
MSc Computer Science
Final Project

The State of
Multi-Objective Model Checking

Mark van Wijk

Committee:
dr. Arnd Hartmanns
dr. ir. Pieter-Tjerk de Boer

November, 2024

Department of Computer Science
Faculty of Electrical Engineering,
Mathematics and Computer Science,
University of Twente

The State of Multi-Objective Model Checking

Mark van Wijk

University of Twente, The Netherlands

Abstract. Probabilistic model checkers can be used to formally verify
the behaviour of a system. We can analyse a quantitative property like
the chance of success, the expected costs, or uptime of a system. Al-
though traditionally only one property is considered at the same time,
in most real-life processes multiple properties influence each other. For
example, the highest expected uptime of a system might be dispropor-
tionately expensive. Therefore, we focus on multi-objective probabilistic
model checking, which allows us to consider the trade-offs between sev-
eral properties. Since model checkers are used to analyse safety-critical
processes such as space travel, it is important that they are reliable.
Our research aims at assessing and improving the state of probabilistic
model checkers. We show that there are several mistakes in state-of-the-
arts model checkers. We then show the origins of these mistakes and
solve most of them. We then replicate the most common multi-objective
model checking papers using the Modest Toolset to investigate the va-
lidity of these algorithms. We found several mistakes and curiosities in
the replicated papers.

Table of Contents

1 Introduction . 5
1.1 Related Work . 6
1.2 Origin Of Work . 7
1.3 Contributions . 7

2 Background . 8
2.1 Notation . 8
2.2 Markov Decision Process . 9
2.3 Path . 11
2.4 Strategy. 12
2.5 Rewards . 15

2.5.1 Reward-structures . 15
2.5.2 Properties . 17

2.6 Probabilistic Reachability . 20
2.7 Value Iteration . 20
2.8 Linear Programming . 22
2.9 End Component . 23
2.10 Linear Temporal Logic . 24

3 Multi-Objective Properties . 27
3.1 Definitions . 27
3.2 Tool Support . 30

3.2.1 Value Iteration . 30
3.2.2 Linear Programming . 31

4 Mistakes In Existing Model Checkers . 31
4.1 Approach . 32

4.1.1 Approximation . 32
4.1.2 Models . 33

4.2 Infinite Cumulative Reward . 34
4.3 Results . 35

4.3.1 PRISM’s Non-Monotic Behaviour . 35
4.3.2 PRISM’s Problem Using Linear Programming 38
4.3.3 Storm’s Problem Using Linear Programming 40
4.3.4 ePMC’s Problem Using Value Iteration 40
4.3.5 Storm’s Segmentation Fault . 42
4.3.6 ePMC’s NullPointerException . 42

5 Solutions To Mistakes In Existing Model Checkers 42
5.1 Storm . 43

5.1.1 Segmentation Fault . 43
5.1.2 Problem Using Linear Programming . 43

5.2 PRISM . 44
5.2.1 Problem Using Linear Programming . 44

5.3 ePMC . 44
5.3.1 NullPointerException . 45

4 M. van Wijk

5.3.2 Unachievable Numerical Queries . 45
5.3.3 Problem Using Value Iteration . 45

5.4 Status . 46
6 Infinite Cumulative Rewards . 46

6.1 Existing Approaches . 47
6.2 Our Approach . 49

7 Multi-Objective Model Checking Algorithms . 49
7.1 Value Iteration Approach . 50

7.1.1 Intuition . 50
7.1.2 Convexity . 53
7.1.3 Affine Hyperplane . 55
7.1.4 Affine Subspace . 57
7.1.5 Convex Hull . 62
7.1.6 Downward Closure . 67
7.1.7 Pareto Query . 69
7.1.8 Value Iteration Algorithm . 71
7.1.9 Multi-Objective Achievability Query . 73
7.1.10 Separating Hyperplane . 74
7.1.11 Multi-Objective Numerical Query . 75
7.1.12 Maximal Downward Closure . 77

7.2 Linear Programming Approach . 78
7.2.1 Construct MDP . 79
7.2.2 Algorithm. 81

8 Replication Of Most Prevalent Papers . 83
8.1 Value Iteration . 84
8.2 Linear Programming . 85
8.3 Floating-Point Values . 85
8.4 Infinity . 86
8.5 LTL Properties . 86

9 Experimental Validation . 86
9.1 Approach . 87
9.2 Results . 87

9.2.1 Storm . 87
9.2.2 PRISM . 87
9.2.3 ePMC . 89
9.2.4 Our implementation . 89

10 Conclusion . 90
10.1 RQ1 Which mistakes are present in existing model checkers? 90
10.2 RQ2 What is the origin of the mistakes in existing model

checkers? . 91
10.3 RQ3 Which mistakes are present in multi-objective model

checking theory? . 91
10.4 RQ4 How should invalid models be treated? 91
10.5 Future Research . 92

References . 93
A Notation . 99

The State of Multi-Objective Model Checking 5

1 Introduction

Imagine sending a Mars rover on a mission with limited battery life, where
each decision could mean mission success or failure. How do you ensure optimal
performance while managing various risks? As is common in such cases, we start
by modelling the underlying process. In order to do so, we need to determine
the nondeterministic choices we can make, such as whether to drive to a crater
or to stay still and collect solar power. Moreover, we need to determine the
probabilities of the outcomes for each of the choices, such as the rover crashing.
When we do this, the process can be modelled using a Markov decision process
(MDP) [43,64].

By modelling processes as MDPs, we can analyse the behaviour of the mod-
elled process. We can address quantitative questions such as “what is the prob-
ability that a robot will successfully hand over an item?” [71] or “what is the
minimum cost of an attack on a smart grid?” [9]. Quantitative questions are so
fundamental in probabilistic model checking that they have their own name. We
will from now on refer to quantitative questions as properties.

There are several ways to evaluate properties. In this research, we will fo-
cus on probabilistic model checking. In probabilistic model checking, the entire
model is explored to compute exact results. However, when MDPs grow too large
to fully explore, it is possible to use partial exploration [51], statistical model
checking [41,74] or reinforcement learning [46]. These approaches can typically
handle much larger models, at the expense of losing some accuracy.

In addition to several ways to evaluate, we also distinguish several types of
properties. First, there are probabilistic reachability properties. These properties
express the probability of reaching a certain state, such as “what is the proba-
bility of a robot successfully handing over an item?”. The other two categories
of properties use rewards. A reward is a value given when a positive or negative
event occurs. We want to maximise a positive reward, such as the uptime of
a system, while we want to minimise a negative reward such as the costs. We
consider two types of properties: expected properties and strict properties. Ex-
pected properties calculate the expected reward. Strict properties on the other
hand, consider the highest or lowest value a reward might have. If we had the
choice of taking e90 or a probability of 0.99 to get e100, the maximum expected
reward would be e99, but the maximum strict reward would be e90. Both types
of properties have important applications. For a plane, low expected fuel con-
sumption would be beneficial for monetary reasons, but it is more critical that
fuel does not run out for safety reasons. On the other hand, a company might be
more interested in getting a high expected return on investment and less in the
maximum return it could theoretically achieve. Although strict properties have
important applications, we consider only expected properties in this paper.

So far, we have mainly considered properties with one variable. These are
single-objective properties and have been thoroughly investigated. In practice,
however, engineers often must find a balance between several variables. For
example, we might want a robot to complete as many tasks as possible, but
we also need to ensure that its battery does not run out [69]. Conventional

6 M. van Wijk

single-objective approaches cannot capture such constraints. This is where multi-
objective model checking comes in. Multi-objective model checking allows us to
find the trade-offs between several variables.

Multi-objective model checking has received less research attention than
single-objective approaches. However, several algorithms [10,28,30,36] and tools
[6,31,40,52,53] are available to evaluate multi-objective properties.

It is important that the results provided by these tools are actually correct.
Errors in model checkers are problematic, as users need to be able to trust the
results. Model checkers are used in safety-critical applications, such as space
travel [70] or medical devices [20] to formally verify their systems. Failures in
these domains can cost billions of dollars and even lives. Therefore, it is crucial
that when model checkers are used in these domains, they are accurate and
reliable.

In an attempt to guarantee the correctness of these tools, some algorithms
have been proven correct [29], but for some only parts have been proven [30]. This
is important because this means that there might be mistakes in these unproven
algorithms. For example, one of the most prevalent algorithms in probabilistic
non-multi-objective model checking was only shown to not have a reliable upper-
bound in 2014 [34]. Even if these proofs are given, classical proofs such as [30] are
error prone because they are susceptible to human error. Moreover, the actual
implementations of the algorithms have not been proven either.

Proving the correctness of probabilistic model checking algorithms using in-
teractive theorem provers [60] is more reliable [73]. However, this is still an active
area of research [39]. This means that most implementations have not yet been
proven in this way, and thus there may still be errors in the implementations.

1.1 Related Work

A benchmark of multi-objective properties on several multi-objective model
checkers was performed in [2]. This research assessed whether the speed at which
tools determined whether it was possible to achieve certain combinations of val-
ues for the given variables. However, it did not verify the accuracy of the results
of the properties. Only the speed of the tools to provide any answer was consid-
ered. In fact, some tools provided different results for the same models. However,
the research did not investigate which answers were correct.

For single-objective properties, the accuracy of probabilistic model checking
tools has been examined [37]. It was shown that there is a large difference in the
reliability and performance of different implementations.

In addition, commonly used algorithms have been shown not to always be
reliable. Value iteration, which is one of the most common algorithms used in
probabilistic model checking, has been shown to not have reliable upper bounds
[34].

An interesting approach is taken for tools that verify C and Java programs.
During the yearly SV-COMP competition, verifiers participate in a competition
where they are penalised significantly for incorrect results [27]. By doing this,
mistakes can be detected in the verifiers.

The State of Multi-Objective Model Checking 7

Efforts have also been made to provide stronger guarantees than what we can
provide with our proposed tests. There has been a start to proof the correctness
of probabilistic algorithms [39]. However, this is still an active area of research.

1.2 Origin Of Work

Before this research, we have tried to replicate a small part of a certain multi-
objective model checking paper [30]. We did this as part of the Capita Selecta
course offered by the University of Twente, in which students have to select a
research topic and write a paper about this topic.

During this preliminary research, we compared our implementation with the
existing implementation in the existing model checker PRISM [53]. In doing
this, we observed unexpected behaviour in PRISM as we will show at the start
of Section 4. We were not sure at this point whether the origin of these mistakes
was in the theory behind the model checker, or in the implementation. We did
also not know whether such mistakes were present in new tools. This also led to
other interesting observations in the types of models that cannot be evaluated,
which we will explain in Section 6.

Based on these two observations, we came up with the following research
questions:

– RQ1 Which mistakes are present in existing model checkers?
– RQ2 What is the origin of the mistakes in existing model checkers?
– RQ3 Which mistakes are present in multi-objective model checking theory?
– RQ4 How should invalid models be treated?

1.3 Contributions

Our goal with this research is to improve the state of multi-objective model
checking on three facets. First, we aim to improve the existing multi-objective
model checking tools. Next, we want to improve the current theory by highlight-
ing mistakes in existing papers and developing some of our own theory. Lastly,
we want to introduce a new multi-objective model checking tool such that more
tools can be compared to each other to find mistakes. We will explain these steps
in more detail.

First, we evaluate the most prevalent probabilistic model checkers that sup-
port multi-objective properties [31,40,53] on several types of models in Section 4.
Using this approach, we show that there are mistakes and inconsistencies in the
current generation of probabilistic model checking tools.

We then discuss these mistakes in greater depth and find the causes of these
problems in Section 5. We made pull requests to resolve these issues, or, if
fixing these problems was too time-consuming, we reported the problems to the
maintainers of the relevant tools to improve the existing model checkers.

A subset of MDPs with rewards are commonly considered modelling errors
in the literature and are the most common tools. We will consider these mod-
els in Section 6. We found in Section 5 that the commonly excluded subset of

8 M. van Wijk

models can be quite tricky to identify in practice. Therefore, we define our own
restriction in Section 6.2. This approach excludes more models than the ap-
proaches used by Storm, ePMC and PRISM, but it is easier to implement and
also excludes more degenerate cases.

After primarily considering existing tools, we shift our focus to new tools.
In Section 7 we provide the reader with a more in-depth explanation of the two
common algorithms than their papers, since we are not restricted by a page
limit. Moreover, we explain geometric computations that are required in [30],
but for which little guidance is given. Here, we also introduce some new theory.

We then aim to locate mistakes in the original papers [29,30] by replicating
these papers. We do so by implementing the algorithms shown in the papers
in the Modest Toolset [35]. We discuss the mistakes we found in these papers
and highlight important details to consider when implementing these algorithms
in Section 8. By learning from the mistakes found in existing tools, we aim to
provide a more reliable model checker.

Lastly, we validate our changes to existing tools and our new implementation
in the Modest Toolset in Section 9 to show that the new approaches are still
not completely consistent, but a significant improvement has been made on the
evaluated models.

2 Background

Before we proceed, we establish the notation that we will use. Moreover, we
provide background knowledge so that the reader can familiarise themselves
with the subject of probabilistic multi-objective model checking. A summary of
the notation can be found in Appendix A.

2.1 Notation

We use several sets in this paper. First, we have natural numbers including 0,
which we denote as N0. We also commonly use positive natural numbers, which
are denoted as N+. If we also include∞ into these two sets, we get the sets N0,∞
and N+,∞, respectively. We also use the set of real numbers, which we denote
by R. The empty set is denoted as ∅ and the powerset of X as P(X).

We also use injective and partial functions. An injective function has a result
for every input in its domain. In contrast, a partial function may not be defined
for some inputs. We denote an injective function f , which has X and range Y
as f : X → Y . If f is a partial function, we denote it as f : X ⇀ Y .

To model uncertainty, we use probability distributions. A probability distri-
bution is a function that maps all elements of a finite set X to a probability. We
denote this by Dist : X → [0, 1]. Since these are probabilities, their sum must
equal one:

∑
x∈X Dist(x) = 1.

We often need a function that is 1 when a condition P is satisfied and 0 if

not. We use the Iverson bracket to denote this [P] =
{

1, if P is true
0, otherwise

.

The State of Multi-Objective Model Checking 9

To denote a tuple x ∈ Rn, we use x = ⟨x1, . . . xn⟩. We can always refer to
the ith element of a tuple x as xi. A tuple of size n with all n elements being 0
is denoted as 0n.

2.2 Markov Decision Process

The type of model that we consider for multi-objective probabilistic model check-
ing is a Markov decision process (MDP) [43,64]. An MDP is an automaton with
both nondeterministic and probabilistic choices. This means that when we are
in a state, a nondeterministic choice to needs to be selected. This nondetermin-
istic choice is referred to as an action. If we take this action, we end up in a
new state via a probabilistic choice associated with the nondeterministic choice.
This probabilistic choice is based on a probability distribution over the successor
states.

Example 1. We will look at a case of a programmer who considers switching jobs.
After some research, they found that a few months ago a huge group of local
companies teamed up to create a transparent application process. The companies
were trying to find a way to remove human bias from the application process. To
do this, they came up with a pilot application process based on “hiring points”.

