
MSc Computer Science
Master Thesis

Ontology-Driven Software
Development: Generating Java
code from OntoUML

Guus Grievink

Committee: dr. Luís Ferreira Pires, Prof.dr. Arend Rensink,
dr. João Luiz Rebelo Moreira

November, 2024

Department of Computer Science
Faculty of Electrical Engineering,
Mathematics and Computer Science,
University of Twente

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research objective . 2
1.3 Methodology . 2
1.4 Report structure . 4

2 Background 5
2.1 Ontologies . 5

2.1.1 Ontology languages . 5
2.1.2 Foundational Ontologies . 6
2.1.3 OntoUML . 7
2.1.4 Unified Foundational Ontology . 8

2.2 Model-Driven Engineering . 11
2.2.1 Models and metamodels . 12
2.2.2 Model transformations . 13

3 Transformation design 18
3.1 OntoUML stereotypes to be covered . 18

3.1.1 Scraping the OntoUML Model Catalogue 19
3.1.2 Stereotype frequency . 19
3.1.3 Final selection of stereotypes . 21

3.2 Implementation model . 21
3.2.1 Final properties . 22
3.2.2 Visualisation of isLeaf attribute . 22

3.3 Transformation design of OntoUML types 23
3.3.1 Substantial types . 24
3.3.2 Base sortals . 25
3.3.3 Non-sortals . 28
3.3.4 Moment types . 31

4 Integration of OntoUML in EMF 37
4.1 OntoUML Ecore metamodel . 37

4.1.1 Classes . 40
4.1.2 Relations . 40
4.1.3 Properties . 40
4.1.4 Generalizations . 40

4.2 Differences with existing OntoUML metamodels 41
4.2.1 Differences due to different metametamodels 41
4.2.2 Differences in metamodel due to output of OntoUML VP-plugin . . 43

2

4.3 OntoUML JSON Reader . 44
4.3.1 Differences between EMFJSON and OntoUML 45

5 Transformation implementation 48
5.1 Transformation implementation in ATL . 48

5.1.1 Utility libraries . 48
5.1.2 Main module . 50
5.1.3 Other design decisions . 53

5.2 Transformation limitations . 55
5.2.1 Phases in generalization sets . 55
5.2.2 Multiple relations between two classes 56

5.3 Assumptions on the source model . 57
5.3.1 Custom ATL warnings . 58

5.4 Java code generation . 59
5.4.1 Configuration of the code generation 59
5.4.2 Fixed bugs . 61
5.4.3 Other design decisions . 62

5.5 Transformation chain implementation . 63

6 Validation 66
6.1 Full transformation example . 66
6.2 Transformation of OntoUML models from the catalogue 68

6.2.1 Methodology . 69
6.2.2 Results . 69
6.2.3 Analysis of the fault modes . 70
6.2.4 Performance analysis . 73

6.3 Manual validation . 74

7 Related work 76
7.1 Generation of relational schemas . 76
7.2 Generation of information model . 77
7.3 From domain ontology to implementation model 78

8 Discussion 84
8.1 Alignment of OntoUML tools . 84
8.2 Improving the validation . 85
8.3 Generating code for other languages . 85

8.3.1 Using Papyrus to generate code from UML 85
8.3.2 Defining a new Acceleo UML-to-X transformation 86
8.3.3 The platform-independence of the implementation model 86

8.4 Implementation model with UML Profile . 87
8.4.1 UML Profile in an ATL transformation 87

8.5 Persisting data for a generated application 87

9 Conclusion 89
9.1 Contributions . 89
9.2 Future work . 90
9.3 Recommendations . 90

9.3.1 Alignment of OntoUML tools . 90
9.3.2 Extended model validation . 91

3

9.3.3 Missing property values in the OntoUML JSON file 91
9.3.4 Selection criteria OntoUML model catalogue 92

A Statistics on OntoUML stereotypes 93

B Automated validation on OntoUML model catalogue models 96
B.1 Specification of execution environment . 96
B.2 Results . 96
B.3 Cause of ’duplicate variable definition’ compilation error 101

B.3.1 Duplicate relation end names . 101
B.3.2 Duplicate relations not visible in the diagram images 102
B.3.3 Special case of the train-control ontology 105

C Manual validation checklist 107
C.1 Filled-in checklists . 107

D Online code repositories 126

E OntoUML limitations and ambiguities 127

4

Abstract

OntoUML is a modelling language intended for structural conceptual modelling using onto-
logical theories from the Unified Foundational Ontology (UFO). Compared to plain UML,
OntoUML is oriented towards the concept of ontologies and thus aims to capture more
precise semantics about the modelled domain. For OntoUML to be of added value for
the development of software applications, the ontological semantics should be respected
by the developed code. When using an OntoUML model as a reference ontology, software
developers might not be familiar with the underlying UFO theories of an OntoUML model,
which might result in consistency issues between the created software and the underlying
ontology.

The research provides an automated transformation from OntoUML to Java code. The
goal has been to develop a transformation that preserves OntoUML semantics and that
can be used in conjunction with existing OntoUML tools.

The transformation was developed within the Eclipse Modelling Framework (EMF)
and is split up into three steps. The first step consists of parsing an OntoUML JSON file
to an EMF-compatible Ecore model. The second step is to transform an OntoUML model
into an implementation model, which is an intermediary representation in UML that lies
close to the actual implementation of an application. The final step is the generation of
Java code from the implementation model.

The implemented transformation is validated by executing it on publically available
models from the OntoUML model catalogue. For a selection of 82 models, an automated
validation effort tests whether the transformation does not yield errors and generates com-
pilable Java code. In a manual validation effort, code generated from five models was
inspected in more detail to check whether the generated code matched the expected pat-
terns.

Among the contributions of this research are a transformation on a conceptual level of
twelve OntoUML class stereotypes, an EMF Ecore metamodel for OntoUML that can be
reused for other model transformation projects, and an implementation of this OntoUML-
to-Java transformation. Furthermore, the research yielded insights about the current state
of OntoUML tools which resulted in a list of recommendations.

Chapter 1

Introduction

This chapter describes the motivation and context of this research. Section 1.1 describes the
role of ontologies and modelling in Software Engineering, introducing OntoUML as a means
to better perform conceptual modelling. Section 1.2 describes the objectives of the research,
namely to develop an OntoUML-to-Java code transformation. Section 1.3 describes the
methodology on how to develop this transformation and how it will be validated. Finally,
Section 1.4 describes the report structure.

1.1 Motivation

Modelling has always been a major activity in Software Engineering (SE). Models in SE
can range from conceptual to technical models. A popular modelling language is the
Unified Modeling Language (UML), which is defined by the Object Management Group1

and provides a variety of model types for use in SE.
Ontologies provide a more formal means to perform conceptual modelling. In Computer

Science, ontologies are explicit specifications of conceptualisations [11], which come in the
form of machine-readable artefacts that are grounded in logical statements. Ontologies
can play different roles in SE. One major distinction is between operational and reference
ontologies [6]2.

Operational ontologies are lower-level specifications meant to be part of a system. Thus,
the ontology is actively queried during the runtime of a system to retrieve some knowledge
or information [6]. These operational ontologies are often defined in the Web Ontology
Language (OWL) [24] and make use of other tools like SPARQL to query information [6].
In this field, several sources acknowledge that developers are not often familiar with the
technologies behind ontologies, which is mostly the area of knowledge engineers. Both
OBA [7] and JOINT [26] try to mitigate this by providing developer-oriented technologies
to access ontologies. OBA does this by providing a REST API to query ontologies, where
REST calls are mapped to SPARQL queries which retrieve information from OWL ontolo-
gies. Similarly, JOINT maps Java objects to an RDF4J3 data storage application so that
developers can use Java to query an OWL ontology stored in the RDF format.

In contrast to operational ontologies, reference ontologies are used as a reference for
the implementation of software applications [6]. In this category, the role of ontologies is
to add more quality criteria to conceptual models [28]. An example is OntoUML, which

1See https://www.omg.org/.
2While the terminology of reference and operational ontologies is used here, it is often also classified as

ontologies used during the development time and runtime respectively [12, 23].
3See https://rdf4j.org/about/.

1

https://www.omg.org/
https://rdf4j.org/about/

is defined as a lightweight extension to UML class diagrams to represent concepts from
the Unified Foundational Ontology (UFO) [15]. UFO is an upper ontology which describes
generic concepts expected to be used by more specific ontologies [12]. Hence, UFO supports
representing things as objects, relations and time, which are domain-independent.

By grounding UML models in a foundational ontology, OntoUML models are of higher
quality (i.e., they match reality better) compared to plain UML class diagrams [33]. Thus,
we can claim that the software systems based on these models should also be of higher
quality [28].

1.2 Research objective

This research aims to provide an automated transformation from OntoUML to Java, en-
suring the underlying semantics are preserved as well as possible. When developing an
application based on a reference ontology in OntoUML, it is desired that all added seman-
tics of OntoUML are preserved in the application code, otherwise, one could question the
added value of using OntoUML in the first place. Without an automated transformation,
this relies on the developer being familiar with OntoUML concepts and their underly-
ing ontological meaning. However, as mentioned before, there is often a knowledge gap
between developers and knowledge engineers in this regard, so there is a risk of losing
semantics when developing an application based on an OntoUML model by hand. By
designing transformation rules that preserve OntoUML semantics one does not rely on the
developers being familiar with the underlying UFO theories.

Furthermore, all currently available tools for OntoUML have the purpose of either
editing OntoUML models or accessing/querying OntoUML models, making them more
like operational ontologies. To the best of our knowledge, there is a lack of tools that
support the development of applications based on OntoUML models (i.e., their use as
reference ontologies). The availability of suitable tools can be considered a prerequisite to
the adoption of OntoUML as a reference for implementing software applications.

For the OntoUML-to-Java transformation to be feasible, it should be of use to the
OntoUML community. Therefore, this transformation should be compatible with other
tools that allow the creation of OntoUML models. Furthermore, the validation of the
implemented solution should include publicly available models as opposed to models solely
created for testing purposes.

In this research, we aim to generate Java code. However, it is reasonable to expect that
some people might want to generate code for other programming languages. Although
the focus lies on the Java language, the structure of the transformation should allow the
adaptation to generate code for other object-oriented programming languages.

1.3 Methodology

The methodology applied in this research is based on Design Science Research (DSR) [34].
Figure 1.1 shows the DSR steps and how they have been filled in for this research. The
research presented in this report covers the process up until the demonstration step. User
evaluation and possible feedback loops are subject of future research.

Design and develoment Before the OntoUML-to-Java transformation can be imple-
mented, we should consider the design of the transformation. First, we should determine
what OntoUML constructs to cover with our transformation. OntoUML consists of a va-
riety of constructs, each of these vary in how frequently they are used in models and how

2

Figure 1.1: Design Science Research methodology filled in for this research. Based
on [34, 31].

well they are documented. The selection of which constructs to support should take into
account the wish to transform as many OntoUML models as possible as well as the avail-
ability of literature on the underlying UFO concepts. Regarding the latter, if we do not
know the precise semantics, we can not preserve them.

Furthermore, to implement our transformation, we first need to design the transforma-
tion on a conceptual level. This includes considering the UFO theories behind OntoUML
types and relating these to available constructs in the implementation model. Here, all the
decisions are made on how to preserve the underlying semantics of OntoUML models in
the generated code.

To implement the OntoUML-to-Java transformation, we have used Model-Driven En-
gineering (MDE) techniques. The transformation chain, which shows the different steps
in the transformation, is illustrated in Figure 1.2. The technology used to implement the
transformation is the Eclipse Modelling Framework (EMF)4, which provides several tools
for the application of MDE.

On the left-hand side in Figure 1.2, the starting point of the transformation can be
seen, which is an OntoUML model. The first step is to transform the OntoUML model
into a notation that is compatible with EMF. This model is then transformed into an
implementation model, which represents an object model that is compatible with Java.
The final step is to generate Java code from the implementation model.

To realize this transformation, the Atlas Transformation Language (ATL)5 and Ac-
celeo6 have been used.

Demonstration As part of the demonstration, the developed transformation is tested on
publicly available models from the OntoUML model catalogue. An automated validation
is performed to see whether the models run through the transformation chain without
resulting in errors and a check is made whether the generated Java code can be compiled.

Although this indicates the transformation being successfully executed, it does not
guarantee that all OntoUML model elements generated the expected patterns in the Java
code. Therefore, a manual validation will be performed on a small selection of OntoUML
models.

4See https://eclipse.dev/modeling/emf/.
5See https://eclipse.dev/atl/.
6See https://eclipse.dev/acceleo/

3

https://eclipse.dev/modeling/emf/
https://eclipse.dev/atl/
https://eclipse.dev/acceleo/

Figure 1.2: Overview of transformation from OntoUML to Java code

1.4 Report structure

This report is further structured as follows: Chapter 2 includes the background for this
research. This covers ontologies in general as well as UFO and OntoUML specifically.
Furthermore, it describes MDE and the EMF tools used to implement the transformation.
Chapter 3 describes the transformation design, which includes the selection of OntoUML
constructs to be covered, a description of the implementation model, and the transforma-
tion described on a conceptual level. Chapter 4 describes the integration of OntoUML
within EMF, which includes the definition of an Ecore metamodel and a method to in-
stantiate this model from OntoUML JSON files. Chapter 5 describes the technical im-
plementation of the transformation of an OntoUML EMF model to Java, consisting of
the implemented ATL transformation and Java code generation using Acceleo. Chapter 6
addresses the validation aspects of the implementation, including an automated process
that verifies whether the generated Java code can be compiled as well as manual validation
for a smaller selection of OntoUML models. Chapter 7 describes related work describing
approaches that use OntoUML in a MDE context. Chapter 8 discusses remaining findings
as well as insights on how the developed transformation can be extended/improved. We
conclude with Chapter 9, which summarizes the contributions, lists future work, and lists
recommendations for the OntoUML tools.

4

Chapter 2

Background

This chapter describes the technologies and literature sources that are used in this research.
Section 2.1 discusses the concept of ontologies and its role in Computer Science. Within
this section, OntoUML and the Unified Foundational Ontology (UFO) are highlighted,
which both provide a means to incorporate ontological theories in conceptual modelling.
Section 2.2 discusses Model-Driven Engineering (MDE) along with the Eclipse Modelling
Framework (EMF), which provides open-source tools to work with MDE.

2.1 Ontologies

In Computer Science, the term ontology is adopted from the philosophical field of Ontology
(singular with a capital ’O’). This is a millennia-old field that deals with the question of
what there is [25]. This question is not trivial: different people can have different views of
the world, either because of their viewpoints, personal beliefs or any other factor. Within
Computer Science literature, such a view of the world is called a conceptualization [12]1.
For example, a farmer in Africa might form a conceptualization of African wildlife, which
is based on his personal experiences. This probably differs from the conceptualization
formed by a high-school student in the Netherlands reading about these animals in a
biology textbook.

Concerning the definition of ontology (with a small ’o’) in Computer Science, one of
the older well-known definitions is from Gruber, who states that an ontology is "an explicit
specification of a conceptualization" [11]. This definition can be criticized because of the
vagueness of the terms ’explicit specification’ and ’conceptualization’ [28]. However, it
still provides some handles to understand the nature of ontologies in Computer Science,
namely, the definition implies that an ontology is not an idea that lives in someone’s head
but has to be an explicit specification, i.e., it has to be written down in some formal way.
This means that an ontology in Computer Science is an artefact representing knowledge
about some part of the world.

2.1.1 Ontology languages

Consider the scenario of an African wildlife expert wanting to define an ontology for this
domain, as is discussed in [28]. Such a domain expert might be most comfortable capturing

1Although this is called a conceptualization in Computer Science, in Philosophy this is called an on-
tology (with a small ’o’). The different term in Computer Science was created to disambiguate between a
conceptualization and the specification of that conceptualization which in Computer Science is called an
ontology [12].

5

this knowledge in a written essay. However, natural language can be ambiguous, resulting
in problems when several people interpret the text differently.

Another way to formally encode this knowledge would be in mathematical logical state-
ments, such as first-order predicate logic. For the African wildlife domain, this would result
in statements like:

∀x(Lion(x) ⇒ ∀y(eats(x, y) ⇒ Herbivore(y)) ∧ ∃z(eats(x, z) ∧ Impala(z))) (2.1)

This logical formula [28] states that lions only eat herbivores, and of all herbivores,
lions are known to at least eat impalas.

Considering ontologies are artefacts in Computer Science, ontologies should be machine
readable [22]. This is where ontology languages come into the picture, which provide a
syntactical way to define ontologies. The language to define an ontology should respect
the underlying mathematical logic of the ontology [28].

In SE, ontologies can be used in different ways. The most distinguishing is whether
the used ontology serves as a reference or is an operational ontology [6], also referred to
as ontologies used during development or the runtime of a system, respectively [12, 23].
Reference ontologies serve as a guide for the implementation of a software system and
are hence used during development time. OntoUML was primarily devised to be used for
this purpose [6]. Compared to reference ontologies, operational ontologies are lower-level
specifications meant to be incorporated into a software system. In this fashion, they can be
considered a component of the system which is queried for information. Because of this,
they are subject to other requirements with respect to having desirable computational
properties for the solution provided by the software system [6].

One example of the application of an operational ontology is the MOST workbench,
which aims to be an extended Integrated Development Environment in which ontologies
that describe the development process guide the user during the development of a sys-
tem [30]. In contrast, an example of reference ontology can be found in [5], in which an
ontology based on the Digital Platform Ontology is used to implement a minimal viable
version of a digital platform.

2.1.2 Foundational Ontologies

Ideally, an ontology matches exactly the conceptualization to be represented, however,
realistically this is not possible. The quality of an ontology can be defined by how well
it matches its intention [28]. In other words, does the ontology properly cover what the
modeller tried to represent?

Four categories of qualities of ontologies can be seen in Figure 2.1. In this figure, the
part of the world that is modelled is denoted in pink (i.e., the conceptualization that the
modeller tries to represent) whereas the green area indicates what is represented with the
ontology.

With this representation, an ontology is considered ’good’ when it covers slightly more
than the part of the world that is being described while for a ’less good’ ontology, this
difference is larger. An ontology that does not describe all the things it should is considered
’bad’. Furthermore, the ontology is considered ’worse’ if it is ’bad’ and it also supports the
modelling of things that should not be represented [28].

So, if one wants to make a ’good’ ontology, one should ensure the ontology represents
the intended subject as closely as possible. One approach is to make use of foundational

6

Figure 2.1: Good and bad ontologies based on the target domain and the things
represented in the ontology. (Figure copied from [28])

ontologies [28]. Foundational ontologies, also known as upper or top-level ontologies, rep-
resent common concepts expected to be used by more specific ontologies [12]. Hence,
they model things such as objects, relations, time, etc., which are domain-independent.
Whereas more specific ontologies such as domain or task ontologies may refer to concepts
expressed within foundational ontologies [12], foundational ontologies themselves are often
solely founded in theories expressed in first-order logic or similar formalizations [24]. By
using a foundational ontology, one reuses well-founded theories, which in turn potentially
prevent unintended constructs and thus results in ’better’ ontologies [28].

Many foundational ontologies such as BFO, DOLCE and UFO, have been developed
over the last decades [1]. For this research, we concentrate on UFO as it is the basis for
OntoUML.

2.1.3 OntoUML

OntoUML is a modelling language intended for structural conceptual modelling using onto-
logical theories from UFO [21]. As the name suggests, OntoUML is a lightweight extension
of the Unified Modelling Language (UML) [9], more specifically of UML class diagrams,
realised by means of a UML Profile.

OntoUML has class and association stereotypes that allow the representation of UFO
concepts. In UML diagrams, stereotypes are surrounded by guillemots (« and »). Fig-
ure 2.2 shows a small OntoUML model in which we see four different OntoUML types (cat-
egory, kind, phase, and subkind). To work with OntoUML, several tools are available. The
projects in which tools are developed are all included in https://github.com/OntoUML.

Visual Paradigm plugin Visual Paradigm (VP)2 is a development tool suite which
includes a modeller for UML. One of the OntoUML tools is a plugin for VP3. This plugin

2See https://www.visual-paradigm.com/.
3See https://github.com/OntoUML/ontouml-vp-plugin.

7

https://github.com/OntoUML
https://www.visual-paradigm.com/
https://github.com/OntoUML/ontouml-vp-plugin

Figure 2.2: A simple ontology of lions made with the OntoUML plugin for Visual
Paradigm.

installs the UML Profile which contains the UFO stereotypes. Next to this, it adds func-
tionality to facilitate the editing of OntoUML models. This includes UI elements to add
stereotypes, model verification, and smart colouring of classes. This smart colouring can
also be seen in the different colours for kinds and the other OntoUML types in Figure 2.2,
which was created using the VP plugin.

Implementation-independent metamodel The OntoUML metamodel4 is an implementation-
independent definition of the language. In this report, we will refer to it as the implementation-
independent metamodel to avoid confusion with the OntoUML Ecore model described in
Section 4.1 (which is also an OntoUML metamodel).

Even though OntoUML is an extension of UML, the platform-independent metamodel
does not rely on UML. Thus, it is a standalone description of OntoUML models that can
be used across the different OntoUML tools and support the interchange between them.

2.1.4 Unified Foundational Ontology

UFO finds its origins in the PhD work of Guizzardi [15]. It has primarily been developed
for use in conceptual modelling and as such is tightly coupled to and co-developed with On-
toUML [20]. UFO is a collection of micro-theories published across several papers. These
micro-theories are split into several UFO parts: UFO-A (endurants), UFO-B (perdurants)
and UFO-C (social/intentional concepts).

UFO separates concepts based on different existential properties. Figure 2.3 displays
the taxonomy of UFO concepts. The major distinctions between these are based on four
concepts: universals vs. individuals, endurants vs. perdurants, sortals vs. non-sortals, and
rigid vs. anti-rigid. Furthermore, we will highlight the concept of identity-providers.

Universals vs. individuals

The distinction between universals and individuals is similar to classes and objects in
object-oriented programming and traditional conceptual modelling. In UFO, universals

4See https://github.com/OntoUML/ontouml-metamodel?tab=readme-ov-file

8

https://github.com/OntoUML/ontouml-metamodel?tab=readme-ov-file

Figure 2.3: UFO taxonomy. (Figure copied from [20])

are "space-time independent pattern[s] of features, which can be realized in a number of
different individuals" [16].

Another word for a universal is ′type′, which is used in Figure 2.3. Based on Figure 2.3,
it is apparent that this is the first distinguishing feature of UFO concepts.

Endurants vs. perdurants

An endurant is a type whose individuals exist in their entirety at some given point in time.
A primary example of an endurant is a ′kind′ [20], such as the lion kind illustrated in
Figure 2.2.

The opposite of endurants are perdurants, which unfold over time. The concepts relat-
ing to perdurants are all part of UFO-B, the primary concept being an ′event′. Examples
of events are the Second World War and the US 2024 elections. In this sense, perdurants
themselves are processes that may change the state of the involved endurants. However,
the perdurants themselves do not undergo change [20].

UFO-A, which describes endurants, is the most extensively described part of UFO.
Nearly all concepts in the taxonomy on Figure 2.3 belong to this category.

Identity providers

Identity providers are sortal types that provide a principle of identity for their individuals.
They are the OntoUML types kind, collective, quantity, relator, mode, and quality [20, 21].
In UFO terminology, these identity providers are all kinds, which is a distinct but related
concept to the specific OntoUML type kind. This can be clarified by observing that in
Figure 2.3, the Endurant Type is split into two distinct branches. The branch on the left

9

comprises the generalization set of Substantial Type and Moment Type and the branch on
the right is the generalization set of Sortal and NonSortal. Both individual generalization
sets are complete and disjoint, hence, a specific instance of a type has one classification
based on the left branch and one based on the right branch. For example, there is a type
which is both an Object Type and Kind. In OntoUML, this particular type is simplified
into the stereotype kind. Table 2.1 relates the OntoUML stereotypes of identity providers
to their corresponding classification from the UFO taxonomy illustrated in Figure 2.3.

In OntoUML, all these kinds can be specialized by the UFO types subkind, phase, or
role [21]. For this research, we call these base sortals5. In the OntoUML VP plugin, differ-
ent sorts of identity providers are assigned a specific colour: substantial types are coloured
red, intrinsic-moments blue and relators green. The base sortals (that specialize these
identity providers) are assigned a colour based on what identity provider they specialize.
For example, in Figure 2.2, the base sortals all specialize a kind (substantial object type)
and are given a lighter red colour.

A principle of identity for a certain type determines what properties uniquely identify
an individual. As such, every individual must obey exactly one principle of identity [21].
This results in every type hierarchy being made up of possibly many base sortals with one
identity provider at the top, which is also referred to as ultimate sortal [21, 15]. Thus,
another definition of identity provider is a type that can be an ultimate sortal. In Figure 2.2,
the ultimate sortal is the kind Lion. The OntoUML VP plugin visualizes this by giving
this class a darker colour.

The notion of a single principle of identity is described in first-order logic in Equa-
tion 2.2. In this formula, a :: b states that a is an individual which is an instance of the
type b6.

