
MSc Thesis Applied Mathematics

Investigation of 4DVarNet
Algorithm for Image
Reconstruction of Suspended
Particulate Matter Dynamics
Data

Fabio Mistrangelo

Supervisors: D. Ye (UT), F. Dols (Deltares), L. Meszaros (Deltares),
C. Brune (UT)

November 18, 2024

Department of Applied Mathematics
Faculty of Electrical Engineering,
Mathematics and Computer Science

Contents

1 Introduction 4

2 Mathematical background 7
2.1 Preliminaries . 7
2.2 Bayesian inference . 9
2.3 Recursive Bayesian formulation . 9
2.4 Problem formulation . 11

2.4.1 General smoother formulation . 11
2.4.2 Smoother formulation for perfect models . 12
2.4.3 Smoother formulation for parameters estimation 12
2.4.4 Filter formulation . 13
2.4.5 Recursive smoother formulation . 13

2.5 Data assimilation: Gaussian assumption . 14
2.6 Data assimilation methods . 15

2.6.1 Optimal interpolation . 16
2.6.2 Kalman filter . 18
2.6.3 4DVar . 19
2.6.4 Particle filters . 23

3 Methods 24
3.1 4DVarNet . 24

3.1.1 Problem statement of WC-4DVar . 24
3.1.2 Novelties . 25
3.1.3 End-To-End architecture . 27
3.1.4 Double-LSTM 4DVarNet . 28

3.2 Observing system experiment and observing system simulation experiments 29
3.2.1 OSSE . 29
3.2.2 OSE . 30

3.3 Evaluation metrics . 30

4 Experiments and Results 31
4.1 Data . 31

4.1.1 Satellite data . 31
4.1.2 Model data . 32
4.1.3 Data preprocessing . 32

4.2 Experiments . 33
4.3 Results . 35

4.3.1 Metrics . 35
4.3.2 Visual reconstruction . 36
4.3.3 Time series reconstruction . 38

2

5 Discussion 41
5.1 Explanation of the results . 41
5.2 Limitations . 42

5.2.1 Data . 42
5.2.2 Second experiment . 44
5.2.3 Model complexity . 44

5.3 Related works and future researches . 44

6 Conclusion and Overlooks 46

7 Acknowledgments 47

8 Appendixes 48
8.1 Appendix A . 48
8.2 Appendix B . 48

Bibliography 50

3

Chapter 1

Introduction

Suspended particulate matter (SPM) consists of a mix of mineral or terrigenous sediments and
particulate organic matter. This mixture is influenced by waves, tides, and marine currents, with
contributions from both terrestrial and marine sources [6]. Apart from the natural forcing, which is
the main cause of SPM, anthropogenic forces also commit to the formation of SPM. For example,
activities such as fish trawling and maritime development including harbor sediment dredging and
dumping, offshore wind farms, oil and gas pipelines also contribute [14].

The understanding of the SPM dynamics and the resulting turbidity contribute to the study of
the growth of micro-organisms based on photosynthesis [30]. In particular, studies have shown how
high concentrations of SPM harm marine ecosystems, especially those with rich organic sediments
[55, 24, 48, 40, 68]. Those sediments tend to stick to coral tissue and seagrass leaves, which
are species that have difficulties in removing this type of sediments compared to more inorganic-
rich ones. Moreover, due to its lower density, organic SPM can be more easily resuspended and
contribute to incrementing the turbidity of the water, even for long periods. It will result in the
reduction of acidity and oxygen concentration in the water.

The study of SPM dynamics in some areas is more challenging. For example, the Dutch part
of the Wadden Sea, see Fig. 1.1, is a shallow water area with a high concentration of SPM due to
the sediments coming from the river estuary and the sediments from the islands, which often get
partly flooded, spreading mud and sand in the nearby area.

In order to investigate the SPM concentration and dynamics, different types of data are typically
collected and studied, including simulation data based on computational models, in situ data and
satellite data using remote sensing. Simulation data provide complete and continuous spatio-
temporal information over the study area, but due to the complex underlying processes, these
data obtained from the computational models are subjected to simplifications and assumptions,
resulting in discrepancy and uncertainty. In situ data contain very accurate data and are often even
more reliable than satellite data. But they only present local information of where the sensors are
placed and often the measurements are limited to a time window. For this reason, they are often
used to validate the models or considered as reliable sourced of information to be integrated to the
data from other sources. Finally, satellite data provide more realistic information, but they also
involve limitations, such as instrumental errors and missing information due to cloud coverage on
the study area. Therefore, the availability of SPM satellite and complete satellite data of the area is
of great value for ecological and biogeochemical modellingmaking image reconstruction techniques
essential for recovering missing portions of the satellite data.

A wide variety of methods have been developed for image reconstruction [17] and applied
in oceanography. Numerical interpolation-based methods, i.e. optimal interpolation and kriging
[31, 62, 61, 15], combine observed and simulated data to minimize the error of the interpolated
field, using both spatial correlations of the data and model’s error characteristics to create the best-
guess estimate; a combination of Empirical Orthogonal Functions (EOF), also known as Principal
Component Analysis [52], with data interpolation was proposed by Beckers et. al. [11], resulting
in the so-called DInEOF. This is an iterative method that is able to identify dominant modes of
variability and reconstruct missing values in a way that captures the main spatial and temporal
structures of the given dataset. DInEOF, according to [17], is widely applied in real world scenarios

4

Figure 1.1: Satellite map of the Dutch Wadden Sea area. Tidal flats in between islands
(yellow circles), flooding on the mainland (blue circles) and river estuary (red circle) all
contribute to the SPM concentration in the area.

[50, 2, 69, 49, 75, 32] and researches [1, 60] of the past years. For example, Copernicus Marine
Service provides some L4 products obtained with the use of DInEOF reconstructions. Other
statistical methods have been used for data gap-filling, such as support vector regression, k-nearest
neighbours and random forest/decision tree, but they gathered less attention compared to the
two previous methods. However, all these methods present some issues, such as handling highly
non-linear systems, being sensitive to the noise of the data or dealing with sparse data.

With the fast development of powerful computational resources (GPUs), machine learning
methods have been significantly developed, showing better performances than classical numerical
methods on various tasks. In the last decades, the application of machine learning techniques on
image reconstruction has been widely explored [66, 56, 47, 59, 42, 41, 67]. Neural networks (NN)
are getting more attention due to their flexibility and performance in handling complex, nonlinear
relationships in data and their ability to generalize patterns without extensive feature engineer-
ing, making them especially valuable in domains with high-dimensional data, such as computer
vision/imaging or natural language process. In particular, architectures as Convolutional Neural
Network (CNN) and Autoencoders (AE) are the common techniques in computer vision tasks.
CNNs’ architecture leverages spatial hierarchies in images through a series of convolutional layers
that can detect global and local complex features, such as edges, textures or shapes. It has been
showcased its effectiveness in tasks such as object recognition, classification, and segmentation
of images. On the other hand, AEs can efficiently learn low-dimensional representations (encod-
ings) of data, which can capture essential features while reducing noise and dimensionality of the
problem. In computer vision, this capability is valuable for scenarios such as image compression,
denoising, and anomaly detection, where it is important to maintain image quality while reducing
complexity. The advantage of these methods compared to traditional algorithms, other than com-
putational efficiency, lies in the ability to automatically learn complex features and patterns, and
it has driven their applications also in image gap-filling tasks [23, 16, 46, 7, 37, 58, 45, 22].

Amongst all these works, the method of Fablet et al. [28], based on the Weak-Constraint
formulation of 4DVar (2.6.3) data assimilation method, demonstrated to be suitable for the re-
construction of SPM fields [73, 72]. The method they proposed is called 4DVarNet and it is an
End-To-End algorithm for reconstruction and approximation of complex dynamical systems, which
combines the classical data assimilation method framework with some neural network elements.
The resulting architecture showed faster convergence and better accuracy than other data assimi-
lation methods, making it appealing for satellite image reconstruction tasks.

The aim of this research is to apply and investigate 4DVarNet algorithm for image reconstruc-
tion of SPM data for the Dutch Wadden Sea area and compare it to two numerical methods, DI-
nEOF and eDInEOF. More specifically, the 4DVarNet algorithm was implemented and trained on

5

an Observed System Simulated Experiment (OSSE) setup 3.2. OSSE is commonly used in oceanog-
raphy because it efficiently combines information from simulated and satellite data. 4DVarNet was
trained on simulated data from DELFT3D numerical model and tested on satellite data from
CMEMS (see Sec. 4.1). Then, its performances were analysed and compared with two classical
reconstruction methods, DInEOF and eDInEOF. A variation of 4DVarNet is also proposed, called
Double LSTM, which exploits the Long Short Term Memory (LSTM) architecture of 4DVarNet to
transfer information from one reconstructed batch to the next one.

This thesis work was carried out at Deltares, as part of the project EDITO Model Lab, aiming
to develop a digital twin of the ocean "to make ocean knowledge readily available to citizens,
entrepreneurs, scientists and policy-makers by providing them with an innovative set of user-driven,
interactive and visualisation tools"1.

The rest of the thesis is arranged as follows. In Chapter 2 the mathematical basis of data
assimilation will be introduced and some of the most known methods will be briefly discussed.
Chapter 3 introduces 4DVarNet, its novelties, the generic benchmarking framework for experiments
and the metrics used. Chapter 4 is abouth the experiments setups and the numerical results. The
discussion of the numerical results and related works is in Chapter 5. Finally, Chapter 6 talks
about the conclusions and future outlooks.

1EDITO project: https://www.edito.eu.

6

https://www.edito.eu

Chapter 2

Mathematical background

Data assimilation is a statistical discipline, mainly developed for meteorology and earth sciences
as a method for forecasting, combining theoretical knowledge (for example numerical models) and
real-world observations. It heavily relies on mathematics, since it is assumed to have a numerical
model of the dynamical system that we are studying. In the past decades, the application of data
assimilation grew beyond forecasting and expanded to further tasks, such as finding the optimal
state of a dynamical system, determining the initial conditions, estimating the model parameters
or image reconstruction from sparse observations, thanks to its ability in combining data from
different sources, which is a feature that could be applied to other fields.

The common mathematical approach to data assimilation is based on Bayes’ theorem [27, 65]
and then defining the problem setup. This chapter will briefly introduce the mathematical basis of
data assimilation and common methods including Optimal Interpolation (OI) [31], Kalman filter
([44]), variational methods (3DVar and 4DVar) [51, 20], particle filters methods (sequential Monte
Carlo [33]).

2.1 Preliminaries
This section aims to introduce the common elements of data assimilation to build the mathematical
framework used for every method.

An assimilation time window is the temporal frame over which the data assimilation problem is
solved. It should be a continuous time window, but since it is working with real-world applications,
it will be considered a sequence of assimilation time windows in a discrete-time setup.

Each of the different data assimilation techniques uses in its own way the time window and they
could be either regular intervals or irregular. For example, Kalman filters define the time window
as the interval between each available measurement. They are not necessarily regularly sampled.
Moreover, some methods assume that the time windows are independent (Optimal Interpolation,
3DVar) meanwhile others assume that they are sequentially dependent (4DVar, particle filters,
Ensemble Kalman Filters [25], Extended Kalman Filter [43]).

Consider a model m representing the dynamics of a real-world system,

xt = m(xt−1, θ, ut, qt) (2.1)

where xt ∈ Rn denotes the state of the system at time instance t, θ ∈ Rp denotes the parameters of
the system, ut ∈ Rr is the sequence of model control which represents the time-dependent uncertain
model forcing and qt ∈ Rq denotes the sequence of model errors. It takes missing physics in the
model equations and numerical discretization errors into consideration. The uncertainty over the
assimilation time window is defined as follows,

7

x0 = x̂0 + x′0, (2.2a)

θ = θ̂ + θ′, (2.2b)

q⊤t = q̂⊤t + q′⊤t , (2.2c)

u⊤t = û⊤t + u′⊤t , (2.2d)

where x̂0, θ̂, q̂t and ût are the uncertain initial condition, prior values of parameters, uncertain
model error and uncertain model controls respectively, while x′0, θ′, q′t and u′t are their correspond-
ing uncertainties.

The sequence x = {x⊤0 , ..., x⊤K},where x⊤i ∈ Rn, is defined as the sequence of state model vectors
over an assimilation time window. It describes the state of the dynamical system (or the model m
we use to approximate it) at time t. The sequence x̄⊤ = {x̄⊤0 , ..., x̄⊤K} ∈ Rn represents the sequence
of true state vectors over an assimilation time window. Let’s assume that the true state vectors
evolve in time according to the equation:

x̄t = m(x̄t−1, θ, ut, qt) + g(t− 1), (2.3)

where g : Z −→ Rn is a function that it is supposed to be always unknown. This implies that the
true state will be never known, so the goal of data assimilation is to find the best approximation
of the true state, that is the model state.

Let’s define the vector z as the state vector containing all the uncertainties to estimate in our
data assimilation problem. The form of z has different variations depending on the problem, and
generally can be summarized into two main formulations [27]:

1. z⊤ = (x⊤, θ⊤, u⊤), which includes model state x (or model prediction) and the model error
q is excluded here. This is called model-state formulation and it updates directly the model
state x.

2. z⊤ = (x⊤0 , θ
⊤, u⊤, q⊤), which includes the model error as uncertain quantity that is desired

to be estimated. This is known as forcing formulation because the estimated model errors
q force the model. It can be noticed that given the form of z we can directly determine the
model state x.

To provide an general version of the problem setting, multiple assimilation windows formulations
are introduced here: given L assimilation windows, the model state is defined as the model-state
trajectory X⊤ = (x⊤1 , ..., x

⊤
L), the model controls as the time sequence U⊤ = (u⊤1 , ..., u

⊤
L) and the

model errors as the time sequence Q⊤ = (q⊤1 , ..., q
⊤
L). Therefore, the previous two formulations

could be generalized over multiple assimilation windows in the notation Z⊤ = (X⊤, θ⊤,U⊤), or
Z⊤ = (X⊤

0 , θ
⊤,U⊤,Q⊤).

The measurements D of the model (predicted) state X the vector given by the equation

D = H(X) + E , (2.4)

where H : Rn 7→ Rm is the measurement operator, which maps the model state vector X into the
measurement space, while the matrix E contains the measurement errors. A measurement error
could consist of instrumental errors or a representation error, which is the error that includes the
differences in the representation of the reality between measurements and models, the use of the
wrong measurement operator or some errors from the measurement preprocessing.

Noticing that the state vector Z contains the model state X , we can rewrite Eqn. (2.4) for each
of the state vector formulation:

D = G(Z) + E , (2.5)

for the model-state formulation, where G is a map from Z to the measurements, or

D = H(M(Z)) + E , (2.6)

8

for the forcing formulation, where M is a map from Z to X , called model operator, which corre-
sponds to the model m in Eqn. (2.1) in the single assimilation window case.

With all the elements of data assimilation, a generic definition of the objective of data assimila-
tion can be defined: given a sequence of observations (yt)t ∈ D of the true state (x̂t)t the objective
of data assimilation is to determine the form of true state x̄ (or a good approximation x, the model
state). In particular, we want to make prediction on the state of the system: supposing we are at
time t∗ and the observations (yt)t≤t∗ are known, our goal is to determine the observation forecasts
(yft)t≥t∗ of the predicted state with relative uncertainties.