The company hires the candidate with the highest number of hiring points.
It turns out that the programmer cannot influence most of these hiring points
in a few months. A lot of the hiring points are assigned to based on work ex-
perience. However, certain certifications also provide hiring points, two of those
certifications the programmer does not yet possess.

The certification can be obtained by taking a physical exam. The exam has a
85% passing rate, but it can only be taken every two years, which means that the
programmer can only take this exam once during their current job search. After
getting this certification, they can get the second certification, which is a higher
level of the first certification. The second certification can be obtained via an
online exam, which can be done as often as the candidate wants. Unfortunately,
this exam only has a 20% passing rate.

We can model this process using the MDP shown in Figure 1. Here, sI is the
state in which the programmer starts, denoted by the arrow without input. In
this state, there are two nondeterministic choices: ignore the certification process
(stop) or take the first exam (try1). If they take the exam, they have 0.85 (85%)
chance of passing it, which means that they end up in passed1 . If they fail the
exam, they end up in the finished state, since they cannot take the exam again
during the job search and cannot take the second exam without passing the first.
From passed1 , they again have the nondeterministic choice of taking the second
exam (try2) or to quit (stop). If they take the exam, they have a 0.2 (20%) chance
of success, otherwise they fail it and get the same nondeterministic choice again.

We can now formally describe Markov decision processes in Definition 1 and
show the formal notation of Example 1 in Example 2.

10 M. van Wijk

sI

passed1

finished

try1

0.85

0.15
stop

1

try2

0.2

0.8

stop

1

Fig. 1. Markov decision process of a certification process

Definition 1. A Markov decision process (MDP) M is a tuple
M = ⟨S, sI ,A, δ⟩, where:

– S is the state space: a finite set of states,
– sI ∈ S is the initial state,
– A are all supported actions: a finite set of actions, and
– δ : S → A⇀ Dist(S) is the transition function.

Example 2. Figure 1 is the MDP M = ⟨S, sI ,A, δ⟩ such that:

– S = {sI , passed1 , finished},
– A = {try1 , try2 , stop}, and

– δ =



sI 7→

{
try1 7→ {sI 7→ 0, passed1 7→ 0.85, stop 7→ 0.15} ,

stop 7→ {sI 7→ 0, passed1 7→ 0, stop 7→ 1}

}
,

passed1 7→

{
try2 7→ {sI 7→ 0, passed1 7→ 0.8, stop 7→ 0.2} ,

stop 7→ {sI 7→ 0, passed1 7→ 0, stop 7→ 1}

}
,

finished 7→ ∅


.

In a state, not all actions might be available. For example, in Figure 1, in sI
actions can be chosen try1 and stop, but cannot be performed try2 . To obtain
the set of all available actions, we use Definition 2.

Definition 2. The available actions for a state in MDP M = ⟨S, sI ,A, δ⟩
are given by the function αM : S → P(A) such that:

αM(s) def= {a ∈ A | δ(s)(a) is defined} .

Example 3. We can see that in Figure 1, there are no actions available in the
state finished. This can also be observed using Definition 2 and Example 2:
αM(finished) = ∅.

The State of Multi-Objective Model Checking 11

sI

passed1

finished

try1

0.85

0.15
stop

1

try2

0.2

0.8

stop

1

τ1

Fig. 2. Deadlock-free Markov decision process of a certification process

If there are no available actions in a state, this is called a deadlock since we
cannot proceed from this state. Many algorithms work only for MDPs without
deadlocks. Fortunately, it is possible to eliminate deadlocks with a simple trans-
formation. For each deadlock state, a τ action is added that goes to the same
deadlocked state. For the remainder of the paper, we assume that all MDPs have
been made deadlock-free by applying this transformation, which is formalised in
Proposition 1.

Proposition 1. LetM = ⟨S, sI ,A, δ⟩ be an MDP. LetM′ = ⟨S, sI ,A ∪ {τ} , δ′⟩
be the MDP with δ′ the function such that:

δ′(s) def=
{

δ(s), if αM(s) ̸= ∅
{τ 7→ {s′ 7→ [s = s′] | s′ ∈ S}} , otherwise

Then M′ is deadlock-free and the only difference in supported executions of M,
is that there might be an infinite sequence of τ loops appended to executions in
M′.

Example 4. If we apply Proposition 1 to Figure 1, we obtain the deadlock-free
MDP shown in Figure 2. The only change is the τ loop added to the finished
state.

2.3 Path

We model processes using MDPs, so that we can analyse the process by analysing
the MDP. Analysing an MDP in this context means computing what we would
expect to observe during an execution of the MDP.

Executing an MDP means starting in a state, selecting an available action,
going to the next state based on the probability distribution, and repeating this
process from this next state. Such an execution is described by a path. Notice
that since all deadlocks have been removed, executions can continue indefinitely.

12 M. van Wijk

Definition 3. A path in MDP M = ⟨S, sI ,A, δ⟩ is an infinite sequence π =
s1a1s2a2 . . . , such that:

∀i ∈ N+,∞ : si ∈ S ∧ ai ∈ αM(si) ∧ δ(si)(ai)(si+1) > 0.

Example 5. If we start in sI in Figure 2 and decide to take try1 and by chance
end up in passed1 , from which we take stop to end up in finished, we get the
path: sI try1 passed1 stop finished τ finished τ finished . . . Notice that we cannot
leave the finished state, so the path will end with an infinite number of τ actions
to go to the finished state.

We will also need to define which states are reachable from each other. Being
reachable means that there exists a path from one state to another, with arbi-
trarily many states in between.

Definition 4. The state sj ∈ S is reachable from si ∈ S in MDP M if and
only if there exists a path siai . . . sj . . . in M. We denote this as si

M−−→ sj.

Example 6. The state passed1 is reachable from sI . It can be reached by any
path that starts with sI try1 passed1 . However, the converse does not hold. sI is
not reachable from passed1 , as there is no path from passed1 that leads to sI .

2.4 Strategy

In order to execute the MDP, we need some way of selecting the action to take in
each state. The way in which we decide which action to take is called a strategy.
There are several different types of strategies. First, it is possible to always select
the same action in the same state. This is called a memoryless strategy, which
is formalised in Definition 5. It is called memoryless, since it does not use any
information about the previously visited states.

Definition 5. A memoryless strategy for MDP M = ⟨S, sI ,A, δ⟩ is a func-
tion σm : S → A, such that:

∀s ∈ S : σm(s) ∈ αM(s).

Example 7. If we want a strategy for Figure 2 such that we always try to stop
as soon as possible, we can use the memoryless strategy:

σm = {sI 7→ stop, passed1 7→ stop, finished 7→ τ} .

In scenarios where we are only interested in the result after a finite number of
steps (actions taken in the current path), it might be beneficial to be able to
select a different action based on the length of the current path. That is why
we introduce a strategy that takes into account the current length of the path
to determine the action to take. This kind of strategy is called a step-positional
strategy, since it considers both the position (the current state) and the step
(the current length of the path).

The State of Multi-Objective Model Checking 13

Definition 6. A step-positional strategy for MDP M = ⟨S, sI ,A, δ⟩ is a
function σS : S × N0 → A, such that:

∀s ∈ S, k ∈ N0 : σS(s, k) ∈ αM(s).

Example 8. If we need a strategy for Figure 2, such that we take the first exam,
but do not want to take more than three exams in total, we can use the following
step-positional strategy:

σS = {⟨sI , i⟩ 7→ try1 | i ∈ N0} ∪ {⟨finished, i⟩ 7→ τ | i ∈ N0}∪
{⟨passed1 , i⟩ 7→ try2 | i ∈ {0, 1, 2}} ∪ {⟨passed1 , i⟩ 7→ stop | i ∈ {3, 4, . . . }} .

Next, we list the probabilistic versions of the memoryless and step-positional
strategies in Definitions 7 and 8, respectively. The probabilistic versions intro-
duce a probabilistic choice to take an action instead of a deterministic choice like
in the previous definitions. We minimise the use of the probabilistic strategies
in algorithms, but maximise their use in definitions. This allows us to use the
most basic implementation while keeping the definitions as general as possible.

Definition 7. A probabilistic memoryless strategy for MDP
M = ⟨S, sI ,A, δ⟩ is a function σPm : S → Dist(A), such that:

∀s ∈ S, a ∈ A : σPm(s)(a) > 0 =⇒ a ∈ αM(s).

Example 9. We can use a probabilistic memoryless strategy for Figure 2 to flip
a coin on whether or not to take an exam.

σPm =


sI 7→ {try1 7→ 0.5, try2 7→ 0, stop 7→ 0.5, τ 7→ 0} ,

passed1 7→ {try1 7→ 0, try2 7→ 0.5, stop 7→ 0.5, τ 7→ 0} ,

finished 7→ {try1 7→ 0, try2 7→ 0, stop 7→ 0, τ 7→ 1}

 .

Definition 8. A probabilistic step-positional strategy for MDP
M = ⟨S, sI ,A, δ⟩ is a function σPs : S × N0 → Dist(A), such that:

∀s ∈ S, k ∈ N0, a ∈ A : σPs(s, k)(a) > 0 =⇒ a ∈ αM(s).

The set of all probabilistic step-positional strategies in MDPM is denoted
by StratM ⊆ S × N0 → Dist(A).

Example 10. We can construct a probabilistic step-positional strategy to Fig-
ure 2 to model the case where we flip a coin to determine whether to take an
exam three times and stop if we still have not passed both exams after that.

σPs = {⟨sI , i⟩ 7→ {try1 7→ 0.5, try2 7→ 0, stop 7→ 0.5, τ 7→ 0} | i ∈ N0}∪
{⟨passed1 , i⟩ 7→ {try1 7→ 0, try2 7→ 0.5, stop 7→ 0.5, τ 7→ 0} | i ∈ {0, 1, 2}}∪
{⟨passed1 , i⟩ 7→ {try1 7→ 0, try2 7→ 0, stop 7→ 1, τ 7→ 0} | i ∈ {3, 4, . . . }}∪
{⟨finished, i⟩ 7→ {try1 7→ 0, try2 7→ 0, stop 7→ 0, τ 7→ 1} | i ∈ N0} .

14 M. van Wijk

Note that all types of defined strategies can be described as a probabilistic step-
positional strategy. A (probabilistic) memoryless strategy can be expressed by
a (probabilistic) step-positional strategy, with the same action for each path
length. Moreover, a non-probabilistic strategy can be expressed as a proba-
bilistic strategy with the probability distribution that has probability 1 for the
selected action. For this reason, we will express definitions using probabilistic
step-positional strategies if possible. The same definitions can be used for the
other strategies by applying the transformations. We will write down the formal
transformations shortly, but to do so, we need a few more concepts.

In later definitions, we will need to access all paths for a strategy. These are
all paths in the MDP that only use actions allowed by the strategy.
Definition 9. The set of all paths for a strategy for MDPM = ⟨S, sI ,A, δ⟩,
for a probabilistic step-positional strategy σPs ∈ StratM, is the set:

ΠσPs
M

def= {s1a1s2a2 · · · | ∀i ∈ N+ : σPs(si, i− 1)(ai) > 0 ∧ δ(si)(ai)(si+1) > 0} .

We also need to define the chance of obtaining a certain path when using a given
strategy.
Definition 10. The path probability for a probabilistic step-positional strategy
σPs ∈ StratM and MDP M = ⟨S, sI ,A, δ⟩ for the path π = s1a1s2a2 . . . is
PrσPs

M : Dist(ΠσPs
M) and is defined in [47]. The main idea is that we construct

cylinder sets in the form ζ(s1a1s2a2 . . . sn) which is the set of paths starting with
the prefix s1a1s2a2 . . . sn of which we take the smallest σ-algebra. The probability
of such a cylinder is:

PrσPs
M (ζ(s1a1s2a2 . . . sn)) def=

n∏
i=1

σPs(si, i− 1)(ai) · δ(si)(ai)(si+1).

Example 11. If we consider a probabilistic step-positional strategy σPs for Fig-
ure 2, such that we take the first exam but stop after that, we might get the
path sI try1 passed1 stop finished τfinished τ We can calculate the probability
of this path as follows:

PrσPs
M (sI try1 passed1 stop finished τfinished τ . . .)

= σPs(sI , 0)(try1) · δ(sI)(try1)(passed1)·
σPs(passed1 , 1)(stop) · δ(passed1)(stop)(finished)·
σPs(finished, 2)(τ) · δ(finished)(τ)(finished) . . .

= 1 · 0.85 · 1 · 1 · 1 · 1 · · · = 0.85.

We can now define the transformations from memoryless, step-positional and
probablistic memoryless strategies to probabilistic step-positional strategies. We
describe these transformations in Propositions 2 to 4 respectively.
Proposition 2. Let M = ⟨S, sI ,A, δ⟩ be an MDP and σm be a memoryless
strategy. Let σPs be the probabilistic step-positional strategy such that:

∀s ∈ S, k ∈ N0, a ∈ A : σPs(s, k)(a) = [σm(s) = a].

Then Πσm

M = ΠσPs
M and Prσm

M = PrσPs
M .

The State of Multi-Objective Model Checking 15

Proposition 3. Let M = ⟨S, sI ,A, δ⟩ be an MDP and σS be a step-positional
strategy. Let σPs be the probabilistic step-positional strategy such that:

∀s ∈ S, k ∈ N0, a ∈ A : σPs(s, k)(a) = [σS(s, k) = a].

Then ΠσS
M = ΠσPs

M and PrσS
M = PrσPs

M .

Proposition 4. Let M = ⟨S, sI ,A, δ⟩ be an MDP and σPm be a probabilistic
memoryless strategy. Let σPs be the probabilistic step-positional strategy such
that:

∀s ∈ S, k ∈ N0 : σPs(s, k) = σPm(s).
Then ΠσPm

M = ΠσPs
M and PrσPm

M = PrσPs
M .

2.5 Rewards

Now that we have defined strategies, we can execute an MDP. We are typically
not interested in any strategy, but in the best strategy for a given MDP. Right
now, we do not have a way to express what better means in an MDP. That is
why we introduce the notion of rewards. A reward in an MDP should be given
when either a positive or a negative event occurs in the modelled process. When
we do this, we can calculate the sum of the rewards for a path. By calculating
the reward for all possible paths that can be generated by executing a strategy,
we can then calculate the expected reward for a strategy. We can then compare
the strategies and determine the optimal expected reward.

2.5.1 Reward-structures There are several ways to give rewards. The first
type of reward we will consider is the reward for taking a branch. Branches are
the probabilistic choices in an MDP, so they describe which state we can end
up in after taking an action. For example, the action try1 in Figure 2, has two
branches: one that goes to passed1 and one that goes to finished. We define the
rewards for a path by defining a reward-structure, which assigns a reward to
each branch in the MDP.

Definition 11. A branch reward-structure for MDP M = ⟨S, sI ,A, δ⟩ is a
function ρ : S × A × S → R. The set of all branch reward-structures is
StructM

def= S ×A× S → R.