IdentityProvider(t) ∧ x :: t =⇒ ¬∃y(IdentityProvider(y) ∧ x :: y ∧ y ̸= t) (2.2)

Sortals vs. non-sortals

Sortality is a further specialization of universal endurants. Sortals are types whose indi-
viduals always belong to the same identity provider. Equation 2.3 describes this definition
of sortals in first-order logic.

5The term base sortal was derived from the implementation of the OntoUML VP plugin. However,
neither this term nor an alternative seems to be used in the literature.

6Both [20] and [21] provide a formalization of UFO in modal logic. The equations used in this section
serve merely as an illustration.

Table 2.1: OntoUML stereotypes of identity providers and their corresponding
concepts within UFO.

OntoUML stereotype UFO Concepts

kind Object Type, Kind
collective Collective Type, Kind
quantity Quantity Type, Kind
quality Quality Type, Kind
mode Mode Type, Kind
relator Relator Type, Kind

10

Sortal(t) ⇐⇒ EndurantType(t)∧∃i(IdentityProvider(i)∧∀x(x :: t =⇒ x :: i)) (2.3)

In Figure 2.2, the kind, subkind, and phases are all sortal types (as also becomes clear
from Figure 2.3). For example, an individual lion of the subkind West African Lion will
always be an instance of Lion (the ultimate sortal in this hierarchy).

A non-sortal is an endurant type which is not a sortal. In Figure 2.2, we see the
Carnivore category as an example of a non-sortal. An instance of Carnivore could be
a Lion. However, if we imagine this OntoUML sample to be a bit larger, for instance
by adding a kind Tiger (which is also a carnivore), this is not necessarily true anymore.
In that case, an instance of Carnivore could also be a tiger, which provides a different
principle of identity as the Tiger would be an ultimate sortal in another type hierarchy.
This means that non-sortals never provide a principle of identity for their instances. Thus,
by definition, non-sortals are abstract in OntoUML.

Rigid vs. anti-rigid

Rigidity is a distinction that applies to endurant types and both sortals and non-sortals.
Rigid types are defined as the endurant types whose instances necessarily always instantiate
this type [20, 21]. This definition is captured in Equation 2.4 which makes use of the modal
operators for possibility and necessity (♢ and □ respectively).

Rigid(t) ⇐⇒ EndurantType(t) ∧ ∀x(♢(x :: t) =⇒ □(x :: t)) (2.4)

Anti-rigid types thus allow their instances to cease being an instance of that type.
The two anti-rigid types are phases and roles (along with their respective non-sortal mixin
types).

In Figure 2.2, we see two phases for the Lion kind: Cub and Adult. An instance of
Cub is not necessarily always a cub. After ageing, a cub can become an adult, in which
case it is no longer an instance of Cub. In contrast, subkinds are rigid, so for example, an
instance of West African Lion would always be a West African lion, even if it were to be
moved to a sanctuary or zoo in Europe.

2.2 Model-Driven Engineering

MDE is an approach in which models are the primary artefacts to be delivered as opposed
to things such as code or documentation [2]. Other model-related approaches related
to MDE are Model-Based Engineering (MBE), Model-Driven Development (MDD), and
Model-Driven Architecture (MDA), each with its specific nuances. This collection of related
but slightly different approaches is called the MD* jungle by [2]. Figure 2.4 shows how the
MD* approaches are related to each other.

MBE can be considered the more general form among the different MD* approaches. In
MBE, models play an important role in the different engineering processes but, as opposed
to MDE, are not considered the primary artefacts. MDD is a more specific approach to
MDE. Whereas MDE includes models for several engineering processes, such as reverse
engineering and software evolution, MDD only uses models in development tasks [2].

Finally, MDA is a specific approach of MDD defined by the Object Management
Group [8]. MDA proposes a set of principles for applying MDD that aid in deriving

11

Figure 2.4: Relationship between different MD* acronyms. (Figure copied from
[2])

value from models and help deal with complex systems. These principles describe the dif-
ferent models that can be defined for a system, such as models from various viewpoints and
on different abstraction levels, as well as how these models interact and can be executed.
Besides these guiding principles, MDA describes the usage of OMG-specific industry stan-
dards to define and work with models, which in the end defines what models are considered
’MDA Models’ [8]

The process of working with MDE can be summarised in two challenges. The first
is the question of what models actually are and how to define them. The second is how
to go from a model to an executable artefact, such as software code. In the following
sections, these questions are answered by describing the concepts of metamodels and model
transformations. Furthermore, we discuss some Eclipse Modelling Framework (EMF)7

tools related to these concepts that can be used to implement MDE solutions.

2.2.1 Models and metamodels

Models describe some part of the world [2, 30]. The subject of a model can be many things,
including software systems [36]. Models provide an abstraction of their subjects, and they
thus provide a simpler view of reality [30]. The model’s goal is to capture the relevant
properties of the real world such that it aids in accomplishing a specific task [2].

The degree of abstraction of models can be extended to multiple levels. Whereas models
describe the real world, metamodels are models that describe (and hence are an abstraction
of) other models. In MDE, a metamodel describes the modelling language in which a model
is defined. Metametamodels, in turn, describe metamodels [22, 30, 2] and thus can be seen
as the description of a modelling language that is used to define metamodels. This results
in a metamodel hierarchy, which can be visualised as a pyramid with at the bottom the real
world and at the top the metametamodel. Each of the levels can be filled in for a specific
modelling scenario. Figure 2.5 includes the different metamodel levels that appear in the
specific modelling technologies of MDA by OMG [8]. The real-world subject is located at
the M0 level. M1 contains the model which is a UML class diagram in this case. The
metamodel for a class diagram is UML and is located at the M2 level. The highest level is
M3 and contains the Meta Object Facility (MOF) [10], which is another OMG standard
and is the modelling language for UML. MOF is defined by itself, i.e., MOF acts as its
own metamodel. Therefore, this is the highest metamodelling level and hence there is no

7See https://eclipse.dev/modeling/emf/.

12

https://eclipse.dev/modeling/emf/

Figure 2.5: Metamodel pyramid for the UML language.

need to define an infinite number of levels [30, 2].
The metamodel pyramid in Figure 2.5 is based on the MDA-specific technologies MOF

and UML. However, EMF works with another metametamodel. Figure 2.6 visualizes an
example of a car that is modelled with a custom car metamodel defined in EMF. Starting
at the M3 level is Ecore, which is the EMF equivalent of MOF. In Figure 2.6, a small
excerpt of Ecore is represented that only contains Class and Property. On the M2 level,
an instance of an Ecore model is presented. This Ecore model is defined in EMF and can
serve as a custom modelling language. In this simple example, we have created a Car class
which has two properties: one representing the brand and one indicating whether it has a
radio. EMF also has tools to create instances of these custom metamodels. In Figure 2.6
at the M1 level, a simple XMI editor has been used to create an instance of a car. In this
XMI editor, model elements are listed in a tree view (not visible in Figure 2.6 as there is
only one model element) where the property of each model element can be altered. In this
specific instance, the property brand has been set to Saab, corresponding to the car at the
M0 level and the property Contains Radio is set to true.

2.2.2 Model transformations

Model transformations provide a means to generate new models from existing models with
possibly different purposes as the goal. There are two general categories of model trans-
formations: Model-to-Model (M2M), which takes a model as input and outputs another
model, and Model-to-Text (M2T), which takes a model as input and outputs text, which
can be, for example, code for some programming language [2].

Model-to-model transformations

In general, M2M transformations take any number of models as input and yield any num-
ber of other models as output. For most use cases, however, a transformation has only
one input and one output model (also called source and target models, respectively). A
common example of a model transformation is visualised in Figure 2.7. In this case, the
transformation takes in Model A and outputs Model B. Both models are instances of their
respective metamodels. A transformation is called exogenous if both input and output

13

Figure 2.6: Example of different metamodel levels in the context of EMF.

models are an instance of the different metamodels, as is the case in Figure 2.7 assuming
MetamodelA ̸= MetamodelB. Alternatively, a transformation can be endogenous when
both models adhere to the same metamodel. The latter can be useful for model refactoring,
in which a model is restructured to improve its quality [2].

A transformation definition defines mappings to relate elements of the input model to
elements in the output model that should be generated. To create a transformation defini-
tion, one can either use a Domain-Specific Language (DSL) for model transformations or a
Generic Programming Language (GPL, e.g., Java or Python). A transformation definition
defines mapping on the level of the metamodels, which ensures that the transformation
can be applied to all possible instances of the source metamodel [2].

Atlas Transformation Language ATL8 is a domain-specific language for model trans-
formations. The language mixes declarative and imperative programming, which gives the
freedom to solve varying transformation problems in different ways [27]. The transfor-
mation definition of ATL is itself a model conforming to the metamodel of the ATL lan-
guage [30]. In the EMF implementation of ATL, all metamodels are an instance of Ecore,
which is also visualised in Figure 2.7.

Listing 2.1 shows an ATL transformation that transforms a car model (from the meta-
model in Figure 2.6) into a UML model. On line 5, we see the definition of the metamodels.
UML is the target metamodel, and CAR is the source metamodel (corresponding to Meta-
model B and Metamodel A illustrated in Figure 2.7, respectively). The main constructs
of ATL are rules. Matched rules are declarative constructs that relate a source pattern

8See https://eclipse.dev/atl/

14

https://eclipse.dev/atl/

Figure 2.7: Pattern of a model-to-model transformation defined with the Atlas
Transformation Language (ATL).

to a target pattern [27]. The rule Carr2Class in Listing 2.1 is an example of a matched
rule. In this example, the source pattern (in the from clause) matches any instance of Car
from the source model. For each of these cars, a UML Class is generated (defined in the
to clause). In this case, the name of the UML Class is set to the brand property from the
car.

Besides declarative matched rules, ATL contains two imperative constructs: called
rules and action blocks. Opposed to matched rules that are executed automatically by
ATL based on elements in the source model, called rules are executed either at the start
or end of a transformation or are called in an action block. Action blocks are code pieces
containing imperative statements, such as conditions, loops, and assignments [27]. They
appear in the do clause of rules, as can be seen in Listing 2.1. This action block checks
whether the car contains a radio, and if so, calls the called rule createRadio(). This called
rule, recognisable by the parentheses (which may contain arguments), simply generates a
UML Class with the name Radio.

The example illustrated in Listing 2.1 could be extended by, for instance, generating
a UML Association that connects the car with the radio. Besides the constructs in this
example, ATL contains other features that can be used, such as helper functions and lazy
rules. Besides these ATL-specific constructs, OCL queries can be used to navigate through
and select source model elements9.

Model-to-text transformations

M2T transformations often provide the final step in transformation chains by generating
text, which is usually code in some programming language. In an ideal world, one can
generate a complete software system or application from a model. However, in practice, this
is often not possible. Partial code generation can either mean that only some components

9The language documentation of ATL can be found on https://wiki.eclipse.org/ATL/User_Guide_-
_The_ATL_Language.

15

https://wiki.eclipse.org/ATL/User_Guide_-_The_ATL_Language
https://wiki.eclipse.org/ATL/User_Guide_-_The_ATL_Language

1 -- @path Car=/ package.cars/model/cars.ecore
2 -- @nsURI UML=http :// www.eclipse.org/uml2 /5.0.0/ UML
3

4 module carTransformation;
5 create OUT : UML from IN : CAR;
6

7 -- Matched rule that is executed by ATL for every Car
8 rule Car2Class {
9 from

10 c : CAR!Car
11 to
12 uc : UML!Class (
13 name <- c.brand
14)
15 do {
16 if (c.containsRadio) {
17 thisModule.createRadio ();
18 }
19 }
20

21 }
22

23 -- Called rule that is only executed if called by code
24 rule createRadio () {
25 to
26 rc : UML!Class (
27 name <- ’Radio’
28)
29 }

Listing 2.1: Example of a ATL transformation using a matched and called rule.

of an application are generated, or that the generated code needs to be implemented further
by a developer [2].

Just as with M2M, M2T transformations can be implemented in GPLs or DSLs. These
DSLs for M2T transformations are also called code generators, most of which are based on
template engines [2]. Figure 2.8 shows how a template engine uses a template and input
model to generate text. The template functions as a blueprint for the to-be-generated
code. Next to static code (which appears as is in the generated artefacts), it contains
meta-markers that serve as placeholders for text that is generated based on information
from the model. The template engine then is executed for a specific input model, fills in
the meta-markers, and outputs text over possibly multiple files [2].

Acceleo Acceleo10 is a mature M2T tool available in EMF. Listing 2.2 shows a minimal
Acceleo file that generates a Java class from a UML model (for instance, the UML model
generated by ATL from the example in Listing 2.1).

At the top of the file, the metamodel is defined. Similar to M2M transformations,
an Acceleo template is defined on the metamodel level to work for all model instances.
Furthermore, the EMF Acceleo plugin provides utilities such as code completion for these
metamodel elements.

All the sections in square brackets (’[’ and ’]’), are part of the Acceleo language. The
template section indicates a section of the to-be-generated text, in this case specifically for

10See https://eclipse.dev/acceleo/.

16

https://eclipse.dev/acceleo/

Figure 2.8: Relation between a template engine, the template, model, and output
files. (Figure copied from [2])

1 [comment encoding = UTF -8 /]
2 [module generate(’http://www.eclipse.org/uml2/5 .0.0/UML ’)]
3

4 [template public generateElement(aClass : Class)]
5 [comment @main /]
6 [file (’model/ ’ + aClass.name + ’.java ’, false, ’UTF -8’)]
7 package model;
8

9 public class [aClass.name.toUpperFirst ()/] {
10

11 public [aClass.name.toUpperFirst ()/]() {
12 // TODO implement constructor
13 }
14 }
15

16 [/file]
17 [/template]

Listing 2.2: A simple Acceleo template that generates a Java class for UML Class
elements.

the UML Class element. The file section indicates the result should be in its own file, with
the filename being based on the Class name (a model property) and ending with ’.java’
(as is required for Java files).

The next pieces of text are part of the static code (displayed in black). These are Java
language strings that are not interpreted by Acceleo. Within the static code, some meta-
markers are defined, again enclosed in square brackets. In both meta-markers, the name
of the UML Class of the input model is inserted. The first letter of this name is capitalised
using the Acceleo toUpperFirst function, which ensures Java code style conventions. Next
to this function, Acceleo contains many similar string functions that facilitate the creation
of templates [2].

17

Chapter 3

Transformation design

This chapter describes the prerequisites for implementing our transformation from On-
toUML to an implementation model. Section 3.1 describes the selection of OntoUML
stereotypes that are covered by our transformation. This selection is based on OntoUML
literature as well as an analysis of the OntoUML model catalogue, which contains a variety
of ontologies created by the community.

Section 3.2 describes our implementation model, which is based on the UML Class
diagram. In this section, we discuss the restrictions we imposed on these UML models and
our choice of using specific UML attributes.

Section 3.3 describes our OntoUML-to-implementation-model transformation on a con-
ceptual level. For each of the OntoUML types, a fragment of OntoUML is given along with
the implementation model pattern to be generated.

3.1 OntoUML stereotypes to be covered

Since there is no single official specification of OntoUML yet, at the moment of writing,
there is no clear definition of the valid OntoUML stereotypes. Varying options are described
in the literature (such as [21] or [20]), in the platform-independent metamodel (described
in Section 2.1.3), or on the online OntoUML documentation1.

Our goal has been to design a transformation that both preserves the underlying UFO
semantics and is of use to the community. The former requires that the to-be-transformed
OntoUML types are well-described in the literature. Nonetheless, if we want to preserve the
semantics, we should know what this semantics is. Regarding the latter, one could see what
stereotypes are used most often. To answer this question, we checked the OntoUML Model
Catalogue2, which contains 168 OntoUML ontologies covering a wide range of domains.

In our analysis, we only consider the class stereotypes. The relation stereotypes in
OntoUML are subordinate to the class stereotypes, i.e., relation stereotypes are specifically
used for certain class stereotypes. Therefore, we covered these relation stereotypes together
with their related class stereotypes.

In this section, we will first check the model catalogue to gather statistics on the
most commonly used stereotypes. Together with information regarding the availability of
literature on OntoUML types, this inspired our final selection of OntoUML types to be
covered, which is given at the end of this section.

1See https://ontouml.readthedocs.io/en/latest/index.html.
2See https://github.com/OntoUML/ontouml-models.

18

https://ontouml.readthedocs.io/en/latest/index.html
https://github.com/OntoUML/ontouml-models

3.1.1 Scraping the OntoUML Model Catalogue

The model catalogue contains 168 OntoUML ontologies. For each project, several artefacts
are included, such as the Visual Paradigm project file, exported images of the ontology,
the ontology itself (in both the JSON and Turtle format), and metadata.

For each ontology, we use the JSON representation to find the frequencies of stereotypes
for both classes and relations. To achieve this, a Python script was used3. With this
information, we can determine how often each stereotype is used in each OntoUML model.

3.1.2 Stereotype frequency

With the data from the model catalogue, we can calculate two different frequency metrics:
the number of projects in which a certain stereotype occurs and the total cumulative
occurrence of a stereotype across all models.

The complete results list can be found in Appendix A. In Table 3.1a, the 10 stereotypes
that appear in most projects are listed. From this table, it follows that kind is the most
common stereotype, occurring in 136 out of the 168 ontologies.

In Table 3.1a, at place 10, we see the stereotype event which belongs to UFO-B.
According to [21], "OntoUML, as all structural conceptual modelling languages, is meant
to represent type-level structures whose instances are endurants [...]". As such, one could
argue that UFO-A types are more fundamental to OntoUML than UFO-B or UFO-C,
especially in the context of generating code, as the generated code represents the structure
of entities within a domain. Therefore, in our selection of what stereotypes to cover, we
limit ourselves to UFO-A types. In Table 3.1b, a top 10 is provided that is filtered for
valid stereotypes belonging to UFO-A.

Total cumulative occurrence of stereotypes

Besides looking at the number of projects a stereotype occurs in, one can also calculate
the total cumulative occurrence of a stereotype, which also takes into account how many
times a stereotype occurs in a single project. Table 3.2a displays the top 10 stereotypes
according to this metric. In contrast to the number of models a stereotype occurs in, not
kind, but subkind is the most frequent stereotype; 2215 classes in the model catalogue have
this stereotype.

When looking at the rest of the top stereotypes, Goal and Null spring to attention,
which, according to the OntoUML platform-independent metamodel, are not valid On-
toUML types. As these are not valid OntoUML stereotypes, it also does not seem useful
to design a transformation for them. More non-valid stereotypes occur outside the top 10.
In the results in Appendix A, a column indicates whether the stereotype is valid according
to the OntoUML metamodel. Table 3.2b displays the top 10 most frequent stereotypes
when these are filtered for valid UFO-A stereotypes4. Worth noting is that this top 10
comprises the same 10 stereotypes that occur in Table 3.1b, albeit in a different order.

The occurrences of invalid stereotypes give rise to some other questions. For example,
one might be surprised to see the high occurrence value of the invalid Goal stereotype
in Table 3.2a. However, when looking further, there is only one ontology containing this
stereotype, i.e., one ontology in the model catalogue contains 951 classes with Goal as the
stereotype. This is problematic when measuring commonality, so additionally, one would

3This Python script can be found at https://github.com/GuusVink/GeneratingJavaFromOntoUML-
auxiliary

4This table filters both for valid stereotypes according to the platform-independent metamodel as well
as stereotypes originating from UFO-A.

19

https://github.com/GuusVink/GeneratingJavaFromOntoUML-auxiliary
https://github.com/GuusVink/GeneratingJavaFromOntoUML-auxiliary

Table 3.1: Number of occurrences of stereotypes in OntoUML models from the
model catalogue.

(a) Overall top 10 according to oc-
currence in ontologies.

Stereotype Occurs in # ontologies

kind 136
relator 125
role 116
subkind 116
category 96
roleMixin 65
mode 63
collective 58
phase 56
event 49

(b) UFO-A top 10 stereotypes ac-
cording occurrence in ontologies.

Stereotype Occurs in # ontologies

kind 136
relator 125
role 116
subkind 116
category 96
roleMixin 65
mode 63
collective 58
phase 56
quality 42

Table 3.2: Top 10 class stereotypes in order of their total cumulative occurrence.

(a) From the model catalogue.

Stereotype Total occurrence

subkind 2215
role 2180
kind 1843
relator 1405
Goal 951
null 786
category 611
roleMixin 571
mode 552
event 447

(b) Filtered for valid stereotypes be-
longing to UFO-A.

Stereotype Total occurrence

subkind 2215
role 2180
kind 1843
relator 1405
category 611
roleMixin 571
mode 552
phase 383
quality 215
collective 184

like to determine in how many ontologies a specific stereotype occurs. In that case, a
stereotype is considered common if it is contained in many ontologies even if, for example,
it only occurs once in each of them.

Analyzing the number of models that could be transformed by a selection of
stereotypes

In the selection of OntoUML stereotypes that are covered by our transformation, we want to
maximize the number of OntoUML models that can be transformed. We say an OntoUML
model can be transformed if it contains no class stereotypes that are not covered by our
transformation. Mathematically, this can be expressed as:

supported(x) ⇐⇒ class_stereotypes(x) ⊆ supported_stereotypes (3.1)

in which x is an OntoUML model, supported is the predicate indicating whether a model can
be transformed by the transformation, class_stereotypes retrieves the set of class stereo-

20

types that occur in a model, and supported_stereotypes is the set of class stereotypes that
are covered by the transformation.

For a given set of supported stereotypes, the number of OntoUML models from the
catalogue that would be supported by such a transformation can be calculated. When
taking the top 10 stereotypes according to occurrence from Table 3.1b and Table 3.2b, 60
models from the model catalogue could be transformed.

3.1.3 Final selection of stereotypes

To make a selection of stereotypes to cover, we start with the eleven stereotypes defined in
[21]. This is because it describes a new metamodel for OntoUML (termed OntoUML2) and
thus seems most aligned with the future direction of OntoUML. Furthermore, the UFO
semantics of all these stereotypes are well-defined.

There is a high level of correspondence between the types presented in [21] and the
top 10 UFO-A stereotypes found in the model catalogue (which appear in Table 3.1a):
nine out of these ten stereotypes match. The only stereotype from the top 10 which is
not mentioned in [21] is mode. However, this stereotype is described in other authoritative
literature, such as [18] and [20]. Therefore, we included this stereotype in order to extend
the number of OntoUML models that can be transformed with our transformation. This
leads to the selection of the following twelve stereotypes:

• kind

• subkind

• role

• phase

• category

• roleMixin

• phaseMixin

• mixin

• relator

• quality

• mode

• collective

When also including the enumeration and datatype stereotypes, which are supported
by OntoUML but not specific to UFO theories, a transformation for this selection of
stereotypes would cover 82 of the models from the OntoUML model catalogue.

3.2 Implementation model

Our implementation model lies close to the actual implementation of a Java program, such
that the generation of code from this implementation model can be considered trivial. By
transforming OntoUML into an intermediary form, we provide a more general solution as
opposed to directly generating code. This facilitates the possible generation of code for
multiple programming languages that all utilize the same OntoUML-to-implementation-
model transformation.

As a basis for the implementation model, we use the class diagram concepts of UML.
However, for the purpose of generating code, we apply a restriction on these class diagram
concepts. UML allows for multiple inheritance while this is not possible to implement in
Java. Thus, our main restriction is that the implementation model should not contain
multiple inheritance. This means that a subtype may not inherit from multiple supertypes
through a generalization. However, Java allows the implementation of multiple interfaces
as well as interfaces extending multiple other interfaces. Therefore, no restrictions apply
to the interface realization relation as well as generalizations for interfaces.

21

3.2.1 Final properties

In addition, we introduce a notice of usage of the UML model. In our implementation
model, we wish to indicate that some properties of classes are final (following the Java
terminology), which means that a reference to another object may not be changed. Some
constructs in OntoUML imply these restrictions, such as the relation between a kind and a
role (the role of a kind may change, yet a role always points to the same associated kind).
This is further elaborated, along with an example, in Section 3.3.2.

We want this restriction to end up in the Java code as it matches the semantics of
the underlying ontology. Firstly it restricts the Java runtime execution and secondly, it
communicates some of the OntoUML semantics to the developer, without the developer
being necessarily familiar with OntoUML.

For this information to be transferred into code, it should also be captured in the
implementation model. This final restriction applies to specific ends of an association.
Since the UML Property model element encompasses both basic properties of classes as well
as properties that are represented by association ends, we considered two meta attributes
of properties, namely isReadOnly and isLeaf.

isReadOnly The isReadOnly attribute belongs to structural features and, according to
the UML specification, indicates that its value may not be modified [9]. Conversely, when
isReadOnly is false, the value may be modified. For our purposes, the isReadOnly attribute
seems too restrictive because, in our scenario, the instance of an object which is pointed
to may be changed, i.e., functions of the object may be called such that its state is altered,
as long as it remains the same object. The principle of identity of this object is assumed
to be the reference Java keeps track of.

isLeaf The isLeaf attribute of a property is inherited from the UML RedefinableElement.
It indicates that the element may not be redefined. In the context of classes, this is
relatively straightforward, namely it states that no specializations of a leaf class should
exist. Considering what it means for a property to be redefined, this seems to align with
what we want, namely, the reference may not be altered, but the state of the value may
be altered by the bearer of the property.

