=True)

51

52 # Feature scaling

53 data_set = sp500.iloc[:, 1:14]

54 sc = MinMaxScaler(feature_range=(-1, 1))

55 data_scaled = sc.fit_transform(data_set)

56

57 # Prepare the dataset for LSTM

58 X = []

59 backcandles = 30

60 for j in range(10): # -1 to exclude the target column

61 X.append([])

62 for i in range(backcandles, data_scaled.shape[0]):

63 X[j].append(data_scaled[i - backcandles:i, j])

64

65 X = np.moveaxis(X, [0], [2])

66 X, yi = np.array(X), np.array(data_scaled[backcandles:, -1])

67 y = np.reshape(yi, (len(yi), 1))

68

69 # Rolling horizon prediction setup

70 rolling_window_size = 6 * 252 # 6 years of data, assuming 252 trading days per year

71 prediction_horizon = 252 # Predict for the next year

72 total_years = 20

73 total_predictions = total_years * prediction_horizon

74

75 # Initialize lists to store results

76 all_predictions = []

77 all_true_values = []

78

79 # Loop over the rolling windows

80 for start in range(0, len(X) - rolling_window_size - prediction_horizon + 1,

prediction_horizon):↪→

81 end = start + rolling_window_size

82 next_end = end + prediction_horizon

83

84 # Split data into train and test sets

85 X_train, y_train = X[start:end], y[start:end]

86 X_test, y_test = X[end:next_end], y[end:next_end]

87

88 # LSTM model

89 lstm_input = Input(shape=(backcandles, X_train.shape[2]), name='lstm_input')

90 inputs = LSTM(300, name='lstm_layer')(lstm_input)

91 inputs = Dense(1, name='dense_layer')(inputs)

92 output = Activation('linear', name='output')(inputs)

93 model = Model(inputs=lstm_input, outputs=output)

94

95 # Compile and train the model

96 adam = Adam()

97 model.compile(optimizer=adam, loss='mse')

98 model.fit(x=X_train, y=y_train, batch_size=40, epochs=40, shuffle=True,

validation_split=0.07)↪→

99

100 # Predictions

101 y_pred = model.predict(X_test)

102

103 # Store predictions and true values

Page 32

104 all_predictions.extend(y_pred.flatten())

105 all_true_values.extend(y_test.flatten())

106

107 # Convert lists to arrays for final evaluation

108 all_predictions = np.array(all_predictions)

109 all_true_values = np.array(all_true_values)

110

111 # Plot results

112 plt.figure(figsize=(16, 8))

113 plt.plot(all_true_values, color='black', label='True Values')

114 plt.plot(all_predictions, color='green', label='Predicted Values')

115 plt.legend()

116 plt.show()

117

118 # Evaluate the model

119 mse = mean_squared_error(all_true_values, all_predictions)

120 print(f'Mean Squared Error: {mse}')

121

122 # Unscale the predictions and true values for comparison

123 data_test_scaled = data_scaled[len(data_scaled) - len(all_predictions):, :-1] # Match the

length↪→

124 all_true_values_unscaled = sc.inverse_transform(np.concatenate((data_test_scaled,

all_true_values.reshape(-1, 1)), axis=1))[:, -1]↪→

125 all_predictions_unscaled = sc.inverse_transform(np.concatenate((data_test_scaled,

all_predictions.reshape(-1, 1)), axis=1))[:, -1]↪→

126

127 # Print unscaled predictions and true values

128 for i in range(10):

129 print(f'Predicted: {all_predictions_unscaled[i]}, Actual:

{all_true_values_unscaled[i]}')↪→

130

131 y_test_target = np.where(all_true_values_unscaled > 0, 1, 0)

132 y_pred_target = np.where(all_predictions_unscaled > 0, 1, 0)

133

134 # Calculate accuracy

135 accuracy = (y_pred_target == y_test_target).mean() * 100

136 print(f'Accuracy: {accuracy:.2f}%')

137

138 results_df = pd.DataFrame({

139 'True Target': y_test_target.flatten(),

140 'Predicted Target': y_pred_target.flatten()