Example 12. Passing the first exam in Figure 3 gives one hiring point, therefore
we add a reward of +1 to the branch from the try1 action going to passed1 . In
addition, passing the second exam gives three hiring points. Hence, we add an
additional +3 reward on the branch going from the try2 action to the finished
state. We then obtain the reward structure ρ, which is visualised in Figure 3 and
is defined as:

ρ(s, a, s′) =


+1, if s = sI ∧ a = try1 ∧ s′ = passed1

+3, if s = passed1 ∧ a = try2 ∧ s′ = finished
0, otherwise

16 M. van Wijk

sI

passed1

finished

try1

0.85
+1

0.15
stop

1

try2

0.2
+3

0.8

stop

1

τ1

Fig. 3. Certification process MDP with branch rewards

Another common type of reward-structure specifies a reward for selecting an
action from a state. We also call selecting an action from a state taking a transi-
tion. Therefore, we refer to this type of reward-structure as a transition reward-
structure. We do not call this an action reward-structure, since we can assign a
different reward for the same action if it was taken from a different state.

Definition 12. A transition reward-structure is a function ρA : S×A → R.

Fortunately, we can easily convert a transition reward-structure to a branch
reward-structure as shown in Proposition 5. This allows us to use transition
reward-structures in definitions while the implementation uses branch reward-
structures.

Proposition 5. Let M = ⟨S, sI ,A, δ⟩ be an MDP and ρA be an transition
reward-structure. Let ρ be a branch reward-structure, such that:

∀s ∈ S, a ∈ αM(s), s′ ∈ S : ρ(s, a, s′) = ρA(s, a).

Then for each path in M the sum of transitions reward for ρA after taking
k ∈ N0,∞ transitions will be the same as the sum of branch rewards for ρ after
k steps.

The last type of reward-structure we consider, gives rewards for entering a state,
except for the initial state. We do not give a reward for the initial state, since this
would complicate the conversion to a branch reward-structure. This exclusion
does not matter since each path includes the initial state, and thus all paths
would just have a reward offset by this value. Therefore, it does not influence
which strategy is optimal.

Definition 13. A state reward-structure is a function ρS : S → R.

Fortunately, we can also convert a state reward-structure into a branch reward-
structure as shown in Proposition 6, which also allows us to express reward-
structures for states while still using branch reward-structures in an implemen-
tation.

The State of Multi-Objective Model Checking 17

Proposition 6. Let M = ⟨S, sI ,A, δ⟩ be an MDP and ρS be a state-reward
structure. Let ρ be the branch-reward structure, such that:

∀s ∈ S, a ∈ αM(s), s′ ∈ S : ρ(s, a, s′) = ρS(s′).

Then for each path in M the sum of state rewards for ρS after taking k ∈ N0,∞
transitions will be the same as the sum of branch rewards for ρ after k steps.

2.5.2 Properties Now that we have defined reward-structures, we can com-
pare different strategies. For this, we use expected rewards, of which we introduce
a few variations. Each of these variations has their own unique use cases.

The first is the cumulative reward. This type of reward allows for a bound on
the length of the paths (possibly infinity) and calculates the expected reward.

Definition 14. The cumulative reward for MDP M = ⟨S, sI ,A, δ⟩ is the
function CumRewM : StructM → N+,∞ × StratM → R, such that:

CumRewM(ρ)(k, σPs) def=
∫

π=s1a1s2a2···∈ΠσPs
M

k∑
i=1

ρ(si, ai, si+1)dPrσPs
M .

Example 13. For the reward-structure in Figure 3, we can find the maximum
cumulative reward. Obviously, this is the strategy that takes the exams when
possible. Although it is impossible to list each path individually, we know that
each path has a 0.85 chance of passing the first exam. If we try the second exam
infinitely often, the probability of eventually passing it is 1. This means that
there is a 0.85 chance of passing both exams and thus a 0.85 chance of getting
4 hiring points:

max
σPs∈StratM

CumRewM(ρ)(∞, σPs)

= (1 + 3) · (0.85 · (0.2 + 0.8 · 0.2 + 0.8 · 0.8 · 0.2 + . . .))
= 4 · 0.85 = 3.4.

The cumulative reward however, can also become infinite quite easily. Consider
the case where we would add a reward of ρ(finished, τ, finished) = +1 to Figure 3.
The cumulative reward for taking the τ loop infinitely often is infinite. Therefore,
we also introduce the long-run average reward in Definition 15. This reward
calculates the average reward we can get per transition taken. This means that
the long-run average can be finite, even though the cumulative reward for the
same strategy might be infinite. We also introduce a maximum number of steps
for the long-run average, even though this value is typically going to be infinite.
Introducing it anyways allows us for easier definitions later on.

Definition 15. The long-run average reward for MDP M = ⟨S, sI ,A, δ⟩ is
the function LraRewM : StructM → N+,∞ × StratM → R, such that:

LraRewM(ρ)(k, σPs) def=
∫

π=s1a1s2a2···∈ΠσPs
M

1
k

k∑
i=1

ρ(si, ai, si+1)dPrσPs
M .

18 M. van Wijk

Example 14. When we add the reward ρ(finished, τ, finished) = +1 to the MDP
in Figure 3, the long-run average reward for infinitely many steps will be +1.

The last type of reward-structure we consider, is a reachability reward-structure,
as formalised in Definition 16. For reachability reward-structures, we calculate
the reward until we reach a goal state. This can, for example, be the reward
until we pass the first exam. Any rewards obtained after reaching a goal state
are ignored. If we never reach a goal state, we define the reachability reward to be
∞. This choice is arbitrary, but we need a value to ensure that the function is well
defined, which simplifies other definitions. We choose ∞ because we the other
case in which ∞ can be obtained is by visiting a reward infinitely often. This is
commonly considered a modelling error, as we will discuss in Section 6. Hence,
when we obtain an ∞, we know that the model can be considered erroneous.

Definition 16. The reachability reward for MDP M = ⟨S, sI ,A, δ⟩ is the
function RRewM : StructM×P(S)→ N+,∞×StratM → R, such that if we have
PrσPs

M ({π = s1a1s2a2 · · · ∈ Π σPs
M | ∃i ∈ N+si ∈ G}) = 1, then:

RRewM(ρ, G)(k, σPs) def=
∫

π=s1a1s2a2···∈ΠσPs
M

k∑
i=1

ρ(si, ai, si+1)·

[∀i ∈ {1, . . . , i− 1} : si /∈ G]dPrσPs
M .

Otherwise:
RRewM(ρ, G)(k, σPs) def= ∞.

Example 15. If we add the reward ρ(finished, τ, finished) = +1 to Figure 3 and
then add finished to the goal set, the reachability reward is significantly different
from the cumulative reward, which would be infinite, since the loop is now only
achieved after reaching a goal state. This means that we obtain the reward:

sup
σPs∈StratM

RRewM({finished} , ρ)(∞, σPs)

= (1 + 3) · (0.85 · (0.2 + 0.8 · 0.2 + 0.8 · 0.8 · 0.2 + . . .))
= 4 · 0.85 = 3.4

There are two types of properties which we can express using reward-structures.
The most prevalent are properties where we search for an optimal value. In this
case, we try to either minimise or maximise the expected reward for a reward-
structure. Since the expected reward is a number, we call this type of property
a “numerical property”.

Definition 17. A numerical property ϕ̂ for MDP M = ⟨S, sI ,A, δ⟩ is ϕ̂ =
[RewM]≤k

△ where:

– RewM : N+,∞ × StratM → R, the type of reward to use,

The State of Multi-Objective Model Checking 19

– k ∈ N+,∞, the step-bound: the maximum amount of transitions to take, and
– △ ∈ {max, min}, whether to maximise or minimise the reward.

The other type of property aims to verify whether it is possible to find a strategy
which satisfies a constraint. In particular, we want to verify whether there is a
strategy that has an expected reward larger than or equal to (≥, >), smaller
than or equal to (≤, <) or equal to (=) a constant. Since we do not have any
unknowns and only want to verify whether such a strategy exists, we call these
types of properties “achievability properties”.

Definition 18. An achievability property ϕ̄ for MDP M = ⟨S, sI ,A, δ⟩ is
ϕ̄ = [RewM]≤k

□c where:

– RewM : N+,∞ × StratM → R, the type of reward to use,
– k ∈ N+,∞, the step-bound: the maximum amount of transitions to take,
– □ ∈ {≤, <,≥, >, =}, the type of comparison with the constant, and
– c ∈ R, the constant to which the reward should be compared.

We say that ϕ̄ is satisfied in M under a probabilistic step-positional strategy
σPs ∈ StratM if:

M, σPs |= [RewM]≤k
□c

def⇐⇒ RewM(k, σPs)□c.

Example 16. If we want to express that the cumulative reward in MDPM over
the branch reward-structure ρ within 10 transitions is at least 5, we can denote
this is as the achievability property [CumRewM(ρ)]≤10

≥5 .

We also need a way to evaluate properties. For this, we will use the query func-
tion as formalised in Definition 19. For an achievability property, this returns
whether there exists a strategy such that the property is satisfied. For a numer-
ical property, this returns the optimal value (maximum for max and minimum
for min) that can be achieved by a strategy.

Definition 19. A query for MDP M is a function queryM that evaluates a
property ϕ and is defined as follows:

– For an achievability property ϕ :

queryM(ϕ) def⇐⇒ ∃σPs ∈ StratM : M, σPs |= ϕ,

– For a numerical property ϕ = [RewM]≤k
max :

queryM(ϕ) def= sup
σPs∈StratM

RewM(k, σPs), and

– For a numerical property ϕ = [RewM]≤k
min :

queryM(ϕ) def= inf
σPs∈StratM

RewM(k, σPs).

20 M. van Wijk

2.6 Probabilistic Reachability

Another way to analyse MDPs is by calculating the probability of reaching a
given state of interest. We might want to ensure success or compute the proba-
bility of failure. For example, in the example MDP in Figure 1, we might want to
compute the chance of achieving the first certificate. To do this, we can calculate
the probability that a strategy reaches passed1 .

We can express probabilistic reachability properties using a state-reward
structure, by transforming the MDP and giving a reward of 1 the first time
we enter a goal state, and 0 in other states. To ensure that we only give a reward
when entering the first goal state, we could add one “handed_out” state and
force the transition function for the goal states to only transition to that state.
This approach works for MDPs on which only one property is being evaluated,
but it does not work for multi-objective properties, which we will consider later.
That is why we take a slightly different approach in Proposition 7, which is an
adapted version of [30, Proposition 2].

For each state, there are two new states, one in which the reward has been
given and one in which it has not. This approach also works for the multi-
objective case. We stress that this approach means that the size of the state
space doubles for each probability property that needs to be evaluated on the
MDP.

Proposition 7. Let M = ⟨S, sI ,A, δ⟩ be an MDP, and G ⊆ S be a set of
goal states. Let M′ = ⟨S × {false, true} , ⟨sI , false⟩ ,A, δ′⟩ be the MDP with with
δ′ : S × {false, true} → A ⇀ Dist(S × {false, true}) the function with each
δ′(⟨s, b⟩) being the smallest partial function, such that ∀s, s′ ∈ S : ∀a ∈ αM(s) :

– δ′(⟨s, false⟩)(a)(⟨s′, true⟩) = δ(s)(a)(s′) if s ∈ G,
– δ′(⟨s, false⟩)(a)(⟨s′, false⟩) = δ(s)(a)(s′) if s /∈ G, and
– δ′(⟨s, true⟩)(a)(⟨s′, true⟩) = δ(s)(a)(s′).

Let ρS : S × {false, true} → R be the state reward-structure such that:

ρS(⟨s, g)⟩) = [¬g ∧ s ∈ G].

Then for all strategies in MDP M, the probability of reaching a state in G is
the same as the cumulative state reward of ρS in M′ [30].

Example 17. If we transform Figure 2 using Proposition 7, with the goal set
{finished}, we get the MDP shown in Figure 4. Notice that we could ignore the
states ⟨passed1 , true⟩ and ⟨sI , true⟩, since they are unreachable from ⟨sI , false⟩,
but we add them for completeness.

2.7 Value Iteration

We formalised queries in Definition 19. However, this definition still contains
integration and summations over infinite paths, making it hard to implement

The State of Multi-Objective Model Checking 21

⟨sI , false⟩

⟨passed1 , false⟩

⟨finished, false⟩

⟨passed1 , true⟩

⟨finished, true⟩

⟨sI , true⟩
try1

0.85

0.15
stop

1

try2

0.2

0.8

stop

1

τ1

τ
+1 1

try1

0.85

0.15
stop

1

stop

1

try2

0.2

0.8

Fig. 4. Proposition 7 applied to Figure 2 with goal finished

this definition directly. Fortunately, in practice, we do not need to go over all
possible paths. There are several ways to compute or approximate the result of
a query. The first algorithm we consider is value iteration.

The principle of value iteration is relatively straightforward. We find the best
value for all paths after 0 steps, then based on that we find the best actions to
take for each state, meaning that we found the best value for all paths after 1
step, and so on, until we decide to stop. We typically stop when the changes
in values from one iteration to the next are smaller than some convergence
threshold, or when we reach the step-bound for the property. The early stopping
criterion based on a convergence threshold makes value iteration relatively fast;
however, it also makes it inaccurate. In some cases, the computed value is quite
close to the actual value, but in others, the computed value can be quite far off
[34].

We show the value iteration algorithm for a maximum cumulative reward in
Algorithm 1. For each step, we compute the maximum reward expected reward.

Example 18. We take Figure 2 and give a transition reward of +1 for taking
the try2 action from passed1 . All other transitions get a reward of 0. We can
then use value iteration to compute the cumulative reward of this transition
reward-structure. The first few iterations are shown in Table 1.

As shown in Algorithm 1, we consider two types of convergence thresholds. The
first type of convergence threshold is absolute. With an absolute convergence
threshold, we consider the largest difference between the values in two consec-
utive iterations. A relative difference is the percentage of change between two
consecutive iterations. Note that if we had an infinite reward, the algorithm
might never terminate with an absolute convergence threshold. However, with a
relative convergence threshold, the algorithm will terminate if it is non-zero.

Example 19. We will evaluate both types of convergence thresholds after itera-
tion 5 in Table 1. Using an absolute convergence threshold requires comparing
the largest difference. In this case, that is 2.5092−2.074 = 0.4352. Thus, we would
stop if 0.4352 < ϵ. If we were using a relative convergence threshold instead, we

22 M. van Wijk

Alg. 1. Maximum Cumulative Reward Value iteration

Input: MDP M = ⟨S, sI ,A, δ⟩, numerical property
ϕ = [CumRewM(ρ)]≤k

max , convergence threshold ϵ ∈ [0, 1],
convergence threshold type t ∈ {absolute, relative}

Result: queryM(ϕ)
1 x← y ← 0∥M∥
2 i← 1
3 do
4 foreach s ∈ S do
5 ys ← maxa∈αM(s)

∑
s′∈S δ(s)(a)(s′) · (ρ(s, a, s′) + xs′)

6 if t = absolute then ∆← maxs∈S |ys − xs|
7 else ∆← maxs∈S |ys−xs

xs
|

8 x← y
9 i← i + 1

10 while i ≤ k ∧∆ > ϵ
11 return xsI

Table 1. Example value iteration for Figure 2
i 0 1 2 3 4 5
xsI 0.0000 0.0000 0.8500 1.5300 2.0740 2.5092
xpassed1 0.0000 1.0000 1.8000 2.4400 2.9520 3.3616
xfinished 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

would need to calculate the largest relative change, which is 2.5092−2.074
2.074 = 0.210.