Java uses the final keyword to indicate classes that may not be extended. Thus, at
least from the perspective of Java, there are some similarities in functionality between final
attributes and the isLeaf attribute.

Furthermore, the Obeo UML-Java code generation project (further described in Sec-
tion 5.4) also uses the isLeaf attribute for final attributes. Even more so, that transfor-
mation only generates get methods for leaf attributes and no set methods. Therefore, in
our transformation, we made use of the isLeaf attribute to specify properties that should
be marked final.

3.2.2 Visualisation of isLeaf attribute

In UML, the isLeaf attribute is not visualised in class diagrams. For illustration purposes,
when visualising an implementation model, we added an icon to association ends in case
the isLeaf attribute is set to true.

This icon can be seen alongside two classes and an association in Figure 3.1. The icon
consists of a lock with the outline of a leaf within. In this example, classA has a property
propB of type ClassB that is marked as isLeaf. Thus, this reference may not be updated

22

Figure 3.1: Visualisation of association end properties marked as final with the
isLeaf attribute.

and will always refer to the same instance of ClassB. We refer to these association ends as
being marked final, corresponding to the Java language construct of this property.

3.3 Transformation design of OntoUML types

This section describes our OntoUML-to-implementation-model transformation on a con-
ceptual level. A transformation rule is provided for each OntoUML stereotype, consisting
of a source model (a snippet of OntoUML containing the respective type), a target model
(desired output of the transformation), and a rationale based on the underlying UFO con-
cepts. For the source models, examples of typical uses of the OntoUML stereotypes are
used according to both the online OntoUML documentation as well as literature describing
OntoUML (such as [21, 20]). The relation stereotypes related to the class stereotype are
also covered.

The transformations are visualised using the Visual Paradigm tool with the OntoUML
plugin. The source models can be recognised by the OntoUML stereotypes and the different
colours added by the OntoUML plugin. The target models are plain class diagrams coloured
in grey. Each source model represents real concepts for illustration purposes. However, the
provided transformation rules apply to all similar OntoUML constructs, independent of the
name chosen for the type. Next to this, whenever possible, the source models represent
certain OntoUML patterns. These patterns are generic structures of OntoUML that are
considered best practice and are advised to be used whenever applicable [19].

Furthermore, a model element in the target model derives its name from the source
model element. In case the name would be exactly the same, an apostrophe is added.
This is done because Visual Paradigm requires unique names for different elements. The
apostrophe is omitted in the implemented transformation and in the generated code.

We discuss the proposed transformation of the different OntoUML stereotypes based
on the category of UFO concepts they belong to. Section 3.3.1 covers UFO substantials
(kinds and collectives), Section 3.3.2 covers base-sortals (subkinds, roles, and phases),
Section 3.3.3 covers non-sortals (categories, roleMixins, phaseMixins, and mixins), and
finally, Section 3.3.4 covers moments (relators, qualities, and modes).

23

3.3.1 Substantial types

Two substantial types are covered by our transformation, namely kinds and collectives.
For kinds, we also cover the scenario in which associations to other substantial types are
defined.

Kinds

Kinds represent the essential things modelled within a domain [14]. Based on the UFO
taxonomy, kinds are the identity providers of object types. If kinds are composed of com-
ponents, they can also be called functional complexes. OntoUML does not enforce the
use of specific relation stereotypes for functional complexes. We assume this is either done
through a plain relation (i.e., no stereotype), or a relation marked with componentOf (avail-
able in the OntoUML VP plugin). This is visualised in Figure 3.2a, where an autonomous
car has a componentOf relation to Tire and a plain relation to Steering wheel.

(a) Source model.

(b) Target model.

Figure 3.2: Transformation of kind as a functional complex.

In Figure 3.2b, we see the resulting implementation model. Each kind is transformed
into a class and both relations are transformed into plain associations. We also leave out the
composition marker (the black diamond), as from the perspective of the implementation,
composition and aggregation relations are indistinguishable from plain associations [29]5.
Furthermore, the names of the association ends are derived from the class names (in case
they are not already present in the OntoUML model). The multiplicities of the association
ends stay the same.

5In UML, a class containing another class could mean that a class should be nested (i.e., a class
declared in another class). However, we do not see this as desirable as containment in OntoUML is defined
on a conceptual level, i.e., a concept is part of another concept, which would not necessarily be useful to
implement as a nested class in Java.

24

Collectives

Collectives are atomic entities that represent a collection of individuals of the same kind.
All members of a collective have the same function. For example, one can represent a band
as a collective, with musicians as members. However, if one would like to represent the
different roles within a band (singer, drummer, etc.) a functional complex should be used.

Another feature of collectives is that they are maximally self-contained. As an illus-
tration, take a collective to be a group of people. In this case, the group as a whole is an
entity that consists of individual people. In real life, one could say that a group of people is
made up of smaller groups of people. However, this may not be said for collectives as they
are non-homeorerous (relating to the concept of homeorosity). In other words, a collective
is a maximally contained group that is a closed system over some social relation [18].

The memberOf relation stereotype indicates the members of a collective. These mem-
bers are either functional complexes (i.e., kinds) or collectives. In the case of the latter,
a collective is a member of another collective. An example of this would be modelling a
university as a collective of faculties, where each faculty is a collective of people.

Furthermore, memberOf has a minimal incoming multiplicity of 2, i.e., a collective with
a single member does not exist. This does not mean that this can not be represented with
OntoUML (e.g., an album with a single song). For these cases where the limitations of
collectives are too strict, functional complexes can be used.

Figure 3.3: Transformation of Collective.

Figure 3.3 shows the proposed transformation of collectives. A Collective is transformed
into a class with an association to a class representing its member type. Similar to the
composition relation (visualised with the black diamond) of functional complexes, the
aggregation relation (with a white diamond) is transformed into a plain association.

Furthermore, as collectives only have one type of member, the association name can
simply be ’members’. Alternatively, the association name could be derived as the plural
form of the member type (e.g., ’musicians’ in Figure 3.3). However, that would be less
trivial to derive in an automated transformation as plural terms are not always nouns with
an appended ’s’.

3.3.2 Base sortals

Base sortals are the types which can specialize identity providers. There are three of them,
namely subkind, role, and phase. In the transformations given in this section, all base
sortals specialize kinds. However, the transformations would be identical for base sortals
specializing other identity providers (such as collectives, relators, or modes).

25

Subkinds

Subkinds are rigid sortals that specialize an identity provider. Because of their sortal
nature, they can only have one identity provider as an ancestor, and therefore, they can
never specialize multiple types. This means that we can take over this generalization in
the implementation model without having to worry about causing multiple inheritance.

Figure 3.4: Transformation of Subkind.

Figure 3.4 displays the proposed transformation of subkinds. In this example, a subkind
Female of a kind Person is displayed.

Roles

Roles are "relationally dependent and anti-rigid substantial universals" [16]. In OntoUML,
roles are specializations of identity providers. As roles are anti-rigid, an individual of a
role can cease to be in that role. This is an issue in our implementation model as in
most object-oriented languages specializations are rigid [32]. Therefore, a more suitable
representation is an association, which can be updated during the lifetime of an object.
The chosen transformation can be seen in Figure 3.5 and is similar to the transformation
defined in [32].

Figure 3.5: Transformation of Role.

The class representing a role in the resulting implementation model may change as
roles are anti-rigid. However, the class representing a kind associated with a role may not
change. This means that in Figure 3.5, the property person of Employee is marked as final.

Alternatives An alternative considered is the approach in [3] which transforms a role
into a named association to a class originating from a relator (explained in more detail
in Section 7.2). The benefits of this approach are that it results in fewer classes in the
implementation model and it acknowledges that not the role itself, but an OntoUML relator
type bears quality properties of a relation [16].

26

A caveat is that this transformation relies on a relator to be defined in the OntoUML
model. One could argue that a role should always have an associated relator because roles
are relationally dependent. Following this, an individual is an instance of a role only if
it participates in a particular relation [16, 20, 21]. However, this is not enforced by the
OntoUML VP plugin. Even more so, it is not uncommon to see roles without relators in
the OntoUML model catalogue or literature (such as [20]). We assumed that it is also
desirable to be able to transform these possibly less correct models.

Transforming a role into a distinct class also allows for functionality related to a role to
be implemented in a dedicated location, such as a function getAllCourses for a role Student.
In [3], this function would have to be implemented in the Person class (corresponding to
the Person kind to which the student role belongs). This would result in the Person class
having functions which do possibly not apply for an instance of that class. This also relates
to the single-responsibility principle in object-oriented design [29], which is an argument
to create two classes, one for handling all functionality relating to persons, and one for the
specific functionality of students.

Furthermore, transforming a role into its own distinct class has advantages for the
transformation of the roleMixin type, which is further explained in Section 3.3.3.

Phases

Phases are similar to roles in that they are anti-rigid sortals specializations of identity
providers. Phases are grouped in a generalization set that is complete and disjoint. Con-
sidering the example in Figure 3.6, this means that a person is always in one state, which
is either alive or dead. OntoUML itself does not include restrictions on the transitions
between phases. For example, it would be allowed for a person to transition from the dead
to the alive phase.

Figure 3.6: Transformation of a phase partition in case the phases do not have
additional properties.

Two transformations for phases are given. Figure 3.6 applies to cases where phases
do not have properties (termed the simple scenario) and Figure 3.7 applies when at least
one of the phases has additional properties (termed the complex scenario). For the simple
scenario illustrated in Figure 3.6, only the knowledge of what phase a certain kind is in
seems relevant. This is simply represented by an enumeration with a multiplicity of exactly
one (addressing the completeness and disjointedness). The names for the enumeration

27

literals are taken from the names of the phase classes.
For the complex scenario, the example in Figure 3.7 represents that a dead person has

a date of death. This property can not be contained in an enumeration, so in this case,
an interface is generated that is implemented by classes each representing one phase. The
class representing the Person kind in this case then has an association with multiplicity one
to the PersonPhase interface. Each of the classes representing a phase can then have their
respective properties. In the implementation model, the relation between the class and
interface is the UML Interface realization, which Visual Paradigm visualises as a dashed
line and blue-coloured arrowhead.

The construct illustrated in Figure 3.7 resembles the state design pattern6, which is a
best practice to implement state changes. In addition, the associated person property of
each of the phases is marked as final similarly to roles.

3.3.3 Non-sortals

Non-sortal types define common characteristics of the different identity providers that
specialize them. Each of the four different non-sortals (categories, roleMixins, phaseMixins,
and mixins) has a different set of allowed subtypes.

The non-sortal nature implies that they do not provide nor inherit a principle of iden-
tity [20]. This means that there can be no instances of non-sortal types, requiring all
these to be transformed into an abstract class. Even more so, the online OntoUML docu-
mentation7 states that all non-sortals in OntoUML are necessarily abstract. However, in
the model catalogue, these are not always marked as abstract, thus we can not rely on
non-sortal types being marked as abstract in OntoUML.

Another interesting feature of OntoUML is that identity providers may specialize mul-
tiple non-sortals as well as that non-sortals may extend multiple other non-sortals. This
means we cannot transform a non-sortal into an abstract class and keep the generalization
relations as it would result in multiple inheritance. However, Java allows the implementa-
tion of multiple interfaces (which are also non-instantiable) as well as interfaces extending
multiple other interfaces. Thus, a pragmatic and Java-conformant transformation is to
generate interfaces for each of the non-sortal types.

Categories

Categories are rigid non-sortals and thus provide generic characteristics for rigid types
(i.e., identity providers and subkinds) [20]. The proposed transformation rule is illustrated
in Figure 3.8, which shows an interface being generated for a category. The relation
between Person and Named Individual is an Interface realization, which denotes a class
implementing an interface, respectively [9].

RoleMixins

RoleMixins are a non-sortal variation of a category of which subtypes are necessarily
roles [20]. The transformation rule is illustrated in Figure 3.9, in which a Customer
roleMixin is specialised by two types of customers, following the roleMixin pattern from
[19].

6As described by https://refactoring.guru/design-patterns/state
7https://ontouml.readthedocs.io/en/latest/classes/nonsortals/category/index.html

28

https://refactoring.guru/design-patterns/state
https://ontouml.readthedocs.io/en/latest/classes/nonsortals/category/index.html

Figure 3.7: Transformation of phase in case one of the phases has additional
properties. The relation visualised with a dashed line and blue-coloured arrowhead
represents the UML Interface Realization relation.

Figure 3.8: Transformation of Category.

Alternatives An alternative roleMixin transformation discussed in [3] was considered
and is described in more detail in Section 7.2. As discussed in Section 3.3.2, the role
transformation of [3] does not transform a role into its own class, therefore, there is no
obvious class that represents the role in the target model of which the class representing
the roleMixin can be a supertype. As a result, in [3] a roleMixin is transformed into a
supertype of the classes representing the kinds of the role. For example, in Figure 3.9,
Customer would become a supertype of both Person and Company. So all instances
of Person and Company inherit features belonging to the class Customer, even if those
instances do not instantiate IndividualCustomer and CorporateCustomer. We consider
this lack of separation undesirable.

PhaseMixins

PhaseMixins provide a similar generalization for phases as roleMixins do for roles [21].
As such, the transformation rule of phaseMixins is similar to roleMixins, as illustrated in
Figure 3.10.

What sets the phase transformation rule apart from the roles is that we provide two
transformations for phases, the simple and complex scenario. In case a phaseMixin is
present, the transformation of the complex scenario is applied. Figure 3.10a illustrates the

29

(a) Source model.

(b) Target model.

Figure 3.9: Transformation of roleMixin representing the roleMixin pattern from
[19].

phase Short-term relationship that specializes the phaseMixin Short-term. This phaseMixin
specialization is treated as an additional property of the Short-term relationship phase
such that it is transformed with the complex phase transformation rule. Figure 3.10b
illustrates the target implementation model including the class Short-term relationship
that implements both the Civil Partnership Phase interface (corresponding to the complex
phase rule in Figure 3.7) and the interface that represents the Short-term phaseMixin.

Mixins

Mixins are a special kind of non-sortal that is semi-rigid [21], so their instances can be
either rigid or anti-rigid. An example of this can be seen in Figure 3.11a, in which the
mixin Performing Artist is both a supertype of Musician (anti-rigid) and Band (rigid).
In this case, a category representing Performing Artist would not suffice. Figure 3.11
illustrates the transformation rule which again is similar to roleMixins and phaseMixins.

Specializations of non-sortals

Non-sortal types can be specialized by both other non-sortals or sortal types. In cases
where a non-sortal specializes another non-sortal, a normal generalization is generated.
In cases where a sortal specializes a non-sortal, the specialization is transformed into an
interface realization. Figure 3.12 displays three examples taken from [21].

The first example illustrates a mixin specializing a category. As both types are non-
sortal, the interfaces representing these types in the target model are connected by a
generalization. This is similar to the second example, in which a roleMixin specializes
another roleMixin, and again a generalization is generated. The third example illustrates

30

(a) Source model.

(b) Target model.

Figure 3.10: Transformation of phaseMixin.

a different case in which a kind (sortal) specializes a mixin (non-sortal). The kind House
is transformed into a class with an interface realization towards the interface Insured Item
representing the mixin.

3.3.4 Moment types

A moment, also called trope or property, is an instance that exists in another individual,
which is called the bearer of that moment. As such, moments are existentially dependent on
their bearer; if the bearer ceases to exist, so must the moment [16, 21, 20]. The OntoUML
moment stereotypes thus represent the universals of these individual moments.

UFO distinguishes between intrinsic moments (qualities and modes) and relational
moments (relators) [20].

Relators

A relator bears the quality properties associated with roles [16]. They are connected
through mediation relations to other classes and can be derivations of material relations.
Because of their nature of relating entities, they should ’mediate’ to at least two classes.

The transformation rule of the relator type is illustrated in Figure 3.13, which displays
the typical relator pattern [19], where both roles are transformed as discussed in Sec-
tion 3.3.2. As for all identity providers, a relator yields a distinct class. Next to this, the
mediation relations are transformed into plain associations with the same cardinality. The
names of the role classes are used as the association end names, respectively. Furthermore,
as a relator is existentially dependent on its members [16], the associated roles of the class
representing the relator may not change and are thus marked final.

31

(a) Source model.

(b) Target model.

Figure 3.11: Transformation of mixin.

However, we decided to not represent the material relation in the target model, since
this would be a duplicate access method for the opposing role class. For example, in
Figure 3.13, the material relation works for allows the Employee to access its Employer.
However, in Figure 3.13b, the Employee can access the Employer by first accessing Em-
ployment. When desired, a function works for that retrieves an employer through the
employment class could be added after the transformation. However, we avoided captur-
ing this in the implementation model.

Alternatives A relator is associated with the material relation by a derivation. This
construct where the relator bears the qualities of the material relation resembles a UML
association class, so one could consider transforming a relator into an association class,
while ignoring the mediation relations. At first glance, this might seem like a suitable
solution as the material relation with its specific name is preserved and the qualities of
this association are captured in the association class. However, there is no single correct
way to implement an association class in Java. Rather, the final result might be something
that exactly matches Figure 3.13b. Therefore, instead of moving this design decision to the
implementation model to Java code generation, we addressed this in the transformation
rule.

Furthermore, two other possible uses of the relator class hinder the usage of an as-
sociation class. Firstly, the presence of a derivation relation associated with a material
relation is not mandatory. In that case, one would be forced to use the solution illustrated
in Figure 3.13b. Secondly, relators may mediate more than two classes, so an association
class for a n-ary association would be required, which adds unnecessary complexity.

The transformation rule illustrated in Figure 3.13 provides a solution which seems to
hold for all these possible usages of the relator type.

32

(a) Source model.

(b) Target model.

Figure 3.12: Transformation of several non-sortals specialized by other types.

Quality

A quality is an identity provider that describes a certain property or characteristic of
another type. It is extensionally dependent on its bearer, the characterization association
stereotype indicates the relation between a quality and its bearer. This is illustrated in
Figure 3.14, which visualizes the example of a flower changing colour that is depicted in
[20] along with its proposed transformation.

So far, the quality type is minimally described in the UFO literature. A definition that
can be found is "[qualities] are individual moments that can be mapped to some quality
space, e.g., an apple’s colour which may change from green to red while maintaining its
identity" [21]. As such, in our transformation rule, a quality yields a class that is attached to
the class representing the bearer with an association that is marked final in both directions.

A quality is a moment that has a structured value, this value can be expressed in
different units. For instance, the quality height of a person can be measured in meters or
inches. There is no consistent way to represent this in OntoUML. The OntoUML online
specification8 refers to a special structuration relation stereotype that should be used for
this. However, this association stereotype is not described in the literature nor available
in the OntoUML VP plugin.

The characterization relation in OntoUML always points from the moment to the bearer
(e.g., from Flower colour to Flower in Figure 3.14a). Furthermore, it is also uni-directional,
meaning that when directly translated into code, only the moment should be able to retrieve
an instance of the bearer, and not vice versa. One could argue that it is more interesting to
retrieve the quality from the perspective of the bearer, e.g., we are interested in the colour
of a specific flower and not per se interested in which flower belongs to a specific colour.
In the transformation rule illustrated in Figure 3.14, this is mitigated by bi-directional

8https://ontouml.readthedocs.io/en/latest/classes/aspects/quality/index.html

33

https://ontouml.readthedocs.io/en/latest/classes/aspects/quality/index.html

(a) Source model, containing a relator pattern with roles.

(b) Target model.

Figure 3.13: Transformation of relator.

associations, i.e., the class representing the moment can access the class representing the
bearer and vice versa.

Alternatives In the transformation rule illustrated in Figure 3.14, one could alterna-
tively define an attribute in the Flower class that refers to the Flower Colour enumeration.
However, an explicit choice was made to use a separate quality class assuming that the
concept represented by the quality is of importance in its domain and therefore likely to
require special functions to be implemented that warrant a separate class.

Modes

Similar to qualities, modes are not comprehensively explained in the UFO literature. An
example of a mode is given in [21], which describes a person’s capacity to speak a certain
language. This illustrates the existential dependence of the mode on its bearer, as well as
the lack of a structured value; a person either has or does not have the capacity to, for
example, speak Dutch.

In Figure 3.15a, we model a sick person who has a certain disease as a mode. The
characterization relation represents that the associated bearer of the moment (Sick Person
in this case), must bear an instance of the moment. This corresponds to the lower bound

34

(a) Source model. OntoUML fragment taken from [20]

(b) Target model.

Figure 3.14: Transformation of a quality type that represents a flower colour.

of the cardinality at the end of the mode being one. In this example, if a certain sick
person has no disease, they cease to be the Sick Person role.

The transformation rule of a mode, illustrated in Figure 3.15, is similar to the one of
qualities in that a separate class is generated and the characterization relation is trans-
formed into a plain association. What differs from the transformation rules of qualities
is the association ends that are marked as final. Qualities and modes are both intrinsic
properties existentially dependent on their bearer. So it is not much of a stretch to derive
that the association end connected to the bearer should be marked final.

The other association end is more arguable. In accordance with the online OntoUML
documentation and the sample ontologies provided by [20], modes can have a multiplicity
of many, which seems to imply that the collection of associated modes can change. For
example, for Figure 3.15a, a person can at any point in time get a new illness, or at any
point in time heal of a disease by means of a disease mode that ceases to exist. For our
transformation, we assume that the latter is the case, thus the class representing a mode
associated with an identity provider is not marked final.

35

(a) Source model.

(b) Target model.

Figure 3.15: Transformation of modes.

36

Chapter 4

Integration of OntoUML in EMF

The first step in our transformation chain is to parse an OntoUML JSON file into a model
that EMF understands. This step of the transformation chain is highlighted in Figure 4.1.
This involves two artefacts: an Ecore metamodel describing OntoUML and a method to
transform an OntoUML JSON file into an instance of that Ecore metamodel.

Figure 4.3 describes the OntoUML Ecore metamodel we developed. Section 4.2 de-
scribes the deviations of our Ecore metamodel compared to other existing OntoUML meta-
models. Finally, Section 4.3 describes the method used to create an instance of this Ecore
metamodel from an OntoUML JSON file.

4.1 OntoUML Ecore metamodel

We based the design of our OntoUML Ecore metamodel on the JSON file provided by the
VP plugin through a process of metamodel discovery. Based on the models in the OntoUML
model catalogue, the VP plugin is currently the leading tool for creating OntoUML models.
By aligning our metamodel with the VP plugin output, any model created with the VP
plugin can be used in our transformation.

The JSON provided by the VP plugin contains both model elements (relating to the
abstract syntax of OntoUML) and diagram elements. The model elements describe what
classes and other model elements are present in the OntoUML model as well as their
properties (such as OntoUML stereotypes and attributes). The diagram elements describe
how these model elements are visualised in VP, such as their shape, location, and size.
For our transformation, we are not interested in the visual representation of an OntoUML
model. Therefore, our Ecore metamodel only describes model elements (i.e., corresponding
to the abstract syntax).

Our OntoUML metamodel is displayed in Figure 4.3. In the metamodel, every element
is an instance of OntoumlElement, which gives each element a unique id, a name, and
possibly a description. The top element in an OntoUML model is a Project, which contains
all elements of a model. Besides Project, all other metamodel elements are an instance of
ModelElement. Each ModelElement is contained in exactly one package. A Package is
also a ModelElement, meaning that packages can be contained in other packages. Each
OntoUML model has one super Package that is contained directly in the Project.

We describe the main elements in the Ecore metamodel with the use of a small example
model, which is illustrated in Figure 4.2. This model is annotated with references to the
metamodel elements.

37

Figure 4.1: Transformation chain that highlights the step of parsing an OntoUML
JSON file to an Ecore model.

Figure 4.2: OntoUML diagram annotated with references to the OntoUML meta-
model.

38

Figure 4.3: OntoUML Ecore metamodel

4.1.1 Classes

Figure 4.2 shows an OntoUML model represented as a UML class diagram with OntoUML
types added. Each class has a ClassStereotype, which in this case are three UFO concepts
(kind and role) and one generic UML stereotype (enumeration).

An enumeration is a special kind of class. As opposed to other classes, an enumeration
may have literal values (i.e., the Literal model element). The Type of student enumeration
of Figure 4.2 has two literal values, namely Parttime and Fulltime1.

4.1.2 Relations

An OntoUML relation connects different classes. In the metamodel, the classes connected
by a relation are included in the reference called properties. Similar to classes, they may
have a stereotype, which is one of the values from RelationStereotype. In Figure 4.2, a
relation with the componentOf stereotype can be seen that connects the Person to the
Heart class.

4.1.3 Properties

Properties are references to other classifiers in an OntoUML model. The classifier to which
they refer is included in propertyType. Properties are contained in classifiers, which means
that both Class and Relation may have properties. In Figure 4.2, we see two examples of
class properties, both displayed inside classes with a prepended dash. The property type
is displayed after a colon, such as the type int for the property age of Person. In UML
(and Visual Paradigm), int refers to a primitive datatype which is not visually displayed
in the model. Property typeOfStudent has as type Type of student, which is a classifier in
the same model.