141 })

142

143 total_price_diff = sp500.loc[splitlimit + backcandles:, "Target_diff"].sum()

144 print(f'Summation of Price Difference from Prediction Period: {total_price_diff}')

145

146 # Calculate TP, TN, FP, and FN

147 TP = np.sum((y_pred_target == 1) & (y_test_target == 1))

148 TN = np.sum((y_pred_target == 0) & (y_test_target == 0))

149 FP = np.sum((y_pred_target == 1) & (y_test_target == 0))

150 FN = np.sum((y_pred_target == 0) & (y_test_target == 1))

D Random forest model in which the LSTM is used as a feature code

1 # -*- coding: utf-8 -*-

2 """

3 Created on Sun Jun 30 14:52:07 2024

4

Page 33

5 @author: Gebruiker

6 """

7

8 import yfinance as yf

9 import pandas as pd

10 import numpy as np

11 import pandas_ta as ta

12 from sklearn.ensemble import RandomForestClassifier

13 from sklearn.metrics import precision_score, accuracy_score, f1_score, mean_squared_error,

confusion_matrix↪→

14 from sklearn.model_selection import train_test_split

15 from sklearn.impute import SimpleImputer

16 import random

17 import os

18

19 # Set seeds for reproducibility

20 np.random.seed(42)

21 random.seed(42)

22

23 # Download S&P 500 data

24 sp500 = yf.download('^GSPC', start='1994-01-01', end='2024-01-01')

25 vix = yf.download('^VIX', start='1994-01-01', end='2024-01-01')

26

27 # Create target columns

28 sp500["Tomorrow"] = sp500["Close"].shift(-1)

29 sp500["Target_diff"] = sp500["Tomorrow"] - sp500["Close"]

30 sp500["Target_class"] = (sp500["Target_diff"] > 0).astype(int)

31

32 # Data preprocessing

33 sp500["yesterday_diff"] = sp500["Close"] - sp500["Close"].shift(1)

34 sp500["yesterday_vol_diff"] = sp500["Volume"] - sp500["Volume"].shift(1)

35 sp500["MA20"] = ta.ema(sp500.Close, length=20)

36 sp500["MA60"] = ta.ema(sp500.Close, length=60)

37 sp500["MA90"] = ta.ema(sp500.Close, length=90)

38 sp500["MA120"] = ta.ema(sp500.Close, length=120)

39 sp500["MA150"] = ta.ema(sp500.Close, length=150)

40

41 # Merge with VIX data

42 vix.rename(columns={'Close': 'VIX'}, inplace=True)

43 sp500 = sp500.merge(vix[['VIX']], left_index=True, right_index=True, how='left')

44 sp500['Ratio_vix'] = sp500["VIX"] / sp500["Close"]

45

46 # Add rolling means for ratios

47 sp500['MMA20'] = sp500["Close"] / sp500["Close"].rolling(20).mean()

48 sp500['MMA60'] = sp500["Close"] / sp500["Close"].rolling(60).mean()

49 sp500['MMA90'] = sp500["Close"] / sp500["Close"].rolling(90).mean()

50 sp500['MMA120'] = sp500["Close"] / sp500["Close"].rolling(120).mean()

51 sp500['MMA150'] = sp500["Close"] / sp500["Close"].rolling(150).mean()

52

53 # Drop rows with NaN values

54 sp500.dropna(inplace=True)

55

56 # Add trends

57 sp500['10day_trend'] = sp500['Target_diff'].shift(1).rolling(10).sum() / 10

58 sp500['30day_trend'] = sp500['Target_diff'].shift(1).rolling(30).sum() / 30

59 sp500['50day_trend'] = sp500['Target_diff'].shift(1).rolling(50).sum() / 50

60

61 # Filter data from 1990 onwards

62 sp500 = sp500.loc["1990-01-01":].copy()

63

Page 34

64 # Load additional data from Excel file

65 file_path = r'C:\Users\Gebruiker\Documents\thesis\y_pred_target.xlsx'

66

67 # Check if the file exists

68 if os.path.exists(file_path):