Thus, we would stop if 0.210 < ϵ.

Since we can only increase our values in a future iteration or keep them the same
if we are only using positive rewards and only decrease or keep the same for
negative rewards, value iteration is monotonic if all rewards have the same sign.
This means that the result from value iteration can be used as an upper or lower
bound on the actual value if proper rounding is used. Since a smaller convergence
threshold can only increase the iterations used or keep them the same, the value
iteration results should be monotonic in terms of the convergence threshold.

2.8 Linear Programming

A more exact, but typically slower way of evaluating queries is by using linear
programming. Linear programming is a technique that optimises a linear func-
tion, based on a set of linear functions, the requirements of which are also given
as linear functions.

Several algorithms exist to solve linear programs. Solvers that implement
such algorithms are called linear optimisation solvers. We will not cover these

The State of Multi-Objective Model Checking 23

minimise x(sI) + x(passed1) + x(finished)
subject to x(finished) = 0

x(sI) ≥ 1 · (x(finished) + ρ(sI)(stop)(finished))
x(sI) ≥ 0.15 · (x(finished) + ρ(sI)(try1)(finished))

+ 0.85 · (x(passed1) + ρ(sI)(try1)(passed1))
x(passed1) ≥ 1 · (x(finished) + ρ(passed1)(stop)(finished))
x(passed1) ≥ 0.8 · (x(passed1) + ρ(passed1)(try2)(passed1))

+ 0.2 · (x(finished) + ρ(passed1)(try2)(finished))

Fig. 5. Linear program for maximising a reachability reward for Figure 2

algorithms since we deem them out-of-scope for this research. The interested
reader can look at [14]. We assume that an existing linear optimisation solver is
used.

This means that we only need to express our property and MDP as a linear
program, and then we hand it to a linear optimisation solver to get the result
of the query. The primary downsides of this approach over value iteration are
that linear programming is typically bit slower, and in most cases it requires an
additional dependency to solve linear programs in implementations. However,
linear programming is still polynomial in the size of the MDP [48].

It is important to mention that not all linear optimisation solver implemen-
tations are exact. Some implementations approximate the result of the query
instead of calculating it exactly. Therefore their results might be incorrect [37].
Thus, if one wants to compute exact results, one should choose an exact linear
optimisation solver.

Example 20. For the MDP shown in Figure 2, we can evaluate a maximum
reachability reward property by creating a linear program. If we take the goal
state to be finished, with a branch reward-structure ρ, we get the linear program
shown in Figure 5.

2.9 End Component

When we traverse an MDP, we might at some point have the opportunity to
cycle infinitely between a subset of the states using a subset of the transitions.
In other words, there exist sub-MDPs for any MDP, which a strategy does not
need to leave [1]. We refer to such a sub-MDP as an end component. If there
are no more states or transitions we can add without the end component no
longer being an end component, the end component is called a maximal end
component. End components and in particular maximal end components can be
useful when evaluating certain properties.

24 M. van Wijk

Definition 20. An end component of MDP M = ⟨S, sI ,A, δ⟩ is any MDP
Me = ⟨Se, seI ,Ae, δe⟩ such that:

– ∅ ≠ Se ⊆ S,
– ∀s ∈ Se : ∅ ≠ δe(s) ⊆ δ(s),
– Se = {s′ ∈ S | ∃s ∈ Se, a ∈ αMe(s) : δe(s)(a)(s′) > 0}, and
– ∀s, s′ ∈ Se : s

M−−→ s′.

The set of all end components of MDPM is represented by EC (M). An end
component of MDP M is maximal if and only if there does not exist an end
component M′

e = ⟨S ′
e, se

′
I ,A′

e, δ′
e⟩ such that Se ⊆ S ′

e ∧ ∃s ∈ Se : δe(s) ⊂ δ′
e(s).

Algorithms to compute the maximum end components can be found in [1,18].

2.10 Linear Temporal Logic

So far, we have only used a set of goal states for probabilistic reachability and
reachability rewards. However, in practice we also want to set constraints on the
paths which lead to these states. For example, we might only be interested in
the rate of success of a program, given that the computer does not overheat.
For this, we can use linear temporal logic (LTL) [63]. LTL allows us to express
constraints on paths by using operators that allow us to say that something must
be true at some point in the future, must always hold, must hold in the next
step or something must be true until some other condition holds.

LTL properties are part of the ω-languages [22]. These ω-languages can be
described by several types of automata [26]. These automata are quite similar
to each other, but they have different acceptance criteria. The type of automata
we consider are deterministic Rabin automata [65]. These automata are deter-
ministic automata, but instead of a set of goal states as for finite words, they
have a set of pairs of sets of states which describe which infinite words, or paths
as defined earlier, should be accepted.

Definition 21. A deterministic Rabin automaton (DRA) R is a tuple R =
⟨Q, qI ,A, λ, C⟩, where:

– Q is the state space: a finite set of states,
– qI ∈ Q is the initial state,
– A are all supported actions: a finite set of actions,
– λ : Q×A → Q is the transition function, and
– C ⊆ P(Q)× P(Q) is the acceptance condition.

The DRA R accepts the path π iff there exists a pair ⟨F, I⟩ ∈ C such that π
visits all states in F finitely often but visits at least one state in I infinitely often.

Example 21. If we want to check whether it is possible to stay in the passed1
state for ever, so that we can evaluate Figure 2, we can construct a DRA. This
DRA is visualised in Figure 6. It is the DRA R = ⟨Q, qI ,A, λ, C⟩ such that:

The State of Multi-Objective Model Checking 25

qI qG

sI , finished passed1

sI , finished

passed1

Fig. 6. Deterministic Rabin automaton for the certification process

– Q = {qI , qG},
– A = {sI , passed1 , finished},

– λ =
{
⟨qI , sI ⟩ 7→ qI , ⟨qI , passed1 ⟩ 7→ qG, ⟨qI , finished⟩ 7→ qI ,

⟨qG, sI ⟩ 7→ qI , ⟨qG, passed1 ⟩ 7→ qI , ⟨qG, finished⟩ 7→ qI

}
, and

– C = {⟨{qI} , {qG}⟩} .

In order to use a DRA in combination with an MDP, we need a way to compose
the two. We can compose an MDP and a DRA if the DRA has the states of
the MDP as actions. The result of a composition is an MDP and a DRA is an
MDP. Because the result of this composition is an MDP, we can compose an
MDP with several DRAs that describe multiple properties. This is important
for multi-objective properties.

Definition 22. The composition of the MDP M = ⟨S, sI ,A, δ⟩ and DRA R =
⟨Q, qI ,S, λ, C⟩ is the MDP M⊗R = ⟨S × Q, ⟨sI , qI⟩ ,A, δ′⟩ with δ′ : S × Q →
A ⇀ Dist(S × Q) the function with each δ′(⟨s, q⟩) being the smallest partial
function such that:

∀s, s′ ∈ S, a ∈ αM(s), q ∈ Q : δ′(⟨s, q⟩)(a)(⟨s′, λ(q, s′)⟩) = δ(s)(a)(s′).

To determine when the DRA is accepted, we need to determine the accepting
end components. An end component is accepting if it contains no states that
can only be visited a finite number of times and at least one state that needs
to be visited an infinite number of times. We consider such an end component
accepting, since we can modify any strategy to visit the state that needs to be
visited infinitely often, an infinite number of times. Notice that since we need
to visit the state infinitely often, this means that the modified strategy will
never leave the end component. The algorithm to compute the accepting end
components can be found in the appendix of the extended version of [28].

Definition 23. An end component Me = ⟨Se, sqI ,A, δ′⟩ ∈ EC (M⊗R) of the
compositionM⊗R of the MDPM = ⟨S, sI ,A, δ⟩ and DRA R = ⟨Q, qI ,A, λ, C⟩
is accepting when:

Me |= R
def⇐⇒ ∃⟨F, I⟩ ∈ C : (S × F) ∩ Se = ∅ ∧ (S × I) ∩ Se ̸= ∅.

Example 22. If we compose the DRA from Example 21 with the MDP for the
certification process from Figure 2, we construct the MDP on which we can eval-
uate whether it is possible to stay in the passed1 state for ever. This composition
is shown in Figure 7.

26 M. van Wijk

⟨sI , qI ⟩

⟨passed1 , qG⟩

⟨finished, qI ⟩

try1

0.85

0.15
stop

1

try2

0.2

0.8

stop

1

τ1

Fig. 7. Certification process composition with the DRA in Figure 6

We can now also formalise LTL properties as we have done for rewards in Def-
initions 17 and 31 and extend the definition of a query to also accept these
properties.

Definition 24. A numerical LTL property is Γ̂ = [R]≤k
△ where:

– R is a DRA,
– k ∈ N+,∞, the maximum amount of steps, and
– △ ∈ {max, min}, whether to maximise or minimise the probability of accept-

ing R.

Definition 25. An achievability LTL property is Γ̄ = [R]≤k
□c where:

– R is a DRA,
– k ∈ N+,∞, the maximum amount of steps,
– □ ∈ {≤, <,≥, >, =}, the type of comparison with the constant, and
– c ∈ R, the constant to which the reward should be compared.

Definition 26. A query for MDP M is a function queryM that evaluates an
LTL property Γ and is defined as follows:

– For a numerical LTL property Γ
def= [R]≤k

max :

queryM(Γ) = sup
σPs∈StratM

∑
π=s1a1s2a2···∈ΠσPs

M

PrσPs
M (π) · P,

– For a numerical LTL property Γ
def= [R]≤k

min:

queryM(Γ) = inf
σPs∈StratM

∑
π=s1a1s2a2···∈ΠσPs

M

PrσPs
M (π) · P,

– For an achievability LTL property Γ
def= [R]≤k

□c with □ ∈ {≥, >}:

queryM(Γ) = queryM([R]≤k
max)□c, and

The State of Multi-Objective Model Checking 27

– For an achievability LTL property Γ
def= [R]≤k

□c with □ ∈ {≤, <}:

queryM(Γ) = queryM([R]≤k
min)□c.

Where:
P = [∃Me ∈ EC (M) : Me |= R∧ ∃i ∈ {1, . . . , k} : siaisi+1 · · · ∈ ΠσPs

Me
].

3 Multi-Objective Properties

So far, we have only considered properties with one reward-structure. However,
in practice, taking a decision has multiple consequences. For example, taking an
exam in Figure 2 increases our chance of getting hired, but it also costs money
to take an exam. With multi-objective properties, we can express the trade-off
between multiple variables by using multiple reward-structures.

We can visualise the relation between two or more reward-structures in a
Pareto curve. A Pareto curve is the curve that displays all optimal solutions. A
solution is on the Pareto curve if there is no other solution that has a better
value for one of the reward-structures while keeping the other values the same.
We also call such a vector not dominated.

Example 23. If we consider the certification process again, now we will also in-
clude costs in addition to hiring points, since taking an exam is not free. Taking
the first exam costs e100, while the second exam costs e240. For the hiring
points, the rewards are based on the outcome of the exam. Therefore, we use the
branch reward-structure ρhire, as shown in Figure 8a. Taking an exam however,
does always cost money, no matter the outcome. Therefore, we use the transition
reward-structure ρmoney as visualised in Figure 8b.

Obviously, we want to maximise the hiring points while minimising the costs.
If we do this for the reward-structures given in Figure 8, we get the Pareto curve
shown in Figure 9. The achievable points consist of all points that are on the
Pareto curve or are dominated by a point on the Pareto curve.

3.1 Definitions

Definition 27. A multi-objective property ϕ = ⟨ϕ1, ϕ2, . . . , ϕn⟩ is a tuple
of achievability and numerical subproperties ϕi. An achievability subproperty is
called a constraint. A numerical subproperty is called an unknown.

We will now distinguish three types of multi-objective properties. The first of
which has no unknowns and an arbitrary number of constraints. These are called
multi-objective achievability properties (Definition 28). Next, we have multi-
objective properties with one unknown and an arbitrary number of constraints,
these are multi-objective numerical properties (Definition 29). Lastly, we consider
properties with two or more unknowns and without constraints. These are called
Pareto properties (Definition 30). Notice that there is no property with two or

28 M. van Wijk

sI

passed1

finished

try1

0.85
+1

0.15stop

1

try2

0.2
+3

0.8

stop

1

τ1

(a) Annotated with ρhire

sI

passed1

finished

try1

+100

0.85

0.15stop

1

try2

+240

0.2

0.8

stop

1

τ1

(b) Annotated with ρmoney

Fig. 8. Rewards for a certification process

more unknowns and an arbitrary number of constraints. This kind of property
has not yet been implemented in any of the tools we explored and is also not
common in the literature.

Definition 28. A multi-objective achievability property is a multi-objective
property consisting of zero unknowns and one or more constraints:

ϕ̄ =
〈
ϕ̄1, ϕ̄2, . . . , ϕ̄d

〉
.

A multi-objective achievability property is satisfied in MDP M under a proba-
bilistic step-positional strategy σPs ∈ StratM when:

M, σPs |= ϕ̄
def⇐⇒ ∀i ∈ {1, . . . , d} : M, σPs |= ϕ̄i.

Definition 29. A multi-objective numerical property is a multi-objective
property consisting of one unknown in position j ∈ {1, . . . , d} and zero or more
constraints:

ϕ̂ =
〈

ϕ̄1, . . . ϕ̂j , . . . , ϕ̄d

〉
.

Definition 30. A Pareto property is a multi-objective property consisting of
two or more unknowns and zero constraints:

ϕ̃ =
〈

ϕ̂1, ϕ̂2, . . . , ϕ̂d

〉
.

To find the optimal values such as in Figure 9, we must first determine which
values are achievable. We define achievable values in Definition 31. Notice that
the values on the Pareto curve itself are also achievable.

Definition 31. The achievable values in MDP M for a Pareto property
⟨ϕ1, . . . , ϕd⟩ is the function AchM such that:

AchM(
〈

ϕ̂1, . . . , ϕ̂d

〉
) def=

{
⟨x1, . . . xd⟩ ∈ Rd | ∃σPs : M, σPs |=

〈
ϕ̄1, . . . ϕ̄d

〉}
,

The State of Multi-Objective Model Checking 29

−1 0 1 2 3 4

0

200

400

600

800

1,000

1,200

Expected hiring points

E
xp

ec
te

d
co

st
s

Achievable
Unachievable
Pareto curve

Fig. 9. Pareto curve of
〈

[CumRewM(ρhire)]≤∞
max , [CumRewM(ρmoney)]≤∞

min

〉

where each ϕ̂i is an unknown in the form [RewiM]≤k
△i

. If △i = max, we get
ϕ̄i = [RewiM]≤k

≥xi
, and ϕ̄i = [RewiM]≤k

≤xi
if △i = min.