In relations, properties refer to the classes that are connected by the relation. The
componentOf relation displayed in Figure 4.2 has two properties. The highlighted one is
named person and has the Person class as type. This property also has the aggregationKind
composite, represented with a black diamond.

All properties have a cardinality attribute. The relation properties person and heart
displayed in Figure 4.2 both have a cardinality 1. Class properties also have a cardinality,
although these are not visualised in Visual Paradigm. The default cardinality of these class
properties is 1.

4.1.4 Generalizations

A generalization in the OntoUML metamodel has two attributes, namely specific and
general. These attributes indicate that the class referred to by specific specializes the
superclass, referred to by general. As such, generalizations are also called specializations.

In Figure 4.2, a generalization connects Student (the specific) with Person (the general),
while the latter is indicated with the arrowhead.

1The metamodel does not restrict other classes to have enumeration literals. However, Visual Paradigm
only allows literals to be defined in enumerations, which should also be enforced by other OntoUML model
editor tools.

40

4.2 Differences with existing OntoUML metamodels

In the OntoUML tool suite, two projects exist that also describe the OntoUML JSON
structure. The first is the OntoUML JSON Schema2, which should describe the structure
to which the OntoUML JSON should adhere. However, this schema deviates from the
JSON files the OntoUML VP plugin generated and therefore was of no use to us when
defining the Ecore metamodel. The second is the platform-independent metamodel3, which
serves as a general reference of the OntoUML structure independent of the technology used.
A summary of the abstract syntax of this model is displayed in Figure 4.4. Although this
metamodel is better aligned with the JSON output of the VP plugin, it still differs in some
aspects. We used this platform-independent metamodel as inspiration for the creation
of the Ecore metamodel. In this section, we describe the deviations between our Ecore
metamodel (which is matched to the VP plugin) and the platform-independent metamodel.

These differences can be divided into two categories:

1. Differences due to the metamodels being defined in different modelling languages,
since the platform-independent metamodel is defined in UML whereas our Ecore
metamodel is defined in Ecore.

2. Differences required to align our OntoUML metamodel with the output of the On-
toUML VP plugin.

The second category of differences exposes where the platform-independent metamodel
deviates from the VP plugin and thus may aid in future work aligning different OntoUML
tools.

4.2.1 Differences due to different metametamodels

As stated, the platform-independent metamodel and our Ecore metamodel are defined
in different syntaxes. This is illustrated in Figure 4.5, where the platform-independent
metamodel sits on the M1 level on the left-hand side, and our OntoUML metamodel sits
on the M2 level on the right-hand side.

UML and Ecore are similar in that they both consist of classes with attributes and
associations. However, there are some constructs in UML used by the platform-independent
metamodel that are not directly available in Ecore.

No non-resolved datatypes

Two datatypes are defined in the platform-independent metamodel, namely LanguageString
and Cardinality. Although datatypes are available in Ecore metamodels, they refer to pre-
existent/implemented Java classes. This could be useful if, for example, one would like to
include a date attribute. In that case, one could use a datatype that points to the Date
class provided by the standard available Java util library4.

Our Ecore metamodel does not include either LanguageString nor Cardinality, because
they are not used as such by the OntoUML VP-plugin, as described in Section 4.2.2.
However, in case the OntoUML VP plugin is updated to mitigate this, these datatypes can
be included as normal classes.

2See https://github.com/OntoUML/ontouml-schema/blob/master/src/ontouml-schema.yaml#L8.
3See https://github.com/OntoUML/ontouml-metamodel.
4See https://docs.oracle.com/javase/8/docs/api/java/util/Date.html.

41

https://github.com/OntoUML/ontouml-schema/blob/master/src/ontouml-schema.yaml#L8
https://github.com/OntoUML/ontouml-metamodel
https://docs.oracle.com/javase/8/docs/api/java/util/Date.html

Figure 4.4: Summary of the platform-independent OntoUML metamodel.

Figure 4.5: Metamodel hierarchies of the OntoUML platform-independent meta-
model (left-hand side of the pyramid) and the EMF OntoUML metamodel (right-
hand side).

42

Enumeration references

While the enumerations in the OntoUML metamodel are included by references, ECore
only allows enumerations to be class attributes. So instead of Class having an association
to the enumeration ClassStereotype with the name stereotype, this stereotype is included
as an attribute with the corresponding type.

Inclusion of extra enumeration literal ’null’

Attributes in Ecore have a mandatory default value. For attributes that have an enumer-
ation as type, this default value cannot be null. This is even true for attributes with a
lower bound of 0, which theoretically should be allowed to have no value.

When parsing a JSON file into an instance of an Ecore metamodel, attributes of an
enumeration type with the JSON value null would result in the default value being used
(which is the first enumeration literal if not explicitly set). Therefore, if an OntoUML
model contains the null value for an enumeration attribute, it can not be derived if a
stereotype was originally null or whether it was explicitly set to the default value. To
mitigate this, an extra ′null′ literal was added to each of the enumerations, which is also
explicitly set as the default value.

The only exception to this is the enumeration OntologicalNature, which is included in
Class with a multiplicity of 1-to-many. Hence, the null value in a JSON file is mapped to
an empty list.

Enumeration literal names

The platform-independent metamodel makes use of names with dashes for the Ontolog-
icalNature enum. Enumeration literals names in Ecore are not allowed to have dashes.
Therefore, these names are transformed into camelcase. The literal value of the enum
values is set to the dash-variant (as displayed in Figure 4.6) to stay compatible with the
JSON file. The values of the other enums (i.e., ClassStereotype and RelationStereotype)
are in camelcase in the platform-independent metamodel. Therefore these do not have to
be altered.

4.2.2 Differences in metamodel due to output of OntoUML VP-plugin

At the moment of writing, the JSON output of the OntoUML VP-plugin is inconsistent
with the platform-independent metamodel. To facilitate the parsing of OntoUML JSON
files to EMF, all the Ecore types, names, and cardinalities should match that of the JSON
files.

Figure 4.6: OntologicalNature enum value extrinsic mode with camelcase name
and dashed-named literal.

43

The following deviations from the platform-independent metamodel were necessary to
align the Ecore metamodel with the VP-plugin JSON file.

Missing values for LanguageString and Cardinality

The platform-independent metamodel contains a datatype for LanguageString, which has
two string attributes for a value and language. Supposedly, this is to support model el-
ements with text values in multiple languages. For example, a class could have as name
the LanguageString {value: "Car", language: "en"} as well as {value: "Auto", language:
"nl"}. However, the OntoUML VP-plugin disregards this info and simply outputs the
language string of the preferred language5. Therefore, in the Ecore metamodel, Lan-
guageString is disregarded and in these cases it is replaced by a string attribute with
multiplicity 1.

There is a similar discrepancy for the datatype Cardinality. Whereas the datatype has
two attributes lowerBound and upperBound, the VP-plugin stores the cardinality in the
form which is displayed in a UML diagram, such as "2..*", "1", or "*". Therefore, in our
Ecore metamodel, the cardinality of a property is represented as a string.

Name of ’literal’ relation for Class

In the platform-independent metamodel, the Class type has a relation ’literal’ with cardi-
nality 0..* to the Literal class. However, the VP-plugin uses the plural form ’literals’.

Capitalised enum values for AggregationKind

The AggregationKind enum in the platform-independent model has the values none, com-
posite, and shared. However, in the VP-plugin, the values are capitalised. This is accom-
modated by capitalising the literal value of these enum values, as is shown in Figure 4.7.

Project as an OntoUmlElement

In the VP-plugin, a project extends the OntoUmlElement. As such, a project also has a
name and description in the JSON. To include these values, the Project class extends the
OntoUmlElement in our Ecore metamodel.

Property assignments of ModelElement

The VP-plugin has an attribute propertyAssignments for the ModelElement class, which
contains a Java Map with Strings as keys and Objects as values. Since there is no doc-
umentation on the use of this attribute, we decided to ignore this attribute in the Ecore
metamodel.

4.3 OntoUML JSON Reader

Under the hood, EMF is a Java library that contains a model structure for EMF objects,
or EObjects as they are called. An Ecore metamodel is transformed into Java code by

5In the implementation of the VP plugin, a class LanguageString class is used. However, if only one
language string is present for a model element (which is the case for all observed models), the exported
JSON only includes a single plain string. Unfortunately, there is no easy way to work around this issue of
an attribute with the same name that has different forms in Ecore. It is worth noting that this behaviour
of the VP-plugin both contradicts the JSON schema as well as the metamodel.

44

Figure 4.7: Value of the AggregationKind none.

extending and implementing these EObjects, so that an instance of an Ecore metamodel
is a collection of Java objects instantiating the EObjects of the corresponding metamodel.
In EMF, such a collection of EObjects is called a resource.

The default method of persisting resources in EMF is through the XMI format. How-
ever, as OntoUML uses JSON files for interchanging ontologies, we should be able to
generate an Ecore model from these OntoUML JSON files. In this way, an OntoUML
model created with any of the OntoUML tools (such as the VP-plugin) can be used within
the EMF tool suite.

The EMFJSON-Jackson library6 can be used to persist Ecore metamodels in the JSON
format. This library is an adapter for the Java Jackson library, which is the de facto
standard in Java for JSON (de)serializing. In Jackson, a custom object mapper can be
used that maps Java objects and attributes to JSON nodes. Alternatively, Jackson provides
Java annotations that can be attached to Java classes to make this process less cumbersome.

When using Jackson for EMF, it would be necessary to define a custom object map-
ping for the Ecore metamodel,either through an Object Mapper or Jackson annotations,
with the consequence that this object mapping has to be updated each time the Ecore
metamodel changes. EMFJSON provides a generic solution to this problem by using the
generated model factories to instantiate an instance of an Ecore metamodel.

4.3.1 Differences between EMFJSON and OntoUML

Although EMFJSON provides a generic solution, there are differences in how EMFJSON
and OntoUML store type and reference information in JSON files. A small sample model
will be used to illustrate the differences between OntoUML JSON and the default EMFJ-
SON representation. This model, displayed in Figure 4.8, contains a containment reference
(from the computer to its components), a reference relation (from a CPU to a motherboard,
to which it is connected), and an identity provider for components (the id field; which is
marked as an identifier).

The EMFJSON library was used to store an instance of this model in JSON format,
listed in Listing 4.1. In this JSON snippet, we see the field EClass containing the URI
of the model used (in this case an example.org URL) followed by the Ecore type of the
object. The containment reference is represented by the respective objects being child
nodes. For the reference relation of CPU, we see that the EClass of the relation is included
(i.e., Motherboard) along with the respective id in the ref field.

In Listing 4.2, we see a fragment of OntoUML JSON that contains a generalization
(as also present in the metamodel visualised in Figure 4.3). From this, some differences
with EMFJSON representation become apparent. First of all, the type of the object is

6See https://github.com/eclipse-emfcloud/emfjson-jackson.

45

https://github.com/eclipse-emfcloud/emfjson-jackson

Figure 4.8: Sample metamodel in Ecore representing a computer with compo-
nents.

1 {
2 "EClass" : "http ://www.example.org/referenceSample #// Computer",
3 "components" : [{
4 "EClass" :

↪→ "http :// www.example.org/referenceSample #// Motherboard",
5 "id" : "A"
6 }, {
7 "EClass" : "http ://www.example.org/referenceSample #// CPU",
8 "id" : "B",
9 "motherboard" : {

10 "EClass" :
↪→ "http :// www.example.org/referenceSample #// Motherboard",

11 "$ref" : "A"
12 }
13 }]
14 }

Listing 4.1: Default JSON representation of the EMFJSON-Jackson serializer.

contained in the type field (as opposed to EClass). Furthermore, the type solely consists of
the class name and so does not include the Ecore metamodel URI, which is not surprising
as the OntoUML model originally was not an EMF model. Lastly, the references consist
of the field id and type instead of ref and EClass.

Luckily, EMFJSON allows for the customization of these properties. We implemented
a custom EMFJSON Module so that the EMFJSON library can be used to deserialize
OntoUML JSON into the EMF representation7.

7The code of this custom mapper can be found at https://github.com/GuusVink/ontouml-java-
generation.

46

https://github.com/GuusVink/ontouml-java-generation
https://github.com/GuusVink/ontouml-java-generation

1 ...
2 {
3 "id" : "X2BpewmGAqAEFQ_g",
4 "name" : null ,
5 "description" : null ,
6 "type" : "Generalization",
7 "propertyAssignments" : null ,
8 "general" : {
9 "id" : "tpWpewmGAqAEFQ_H",

10 "type" : "Class"
11 },
12 "specific" : {
13 "id" : "faupewmGAqAEFQ_U",
14 "type" : "Class"
15 }
16 ...

Listing 4.2: Fragment of OntoUML JSON representing a generalization which
contains two references.

47

Chapter 5

Transformation implementation

This chapter describes the transformation from an OntoUML model in EMF to Java code.
Section 5.1 describes the first step that transforms an EMF OntoUML model into an
implementation model using ATL. Section 5.4 describes how the implementation model is
transformed into Java code using Acceleo. Section 5.5 describes how the transformation
chain as a whole can be executed outside the Eclipse environment.

5.1 Transformation implementation in ATL

We have implemented our proposed transformation of Section 3.3 in ATL. Besides the
OntoUML type transformations discussed in Section 3.3, our transformation also covers
class properties, enumerations and datatypes. Figure 5.1 illustrates the transformation
chain of the entire transformation and highlights the step of the ATL transformation.

Figure 5.2 illustrates the transformation signature of the ATL transformation: the
transformation takes a model adhering to our OntoUML metamodel and generates an
implementation model defined by UML. The UML2 metamodel refers to the EMF UML2
implementation1.

Our transformation consists of a main module, containing the main transformation
logic, and two utility libraries that contain helper functions to facilitate the main transfor-
mation. We first discuss the two utility libraries MyStrings and OntoUmlUtilities, then we
provide a high-level description of our main transformation along with relevant design de-
cisions made. Our transformation assumes that the provided OntoUML model is ’correct’.
Besides complying with our OntoUML Ecore metamodel, we provide some additional con-
straints relating to the OntoUML semantics that we expect a model to adhere to, which
are listed at the end of this section.

5.1.1 Utility libraries

Besides the main module, we defined two utility libraries, namely MyStrings and On-
toUmlUtilities. These are both imported and used in the main ATL module. These utility
libraries contain ATL helper functions that support the main transformation logic. By
having these in separate files, we aim to not compromise the readability of the main trans-
formation logic.

1See https://projects.eclipse.org/projects/modeling.mdt.uml2.

48

https://projects.eclipse.org/projects/modeling.mdt.uml2

Figure 5.1: Transformation chain that highlights the step going from an On-
toUML model to an implementation model.

Figure 5.2: Transformation pattern of the OntoUML-to-implementation-model
transformation.

49

MyStrings

The MyStrings library provides some of the required string operations that are not present
in OCL. We chose the name MyStrings to indicate that it is different from the strings
library, which was a standard library in older versions of ATL that is not available anymore.

Transforming strings into valid names Three helper definitions transform arbitrary
strings into strings that are valid in the Java programming language and are used to
generate names for classes, methods/attributes, and enumeration literals. In the current
implementation, the Java naming conventions are used2. This means that class names are
transformed into PascalCase, method and attribute names into camelCase, and enumera-
tion literals into UPPER_SNAKE_CASE.

Furthermore, special characters that may not occur in Java identifiers are removed.
Allowed characters are letters, digits, ’_’ and ’$’3. To determine what characters are valid
letters, the unicode character category ’L’ is used4. This means that special letters such
as ’é’, ’ç’, and ’ã’ are also supported.

Unpacking cardinalities As discussed in Section 4.2.2, the OntoUML Ecore model
stores cardinalities in a single string, such as 1..∗, ∗, or 2..4. The UML model requires
properties to have a separate lower and upper bound. Two helper definitions are imple-
mented to extract both bounds from the OntoUML cardinality.

OntoUmlUtilities

The OntoUmlUtilities library contains helper definitions specifically for OntoUML ele-
ments. It performs relatively more complex queries on the OntoUML model to detect
larger structures. For example, it contains functions to check whether an identity provider
has phases associated with it, and whether these phases contain properties or not. These
utility functions are used to determine whether a phase should be transformed according
to the simple or complex scenario, as described in Section 3.3.2.

Furthermore, helper functions for properties are included that determine what type
of relations they belong to. This is relevant for the transformation of some OntoUML
relation types such as mediation and memberOf, as the properties of these relations are
treated differently from normal relation properties.

5.1.2 Main module

This section discusses the main design decisions and relevant implementation details. We
do not discuss the entire transformation, which can be found at https://github.com/
GuusVink/ontouml-java-generation. For illustration purposes, we include some fragments
of the transformation definition.

Global structure

Our ATL transformation makes use of rule inheritance to structure the rules for different
OntoUML model elements. The rule ModelElement2PackageableElement listed in List-
ing 5.1 is located at the top of this hierarchy, as summarised in Figure 5.3. This rule is

2See https://www.oracle.com/java/technologies/javase/codeconventions-namingconventions.html.
3As per the Java language specification, see https://docs.oracle.com/javase/specs/jls/se21/html/jls-

3.html#jls-3.8.
4See https://www.regular-expressions.info/unicode.html#prop.

50

https://github.com/GuusVink/ontouml-java-generation
https://github.com/GuusVink/ontouml-java-generation
https://www.oracle.com/java/technologies/javase/codeconventions-namingconventions.html
https://docs.oracle.com/javase/specs/jls/se21/html/jls-3.html#jls-3.8
https://docs.oracle.com/javase/specs/jls/se21/html/jls-3.html#jls-3.8
https://www.regular-expressions.info/unicode.html#prop

extended by rules that generate various UML elements such as associations, classes, and
packages. The rule itself is abstract, meaning that it generates no target elements itself.

1 abstract rule ModelElement2PackageableElement {
2 from element : OntoUML!ModelElement
3 to pe : UML!PackageableElement ()
4 }

Listing 5.1: Top rule in the rule hierarchy that defines the transformation of
OntoUML ModelElements to UML PackageableElements.

The main purpose of this rule hierarchy is that it enables the use of the ATL resol-
veTemp function. The resolveTemp function allows to point to target model elements
that have been generated from a specific source model element. A small example can be
seen in the Package2Package rule listed in Listing 5.2. In OntoUML, a Package contains
ModelElements reachable through the variable contents, shown in Figure 4.3. In the Pack-
age2Package rule, the elements from an OntoUML Package are taken, and the resolveTemp
function is used to collect all UML elements that were generated from these OntoUML Mod-
elElements through the ModelElement2PackageableElement rule, independent of what type
of PackageableElement was generated. The ′pe′ string refers to the name of the generated
element defined in the super rule ModelElement2PackageableElement listed in Listing 5.1.

1 rule Package2Package extends ModelElement2PackageableElement {
2 from element : OntoUML!Package
3 to pe : UML!Package (
4 name <- thisModule.toPackageName(element.name),
5 packagedElement <- element.contents ->collect(e | thisModule.resolveTemp

(e, ’pe’))
6)
7 }

Listing 5.2: Rule for transforming OntoUML Packages into UML Packages.

An abstract subrule of ModelElement2PackageableElement is Class2Classifier, which
handles the generation of UML classifiers such as classes, enumerations and interfaces.
The first rule extension of this rule is the IdentityProvider2Class rule, which generates
a UML Class for all OntoUML identity providers (i.e., whether the stereotype of that
OntoUML class is present in a list of identity provider stereotypes).

Other Class2Classifier rules are present for datatypes and enumerations, which are
discussed in more detail in Section 5.1.2, and the generation of interfaces for non-sortal
OntoUML types.

Transformation of phases As discussed in Section 3.3.2, the transformation of phases is
split into two cases: the simple and complex scenario. To accommodate for this, we defined
two rules, one for each scenario respectively, that extend the IdentityProvider2Class rule,
where one rule checks whether the simple scenario applies and generates UML elements
according to the transformation displayed in Figure 3.6, and the other rule checks whether
the complex scenario applies and generates UML elements according to Figure 3.7.

Transformation of relations The Relation2Association rule transforms OntoUML re-
lations into UML associations. This rule first checks whether the stereotype of a relation is

51

Figure 5.3: Summary of rules (and their inheritance) in the OntoUML-to-
ImplementationModel ATL transformation.

supported by the transformation. If that is the case, the relation is treated as described in
the transformation of their corresponding class stereotype, such as the transformation of
collectives for the memberOf relations, or the transformation of relators for the mediation
relations.

Furthermore, we defined a rule for transforming an OntoUML Generalization between a
role and identity provider into an association, conforming to the transformation described
in Section 3.3.2.

The transformations described in Chapter 3 treat some OntoUML relations differently
from others. For example, one end of a mediation relation is marked as final by setting the
UML isLeaf attribute (as depicted in Figure 3.13). The logic behind these transformation
mechanisms is defined in the Property2Property rules. Depending on the relation type a
property is part of, either a normal UML Property or a property with the attribute isLeaf
set to true is generated. A third property rule generates a UML Property with the name
’members’ for memberOf relations of collectives, as discussed in Section 3.3.1.

Transformation of generalizations Besides the RoleGeneralization2Association rule,
Figure 5.3 shows three other rules that transform OntoUML generalizations, coloured in
red. One of these is the transformation of generalizations that involve subkinds, of which
the code is listed in Listing 5.3.

Firstly, in the from section, the rule checks whether the generalization corresponds to a
subkind specializing either an identity provider or another subkind. These are considered
the only valid uses of subkinds.

In the to section of SpecializationSubkind, we see another usage of the resolveTemp
function in combination with the used rule hierarchy. The general attribute from a UML
Generalization is set to the UML Classifier that is generated from the OntoUML Class
referenced in the general attribute of the to-be-transformed generalization. This same
mechanism is used for the specific attribute in Listing 5.3.

52

1 --- Transformation of subkind specialization
2 rule SubkindGeneralization2Generalization {
3 from g : OntoUML!Generalization (
4 -- Subkind may specialize identity providers or other subkinds (

explitly not non -sortals)
5 g.specific.stereotype = #subkind
6 and thisModule.identityProviders ->append(#subkind)->includes(g.general.

stereotype)
7)
8 to gen : UML!Generalization (
9 general <- thisModule.resolveTemp(g.general , ’pe’),

10 specific <- thisModule.resolveTemp(g.specific , ’pe’)
11)
12 }

Listing 5.3: Matched rule that transforms generalizations of subkinds into
generalizations in the target model.

Transformation of enumerations, datatypes, and class properties

Besides all the OntoUML types that are covered by our transformation design, our trans-
formation also transforms enumerations, datatypes, and class properties. Figure 5.4 shows
an example of an OntoUML model with these elements along with the generated UML
model.

In OntoUML, both enumerations and datatypes are normal classes with a respective
enumeration or datatype stereotype. Enumerations are trivially transformed into UML
Enumerations, while datatypes are transformed into plain classes.

Class properties Class properties primarily consist of a name, type, and cardinality.
The type may refer to either a UML Primitive Type or another class (including enumera-
tions and datatypes). The supported primitive types in our transformation are int, boolean,
string, float, char, and double.

In UML, properties have an isUnique attribute, which indicates whether the elements
of the corresponding collection are unique [9]. This information is not included in the
OntoUML model, so in our transformation, we set all these attributes to false, i.e., we
assume them to be non-unique.

The cardinalities of class properties are not displayed in Visual Paradigm, but they can
be seen and altered in the specification submenu of attributes.

Relations to enumerations and datatypes Relations to datatypes and enumerations
are treated differently from relations to other classes, in that they are transformed into a
single property that is owned by the class pointing to the datatype/enumeration. This can
be seen in Figure 5.4, where the Flower class has a property of type Colour. No association
is generated in this case.

5.1.3 Other design decisions

This section describes other design decisions that influence the final result of the transfor-
mation.

53

(a) OntoUML fragment with class properties, an
enumeration, and datatype.

(b) Generated model.

Figure 5.4: Transformation of class properties, enumerations, and datatypes

Naming of relation properties

The examples in the proposed transformation described in Chapter 3 often did not have
names attached to relation ends. However, in practice, it is expected that some relation
ends have a name in which case they should be preserved in the implementation model.
This is the case for the hasValue property of Flower in Figure 5.4. When no name is present,
the name used in the implementation model is derived from the type of the property. For
example, if the relation from Flower to Colour is unnamed, the resulting property name
would be colour.

Directionality of OntoUML relations

Some of the OntoUML-type transformations described in Section 3.3 rely on the direction-
ality of relations. Consider, for example, the transformation rule of relators with mediation
relations from Figure 3.13. The mediation relation has a direction from the relator to the
participating role, which is indicated in Visual Paradigm with an arrowhead. When trans-
forming this mediation relation, it is relevant to know what property belongs to the start
and end of the transformation, as these two are treated differently in the transformation.
In this case, the property at the end of the relation (e.g., Employee or Employer as in
Figure 3.13) is marked as final.

The OntoUML metamodel contains a PropertyStereotype that can have the values BE-
GIN and END. One could assume these are used to mark the source and target ends of
relations, however, they are not used as such by the VP plugin5. Therefore, we had to find
other ways to derive the directionality of the relations for the cases in which this matters,
which include mediation, characationzation, and memberOf relations. For this, we make

5The inclusion of property attributes to derive the direction of a relation would benefit the transforma-
tion developed in this research.