69 # Load the Excel file

70 excel_data = pd.read_excel(file_path)

71

72 # Display the first few rows of the Excel data for debugging

73 print("Excel data preview:")

74 print(excel_data.head())

75

76 # Ensure the length of excel_data matches the length of sp500 DataFrame

77 if len(excel_data) == len(sp500):

78 # Assign the index of sp500 to excel_data

79 excel_data.index = sp500.index

80

81 # Rename the column to avoid conflicts

82 excel_data.columns = ["y_pred_target"]

83

84 # Merge the Excel data with sp500 DataFrame

85 sp500 = sp500.merge(excel_data, left_index=True, right_index=True, how='left')

86 else:

87 print(f"Length mismatch: excel_data has {len(excel_data)} rows, but sp500 has

{len(sp500)} rows.")↪→

88 # Adjust the length by trimming or padding the excel_data

89 if len(excel_data) > len(sp500):

90 excel_data = excel_data.iloc[:len(sp500)]

91 else:

92 additional_rows = pd.DataFrame({"y_pred_target": [np.nan] * (len(sp500) -

len(excel_data))}, index=sp500.index[len(excel_data):])↪→

93 excel_data = pd.concat([excel_data, additional_rows])

94

95 # Assign the index of sp500 to excel_data

96 excel_data.index = sp500.index

97

98 # Merge the Excel data with sp500 DataFrame

99 sp500 = sp500.merge(excel_data, left_index=True, right_index=True, how='left')

100 else:

101 print(f"File not found: {file_path}")

102

103 # Define predictors and target

104 predictors = ["Close", "Volume", "VIX", 'MA20', 'MA60', 'MA90', 'MA120', 'MA150',

'Ratio_vix', '10day_trend', '30day_trend', '50day_trend', 'y_pred_target']↪→

105 X = sp500[predictors]

106 y = sp500["Target_class"] # Use the binary classification target

107

108 # Split data into train and test sets (80-20 split)

109 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

110

111 # Handle NaN values using SimpleImputer

112 imputer = SimpleImputer(strategy='mean')

113 X_train_imputed = imputer.fit_transform(X_train)

114 X_test_imputed = imputer.transform(X_test)

115

116 # Define and train the model

117 model = RandomForestClassifier(n_estimators=100, min_samples_split=100, random_state=1)

118 model.fit(X_train_imputed, y_train)

119

120 # Make predictions

Page 35

121 preds = model.predict(X_test_imputed)

122

123 # Calculate performance metrics for the test set based on predicted values

124 predicted_target_diff = []

125 total_predicted_diff = 0 # To accumulate total predicted differences

126

127 test_indices = X_test.index # Get the indices from X_test which align with y_test

128

129 for i in range(len(preds)):

130 index = test_indices[i]

131 if preds[i] == 1:

132 predicted_diff = sp500.loc[index, "Target_diff"]

133 predicted_target_diff.append(predicted_diff)

134 total_predicted_diff += predicted_diff

135 else:

136 predicted_target_diff.append(0)

137

138 # Calculate performance metrics for the test set

139 precision = precision_score(y_test, preds)

140 accuracy = accuracy_score(y_test, preds)

141 f1 = f1_score(y_test, preds)

142 # For MSE, we need to calculate it manually since it's a regression metric, not

classification↪→

143 mse = mean_squared_error(y_test, predicted_target_diff)

144

145 # Calculate confusion matrix for detailed prediction statistics

146 conf_matrix = confusion_matrix(y_test, preds)

147 tn, fp, fn, tp = conf_matrix.ravel()

148

149 # Print performance metrics for the test set

150 print("\nTest Set Performance Metrics:")

151 print(f"Precision: {precision:.4f}")

152 print(f"Accuracy: {accuracy:.4f}")

153 print(f"F1 Score: {f1:.4f}")

154 print(f"MSE: {mse:.4f}")

155 print(f"Total Predicted Difference: {total_predicted_diff:.4f}")

156

157 # Print confusion matrix results

158 print("\nConfusion Matrix Results:")

159 print(f"True Positives: {tp}")

160 print(f"True Negatives: {tn}")