We can now also define precisely what it means for a vector to dominate an-
other vector. We do this by introducing the dominating relation under a Pareto
property in Definition 32. A vector dominates another vector if it has a better
value for at least one unknown and no worse value for any unknown. All vectors
which are not dominated by any other vector are on the Pareto curve. This is
shown, for example, in Figure 9.

Definition 32. A vector dominates another vector under the Pareto property
ϕ = ⟨ϕ1, . . . , ϕn⟩ iff it is in the relation >ϕ such that:

>ϕ=
{〈

x ∈ Rd,y ∈ Rd
〉
| x ̸= y ∧ ∀i ∈ {1, . . . , d} : xi ▷◁i yi

}
,

where ▷◁i = ≥ if ϕi is a max unknown and ▷◁i = ≤ otherwise.

We also need a way to evaluate multi-objective properties. For this, we will
overload the query function of Definition 19. For a multi-objective achievability
property, this returns whether there exists a strategy such that the property
is satisfied. For a multi-objective numerical property, this returns the optimal
value (maximum for max and minimum for min) that can be achieved by a
strategy while satisfying all constraints if it exists. If no such strategy exists,
⊥ is returned. For a Pareto property, it returns the Pareto curve: the set of all
achievable vectors that are not dominated by any other achievable vector.

Definition 33. A multi-objective query for MDP M is a function queryM
that evaluates a multi-objective property ϕ and is defined as follows:

30 M. van Wijk

– For a multi-objective achievability property ϕ:

queryM(ϕ) def⇐⇒ ∃σPs ∈ StratM : M, σPs |= ϕ,

– For a multi-objective numerical property ϕ =
〈

ϕ̄1, . . . , [RewjM]≤kj
max , . . . , ϕ̄d

〉
,

with a max unknown in position j:

queryM(ϕ) def= sup
{

cj ∈ R | ∃σPs : M, σPs |=
〈

ϕ̄1, . . . , [RewjM]≤kj

≥cj
, . . . , ϕ̄d

〉}
,

– For a multi-objective numerical property ϕ =
〈

ϕ̄1, . . . , [RewjM]≤kj

min , . . . , ϕ̄d

〉
,

with a min unknown in position j:

queryM(ϕ) def= inf
{

cj ∈ R | ∃σPs : M, σPs |=
〈

ϕ̄1, . . . , [RewjM]≤kj

≤cj
, . . . , ϕ̄d

〉}
– For a Pareto property ϕ = ⟨ϕ1, . . . , ϕd⟩:

queryM(ϕ) def= {x ∈ AchM(ϕ) | ¬∃y ∈ AchM(ϕ) : y >ϕ x} .

3.2 Tool Support

There are a few model checkers that support multi-objective model checking.
However, they do not support all types of properties and settings. In this re-
search, we focus on PRISM [53] (version 4.8.1), Storm [40] (version 1.8.1), and
ePMC [31] (commit b1ba8ab). These model checkers all support multi-objective
queries. However, the reward-structures and settings they support differ. We
consider two algorithms supported by most of these tools: value iteration [30]
and linear programming [28].

3.2.1 Value Iteration For value iteration, there are a few important things
to notice in the tool support as listed at the left side of Table 2. First, properties
with infinite cumulative rewards cannot be evaluated by any of the tools. How-
ever, the way in which infinite cumulative rewards are handled differs from tool
to tool. Storm appears to detect properties with at least one infinite cumulative
reward and tells the user that it does not support multi-objective properties with
infinite rewards. PRISM in some cases only detects these properties for lower
convergence thresholds and then also tells the user that such properties are not
supported. ePMC on the other hand appears to diverge. Another interesting part
of the supported features is that Storm does not support relative convergence
thresholds. In addition, PRISM and ePMC only support cumulative rewards
and probabilistic reachability. They do not implement algorithms for long-run
average and reachability rewards.

The State of Multi-Objective Model Checking 31

Table 2. Tool support for multi-objective properties
Value Iteration Linear Programming

Type PRISM Storm ePMC PRISM Storm ePMC
Absolute convergence threshold ✓ ✓ ✓ n/a n/a n/a
Relative convergence threshold ✓ ✗ ✓ n/a n/a n/a
Sound ✗ ✓ ✗ ✗ ✓ ✗
Exact ✗ ✓ ✗ ✗ ✓ ✗
Probabilistic reachability ✓ ✓ ✓ ✓ ✓ ✗
State reward-structure ✗ ✓ ✓ ✗ ✓ ✗
Transition reward-structure ✗ ✓ ✓ ✓ ✓ ✗
Branch reward-structure ✗ ✓ ✓ ✗ ✓ ✗
Cumulative reward ✓ ✓ ✓ ✓ ✓ ✗
Long-run average reward ✗ ✓ ✗ ✗ ✗ ✗
Reachability reward ✗ ✓ ✗ ✗ ✓ ✗
Step-bounded reward ✓ ✓ ✓ ✗ ✗ ✗
Infinite cumulative reward ✗ ✗ ✗ ✗ ✗ ✗
Achievability ✓ ✓ ✓ ✓ ✓ ✗
Numerical ✓ ✓ ✓ ✓ ✗ ✗
Pareto 2 unknowns ✓ ✗ ✗ ✗ ✗

3.2.2 Linear Programming Unfortunately, ePMC does not support linear
programming. Storm and PRISM do, although both tools support fewer prop-
erties than they do for value iteration as shown on the right side of Table 2.
In particular, step-bounds and Pareto queries are not supported when using
linear programming. The most important difference between the tools for lin-
ear programming is that Storm does not support numerical queries for linear
programming, while PRISM does.

4 Mistakes In Existing Model Checkers

Before this research, we tried to replicate a small part of the value iteration
approach in [30]. We evaluated the “Task-graph scheduling problem”1, using
our implementation and PRISM [53]. In our notation, the property considered
is of the form:

ϕ̂ =
〈

[CumRewM(ρtime)]≤∞
min, [CumRewM(ρenergy)]≤∞

≤1.45

〉
.

We found some interesting results for the query of ϕ̂ when using a relative
convergence threshold as we will discuss in Section 4.2. We now evaluate what
happens if we use more models, settings, and tools. This helps us to assess
what happened with the Task-graph scheduling problem and whether the same
happens for different models.
1 https://www.prismmodelchecker.org/files/atva12mo/

https://www.prismmodelchecker.org/files/atva12mo/

32 M. van Wijk

Alg. 2. Multi-objective numerical query approximation

Input: MDP M = ⟨S, s1,A, δ⟩, multi-objective numerical property
ϕ̂ =

〈
ϕ̄1, . . . , [RewjM]≤kj

max , . . . , ϕ̄n

〉
with the unknown in

position j, upper bound upper ∈ R+, precision θ ∈ R+
Result: queryM(ϕ) with an error margin of ±θ

1 low ← 0
2 high ← upper
3 iterations ← ⌈log2

upper
θ ⌉

4 foreach iteration ∈ {1, . . . , iterations} do
5 target ← high+low

2

6 ϕ̄←
〈

ϕ̄1, . . . , [RewjM]≤kj

≥target , . . . , ϕ̄n

〉
7 if queryM(ϕ̄) then
8 low ← target
9 else

10 high ← target
11 return high+low

2

4.1 Approach

In order to evaluate the tools, we only focus on multi-objective achievability and
numerical properties. We do not focus on Pareto properties since they are harder
to compare, since they do not output a number, but a geometric structure.
In order to assess the results of the multi-objective queries, we use numerical
multi-objective properties and compare the results of the direct multi-objective
numerical query with an approximation by using multi-objective achievability
queries.

4.1.1 Approximation We approximate multi-objective numerical queries in
a binary search-like fashion [21]. We start with an upper and lower bound, where
the lower bound is 0 (since all models we evaluate have non-negative rewards)
and the upper bound is 1 for probabilistic reachability and defined by the user for
rewards (our default is 100000). The approximation only works if the actual value
is between these bounds. For each iteration, we then take target = upper−lower

2
as our target value. For a max unknown, we change it to a constraint with the
bound ≥ target, and for a min property, we change it to a ≤ target constraint.

We can then shrink the upper or lower bound, based on whether the multi-
objective achievability property is achievable. We do this until we get to a user-
defined precision. The algorithm is shown in Algorithm 2. We show the algorithm
for a multi-objective numerical property with a max unknown. For a property
with a min unknown, the ≥ on line 6 should be changed to a ≤ and the low and
high on lines 8 and 10 should be interchanged.

For the results used in this paper, we use a timeout of two minutes. If a
query does not return a result in two minutes, the experiment of which it is a

The State of Multi-Objective Model Checking 33

part is aborted. For example, if a value iteration query with a relative conver-
gence threshold times out for PRISM, we abort the entire value iteration using
a relative convergence threshold for PRISM only. For value iteration, we ran the
experiments with convergence threshold values between 0 and 0.9, with a step
size of 0.01.

We use this approach for both linear programming and value iteration imple-
mentations. As shown in Section 3.2, not all models and properties are supported
by these tools. For value iteration, we use both absolute and relative convergence
thresholds. The implementation used to do this can be found in the complemen-
tary Github repository2.

We also use an early stopping mechanism. If the approximation and direct
query of the lowest convergence threshold are equal to the queries for a higher
convergence threshold, we assume the queries for all convergence thresholds val-
ues in between to be the same. We had to include this early stopping mechanism
since the program took several days to run without this early stop. Even with
the early stop, it took 2 full days to run. However, this means that we might
stop too early if the model checkers do not behave as we expect.

4.1.2 Models The models used can be found in the complementary Github
repository in the /models directory. Some models require “constants” to gener-
ate the model. These constants give some flexibility to the user, for example, to
impact the state space. These constants are also specified in the Github reposi-
tory. We also list the models here and introduce them:

– Care home: models a robot controllers that, while trying to complete a task,
also completes soft goals [56]. For this model, we use two sets of constants.
The second set of variables times out for all tools. We also evaluate two
properties. The first has a minimum cumulative reward unknown. The second
property has a maximum reachability reward unknown.

– Client server : models a client-server protocol with mutual exclusion that has
probabilistic errors in the clients [50]. For this model, there are no constants,
and we evaluate one property which has a maximum long-run average reward
unknown.

– Dining philosophers: models the well-known dining philosophers problem
[42], but without the fairness constraint [23]. This model does not have any
constants and one property, which has a maximum long-run average reward
unknown.

– Dynamic power management: assesses the performance and power consump-
tion of a system and its components [61]. For this model, we use one set of
constants and evaluate one property which has a step-bound minimum cu-
mulative reward unknown.

– Hiring process: the model described in Figure 8a. For this model, there are
no constants, and we evaluate one property with a maximum cumulative
reward unknown.

2 https://github.com/Chickenpowerrr/multiobjectiveanalysis/releases/tag/
1.0

https://github.com/Chickenpowerrr/multiobjectiveanalysis/releases/tag/1.0
https://github.com/Chickenpowerrr/multiobjectiveanalysis/releases/tag/1.0

34 M. van Wijk

– Mars rover : models the experiments a Mars rover can do during a day on
Mars [36]. For this model, we use two sets of constants. We also evaluate two
properties, one has a maximum probabilistic reachability unknown and the
other a minimum cumulative reward unknown.

– Network virus: models a virus that infects a network [55]. For this model,
there are no constants, and we evaluate two properties, both with a maximum
long-run average reward unknown.

– Randomised consensus: models asynchronous processes that communicate
through a shared object [3]. This model does not have any constants and we
evaluate one property with a probabilistic reachability unknown.

– Resource gathering: models an agent that collects resources and takes them
home [8]. For this model, we use one set of constants and evaluate one
property with a probabilistic reachability unknown.

– Sensor network: models sensors that send data over a channel with a bounded
buffer [50]. This model has not constants and we evaluate one property with
a maximum long-run average reward unknown.

– Task graph scheduling: finds optimal schedulers for tasks with energy con-
sumption and time [62]. For this model, we use one set of constants and
evaluate one property with a minimum cumulative reward unknown.

– Team formation: models a collaboration protocol [19]. This model has no
constants and we evaluate four properties, two with a maximum probabilistic
reachability reward unknown and two with a maximum reachability reward
unknown.

– Zeroconf network: models a zero-configuration dynamic network for IPv4
[54]. For this model, we use one set of constants and evaluate one property
with a probabilistic reachability unknown.

– Zeroconf time based: the same as the zeroconf network, but also incorporates
time into the model.

4.2 Infinite Cumulative Reward

The model on which this entire research is based is the task graph scheduling
model. During our preliminary research, we found that the result of the query
for PRISM by changing the relative convergence threshold was non-monotonic,
as the query drops around convergence threshold = 0.006 as shown in Figure 10.
This is different from single-objective properties which are always monotonic as
shown in Section 2.7. Moreover, the approximation and the direct multi-objective
numerical query are quite far apart for some convergence threshold values.

When running the experiment with PRISM’s linear programming solver, we
get a value of 6.2, while ePMC’s value iteration gives us even different results
than shown in Figure 10. Storm, however, does give a hint about what might
be happening. Storm does not want to verify the property since it claims that
there are infinite rewards. It does however still not explain the non-monotonic
increase we observed in PRISM.

The State of Multi-Objective Model Checking 35

0 0.02 0.04 0.06 0.08 0.1
0

20

40

60

Relative convergence threshold

R
m

in

Approximation
Direct

More iterations

Fig. 10. Minimum reward for a multi-objective numerical query using PRISM

4.3 Results

When we run our experimental setup, we get the results shown in Table 3.
If either the approximation or direct query changes for different convergence
thresholds, we plot both the approximation and the direct query. Otherwise,
the value is shown in the table. If a value cannot be computed, for example
when a timeout is triggered, the type of property or model is unsupported or
because of an error in the model checker, we put -. If a direct query states that
a property is unachievable, we denote it by ⊥. We do want to note that our
current implementation could not detect this for an approximation, so a 0.000
for an approximation could also mean that the property is unachievable in our
setup.

The numbering of the constants corresponds to the property and constants
listed in the properties.pctl and constants.txt files for each model in our
repository.

4.3.1 PRISM’s Non-Monotic Behaviour We observe that for some mod-
els, the results of the approximation are not always monotonic when using
PRISM’s value iteration solver. If we take the hiring process model with an
absolute convergence threshold, we observe Figure 12c. The approximation with
a high convergence threshold starts at 3.1, which is the actual value, only to drop
and become the same as the direct query for smaller convergence thresholds. We
would not expect the value to drop again for a lower convergence threshold,
we would only expect the value to increase, as seen in Section 2.7. The same

36 M. van Wijk

Table 3. Experimental results

Va
lu

e
It

er
at

io
n

R
el

at
iv

e
co

nv
er

ge
nc

e
th

re
sh

ol
d

A
bs

ol
ut

e
co

nv
er

ge
nc

e
th

re
sh

ol
d

Li
ne

ar
Pr

og
ra

m
m

in
g

PR
IS

M
eP

M
C

St
or

m
PR

IS
M

eP
M

C
St

or
m

PR
IS

M
M

od
el

Pr
op

er
ty

C
on

st
an

ts
A

pp
ro

x
D

ire
ct

A
pp

ro
x

D
ire

ct
A

pp
ro

x
D

ire
ct

A
pp

ro
x

D
ire

ct
A

pp
ro

x
D

ire
ct

A
pp

ro
x

A
pp

ro
x

D
ire

ct
C

ar
e

ho
m

e
[5

6]
1

1
-

-
-

-
Fi

gu
re

11
a

-
-

-
-

-
-

-
C

ar
e

ho
m

e
[5

6]
2

1
-

-
0.