54

use of some specific behaviours of the VP plugin, which we highlight for each of these
relation stereotypes.

Direction of memberOf relation In the memberOf transformation discussed in Sec-
tion 3.3.1, we stated that the name of the property relating to the members of the collective
are set to ′members′ (provided no name is given by the creator of the OntoUML model).
Collectives may have other collectives as members, so we can not simply check which prop-
erty refers to a collective. Rather, we assume the property marked as either aggregation
or composition (visualised with either a clear or black diamond in UML) is the property
relating to the owning collective.

The OntoUML VP plugin automatically marks the owning collective as an aggregation.
However, this is not enforced by our Ecore model nor the OntoUML platform-independent
metamodel. In case none of the properties are an aggregation or composition, both asso-
ciation ends are named ’member’.

Direction of mediation and characterization relations We observed that the VP
plugin sets the ends of mediation and characterization relations to isReadOnly. This be-
haviour seems to align with our proposed transformation of the charaterization and medi-
ation relations in which we mark the ends of the resulting UML Associations as final, as
discussed in Section 3.3.4. The only difference with our proposed transformation is that
for a characterization relation of qualities, both association ends are marked as final as
opposed to only one of the ends.

Although this seems like a suitable solution to the isReadOnly attribute set by the
VP plugin to derive the directionality of relations, this behaviour is not described in the
OntoUML documentation nor in the literature (such as [21]). Therefore, we cannot assume
this is the case for OntoUML models created with other tools, and thus, the logic used in
the ATL transformation should be considered as a special design decision.

5.2 Transformation limitations

This section describes the known limitations of the currently implemented ATL trans-
formation. The impact of these limitations on the applicability of our transformation to
models of the OntoUML model catalogue is discussed in Section 6.2.3.

5.2.1 Phases in generalization sets

Our transformation currently does not support GeneralizationSets for phases. Generaliza-
tion sets are used to represent a group of generalizations that belong together. An example
of generalization sets used by phases is visualised in Figure 5.5, in which a kind Person has
two sets of phases, one representing the position of a person relative to the ground (either
Above Ground or Underground) and another one describing the life status of the person
(either Dead or Alive).

For normal phase partitions, exactly one phase at a time may apply as they are classified
as complete and disjoint [20, 21]. However, in the example of Figure 5.5, a person is in
exactly one state of each phase partition. For example, a person can be both alive and
underground, or, both be dead and above ground.

The current ATL transformation ignores generalization sets, which means that all
phases belonging to another class are considered to be part of the same phase partition.
E.g., for Figure 5.5 this would mean that a Person class is generated which can only be

55

Figure 5.5: Example of phases in separate generalization sets.

in one phase at a time (and not, for example, both Alive and Underground at the same
time).

To mitigate the impact of this limitation, the ATL transformation generates a warning
message in case multiple phase generalization sets are present for a single class.

5.2.2 Multiple relations between two classes

In the OntoUML-to-implementation-model transformation, relations are transformed into
bi-directional associations. Considering Figure 5.6, for example, this means that the class
generated from Legal Person will have a reference to the class generated from Contract
and vice versa.

Furthermore, the name of a relation end is used as the name for the generated reference.
In Figure 5.6, the two mediation relations have a relation end name at only one of the
ends, namely promiser and promisee. This means that the generated class for the relator
Contract will have two references named promiser and promisee, which are both of the
type Legal Person.

However, when such a relation end name is absent, the generated reference’s name
is derived from the type name. This is the case for the other relation ends of the two
mediation relations in Figure 5.6, which both point towards the Contract relator. In the

Figure 5.6: Example of a case in which a generated class would contain a duplicate
attribute named ’contract’.

56

generated class for the Legal Person role, two references are present, which both have name
contract (derived from the type of the relation end, namely the relator Contract). This
results in an issue when generating code from this implementation model as class attributes
should have unique names.

The example of Figure 5.6 exposes this limitation mainly in the context of the design de-
cision to generate bi-directional associations for relation. Nevertheless, if a uni-directional
association was generated (i.e., only the class generated from the Contract relator would
have a reference to the class generated from Legal Person and not vice versa) this issue
would not occur. However, this limitation would then still apply if the relation ends would
not be given names (i.e., in case the relation ends names promiser and promisee would be
omitted).

One way to work around this limitation is to explicitly define relation end names, thus
letting the transformation know the appropriate reference names. Alternatively, one can
avoid having multiple relations between the same two classes. For instance, in Figure 5.6,
one could define a separate role for a legal person who is a promiser and a separate role
for a legal person who is a promisee.

5.3 Assumptions on the source model

The transformation has been implemented assuming the provided OntoUML model is
correct. By correct, we mean that it adheres to the constraints provided in [21], which
can be checked by the VP plugin. This means our transformation does not check whether
certain constructs are correct and what happens in these cases is undefined.

However, the constraints checked by the VP plugin are not complete. In this section,
we list additional assumptions of the source model besides those verified by the VP plugin.

No properties without types In our transformation, we assume that class properties
have a type. An example of properties without a valid type is displayed in Figure 5.7. The
class property age has no type while the property address has a type that does not refer to
either a primitive type or another existing class in the model (as discussed in Section 5.1.2).

In these cases, these properties are ignored and a warning is given on the ATL console.

No duplicate generalizations Figure 5.8 shows an OntoUML fragment in which a
subkind has two attached generalizations. Subkinds are only allowed to specialize one
sortal, however, the VP plugin only checks that one ultimate sortal is specialized. In
this example, Subkind2 specializes only one ultimate sortal, namely Kind, so no issues are
raised by the VP plugin.

Although the transformation runs fine, the resulting implementation model will contain
multiple inheritance, violating the constraint we impose on the implementation model

Figure 5.7: Example of properties with invalid types.

57

described in Section 3.2. There is no simple way to detect this construct as both individual
generalizations are valid, hence, no warning is given by the ATL transformation.

More than one memberOf relation for a collective As discussed in Section 3.3.1,
collectives may have only one type of member, however, this property is not checked by
the VP plugin.

An example of a collective with multiple members is depicted in Figure 5.9. Similar
to duplicate generalizations, the transformation runs fine and yields an implementation
model. However, in case both memberOf relations do not have a predefined property
name on the relation end to the member, the default name ’member’ is assigned. For
multiple members, this leads to a class with duplicate names and thus results in Java code
that does not compile.

5.3.1 Custom ATL warnings

The implemented transformation provides warnings in case certain constructs are detected
in the OntoUML model that may not be properly handled. Three of these custom warnings
are defined: one relating to the assumption that properties must have a type, one relating
to the limitation regarding the lack of support for generalization sets, and one relating to
empty strings present in the source model.

Contains properties without types This warning indicates that the model includes
a class property without a type. As discussed in Section 5.3, these are simply ignored and
thus do not result in issues for the code generation.

The warning merely serves to notify the model designer that these properties were not
included in the generated code.

Multiple GeneralizationSets present for phase partition As discussed in Sec-
tion 5.2, our transformation does not handle multiple generalization sets for one phase
partition. In case generalization sets are present for phases, these are ignored and all
phases of a specific class are considered to be part of the same phase partition.

This warning indicates that the OntoUML model contains two or more Generalization-
Sets involving phases for one class. Therefore, no warning is given if only one generaliza-
tion set for phases is present for a particular class, such as shown Figure 6.1, in which the

Figure 5.8: Example of a duplicate generalization resulting in multiple inheri-
tance.

58

Figure 5.9: Example of a collective with multiple memberOf relations.

Planned Activity and Performed Activity phases belonging to the Activity kind are part of
a single generalization set (marked as complete and disjoint).

Contains empty string The ’Contains empty string’ warning occurs in case a classifier
name within the implementation model would be set to an empty string. To yield a valid
Java name, non-alphanumerical characters are removed. Therefore, if a class name in the
OntoUML model consists of only non-alphanumerical characters this would result in an
empty string.

In these cases, the transformation gives the classifier the name ’emptystring’. This may
lead to compilation issues in case multiple classifiers in the implementation model have the
name emptystring.

5.4 Java code generation

The final step in the transformation chain is to generate Java code from the implementation
model, as illustrated in Figure 5.10. Acceleo is the model-to-text transformation tool within
EMF that we used to achieve this, as described in more detail in Section 2.2.2.

As UML is a widespread modelling language, we sought to reuse an existing UML to
Java code generator as opposed to implementing one from scratch. We have found such
a project in the UML-Java-Generation Acceleo project6 developed by Obeo, which is the
company behind Acceleo. However, the project is not actively maintained and is marked
as archived on the Eclipse project site7. Although the project has not been updated since
seemingly 2013, it is still a comprehensive Acceleo project that addresses a lot of challenges
that occur when generating code such as generating files within different packages and
managing imports across these different packages.

We made some adjustments to use the Obeo UML-Java generation for our purposes.
This includes setting the configuration for the transformation as well as solving some bugs.

5.4.1 Configuration of the code generation

The Obeo UML-Java generation supports a custom configuration. This configuration con-
tains various options to tweak how Java code is generated, such as what UML packages to
ignore during the code generation and whether getters and/or setters should be generated.

6See https://github.com/ObeoNetwork/UML-Java-Generation.
7The GitHub project states the UML-Java-Generation has been moved to the Eclipse UML Gen-

erators project. However, the Eclipse website states that the project has been archived. See
https://www.eclipse.org/projects/archives.php.

59

https://github.com/ObeoNetwork/UML-Java-Generation
https://www.eclipse.org/projects/archives.php

Figure 5.10: Transformation chain which highlights the step generating Java code
from the implementation model.

Table 5.1: Used configuration options for the UML-Java code generation.

Configuration option Used value

GENERATE_GETTERS_AND_SETTERS true
GENERATE_GETTERS_COLLECTIONS true
GENERATE_SETTERS_COLLECTIONS true
GENERATE_ADVANCED_ACCESSORS_COLLECTIONS true
ORDERED_NOT_UNIQUE_TYPE java.util.ArrayList
ORDERED_UNIQUE_TYPE java.util.LinkedHashSet
NOT_ORDERED_UNIQUE_TYPE java.util.HashSet
NOT_ORDERED_NOT_UNIQUE_TYPE java.util.ArrayList

60

The configuration options we used in our transformation are listed in Table 5.1. The
first four options indicate whether getters and setters should be generated for class at-
tributes. A special option is included for whether special methods should be added for
adding and removing elements from collection attributes. In our configuration, we set
these values to the most rigorous options, i.e., all possible access methods are generated8.

The other four options describe what Java types to use for different sorts of collections.
In UML, properties that have a multiplicity with an upper bound of at least one can
have multiple elements in their instantiation. These properties have two attributes that
describe the collection of their values: isOrdered indicates whether the values in a property
are sequentially orderered whereas isUnique indicates whether or not duplicate values are
allowed [9]. The UML-Java generation needs to know what Java types to use for each of
the possible UML collection types. Table 5.1 shows the Java types we chose based on the
Java language documentation.

Notably, NOT_ORDERED_NOT_UNIQUE_TY PE is set to the Java ArrayList
even though an ArrayList in Java is ordered. The reason for this is that the Java util
library does not contain a non-ordered non-unique collection type. Furthermore, from a
functional perspective, it does not matter if a collection is ordered when it is expected not
to be ordered.

5.4.2 Fixed bugs

During the usage of the Obeo UML-Java generation Accelo project, some bugs were found
that impacted the generated Java code. Each of these bugs has been resolved. The most
relevant bugs for the code generation to work properly are discussed below.

Generation of attributes from association navigable owned ends

In UML, an association between two classes contains two properties, one for each end of
the association. The class involved in an association may own the property referring to
the other class, while the association only holds a reference to that property.

However, these properties can also be contained solely in the association. When these
properties should be navigable, i.e., the generated classes should have an attribute for that
property, they can be marked as navigableOwnedEnds in the association.

In the Obeo UML-Java project, a class attribute was generated even for association-
owned ends not marked as navigableOwnedEnd, resulting in duplicate attributes being
generated if one of the properties of the association was owned by a class. This bug was
solved by adding an extra check to only generate attributes for properties included in the
navigableOwnedEnd attribute.

Missing imports from types resulting from navigable owned ends

The Obeo UML-Java project contains an ImportService that derives a list of Java types
that are used within a class and thus should be imported. In the original implementation,
types of properties originating from navigable owned ends in related associations were
ignored, resulting in missing import statements.

This issue was mitigated by adding the types of associated navigable owned ends to
the list of types to be imported.

8The use of these most rigorous options was done to test all code generation features. An instruction
on how to change these options is provided in the readme file of the project.

61

Not ignoring imports from the same package

In Java, classifiers located in the same package do not have to be imported. The UML-Java
generation project already contained code to check whether used Java types are located in
the same package and ignore these. However, this logic contained a relatively simple bug
which could be fixed after which packages were ignored as expected.

Multiple interface inheritance

Java allows interfaces to extend multiple other interfaces, such as the example listed in
Listing 5.4, in which an interface C extends both interfaces A and B.

The Obeo UML-Java project collected the superclasses and inserted these in the inter-
face declaration, however, it did not add a comma between them, as shown in the lower
part of Listing 5.4. We fixed this error by inserting commas between the names of the
extended interfaces.

1 interface A {
2 ...
3 }
4

5 interface B {
6 ...
7 }
8

9 // Proper Java syntax
10 interface C extends A, B {
11 ...
12 }
13

14 // Code generated with Obeo UML -Java generation bug present
15 interface C extends AB {
16 ...
17 }

Listing 5.4: An example of multiple inheritance of interfaces in Java

5.4.3 Other design decisions

A generated implementation model might contain interfaces that have attributes or are
connected to other classes through associations. This results in a challenge for the Java
code generation as interfaces in Java may not contain attributes9. Rather, interfaces in
Java may only contain constant fields or method declarations10.

One simple solution could be to ignore UML interface attributes when generating Java
code. However, this would disregard the properties of non-sortal types in an OntoUML
model. Consider the example in Figure 5.11, which contains a category Named entity
with a property ’name’. Since the Person kind specializes the Named entity category, a
person is a named entity and therefore has a name. According to the transformation rule

9Or fields, as they are called in the Java specification. See
https://docs.oracle.com/javase/specs/jls/se21/html/jls-9.html#jls-9.2.

10In the Obeo UML-Java project, interface properties were transformed into constant fields (apart from
navigable owned ends from connected associations). This can be considered incorrect as constant fields in
Java are static i.e., attached to the classifier and not the object) and interface attributes in UML are not
necessarily static.

62

https://docs.oracle.com/javase/specs/jls/se21/html/jls-9.html#jls-9.2

Figure 5.11: Example of an OntoUML model in which a category contains a
property.

of categories described in Section 3.3.3, a category is transformed into a UML Interface.
Furthermore, the name property is converted into a UML Property, as described in Sec-
tion 5.1.2. Therefore, if the Java code generation ignores these properties, the resulting
code loses the information that a Person has a name.

To illustrate our solution to this challenge, we use the sample implementation/UML
model displayed in Figure 5.12. In this example, we see an interface A with property x, and
an interface B which extends A and has a property y. Following the UML specification: "If
an Interface declares an attribute, this does not necessarily mean that the realizing Behav-
ioredClassifier will necessarily have such an attribute in its implementation, but only that
it will appear so to external observers" [9]. Therefore, instead of generating an attribute
in the generated Java interfaces for A and B (which is not even possible), the Java code
generation defines get and set methods for these properties. The code that is generated
from the implementation model in Figure 5.12 is shown in Listing 5.5, which defines a
get/setX method in interface A, and a get/setY method in interface B.

The class implementing an interface should implement the methods specified by that
interface. For the example in Figure 5.12, this means that class C should implement all
methods specified by both interfaces A and B ; Class C directly implements interface B
which itself extends A and thus inherits the getter and setter for both x and y.

Listing 5.5 also shows the code generated for class C. Notably, the class does not
include the fields x and y and thus the get and set methods are not generated with an
implementation. The developer is free to implement the generated get/set methods in
the way they prefer. Furthermore, the actual generated code includes Javadoc comments
and todo comments highlighting to the developer that the respective methods should be
implemented. In addition, the transformation takes associations connected to an interface
into account, such as the association with an end named person belonging to the interface
PersonPhase displayed in Figure 3.7.

5.5 Transformation chain implementation

So far, the three separate steps from the overall transformation as illustrated in Figure 5.13
have been discussed. First, an OntoUML JSON is read into an EMF-compatible format.
Second, the OntoUML model is transformed into an implementation model by executing
an ATL transformation. Lastly, Java code is generated from the implementation model by
executing an Acceleo transformation.

63

Figure 5.12: Example of a UML class that implements interfaces containing prop-
erties.

To generate Java code from an OntoUML model, these three steps can be executed in
sequence within the Eclipse EMF environment. In addition, to facilitate the automation
of running the entire transformation chain, for each of these steps, an ANT task11 was
created with the location of an input model and a location on where to store the output
model (or Java code) as parameters.

Normally, an ATL transformation is executed by a run-configuration in Eclipse. Al-
though ATL provides custom ANT tasks to execute a transformation, these tasks all de-
pend on the Eclipse runtime environment. To allow the execution of the transformation
in other contexts, we want to be able to execute these ANT tasks from outside of Eclipse.
Therefore, we exported our ATL project to an Eclipse ATL plugin which includes a Java
adapter for the execution of the transformation, hence allowing the transformation to be
run as a standalone application.

11See https://ant.apache.org/.

64

https://ant.apache.org/

1 public interface A {
2 int getX();
3 void setX(int newX);
4 }
5

6 public interface B extends A {
7 int getY();
8 void setY(int newY);
9 }

10

11 public class C implements B {
12 @Override
13 public int getX() {
14 return 0;
15 }
16

17 @Override
18 public void setX(int newX) {}
19

20 @Override
21 public int getY() {
22 return 0;
23 }
24

25 @Override
26 public void setY(int newY) {}
27 }

Listing 5.5: Generated Java code for UML interfaces with properties and a class
that implements these interfaces.

Figure 5.13: OntoUML-to-Java transformation chain.

65

Chapter 6

Validation

This chapter describes the validation of our OntoUML-to-Java transformation. Section 6.1
illustrates how a model is propagated through the transformation chain using the example
of the Project Management Ontology. Section 6.2 describes the automated validation
process, in which 82 models from the OntoUML model catalogue have been taken as input
to the OntoUML-to-Java transformation. The generated code was checked for compilation
and for the code that did not compile the cause was analysed. Section 6.3 describes the
manual validation process of five models in which the OntoUML model was compared with
the generated Java code to check whether the expected code patterns were generated.

6.1 Full transformation example

This section shows the different steps in the Java code generation for the Project Manage-
ment Ontology, which is one of the models from the OntoUML model catalogue1. This
ontology, which is displayed in Figure 6.1, was chosen because it contains a variety of On-
toUML Class stereotypes that are all supported by our transformation, and is neither too
small nor too large for illustration purposes.

OntoUML EMF model The first step of the transformation is to read the OntoUML
JSON file from the Project Management ontology into an EMF-compatible format. This
EMF model is an instance of the OntoUML metamodel described in Section 4.1.

Generated implementation model Figure 6.2a displays the implementation model
generated from the OntoUML EMF model. Figure 6.2a shows all the UML Classes and
other elements generated for the Project Management ontology. Two interfaces are gen-
erated, one for the roleMixin Resource, and one ActivityPhase, the latter originates from
the complex phase partition of the Activity kind. Figure 6.2a does not show that both
classes PlannedActivity and PerformedActivity have an InterfaceRealization towards the
ActivityPhase interface. Similar to the InterfaceRealization, not all the Generalizations are
directly visible in Figure 6.2a

Generated Java code The final step in the transformation chain is the generation of
Java code from the implementation model. Figure 6.2b displays the Java files generated

1See https://github.com/OntoUML/ontouml-models/tree/master/models/project-management-
ontology.

66

https://github.com/OntoUML/ontouml-models/tree/master/models/project-management-ontology
https://github.com/OntoUML/ontouml-models/tree/master/models/project-management-ontology

Figure 6.1: Project Management Ontology.

(a) Implementation model. (b) Java files.

Figure 6.2: Results of the transformation chain for the Project Management
ontology.

67

from the implementation model, which correspond to the classes and interfaces showed in
Figure 6.2a.

Two generated Java files are highlighted to illustrate the generated code. In both
of these examples, the generated Javadoc strings are omitted to keep the code examples
short2.

Listing 6.1 lists the Java code generated for the subkind Composed. In the code, we see
that the class extends the Activity class (corresponding to the Activity kind) and has an
atomic attribute corresponding to componentOf relation referencing the Atomic subkind.
The type of this attribute is an ArrayList, as it has a multiplicity of possibly many and is
marked as unordered and not unique in the OntoUML model3.

Listing 6.2 lists the generated Java code for the Financial Resource role. Financial
Resource class implements the Resource interface, which corresponds to the respective
Resource roleMixin. Furthermore, the money attribute which refers to the kind of this role
is also generated. Following the transformation of roles as discussed in Section 3.3.2, this
property is marked as final and only a get method is generated.

1 package project_management_ontology.model;
2

3 import java.util.HashSet;
4

5

6 public class Composed extends Activity {
7

8 public ArrayList <Atomic > atomic = new ArrayList <Atomic >();
9

10 public Composed () {
11 // Start of user code constructor for Composed)
12 super();
13 // End of user code
14 }
15

16 // Getters and setters
17 ...
18

19 }

Listing 6.1: Java code generated for the Composed subkind class from the Project
Management Ontology.

6.2 Transformation of OntoUML models from the catalogue

In an additional validation effort, we have executed the OntoUML-to-Java transformation
on models from the OntoUML model catalogue. The goal of this effort was to identify bugs
and assess the feasibility of the transformation. As such, for each of the transformations,
we were interested in whether the transformation was successful, the execution time of the
transformation, and whether the generated Java code could be compiled.

2The complete version of the generated code can be found on https://github.com/GuusVink/ontouml-
java-generation.

3The unordered and not unique properties are contained in the OntoUML JSON but can not be visually
derived from the diagram in Figure 6.1.

68

https://github.com/GuusVink/ontouml-java-generation
https://github.com/GuusVink/ontouml-java-generation

1 package project_management_ontology.model;
2

3 public class FinancialResource implements Resource {
4

5 public final Money money = null;
6

7 public FinancialResource () {
8 // Start of user code constructor for FinancialResource)
9 super();

10 // End of user code
11 }
12

13 public Money getMoney () {
14 return this.money;
15 }
16

17 }

Listing 6.2: Java code generated for the Financial Resource role class from the
Project Management Ontology.

6.2.1 Methodology

We developed a Python script to execute each of the ANT tasks described in Section 5.5.
Besides the steps of the transformation, we defined a separate ANT task to compile the
generated Java code with the latest LTS version of Java, namely SE 21.

For each analysed model, data about the different transformation steps was collected,
such as the time the transformation step took and the warnings given by the ATL and
Acceleo transformation. In case the transformation failed, the step at which it failed was
collected as well as the error log. In the final step, the ANT build task on the generated
code was executed to check whether the code could be compiled, and again, in case the
build failed the error log was recorded.

Generated Java code that compiles is not a guarantee that the transformation was
faultless. To check whether the transformation worked entirely as intended, one would
have to go over the OntoUML model to check whether the generated code corresponds to
the expected constructs of the implementation model as presented in Chapter 34. Still,
compilable generated code at least indicates that a valid implementation model was gen-
erated.

This validation process was performed on the 82 models from the OntoUML model
catalogue mentioned in Section 3.1.3 that only contain class stereotypes covered by our
transformation. The technical specifications of the processing environment used to execute
the transformation can be found in Section B.1.

6.2.2 Results

The results of the validation process are given in Appendix B. A summary of the results
is provided in Table 6.1.

During the validation, 14 models were found that included the invalid relation stereo-
type ’Formal’, which is a deviation from the valid ’formal’ stereotype. Up until 2024, the
formal stereotype was not supported by the VP plugin, even though it has been consid-

4Manual validation was also performed on some models, which is described in Section 6.3.

69

ered a valid stereotype5. Presumably, users of the VP plugin have worked around this by
adding a custom stereotype (sometimes spelled as ’Formal’). Since the formal stereotype
is currently a valid OntoUM stereotype, we have decided to rename all occurrences of For-
mal with formal to make these models compatible with the current OntoUML model, as
opposed to disregarding these 14 models.

The summary of the validation results in Table 6.1 shows that 79 out of the 82 models
were successfully transformed, meaning that some Java code was generated. The 3 models
that failed did that at the step of reading the OntoUML model, as these contained stereo-
types considered invalid by the metamodel. From the 79 models that yielded Java code,
55 resulted in compilable code (69.6%).

The average execution time of the entire transformation chain was 16.54 seconds, of
which most time went to both the ATL and Acceleo steps (both around 8 seconds). The
execution time for the ATL transformation from the ANT task (as discussed in Section 5.5)
deviates quite a lot from the execution time within ATL: whereas the ATL ANT task has
an observed time of approximately 8 seconds, the transformation only takes around 1
second when executed in Eclipse. A possible explanation of this could be that the ATL
plugin requires a startup phase that has to be executed each time the ANT task is executed
from outside of Eclipse. In contrast, when running the transformation from the Eclipse
environment, this startup phase could be contained in the startup process of Eclipse itself.