161 print(f"False Positives: {fp}")

162 print(f"False Negatives: {fn}")

163

164 # Print the periods of predictions

165 start_date = X_test.index.min()

166 end_date = X_test.index.max()

167 print(f"\nPredictions made between {start_date} and {end_date}")

E LSTM closing price prediction code

1 # -*- coding: utf-8 -*-

2 """

3 Created on Wed Aug 7 22:32:20 2024

4

5 @author: Gebruiker

6 """

7

Page 36

8 # -*- coding: utf-8 -*-

9 """

10 Created on Mon May 20 13:27:45 2024

11

12 @author: Gebruiker

13 """

14

15 import tensorflow as tf

16 print("TensorFlow version:", tf.__version__)

17

18 import numpy as np

19 import pandas as pd

20 import matplotlib.pyplot as plt

21 from sklearn.preprocessing import MinMaxScaler

22 import yfinance as yf

23 from tensorflow.keras.models import Sequential

24 from tensorflow.keras.layers import LSTM, Dense, Dropout

25

26 # Load data from Yahoo Finance

27 df = yf.download('^GSPC', start='1990-01-01', end='2024-01-01')

28

29 # Preprocess data

30 data = df['Close'].values.reshape(-1, 1)

31 scaler = MinMaxScaler(feature_range=(0, 1))

32 scaled_data = scaler.fit_transform(data)

33

34 train_data_len = len(df[df.index < '2010-01-01'])

35 train_data = scaled_data[:train_data_len, :]

36 test_data = scaled_data[train_data_len-60:, :]

37

38 x_train, y_train = [], []

39 for i in range(60, len(train_data)):

40 x_train.append(train_data[i-60:i, 0])

41 y_train.append(train_data[i, 0])

42 x_train, y_train = np.array(x_train), np.array(y_train)

43 x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1))

44

45 # Build LSTM model

46 model = Sequential()

47 model.add(LSTM(units=50, return_sequences=True, input_shape=(x_train.shape[1], 1)))

48 model.add(Dropout(0.2))

49 model.add(LSTM(units=50, return_sequences=False))

50 model.add(Dropout(0.2))

51 model.add(Dense(units=25))

52 model.add(Dense(units=1))

53 model.compile(optimizer='adam', loss='mean_squared_error')

54

55 # Train the model

56 model.fit(x_train, y_train, batch_size=1, epochs=1)

57

58 # Prepare test data

59 x_test, y_test = [], []

60 for i in range(60, len(test_data)):

61 x_test.append(test_data[i-60:i, 0])

62 y_test.append(test_data[i, 0])

63 x_test, y_test = np.array(x_test), np.array(y_test)

64 x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1))

65

66 # Make predictions

67 predictions = model.predict(x_test)

Page 37

68 predictions = scaler.inverse_transform(predictions)

69 y_test = scaler.inverse_transform(y_test.reshape(-1, 1))

70

71 # Plot the results

72 train = df[:train_data_len]

73 valid = df[train_data_len:]

74 valid['Predictions'] = predictions

75

76 plt.figure(figsize=(16, 8))

77 plt.title('LSTM closing price prediction')

78 plt.xlabel('Date')

79 plt.ylabel('Close Price USD (\$)')

80 plt.plot(train['Close'])

81 plt.plot(valid[['Close', 'Predictions']])

82 plt.legend(['Train', 'Val', 'Predictions'], loc='lower right')

83 plt.show()

Page 38

	Introduction
	Literature Review
	Introduction
	Machine learning
	Regression algorithms
	Time series forecasting
	Deep learning
	Ensemble Learning
	Financial indicators
	VIX index
	Moving average
	Trading volume

	Discussion

	Problem Statement & research methodology
	Objectives
	Relevance
	Scope & limitations
	Methodology

	Results
	LSTM solo
	Random forest solo
	LSTM & Random forest combined model
	Model comparison

	Conclusion & recommendations
	Appendices
	Random forest code
	LSTM code
	LSTM code for RF feature input
	Random forest model in which the LSTM is used as a feature code
	LSTM closing price prediction code