00
0

-1
00

0.
0

0.
00

0
⊥

-
-

0.
00

0
-1

00
0.

0
0.

00
0

-
-

C
lie

nt
se

rv
er

[5
0]

1
n/

a
-

-
-

-
Fi

gu
re

11
b

-
-

-
-

-
-

-
D

in
in

g
ph

ilo
so

ph
er

s
[2

3]
1

n/
a

-
-

-
-

Fi
gu

re
11

c
-

-
-

-
-

-
-

D
yn

am
ic

po
w

er
m

an
ag

em
en

t
[6

1]
1

1
57

.7
59

57
.7

59
-

-
Fi

gu
re

11
d

57
.7

59
57

.7
59

-
-

-
-

-
H

iri
ng

po
in

ts
(F

ig
ur

e
8a

)
1

n/
a

Fi
gu

re
12

a
-

-
Fi

gu
re

12
b

Fi
gu

re
12

c
-

-
0.

00
0

∞
3.

10
0

M
ar

s
ro

ve
r

[3
6]

1
1

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
M

ar
s

ro
ve

r
[3

6]
1

2
Fi

gu
re

13
a

0.
00

0
0.

00
0

Fi
gu

re
13

b
Fi

gu
re

13
c

Fi
gu

re
13

d
-

-
-

M
ar

s
ro

ve
r

[3
6]

2
1

Fi
gu

re
14

a
0.

00
0

0.
00

0
76

.6
67

76
.6

67
Fi

gu
re

14
b

0.
00

0
0.

00
0

10
0.

00
0

0.
00

0
76

.6
67

M
ar

s
ro

ve
r

[3
6]

2
2

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
-1

.0
00

-
-

-
N

et
w

or
k

vi
ru

s
[5

5]
1

n/
a

-
-

-
-

3.
25

4
3.

25
4

-
-

-
-

-
-

-
N

et
w

or
k

vi
ru

s
[5

5]
2

n/
a

-
-

-
-

Fi
gu

re
11

e
-

-
-

-
-

-
-

R
an

do
m

ise
d

co
ns

en
su

s
[3

]
1

n/
a

0.
89

2
0.

89
2

0.
00

0
0.

00
0

0.
89

2
0.

89
2

0.
89

2
0.

89
2

0.
89

2
0.

89
2

0.
89

2
0.

89
2

0.
89

2
R

es
ou

rc
e

ga
th

er
in

g
[8

]
1

1
Fi

gu
re

15
a

0.
00

0
0.

00
0

Fi
gu

re
15

b
Fi

gu
re

15
c

Fi
gu

re
15

d
0.

00
0

0.
82

4
0.

82
4

Se
ns

or
ne

tw
or

k
[5

0]
1

n/
a

-
-

-
-

Fi
gu

re
11

f
-

-
-

-
-

-
-

Ta
sk

gr
ap

h
sc

he
du

lin
g

[6
2]

1
1

-
-

2.
93

6
0.

00
0

-
-

-
-

0.
00

0
0.

00
0

-
0.

00
0

6.
12

0
Te

am
fo

rm
at

io
n

[1
9]

1
n/

a
-

-
-

-
0.

00
0

⊥
-

-
-

-
0.

00
0

-
-

Te
am

fo
rm

at
io

n
[1

9]
2

n/
a

-
-

-
-

0.
00

0
⊥

-
-

-
-

0.
00

0
-

-
Te

am
fo

rm
at

io
n

[1
9]

3
n/

a
-

-
0.

00
0

-1
00

0.
0

0.
00

0
⊥

-
-

1.
98

0
1.

98
0

0.
00

0
-

-
Te

am
fo

rm
at

io
n

[1
9]

4
n/

a
-

-
0.

00
0

-1
00

0.
0

0.
00

0
⊥

-
-

1.
71

4
1.

71
4

0.
00

0
-

-
Ze

ro
co

nf
ne

tw
or

k
[5

4]
1

1
3.

1e
-4

3.
1e

-4
0.

00
0

0.
00

0
3.

1e
-4

3.
1e

-4
3.

1e
-4

3.
1e

-4
3.

1e
-4

3.
1e

-4
0.

00
0

3.
1e

-4
3.

1e
-4

Ze
ro

co
nf

tim
e

ba
se

d
[5

4]
1

1
2.

0e
-4

2.
0e

-4
-

-
2.

0e
-4

2.
0e

-4
2.

0e
-4

2.
0e

-4
-

-
-

2.
0e

-4
2.

1e
-4

The State of Multi-Objective Model Checking 37

0 0.2 0.4 0.6 0.8

123.06

123.08

123.1

123.12

123.14

123.16

Absolute convergence threshold

R
m

ax

Approximation
Direct

More iterations

(a) Care home model

0 0.2 0.4 0.6 0.8

1.6

1.8

2

2.2

2.4

2.6
·10−2

Absolute convergence threshold

R
m

ax

Approximation
Direct

More iterations

(b) Client server model

0 0.2 0.4 0.6 0.8
2.63

2.64

2.65

2.66

2.67

2.68

Absolute convergence threshold

R
m

ax

Approximation
Direct

More iterations

(c) Dining philosophers model

0 0.2 0.4 0.6 0.8
57.74

57.76

57.78

57.8

Absolute convergence threshold

R
m

in

Approximation
Direct

More iterations

(d) Dynamic power management model

0 0.2 0.4 0.6 0.8
0

2

4

6

8

·10−2

Absolute convergence threshold

R
m

ax

Approximation
Direct

More iterations

(e) Network virus model

0 0.2 0.4 0.6 0.8
0.27

0.28

0.29

0.3

0.31

Absolute convergence threshold

R
m

ax

Approximation
Direct

More iterations

(f) Sensor network model

Fig. 11. Value iteration with an absolute convergence threshold in Storm

38 M. van Wijk

0 0.2 0.4 0.6 0.8
0

1

2

3

Relative convergence threshold

R
m

ax

Approximation
Direct

More iterations

(a) PRISM, relative ϵ

0 0.2 0.4 0.6 0.8
3

3.02

3.04

3.06

3.08

3.1

Absolute convergence threshold

R
m

ax

Approximation
Direct

More iterations

(b) Storm, absolute ϵ

0 0.2 0.4 0.6 0.8
0

1

2

3

Absolute convergence threshold

R
m

ax

Approximation
Direct

More iterations

(c) PRISM, absolute ϵ

Fig. 12. Value iteration for the hiring process model

non-monoticity for with an absolute convergence threshold can be observed in
Figures 13c, 14b and 15c. It also occurs when using a relative convergence thresh-
old, as shown in Figures 13a, 14a and 15a.

4.3.2 PRISM’s Problem Using Linear Programming When we use the
approximation algorithm with PRISM’s linear programming solver, we get a cu-
rious result for the hiring process model. The hiring points seem to approach
infinity if we add the constraint that the expected costs should be below e1000.
However, from the MDP shown in Figure 8, it should be obvious that it is impos-
sible to get more than 4 hiring points in total; in fact, the actual result should
be 3.1. If we remove the expected cost constraint but check whether the multi-
objective achievability property

〈
[CumRewM(ρhire)]≤∞

≥10000

〉
, PRISM claims that

the query is achievable. When playing around with the multi-objective achiev-

The State of Multi-Objective Model Checking 39

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Relative convergence threshold

P
m

ax

Approximation
Direct

More iterations

(a) PRISM, relative ϵ

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Absolute convergence threshold

P
m

ax

Approximation
Direct

More iterations

(b) Storm, absolute ϵ

0 0.2 0.4 0.6 0.8
−0.5

0

0.5

1

Absolute convergence threshold

P
m

ax

Approximation
Direct

More iterations

(c) PRISM, absolute ϵ

0 0.2 0.4 0.6 0.8
−0.5

0

0.5

1

Absolute convergence threshold

P
m

ax

Approximation
Direct

More iterations

(d) ePMC, absolute ϵ

Fig. 13. Value iteration for first property of the Mars rover model

ability property containing only the expected hiring points, we found that when
we update the constraint so that the expected hiring points are 3.4 or lower, the
PRISM output contains the line:

LP problem solution found; result is 3.400000.

However, when we provide a higher value, which should not be achievable, the
output contains the line:

LP problem solution not found; result is 0.000000.

Since the actual value is 3.4, as calculated in Example 13, PRISM seems to
incidate that the query cannot be achieved. However, the result still states that
the query is achievable, which is obviously incorrect. This means that something
is going wrong in PRISM’s linear programming engine. The output suggests that

40 M. van Wijk

0 0.2 0.4 0.6 0.8
0

20

40

60

80

Relative convergence threshold

R
m

in

Approximation
Direct

More iterations

(a) PRISM, relative ϵ

0 0.2 0.4 0.6 0.8

65

70

75

Absolute convergence threshold

R
m

in

Approximation
Direct

More iterations

(b) PRISM, absolute ϵ

Fig. 14. Value iteration for second property of the Mars rover model

PRISM handles the case when no linear programming solution has been found
incorrectly.

4.3.3 Storm’s Problem Using Linear Programming For Storm we get
a different problem with the hiring process model using linear programming.
Whereas PRISM approached an infinite expected number of hiring points, Storm
approaches 0 hiring points. This is also obviously wrong, since in Figure 8 it
is obvious that if we only take the first exam, we will end up with at least
0.85 expected hiring points. If we again construct a multi-objective achievability
property with only one constraint, which is the expected hiring points and check
whether it is possible to get more points than a small value, such as 0.01, we
find that Storm says that the query is unachievable if we are using the linear
programming solver. It seems that any value above 0 is unachievable. This is
also obviously incorrect, as any value below 3.4 should be achievable as shown
in Example 13. The same happens for the zeroconf network model.

4.3.4 ePMC’s Problem Using Value Iteration For ePMC, we observe
something different. During the experiments, we found that ePMC produces
results that are widely different from the other model checkers for a few models.
Therefore, we investigate these results a bit more. In doing so, we find that ePMC
produces inconsistent results. For example, for the Mars rover model using the
second constants set with the default absolute convergence threshold, ePMC
gives us the result:

queryM(
〈

[CumRewM(ρtime)]≤∞
min,

[CumRewM(ρenergy)]≤∞
≤43.99999993400001

〉
) = −1.0000000.

The State of Multi-Objective Model Checking 41

0 0.2 0.4 0.6 0.8
0.81

0.81

0.82

0.82

Relative convergence threshold

P
m

ax

Approximation
Direct

More iterations

(a) PRISM, relative ϵ

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

Absolute convergence threshold

P
m

ax

Approximation
Direct

More iterations

(b) Storm, absolute ϵ

0 0.2 0.4 0.6 0.8
0.81

0.81

0.82

0.82

Absolute convergence threshold

P
m

ax

Approximation
Direct

More iterations

(c) PRISM, absolute ϵ

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

Absolute convergence threshold

P
m

ax

Approximation
Direct

More iterations

(d) ePMC, absolute ϵ

Fig. 15. Value iteration for the resource gathering model

However, it is impossible to get a negative result, as all rewards defined in the
model are non-negative. Of course, it could be the case that this is ePMC’s
way of saying that it is impossible to achieve the multi-objective achievability
property: 〈

[CumRewM(ρenergy)]≤∞
≤43.99999993400001

〉
.

However, if we construct multi-objective numerical properties for both these
reward-structures without any constraints, we also get

queryM(
〈

[CumRewM(ρtime)]≤∞
min

〉
) = −1.0000000, and

queryM(
〈

[CumRewM(ρenergy)]≤∞
min

〉
) = −1.0000000.

Both these multi-objective numerical properties do not have any constraints, so
they are achievable. Since there are only non-negative rewards present in the

42 M. van Wijk

model, ePMC must be wrong here. ePMC also produces negative results for the
team formation and care home models.

A curious result arises when running the randomised consensus model with
a relative convergence threshold. In this case, we get the result:

queryM(
〈

[R♢one_proc_err]≤∞
max ,

[R□one_proc_ok]≤∞
≥0.10833260973166493

〉
) = 0.0000000.

The other model checkers and even ePMC with an absolute convergence thresh-
old get a value around 0.89167 (which is 1 − 0.10833260973166493). When we
investigate this again by creating two new multi-objective numerical properties
containing only the reward-structures as an unknown, we get:

queryM(
〈
[R♢one_proc_err]≤∞

max
〉
) = 0.0000000, and

queryM(
〈

[R□one_proc_ok]≤∞
≥0.10833260973166493

〉
) = 0.0000000.

If we convert these two multi-objective numerical properties into single-objective
numerical properties, we get completely different results:

queryM([R♢one_proc_err]≤∞
max) = 1.0000000, and

queryM([R□one_proc_ok]≤∞
≥0.10833260973166493) = 1.0000000.

This means that even if the relative convergence threshold stays the same, the
two engines compute completely different results. This seems to indicate that
there might be an issue in either of these computations; however, we cannot be
100% certain yet since the computations are not identical, just similar.

4.3.5 Storm’s Segmentation Fault In Storm, we can get a segmentation
fault. This occurs when using the first property for the Mars rover models using
the linear programming solver and the second set of constants. This does not
produce any wrong results, but it is inconvenient that the query cannot be
computed. Moreover, the underlying problem that causes this segmentation fault
might have an influence on other computations that do not crash.

4.3.6 ePMC’s NullPointerException Lastly, we found with ePMC that for
the team formation model, we get a NullPointerException if we try to evaluate
the properties. If we run the model checker with assertions enabled, we get an
AssertionError instead. However, this appears to be the way ePMC handles long-
run average and reachability rewards, since they are not supported. This could
be more user-friendly to avoid people trying to evaluate unsupported properties.

5 Solutions To Mistakes In Existing Model Checkers
We start by analysing PRISM, Storm and ePMC and try to find causes of the
issues found in Section 4.3. To do this, we dive into the code and in some cases
manage to resolve the problems and create bug reports for the ones that are too
complex to quickly solve.

The State of Multi-Objective Model Checking 43

5.1 Storm
As shown in Section 4, we have seen that there are a few mistakes in the Storm
model checker. In particular, the segmentation fault and the problem using linear
programming.