2.2 Bayesian inference
The data assimilation problem can be formulated as a Bayesian inference problem. Let’s denote
with f a generic probability density function (PDF) and the function f(Z) is known as the prior
probability density function, of the quantity of interest Z. In data assimilation, the observations
(or measurements) are considered random variables, but in the moment we take them from the
unknown true states of the system, they become determined. In the Bayesian framework, the
likelihood f(D|Z) gives the probability of achieving the observation given the state vector Z. The
observations, although they always contain errors, are not random variables. This means that the
likelihood is not the PDF of the observation but rather a function of the states with the fixed
observations. The randomness is given by the error E in Eqn. (2.4), so we can directly link the
PDF of the measurement error with the likelihood:

f(D|Z) = f(D − G(Z)) = f(E),

meaning that the function f(E) has to be given to compute the likelihood. With the elements
we have just introduced, a general form of the data assimilation problem can be formulated as a
Bayesian problem: given the definition of conditioning:

f(Z,D) = f(Z|D)f(D) = f(D|Z)f(Z), (2.7)

where f(Z,D) is the joint distribution of the random variables Z and D, it leads to

f(Z|D) = f(D|Z)f(Z)
f(D)

, (2.8)

known as the Bayes’ Theorem. Therefore, the data assimilation problem is to find the posterior
distribution of the state vector Z given the measurements D. It is worth noting that Eqn. (2.8)
is a point-wise equation. The denominator of the right side of the Eqn. (2.8) is the marginal
distribution of the measurements and it acts as a normalization factor,

f(D) =
∫
f(D,Z)dZ =

∫
f(D|Z)f(Z)dZ, (2.9)

where the normalization constant is called model evidence. The evidence is generally intractable,
so methods such as variational inference and Monte Carlo Markov Chains are used to approximate
it. However, [27] states that it is not necessary to always calculate its value, but only when it
is needed to compare different numerical models using the same set of measurements. Note that
Eqn. (2.8) refers to a forward problem and not an inverse problem, but it is known that data
assimilation problems could be forward as well as inverse. Van Leeuwen et al. [70] introduce the
inverse problem as a subset of the Bayesian inference.

2.3 Recursive Bayesian formulation
Since in most of the applications the observations become available sequentially, it is necessary to
modify the previous formulation in more suitable way. Therefore, the Eqn. (2.8) can be adapted
to two scenarios, Markov model and independent measurements.

9

A first-order Markov model represents a chain of stochastic events, in which the probability
of each event transition depends only on the state reached by the previous event. So, there
is no “memory” beyond the previous event. The chain of successive events is called a Markov
process. Assume that the dynamical model is a first-order Markov process, given a sequence of
state f(zt)t=0,...,l over the l assimilation windows, the Markov property can be written as:

f(zl|zl−1, zl−2, ..., z0) = f(zl|zl−1). (2.10)

Using this Eqn. (2.10), f(Z) can be rewritten in a recursive way over the assimilation window
l ∈ (1, ..., L),

f(Z) = f(z0)f(z1|z0)f(z2|z1)...f(zL|zL−1)

= f(z0)

L∏
l=1

f(zl|zl−1).
(2.11)

The Markov assumption allows to recursively define model prior f(Z), but it affects the evolution
in time of the model-state.

Alternatively, let’s assume that the measurements are independent between two different time
assimilation windows. This means that the measurement errors have zero correlation coefficients
(uncorrelated) in different time windows. With the assumption, the likelihood for the measure-
ments vector D can be rewritten as a product of independent likelihoods, one for each assimilation
window,

f(D|Z) =
L∏

l=1

f(dl|zl). (2.12)

The measurements independence assumption is a strong assumption which is not commonly ap-
plied, however, it can be limited by assuming correlation only between the observations within the
same assimilation window.

Combine Eqn. (2.11) and Eqn. (2.12) into the Bayes’ formula Eqn. (2.8),

f(Z|D) ∝
L∏

l=1

f(dl|zl)f(zl|zl−1)f(z0). (2.13)

By rearranging the order of multiplications, the recursive formulation can be obtained [26]:

f(z1, z0|d1) =
f(d1|z1)f(z1|z0)f(z0)

f(d1)
, (2.14a)

f(z2, z1, z0|d2) =
f(d2|z2)f(z2|z1)f(z1, z0|d1)

f(d2)
, (2.14b)

...

f(Z|D) = f(dL|zL)f(zL|zL−1)f(zL−1, ..., z0|dL−1, ..., d1)

f(dL)
. (2.14c)

A further assumption to simplify the recursive formula in Eqn. (2.14b) can be made by using the
Markovian property of the model. By integrating out the model states of the previous assimilation
windows, a new formulation of Eqn. (2.14b) is shown as follows,

f(z1|d1) =
f(d1|z1)

∫
f(z1|z0)f(z0)dz0
f(d1)

=
f(d1|z1)f(z1)

f(d1)
, (2.15a)

f(z2|d1, d2) =
f(d2|z2)

∫
f(z2|z1)f(z1|d1)dz1
f(d2)

=
f(d2|z2)f(z2|d1)

f(d2)
, (2.15b)

...

10

f(zL|D) =
f(dL|zL)

∫
f(zL|zL−1)f(zL−1|dL−1, ..., d1)dzL−1

f(dL)

=
f(dL|zL)f(zL|dL−1)

f(dL)
. (2.15c)

Since this is not the exact solution of the Bayes theorem Eqn. (2.8), but an approximation, it leads
to the filtering assumption: the full smoother solution of Bayes Theorem is approximated with
a sequential data-assimilation solution. The solution is updated only in the current assimilation
window, so the previous one is not updated using the new measurements’ information.

For example, at time l, all the information from the previous observations will be contained in
zl, including the one for the current lth assimilation window, making it a good starting point for
the following predictions of zl+1, ..., zL.

Another appealing feature of this approximation is the similarity between each step. The
rough idea is that, at each step, the state vector is available for the current time window with
the information from the past observations it is combined with the new observations at the same
assimilation window.

By denoting the model prediction as zl and the observations dl at time window l, the updating
formula can be rewritten in a more general way:

f(zl|dl) =
f(dl|zl)f(zl)

f(dl)
, (2.16)

or without assimilation window:
f(z|d) = f(d|z)f(z)

f(d)
, (2.17)

which resembles the Bayes Theorem Eqn. (2.8) but it refers only to a subset of the state vector
and measurements, i.e. the current assimilation window.

2.4 Problem formulation
Until now, the state vector z had a generic definition, but depending on the type of the problem,
there could be a different definition for the state vector z. In this section different formulations will
be presented: the general smoother formulation 2.4.1 computes the solution over an assimilation
window including the model error; the smoother formulation for perfect models 2.4.2 assume that
the model is perfect, so there is no model error; the filter formulation 2.4.4 updates the model state
at the end of each assimilation window, using Bayesian principles to predict observations based on
the state, which leads to a sequential data assimilation process; the recursive smoother formulation
2.4.5 is similar to the filter formulation, but it updates the entire state vector at the end of the
assimilation window.

2.4.1 General smoother formulation
Consider the state vector:

z = x = m(x0, q), (2.18)
as the model solution over the whole assimilation window with distributed measurements. Note
that in this definition, model error q is included. The updating equation for the model state x,
which in this case gives directly the observation predictions yf , can be written as:

yf = g(z) = h(x) = h(m(x0, q)), (2.19)

where, if considered the equality Eqn. (2.18), it can be noticed that the function g is just the
measurement operator h that maps the model predictions to the observation predictions. Finally,
the observation predictions are compared with the real observations.

Fig. 2.1 demonstrates how the update formula works in an ensemble setting. It starts with
computing the prior ensemble integration over the assimilation window (blue lines). By combining
the prior ensemble with the likelihood given by the observations (black dots), the updated ensemble
estimate (green lines) is obtained updating at once over time and space. It is worth noting that
the updated ensemble estimates are closer to the observations and have reduced uncertainties.

11

Figure 2.1: This is the visualization of a general ensemble smoother. The black dots are the
observations with the relative error given with a standard deviation of 1. The blue lines are
the full ensemble integration over the assimilation window. The green lines are the updated
ensemble.

2.4.2 Smoother formulation for perfect models
Consider the state vector as

z = x0. (2.20)

It indicates that there are no errors and no uncertain parameters and controls are considered. This
is a common setting in data assimilation problems. After the estimation of the initial model state
for the assimilation window, the state is updated as follows:

yf = g(z) = h(m(x0)). (2.21)

As shown in Fig. 2.2, it starts by integrating the model x = m(x0) to obtain the prediction.
Successively, the measurement functional h is applied to the prediction to get the observation
prediction and it is compared with the actual observation through the likelihood. Finally, this
distance between the predicted and real observations is propagated backwards at the beginning of
the assimilation window to update the model. This formulation is the basis for the strong-constraint
4DVar methods, which will be introduced later in Sec. 2.6.3, and in the iterative ensemble smoother.

2.4.3 Smoother formulation for parameters estimation
Similar to the smoother formulation with perfect models, let’s assume here to have a model with
no uncertain controls and model errors. Consider the state vector:

z = θ, (2.22)

namely, it contains only the uncertain model parameters. Using the same update as in 2.4.2, let’s
write:

yf = g(z) = h(m(θ)), (2.23)

where the model m is supposed to be a forward one in order to assess the connection between the
parameters and the observations.

12

Figure 2.2: This is the visual representation of a recursive smoother formulation assuming
a perfect model for ensemble models. After we define the assimilation window, we update
the initial condition at the beginning of it and then we integrate the state (green lines).

2.4.4 Filter formulation
Consider the state vector,

z = xK , (2.24)

as the model solution at the end of the assimilation window, where it is assumed to have the
measurements. What is called filter solution (usually solved by particle filters or Kalman filters),
is the observation prediction yf that is related to the state xK as follows:

yf = g(z) = h(xK). (2.25)

In this case, the operator g corresponds to the operator h that maps the model solution at the
end of the assimilation window xK to the observation predictions yf . Fig.2.3 demonstrates how
the filter works. The solution (observation predictions) is updated at the end of the assimilation
window through Bayes’ formula before integrating for the next time window. This means that at
the end of the assimilation window, there is the marginal distribution of the model state where the
information of the previous time steps has been integrated out.

The filter formulation has certain advantages compared to the general smoother one (2.4.1).
Firstly, it divides the assimilation window with its observations into multiple shorter time intervals,
each of them ending with an observation. It could be more accurate than the smoother formula-
tion in the later assimilation windows. Secondly, in highly nonlinear problems, it can avoid getting
"strong" non-Gaussian prior distributions, which are more likely to develop in the smoother for-
mulation. Furthermore, the filter formulation leads to a sequential data assimilation problem with
more frequent updates and keeps the model predictions closer to the real observations. Finally,
the prior distribution at each observation time has a smaller standard deviation and it is more
similar to a Gaussian distribution (compared to the smoother formulation), therefore the updating
sequence results are more accurate.

2.4.5 Recursive smoother formulation
Consider the state vector:

z⊤ = (x⊤0 , ..., x
⊤
l−1, x

⊤
l), (2.26)

13

Figure 2.3: The figure visualizes a general ensemble-filter update of an ensemble prediction.
The filter updates the ensemble prediction at the end of the previous assimilation window
(blue lines) before continuing into the new one (green lines)

at assimilation window l, which contains all the previous model states until (and including) the
one at time l. Given the observation at the end of the assimilation window (like in the filter
formulation), then we would find the solution yf given by:

y = g(z) = h(xK), (2.27)

but, differently from the filter approach, the entire vector z is updated. This formulation was
introduced by Evensen and Van Leeuwen [26]. The idea is to solve the recursive formula of
Eqn.2.14b instead of solving the marginal in Eqn. (2.15b). As shown in the filter formulation, this
approach introduces the new measurements sequentially in the new assimilation windows and then
it propagates them backwards to the past time windows. Consequently, this method inherits all
the properties of the filter formulation mentioned before in 2.4.4.

Looking at Fig. 2.4, it can be noticed that the final prediction is the same as the filter formula-
tion, the difference is only that the previous predictions are updated as well, making this approach
suitable for hindcast problems [27].

2.5 Data assimilation: Gaussian assumption
In data assimilation problems, the setting is often simplified assuming that the prior is Gaussian.
More accurately, it is assumed that both the state vector’s elements z and observation errors ϵ are
Gaussian.

Let’s assume that the prior distribution of the state vector’s components z and the observation
errors ϵ are both Gaussian, that is:

f(z) = N (zb, Czz), (2.28)
f(y|g(z)) = f(ϵ) = N (0, Cyy), (2.29)

where zb is the background (or first guess) of the state vector and Czz is its error covariance,

14

[h]

Figure 2.4: This is the illustration of a recursive ensemble smoother. Like in the filter
approach, we update the ensemble (blue lines) at the end of the assimilation window, but
we also propagate the new information backwards at the previous times (green lines).

containing all the covariances of the variables of the state vector z:

Czz =


Cx0x0

Cx0θ Cx0u Cx0q

Cθx0
Cθθ Cθu Cθq

Cux0 Cuθ Cuu Cuq

Cqx0 Cqθ Cqu Cqq

 . (2.30)

In this case, the vector z contains the model state at time 0 x0 and the errors at the other times,
known as forcing formulation. If it is reformulated to make z containing the model solution,
then there won’t be any model error in z. It is worth noting that for simplicity, often only the
elements on the diagonal (the variances) are computed, assuming that the elements of vector z are
independent.

Given the Gaussian prior in Eqn. 2.28, we obtain the posterior distribution as follows:

f(z|y) ∝ exp{−J (z)}, (2.31)

where J (z) is called cost function and its explicit formula is:

J (z) = 1

2
(z − zb)TC−1

zz (z − zb) + 1

2
(g(z)− y)TC−1

yy (g(z)− y), (2.32)

where it is reminded that the function g is the (generally) nonlinear map from the state vector z
to the measurements predictions yf . Minimizing the cost function J (z) is equivalent to estimating
the Maximum A Posteriori (MAP) of the posterior pdf in the Eqn. (2.31). To find the MAP
solution, the gradient of the cost function can be computed and forced to be zero, which leads to:

∇zJ (z) = C−1
zz (z − zb) +∇zg(z)C

−1
yy (g(z)− y) = 0. (2.33)

This is the implicit closed form solution of the minimization problem for the cost function J (z).

2.6 Data assimilation methods
In this section, it will be introduced and discussed the setting of some of the well-known data
assimilation algorithms including particle filter, (ensemble) Kalman filter, 3DVar and 4DVar. Those

15

methods can be classified according to their common features: 1) recursive filtering methods, e.g.
Kalman or particle filters; 2) methods that only approximate the mean of the PDF using a pre-
fixed covariance, e.g. optimal interpolation; 3) methods that try to estimate the mean of the
PDF through the minimization of a cost function by exploiting optimization algorithms, e.g.3DVar
or 4DVar. More recently, those methods have been extended to an ensemble [25, 35, 57], which
combine different data assimilation methods to obtain a better approximation, or more general
methods to handle nonlinear problems.

2.6.1 Optimal interpolation
Optimal interpolation is one of the methods that solve the so-called gridding problem [10]. It
consists of determining the field ϕ(r) on a regular grid of position r from random observations. r
is a vector that is two-dimensional (horizontal plane), three-dimensional (longitude, latitude and
depth) or four-dimensional (3D spatial + time).

In real-world applications, for example in oceanography, the observations are often sparse and
also their distributions in both space and time are usually not uniform. The optimal interpolation
methods aim to solve the gridding problem utilizing "optimally" these few pieces of information.
Let’s assume that we have a set of observations {d1, ..., dT }. Given this setting, objective anal-
ysis techniques, which are all those methods that use only empirical data for the solution, use
mathematical formulations to infer the field ϕ(r) at the unobserved location based on the obser-
vations {d1, ..., dT } [10]. In other words, objective analysis wants to solve the gridding problem
by expressing the field in a mathematical way, usually defining it as a linear combination of the
observations:

ϕ(r) = ϕb(r) +

Nd∑
j=1

wjdj , (2.34)

where wj are the weights and ϕb(r) is the background field (or first guess), which is fixed a priori. It
can be noticed that this is a gridding problem since the field ϕ(r) can be evaluated in any position.