6.2.3 Analysis of the fault modes

Table 6.2 provides a summary of the occurrences of ATL warnings as well as different
categories of compile errors that occurred in the transformations.

First, we will go over the different ATL warnings and consider their implication. After-
wards, we will analyse the compile errors that occurred and determine whether these arise
due to issues in the transformations or because the OntoUML model contains constructs
we consider invalid.

ATL Warnings

The first part of Table 6.2 shows the occurrence of all the ATL warnings described in Sec-
tion 5.3.1. The Property without type warning is the most frequent with 25 occurrences. As

5This issue was discussed in the GitHub project of the VP plugin, as can be found on
https://github.com/OntoUML/ontouml-vp-plugin/issues/84.

Table 6.1: Results of validation performed on the models from the OntoUML
model catalogue.

Metric Value

Number of models analysed 82
Number of successful transformations 79
Number of projects resulting in compilable code 55
Average time per successful transformation 16.54s

Average time per transformation step

Read OntoUML model 1.02s
ATL transformation 7.48s
Acceleo generation 8.04s

70

https://github.com/OntoUML/ontouml-vp-plugin/issues/84

Table 6.2: ATL warnings and compilation errors for models from the OntoUML
model catalogue.

ATL Warning Occurrence in # models

Contains property without type 25
Multiple GeneralizationSets present for phase partition 1
Contains an empty string 1

Compile error category

Duplicate variable definition 16
Reserved keyword used as name 4
Multiple class inheritance 3
Invalid override from superclass 1

properties without types are simply ignored, there are little consequences to the generated
code.

One of the models yields the multiple-phase generalization sets warning, namely the
music-ontology. Therefore, we conclude that for now, the impact of this limitation is
minimal.

Finally, there is one model that yields a empty string warning. After a manual in-
spection, this warning originates from the fraller2019abc model. This model contains two
classes named ’...’, which both yield an empty string after removing the invalid ’.’ char-
acters.

Categories of compile errors

In case the compilation of the generated Java code fails, the error logs are collected. From
these error logs, four categories of compile errors have been found, which are listed in
Table 6.2 along with the frequency of their occurrence.

Duplicate variable definition The ’Duplicate variable definition’ error occurs when a
classifier contains two or more attributes and/or methods that have the same name/method
signature. This error occurred for the code generated from 16 projects.

Six of these models contain a duplicate variable members as they contain collectives
with more than one type of member, which we consider as invalid OntoUML as discussed
in Section 5.3.

Two other models, namely junior2018o4c and fraller2019abc, have multiple relations
defined between the same two classes, without uniquely named relation ends. This corre-
sponds to the limitation of the transformation described in Section 5.2.2.

The model jacobs2022sdpontology yields code that contains a duplicate variable defini-
tion which can not be directly related to the source OntoUML model. Figure 6.3 displays
a fragment of this model, which shows a Business Role role, which is a specialization of
the Role kind, and contains a property named role. Following the transformation of roles
described in Section 3.3.2, the generalization is transformed into a UML association that
derives the names of the association ends from the names of the involved classes.

In the case of Figure 6.3, this means that the class generated from Business Role con-
tains a reference to the class generated from the Role kind named ’role’. However, the
Business Role class already contains a property with that name. Although the trans-
formation works as expected, this somewhat unfortunate combination of model elements

71

yields code that cannot be compiled. We see no simple automated solution to mitigate this
issue and therefore suggest changing the names of properties in the source model if such
issues occur.

The causes of the occurrence of the ’duplicate variable definition’ error in the other
seven models are discussed in more detail in Section B.3. In all these cases, we identified
an issue in the OntoUML model that caused errors in the generated code.

Reserved keyword used as name The compilation errors in the category ’Reserved
keyword used as name’ arise when a model element in the OntoUML model contains a
name that corresponds to a Java reserved keyword.

This is the case for four of the analysed models. Mdel demori2023miscon contains a kind
with name Interface, while models srro-ontology, university-ontology, and zanetti2019orm-o
contain a subkind, role, and kind named Class, respectively.

Multiple class inheritance The ’Multiple class inheritance’ error occurs when the gen-
erated code contains a class that extends multiple other classes. This error occurs in the
code generated from three OntoUML models6.

After manual inspection, we realised all these models have a subkind that specializes
two or more other classes. As discussed in Section 5.3, we consider these models to be
invalid.

Invalid override from superclass The ’Invalid override from superclass’ category oc-
curs when a subclass contains a method with the same signature as the superclass, but has
a return type that is not a subtype from the superclass method’s return type7.

This error occurred for the music-ontology, of which a fragment is displayed in Fig-
ure 6.4. This model has a Group collective with two successive subkinds, namely Artis-
tic Group and Musical Group. All these three collectives have a memberOf relation to
other classes, which yield, among other methods, three getMembers() methods, each over-
riding the respective method in the superclass. However, these three methods have dif-
ferent return types, namely ’ArrayList<Member>’, ’ArrayList<ArtisticMember>’, ’Ar-
rayList<MusicalMember>’ 8.

OntoUML does not restrict the usage of redefined properties but also does not clearly
support it. To illustrate this, although the OntoUML JSON contains an attribute rede-
finedProperties for the Property model element (as shown in Figure 4.3), this attribute
seems always to be set to null and thus it seems that this feature is at least not supported
by the VP plugin. Therefore, we did not address this in our implemented transformation.

6The ’Multiple class inheritance’ error occurs for the OntoUML models ’aguiar2019ooco’, ’buridan-
ontology2021’, and ’digitaldoctor2022’.

7See https://docs.oracle.com/javase/specs/jls/se21/html/jls-8.html#jls-8.4.8.
8Although all of these types belong to the same hierarchy, i.e., MusicalMember extends ArtisticMember

extends Member, they all are encapsulated in lists, which are invariant in Java.

Figure 6.3: Fragment of the jacobs2022 model.

72

https://docs.oracle.com/javase/specs/jls/se21/html/jls-8.html#jls-8.4.8

Figure 6.4: Fragment of the music-ontology which contains a UML redefines
property string.

We deem the impact of this limitation rather limited for now as it only applies to one of
the analysed models.

6.2.4 Performance analysis

To estimate the scalability of the transformation, we evaluated how the execution time
of the transformation differs for different sizes of OntoUML models. As stated before,
the execution time was recorded when performing the transformation on models from the
OntoUML model catalogue. Next to this, we take the number of classes as an indicator of
the size of an OntoUML model9.

Figure 6.5 plots the number of classes against the execution time, where each point
corresponds to one OntoUML model. In this plot, only the 79 models that successfully went
through the entire transformation chain are included as the unsuccessful ones terminated
prematurely and thus have a shorter execution time. Furthermore, we did not include the
model barcelos2015transport-networks in this plot as it consists of 487 classes and would
disturb the diagram. Figure 6.5 also includes a grey dashed line which represents the
datapoints under a linear assumption10.

The distribution of the data points shows that there are around 16 seconds of base
time for the entire transformation chain. This time can be attributed to the startup times
of both Java, ATL and Acceleo. Although there seems to be a trend of an increased
transformation time for larger models, the correlation seems weak. When assuming this
trend holds, the slope of the fitted line indicates that the execution time increases with
approximately 0.14 seconds for every 10 classes in an OntoUML model.

The execution time of the transformation for the barcelos2015transport-networks model
is 20.99 seconds. When using a time increase of 0.14 seconds per 10 classes and a base

9Although classes roughly indicate the size of a model, other model elements such as relations and
generalizations presumably also impact the transformation execution time. Furthermore, two models with
the same number of classes may contain a different number of other model elements.

10This line was calculated using the Numpy polyfit function, see
https://numpy.org/doc/2.0/reference/generated/numpy.polyfit.html.

73

https://numpy.org/doc/2.0/reference/generated/numpy.polyfit.html

Figure 6.5: Transformation execution time against the number of classes of the
OntoUML models.

time of 16 seconds, the expected execution time of the barcelos2015transport-networks
would be 22.82 seconds11, which slightly overestimates the measured transformation time.
Therefore, this linear trend of execution time for the number of classes still seems to hold
for larger models.

6.3 Manual validation

The automated validation described in Section 6.2 has only checked whether the OntoUML-
to-implementation-model transformation runs without throwing errors and whether the
generated Java code can be compiled. Although this gives some indication of whether
bugs are present, it does not ensure the correctness of the transformation. For example, it
is possible that the generated implementation model is not complete, i.e., it misses expected
elements, but can still be compiled.

To increase confidence in the correctness of the implemented transformation, a manual
validation step has been performed on five of the models in the OntoUML model catalogue,
namely aguiar2018rdbs-o, bank-account2013, bank-model, barcelos2013normative-acts, and
barros2020programming. These are the first five models (in alphabetical order) that yield
compilable code12.

The checklist provided in Appendix C has been used to verify the generated code of
each of the selected OntoUML models. In case all checklist items pass, we consider the
model validated.

In addition to these models from the model catalogue, the transformation has also been
tested with smaller custom-made fragments of OntoUML, representing both the source
models used in Section 3.3 as well as other edge cases. These fragments were mainly used
during the implementation and debugging of the ATL transformation13.

11Calculated by: 487 · 0.014 + 16 = 22.82.
12Also, the model barcelos2015transport-networks has been skipped in this selection due to it consisting

of 487 classes, which would be tedious to check manually.
13The JSON files and screenshots of these fragments are included in the repository at

74

The filled-in checklists for manual validation of the models are included in Appendix C;
all five models passed this checklist. Although the transformation worked as intended, we
encountered some issues with the analysed OntoUML models. Furthermore, we list some
things we encountered that inspired us to adjust our transformation. Both are discussed
below.

Invalid OntoUML constructs Three of the manually analysed models contained con-
structs that would be marked as invalid by the OntoUML VP plugin. aguiar2018rdbs-o con-
tains subkinds that do not specialize any identity provider. Furthermore, aguiar2018rdbs-o,
bank-account2013, and bank-model contain relators that specialize other relators, which is
invalid as ultimate sortals may not specialize other ultimate sortals14.

Changes made to the transformation Based on the manual validation, three cases
inspired us to adjust the implementation of the transformation:

• barcelos2013normative-acts contained class properties with the type ’char’ (as in a
single character). In the original implementation, char was not supported as a valid
primitive type, as defined in Section 5.1.2, meaning that they were originally ignored.
In the current version, char is included as a valid primitive type for properties.

• bank-account2013 contains an OntoUML role that extends another role. In the origi-
nal implementation, only roles that specialized rigid types were supported. Based on
the online OntoUML documentation, we decided that roles specializing other roles
should be supported, which was successfully adjusted in the ATL transformation.

• bank-account2013 and barros2020programming contain Portuguese names for model
elements. In the original implementation, all non-alphanumerical non-ASCII char-
acters were removed to yield valid Java names. This meant that special letters in
models would be removed in the implementation model. For example, ’Operação’
would become ’Operao’. Based on the use of the Portuguese language in some mod-
els and Java’s support for special letters, an adjustment was made to support these
characters. The implementation of this feature is described in Section 5.1.1.

https://github.com/GuusVink/ontouml-java-generation.
14The proper way to model this would be to use subkinds of relators.

75

https://github.com/GuusVink/ontouml-java-generation

Chapter 7

Related work

In an earlier stage of this work, we performed literature research to identify existing meth-
ods for the application of Ontology-Driven Software Development (ODSD), which is an
extension of MDE where ontologies take the place of models [30, 22]. From the identified
approaches, three specifically relate to the use of OntoUML1, where one describes the use
of OntoUML as a reference ontology and two use OntoUML to automatically generate
system components. The latter two are considered related to this work. Furthermore, one
other approach that is described was identified after this research was started.

These approaches all aim to preserve the semantics of an OntoUML model in compo-
nents of an application. However, they differ in scope and overall goal compared to the
work presented in this research. Still, they have some overlap in the methods used to
preserve OntoUML semantics as well as their applicability in the development of software
applications based on OntoUML.

Section 7.1 describes the generation of relational schemas for databases from OntoUML
models [13, 14]. Section 7.2 describes the transformation of OntoUML into an information
model, which is mainly focused towards separating ontological concerns from informational
concerns [4, 3]. Section 7.3 describes the transformation of OntoUML into an implemen-
tation model on a conceptual level [32].

7.1 Generation of relational schemas

A relational schema describes the structure of a relational database. The primary con-
structs in schemas are tables, which consist of columns (features or references to other
tables) and rows (individual data entries). These schemas can be automatically generated
based on a conceptual model [13]. The transformation of a conceptual model to a relational
schema is not trivial, as conceptual modelling languages can contain certain constructs that
are not directly supported by relational schemas.

As discussed in [13, 14], multiple transformations have previously been defined to gen-
erate a relational schema from a conceptual model. Each of these transformations maps
certain classes from the conceptual model to tables within a relational schema. The most
straightforward approach is one table per class, in which each class yields a single table.
However, this results in many tables, which might be undesirable in a database. Other
transformations merge multiple classes into a single table, such as the one table per leaf
class and one table per hierarchy transformations.

In [13], a strategy is proposed that is based on OntoUML, namely one table per kind [13].
1Five other identified ODSD approaches use the OWL language [24].

76

As the name suggests, this transformation generates one table for each OntoUML kind,
and attributes and associations from sub- and superclasses are merged into the table rep-
resenting the kind. Kinds are considered the fundamental elements within a domain [14]
so that the resulting relational schema is expected to be more understandable from a hu-
man perspective. Furthermore, as kinds are less likely to change over time, the relational
schema is hopefully better maintainable in case of future changes in the conceptual model.

Although the relational schema is based on the conceptual model, it still contains less
information than the original conceptual model. The research identifies the constraints that
are lost in the one table per * transformations [14]. These missing constraints originate
from the two operations used in these transformations, namely flattening and lifting. The
lost semantics is specific to the relational schemas and thus apply to all transformations
and not only to the ones specifically based on OntoUML.

To mitigate the lost semantics, [14] provides an approach that generates database
triggers. These database triggers detect situations in the database that violate constraints
present in the source model that cannot be represented in the relational schema.

[14] states that the generation of relational schemas from OntoUML models is sup-
ported by the OntoUML VP-plugin. However, at the moment of writing, this feature is
only implemented in a separate branch of the project, and is not included in the default
installation of the OntoUML VP-plugin.

Limitations

The generation of relational schemas as described in [13, 14] enables the creation of a
database for an application in the domain of a certain OntoUML model. In this scenario,
an application needs to be created to access and work with the data in the database.
Provided that the application is written in an object-oriented language, an object model
is required. One could consider creating a class for each table in the database, however,
these classes do not reflect the database triggers that describe the semantics.

Furthermore, as discussed in, for example, the transformation of roles in Section 3.3.2,
we can argue that a separate class should be created for each role that contains all func-
tionality related to that role. This would not be the case when a class is generated for a
table in the database resulting from the approach described in [13], as the properties of
the role are lifted to the kind, and thus are merged into a single table.

7.2 Generation of information model

In [3, 4], the authors mention that OntoUML ontologies are often designed with certain
modelling goals that are not necessarily useful for information systems. Therefore, they
aimed to separate these ontological and informational concerns. This has been achieved
by generating an information model from OntoUML that is a technology-independent
representation in UML. The addressed informational concerns are split into two categories:
informational demand, which addresses pragmatic requirements such as history tracking
and measurement; and representation, which addresses the usage of a modelling language
to correctly organize elements.

The representational concerns relate to the choices made in transforming an OntoUML
model into an information model and therefore relate to the transformation described in
Section 3.3. The transformation choices made in [3] are discussed below.

77

Transformation of kinds, subkinds, and categories

Each kind, subkind, and category from the OntoUML model is transformed into a UML
class, as shown in Figure 7.1. The OntoUML stereotypes are omitted in the resulting
model.

Transformation of roles

The transformation of roles is a bit more complex. In the final transformation, each role
is not transformed into a class, but it is mapped to a property of the class representing a
kind to which the role belongs in the OntoUML model.

To illustrate this, consider the example in Figure 7.2. The Husband role is transformed
into a property that points to the class representing the Mariage relator. Relators are
individuals that connect entities [21], such as the marriage displayed in Figure 3.5, which
connects a husband to a wife. Due to this decision, the transformation relies on a relator
to be present in the OntoUML model.

Transformation of roleMixins

In [3], a transformation for roleMixins is also defined. Figure 7.3 shows an example of a
roleMixin, namely the Customer. A customer can be two types, either a Private Customer
which is a Person, or a Corporate Customer which is a Organization. The Supply Contract
relator relates any supplier (necessarily an organization) to a customer (either a person or
organization).

The roleMixin is transformed into a super-type for both the classes that represent the
kinds that have roles specializing this roleMixin. The rest of the transformation is the
same as for normal roles, i.e., a class is generated for the Relator and the role names are
included as association names.

Limitations

The proposed transformation from OntoUML to an information model in [3] is imple-
mented within EMF. However, the proposed approach has some limitations. Firstly, only
a subset of the OntoUML types is covered. The extension of this transformation to other
types is mentioned as a topic for future work. Secondly, the EMF Ecore model that is used
is a custom OntoUML representation, which is not compatible with the implementation-
independent OntoUML metamodel described in Section 2.1.3. This means that this meta-
model is incompatible with models created with the OntoUML VP plugin.

7.3 From domain ontology to implementation model

In [32], the authors aimed to generate an implementation model from OntoUML models.
In this work, an implementation model is considered an object-oriented model that can be
trivially transformed into code in any object-oriented programming language. Although
they do not mention any specific modelling language, apparently they use UML Class
diagrams to represent implementation models. As an added constraint for this implemen-
tation model, they state that it should not exhibit multiple inheritance, which is stated as
being a complex construct that is not supported by most programming languages.

In their work, they describe a transformation of OntoUML to this implementation
model on a conceptual level. The transformation can be characterized in three distinct
parts:

78

Figure 7.1: Transformation of kinds, subkinds, and categories to an information
model in [3].

Figure 7.2: Transformation of roles with a relator to an information model in [3].

79

Figure 7.3: Transformation of roleMixins to an information model in [3].

80

1. Transformation of attributes and associations along with their multiplicities.

2. Separation of state and identity.

3. Transformation of the OntoUML specific types.

Attributes and associations

As OntoUML is defined as a UML class diagram extension, the only difference with UML is
that OntoUML uses UFO-specific stereotypes, where the classes, attributes, associations,
and their multiplicities have the same meaning as in plain UML. Thus, the transforma-
tion of these constructs to the object model is the same as for plain UML and therefore
considered trivial.

Separation of state and identity

To address the differences in the rigidity of certain UFO types, a separation is made
between the state and identity of an object. The notion of state and identity is taken
from Clojure, which is a functional programming language defined in the Java platform2.
Identity focuses on the non-changing part of an object, while the dynamic characteristics
are captured in its state. Thus, each class in the source OntoUML model is mapped to
two classes in the implementation model, for state and identity, respectively.

From an initial viewpoint, this separation of identity and state might seem like an
unnecessary complexity. However, it proves useful for some UFO types because of the
differences in rigidity. For instance, anti-rigid types such as roles are attached to a specific
state, so, when a role changes, the state of an object can change while maintaining the
history of all previous states of that object.

Transformation of OntoUML specific types

Only the transformation of kinds, subkinds, roles, and phases is described in [32]. Figure 7.4
shows a sample transformation of an OntoUML ontology to an implementation model. The
Person kind is transformed into an identity that can have multiple states over time, which
is represented by an ordered set. The House kind is also transformed into a state and
identity, however, Figure 7.4 leaves this out to keep the diagram simple.

The transformation of a role is less straightforward. In OntoUML, roles are specialisa-
tions of kinds. In implementation models, specialisations also exist. However, in UML and
object-oriented languages, specialisations are rigid constructs whereas in OntoUML they
are anti-rigid. Therefore, the specialisation is transformed into an association attached to
the state of a kind, which allows the role to be updated during the lifetime of a kind.

Finally, the phases are transformed into UML classes that are also attached to the state.
Similar to roles, the specialisation is transformed into an association. Furthermore, these
associations to the phases are restricted by an XOR constraint. This is a UML feature that
indicates that the class (PersonState in this case) may only have one of the associations
set.

Limitations

The approach presented in [32] which has not been implemented. Some challenges stated as
future work are to ensure the correctness of the transformation for different programming

2See https://clojure.org/.

81

https://clojure.org/

(a) OntoUML model with a kind, role, and phases.

(b) Resulting implementation model after the transformation.

Figure 7.4: Sample transformation from an OntoUML ontology to an implemen-
tation model. (Copied from [32])

82

paradigms/languages, the transformation of other OntoUML types, and the availability of
user-friendly tools to work with these transformations. These are mentioned as prerequi-
sites for the transformation to be used in practice.

Furthermore, although the approach described in Section 7.3 separates classes in an
identity and state, we opted to not do this for our transformation. We think that separating
one concept into two classes deviates from what is considered normal practice for most
programmers, thus raising the effort required to understand the structure of the generated
code and the ability to start implementing functionality. However, it is possible that
separating state and identity in different classes yields better code, which should be kept
in mind when performing case studies with our proposed transformation in future work.

83

Chapter 8

Discussion

This chapter discusses some of our findings as well as possible ways the implemented
transformation can be extended. Section 8.1 discusses the discrepancies between different
OntoUML tools and how a change of the OntoUML JSON file exported by the VP plugin
affects the developed transformation. Section 8.2 discusses the limitations of the performed
validation and suggests how this could be improved in the future for general ATL trans-
formations. Section 8.3 discusses the possibilities of using the implementation model to
generate code for other object-oriented languages. Section 8.4 discusses an alternative to
the implementation model using a UML profile and how this could be used to adapt the
definition of the implementation model if desired. Finally, Section 8.5 discusses possibili-
ties of how data persistence could be implemented in the generated code, also relating to
the method to generate relational schemas with OntoUML described in Section 7.1.

8.1 Alignment of OntoUML tools

In this research, we developed an OntoUML EMF metamodel based on the JSON output
of the VP plugin. However, the OntoUML ecosystem also includes the OntoUML JSON
Schema and implementation-independent metamodel, which in theory should describe the
JSON file exported by the VP plugin. However, as discussed in Section 4.2, there are
discrepancies between these artefacts and the VP plugin.

For OntoUML to be considered a mature tooling suite, its tools should be compatible,
which requires that one OntoUML metamodel acts as a single source of truth. In this
way, if a new OntoUML tool is developed, for example, as an alternative to the VP plugin,
it should comply with this official metamodel. As a result, it should also work for the
transformation developed in this research and other tools using OntoUML JSON files.

We advise to use the OntoUML metamodel developed in this research as a basis for
the official OntoUML metamodel because it matches the JSON files currently present in
the OntoUML model catalogue. However, the OntoUML developers may consider some of
the constructs present in the JSON file as invalid, resulting from bugs in the VP plugin.
In this case, the VP plugin as well as the official metamodel need to be adjusted.

Possible transformation adjustment

In case the OntoUML developers decide to change the VP plugin to match a new official
metamodel, the transformation developed in this research would no longer be compatible
with the VP plugin and thus would require adjustments.

84

The complexity of adjusting the transformation depends on how the changes deviate
from the current JSON files. In all cases, only the Ecore model (described in Section 4.1)
and the ATL transformation (described in Section 5.1) need to be adjusted; the Acceleo
code generation does not need to be changed as the form of the implementation model
would stay the same.

In the best case, only the names of properties in the JSON file would have to be
changed. This would only require renaming classes and properties in the OntoUML Ecore
metamodel and refactoring the ATL transformation to match these new names. In case
more structural changes to the JSON file are made, the necessary refactoring of the ATL
transformation may become more complex.

8.2 Improving the validation

The correctness of the transformation, i.e., whether patterns in the source model yield
the expected patterns in the target model (as defined by Section 3.3), has mainly been
manually tested. This has been done for small custom-made OntoUML fragments as well
as a selection of five larger models from the OntoUML model catalogue.

In the automated part of the validation, models from the OntoUML model catalogue
have been put through the entire transformation chain and the generated code has been
checked for compilation. This still only gives a partial indication of the correctness of the
code, as it could be that the generated implementation model was incomplete (i.e., not
all elements that should have been generated were generated) but was consistent (i.e., no
mismatches of types that result in invalid code).

Ideally, automated test cases should be defined that relate fragments of OntoUML to ex-
pected patterns in the generated implementation model, which would give more confidence
in the correctness of the implemented transformation. However, this kind of automated
testing is currently not supported by ATL. Defining a method to perform automated testing
would not only benefit the OntoUML-to-implementation-model transformation but would
also be of added value to other ATL transformations. Therefore, we see this as a relevant
research direction.

8.3 Generating code for other languages

In this research, we use OntoUML models to generate Java code. However, we also acknowl-
edge that certain users might want to generate code in other object-oriented programming
languages. In the design of our transformation chain, we address this by the intermediate
step of generating an implementation model. In case one wants to generate code in another
language, only the last step which transforms the implementation model to code needs to
be changed.