5.1.1 Segmentation Fault The segmentation fault in Storm seems to arise
from a StackOverflowError. This happens in the Z3ExpressionAdapter’s visit
function, which invokes the BinaryNumericalFunctionExpressions’s accept func-
tion, which then invokes the Z3ExpressionAdapter’s visit function again.3 De-
bugging the Mars rover model itself was too challenging for us, since it has
161410 states and 302642 transitions. However, we reported the problem and
the developers found that the problem arises since the model is so large that a
part of the code could not handle the computation.4 The problem has now been
addressed, so no segmentation fault occurs in future versions of Storm.5

5.1.2 Problem Using Linear Programming We found that the linear pro-
gramming problem in Storm arises from inaccuracy in double precision numbers.
If we use Figure 16 in Storm, with probabilities p1 and p2 to end up in respec-
tively sI and goal and query the multi-objective property consisting of only the
maximum probabilistic reachability property which asks whether it is possible
to reach goal, the query should obviously be true. However, we only get this
when we use decimal values for p1 and p2 which can be expressed exactly using
the IEEE 754 format. These are values that can be expressed as n

2m , n, m ∈ Z
[44]. For example, for p1 = 0.25, p2 = 0.75 or p1 = 0.125, p2 = 0.875, we get that
the query is true. When we use a value that cannot be represented exactly like
p1 = 0.3, p2 = 0.7 or p1 = 0.2, p2 = 0.8, no solution to the linear program can
be found, and thus the result is false.

This problem probably arises from the fact that there are strict equality signs
for each state in the linear program [28]. It is hard to satisfy several equality
constraints if they all need to round to an exact result if the values in between
are getting rounded. A way to solve this would be to add a small value ϵ > 0,
and for each equality x = y try to achieve x + ϵ ≥ y ∧ x− ϵ ≤ y instead.

Another way to solve the issue is by using the ––exact flag, this ensures that
Storm represents decimal values as fractions instead of floating-point numbers,
which bypasses the inaccuracy. This means that in the current implementation
in Storm, the linear programming solver is only useful when using the ––exact
flag since otherwise the chances of getting meaningful results are very slim. This
is why it would be useful to add a warning when using the linear programming
solver without the ––exact flag. This ensures that Figure 16 also works with
values for p1 and p2 that would otherwise have been rounded due to double
precision.
3 https://github.com/moves-rwth/storm/blob/9fba97a4a14f346427b7c8954cb57

50ce311afd6/src/storm/adapters/Z3ExpressionAdapter.cpp#L226
4 https://github.com/moves-rwth/storm/issues/625
5 https://github.com/moves-rwth/storm/pull/626

https://github.com/moves-rwth/storm/blob/9fba97a4a14f346427b7c8954cb5750ce311afd6/src/storm/adapters/Z3ExpressionAdapter.cpp#L226
https://github.com/moves-rwth/storm/blob/9fba97a4a14f346427b7c8954cb5750ce311afd6/src/storm/adapters/Z3ExpressionAdapter.cpp#L226
https://github.com/moves-rwth/storm/issues/625

44 M. van Wijk

sI goala

p2
p1 τ

1

Fig. 16. Double-precision problem in Storm

5.2 PRISM

In Section 4 we have also detected a problem using linear programming in
PRISM. We will discuss the origin of this issue and resolve it.

5.2.1 Problem Using Linear Programming In Section 4.3.2 we found
that PRISM has a linear programming problem. Fortunately, it turned out that
this problem was quite easy to solve. In PRISM, the unknowns should always
come before the constraints. Since the linear programming solver cannot solve
Pareto queries, their native C++ code only needed to check whether the first
property in the multi-objective property is an unknown or a constraint to deter-
mine whether the multi-objective property was a multi-objective numerical or
achievability property. However, since reward properties and probabilistic reach-
ability properties are stored in two different arrays, the first element of both of
these arrays was checked. Unfortunately, no bounds check on the length of these
arrays was performed before doing this. This means that if only reward prop-
erties or only probabilistic reachability properties were used, it was undefined
behaviour whether the multi-objective property would be recognised as a multi-
objective reachability or numerical property. However, since the value of the out-
of-bounds field was typically 0 on the machine the experiments were performed
on, multi-objective properties with only reward properties, the multi-objective
achievability properties consisting of only reward properties were often classified
as numerical properties. For this reason, an unachievable result was reported as
NaN which is the way for PRISM to say that a multi-objective numerical query
is unachievable, instead of 0.0, which is PRISM’s way of communicating an un-
achievable multi-objective achievability query. Therefore, NaN was incorrectly
classified as an achievable result, since it was not 0.0. After checking the bounds
of the arrays when classifying the multi-objective property, this issue has been
resolved.6

5.3 ePMC

Most problems found in Section 4 originate in the ePMC model checker. We will
discuss the root of these problems. Unfortunately, we are not able to resolve all
of these problems, since they are quite fundamental to the model checker.

6 https://github.com/prismmodelchecker/prism/pull/244

https://github.com/prismmodelchecker/prism/pull/244

The State of Multi-Objective Model Checking 45

5.3.1 NullPointerException In Section 4.3.6, we determined that ePMC
throws a NullPointerException for certain properties. Upon further inspection
of the code, this turned out to be not caused by the long-run average and reach-
ability rewards being unsupported. Instead, it was a fairly simple oversight in a
constructor. A variable was passed on as a parameter, however, it was never as-
signed to its corresponding field. The field to which it should have been assigned
was then used later on without being assigned. After updating this field in the
constructor, the issue was resolved.7

5.3.2 Unachievable Numerical Queries When going over the code, we
found that unachievable numerical queries were not reported to the user. There
was a boolean value which reported whether a given property was achievable,
however it was never used. The code that reported it to the user was commented
out. Upon contacting the authors of the tool, it turned out that they did not
know why they commented it out. When we uncommented this code, it seemed
that unachievable numerical queries were reported correctly.8

5.3.3 Problem Using Value Iteration As shown in Section 4.3.4, ePMC
has a value iteration problem. Upon investigating the issue, we found that ePMC
attempts to take a more efficient approach for giving rewards for reaching a goal
state in a probabilistic reachability property than that is described in Proposi-
tion 7. Instead, they give a “stop reward”, when a goal state is reached, if there is
no opportunity to reach a state that satisfies more reachability properties. While
this approach works for single-objective properties and seems to work for multi-
objective properties which consist of only probabilistic reachability properties,
it breaks down when rewards get involved. The stop rewards are in some cases
also handed out for reward properties. This means that we can get a reward of
+1 for reaching a state for a reward property, even though no reward has been
specified. The cause of this part of the problem is in the calculation of accepting
states, which is done based on Rabin automata as shown in Definition 23. The
goal set used for probabilistic reachability is then determined using [26].

The −1.000 result shown in Section 4.3 also arises from this problem. Since
the algorithm used can only maximise the rewards, the rewards are negated
before the start of the algorithm if the reward property should be minimised. For
probabilistic reachability properties, they do not invert the reward. In this case,
they take the complement of the goal set if the property should be minimised,
meaning that a reward for reaching a goal state is always non-negative. However,
the stop reward is used instead of the value from the reward-structure, if the stop
reward is higher than the reward in the reward-structure. Since the rewards are
negative for minimising reward properties, the stop reward is always going to be
7 https://github.com/Chickenpowerrr/ePMC/commit/dfd56134d14d282481b9b951

9ef0cca5372c242a
8 https://github.com/iscas-tis/ePMC/pull/11/commits/0dc1e136153b8a6ba1d0

c1fb77d1d34c24c663e8

https://github.com/Chickenpowerrr/ePMC/commit/dfd56134d14d282481b9b9519ef0cca5372c242a
https://github.com/Chickenpowerrr/ePMC/commit/dfd56134d14d282481b9b9519ef0cca5372c242a
https://github.com/iscas-tis/ePMC/pull/11/commits/0dc1e136153b8a6ba1d0c1fb77d1d34c24c663e8
https://github.com/iscas-tis/ePMC/pull/11/commits/0dc1e136153b8a6ba1d0c1fb77d1d34c24c663e8

46 M. van Wijk

Table 4. Status of problems
Problem Status
Storm’s segmentation fault Problem reported and resolved
Storm’s problem using linear programming The ––exact flag should be used
PRISM’s problem using linear programming Problem found and resolved
ePMC’s NullPointerException Problem found and resolved
ePMC’s unachievable numerical queries Problem found and resolved
ePMC’s problem using value iteration Problem found, reported and partially resolved

higher than any reward. This means that it is impossible to correctly evaluate
any minimising reward property since its value can only be between −1 and 0 in
the current implementation because it will always decide to take the stop reward
instead of a reward from the reward structure. We have created a pull request
to resolve this problem.9

The −1000.0 result arises since the model checker has not been fully imple-
mented. The −1000.0 is set as a hack until the code is properly implemented.10

However, upon contacting the authors of the tool, it appears that they do not
have the resources required to update the tool.

5.4 Status

As a summary of this section, we have listed all the problems discussed and
show what we have done with them in Table 4. This shows which problems are
currently still open.

6 Infinite Cumulative Rewards

As shown in Table 2, the current tools do not support models with at least one
infinite cumulative reward. One of the reasons for this is that the algorithm used
by all tools to convert LTL probabilistic reachability properties into cumulative
rewards assumes that there are no infinite maximising cumulative rewards [28].
Both Storm and PRISM perform this check, ePMC on the other hand, does
never detect them.

The concept of the algorithm including the check is shown in Algorithm 3. An
infinite cumulative reward can only occur if we can reach an end component with
a nonzero reward. If this is the case, we can decide to stay in the end component
for ever and obtain the reward an infinite number of times, thus obtaining an
infinite reward. Notice that in Algorithm 3 a property is only considered invalid
when an infinite cumulative reward can be obtained while satisfying all (other)
9 https://github.com/iscas-tis/ePMC/pull/11

10 https://github.com/iscas-tis/ePMC/blob/b1ba8abf9f52c05f23421efb1abd1be
7618f426d/plugins/propertysolver-multiobjective/src/main/java/epmc/mul
tiobjective/MultiObjectiveUtils.java#L147

https://github.com/iscas-tis/ePMC/pull/11
https://github.com/iscas-tis/ePMC/blob/b1ba8abf9f52c05f23421efb1abd1be7618f426d/plugins/propertysolver-multiobjective/src/main/java/epmc/multiobjective/MultiObjectiveUtils.java#L147
https://github.com/iscas-tis/ePMC/blob/b1ba8abf9f52c05f23421efb1abd1be7618f426d/plugins/propertysolver-multiobjective/src/main/java/epmc/multiobjective/MultiObjectiveUtils.java#L147
https://github.com/iscas-tis/ePMC/blob/b1ba8abf9f52c05f23421efb1abd1be7618f426d/plugins/propertysolver-multiobjective/src/main/java/epmc/multiobjective/MultiObjectiveUtils.java#L147

The State of Multi-Objective Model Checking 47

Alg. 3. Algorithm to convert LTL properties into cumulative rewards [28]

Input: An MDP, DRAs for the probabilistic reachability properties
{ϕ1, . . . , ϕn}

Result: The modified MDP and reward-structures representing the
probabilistic reachability properties

1 Construct the composition of the MDP and the DRAs for all
probabilistic reachability properties. For each maximising cumulative
reward property and the unknowns, determine whether it is possible to
reach an end component which contains a reward higher than 0 while
satisfying all constraints of the multi-objective property. If this is the
case, stop because there is an infinite cumulative reward.

2 Remove all actions that will not be used because the assumption holds.
These are all the actions with a reward higher than 0 for a maximising
cumulative reward property that are contained in an end-component.
Then repeatedly remove all states with no outgoing actions and all
actions that contain a branch that leads to a non-existing state until
no changes occur.

3 We turn all probabilistic reachability properties into cumulative
rewards. To do this, we add the state sdead to the state space. If we
have probabilistic reachability properties {ϕ1, . . . , ϕn}, for each
R ∈ P({ϕ1, . . . , ϕn}), we find the end-components that accept all
properties in R and do not contain any reward. For each of the states
in these end components, we add a transition to the sdead state with a
reward of +1 for all properties in R.

sI
τ

+1
1

Fig. 17. Infinite cumulative reward with reward-structure ρ∞

constraints. This means that we do not only need to check whether we can
reach such an infinite end component from the initial state, but can do so while
satisfying all constraints. This requires an additional multi-objective query, just
to validate the validity of a model.

6.1 Existing Approaches

Right now, PRISM does not perform the check shown in Algorithm 3 on the
unknown in case of a multi-objective property with a minimising cumulative
reward unknown. For example, if we evaluate the multi-objective property〈

[CumRewM(ρ∞)]≤∞
min

〉

48 M. van Wijk

sI

s2

s3

a

1

b
+1

1

τ

1

τ

1

(a) Reward-structure ρ1

sI

s2

s3

a

1

b

1

τ
+1

1

τ

1

(b) Reward-structure ρ∞′

Fig. 18. Infinite cumulative reward edge case

on the MDP shown in Figure 17, we have an infinite cumulative reward of ∞.
However, since PRISM does not perform the check in this case, PRISM will
continue to verify the property. Although value iteration does not converge on
this model, the linear program solver will report a value of 0.0, which is obviously
incorrect. We reported this problem to the maintainers.11

Storm handles infinite cumulative rewards slightly differently. It discards any
strategies that contain an infinite cumulative reward for any of the subproperties.
This means that if we for example evaluate the multi-objective property〈

[CumRewM(ρ∞′)]≤∞
min, [CumRewM(ρ1)]≤∞

≤0

〉
on Figure 18, Storm does not report the infinite cumulative reward, even though
the result of the query would expected to be infinity. Instead, it reports that
the query is unachievable, since it does not consider any strategy that includes
the action a, since it would lead to an infinite cumulative reward.12 This can be
confusing to users, especially since〈

[CumRewM(ρ1)]≤∞
≤0

〉
is achievable according to Storm.

Also, if we consider the model Figure 18 and evaluate the query〈
[CumRewM(ρ∞′)]≤∞

max , [CumRewM(ρ1)]≤∞
≥2

〉
using PRISM and Storm, both output that the model has an infinite cumulative
reward. However, if we look at the model, we see that it is impossible to satisfy
the constraint that ρ1 becomes 2. This means that both tools do not only exclude
models for which all constraints are satisfied as shown in Algorithm 3. This saves
a separate multi-objective query, since detecting an infinite cumulative reward
can be done using a graph algorithm as we will see in Section 6.2.
11 https://github.com/prismmodelchecker/prism/issues/253
12 https://github.com/moves-rwth/storm/issues/624

https://github.com/prismmodelchecker/prism/issues/253
https://github.com/moves-rwth/storm/issues/624

The State of Multi-Objective Model Checking 49

Moreover, Storm and PRISM do not report which cumulative rewards are
infinite, making it harder to debug.

6.2 Our Approach

As seen in Section 6.1, if an infinite cumulative reward is detected in the current
tools, it is not verified whether it can actually be obtained by a strategy satisfying
the constraints as shown in Algorithm 3. We assume that this approach has been
chosen since performing this requires a multi-objective query on the same MDP
using another reward-structure. This means that the check would take a similar
amount of time as the main check. This significantly slows down the model
checkers for only a small set of missing models.