Problem formulation: Assume the state vector z = x contains the information about the
field values on the points of the grid, the observations vector y. In Sec. 2.1, the operator H has
been introduced as the measurement operator. Here, let’s define:

H(z) = H(x) = Hx, (2.35)

where H is a matrix that, applied to the state vector z and returns the field interpolated at the
locations of the observations Hx. Assume that the true state x̂ are available, the goal is to achieve
an analysis xa the closest as possible to the true state, given an initial state (background) xb and
the observation y,

xb = xt + ηb, (2.36)

y = Hxt + ϵ, (2.37)

where ηb is the error associated with the first guess and ϵ is the observation error.

Error covariance: Assume that the first guess and the observations are unbiased, meaning
that the expected values of the errors are zero,

E
[
ηb
]
= 0, (2.38)

E [ϵ] = 0, (2.39)

meanwhile the error covariance matrices are defined as,

E
[
ηb(ηb)⊤

]
= P b, (2.40)

E
[
ϵϵ⊤

]
= R, (2.41)

E
[
ηbϵ⊤

]
= 0, (2.42)

16

where Eqn. (2.42) means that the two errors are assumed to be independent.

Analysis: Optimal Interpolation methods can be defined as finding the best linear unbiased
estimator (BLUE) xa, also called analysis, of the true state xt, which follows the properties:

1. The estimator xa is linear in xb and y

2. The estimator is not biased:
E [xa] = xt, (2.43)

3. The estimator has the minimal total variance, so no other estimators have a lower error
variance than the BLUE estimator.

According to these properties, the only possible unbiased linear combination of xb and y is expressed
as:

xa = xb +K(y −Hxb), (2.44)

where the K is a matrix called Kalman gain. This matrix is the gridding operator since, when
applied to the residual between the observations and the first guess, gives the gridded field. If the
estimator error is computed using Eqn. (2.36) and (2.37), it will be obtained,

ηa = xa − xt

=��x
t + ηb −��x

t +K(�
��Hxt + ϵ−�

��Hxt −Hηb)
= ηb +K(ϵ−Hηb)
= (I −KH)ηb +Kϵ. (2.45)

The covariance of the estimator error can be subsequently defined as:

P a(K) = E
[
ηa(ηa)⊤

]
(2.46)

= (I −KH)P b(I −KH)⊤ +KRK⊤. (2.47)

The total error variance of the analysis is the trace of the matrix P a:

tr(P a(K)) = tr(P b) + tr(KHP bHTK⊤)− 2tr(P bHTK⊤) + tr(KRK⊤). (2.48)

Because it is wanted to minimize the total variance, for any small increment of the gain δK, it won’t
change the total variance in the first order of δK. Thus, it is obtained the following equivalences:

0 = tr(P a(K + δK))− tr(P a(K)) (2.49)

= 2tr(KHP bH⊤δK⊤)− 2tr(P bH⊤δK⊤) + 2tr(KRδK⊤)

= 2tr(
[
K(HP bH⊤ +R)− P bH⊤] δK⊤).

Because the gain increment δK is arbitrary, the quantity in the square brackets in the last line of
Eqn. (2.49):

K(HP bH⊤ +R)− P bH⊤ = 0, (2.50)

and adjusting this equation, it can obtained an explicit expression of the Kalman gain K:

K = P bH⊤(HP bH⊤ +R)−1, (2.51)

Therefore, if Eqn. (2.51) is plugged in Eqn. (2.46), it can be obtained the explicit formula for the
error covariance of the BLUE estimator:

P a = P b −KHP b (2.52)

= P b − P bH⊤(HP bH⊤ +R)−1HP b. (2.53)

For simplicity, often only the error variance (and not the covariance) of the analysis is calculated,
which is given by the elements on the diagonal of P a.

17

2.6.2 Kalman filter
Like in Optimal Interpolation, let’s suppose that the measurement operator H is linear, i.e. h(z) =
Hz, so the cost function Eqn. (2.32) becomes:

J (z) = 1

2
(z − zb)C−1

zz (z − zb) + 1

2
(Hz − y)⊤C−1

yy (Hz − y). (2.54)

By setting the gradient of the cost function equal to zero (that is solving the close form eqn. (2.33)):

C−1
zz (za − zb) +H⊤C−1

yy (Hza − y) = 0, (2.55)

it is obtained the so-called Kalman filter update equation:

za = zb + (C−1
zz +H⊤C−1

yy H)−1H⊤C−1
yy (d−Hzb). (2.56)

This formulation solves the analysis za in the state space. Let’s consider the following equivalence:

Woodbury Corollaries:(
C−1 +G⊤D−1G

)−1
= C−CG⊤ (

GCG⊤ +D
)−1

GC, (2.57)(
G⊤D−1G+C−1

)−1
G⊤D−1 = CG⊤ (

GCG⊤ +D
)−1

, (2.58)

if Eqn. (2.58) is used in the Kalman filter update, the standard form of it can be obtained:

za = zb + CzzH
⊤(HCzzH

⊤ + Cdd)
−1(d−Hzb) , (2.59)

which this time has the solution in the observation space because the matrix inverted is defined in
the observation space.

Now, the next step is to find an updated rule for the covariance matrix of the posterior. The
Hessian of the cost function (Eqn. (2.54)) is:

∇z∇zJ (z) = C−1
zz +HC−1H⊤. (2.60)

Now, knowing that the posterior is Gaussian, the cost function can be written as:

J (z) = 1

2
(z − za)⊤(Ca

zz)(z − za) + c, (2.61)

where c is a constant term that only depends on the measurements y. Then, the Hessian (second
derivative) of this cost function is:

∇z∇zJ (za) = (Ca
zz)

−1. (2.62)

Setting Eqn.(2.60) equals to Eqn.(2.62), because the two Hessians need to be equal:

(Ca
zz)

−1 = C−1
zz +HC−1H⊤. (2.63)

Using the matrix identity 2.57, it is obtained the update equation for the Kalman filter error-
covariance:

Ca
zz = Czz − CzzH

⊤(HCzzH
⊤ + Cyy)

−1HCzz . (2.64)

Now, the standard form of the Kalman filter can be defined in a recursive way:

zk = za,

Czz,k = Czza ,

zk+1 =Mzk, (2.65)

Czz,k+1 =MCzz,kM
⊤ + Cqq, (2.66)

18

where starting at time tk, the model is integrated until the next time tk+1. Then, the model
is updated using the new observations, setting first zb = zk+1 and Czz = Czz,k+1, and then
substituting them in the update equations 2.59 and 2.64. This setting is similar to what is described
in 2.3.

If it is assumed linear measurements operator H and Gaussian prior, the iterative solutions
given by Eqn. (2.59), (2.64) solve the minimization problem given by (2.31), where J (z) has the
form of (2.54). It can be noticed that, given the linear and Gaussian assumption, equations (2.59),
(2.64) gives the posterior pdf f(z|y).

For a better notation, the definition of Kalman Gain introduced in Eqn. (2.51) can be used, so
Eqn.(2.59), (2.64) become:

za = zb +K(d−Hzb) (2.67)
Czza = (I −KH)Czz (2.68)

Notice that Optimal Interpolation is a simplification of the Kalman Filter if time-invariant error
statistics are assumed.

It is also worth to mention that there exists another version of Kalman Filter, called extended
Kalman Filter, which, indeed, extends the Kalman Filter formulation for nonlinear models and
observation operator, but for brevity, it is not presented it here.

2.6.3 4DVar
Let’s divide the 4DVar methods in two: strong-constraint 4DVar (SC-4DVar), where a dynamical
system with a perfect model is assumed, and weak-constraint 4DVar (WC-4DVar), where a model
error in the dynamical system is considered.

Strong-Constraint 4DVar

This formulation was introduced by Sasaki [64].
Let’s assume a dynamical system with no model errors and uncertainties:

x0 = xb0 + x
′

0, (2.69)

θ = θb + θ
′
, (2.70)

xk+1 = m(xk, θ), (2.71)

however, it is allowed for uncertain models initial conditions and parameters. Moreover, let’s
consider observation errors:

y = h(x) + ϵ. (2.72)

The goal is to estimate the uncertain initial conditions and parameters to obtain a model prediction
close to the measurements, still maintaining them close to the first guesses according to their
uncertainties. Therefore, the vector state is:

z =

(
x0
θ

)
. (2.73)

Now, if it is considered the cost function (2.32), using Eqn. (2.71), g(z) = h(m(z)) = h(x), the
cost function can be reformulated to obtain the SC-4DVar cost function:

J (z) = 1

2
(z − zb)C−1

zz (z − zb) + 1

2
(h(x)− y)⊤C−1

yy (h(x)− y), (2.74)

which is subject to the "perfect model" constraint (this is the definition of strong constraint) from
Eqn. (2.71).

In the SC-4DVAr the covariance matrix of the state vector:

Czz =

(
Cx0x0

0
0 Cθθ

)
, (2.75)

19

is better known as the background error covariance matrix, which characterizes the error covari-
ances of the initial conditions and parameters. It can be pointed out that the 0 entrances indicate
that no correlation is assumed between model’s initial conditions and parameters.

Lagrangian formulation
The minimization problem of the cost function (2.74) with constrain Eqn. (2.71) can be ex-

pressed with a Lagrangian formulation as following:

L(x0, . . . , xK+1, θ, λ1, . . . , λK+1) =
1

2
(x0 − xb0)⊤C−1

x0x0
(x0 − xb0)

+
1

2
(θ − θb)⊤C−1

θθ (θ − θ
b) (2.76)

+
1

2
(h(x)− y)⊤C−1

yy (h(x)− y)

+

K∑
k=0

λ⊤k+1(xk+1 −m(xk, θ)),

where the last addend introduces the Lagrangian multipliers for the perfect-model constraint.
This formulation introduces more unknown variables in the equation, but it actually allows

better solution method.
Now, let’s introduce the notation for the gradients of the observation operator h and the model

m:

∇h = ∇xh(x)
∣∣
x
, (2.77)

Mx,k = ∇xk
m(x, θ)

∣∣
xk,θ

, (2.78)

Mθ,k = ∇θm(x, θ)
∣∣
xk,θ

, (2.79)

where the notation is simplified from (x0, ..., xK+1, θ, λ1, ..., λK+1) to (x, θ, λ) and the index k
indicates that compute the gradient at different times tk.

Lets focus for a moment on the matrix ∇h: it can be defined it as a composition of matrices
∇hk ∈ Rn×m at time tk, where m is the number of measurements and n is the size of the state
vector

∇h = (∇h0, ...,∇hk, ...,∇hK+1). (2.80)

So, at every time tk, given a set of observations, it is known how they are related to the model
state through the block matrix ∇hk.

With this construction, the matrices ∇hk result sparse, where there are null rows when there
are no observations. This implies that if the observations set is empty at time tk, then the block
matrix is null, i.e. ∇hk = 0m×n.

Euler-Lagrange Equations
Lets compute the gradient of the Lagrangian (2.76) w.r.t. xk:

∇xk
L(x, θ, λ) = ∇h⊤k C−1

yy (h(x)− y) + λk −M⊤
x,kλk+1. (2.81)

The matrix MT
x,k is the adjoint of the linear model: the model Mx,k maps a vector from time tk

to tk+1, so its adjoint maps backwards in time a vector from time tk+1 to tk. For this reason, the
Eqn. (2.81) is a reverse integration.

The gradient of the Lagrangian w.r.t. xK+1 (final time) is:

∇xK+1
L(x, θ, λ) = λK+1, (2.82)

meanwhile w.r.t. x0 (initial time) is:

∇x0
L(x, θ, λ) = C−1

zz (x0 − xb0)−M⊤
x,0λ1 (2.83)

= C−1
zz (x0 − xb0)− λ0, (2.84)

20

where λ0 is just a "pseudo-variable" introduced for an easier notation.
The gradient w.r.t. the parameters θ is:

∇θL(x, θ, λ) = C−1
θθ (θ − θb)−

K∑
k=0

M⊤
θ,kλk+1. (2.85)

The gradient w.r.t. λk is:
∇λk
L(x, θ, λ) = xk+1 −m(xk, θ). (2.86)

Because the aim is to minimize the Lagrangian function (2.76), all the gradients that we just have
computed are set equal to zero, obtaining a coupled system of Euler-Lagrange equations:

x0 = xb0 + Cx0x0
λ0,

θ = θb + Cθθ

∑K
k=0M

⊤
θ,kλk+1,

xk+1 = m(xk, θ),

λK+1 = 0,

λk =M⊤
x,kλk+1 −H⊤

k C
−1
yy (h(x)− y),

(2.87)

where the first three equations are a forward model and the last two are a backward model. Solving
this system is equivalent to solving a coupled two-point boundary-value problem in time [27].

Algorithmic formulation
Algorithm 1 shows the standard algorithmic form of SC-4DVar, where the gradients from

Eqn. (2.83) and (2.85) are used in a Gauss-Newton method to iteratively update the initial condi-
tions of the forward model.

Then, starting with the first guess solution of the model with λ = 0, it is obtained a solution
for x using the forward model given by the first three equations of (2.87). Using the estimated
x, solve the backward model for λ. Once λ is computed, the gradients is computed again from
Eqn. (2.83) and (2.85) and the steps are repeated.

Algorithm 1 Standard SC-4DVar algorithm with parameter estimation

Require: xb ∈ Rn, y ∈ Rm ▷ Prior initial conditions and observations
1: x0 = xb0 ▷ Initialization of x0
2: θ = θb ▷ Initialization of θ
3: repeat ▷ Iteration loop
4: for k = 0 : K do ▷ Integrate forward model
5: xk+1 = m(xk, θ)
6: end for
7: λK+1 = 0
8: for k = K : 0 do ▷ Integrate backward adjoint model
9: λk =M⊤

k λk+1 −∇h⊤k C−1
yy (h(x)− d)

10: end for
11: x0 ← x0 − γBx0∇x0L(x, θ, λ) ▷ Update x0 using Eq. (4.15)
12: θ ← θ − γBθ∇θL(x, θ, λ) ▷ Update θ using Eq. (4.16)
13: until convergence

Weak-Constraint 4DVar

The ’weak-constraint" model concept was introduced by Sasaki [63] as an opposing approach to the
"strong-constraint" model, and it was first used in data assimilation by Bennet and McIntosh [12].
In the literature, two different formulations have been proposed: the first approach, called forcing
formulation, considers the model error as an additional model forcing that we need to estimate,
meanwhile the second approach, called representer formulation, considers the model state over the
assimilation window as the unknown variable. The second formulation was introduced by Bennett
[13] and it results to be easier to solve than the first, but here only the forcing formulation is
introduced since, it is the one used for the 4DVarNet algorithm 3.1.

21

Forcing formulation

Let’s assume the model of the form:

xk = m(xk−1, qk), (2.88)

and the state vector of the form:

z =


x0
q1
...
qK

 , (2.89)

which contains initial conditions x0 and the time-dependent model errors (qk)k.
The cost function is the same as Eqn. 2.32:

J (z) = 1

2
(z − zb)⊤C−1

zz (z − zb) + 1

2
(g(z)− y)⊤C−1

yy (g(z)− y), (2.90)

but subject to the model constraint 2.88.
The covariance matrix Czz has the form:

Czz =


Cx0x0 0 · · · 0

0 Cq1q1 · · · Cq1qK
...

...
. . .

...
0 CqKq1 · · · CqKqK

 , (2.91)

where it is assumed no correlation between the model errors and the first guess errors.
The operator g(z) is the composed function following the constraint Eqn. (2.88).