8.3.1 Using Papyrus to generate code from UML

Papyrus1 is an Eclipse tool for editing UML diagrams. Papyrus Software Designer2 is a
module within Papyrus that allows code to be generated from UML diagrams. Currently,
Java, Python, and C++ are supported.

As our implementation model is a UML diagram, in theory, the Papyrus Software De-
signer could be used to generate code for these languages. However, the Papyrus code

1See https://eclipse.dev/papyrus/documentation.html.
2See https://gitlab.eclipse.org/eclipse/papyrus/org.eclipse.papyrus-designer/-/wikis/home.

85

https://eclipse.dev/papyrus/documentation.html
https://gitlab.eclipse.org/eclipse/papyrus/org.eclipse.papyrus-designer/-/wikis/home

generation functionality is meant to be used for UML models also developed within Pa-
pyrus, and not by UML models initialised outside of Papyrus as in our case.

However, as the Papyrus implementation is open-source, this code generation function
is available to be reused in some other form. Either the Papyrus tool could be modified to
work with models generated from other sources, or the code generation capabilities could
be extracted to a standalone UML-to-code generation project.

8.3.2 Defining a new Acceleo UML-to-X transformation

In our research, we used an Acceleo project to generate Java code from an implementation
model. If one would like to generate code in another programming language, the seemingly
most straightforward option would be to create or reuse another Acceleo project.

In a brief search, two examples of Acceleo projects that generate code from UML
diagrams were found. One more extensive project supports code generation for C++3 and
a smaller project was found that generates Python code4. However, both projects seem to
be developed by individual developers, so no guarantee can be given about the maturity
of these projects.

8.3.3 The platform-independence of the implementation model

The notion of an implementation model in this research aimed to be a platform-independent
representation for object-oriented languages. However, we only tested code generation for
the Java language. As such, the implemented transformation is somewhat tailored to Java,
especially in the use of Java naming conventions as described in Section 5.1.1. Although
these naming conventions are most often valid in other object-oriented languages (such as
Python or C#), not adhering to the naming conventions of a language can be considered
a drawback.

C# Besides naming conventions, C# shares a lot of similarities with Java. This is also the
case for multiple inheritance features. For example, although C# does not allow multiple
class inheritance, it allows the implementation of multiple interfaces5. The relevance of
this for our transformation is explained in Section 5.4.3.

Python Python differs more from Java when compared to C#. The biggest difference
is that Python is a dynamically typed language6, so that variables do not have explicit
types, even though this information is present in our implementation model. A possibility
could be to add the type information present in the implementation model as type hints
in the generated Python code, as this would make the code more intelligible.

Another interesting difference compared to Java is that Python has no native support
for interfaces. This is tricky as our transformation generates UML Interfaces for OntoUML
non-sortal types. However, Python does support abstract classes and multiple-class inher-
itance7. One apparent solution to mitigate this is to generate abstract classes instead of
interfaces, so that the UML Interface Realization should then be interpreted as a class
extension in Python. In our implementation model, multiple interface implementations

3See https://github.com/vahdat-ab/UML2CPP.
4See https://gist.github.com/aranega/f07e4cb4e850af3288af.
5See https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/object-oriented/inheritance.
6See https://docs.python.org/3/faq/general.html#is-python-a-compiled-language.
7See https://docs.python.org/3/library/abc.html for abstract classes and

https://docs.python.org/3/tutorial/classes.html#multiple-inheritance for multiple inheritance in Python.

86

https://github.com/vahdat-ab/UML2CPP
https://gist.github.com/aranega/f07e4cb4e850af3288af
https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/object-oriented/inheritance
https://docs.python.org/3/faq/general.html#is-python-a-compiled-language
https://docs.python.org/3/library/abc.html
https://docs.python.org/3/tutorial/classes.html#multiple-inheritance

may occur, but as Python allows multiple class inheritance, classes that implement multi-
ple interfaces in the implementation model can simply extend these abstract classes in the
Python code. Therefore, we foresee no issues in this regard when generating Python code
from the implementation model.

8.4 Implementation model with UML Profile

In the current transformation chain, the implementation model is simply defined as a UML
Class diagram along with some restrictions relating to multiple inheritance. However, in
earlier stages of this research, we considered the use of a UML Profile to increase the
information that could be contained in our implementation model and so increase the
semantics transferred to the generated code. Initially, this was done to indicate ’final’
associations, i.e., associations of which one or both ends should be marked as final in the
generated Java code. In our current transformation, we use the UML isLeaf attribute for
this (as discussed in Section 3.2).

However, the use of a UML Profile could be useful if one wants to extend the expres-
siveness of the implementation model. For example, information could be added regarding
what forms of constructors need to be generated for a particular class, or, information on
how to persist certain objects in a database.

8.4.1 UML Profile in an ATL transformation

In case the implementation model is defined with a UML Profile, the transformation sig-
nature of the OntoUML-to-implementation-model transformation would change. Since a
UML Profile itself is a UML model, the implementation model profile would become a
second input model, as can be seen in the altered transformation signature in Figure 8.1.
The resulting target model then is a UML Class diagram to which the UML Profile has
been applied.

The ATL support of UML Profiles is minimal. The largest issue is that an ATL
transformation is defined on the level of the metamodels. However, the stereotypes defined
in a profile are only present at the model instance level (i.e., the Implementation Model
Profile in Figure 8.1), to which the transformation definition has no direct access (note
the arrow with the name uses towards the UML2 metamodel). The support of profiles in
ATL, along with possible solutions, is further described in [35].

8.5 Persisting data for a generated application

The work presented in this research facilitates the use of OntoUML in software develop-
ment by generating Java code. Only the code skeleton (i.e., the classes and attributes) is
generated, so the required functionality (methods and logic) needs to be added manually.
For many use cases, there may be a desire to persist the data in, for example, a relational
database.

One option might be to use the generation of relational schemas as described in [13, 14],
which generates a database schema from an OntoUML model. However, as discussed in
Section 7.1, there is no one-on-one mapping between the generated database schema and
the generated Java code, so the relational schema contains fewer tables than generated
Java classes. Therefore, a manual solution would be required to link the Java code to this
generated schema.

87

Figure 8.1: Transformation signature of ATL transformation in case a UML Pro-
file is applied to the implementation model.

Another option to persist data from the generated code into a database could be to use
other tools such as Jakarta persistence8, in which Java classes can be annotated to create
mappings between the Java application and database tables. In case no database schema is
defined, Jakarta persistence can generate the relational schema based on the Java classes,
thus ensuring correspondence between the generated code and database schema.

8See https://jakarta.ee/specifications/persistence/.

88

https://jakarta.ee/specifications/persistence/

Chapter 9

Conclusion

This chapter concludes the work presented in this research. Section 9.1 summarizes the
different contributions made. Section 9.2 lists possible directions for future work mainly
relating to the evaluation phase of Design Science Research. Finally, Section 9.3 lists
recommendations that mainly relate to OntoUML, which refers to different sections in this
report that highlight areas of improvement.

9.1 Contributions

The contributions of this research can be summarised as follows. First of all, a frequency
analysis of the usage of stereotypes in the OntoUML model catalogue has been performed,
which is described in Section 3.1. This reveals the most popular stereotypes, which inspired
the selection of OntoUML stereotypes that should be covered by our proposed transfor-
mation.

Furthermore, Section 4.1 describes the developed Ecore metamodel for OntoUML that
is aligned to the OntoUML VP plugin, along with a method to instantiate this Ecore
model from an OntoUML JSON file exported by the VP plugin. This ensures that the
developed OntoUML-to-Java transformation can be used for models created with the VP
plugin, which is the current most popular tool for developing OntoUML models. Besides
this, the integration of OntoUML in EMF enables the use of publicly available tools for
other model transformation projects tailored to OntoUML.

As an extension to other work described in [32] and [3] (both described in Chapter 7), we
provided a transformation of OntoUML to an implementation model for a wider selection
of OntoUML types. For some OntoUML constructs, we made different design decisions for
the transformation, either because of considerations in the UFO/OntoUML semantics or
the pragmatic effects when generating an implementation model tailored to Java.

Our proposed OntoUML-to-implementation-model transformation has been implemented
in ATL. The generation of an implementation model that is defined in UML, which is a
publicly available and widely used modelling language, enables the possible generation of
code in other programming languages, which is further discussed in Section 8.3.

In our transformation chain, we decided to generate Java code, which is achieved by an
Acceleo project that takes a UML model as input. As described in Section 5.4, we reused an
existing but archived project created by the Acceleo developers. We adjusted this project
to work with Acceleo version 3.7.171 and fixed some found bugs. This revamped Acceleo
UML to Java project can also be used for other EMF projects that work with UML.

1During our research, Acceleo version 4 has been released which is not directly compatible with version 3.

89

Finally, both manual and automated validation have been performed on a selection
of models from the OntoUML model catalogue, described in Chapter 6. The automated
validation indicates that the OntoUML-to-Java transformation yields valid Java code for
70% of the transformed models. For the cases in which the generated code failed this
test, the cause was analysed. In most cases, the issue in the generated code was caused
by what we consider invalid constructs in the source model. In an additional validation
effort, we manually analysed a selection of five OntoUML models for which the generated
Java code for each OntoUML model element was inspected, giving a reasonable indication
that the implemented transformation works as intended. Both the automated and manual
validation also exposed constructs present in the public models that would be deemed
invalid by the OntoUML VP plugin.

9.2 Future work

In this research, a transformation of OntoUML to Java has been implemented and validated
on a technical level, i.e., the step ’demonstration’ in Design Science Research (illustrated
in Figure 1.1). However, the evaluation step has not been performed, which would require
employing the transformation in the context of the development of an application, yielding
insights on how to improve the transformation.

Another qualitative evaluation could entail a comparison of the generated code for an
OntoUML model with code written by a developer for the same OntoUML model. This
could give insights into the validity of the proposed transformation rules as well as indicate
whether the generated code can be easily understood by a developer responsible for further
implementing the transformation.

Furthermore, the claim has been made that the use of OntoUML yields higher-quality
models compared to plain UML class diagrams [33], and therefore the expectation is that
software applications based on such ontologies are of higher quality as well [28]. This
expectation might be confirmed by applying our developed transformation in practice.
Ideally, an experiment could be performed that describes a case for a to-be-developed
application, which is to be implemented by two developers/groups of developers. One
group defines a UML model and uses a traditional code generator for UML2, whereas
the other group defines an OntoUML model and uses the proposed OntoUML-to-Java
transformation. Both developed applications can be evaluated according to software quality
metrics and/or competency questions made for the case. Besides these evaluations, both
developer groups can be interviewed about their experiences about the ease of development.

9.3 Recommendations

This research yielded several insights mainly related to the implementation of OntoUML.

9.3.1 Alignment of OntoUML tools

Inconsistencies were observed between the OntoUML VP plugin, the platform-independent
metamodel and the JSON Schema (further discussed in Section 8.1). We would advise to
alter the platform-independent metamodel and JSON Schema to match the developed
Ecore metamodel as described in Section 4.1, which was made based on the JSON ex-
ported by the VP plugin. Since all the JSON files present in the model catalogue have

2For example either the implementation-model-to-Java Acceleo transformation described in Section 5.4
or the Papyrus tool described in Section 8.3.

90

apparently been created with the VP plugin; they match the Ecore metamodel we devel-
oped. Therefore, it is likely that other tools that use OntoUML have also been matched
to these JSON files.

The changes required in the platform-independent metamodel are relatively small and
are described in Section 4.2.2. However, we observed larger structural changes with the
JSON Schema, which is why we simply marked it as ’incorrect’ and disregarded it. How-
ever, this would require a more detailed inspection. We still deem it valuable to have a
working JSON Schema, as this allows for JSON files that originate from different tools to
be validated. In this research, we took the JSON output by the VP plugin as the single
source of truth, however, if other tools also generate JSON files (with possibly a different
structure), it would be useful to have one artefact (the JSON Schema) that defines the
structure of correct OntoUML JSON files.

9.3.2 Extended model validation

OntoUML provides a model validation tool that is integrated into the VP plugin, which
allows checking the correctness of a model. We found that this validation does not cover
all constructs that we deem necessary for our transformation to work correctly. Section 5.3
describes these three extra assumptions we impose on the model: no properties without
types, no duplicate generalizations, and no multiple memberOf relations.

The ’no properties without types’ assumption is mainly important in the context of
generating code: if a variable is defined, the type should be known3. However, when an
OntoUML model is used as a communication vehicle between people, it may not always
be necessary to define the type of a variable, as knowing such a property exists without
knowing the exact type might be sufficient.

However, for the ’no duplicate generalizations’ and ’no multiple memberOf relations’
assumptions, we think a model violating them is incorrect. The violation of these as-
sumptions is not checked by the VP plugin model validator. Because of a lack of a single
source of OntoUML specification, we are not certain whether these constructs are invalid
in OntoUML. Furthermore, we acknowledge that it may not be desirable to add these
constraints for all OntoUML models, since, as we have stated, OntoUML models can be
used for other purposes than generating code. However, if these constraints are recognised
by the OntoUML/UFO developers as invalid OntoUML constructs, it would be an added
value to also check for these constraints in the VP plugin to help modellers create better
models.

9.3.3 Missing property values in the OntoUML JSON file

We found two properties that are missing in the JSON file exported by the VP plugin that
are relevant for our implemented transformation:

• The ’stereotype’ property in the OntoUML Property element, whose values can be
’begin’ or ’end’, seem to correspond with properties of relations and the relation
direction. However, these are not set as such by the VP plugin. For our transforma-
tion, we need to to the direction of a relation, which is described in more detail in
Section 5.1.3. Although some ways have been found to work around this, we would
advise to explicitly set the direction of the transformation in the JSON file.

3This is at least relevant for languages requiring the type of a variable to be known at the declaration.
For a language such as Python, this is not required.

91

• The ’redefinedProperties’ field of the Property element. As described in Section 6.2.3,
one model was found that makes use of this construct to redefine elements, however,
this functionality seems to not be supported by the VP plugin as the value to this
property is always set to null. If such constructs are to be supported by an OntoUML-
to-Java transformation, these should be set in the OntoUML JSON file.

9.3.4 Selection criteria OntoUML model catalogue

We have found several models in the OntoUML model catalogue that do not pass the
validation of the OntoUML VP plugin but are not marked as invalid. When developing
a tool that is tested with models from the catalogue, an error might be due to a faulty
implementation of the tool (e.g., the transformation developed in this research) but might
also be the result of an invalid OntoUML model. The actual cause of the fault had to be
manually checked.

Alternatively, one could consider only admitting models to the catalogue that pass the
VP plugin validation. However, a motivation of the catalogue maintainers could be to
include as many examples of OntoUML models despite some having (minor) issues. In this
case, an improvement could be to add a flag to the model metadata in the catalogue on
whether this model passes the VP plugin validation, which can be used by users to filter
models if they need to.

92

Appendix A

Statistics on OntoUML stereotypes

Table A.1: The occurrence count of class stereotypes in the OntoUML Model Catalog.

kind 136 1843 True

relator 125 1405 True

role 116 2180 True

subkind 116 2215 True

category 96 611 True

roleMixin 65 571 True

mode 63 552 True

collective 58 184 True

phase 56 383 True

event 49 447 True

quality 42 215 True

null 34 786 False

datatype 34 118 True

type 26 212 True

mixin 23 85 True

situation 19 78 True

quantity 13 45 True

enumeration 9 69 True

phaseMixin 8 20 True

object 3 5 False

historicalRoleMixin 3 9 True

historicalRole 3 22 True

disposition 3 7 False

Stereotype Occurs in # projects Total occurrences Valid stereotype

Continued on next page

93

Table A.1: The occurrence count of class stereotypes in the OntoUML Model Catalog.
(Continued)

nonPerceivableQuality 2 2 False

participation 2 18 False

proposition 2 5 False

abstract 2 2 True

stringNominalStructure 2 2 False

Goal 1 951 False

Document 1 48 False

Resource 1 9 False

Plan 1 15 False

Softgoal 1 18 False

Actor boundary 1 7 False

Normative Description 1 6 False

Actor 1 64 False

Normative Document 1 85 False

CQ 1 217 False

atomic event 1 4 False

NonPerceivableQuality 1 5 False

processual role 1 7 False

material relation 1 3 False

Proposition 1 3 False

Agent 1 2 False

commitment 1 2 False

trope 1 4 False

Complex Event 1 2 False

set 1 2 False

TimePoint 1 2 False

UFO-C 1 2 False

abstract individual 1 1 False

Activity 1 1 False

agent 1 1 False

belief 1 1 False

ComplexAction 1 1 False

ComplexEvent 1 1 False

Stereotype Occurs in # projects Total occurrences Valid stereotype

Continued on next page

94

Table A.1: The occurrence count of class stereotypes in the OntoUML Model Catalog.
(Continued)

endurant 1 1 False

goal 1 1 False

HumanAgent 1 1 False

InstitutionalAgent 1 1 False

intention 1 1 False

MentalMode 1 1 False

Organization 1 1 False

Processual Role 1 1 False

quale 1 1 False

quality dimension 1 1 False

quality structure 1 1 False

service 1 1 False

UFO-B 1 1 False

viewpoint 1 1 False

Stereotype Occurs in # projects Total occurrences Valid stereotype

95

Appendix B

Automated validation on OntoUML
model catalogue models

B.1 Specification of execution environment

Table B.1: Specifications of the execution environment used to execute the On-
toUML to Java transformation.

Operating System Windows 11 x64

Processor 13th Gen Intel Core i7-12700H, 2400 Mhz, 14 Cores, 20 Logical Processors

Memory (RAM) 32 GB

Java JDK graalvm-jdk-21.0.2

B.2 Results

This section lists the results of the performed automated validation on models from the
OntoUML model catalogue. Table B.2 shows the results for the 79 models that successfully
went through the entire transformation and thus yielded Java code. The column # Classes
contains the size of each model in number of classes. The column Time contains the
measured execution time of the transformation in seconds. The column ATL warnings
contains the warnings that were given during the ATL transformation, these are further
described in Section 6.2.3. The column Compiles indicates whether the generated Java
code could be compiled.

Table B.3 shows the different kinds of compile errors that occurred for the 24 models
that generated faulty Java code. The column Compile error category contains the type of
compile error that occurred, the four possible categories are explained in Section 6.2.3. The
column Error detail gives information where in the generated code the error occurs. For
the categories Multiple class inheritance present and Reserved keyword name, the name
of the class in which the error occurs is included. For the categories Duplicate variable
definition and Cannot override from super, the name of the attribute/variable as well as
the class is included.

96

Table B.2: Transformation results for the 79 models that successfully pass the transforma-
tion.

aguiar2018rdbs-o 43 16.05 True

aguiar2019ooco 56 16.26 False

bank-account2013 18 15.94 Contains property without type True

bank-model 23 16.06 Contains property without type True

barcelos2013normative-
acts

45 16.22 Contains property without type True

barcelos2015transport-
networks

487 20.99 Contains property without type True

barros2020programming 12 15.81 True

bernasconi2023fair-
principles

46 16.32 True

brazilian-
governmental-
organizational-
structures

15 15.91 True

buchtela2020connection 19 16.05 True

buridan-
ontology2021

54 16.44 Contains property without type False

carolla2014campus-
management

17 16.07 True

castro2012cloudvul-
nerability

32 16.2 True

cgts2021sebim 29 16.07 Contains property without type True

clergy-ontology 29 16.24 True

construction-
model

13 15.84 True

demori2023miscon 31 16.09 False

digitaldoctor2022 48 16.51 Contains property without type False

elikan2018brand-
identity

30 16.22 False

eu-rent-
refactored2022

66 16.53 Contains property without type True

experiment2013 22 16.05 True

formula-one2023 26 16.11 True

fraller2019abc 39 16.26 Contains property without
type, Contains empty string

False

Model # Classes Time (s) ATL warnings Compiles

Continued on next page

97

Table B.2: Transformation results for the 79 models that successfully pass the transforma-
tion. (Continued)

fumagalli2022criminal-
investigation

10 16.01 True

g809-2015 24 16.1 True

genealogy2013 8 15.89 True

gomes2022digital-
technology

19 16.03 False

guarino2016value 18 16.18 True

haridy2021egyptian-
e-government

32 16.18 True

health-
organizations

24 16.0 True

idaf2013 46 17.27 False

internal-
affairs2013

61 16.93 True

internship 26 16.47 Contains property without type True

it-infrastructure 31 16.58 False

jacobs2022sdpontology 34 16.59 Contains property without type False

junior2018o4c 11 16.22 Contains property without type False

khantong2020ontology 30 16.96 True

laurier2018rea 23 16.57 True

library 43 16.84 False

machacova2023gym 41 16.67 Contains property without type True

martinez2013human-
genome

10 16.27 True

music-ontology 42 16.97 Contains GeneralizationSet,
Contains property without type

False

neves2021grain-
production

18 16.3 True

online-mentoring 29 16.48 True

pereira2015doacao-
orgaos

25 16.48 True

pereira2020ontotrans 35 16.57 False

photography 18 16.27 False

plato-
ontology2019

73 17.08 Contains property without type False

Model # Classes Time (s) ATL warnings Compiles

Continued on next page

98

Table B.2: Transformation results for the 79 models that successfully pass the transforma-
tion. (Continued)

project-
assets2013

19 16.55 Contains property without type True

project-
management-
ontology

14 16.38 True

public-expense-
ontology2020

42 16.77 True

public-
organization2013

46 16.91 False

public-tender 71 17.34 Contains property without type False

qam 41 16.95 True

ramirez2015userfeedback 50 17.04 True

real-estate-
ontology

15 16.48 True

recommendation-
ontology

18 16.49 Contains property without type True

road-
accident2013

15 16.32 Contains property without type True

rocha2023ciencia-
aberta

24 16.41 True

santos2020valuenetworks 15 16.69 True

scientific-
experiment2013

20 16.5 True

scientific-
publication2013

55 16.83 Contains property without type True

short-
examples2013

35 16.78 True

silva2012itarchitecture 84 17.35 Contains property without type True

silva2021sebim 42 16.77 Contains property without type False

silveira2021oap 32 16.77 True

social-contract 33 16.59 True

social-
contracts2013

33 16.6 True

sousa2022triponto 44 16.87 True

srro-ontology 20 16.47 Contains property without type False

stock-broker2021 14 16.57 True

Model # Classes Time (s) ATL warnings Compiles

Continued on next page

99

Table B.2: Transformation results for the 79 models that successfully pass the transforma-
tion. (Continued)

telecom-
equipment2013

34 16.79 True

tender2013 84 17.1 Contains property without type True

tourbo2021 49 16.84 Contains property without type False

university-
ontology

32 16.65 False

valaski2020medical-
appointment

7 16.53 True

zanetti2019orm-o 34 16.79 False

zhou2017hazard-
ontology-robotic-
strolling

13 16.78 True

zhou2017hazard-
ontology-train-
control

25 16.69 False

Model # Classes Time (s) ATL warnings Compiles

Table B.3: Compile error category per model.

aguiar2019ooco Multiple class inheritance present AbstractClass

buridan-
ontology2021

Multiple class inheritance present MaterialSupposition

demori2023miscon Reserved keyword name CommDevice

digitaldoctor2022 Multiple class inheritance present DiagnosticProcedure

elikan2018brand-
identity

Duplicate variable definition variable members in Stakeholders

fraller2019abc Duplicate variable definition variable activityLevel in Activity

gomes2022digital-
technology

Duplicate variable definition variable technicalIdentityOfObjects
in TechnicalIdentityOfObject

idaf2013 Duplicate variable definition variable members in TechnicalAdm-
nistrativeSupport

it-infrastructure Duplicate variable definition variable members in ITTeam

jacobs2022sdpontology Duplicate variable definition variable role in BusinessRole

junior2018o4c Duplicate variable definition variable relationship in Concern

library Duplicate variable definition variable members in Collection

Model Compile error category Error detail

Continued on next page

100

Table B.3: Compile error category per model. (Continued)

music-ontology Cannot override from super attribute getMembers in classes Mu-
sicalGroup and ArtisticGroup

pereira2020ontotrans Duplicate variable definition variable getHelp in Informativeness

photography Duplicate variable definition variable members in Archive

plato-
ontology2019

Duplicate variable definition variable members in ProducerPer-
son

public-
organization2013

Duplicate variable definition variable members in ApoioTecni-
coAdministrativo

public-tender Duplicate variable definition variable getPublication in TenderIn-
CallForTender

silva2021sebim Duplicate variable definition variable lightAnalysis in Construc-
tion

srro-ontology Reserved keyword name ClassTestCase

tourbo2021 Duplicate variable definition variable create in Plan

university-
ontology

Reserved keyword name ClassEnrollment

zanetti2019orm-o Reserved keyword name EntityClass

zhou2017hazard-
ontology-train-
control

Duplicate variable definition variable provider in Communication

Model Compile error category Error detail

B.3 Cause of ’duplicate variable definition’ compilation error

Section 6.2.3 describes the occurrence of a compilation error that might occur in code
that is generated with the OntoUML-to-implementation-model transformation. This sec-
tion describes the causes of this issue for seven models which did were not described in
Section 6.2.3.