State-space formulation

An alternative method can be also given to the forcing formulation just modifying the Eqn. (2.88),
introducing an additional error:

xk = m(xk−1) + qk. (2.92)

Now, with this new formulation, let’s explicitly substitute qk in Eqn. (2.90):

J (x) = 1

2
(x0 − xb0)⊤C−1

x0x0
(x0 − xb0) (2.93)

+
1

2
(h(x)− y)⊤C−1

yy (h(x)− y) (2.94)

+
1

2

K∑
r=1

K∑
s=1

(xr −m(xr−1))
⊤Cqq(r, s)(xs −m(xs−1)), (2.95)

where the double sum in the last term takes into account the correlation of the model errors in
time.

In this formulation, the state vector is defined as:

z = x =

x0
...
xK

 , (2.96)

therefore the model-error covariance matrix becomes:

Cqq =

Cq1q1 · · · Cq1qK
...

. . .
...

CqKq1 · · · CqKqK

 , (2.97)

which,consistently with the double sum in Eqn. (2.93), includes the correlated errors in time.
The cost function (2.93) can be seen as a weighted measure of:

22

• the background error (first term), that is the distance between the background and state
vector. It can be also interpreted as a Tikhonov regularization term,

• the observation error (second term), that is the distance between the observation operator
and the true observation.

• the prior error or prior cost (third term), that is the distance between the model assumption
and the actual state.

2.6.4 Particle filters
Another important filtering method is the Particle Filter (or Sequential Monte Carlo), which
indicates all the Monte Carlo algorithms used to approximate the solution of the filtering problem
in the nonlinear systems. In particular, finding the approximated solution means to find the
main features (mean, variance) of the posterior distribution. Since this method requires a proper
mathematical introduction that is out of the scope of this work, here it will be just provided a
general idea of how these approaches work. Now, let’s introduce the approximation that allows
all these methods. It is possible to approximate a probability density function, called target
distribution, by a finite ensemble (or particles) of N model states as:

f(x) ≈
N∑
j=1

1

N
δ(x− xj), (2.98)

where δ(·) is the Dirac-delta function.
There exists multiple sampling algorithms to sample the posterior pdf, known as Monte Carlo
Markov Chains (MCMC), which sequentially generate the new samples only using the previous
one by exploiting the Markovian property.

To obtain the samples from the target distribution f(x), the strategy is to sample from in-
termediate distributions f0(x), f1(x), ..., fn(x) = f(x), starting from a simpler distribution f0 and
choosing the sequence of distributions in a way such that two consecutive distributions are "close"
between each other.

23

Chapter 3

Methods

This Chapter will talk more specifically about the 4DVarNet algorithm 3.1, with its framework
and novelties, the benchmarking setups 3.2 and the evaluation metrics used 3.3.

3.1 4DVarNet
In recent years, machine learning methods, especially deep learning techniques have shown excellent
performance for the approximation of complex dynamical systems, both in computation time and
accuracy. This is significant in data assimilation since in data assimilation, we need to deal with
dynamical models, from real-world applications as mentioned in Chapter 1. In this section, the
aim is to present and investigate 4DVarNet, an end-to-end Deep Learning framework proposed by
Fablet et al. [28] for image reconstruction of SPM dynamics data. 4DVarNet is based on the WC-
4DVar formulation 2.6.3. The novelties consist of a neural approximation of the dynamical model
and a neural iterative solver used for the optimization problem. It will be firstly introduced the
mathematical framework of 4DVarNet 3.1.1, then the novelties of 4DVarNet 3.1.2 and the resulting
End-to-End framework 3.1.3 will be discussed. Finally, a new variation of 4DVarNet, called double
LSTM 3.1.4, will be introduced and compared with the original version.

3.1.1 Problem statement of WC-4DVar
Let’s consider the following continuous state-space formulation:{

∂x(t)
∂t = m(x(t)) + η(t)

y(t, p) = x(t, p) + ϵ(t) ∀t ∈ {t0, t0 +∆t, ..., t0 +N∆t},∀p ∈ Ωti

, (3.1)

where x is the time-dependent state in the state space X , m is the dynamical model and {t0, t0 +
∆t, ..., t0 +N∆t} are the assimilation windows. Ωti refers to a spatial domain of spatio-temporal
dynamics or a list of indices for multivariate time processes. η and ϵ represent model errors and
observation errors respectively, which are assumed to be Gaussian, e.g. η, ϵ ∼ N (0, 1).

As mentioned in Sec. 2.6.3, in the weak-constraint setup, the aim is to minimize the cost function
Eqn. (2.93) in the state-space formulation, but they are made two assumptions to simplify the
problem statement: 1) the background error was omitted for simplicity, 2) the covariance matrices
C−1

yy and Cqq are assumed being spherical. Remember that the model is assumed to be imperfect.
Therefore a new cost function can be obtained, namely variational cost [28]:

UΦ(x, y,Ω) = λ1
∑
i

∥x(ti)− y(ti)∥2Ωti
+ λ2

∑
i

∥x(ti)− Φ(x)(ti)∥2, (3.2)

where Ω = ∪iΩti and ∥·∥2Ω is the evaluation of the squared norm with respect to a subdomain Ω.
It is supposed that the series of observation {y(ti)} is available. Φ is the flow operator with the
form:

Φ(x)(t) = x(t−∆t) +

∫ t

t−∆t

m(x(u))du. (3.3)

24

Eqn. (3.2) can be rewritten in a more compact form by dropping the time variable and assume
that the norms are evaluated over some predefined time windows, typically from t0 to N∆t+ t0,

UΦ(x, y,Ω) = λ1∥x− y∥2Ω + λ2∥x− Φ(x)∥2. (3.4)

In a continuous-time formulation, x and y refer to continuous-time processes, while in a discrete-
time case, they refer to a concatenation of the states xti and yti from N∆t + t0. Similarly,
Ω = {Ωt0 , ...,Ωt0+N∆t} accounts for the observation patterns with possible gaps over the consid-
ered time window.

A common method for the minimization problem of the variational cost is exploiting an iterative
gradient-based scheme given an initial estimate x(0). The most straightforward scheme is the fixed-
step gradient descent,

x(k+1) = x(k) − α∇xUΦ(x
(k), y,Ω) (3.5)

where α is the gradient step coefficient. It could depend on time, i.e. αt and we presume that the
parametrization of Φ is differentiable.

3.1.2 Novelties
4DVarNet proposed the application of neural networks to achieve an end-to-end learning scheme.
The neural network is applied two-folded: firstly, a neural (differentiable) formulation of the dynam-
ical model Φ is constructed to compute the variational cost (3.4) and secondly, this parametrization
is combined with a gradient-based neural solver that minimizes a given loss function. The impor-
tant part of this framework is that it can jointly learn the solver for a predefined variational setting
and the parametrization of the operator Φ. Note that the neural parametrization of Φ does not
involve any physical assumption and it is purely data-driven, giving more generality to the model.
Nevertheless, the neural formulation Φ in Eqn. (3.4) can represent the physics information in the
4DVarNet. Finally, the computation of the gradient in Eqn. (3.5) exploits automatic differentiation
tools, also referred as backpropagation, to compute the gradient.

Neural network formulation for dynamics operator

Given the prior cost ∥x− Φ(x)∥2 in Eqn. (3.4), it can be seen as a projection error, meaning that
it can be approximated through neural network parametrizations. Excluding parametrizations of
the identity operator Φ(x) = x, there have been considered CNN architectures of the form of:

Φ(x) = ϕ(ψ(x)), (3.6)

where operator ψ is a constrained convolutional layer [8], meaning that the element at the central
location of the kernels is set to zero. Operator ϕ is CNN consisting of a concatenation of convolution
and activation layers. In particular, the convolution kernels all have a size of 1 along time and/or
space dimensions to avoid the parametrization of the identity. The operator Φ can be interpreted
as a discretized numerical scheme of an ODE/PDE, since Φ(x)(t) depends only on some time
neighborhoods x(t − δ), ..., x(t + δ), where δ depends on the kernel width. Therefore, for all t,p,
Φ(x)(t, p) involves only a local neighborhood in time and space.

Alternatively, the CNN can be constructed to represent the operator Φ in order to catch patterns
of which at different scales. In this case, a two-scale representation can be shown as follows:

Φ(x) = U(Φ1(D(x))) + Φ2(x) (3.7)

where Φ1,Φ2 are parametrization Eqn. (3.6) but with different parameters, U is an upsampling
operator, consisting in an average pool layer, and D is a downsampling operator, consisting in
a convolutional transpose layer. This kind of architecture is known as U-Net [19]. Even though
both Φ1andΦ2 use the same convolution kernel size, they access different scales, since Φ1 accesses
downsampled data with lower frequencies while Φ2 accesses higher frequencies. This will not avoid
scale overlapping, but because they are applied at different scales, it is expected that they work
complementary. As mentioned in 3.1.2, the CNN architecture is purely data-driven and does not
have any prior knowledge about the physical model involved during learning.

25

Fablet et al. [29] presented a Residual Neural Network architecture for the reconstruction
and forecasting of nonlinear dynamical systems, called Bilinear (Residual) Neural Network. This
architecture is based on the 4th-order Runge-Kutta methods for approximating dynamical systems.
Consider a dynamical system. the state of which X varies according to the following equation:

dX(t)

dt
=M(X(t), θ), (3.8)

The 4th-order Runge Kutta method consists of a sequence of updates for a predefined integration
step dt:

Xt0+(n+1)·dt = Xt0+n·dt +

4∑
i=1

αiki (3.9)

where ki are define as ki =M(Xt0+βiki−1dt, θ), with k0 = 0, α1 = α4 = 1
6 , α2 = α3 = 2

6 , β1 = β4 =
1, β2 = β3 = 1

2 . Fablet et al. [29] proposed that the Runge-Kutta integration scheme (3.9) can be
considered as a recurrent network with four residual neural network blocks, each of them sharing
the same operator F , as shown in Fig. 3.1). In this architecture, the coefficients {αi}i=1,··· ,4 and
{βi}i=1,··· ,4 refer respectively to the relative weights given to the outputs of the four blocks F
and to the relative weights given to the output from the i− 1th block when added to input xt to
feed the ith block. So, the representation of the dynamical system M in (3.8) can be identified
as the learning of the parametrization of the block F , meanwhile the other parameters {αi}i and
{βi}i can be either learned from the data or given the values from the 4th-order Runge-Kutta
(Eqn. (3.9)).

Figure 3.1: Bilinear neural network block ([29]) architecture to approximate a dynamical
system as shown in (3.8). Based on the 4th-order Runge-Kutta scheme, it consists of four
blocks of F and each of F is a four-layer residual neural network.

At this point, it is of fundamental importance to provide a proper parametrization for the
block F . Considering that those dynamical systems involve not only non-linearities, as shown for
example in Lorenz-63 [53] and Lorenz-96 dynamics [54], but also bilinear behavior, [29] introduce a
bilinear neural network architecture that able to better capture the overall dynamics of the system
compared to a vanilla neural network.

This architecture, which is shown in the upper part of Fig.3.1, combines linearly a fully con-
nected layer (FC1) with bilinear layers consisting in an Hadamard product of two fully connected
layers FC2 and FC3. The motivation for using this parametrization lies on the fact that often
physical dynamical systems present bilinear behavior, for example, multiplicative interactions be-
tween two physical variables. Of course, this parametrization can be extended for representing
non-linearities, e.g. higher-order polynomial representations. Since [29] demonstrated that the bi-
linear neural network architecture outperforms the classical 4th-order Runge-Kutta on Lorenz-63
and Lorenz-96 dynamical systems. In this work it will be used in all the experiments without
further demonstrations or comparisons.

26

Neural solver

Given a neural implementation of the operator Φ, the gradient of the variational cost can be
computed as shown by Eqn. (3.4). Inspired by the work of Andrychowicz et al. [3] on meta-
learning schemes, a recurrent neural network (RNN) structure has been proposed as iterative
gradient-based solvers, namely LSTM-based solver, which updates the state at the kth iteration
as: {

g(k+1) = LSTM
[
α · ∇xUΦ(x

(k), y,Ω), h(k), c(k)
]

x(k+1) = x(k) − L(g(k+1))
(3.10)

where α is a scalar parameter, similar to the step size in a classic gradient descent-based method;
{h(k), c(k)} are the internal states of the LSTM model and L is a linear layer to map the LSTM
output to the space spanned by state x. The LSTM-based update is a typical parametrization
of meta-learning schemes [3]. The updates are used as residual blocks of the residual network
(ResNet) [36] with a fixed number of iterations. In Fig. 3.2, the ResNet structure is demonstrated
with the light blue rectangle.

3.1.3 End-To-End architecture
Fig. 3.2 is a schematic summary of the learning scheme. The goal of the architecture is to re-
construct the hidden state x, using as inputs an initial state x(0), an observation series y and the
associated domain Ω for the missing values. The End-To-End architecture combines the neural
approximation of the dynamical model (Sec. 3.1.2) and the neural iterative solver (Sec. 3.1.2),
denoted with Γ. Finally, the resulting model is denoted as ΨΦ,Γ(x

(0), y,Ω).

Figure 3.2: End-To-End architecture of 4DVarNet

Learning details

For the learning part of the end-to-end architecture, two setups have been introduced in [28]:

• Unsupervised Learning – Assume that a form of Φ is given (or previously learned) and
some observation datasets are available, comprising a number of observation series {y1, ..., yn}
with associated missing data mask {Ω1, ...,ΩN}. The learning of the NN solver can be viewed
as the minimization of the variational cost. The (simplified) formulation of the loss function
can be written as:

L =
∑
n

UΦ(ΨΦ,Γ(x
(0)
n , yn,Ωn), yn,Ωn) (3.11)

where parameters λ1, λ2 from Eqn. (3.4) are predefined and the index n indicates the nth
sample of the dataset.

27

This learning function is the standard one used in variational data assimilation settings and
it can be considered as unsupervised learning since no ground-truth data have been used for
the reconstruction of the state x.

• Supervised Learning – Given a dataset composed of observation series {y1, ..., yN}, asso-
ciated missing data masks {Ω1, ...,ΩN} and true states {x1, ..., xN}, the loss function has the
form:

L =
∑
n

∥xn −ΨΦ,Γ(x
(0)
n , yn,Ωn)∥2, (3.12)

Note that the gradient used as input in the iterative solver Eqn. (3.10) is not the gradient of the
loss function Eqn. (3.12) but it is the variational cost’s one Eqn. (3.4).

3.1.4 Double-LSTM 4DVarNet

Figure 3.3: This illustration shows the workflow of 4DVarNet. Each batch of observations
passes through an LSTM cell for a fixed number of iterations and the final reconstruction
is given by the state cell of the last iteration’s LSTM cell. Then we continue with the
reconstruction of a new batch. We can see that all the LSTM cells share the same set of
trainable parameters.

The LSTM iterative solver presented in 3.1.2 shares the parameters over all the iterations,
resulting in a smaller number of parameters to train. One problem of the algorithm implementation
(will be further discussed in Sec. 5) is its bias towards lower (zeros) values, which substitute the
missing values at the beginning of the reconstruction. To overcome this issue, we proposed a new
version of 4DVarNet, namely Double-LSTM 4DVarNet, which modifies the original structure from
two perspectives: first, we assume that the LSTM cell in the first reconstruction iteration has
different parameters from the LSTM cells used in the next iterations. It results in two sets of
parameters to optimize instead of one. Second, this new LSTM cell takes as input hidden state
the hidden state obtained at the end of the previous batch reconstruction.

Fig. 3.4 shows the workflow of this new algorithm. The core idea is to use the information
stored in the cell state of the LSTM cell at the end of the reconstruction iterations and transfer
them in the first LSTM cell of the new batch of reconstruction. To ensure that we use correctly
this new information, we assume that the set of trainable parameters of the first LSTM cell of each
iteration is learned separately from the parameters’ set of the other LSTM cells. Therefore, the

28

Figure 3.4: The workflow of Double-LSTM 4DVarNet. We can notice that the LSTM cells
in the first iteration of each batch reconstruction has different trainable parameters than
the next LSTM cells. They take as input the initial observation batch and the hidden state
vector from the last iteration’s LSTM cell (the green arrow).

resulting architecture has more trainable parameters and will affect the computation time during
the training time. However it does not increase the overall complexity of the model, because the
reconstruction steps are exactly the same as the original 4DVarNet and the structure of the LSTM
cells remains the same.

3.2 Observing system experiment and observing system sim-
ulation experiments

Observing system experiment (OSE) and observing system simulation experiments (OSSE) [5]
setup have been introduced to assess and evaluate the impact of, respectively, observation and
simulated data on numerical models, especially for forecasting and data assimilation methods in
weather forecast and oceanography. In this section their concept is introduced and how it is
explained how they have been applied in the project, taking inspiration from the previous work of
Vient et al. [73, 72].

3.2.1 OSSE
As introduced in Sec. 1, satellite images often suffer from missing data due to cloud coverage,
making the data interpolation more challenging for the reconstruction of sediment dynamics. If
the rate of missing data is low or moderate (less than 50%), satellite images can still be used for
benchmarking different methods. But in scenarios with more than 80% of data missing, OSSE
frameworks are more suitable for this task.

In particular, the metrics used for the evaluation are designed to ensure independence from
the sampling method used for the observation data, which provides a more general strategy for
evaluating the ability of the interpolation methods of spatial and temporal scales reconstruction.
The OSSE setting needs a gap-free dataset as the ground-truth state for evaluation. Usually this
dataset consists of simulation results generated from numerical models. In order to work with
"close-to-reality" data, [73] generated missing data by applying a real cloud mask taken from real
satellite images to the gap-free dataset. Another way to generate missing data is to cover the

29

images with random patches of some shapes. They have been used artificial masks composed by
rectangles of different sizes, the same as we do in OSE. Finally, a Gaussian noise is added to
simulate the satellite instrumental error.

3.2.2 OSE
In this setting, only satellite images are used (or are available) and because of the missing data,
they can not be used as "gap-free" data in the same way as in the OSSE setting. Therefore
a different strategy has been introduced. A binary mask is generated by random sampling and
applied to the real data. In this way, a dataset with ’artificial’ gaps is created and the original
satellite data is used as reference data to evaluate the reconstructed states through the metrics.
We need to point out that this dataset is not a ground-truth dataset since satellite images are
noisy due to instrumental errors. Two different techniques have been proposed. The first consists
of a random sampling for 50% of the available pixels, known as "pixel-wise" strategy. The second
strategy is called "patch-wise" as the images are masked by patches of size H×W (H is the height
and W is the width), where W and H are randomly sampled from a uniform distribution on a
fixed interval. The number of patches is pre-defined as well. According to [72], the "patch-wise"
strategy reproduces more realistically the independence between the training and test datasets.

3.3 Evaluation metrics
To evaluate the reconstruction quality of the models in terms of accuracy and visual similarity,
three different metrics have been used: root mean square error, absolute error and structural
similarity index measure. While the first two measure the errors between the values, the last one
is an index measuring the visual similarity between two images.

• Mean square error (MSE) and root mean square error (RMSE): this metric describes quan-
titatively the discrepancy between the predicted and reference values. Although it is a good
metric for evaluating and comparing the error of different models, it lacks interpretability
when the values are on a different scale since errors for higher values will be automatically
weighted more than errors of smaller values, and without a context, the error value on itself
doesn’t provide any information whether the model predictions are ’good’ or ’bad’. The
formula is the following:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2, (3.13)

where n is the number of predictions, yi are the observed values and ŷi are the predictions.

• Relative error: this metric is more suitable for comparing the errors of different units or
values at different scales.
The formula is the following:

RE =
|yi − ŷi|
|yi|

(3.14)

where yi are the observed values and ŷi are the predictions. The final error is in absolute
error.

• Structural similarity index measure (SSIM): this metric measures the similarity between two
images by evaluating the structural information of an image, such as luminance, contrast,
and structure. All of these contribute to human perception of image similarity [74].
The formula is the following:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(3.15)

where x and y refer to the images, µx, µy are the pixel sample mean of the images, σ2
x, σ

2
y

are the variance of the images, σxy is the covariance of the two images and c1, c2 are two
variables to stabilize the division.

30

Chapter 4

Experiments and Results

This chapter is divided as follows: section 4.1 introduces the two types of data used and the
preprocessing applied; section 4.2 describes the experiments setups and parameters used; finally,
section 4.3 presents the numerical and visual results obtained and analyzes them.

4.1 Data
In this section, satellite data (CMEMS) and model data (DELFT3D) are introduced and described,
together with their preprocessing methods. Both datasets present SPM concentration measured
in milligrams per liter of water (mg/L).

4.1.1 Satellite data

Figure 4.1: The studying area (black box) for the Dutch Wadden Sea.

The satellite data that have been used in the experiments are the Level 3 (L3) biogeochemical
product taken from the Copernicus Marine Environment Monitoring Service (CMEMS) for the
North Sea 1. The observations are obtained by a combination of data from different satellites
including SeaWiFS, MODIS, MERIS, VIIRS-SNPP and JPSS1, and OLCI-S3A and S3B. The
product provides biogeochemical information such as clorophyll-a concentration, phytoplankton
functional types and SPM. In particular, this study focuses on the area (shown in Fig. 4.1) of the
Dutch Wadden Sea, of coordinates 4.452W, 7,381E, 53.97N, 52,55S, with an original resolution of
1km, meaning that the dimensions of each image is 132× 282 pixels.

1More detailed information at https://data.marine.copernicus.eu/product/OCEANCOLOUR_ATL_BGC_L3_MY_00
9_113/description

31

https://data.marine.copernicus.eu/product/OCEANCOLOUR_ATL_BGC_L3_MY_009_113/description
https://data.marine.copernicus.eu/product/OCEANCOLOUR_ATL_BGC_L3_MY_009_113/description

The dataset consists of daily observations of SPM from 2000 until now, since it is updated
constantly. The dataset has on average more than 75% missing data due to cloud coverage, which
makes it a high missing rate dataset and is used for comparing the reconstruction performances of
4DVarNet with DInEOF and eDInEOF. In Fig. 4.2, it is possible to see the rate of data available
for the year 2018, with a concentration of more complete images during the spring-summer and
more missing data in the winter period, which is due to the fact that there is more cloud coverage
during winter than in summer. This seasonality trend appears in the other years as well.

Figure 4.2: Rate of data (pixels) available on the study area for the year 2018.

A second dataset from CMEMS, with a resolution of 100m, was also used to explore the limits of
the model and observation data. This higher-resolution dataset provides data on daily observations
of SPM from 2020 until now, but it has a very high rate of missing data (around 95% on average).

4.1.2 Model data
Model data are generated by a Dutch Wadden Sea, based on DELFT3D FM2, numerical solvers
developed by Deltares for simulating hydrodynamics and sediment transportation. The dataset,
which is the output of a model for mud dynamics, consists of 2 years (2016-2017) of daily SPM
values and contains multiple hydrodynamics and sediment concentration variables. The ones that
will be used are two different mud fractions: IM1 fraction represents macro flocs meanwhile IM2
represents micro flocs.

The data cover the area between coordinates 53.971N, 52.554S, 4.004W, 7.381E (Fig. 4.4). The
horizontal data points are irregularly structured in curvilinear polygons, which are indicated by
the faces and nodes (see Fig. 4.3). Each of the horizontal data points has 10 vertical layers, from
the surface values to the bottom values, but the layers have irregular distances that vary depending
on the bathymetry.

4.1.3 Data preprocessing
For both satellite and model data, preprocessing was applied to make them more suitable as input
of 4DVarNet, especially for the training phase.

DELFT3D data were the ones required more preprocessing steps. As already mentioned in
4.1.2, the SPM values were obtained by combining the IM1 and IM2 variables, in particular sum-
ming them up. Moreover, the complete data from the DELFT3D-Flexible-Mesh model have 10
layers of values, giving a sort of "depth" information of the location, and the values are organized
in flexible meshes, not in regular grids. Therefore, only the top layer was extracted and the data

2More details at https://www.deltares.nl/expertise/publicaties/dwsm-a-sixth-generation-3d-model-o
f-the-dutch-wadden-sea-2022-release-2

32

https://www.deltares.nl/expertise/publicaties/dwsm-a-sixth-generation-3d-model-of-the-dutch-wadden-sea-2022-release-2
https://www.deltares.nl/expertise/publicaties/dwsm-a-sixth-generation-3d-model-of-the-dutch-wadden-sea-2022-release-2

Figure 4.3: Example of how the flexible meshes look like in the DELFT3D model.

was processed from flexible meshes to regular grids using a python library developed by Deltares,
called dfm_tools3. In particular, the function used is "dfm_tools.get_nc.rasterize_ugrid", which
interpolates the values on a regular grid. The final resolution is approximately 800 meters. How-
ever, the model produced non-physical values due to the interpolation, resulting in concentrations
above 10,000 and negative values. These are unrealistic as, firstly, one liter of water cannot hold
such high SPM levels, and. secondly, SPM concentrations cannot be negative. After an analysis,
it was found out that only a few data points over the entire dataset (less than one hundred data
points for values over 10000 and one thousand four hundred data points with negative values), so
two thresholds have been set to handle them, with the supposition that they wouldn’t affect the
outcomes. For the high values, the threshold has been set at 10000, meanwhile for negative value
threshold was set at 0, since the values are all lower than the 10−8 order, meaning that they should
have been zeros, but they became negative due to the smoothening process of the interpolation.

Since the original resolution of CMEMS data is of 1km, it was adjusted to the same resolution of
model data using a built-in Python function 4 which exploits interpolation for data augmentation.

After these first steps, a logarithm with base 10 (log10) has been applied to both dataset: since
log10 is a positive monotone function, the order of the values is maintained, but their distribution
will be better distributed in a smaller range of values. In this way, 4DVarNet will learn better the
dynamics and it won’t be influenced by very high variations of SPM values. But before directly
applying the log10, all the values lower than 0.1 have been cut because they would be converted
to very high negative number after the log10, introducing more variance in the model. This
assumption is possible because the values range from 0 to 100 for the satellite data and more than
1000 for the model data. Therefore, the threshold of 0.1 is low enough to consider it as 0.

Eventually, the final dataset to be used for the training and testing has been obtained, contain-
ing data points with matching coordinates and a similar value range. The main difference between
the datasets is the values spatial distribution, this will be discussed more in Sec. 5.

The same pre-processing was applied on the 100-meter resolution dataset from CMEMS, which
was downsampled to 200-meter resolution.

4.2 Experiments
Two main experiments were conducted using the OSSE setup. The training and validation phases
were performed on simulated data (DELFT3D FM data), while the testing phase used model data
(CMEMS data), preprocessed as described in Sec. 3.2. In particular, for all the training, validating
and testing phases, the daily images have been artificially masked up to 75% to simulate the cloud
coverage.

In the first experiment, we trained single LSTM and double LSTM on the one-year dataset
(2016) and then tested on 1 year dataset from CMEMS (2018). Table 4.1 shows the hyperpa-
rameters and parameters of the two models: the time window was set at 10 days after exploratory
experiments (it will be discussed in chapter. 5), the hidden layers dimension for both the autoen-
coder (AE) and the LSTM are set respectively at 64 and 96, same as the downsampling rate, at
2. The only difference is in the batch size, 4 for the single LSTM and 1 for the double LSTM: the
reason for setting at 1 for double LSTM is because in this way the time difference between one

3The documentation can be found at https://github.com/Deltares/dfm_tools
4The function is xarray.DataArray.interp and its documentation can be found at https://docs.xarray.dev/en

/stable/generated/xarray.DataArray.interp.html

33

https://github.com/Deltares/dfm_tools
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.interp.html
https://docs.xarray.dev/en/stable/generated/xarray.DataArray.interp.html

Figure 4.4: Example of a map of log10 SPM values on the from the DELFT3D model.

Single LSTM Double LSTM
Number of Channels 1 1

Time Window 10 10
Hidden layers dimension (AE) 64 64

downsampling (AE) 2 2
Batch size 4 1

Trainable parameters (AE) 666177 666177
Training Epochs 50 50
Solver iterations 15 15

Hidden layers dimension (LSTM) 96 96
Trainable parameters (Full) 1033860 1401543

Training time 879m 19s 1194m 15s

Table 4.1: Comparison of the model parameters and hyperparameters used in the first
experiment. Single LSTM refers to the original 4DVarNet architecture.

batch and the following is of 1 day, allowing to use better the information from one batch to the
following. This reflects in the total number of trainable parameters of the entire model, which is
the number of parameters of the autoencoder plus 2 times the number of parameters of the LSTM
structure.

After, the training is done over 50 epochs setting the number of iterations of the optimization
solver at 15. The resulting training time is of about 15 hours for the single LSTM and about
20 hours for the double LSTM. As shown in Fig. 4.5, it can be observed that the loss function
values of the two models during the training phase: even though they seem to have an unstable
convergence due to the peaks, the algorithms adjust their parameters towards the correct values
thanks to the meta-learning schemes inside the neural solver. In fact, at the end of each epoch,
the value of the loss function is computed and if it is smaller than the previous epoch’s one, the
new model parameters are saved and used in the next epoch, otherwise they will be kept the old
one.

Because of the peaks, especially in Fig 4.5a, the convergence of the loss function is not very
clear from the images. For a more complete understanding, the numerical values are available in
Appendix A 8.1

The second experiment used the same OSSE setup but on the 200m resolution datasets. The

34

(a) Loss function of single LSTM during the
training phase

(b) Loss function of double LSTM during the
training phase

Figure 4.5: The loss function values for the two models training phases. The peaks indicate
that during the training, the parameters are updated wrongly, but then the solver adjusts
itself with the correct values.

information about the model’s parameters and training loss function can be found in Appendix B
8.2. In the discussion section 5, it will be explained why the results are not presented.

All the experiments have been run on a single NVIDIA H100 GPU node, available at Deltares
cluster.

4.3 Results
In this section, the numerical results and visualization of image reconstruction are presented.
The results refer to the reconstruction of one year (2018) of the CMEMS dataset, comparing the
reconstruction abilities of 4DVarNet (single LSTM and double LSTM), DInEOF and eDInEOF.
The assessment and comparison have been done on the overall dataset 4.3.1, a single day 4.3.2 and
on some sites in the Wadden Sea 4.3.3.

For the one-year dataset, single LSTM takes 1m 18s to reconstruct, while double LSTM takes
1m and 33s, DInEOF takes 9m 36s and eDInEOF takes 23m 35s. While 4DVarNet models have
comparable computational time for reconstructing the entire dataset, DInEOF takes more than 4
times and eDInEOF takes even 20 times more.

The results will be presented through metrics, as presented in Sec. 3.3, through visual recon-
structions/spatial maps and through time series plots at individual locations.

4.3.1 Metrics
Table 4.2 shows the results of two 4DVarNet experiments, compared to benchmark techniques
DInEOF and eDInEOF in three metrics. These are computed for the whole area, only for the
Dutch Wadden Sea and only for the remaining area.