B.3.1 Duplicate relation end names

Four of the models contained classes that have two or more relations that have the same
outgoing relation end name. This results in classes being generated for these OntoUML
types that contain multiple references with the same name.

gomes2022digital-technology Figure B.1 displays a section of the gomes2022digital-
technology model. In the generated code of the Technical Identity of Object relator, a
duplicate variable is defined with the name technicalIdentityOfObjects. At first glance, the
included image of the model (the upper part of Figure B.1) does not make clear where this
variable originates from. However, when having a closer look at the relation properties of
the physical form and social funtion relations, both have a relation end name ’technical
Identity of Objects’ which is the cause of this duplicate variable appearing in the generated
code (as can be seen in the lower part of Figure B.1).

101

Figure B.1: Fragment of the gomes2022digital-technology model along with the
properties of two relation ends, indicating duplicate property names.

It should be noted that there seems to be a mismatch between the included image of
this model in the OntoUML model catalogue and the included JSON file, as these relation
end names are not visible in the image. Furthermore, the Technical Identity of Object has
the invalid stereotype relatorKind in the image while the correct stereotype relator is used
in the JSON file.

tourbo2021 Figure B.2 displays part of the tourbo2021 model. In this case, the relator
plan has two relations that both have a relation end named ’create’. In the image of
the diagram included in the model catalogue, the name of this relation end seems to be
moved towards the place where normally the relation name would be. However, the JSON
indicates that these names actually belong to the relation end properties, as indicated by
the red dashed lines added in Figure B.2.

Pereira2020ontotrans Figure B.3 displays part of the pereira2020ontotrans model,
which shows a roleMixin Informativeness that is connected to many other classes with
relations. All relations seem to be called ’help’, however, when looking into the included
JSON file, two of these names are attached to the relation end properties, namely those
for the classes Correctness and Consistency (these are highlighted in Figure B.3).

public-tender Figure B.4 displays part of the public-tender model. The role Tender in
Call for Tender is related to the relator Call for Tender publication of which the relation
end has the name ’publication’. Furthermore, the roleMixin Publication Context is related
to the relator Publication also with a relation end named ’publication’.

As Tender in Call for Tender specializes the roleMixin Publication Context, in the
resulting implementation model, the reference publication from Publication Context is in-
herited by Tender in Call for Tender, which in turn results in a duplicate method definition
in the generated code.

B.3.2 Duplicate relations not visible in the diagram images

In two models, constructs occurred in which multiple relations are present between two
classes corresponding to the limitation of the transformation described in Section 5.2.2. In
contrast to the models junior2018o4c and fraller2019abc (as discussed in Section 6.2.3),
the models described in this section seem to unintentionally include this feature.

102

Figure B.2: Fragment of the tourbo2021 OntoUML model that displays two re-
lations with duplicate relation end names.

Figure B.3: Fragment of the pereira2020ontotrans model.

103

Figure B.4: Fragment of the public-tender OntoUML model.

plato-ontology2019 The plato-ontology2019 contains multiple images displaying vari-
ous packages of different viewpoints regarding the works of Plato. Two fragments of this
model belonging to seemingly different packages can be seen in Figure B.5. Both fragments
include the kinds HumanSoul and Reason, both with a componentOf relation connecting
them. The names listed in the top-left corner of these images (’Plato on Psychological
Constitutions’ and ’Plato on 4 virtues’) seem to indicate that these kinds are part of dif-
ferent packages. E.g., a distinct occurrence of HumanSoul exists in the package ’Plato on
Psychological Constitutions’ as well as in ’Plato on 4 virtues’. However, the JSON file
included for this model does not separate these classes into different packages.

The result is that the JSON contains only one occurrence of both HumanSoul and
Reason but still contains two separate componentOf relations connecting these classes.

silva2021sebim The model silva2021sebim seems to contain a similar issue. Figure B.6
displays a part of this model, in which the relation between the classes LightAnalysis and
Construction is highlighted. In this image of the diagram included in the model catalogue,
only one relation between these classes is visible. However, the JSON file contains two
instances of this relation.

A possible explanation for this is that the creator of the model at one point deleted

(a) Caption (b)

Figure B.5: Two fragments showing of the plato-ontology2019 model showing
multiple occurrences of the kinds HumanSoul and Reason which seemingly are
located in different packages.

104

Figure B.6: Fragment of the silva2021sebim model in which an relation that is
included twice in the JSON file is highlighted.

this relation from the diagram, but not from the underlying model repository1. At a later
point, the creator might have decided the relation should be present and thus added a new
relation with as result that the underlying model contains two instances of that relation.

B.3.3 Special case of the train-control ontology

The zhou2017hazard-ontology-train-control model, of which an image is displayed in Fig-
ure B.7, is a bit of a special case. Seemingly, multiple classes with the same name appear,
such as the relator Communication and the role Provider. In the included JSON file, there
is only one instance of each of these classes, which is expected as Visual Paradigm requires
different classes to have unique names. However, the image also displays two relations be-
tween Communication and Provider which occur at two separate places. These relations
are included as two distinct relations in the JSON file, thus resulting in a duplicate relation
between these two classes.

Besides this, the model is also considered invalid as the roles do not specialize sortals,
and thus this model would also not pass the validation check by the OntoUML VP plugin.

1When deleting a model element in Visual Paradigm which does not appear in another diagram, the
user is asked whether to delete the model element only from the diagram or also from the underlying
repository.

105

Figure B.7: Fragment of the zhou2017hazard-ontology-train-control model from
the OntoUML model catalogue

106

Appendix C

Manual validation checklist

Figure C.1 and Figure C.2 include the checklist that has been used for the manual validation
of the transformation. It consists of questions that should be asked about the generated
Java code, grouped for elements that can be found in the OntoUML model. Note that one
question may apply to multiple occurrences of a specific construct in the OntoUML model.

The workflow thus is to go over every element in the OntoUML model (either class,
relation, or generalization), and find the applicable categories in the checklist. For instance,
for an OntoUML model containing a class marked with the stereotype kind, the questions
under the headers Classes in general and For identity providers should be answered. The
question is marked affirmative (i.e., ’Yes’) if it can be answered as such for every applicable
model element in the OntoUML model. The question is marked as failing (i.e., ’No’) if the
answer to the question is no for at least one element in the OntoUML model. The box does
not apply is checked in case the question is not applicable to the analysed model, which
could be the case if, for example, the model does not contain a memberOf relation.

C.1 Filled-in checklists

This section includes all the filled-in checklists for each of the validated OntoUML models.
Along with the filled-in checklist with nodes, a screenshot of the ontology with annotations
of the checked elements is included. The Java code that was generated is included on
https://github.com/GuusVink/ontouml-java-generation.

107

https://github.com/GuusVink/ontouml-java-generation

Figure C.1: First part of the validation checklist.

108

Figure C.2: Second part of the validation checklist.

109

Figure C.3: First page of the filled-in checklist for the model aguiar2018rdbs-o

110

Figure C.4: Second page of the filled-in checklist for the model aguiar2018rdbs-o

111

Figure C.5: Diagram of the aguiar2018rdbs-o model annotated for manual vali-
dation

112

Figure C.6: First page of the filled-in checklist for the model bank-account2013.

113

Figure C.7: Second page of the filled-in checklist for the model bank-account2013.

114

Figure C.8: Diagram of the bank-account2013 model annotated for manual vali-
dation.

115

Figure C.9: First page of the filled-in checklist for the model bank-model.

116

Figure C.10: Second page of the filled-in checklist for the model bank-model.

117

Figure C.11: Diagram of the bank-model model annotated for manual validation.

118

Figure C.12: First page of the filled-in checklist for the model
barcelos2013normative-acts.

119

Figure C.13: Second page of the filled-in checklist for the model
barcelos2013normative-acts.

120

Figure C.14: First part of the barcelos2013normative-acts model annotated for
manual validation.

Figure C.15: Second part of the barcelos2013normative-acts model annotated for
manual validation.

Figure C.16: Third part of the barcelos2013normative-acts model annotated for
manual validation.

Figure C.17: Fourth part of the barcelos2013normative-acts model annotated for
manual validation.

121

Figure C.18: Fifth part of the barcelos2013normative-acts model annotated for
manual validation.

122

Figure C.19: First page of the filled-in checklist for the model bar-
ros2020programming.

123

Figure C.20: Second page of the filled-in checklist for the model bar-
ros2020programming.

124

Figure C.21: Diagram of the barros2020programming model annotated for man-
ual validation.

125

Appendix D

Online code repositories

The EMF project including the Ecore metamodel, ATL transformation, and Acceleo code
generation are published at https://github.com/GuusVink/ontouml-java-generation. The
other Python scripts used for both analysing the OntoUML model catalogue and executing
and analysing the automated validation are published at https://github.com/GuusVink/
GeneratingJavaFromOntoUML-auxiliary. Both repositories include README files with
further information.

126

https://github.com/GuusVink/ontouml-java-generation
https://github.com/GuusVink/GeneratingJavaFromOntoUML-auxiliary
https://github.com/GuusVink/GeneratingJavaFromOntoUML-auxiliary

Appendix E

OntoUML limitations and
ambiguities

This section contains references to the parts of the report that contain limitations or ambi-
guities found in OntoUML. These limitations/ambiguities vary in the degree of seriousness;
some may be known and considered less important and others may be good to address in
documentation.

Whether roles should always be associated with relators Section 3.3.2 describes
that we assume that roles may be defined that are not associated with relators. However,
some literature and documentation suggest that this should be the case.

Roles without relators might not be invalid, but rather incomplete models.

SubCollectionOf relation In the transformation of collectives as described in Sec-
tion 3.3.1 and the implemented transformation as described in Section 5.3, we assume,
based on OntoUML literature, that collectives may only have one memberOf relation.

Besides the memberOf relation, the online documentation lists another stereotype re-
lating to collectives, namely subCollectionOf (also included in the VP plugin). However,
this relation is not described in the OntoUML/UFO literature [18]. Even more so, we see
consistency issues in the usage of this relation stereotype provided that our assumption of
one memberOf relation is correct.

The subCollectionOf stereotype seems to imitate the subQuantityOf relation described
in [17]1. The subCollectionOf relation is bound to weak supplementation (according to
the online documentation), meaning there should be at least two subcollections if one
subcollection is present [17, 18]. This seems to contradict the fact that collectives may
only have members that play the same role within the collective [18]; how else is the
distinction between two subcollections relevant if they do not play the same role?

Considering that the subCollectionOf relation is not described in literature, as well
as that it seems inconsistent with our memberOf assumption, we decided to ignore this
relation for our transformation. We think it would be good to better specify these relations
in an OntoUML specification as well as to add constraints relating these constructs to the
VP plugin model validation.

Defining the values of qualities As described in Section 3.3.4, there seems to be
no consistent method to define the possible values for qualities (e.g., a height quality

1Note that quantities are not covered by our transformation.

127

measured in centimeters or inches). The online documentation suggests a structuration
relation although such a relation is not available in the VP plugin.

Dynamic aspects of modes In the transformation of modes as described in Sec-
tion 3.3.4, we mark only one end of the characterization association final in the generated
implementation model. Here we are not certain about the intended OntoUML/UFO se-
mantics regarding whether instances of a mode may cease to exist, or conversely, whether
they can be instantiated at any point in time.

Section 3.3.4 describes this ambiguity we experienced with a more concrete example.
It could be valuable to specify this in an OntoUML specification.

Other recommendations Other recommendations for the OntoUML tools are dis-
cussed in Section 9.3, these apply more to the transformation we implemented in this
research.

128

Bibliography

[1] Stefano Borgo, Antony Galton, and Oliver Kutz. Foundational ontologies in action.
Applied Ontology, 17(1):1–16, 3 2022. doi:10.3233/ao-220265.

[2] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-driven software en-
gineering in practice. Morgan & Claypool Publishers, 2017. doi:10.1007/
978-3-031-02549-5.

[3] Roberto Carrareto. Separating ontological and informational concerns: a model-driven
approach for conceptual modelling. Master’s thesis, Federal University of Espírito
Santo, 2012.

[4] Roberto Carraretto and João Paulo A. Almeida. Separating ontological and infor-
mational concerns: Towards a two-level model-driven approach. In 2012 IEEE 16th
International Enterprise Distributed Object Computing Conference Workshops, pages
29–37, 2012. doi:10.1109/EDOCW.2012.14.

[5] Thomas Derave, Tiago Prince Sales, Frederik Gailly, and Geert Poels. A method for
ontology-driven minimum viable platform development. Lecture Notes in Business
Information Processing, 450:253 – 266, 2022. Cited by: 1; All Open Access,
Green Open Access. URL: https://www.scopus.com/inward/record.uri?eid=
2-s2.0-85131327116&doi=10.1007%2f978-3-031-07475-2_17&partnerID=40&
md5=80d4753c9763fde23e9cc55c4faa34e4, doi:10.1007/978-3-031-07475-2_17.

[6] Ricardo Falbo. Sabio: Systematic approach for building ontologies. CEUR Workshop
Proceedings, 1301, 01 2014.

[7] Daniel Garijo and Maximiliano Osorio. Oba: An ontology-based framework for creat-
ing rest apis for knowledge graphs. In The Semantic Web–ISWC 2020: 19th Interna-
tional Semantic Web Conference, Athens, Greece, November 2–6, 2020, Proceedings,
Part II 19, pages 48–64. Springer, 2020.

[8] Object Management Group. Model driven architecture (mda) rev. 2.0. Technical
report, Object Management Group, 2014. URL: https://www.omg.org/cgi-bin/
doc?ormsc/14-06-01.

[9] Object Management Group. Unified modeling language (uml), v2.5.1. Technical
report, Object Management Group, 2017. URL: https://www.omg.org/spec/UML/
2.5.1/About-UML.

[10] Object Management Group. Meta object facility (mof) core specification, v2.5.1.
Technical report, Object Management Group, 2019. URL: https://www.omg.org/
spec/MOF/2.5.1.

129

https://doi.org/10.3233/ao-220265
https://doi.org/10.1007/978-3-031-02549-5
https://doi.org/10.1007/978-3-031-02549-5
https://doi.org/10.1109/EDOCW.2012.14
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85131327116&doi=10.1007%2f978-3-031-07475-2_17&partnerID=40&md5=80d4753c9763fde23e9cc55c4faa34e4
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85131327116&doi=10.1007%2f978-3-031-07475-2_17&partnerID=40&md5=80d4753c9763fde23e9cc55c4faa34e4
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85131327116&doi=10.1007%2f978-3-031-07475-2_17&partnerID=40&md5=80d4753c9763fde23e9cc55c4faa34e4
https://doi.org/10.1007/978-3-031-07475-2_17
https://www.omg.org/cgi-bin/doc?ormsc/14-06-01
https://www.omg.org/cgi-bin/doc?ormsc/14-06-01
https://www.omg.org/spec/UML/2.5.1/About-UML
https://www.omg.org/spec/UML/2.5.1/About-UML
https://www.omg.org/spec/MOF/2.5.1
https://www.omg.org/spec/MOF/2.5.1

[11] Thomas R Gruber. A translation approach to portable ontology specifications. Knowl-
edge acquisition, 5(2):199–220, 1993.

[12] Nicola Guarino. Formal ontology in information systems. In Proceedings of the First
International Conference(FOIS’98), June 6-8, Trento, Italy, 1998. URL: https://
ci.nii.ac.jp/ncid/BA41968178.

[13] Gustavo L Guidoni, João Paulo A Almeida, and Giancarlo Guizzardi. Transformation
of ontology-based conceptual models into relational schemas. In Conceptual Model-
ing: 39th International Conference, ER 2020, Vienna, Austria, November 3–6, 2020,
Proceedings 39, pages 315–330. Springer, 2020.

[14] Gustavo L Guidoni, João Paulo A Almeida, and Giancarlo Guizzardi. Preserving
conceptual model semantics in the forward engineering of relational schemas. Frontiers
in Computer Science, 4:1020168, 2022.

[15] Giancarlo Guizzardi. Ontological foundations for structural conceptual models. Phd
thesis - research ut, graduation ut, University of Twente, October 2005.

[16] Giancarlo Guizzardi. Agent roles, qua individuals and the counting problem. In
Alessandro Garcia, Ricardo Choren, Carlos Lucena, Paolo Giorgini, Tom Holvoet,
and Alexander Romanovsky, editors, Software Engineering for Multi-Agent Systems
IV, pages 143–160, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[17] Giancarlo Guizzardi. On the representation of quantities and their parts in conceptual
modeling. In Frontiers in Artificial Intelligence and Applications, volume 209, pages
103–116, 2010. doi:10.3233/978-1-60750-534-1-103.

[18] Giancarlo Guizzardi. Representing Collectives and Their Members in UML Concep-
tual Models: An Ontological Analysis, page 265–274. Springer Berlin Heidelberg,
2010. URL: http://dx.doi.org/10.1007/978-3-642-16385-2_33, doi:10.1007/
978-3-642-16385-2_33.

[19] Giancarlo Guizzardi. Ontological patterns, anti-patterns and pattern languages for
next-generation conceptual modeling. In Conceptual Modeling: 33rd International
Conference, ER 2014, Atlanta, GA, USA, October 27-29, 2014. Proceedings 33, pages
13–27. Springer, 2014.

[20] Giancarlo Guizzardi, Alessander Botti Benevides, Claudenir M Fonseca, Daniele
Porello, João Paulo A Almeida, and Tiago Prince Sales. Ufo: Unified foundational
ontology. Applied ontology, 17(1):167–210, 2022.

[21] Giancarlo Guizzardi, Claudenir M Fonseca, João Paulo A Almeida, Tiago Prince Sales,
Alessander Botti Benevides, and Daniele Porello. Types and taxonomic structures in
conceptual modeling: a novel ontological theory and engineering support. Data &
Knowledge Engineering, 134:101891, 2021.

[22] Hele-Mai Haav. A comparative study of approaches of ontology driven soft-
ware development. Informatica (Netherlands), 29(3):439 – 466, 2018. Cited
by: 3. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.
0-85066799183&doi=10.15388%2fInformatica.2018.175&partnerID=40&md5=
3f8675e33d5f11b800b2ae95d42836db, doi:10.15388/Informatica.2018.175.

130

https://ci.nii.ac.jp/ncid/BA41968178
https://ci.nii.ac.jp/ncid/BA41968178
https://doi.org/10.3233/978-1-60750-534-1-103
http://dx.doi.org/10.1007/978-3-642-16385-2_33
https://doi.org/10.1007/978-3-642-16385-2_33
https://doi.org/10.1007/978-3-642-16385-2_33
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066799183&doi=10.15388%2fInformatica.2018.175&partnerID=40&md5=3f8675e33d5f11b800b2ae95d42836db
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066799183&doi=10.15388%2fInformatica.2018.175&partnerID=40&md5=3f8675e33d5f11b800b2ae95d42836db
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066799183&doi=10.15388%2fInformatica.2018.175&partnerID=40&md5=3f8675e33d5f11b800b2ae95d42836db
https://doi.org/10.15388/Informatica.2018.175

[23] Hans-Jörg Happel and Stefan Seedorf. Applications of ontologies in software engineer-
ing. In Proc. of Workshop on Sematic Web Enabled Software Engineering"(SWESE)
on the ISWC, pages 5–9. Citeseer, 2006.

[24] Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F Patel-Schneider, and Sebastian
Rudolph. OWL 2 Web Ontology Language Primer (Second Edition), 2012. URL:
https://www.w3.org/TR/2012/REC-owl2-primer-20121211/.

[25] Thomas Hofweber. Logic and Ontology. In Edward N. Zalta and Uri Nodelman,
editors, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford
University, Summer 2023 edition, 2023.

[26] Olavo Holanda, Seiji Isotani, Ig Ibert Bittencourt, Endhe Elias, and Thyago
Tenório. Joint: Java ontology integrated toolkit. Expert Systems with
Applications, 40(16):6469 – 6477, 2013. Cited by: 15. URL: https:
//www.scopus.com/inward/record.uri?eid=2-s2.0-84879515691&doi=10.1016%
2fj.eswa.2013.05.040&partnerID=40&md5=a7a30ca9b9c69a92cd7ec36f74ac60eb,
doi:10.1016/j.eswa.2013.05.040.

[27] Frédéric Jouault and Ivan Kurtev. Transforming models with atl. In Jean-Michel
Bruel, editor, Satellite Events at the MoDELS 2005 Conference, pages 128–138, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg.

[28] C Maria Keet. An introduction to ontology engineering. University of Cape Town,
2018.

[29] Robert C Martin. UML for Java programmers. Prentice Hall PTR, 2003.

[30] Jeff Z Pan, Steffen Staab, Uwe Aßmann, Jürgen Ebert, and Yuting Zhao. Ontology-
driven software development. Springer Science & Business Media, 2012.

[31] Ken Peffers, Tuure Tuunanen, Marcus A Rothenberger, and Samir Chatterjee. A
design science research methodology for information systems research. Journal of
management information systems, 24(3):45–77, 2007.

[32] Robert Pergl, Tiago Prince Sales, and Zdeněk Rybola. Towards ontouml for software
engineering: from domain ontology to implementation model. In Model and Data
Engineering: Third International Conference, MEDI 2013, Amantea, Italy, September
25-27, 2013. Proceedings 3, pages 249–263. Springer, 2013.

[33] Michaël Verdonck, Frederik Gailly, Robert Pergl, Giancarlo Guizzardi, Beatriz Mar-
tins, and Oscar Pastor. Comparing traditional conceptual modeling with ontology-
driven conceptual modeling: An empirical study. Information Systems, 81:92–103,
2019.

[34] Jan Vom Brocke, Alan Hevner, and Alexander Maedche. Introduction to design science
research. Design science research. Cases, pages 1–13, 2020.

[35] Manuel Wimmer and Martina Seidl. On using uml profiles in atl transformations.
In Proceedings of the 1st International Workshop on Model Transformation with ATL
(MtATL’09), 2009. URL: http://hdl.handle.net/20.500.12708/52722.

[36] Yongjie Zheng and Richard N Taylor. A classification and rationalization of model-
based software development. Software & Systems Modeling, 12:669–678, 2013.

131

https://www.w3.org/TR/2012/REC-owl2-primer-20121211/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84879515691&doi=10.1016%2fj.eswa.2013.05.040&partnerID=40&md5=a7a30ca9b9c69a92cd7ec36f74ac60eb
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84879515691&doi=10.1016%2fj.eswa.2013.05.040&partnerID=40&md5=a7a30ca9b9c69a92cd7ec36f74ac60eb
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84879515691&doi=10.1016%2fj.eswa.2013.05.040&partnerID=40&md5=a7a30ca9b9c69a92cd7ec36f74ac60eb
https://doi.org/10.1016/j.eswa.2013.05.040
http://hdl.handle.net/20.500.12708/52722

	Introduction
	Motivation
	Research objective
	Methodology
	Report structure

	Background
	Ontologies
	Ontology languages
	Foundational Ontologies
	OntoUML
	Unified Foundational Ontology

	Model-Driven Engineering
	Models and metamodels
	Model transformations

	Transformation design
	OntoUML stereotypes to be covered
	Scraping the OntoUML Model Catalogue
	Stereotype frequency
	Final selection of stereotypes

	Implementation model
	Final properties
	Visualisation of isLeaf attribute

	Transformation design of OntoUML types
	Substantial types
	Base sortals
	Non-sortals
	Moment types

	Integration of OntoUML in EMF
	OntoUML Ecore metamodel
	Classes
	Relations
	Properties
	Generalizations

	Differences with existing OntoUML metamodels
	Differences due to different metametamodels
	Differences in metamodel due to output of OntoUML VP-plugin

	OntoUML JSON Reader
	Differences between EMFJSON and OntoUML

	Transformation implementation
	Transformation implementation in ATL
	Utility libraries
	Main module
	Other design decisions

	Transformation limitations
	Phases in generalization sets
	Multiple relations between two classes

	Assumptions on the source model
	Custom ATL warnings

	Java code generation
	Configuration of the code generation
	Fixed bugs
	Other design decisions

	Transformation chain implementation

	Validation
	Full transformation example
	Transformation of OntoUML models from the catalogue
	Methodology
	Results
	Analysis of the fault modes
	Performance analysis

	Manual validation

	Related work
	Generation of relational schemas
	Generation of information model
	From domain ontology to implementation model

	Discussion
	Alignment of OntoUML tools
	Improving the validation
	Generating code for other languages
	Using Papyrus to generate code from UML
	Defining a new Acceleo UML-to-X transformation
	The platform-independence of the implementation model

	Implementation model with UML Profile
	UML Profile in an ATL transformation

	Persisting data for a generated application

	Conclusion
	Contributions
	Future work
	Recommendations
	Alignment of OntoUML tools
	Extended model validation
	Missing property values in the OntoUML JSON file
	Selection criteria OntoUML model catalogue

	Statistics on OntoUML stereotypes
	Automated validation on OntoUML model catalogue models
	Specification of execution environment
	Results
	Cause of 'duplicate variable definition' compilation error
	Duplicate relation end names
	Duplicate relations not visible in the diagram images
	Special case of the train-control ontology

	Manual validation checklist
	Filled-in checklists

	Online code repositories
	OntoUML limitations and ambiguities