In terms of RMSE, the double LSTM shows the best overall performance with the lowest
error (2.0472), suggesting it is the most accurate model. In contrast, the single LSTM has a
slightly higher RMSE at 2.8089, with notable variation across different regions. Specifically, in the
Wadden Sea, the single LSTM has a high RMSE of 4.9876, indicating poorer performance in this
area, while its performance is significantly better in other regions, where it achieves an RMSE of
1.9010. DInEOF and eDInEOF, though somewhat comparable, exhibit higher RMSEs (2.282 and
2.814, respectively), with eDInEOF struggling especially in the remaining regions, where it shows
an RMSE of 2.4071. Overall, double LSTM is the most accurate across the board, while eDInEOF
demonstrates the poorest performance.

35

Metrics single LSTM double LSTM DInEOF eDInEOF

RMSE
All 2.8089 2.0472 2.282 2.814

Wadden Sea 4.9876 3.1805 3.5019 4.0466
remaining 1.9010 1.6431 1.8530 2.4071

RE
All 27.9055 42.1077 53.8607 79.9936

Wadden Sea 28.3099 30.4148 29.8751 38.0782
remaining 27.8036 45.0510 59.8984 90.5448

SSIM 0.9378 0.9167 0.5107 0.5102

Table 4.2: Metrics Comparison on the whole dataset, on only the Dutch Wadden Sea and
only on the remaining area (offshore).

When looking at RE, the single LSTM model again shows strong performance with the lowest
overall RE (27.9055). It is especially accurate in the offshore regions, where it achieves a low
RE of 27.8036. However, double LSTM, despite excelling in RMSE, shows a relatively higher
RE (42.1077), with a notable increase in the remaining regions (45.0510). The DInEOF model
performs better than double LSTM in the Wadden Sea (with a RE of 29.8751), but its performance
drops dramatically in the remaining regions (RE of 59.8984). Finally, eDInEOF records the highest
RE across all regions (79.9936 overall, 90.5448 in the remaining regions), indicating it is the least
accurate model in terms of relative error.

In terms of SSIM, which measures structural similarity, the single LSTM model performs best
with a score of 0.9378, closely followed by the double LSTM at 0.9167. This indicates that both
LSTM models maintain a high level of structural integrity in their predictions. In contrast, DInEOF
and eDInEOF show significantly lower SSIM values, around 0.510, indicating that these models
struggle to preserve structural similarity, which is a crucial factor in many applications.

In summary, the LSTM models, particularly double LSTM, show better accuracy in terms of
RMSE, while single LSTM provides a more balanced performance across all metrics, including
RE and SSIM. The EOF-based models, especially eDInEOF, generally perform worse across all
metrics, with higher errors and lower structural similarity.

4.3.2 Visual reconstruction
Fig. 4.6 visualizes the reconstructed images for the day "22-05-2018" using the different models.
On the top left, there is the original image, on the bottom left there is the image with 75% of
data removed. Even though the visual maps are not indicative of the reconstruction abilities, it is
possible to notice how the DInEOF and eDIneof reconstructions are more "pixelated", compared
to the smoother images of single and double LSTM.

Table. 4.3 shows the metrics computed on a single day. The numerical results are similar to
the ones shown in Tab. 4.2, where double LSTM has better RMSE than the other models, single
LSTM has better RE and both of them have similar SSIM, with single LSTM being slightly better.
However, in this case, single LSTM has better RMSE than DInEOF and eDInEOF, but DInEOF
and eDInEOF have a similar RE to double LSTM, still performing worse than single LSTM.

Metrics DInEOF eDInEOF single LSTM double LSTM
RMSE 1.3949 1.3021 1.0939 0.9973

RE 20.2471 19.0484 11.4468 19.8685
SSIM 0.8252 0.8451 0.9564 0.9249

Table 4.3: This table shows evaluation metrics computed on the masked pixels for the
reconstruction of the day 22-05-2018

To extend the analysis of the reconstructions, Fig. 4.7 shows the density functions of the values
on the observed pixels (left plot) and masked pixels (right plot). For computing the density
function, it was used the kernel density estimation method with a kernel width of 0.5, to ensure
that the differences in the plotted functions are more visible. It is interesting to evaluate the density

36

Figure 4.6: Example of image reconstruction for the day 22/05/2018. The original satellite
image has few missing data (top left), so it has been masked to get 75% of missing data
(bottom left). Then on the top center and right we can see the DInEOF and eDInEOF
reconstruction, meanwhile on the bottom center and right the reconstruction for the single
and double LSTM.

functions on both because all the models overwrite the values at each iteration of the algorithm,
so even the values on the observed pixels can vary.

On the density plots of the observed pixels, all the models have more or less the same distribu-
tion as the original values, except for eDInEOF, which has a higher concentration of SPM values
between 0.25 and 0.5 compared to the original data, but lower concentration of values in between
0.5 and 0.7 (approximately).

On the density plot of the masked pixels, all the models have lower values concentration between
0.5 and 0.7 compared to the original data, even though single LSTM outperforms the other models,
meanwhile, they generally have higher concentration of values between 0.25 and 0.5, and again,
single LSTM reproduces these concentrations more accurately, compared to the other models.

Figure 4.7: Plots of the density functions of the observed pixels and masked pixels. On the
left there are the density functions of the observed pixels, while on the right there are the
density functions of the masked pixels. The kernel width was set at 0.5.

37

DInEOF eDInEOF single LSTM double LSTM
KL divergence on observed pixels 0.002233 0.012773 0.000619 0.000895
KL divergence on masked pixel 0.037256 0.032883 0.019318 0.0179436

Table 4.4: The table shows the Kullback-Leibler divergence between the original values and
the reconstructed ones from the different models.

Table 4.4 shows numerically how much different the densities of the reconstructed values of the
models are compared to the original ones, using the Kullback-Leibler divergence. KL divergence
measures how closely each model’s predicted probability distribution matches the true distribution,
with lower values indicating better performance.

On observed pixels, the single LSTM model performs the best, achieving the lowest KL diver-
gence of 0.000619. The double LSTM model follows closely with a KL divergence of 0.000895, still
showing strong accuracy but slightly less precise than the single LSTM. In comparison, DInEOF
and eDInEOF have higher KL divergences on observed pixels, with values of 0.002233 and 0.012773,
respectively. This indicates that these models are less accurate in capturing the distribution of the
observed data. Meanwhile, when considering masked pixels, the double LSTM model achieves the
lowest KL divergence of 0.0179436s. Single LSTM also performs well on masked pixels, with a KL
divergence of 0.019318, though not quite as well as the double LSTM. Again, both DInEOF and
eDInEOF show significantly higher KL divergence values of 0.037256 and 0.032883, respectively,
indicating a reduced ability to generalize to missing data compared to the LSTM-based models.
It can be concluded that single LSTM has a more similar density function to the density function
of the original data, suggesting that it has better reconstructions on the masked pixels, meanwhile
double LSTM has a more similar density function to the original one on the masked pixels. In
both scenarios, the EOF-based models perform worse than 4DVarNet.

4.3.3 Time series reconstruction
In Fig. 4.8, two time series plots of two sites in the Dutch Wadden Sea are shown. The purple
dots are the values observed and the green dots are the masked values, used to evaluate the
reconstruction ability of the models.

Starting with the BOCHTVWTND station (see Fig. 4.8), among the models, the double LSTM
(red line) closely follows the observed CMEMS data, demonstrating its ability to capture both
peak and trough values throughout the year. The single LSTM (green line) also performs well,
though it deviates slightly during certain peaks, underestimating some higher concentrations and
predicting low values, especially in periods where there are no observed values. On the other hand,
the EOF-based models, particularly DInEOF (blue dashed line), exhibit much greater variability.
DInEOF tends to overestimate peaks, adding more oscillations to the data, especially during the
high-concentration periods of early and late 2018. eDIneof has a more stable behaviour, but it still
shows more oscillations than 4DVarNet models.

For the ZOUTKPLG station, the time series plots follow a similar behaviour to BOCHTVWTND.
Once again, the Double LSTM offers the best match with the observed data, capturing key trends
and fluctuations, particularly in mid-2018, where it tracks closely to the observed peaks. The
Single LSTM also performs reasonably well but tends to smooth out some of the sharper spikes
in concentration, such as those observed during March and April 2018. In contrast, the DInEOF
and eDInEOF models, especially DInEOF, show higher variability and overestimate peak concen-
trations throughout the year. These models consistently introduce sharp fluctuations that do not
align with the observed CMEMS data, particularly in the case of DInEOF, which overshoots the
values during critical periods.

Tab. 4.5 shows the numerical results, which agree with what the time series plots show. For the
BOCHTVWTND station, the Double LSTM model shows the lowest RMSE (4.1873), indicating
that it is the most accurate in predicting SPM concentrations, followed by single LSTM with
7.7006. In terms of RE, Double LSTM also performs well, with a relative error of 31.8184, which
is lower than that of the other models, though the Single LSTM (with an RE of 39.1200) also
performed closely. On the other hand, both EOF-based models, DInEOF and eDInEOF, exhibit

38

Figure 4.8: The figure shows the time series (right images) for two stations in the Wadden
Sea, BOCHTVWTND and ZOUTKPLG, and their respective locations on the map (left
images). DInEOF shows a high oscillating behaviour, meanwhile the other methods seem
to be more stable. In particular, single and double LSTM interpolate the unobserved pixels
(green dots) better. Double LSTM is able to reconstruct more consistently higher SPM
values and it doesn’t drop to values close to zero during intervals of missing values, which
is the issue of single LSTM.

much higher RMSE values (12.6895 and 7.7720, respectively), confirming the visual observation
that these models overestimate peaks and introduce significant variability. Their RE values are
also notably higher, with DInEOF showing a large RE of 63.6614 and eDInEOF of 51.4314.

For the ZOUTKPLG station, the Double LSTM once again has the best performance, with an
RMSE of 3.2551 and an RE of 17.9148. The Single LSTM also performs well, with an RMSE of
5.1861 and an RE of 18.1066, closely matching Double LSTM, although it slightly underestimates
the variability seen in the observed data, as noted in the time series analysis. The EOF-based
models again show weaker performance: DInEOF has an RMSE of 5.9302 and eDInEOF has an
RMSE of 5.5775, both significantly worse than the LSTM-based models. Their RE values (22.5151
for DInEOF and 23.8033 for eDInEOF) are also higher, reflecting their difficulty in accurately
reconstructing data at this station.

Metrics single LSTM double LSTM DInEOF eDInEOF

BOCHTVWTND RMSE 7.7006 4.1873 12.6895 7.7720
RE 39.1200 31.8184 63.6614 51.4314

ZOUTKPLG RMSE 5.1861 3.2551 5.9302 5.5775
RE 18.1066 17.9148 22.5151 23.8033

Table 4.5: The table reports the metrics computed for the time series of location
BOCHTVWTND and ZOUTKPLG. In both location, double LSTM has better numeri-
cal results in both the metrics, but it is for the RMSE where it has the biggest improvement
compared to the other methods.

Overall, the Double LSTM emerges as the most reliable model for both stations, according
to both time series plots and numerical results, demonstrating better alignment with observed
CMEMS data and accurately capturing the trends in SPM concentration. It consistently follows
the peaks and troughs with fewer deviations compared to the other models. Single LSTM also
performs well but occasionally it cannot reconstruct correctly higher values, especially in periods

39

with a high rate of missing values. In contrast, the EOF-based models (DInEOF and eDInEOF)
exhibit more significant limitations, particularly in overestimating peaks and introducing higher
variability.

40

Chapter 5

Discussion

In this chapter, the results will be discussed in depth and there will be given conclusions on the
outcome of the experiments. Moreover, the limitations and issues encountered during the project
will be introduced, and how they affected the experiment results will be explained. Finally, the
last part will talk about related works and future research.

5.1 Explanation of the results
The results presented in Sec. 4 show the numerical and visual results of the different models applied
to the CMEMS dataset. These results are further discussed to better contextualize them in relation
to the research goals.

In Sec. 4.3.1, Tab. 4.2 shows that double LSTM has an overall RSME lower than the other
models, but if we focus on the Wadden Sea area, the difference between the double LSTM value
and the other models is bigger than the difference between double LSTM RMSE value with the
other models’ values in the remaining area (offshore). Conversely, single LSTM has an overall
lower RE compared to the other models and the difference is significantly high. Interestingly, this
difference becomes way smaller if we focus on the Wadden Sea area, meanwhile it increases in the
offshore area.

All these results, which have been already comprehensively discussed in the previous chapter,
suggest two interpretations: first, double LSTM performs better in areas with higher values, namely
with a higher SPM concentration, and secondly, single LSTM, even if it performs slightly worse
with higher SPM concentrations than double LSTM, has more consistent performances in the
overall areas, even with lower SPM concentration.

As explained in Sec. 3.3, each metric has its own advantages and disadvantages. In particular,
RMSE lacks of interpretability with values at different scales, which is the case in the area of
interest of our study: usually, there are higher concentration of SPM in the Wadden Sea than in
the rest of the study area, leading to a non-uniform spatial distribution of the values. For this
reason, the value of the overall RMSE is more sensible to the errors in the Wadden Sea area than
in the other areas, leading the double LSTM to have a better RMSE than the other models, which
perform worse on the Wadden Sea. This is further confirmed by Tab. 4.2, where it is visible that
the RMSE values for the Wadden Sea and the other areas have different value scales.

On the other hand, RE is more suitable to capture errors at different scales. From Tab. 4.2, we
already know that single LSTM has the best RE among all the models. What is interesting is the
fact that its overall RE values don’t differ too much compared to the RE value for the Wadden
Sea and other areas, suggesting that the model is able to reconstruct images with a constant
proportional error on the entire spatial domain. Instead, all the other models have bigger gaps
between RE values in the Wadden Sea and the other regions, where the error is larger offshore than
in the coastal area. In particular, double LSTM results are more accurate in the Wadden Sea and
less accurate in the other regions, which are offshore areas with lower SPM concentration, where
even if the reconstructed values don’t have high absolute error, they could have a higher relative
error due to the smaller scale.

41

Moreover, SSIM indexes give further validation of the results shown by RMSE and RE, since
they suggest that single and double LSTM reconstructed images are the most similar to the original
ones, meanwhile DInEOF and eDInEOF are more different from the original images.

The Sec. 4.3.2 gives a better view of the reconstructions of a single day, which was picked
for being almost complete (there are some data missing in thecoastal area). It has been already
noticed that the 4DVarNet models predict smoother results than EOF-methods, which tend to
yield more "pixelated" outputs in offshore areas while remaining quite accurate in the Wadden
Sea. Comparing single LSTM with double LSTM, we can see how they are visually similar, but
double LSTM has slightly higher reconstructed SPM values: this is confirmed by the density
function plots in Fig. 4.7 (right figure). The density function plots of the two models are similar,
but the one of double LSTM (orange line) is shifted slightly on the right. Thus, in the Wadden sea
and for higher SPM values, double LSTM is more accurate but it overshoots lower values, while
single LSTM is more consistent. Again, the metrics in Tab. 4.3 confirm that double LSTM has the
best RMSE, because of the better accuracy on the high SPM values in the Wadden Sea, but single
LSTM has a better RE, which reflects its consistency in reconstructing the values. Also in terms of
similarity (SSIM), the two 4DVarNet models are visually more similar to the original image than
the other two.

The results in Sec. 4.3.3 are interesting because they show the temporal reconstruction of the
SPM values in specific sites in the Wadden Sea, BOCHTVWTND and ZOUTKPLG, where the
fluctuations are more visible through the year. Specifically, we already talked about the high
variance of the EOF-methods, but if we focus on the 4DVarNet methods, single LSTM doesn’t
reconstruct correctly SPM values, especially in long periods with no or barely any observations
available, such as between May and July 2018 for BOCHTVWTND station and in between March
and May 2018 for ZOUTKPLG station, showing its bias towards lower values described in 3.1.4.
Meanwhile, double LSTM is able to reconstruct values that are closer to the real one, especially
bigger values, but sometimes it doesn’t interpolate correctly smaller values. Anyway, double LSTM
shows better behaviour which is able to recognize daily fluctuations, peaks and lows of SPM
concentration. In this case, double LSTM has better RMSE and RE than the other models, and
the reason is that we are looking at values at the same scale, therefore the RMSE shows better
the reconstructions quality and it is similar to the RE. This results from Tab. 4.5 are in agreement
with the ones in Tab. 4.2 in the row of the Wadden Sea area.

In summary, 4DVarNet models outperform DInEOF and eDInEOF for satellite image recon-
struction in terms of different metrics, as well as in computation speed, showing clearly their
advantages. Single LSTM shows overall more constant results on the whole area, but double
LSTM has better results on the Wadden Sea area, suggesting that this model is able to reconstruct
more accurately areas with higher concentration of SPM.

5.2 Limitations
During the data preparation, different problems have been encountered and, therefore, some as-
sumptions and simplifications have been applied. Moreover, there have been choices on the struc-
ture of the models, most of them based on the computation resources available for running the
experiments. In this section, these issues will be discussed and explained how they influenced the
outcomes of the experiments.

5.2.1 Data
As mentioned in 4.1.3, after the preprocessing of the dataset, we obtained two similar datasets,
but they were still differing from each other for their values spatial distribution: from Fig. 5.2, it
is clear how different are the two datasets in terms of the spatial distribution of the values. The
model data are generally distributed towards higher values, meanwhile a large part of satellite
data is concentrated around 0. Even the dynamics in the area are different, which is visible from
Fig. 5.1.

This difference between the datasets prevents achieving a possible better reconstruction quality,
since during the training phase of 4DVarNet, the dynamics behind the model data have been

42

Figure 5.1: Here is the map of the satellite data (left) and model data (right) for the day
26-06-2017. It is possible to see how they differ in the values distribution, with model data
having higher values overall, especially in the Wadden Sea area.

Figure 5.2: Plot of the densities functions of the SPM values for satellite data (orange line)
and model data (blue line). For certain aspects, they have a similar distribution but satellite
data have more values concentrated around 0 and in general less higher values.

learned, but when the pre-trained model is tested on the CMEMS data, which have different
dynamics, therefore the reconstruction will be done on the base of the model data, not the satellite
data, providing reconstructions that follow more the model data than the actual satellite data.

To overcome this issue, one solution was to fine-tune the pre-trained model on the satellite
data, but in this case the results were not improving, if not getting worse. The reason could be
that the CMEMS dataset isn’t good enough to be used to train the model for its high rate of
missing data, however further exploration in this way could be done, maybe changing some model
hyperparameters or loss function. A second solution could be the availability of model data that
agree better with satellite data, but this is more a limitation of the DELFT3D FM model and
the way of generating data. A third solution would be finding more correlation between simulated
data and satellite data with less missing data to align the datasets.

There are two further issues with the datasets: the first is that the DELFT3D dataset only
provides two years worth of data only one year is used for training the models, which is a very
limited period for the learning process. The second issue is with the CMEMS data, which have a
high rate of missing data: this makes both the reconstruction and the performance analysis more
challenging.

43

5.2.2 Second experiment
The reason why the results for the second experiments have been not presented in Sec. 4.3 is
because the application of the 4DVarNet of the CMEMS dataset was not successful. The main
explanation is that this dataset has a very high rate of missing data (more than 95% overall), so
there are too few for the pre-trained model to be able to reconstruct in a good way the SPM values.

However, the aim of this second experiment is to show the limitations of the model in terms of
number of parameters and computation time when we use higher-resolution data (and consequently,
bigger datasets). Looking at the table 8.1, the batch size and the hidden layer dimension had to
be downgraded in order to run the model on the GPU, and still, the training time resulted in more
than 6 times than the single LSTM of the first experiment. When applied to the CMEMS dataset
of 4 years, it gives the reconstructed output in 19 minutes, even if their quality is not good.

5.2.3 Model complexity
The choice of the models hyperparameters and their consequent complexity (see Tab. 4.1) was
guided by two main factors: previous works in the literature and computation sources. For the
first, the choice relied on the previous similar applications of 4DVarNet [73, 72] and a parallel
work, that is still ongoing, at IMT Atlantique institute, team that firstly introduced 4DVarNet.
Moreover, IMT Atlantique is one of Deltares’ partners in the EDITO project, a collaboration in
the scope of European Horizon projects. For example, in the parallel work with IMT Atlantique
it was found that setting 10 days as time window is optimal, because increasing the number only
leads to poorer performances of the algorithm.

For the computation power, the dimension of the hidden layers in the Autoencoder and in the
LSTM, the downsampling rate and the batch size had to be fixed at the corresponding values
because, during the training, the model reached the maximum capacity of the GPU of 80GB. Of
course, there are no other ways to solve this limitation other than using higher capacity GPUs
or parallelising the computation tasks, which was not possible on the Deltares cluster. However,
compared to previous experiments, here it was used a higher number of parameters, especially
because 3D convolutional layers have been used instead of two dimensional.

5.3 Related works and future researches
In the systematic literature review from the work of Catipovic et al. [16], it emerges that there
exist several other studies in oceanography with the same aim of reconstructing satellite data from
partial observation, some of them even more recent than 4DVarNet. Most of them exploit machine
learning methods, in particular neural networks, highlighting how the research is shifting towards
these new techniques that are demonstrated to be more efficient than numerical methods.

There has been also research on the side of neural network architectures for optimization con-
vergences, related to the work of Andrychowicz et al. [3], which they were grouped together and
defined as techniques for "learning to optimize" or "learning to learn", depending if the methods
is based on meta-learning schemes or not. The aim of these techniques is to speed up the learning
within tasks (improving the convergence) and to be able to transfer learning across tasks from the
same distribution (generalization). The framework used in 4DVarNet is a simplified version of the
one proposed in [3], but Chen et al. [18] showed how there exist other methods more complex and
with faster convergences than this version. Moreover, the double LSTM variation introduced in
this work has some similarities with the algorithm unrolling schemes [34]: the unrolling schemes
are structured in the same way as the recurrent neural network, but the parameters are not shared
between each iteration, meanwhile double LSTM has only the parameters of the first iteration
that are not shared with the rest of the parameters. To summarize, double LSTM can be seen
as a special case of unrolling algorithms, where only a subset of parameters is shared. Obviously,
having more, if not all, parameters that are not shared across the iterations layers leads to a more
complex model that would probably learn better the optimization task, but it will require more
computation power as well.

For future research, the availability of more powerful computing sources will allow to expand
the model parameters or explore more complex architectures, for example, tranformer-based ones

44

https://www.imt-atlantique.fr/en

[71], which are demonstrated to be effective for the same problem by the work of Archambault
et al. [4]. Transformers have already revolutionized other machine learning fields, i.e. natural
language processes and, more specifically, large language models (LLMs), so it would be worth
exploring them further to improve the performances. Another interesting technique is stable diffu-
sion, which is part of what is nowadays called Generative AI. Stable diffusion models [38] are a type
of probabilistic generative model and the main idea is to generate images simulating a diffusion
process. These models could be used in different ways for the SPM reconstruction: the inpainting
techniques [21] use stable diffusion models and they have been shown to be very powerful in filling
incomplete images, which is a very similar task to the aim of this project. Another way of using
stable diffusion models is for solving dynamical systems, for example, the work of Huang et al. [39]
shows successfully the application of a diffusion model for forward and inverse problems. Lastly, a
new LSTM-based architecture called extended LSTM (xLSTM) [9] was recently proposed, show-
ing better performances than state-of-the-art models, such as the transformers, for LLMs and it is
envisioned that it could be beneficial for time series predictions: in the context of this project, it
could be interesting exploring whether the neural solver in the 4DVarNet can be enhanced using
this new model. In conclusion, considering the amount of new research and developments in the
deep learning field that have been just discussed, there are many different directions that could be
taken in the future to improve 4DVarNet.

45

Chapter 6

Conclusion and Overlooks

This thesis project presents the application, analysis and comparison of 4DVarNet as a novel
method for reconstructing SPM fields, focusing in particular on the Dutch Wadden Sea area. Based
on the analysis and results discussed in Sec. 4 and 5, it is evident that the 4DVarNet algorithm
provides significant improvements in the reconstruction of SPM data, particularly in areas with
higher sediment concentration, such as the Dutch Wadden Sea. More specifically the single and
double LSTM variations of 4DVarNet, have demonstrated their ability to outperform traditional
methods like DInEOF and eDInEOF, both in terms of accuracy and computational efficiency.

The double LSTM model, in particular, showed superior performance in regions with high
SPM concentrations, while the single LSTM exhibited more consistent performance across the
entire study area, even in regions with lower SPM values. This suggests that double LSTM is
better suited for environments characterized by complex sediment dynamics, whereas single LSTM
may be more appropriate for broader, less variable regions.

There are multiple ways to improve the method and its performance, which require further
experiments and digging more into the literature. With the advancements of research in the
machine learning field.

In conclusion, the findings of this thesis not only confirm the effectiveness of 4DVarNet for
satellite image reconstruction in marine environments, but also demonstrate its advantages com-
pared to traditional numerical methods. Future work may focus on refining these models to further
improve their accuracy and convergences, optimizing them for a better use of computing sources
and extending the applicability of such methods to other variables. Moreover, it is possible to ex-
plore new alternative architectures that could eventually perform better. The contributions of this
study, particularly in the context of the Dutch Wadden Sea, provide valuable insights for future
research and practical applications in oceanography and marine ecosystems.

I would like to mention that in September 2024, I partecipated a hackathon in Grenoble for the
EDITO Model lab and, in a team with other three researches, we deployed a walkthrough jupyter
notebook for using a pre-trained model of 4DVarNet to be used on the EDITO Datalab platform 1.
For Deltares, this work will be converted in a product to be used by the modellers and researchers.
Finally, in December 2024, I will present online this project at the American Geophysical Union
(AGU) in Washington 2.

1You can find more information here https://datalab.dive.edito.eu/catalog/All.
2More info at https://www.agu.org/annual-meeting

46

https://datalab.dive.edito.eu/catalog/All
https://www.agu.org/annual-meeting

Chapter 7

Acknowledgments

I would firstly thanks my supervisors from Deltares, Felix Dols and Lorinc Meszaros, who supported
me during the entire duration of my master thesis’ project, both in a professional and personal way,
and facilitated me . I would also thanks my daily supervisor from University of Twente, Dongwei
Ye, who gave me invaluable feedbacks and suggestions for delivering a proper academic work, and
the committee chair, Prof. Christoph Brune, who also provided me with precious insights on how
to improve my results.

Now, a special thanks goes to my family, and in particular to my parents and my sister, who
supported me through the entire time of my master and believed in my ability to accomplish this
important life’s goal. Another big thank goes to my girlfriend, Roxana, who, despite the distance,
always supported me and make me feel like we were closer the entire time.

The last thank goes to my all the friends I found here in Enschede, who since the beginning
revealed to be some wonderful people and helped me to feel less alone in a completely new country,
and with I spent some unforgettable moments.

47

Chapter 8

Appendixes

8.1 Appendix A
Values of training and validation loss functions of single LSTM:

• Training Loss values: [0.182994, 0.103153, 0.0882704, 0.0696425, 0.0641583, 0.059883, 0.375308,
0.383062, 0.0709362, 0.0629637, 0.0595105, 0.0568493, 0.0555639, 0.0540822, 0.0533253, 0.0523429,
0.0518311, 0.0511065, 0.0505824, 0.0499403, 0.0493538, 0.0488100, 0.0484268, 0.0480129,
0.0497744, 0.0474353, 0.0469372, 0.0466150, 0.0467049, 0.0456301, 0.0454793, 0.0451096,
0.0454020, 0.0444325, 0.0529801, 0.0461034, 0.0439058, 0.0434973, 0.0428512, 0.0428854,
0.0426534]

• Validation Loss values: [0.120422, 0.0924242, 0.0784136, 0.0696589, 0.0634635, 0.0610729,
9.98053, 0.0821068, 0.0688668, 0.0641610, 0.0621118, 0.0590476, 0.0577248, 0.0574321, 0.0552131,
0.0550912, 0.0544498, 0.0530637, 0.0524130, 0.0520975, 0.0521850, 0.0516933, 0.0511729,
0.0504027, 0.0500852, 0.0492786, 0.0492190, 0.0490129, 0.0478850, 0.0481029, 0.0476048,
0.0474192, 0.0475227, 0.0462603, 0.0564469, 0.0470933, 0.0464676, 0.0456783, 0.0453731,
0.0470752, 0.0448961]

Values of training and validation loss functions of double LSTM:

• Training Loss values: [0.179853, 0.0850784, 0.0687735, 0.0602103, 0.0546198, 0.0516198,
0.0480551, 0.0457882, 0.147422, 0.0531328, 0.0471642, 0.0452124, 0.0501932, 0.0431243, 0.0428593,
0.0410455, 0.041964, 0.040293, 0.0399238, 0.0390697, 0.047607, 0.0400847, 0.0380444, 0.0377549,
0.0375948, 0.0542451, 0.0389216, 0.0373682, 0.0363356, 0.036557, 0.0359506, 0.0353748, 0.03568,
0.0350718, 0.151393, 0.0580548, 0.0433809, 0.0409459, 0.0377469, 0.0370459, 0.0357325]

• Training Loss values: [0.111603, 0.0744371, 0.0655738, 0.0586927, 0.0553839, 0.0513756,
0.0499718, 0.0489341, 0.0595644, 0.051007, 0.0489389, 0.0470164, 0.04809, 0.0452134, 0.0449424,
0.0458248, 0.0432384, 0.0438112, 0.0422725, 0.0421993, 0.0480683, 0.0426299, 0.0474407,
0.0407002, 0.0446952, 0.0443446, 0.04718, 0.0409945, 0.0408469, 0.0404462, 0.041239, 0.0393663,
0.0403744, 0.0417896, 0.0832283, 0.0500941, 0.043683, 0.0418242, 0.0415099, 0.0410792, 0.0397813]

8.2 Appendix B
Second experiment model parameters and loss function.

48

Single LSTM
Number of Channels 1

Time Window 10
Hidden layers dimension (AE) 64

downsampling (AE) 2
Batch size 1

Trainable parameters (AE) 666177
Training Epochs 50
Solver iterations 15

Hidden layers dimension (LSTM) 48
Trainable parameters (Full) 767076

Training time 5622m 57s

Table 8.1: Model parameters and hyperparameters used in the second experiment.

Figure 8.1: Loss function values for the training and validation phases.

49

Bibliography

[1] Aïda Alvera-Azcárate, Alexander Barth, Damien Sirjacobs, and J-M Beckers. Enhancing
temporal correlations in eof expansions for the reconstruction of missing data using dineof.
Ocean Science, 5(4):475–485, 2009.

[2] Aida Alvera-Azcárate, Quinten Vanhellemont, Kevin Ruddick, Alexander Barth, and Jean-
Marie Beckers. Analysis of high frequency geostationary ocean colour data using dineof.
Estuarine, Coastal and Shelf Science, 159:28–36, 2015.

[3] Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom
Schaul, Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent
by gradient descent. Advances in neural information processing systems, 29, 2016.

[4] Théo Archambault, Pierre Garcia, Anastase Alexandre Charantonis, and Dominique Béréziat.
Deep sea surface height multivariate interpolation. In EGU General Assembly Conference
Abstracts, page 17465, 2024.

[5] Charles P Arnold Jr and Clifford H Dey. Observing-systems simulation experiments: Past,
present, and future. Bulletin of the American Meteorological Society, 67(6):687–695, 1986.

[6] Z Bainbridge, S Lewis, R Bartley, K Fabricius, C Collier, J Waterhouse, A Garzon-Garcia,
B Robson, J Burton, A Wenger, et al. Fine sediment and particulate organic matter: A review
and case study on ridge-to-reef transport, transformations, fates, and impacts on marine
ecosystems. Marine Pollution Bulletin, 135:1205–1220, 2018.

[7] Alexander Barth, Aida Alvera-Azcárate, Matjaz Licer, and Jean-Marie Beckers. Dincae 1.0:
A convolutional neural network with error estimates to reconstruct sea surface temperature
satellite observations. Geoscientific Model Development, 13(3):1609–1622, 2020.

[8] Belhassen Bayar and Matthew C Stamm. Constrained convolutional neural networks: A
new approach towards general purpose image manipulation detection. IEEE Transactions on
Information Forensics and Security, 13(11):2691–2706, 2018.

[9] Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prud-
nikova, Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xl-
stm: Extended long short-term memory. arXiv preprint arXiv:2405.04517, 2024.

[10] Charles Troupin Beckers. Introduction to optimal interpolation and variational analysis. 2008.

[11] Jean-Marie Beckers and Michel Rixen. Eof calculations and data filling from incomplete
oceanographic datasets. Journal of Atmospheric and oceanic technology, 20(12):1839–1856,
2003.

[12] AF Bennett and PC McIntosh. Open ocean modeling as an inverse problem: Tidal theory.
Journal of physical oceanography, 12(10):1004–1018, 1982.

[13] Andrew F Bennett. Inverse methods in physical oceanography. Cambridge university press,
1992.

50

[14] Ángel Borja, Mike Elliott, Jacob Carstensen, Anna-Stiina Heiskanen, and Wouter van de
Bund. Marine management–towards an integrated implementation of the european ma-
rine strategy framework and the water framework directives. Marine pollution bulletin,
60(12):2175–2186, 2010.

[15] B Casey, R Arnone, and P Flynn. Simple and efficient technique for spatial/temporal com-
posite imagery. published in the proceedings of spie. In Conference on Coastal Ocean Remote
Sensing, v6680, held in San Diego, CA on, pages 26–30, 2007.

[16] L Ćatipović, H Kalinić, T Županović, S Sathyendranath, J Dingle, T Jackson, and F Matić.
Implementation of gan-based satellite derived chlorophyll-a concentration gap reconstruction.
2023.

[17] Leon Ćatipović, Frano Matić, and Hrvoje Kalinić. Reconstruction methods in oceanographic
satellite data observation—a survey. Journal of marine science and engineering, 11(2):340,
2023.

[18] Tianlong Chen, Xiaohan Chen, Wuyang Chen, Howard Heaton, Jialin Liu, Zhangyang Wang,
and Wotao Yin. Learning to optimize: A primer and a benchmark. Journal of Machine
Learning Research, 23(189):1–59, 2022.

[19] Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp, Thomas Brox, and Olaf Ronneberger.
3d u-net: learning dense volumetric segmentation from sparse annotation. In Medical Image
Computing and Computer-Assisted Intervention–MICCAI 2016: 19th International Confer-
ence, Athens, Greece, October 17-21, 2016, Proceedings, Part II 19, pages 424–432. Springer,
2016.

[20] PHILIPPE Courtier, J-N Thépaut, and Anthony Hollingsworth. A strategy for operational
implementation of 4d-var, using an incremental approach. Quarterly Journal of the Royal
Meteorological Society, 120(519):1367–1387, 1994.

[21] Antonio Criminisi, Patrick Perez, and Kentaro Toyama. Object removal by exemplar-based
inpainting. In 2003 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2003. Proceedings., volume 2, pages II–II. IEEE, 2003.

[22] Junyu Dong, Ruiying Yin, Xin Sun, Qiong Li, Yuting Yang, and Xukun Qin. Inpainting
of remote sensing sst images with deep convolutional generative adversarial network. IEEE
geoscience and remote sensing letters, 16(2):173–177, 2018.

[23] Matthew Ehrler and Neil Ernst. Vconstruct: Filling gaps in chl-a data using a variational
autoencoder. arXiv preprint arXiv:2101.10260, 2021.

[24] D Eisma. Flocculation and de-flocculation of suspended matter in estuaries. Netherlands
Journal of Sea Research, 20(2-3):183–199, 1986.

[25] Geir Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic model using
monte carlo methods to forecast error statistics. Journal of Geophysical Research: Oceans,
99(C5):10143–10162, 1994.

[26] Geir Evensen and Peter Jan Van Leeuwen. An ensemble kalman smoother for nonlinear
dynamics. Monthly Weather Review, 128(6):1852–1867, 2000.

[27] Geir Evensen, Femke C Vossepoel, and Peter Jan Van Leeuwen. Data assimilation fundamen-
tals: A unified formulation of the state and parameter estimation problem. Springer Nature,
2022.

[28] Ronan Fablet, Bertrand Chapron, Lucas Drumetz, Etienne Mémin, Olivier Pannekoucke, and
François Rousseau. Learning variational data assimilation models and solvers. Journal of
Advances in Modeling Earth Systems, 13(10):e2021MS002572, 2021.

51

[29] Ronan Fablet, Said Ouala, and Cedric Herzet. Bilinear residual neural network for the iden-
tification and forecasting of geophysical dynamics. In 2018 26th European signal processing
conference (EUSIPCO), pages 1477–1481. IEEE, 2018.

[30] Jianxin Fan, Jiaxin Yang, Fulong Cheng, and Shikuo Zhang. The source, distribution, and
environmental effects of suspended particulate matter in the yangtze river system. Water,
15(19):3429, 2023.

[31] Lev Semenovich Gandin. Objective analysis of meteorological fields. Israel program for sci-
entific translations, 242, 1963.

[32] Unai Ganzedo, Aida Alvera-Azcarate, Ganix Esnaola, Agustin Ezcurra, and Jon Saenz. Re-
construction of sea surface temperature by means of dineof: a case study during the fishing
season in the bay of biscay. International journal of remote sensing, 32(4):933–950, 2011.

[33] Neil J Gordon, David J Salmond, and Adrian FM Smith. Novel approach to nonlinear/non-
gaussian bayesian state estimation. In IEE proceedings F (radar and signal processing), volume
140, pages 107–113. IET, 1993.

[34] Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In Proceedings
of the 27th international conference on international conference on machine learning, pages
399–406, 2010.

[35] Thomas M Hamill and Chris Snyder. A hybrid ensemble kalman filter–3d variational analysis
scheme. Monthly Weather Review, 128(8):2905–2919, 2000.

[36] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[37] Nobuyuki Hirahara, Motoharu Sonogashira, Hidekazu Kasahara, and Masaaki Iiyama. Denois-
ing and inpainting of sea surface temperature image with adversarial physical model loss. In
Pattern Recognition: 5th Asian Conference, ACPR 2019, Auckland, New Zealand, November
26–29, 2019, Revised Selected Papers, Part I 5, pages 339–352. Springer, 2020.

[38] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020.

[39] Jiahe Huang, Guandao Yang, Zichen Wang, and Jeong Joon Park. Diffusionpde: Generative
pde-solving under partial observation. arXiv preprint arXiv:2406.17763, 2024.

[40] CF Jago, GM Kennaway, G Novarino, and SE Jones. Size and settling velocity of suspended
flocs during a phaeocystis bloom in the tidally stirred irish sea, nw european shelf. Marine
Ecology Progress Series, 345:51–62, 2007.

[41] Sihun Jung, Cheolhee Yoo, and Jungho Im. High-resolution seamless daily sea surface tem-
perature based on satellite data fusion and machine learning over kuroshio extension. Remote
Sensing, 14(3):575, 2022.

[42] Hrvoje Kalinić, Zvonimir Bilokapić, and Frano Matić. Can local geographically restricted
measurements be used to recover missing geo-spatial data? Sensors, 21(10):3507, 2021.

[43] Rudolph E Kalman and Richard S Bucy. New results in linear filtering and prediction theory.
1961.

[44] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. 1960.

[45] Song-Hee Kang, Youngjin Choi, and Jae Young Choi. Restoration of missing patterns on
satellite infrared sea surface temperature images due to cloud coverage using deep generative
inpainting network. Journal of Marine Science and Engineering, 9(3):310, 2021.

52

[46] Vladimir Krasnopolsky, Sudhir Nadiga, Avichal Mehra, Eric Bayler, and David Behringer.
Neural networks technique for filling gaps in satellite measurements: Application to ocean
color observations. Computational intelligence and neuroscience, 2016(1):6156513, 2016.

[47] Ewa J Kwiatkowska and Giulietta S Fargion. Application of machine-learning techniques
toward the creation of a consistent and calibrated global chlorophyll concentration baseline
dataset using remotely sensed ocean color data. IEEE Transactions on Geoscience and Remote
Sensing, 41(12):2844–2860, 2003.

[48] Steven N Liss, Ian G Droppo, Gary G Leppard, and Timothy G Milligan. Flocculation in
natural and engineered environmental systems. CRC press, 2004.

[49] Xiaoming Liu and Menghua Wang. Analysis of ocean diurnal variations from the korean
geostationary ocean color imager measurements using the dineof method. Estuarine, Coastal
and Shelf Science, 180:230–241, 2016.

[50] Xiaoming Liu and Menghua Wang. Gap filling of missing data for viirs global ocean color
products using the dineof method. IEEE Transactions on Geoscience and Remote Sensing,
56(8):4464–4476, 2018.

[51] Andrew C Lorenc. Analysis methods for numerical weather prediction. Quarterly Journal of
the Royal Meteorological Society, 112(474):1177–1194, 1986.

[52] Edward N Lorenz. Empirical orthogonal functions and statistical weather prediction, volume 1.
Massachusetts Institute of Technology, Department of Meteorology Cambridge, 1956.

[53] Edward N Lorenz. Deterministic nonperiodic flow. Journal of atmospheric sciences, 20(2):130–
141, 1963.

[54] Edward N Lorenz. Predictability: A problem partly solved. In Proc. Seminar on predictability,
volume 1. Reading, 1996.

[55] IN McCave. Introduction to the physics of cohesive sediment in the marine environment.
Geological Magazine, 143(1):137, 2006.

[56] Hamid Mohebzadeh, Esmaiil Mokari, Prasad Daggupati, and Asim Biswas. A machine learning
approach for spatiotemporal imputation of modis chlorophyll-a. International Journal of
Remote Sensing, 42(19):7381–7404, 2021.

[57] Peter R Oke, Gary B Brassington, David A Griffin, and Andreas Schiller. The bluelink ocean
data assimilation system (bodas). Ocean modelling, 21(1-2):46–70, 2008.

[58] Said Ouala, Ronan Fablet, Cédric Herzet, Bertrand Chapron, Ananda Pascual, Fabrice Col-
lard, and Lucile Gaultier. Neural network based kalman filters for the spatio-temporal inter-
polation of satellite-derived sea surface temperature. Remote Sensing, 10(12):1864, 2018.

[59] Jinku Park, Jeong-Hoon Kim, Hyun-cheol Kim, Bong-Kuk Kim, Dukwon Bae, Young-Heon
Jo, Naeun Jo, and Sang Heon Lee. Reconstruction of ocean color data using machine learn-
ing techniques in polar regions: Focusing on off cape hallett, ross sea. Remote Sensing,
11(11):1366, 2019.

[60] Bo Ping, Fenzhen Su, and Yunshan Meng. An improved dineof algorithm for filling missing
values in spatio-temporal sea surface temperature data. PLoS One, 11(5):e0155928, 2016.

[61] Claire Pottier, Véronique Garçon, Gilles Larnicol, Joël Sudre, Philippe Schaeffer, and P-Y
Le Traon. Merging seawifs and modis/aqua ocean color data in north and equatorial atlantic
using weighted averaging and objective analysis. IEEE transactions on geoscience and remote
sensing, 44(11):3436–3451, 2006.

[62] LD Pukhtyar, SV Stanichny, and IE Timchenko. Optimal interpolation of the data of remote
sensing of the sea surface. Physical Oceanography, 19(4):225–239, 2009.

53

[63] Yoshikazu Sasaki. Numerical variational analysis with weak constraint and application to
surface analysis of severe storm gust. Monthly Weather Review, 98(12):899–910, 1970.

[64] Yoshikazu Sasaki. Some basic formalisms in numerical variational analysis. Monthly Weather
Review, 98(12):875–883, 1970.

[65] Andrew M Stuart. Inverse problems: a bayesian perspective. Acta numerica, 19:451–559,
2010.

[66] Swathy Sunder, RAAJ Ramsankaran, and Balaji Ramakrishnan. Machine learning techniques
for regional scale estimation of high-resolution cloud-free daily sea surface temperatures from
modis data. ISPRS Journal of Photogrammetry and Remote Sensing, 166:228–240, 2020.

[67] Swathy Sunder, RAAJ Ramsankaran, and Balaji Ramakrishnan. Machine learning techniques
for regional scale estimation of high-resolution cloud-free daily sea surface temperatures from
modis data. ISPRS Journal of Photogrammetry and Remote Sensing, 166:228–240, 2020.

[68] Xiao-Ling Tan, Guo-Ping Zhang, YIN Hang, Yoko FURUKAWA, et al. Characterization
of particle size and settling velocity of cohesive sediments affected by a neutral exopolymer.
International Journal of Sediment Research, 27(4):473–485, 2012.

[69] Marc H Taylor, Martin Losch, Manfred Wenzel, and Jens Schröter. On the sensitivity of field
reconstruction and prediction using empirical orthogonal functions derived from gappy data.
Journal of Climate, 26(22):9194–9205, 2013.

[70] Peter Jan Van Leeuwen. Representation errors and retrievals in linear and nonlinear data
assimilation. Quarterly Journal of the Royal Meteorological Society, 141(690):1612–1623, 2015.

[71] A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems,
2017.

[72] Jean-Marie Vient, Ronan Fablet, Frédéric Jourdin, and Christophe Delacourt. End-to-end
neural interpolation of satellite-derived sea surface suspended sediment concentrations. Re-
mote Sensing, 14(16):4024, 2022.

[73] Jean-Marie Vient, Frederic Jourdin, Ronan Fablet, Baptiste Mengual, Ludivine Lafosse, and
Christophe Delacourt. Data-driven interpolation of sea surface suspended concentrations de-
rived from ocean colour remote sensing data. Remote Sensing, 13(17):3537, 2021.

[74] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–
612, 2004.

[75] Mengmeng Yang, Faisal Ahmed Khan, Hongzhen Tian, and Qinping Liu. Analysis of the
monthly and spring-neap tidal variability of satellite chlorophyll-a and total suspended matter
in a turbid coastal ocean using the dineof method. Remote Sensing, 13(4):632, 2021.

54

	Introduction
	Mathematical background
	Preliminaries
	Bayesian inference
	Recursive Bayesian formulation
	Problem formulation
	General smoother formulation
	Smoother formulation for perfect models
	Smoother formulation for parameters estimation
	Filter formulation
	Recursive smoother formulation

	Data assimilation: Gaussian assumption
	Data assimilation methods
	Optimal interpolation
	Kalman filter
	4DVar
	Particle filters

	Methods
	4DVarNet
	Problem statement of WC-4DVar
	Novelties
	End-To-End architecture
	Double-LSTM 4DVarNet

	Observing system experiment and observing system simulation experiments
	OSSE
	OSE

	Evaluation metrics

	Experiments and Results
	Data
	Satellite data
	Model data
	Data preprocessing

	Experiments
	Results
	Metrics
	Visual reconstruction
	Time series reconstruction

	Discussion
	Explanation of the results
	Limitations
	Data
	Second experiment
	Model complexity

	Related works and future researches

	Conclusion and Overlooks
	Acknowledgments
	Appendixes
	Appendix A
	Appendix B

	Bibliography