Since we also would not like to slow down our implementation so drastically,
we also choose a different approach than the one used in Algorithm 3. However,
since infinite cumulative rewards typically denote modelling errors, we choose
to exclude all reward-structures for which there exists a strategy that leads
to an infinite cumulative reward, even when minimising rewards. Otherwise, the
user might still provide negative rewards and minimise to end up with a negative
infinite reward. This is essentially equivalent to maximising for a positive reward
to end up with and infinite reward, just the signs are flipped. This means that we
can evaluate a slightly smaller set of models than PRISM and Storm. However,
we know for sure that we can evaluate all the models that pass the check. We
opted not to choose the Storm approach since, as shown in Section 6.1 the
outputs can be confusing.

In order to do this, we could use an algorithm that works for the non-multi-
objective case and apply it separately for each reward-structure. However, if we
have several reward structures, we can also perform this computation only once.
For this, we came up with the approach shown in Algorithm 4. It is inspired by
the approach taken by Storm. We prevent each model with an end component
with a non-negative reward that is reachable from the initial state. We do this
since the reward being in an end component means that we can construct a
strategy such that we stay in the end component for ever while obtaining the
reward an infinite number of times.

7 Multi-Objective Model Checking Algorithms

So far, we have found problems in multi-objective algorithms without diving into
the algorithms themselves. To better understand what is going on behind the
scenes, we present the multi-objective model checking algorithms used so far in
this section. We do this in more depth than the respective papers, since we have
no page limit and can thus provide more insight into the algorithms.

We will use this knowledge to replicate the papers [29,30] in Section 8. This
allows us to find errors in the underlying papers, which can help future imple-
mentations avoid falling into these traps. Moreover, this allows us to attempt to
implement a model checker that learns from the mistakes found in Section 4.

50 M. van Wijk

Alg. 4. Algorithm to detect infinite cumulative rewards for MDP M

Input: The MDP M and reward-structures ρ ∈ Structd
M

Result: Whether the MDP contains infinite cumulative rewards
1 For the MDP M calculate the set of maximal end components

MEC M = {EC 1, . . . , EC k}, where each
EC i = ⟨SECi , sECi ,AECi , δECi⟩.

2 Compute the function l which labels each maximal end component with
the reward-structures which have a non-zero reward in the maximal
end component. Formally:
l(EC i) = {ρj | ∃s, s′ ∈ SECi

: ∃a ∈ αECi
(s) : ρj(s)(a)(s′) ̸= 0}.

3 Calculate the set of reward-structures with an infinite reward by
computing the union of the labels of maximal end components
reachable from initial state sI .
l∞ =

⋃
EC∈

{
ECi∈MECM|∃s′∈SECi

: sI

M−−→s′
} l(EC).

4 If l∞ = ∅ the model is valid so perform the actual model checking
algorithms. Otherwise, report to the user that the reward-structures in
l∞ have infinite cumulative rewards and do not perform the actual
model checking algorithms.

7.1 Value Iteration Approach

The first way in which we will compute multi-objective queries is by using value
iteration [30]. This approach is an extension of the approach shown for single-
objectives in Section 2.7.

7.1.1 Intuition We will start by looking at the intuition behind the algorithm.
This will help to understand the principle behind the algorithm and show the
necessity of some mathematical definitions. We consider the case of a Pareto
query, since the multi-objective achievability and numerical queries work in the
same way, but with some optimisations.

The example we will consider is the certification process model shown in
Figure 8. Since we are looking for the Pareto curve, we know that the result
should be equivalent to Figure 9 at the end of the algorithm.

To simplify the algorithm, we only consider multi-objective properties with
cumulative rewards for which all constraints have a ≥ bound, and all unknown
are maximising. To convert properties into this form, we use Proposition 8.

Proposition 8. Let M = ⟨S, sI ,A, δ⟩ be an MDP, then:

queryM([RewM]≤k
≤c) = queryM([−RewM]≤k

≥−c), and

queryM([RewM]≤k
min) = −queryM([−RewM]≤k

max).

The State of Multi-Objective Model Checking 51

Proof. For the first part of the proposition, we only need Definitions 18 and 19
and the simple relation: a ≤ b ⇐⇒ −a ≥ −b.

queryM([RewM]≤k
≤c)

= ∃σPs ∈ StratM : M, σPs |= [RewM]≤k
≤c

= ∃σPs ∈ StratM : RewM(k, σPs) ≤ c

= ∃σPs ∈ StratM : − RewM(k, σPs) ≥ −c

= ∃σPs ∈ StratM : M, σPs |= [−RewM]≤k
≥−c

= queryM([−RewM]≤k
≥−c).

For the second part of the proposition, we need Definitions 17 and 19 and the
duality of the infimum and supremum operators on a set X of real numbers:
inf X = − sup−X.

queryM([RewM]≤k
min)

= inf
σPs∈StratM

RewM(k, σPs)

= − sup
σPs∈StratM

−RewM(k, σPs)

= −queryM([−RewM]≤k
max).

⊓⊔

Since the certification process model uses the property〈
[CumRewM(ρhire)]≤∞

max , [CumRewM(ρmoney)]≤∞
min

〉
,

we should evaluate the property〈
[CumRewM(ρhire)]≤∞

max , [CumRewM(−ρmoney)]≤∞
max

〉
and change the sign of money after the algorithm has finished.

In each step of the algorithm, we will compute a “weight vector”. This weight
vector assigns various weights to all reward-structures in the multi-objective
property. These weights are all between 0 and 1, and they should sum up to one.
Notice that this is equivalent to constructing a probability distribution over the
points. A linear combination where the constants are a weight vector is called a
convex combination, which we will cover in greater depth in Section 7.1.2.

With a weight vector w ∈ [0, 1]d, we can then find the step-positional strategy
σS for multi-objective property〈

[CumRewM(ρ1)]≤k1
◦1

, . . . , [CumRewM(ρd)]≤kd
◦d

〉
,

that achieves the highest value for the sum
∑d

i=1 wi ·CumRewM(ρi)(ki, σS) and
the rewards achieved by using this strategy q = ⟨CumRewM(ρi)(ki, σS)⟩i∈{1,...,d}.

52 M. van Wijk

The algorithm for computing the step-positional strategy and point q will be
covered in Section 7.1.8. Notice that we do not compute the best probabilistic
step-positional strategy, but the non-probabilistic step-positional strategy. We
do this since if we know all points that can be achieved using non-probabilistic
step-positional strategies, the points from all probabilistic step-positional strate-
gies can be computed using convexity which will be covered in Section 7.1.2.

Example 24. In the certification process it turns out that the candidate points
when using any weight vector are: ⟨0, 0⟩, ⟨0.85,−100⟩, and ⟨3.4,−1120⟩. These
are the points corresponding to memoryless strategies, since a step-positional
strategy cannot be better than a memoryless strategy if only infinite step-bounds
are used [29]. These points are not coincidentally the boundary points shown
in Figure 9. Any point in a line segment between two of those points would
correspond to a probabilistic step-positional strategy, which has a p chance of
taking the strategy corresponding to one point and a 1− p chance of taking the
strategy corresponding to the other. If we take the weight vector ⟨0.99, 0.01⟩,
of these boundary points, ⟨0, 0⟩ has the highest sum: 0.99 · 0 + 0.01 · 0 = 0,
0.99 ·0.85+0.01 ·−100 = −0.1585, and 0.99 ·3.4+0.01 ·−1120 = −7.834. Hence,
from the computation we would get q = ⟨0, 0⟩ with this weight vector.

Since we maximise the sum, we know that no achievable value can have a higher
sum. This means that if we compute q, we have an upper bound on the Pareto
curve. In two dimensions, this upper bound is a line. The line has the normal
vector w and goes through q. This line is described by the equation w ·x = w ·q.
This equation holds in all dimensions. In higher dimensions, it is known as a
hyperplane, which will be covered in more detail in Sections 7.1.3 and 7.1.10.
Please note that if one tries to draw the vector ⟨0.99, 0.01⟩ from Example 24 in
Figure 9 and draws the line that is 90◦ to that, it seems to go through both the
achievable and unachievable regions. This happens since the y-axis is scaled by
a factor of 200 for visualisation purposes. However, if both axis are not scaled,
the vector is also normal to the line in the visualisation.

Now that we have an upper bound, we also need a lower bound. The lower
bound can be found by constructing the curve that connects all the points found
q, or, in higher dimensions, the convex hull of these points as we cover in Sec-
tion 7.1.5. All points below the curve are also achievable, as they are dominated
by the points on this curve, as shown in Definition 32. It turns out that con-
necting these points works since connecting the points is equivalent to taking
a convex combination of these points. This convex combination represents the
probabilistic step-positional strategy with a probability distribution over the
step-positional strategies that lead to the connected points. This set of points is
called the downward closure, which we will discuss in Section 7.1.6.

Example 25. Recall that we are using the certification process model and needed
to flip the sign for the expected costs. We start the algorithm by finding the
maximum value for each of the subproperties and finding which values for the
other subproperties are found. In our example, we do this using the weight
vectors ⟨1, 0⟩ and ⟨0, 1⟩. Using the weight vector ⟨1, 0⟩, we find the point q =

The State of Multi-Objective Model Checking 53

⟨3.4,−1120⟩. This means that all points dominated by this point and the point
itself form the lower bound. For the upper bound, we now know that there is no
achievable point with more hiring points than 3.4, as it would otherwise have had
a higher sum and should therefore have been selected instead of ⟨3.4,−1120⟩.
This is shown in Figure 19a.

We then use the weight vector ⟨0, 1⟩. This gives us the point q = ⟨0, 0⟩. This
means that we can update the upper bound again, since we now also know that
it is impossible to achieve a cost higher than 0. Moreover, we can update the
lower bound, since all points dominated by a convex combination of ⟨0, 0⟩ and
⟨3.4,−1120⟩ are now confirmed to be achievable. We show this in Figure 19b.

Now that the most obvious weight vectors have been used, we need to find a
new weight vector such that the over and under approximation get closer to each
other. We also know that the weight vector represents a line. Therefore, it makes
the most sense to select the weight vector, such that if there is no new point, the
upper and under approximation are equal. This can be achieved by using the
weight vector that is normal to the line from ⟨0, 0⟩ to ⟨3.4,−1120⟩. If there is no
point above this line, the newly found upper bound will go through both ⟨0, 0⟩
and ⟨3.4,−1120⟩ and we can terminate the algorithm. In this case however, we
find a new point. This point is q = ⟨0.85,−100⟩, as shown in Figure 19c.

We now have two new lines at the boundary of the under approximation.
We again use the weight vectors normal to these lines. We start with taking
the weight vector for the line through ⟨0, 0⟩ and ⟨0.85,−100⟩ and then the line
through ⟨0.85,−100⟩ and ⟨3.4,−1120⟩. This time, there are no points above these
lines. Because of the choices of the weight vectors, the upper and under approx-
imation will be equivalent after these to steps as demonstrated in Figures 19d
and 19e.

Since the under and over approximation are equivalent, we must now have
constructed the entire curve. Now, the last step to take is to switch the sign of
the expected costs as shown in Proposition 8, since it was initially a minimising
unknown. Note that after doing this, Figure 19f is equivalent to Figure 9, as
required.

7.1.2 Convexity As we have seen, the algorithm is heavily dependent on the
concept of convexity [15]. In geometric terms, convexity means that if we have
a shape and we pick any two points inside of a shape and draw a line segment
between those two points, no point on the line segment is outside of the shape.
If a shape is not convex, we call it concave. We show this in Figure 20, for the
convex shape, there is no way in which we can draw a line segment between two
points inside of the shape such that the line segment leaves the shape. In the
concave shape, on the other hand, we can easily find two points inside the shape,
but the line segment leaves the shape.

Another important geometric concept we will use are polytopes [57]. A poly-
tope is the higher-dimensional equivalent of a polygon. This means that for a
d-dimensional space, the shape consists only of (d − 1)-dimensional flats, also
called facets. These facets are in turn constructed from (d−2)-dimensional flats,

54 M. van Wijk

−1 0 1 2 3 4
−1,200

−1,000

−800

−600

−400

−200

0

Expected hiring points

E
xp

ec
te

d
co

st
s

Under approximation
Over approximation

Upper bound

(a) Find point ⟨3.4, −1120⟩

−1 0 1 2 3 4
−1,200

−1,000

−800

−600

−400

−200

0

Expected hiring points

E
xp

ec
te

d
co

st
s

Under approximation
Over approximation

Upper bound

(b) Find point ⟨0, 0⟩

−1 0 1 2 3 4
−1,200

−1,000

−800

−600

−400

−200

0

Expected hiring points

E
xp

ec
te

d
co

st
s

Under approximation
Over approximation

Upper bound

(c) Find point ⟨0.85, −100⟩

−1 0 1 2 3 4
−1,200

−1,000

−800

−600

−400

−200

0

Expected hiring points

E
xp

ec
te

d
co

st
s

Under approximation
Over approximation

Upper bound

(d) No new points

−1 0 1 2 3 4
−1,200

−1,000

−800

−600

−400

−200

0

Expected hiring points

E
xp

ec
te

d
co

st
s

Under approximation
Over approximation

Upper bound

(e) No new points

−1 0 1 2 3 4

0

200

400

600

800

1,000

1,200

Expected hiring points

E
xp

ec
te

d
co

st
s

Under approximation
Over approximation

Upper bound

(f) Invert expected costs

Fig. 19. Multi-objective value iteration example

The State of Multi-Objective Model Checking 55

(a) Convex Shape (b) Concave Shape

Fig. 20. Convexity Example

(a) Polytope (b) Non-Polytope

Fig. 21. Polytope Example

which are called ridges. In 2 dimensions, this means that a facet is a line seg-
ment and a ridge a point. In Figure 21 we can see that our concave shape from
Figure 20 is a polytope, since it consists only of straight line segments. A circle
is not a polytope since it contains curved edges.

Most shapes we will consider after this are both convex and a polytope. We
call these shapes convex polytopes. For example, a square is both convex and a
polytope.

We will also express convexity using sets and equations. If we have a set of
Pareto optimal points, such as {⟨0, 0⟩ , ⟨0.85, 100⟩ , ⟨3.4, 1120⟩} as in Figure 9,
we can find other achievable points using a probability distribution between the
strategies used to generate these achievable points. Because each point corre-
sponding to a strategy gets a value between 0 and 1, with the sum of these
values summing up to 1, we can also express this using a concept called a convex
combination [15].

Definition 34. A convex combination of a set of vectors X = {x1, . . . ,xd} ⊆
Rn is the tuple

∑d
i=1 wi ·xi, with w = ⟨w1, . . . , wd⟩ ∈ Rd, ∀i ∈ {1, . . . , d} : wi ≥

0,
∑d

i=1 wi = 1.

Example 26. If we take the strategy obtaining the achievable point ⟨0, 0⟩ with a
probability of 0.05, the strategy resulting in ⟨0.85, 100⟩ with probability 0.1 and
in the remaining cases take the strategy resulting in ⟨3.4, 1120⟩, we obtain the
convex combination 0.05 · ⟨0, 0⟩+0.1 · ⟨0.85, 100⟩+0.85 · ⟨3.4, 1120⟩ = ⟨2.97, 962⟩.
Hence, the point for this probabilistic strategy would be ⟨2.97, 962⟩.

7.1.3 Affine Hyperplane An affine hyperplane is the generalisation of a
plane in a 3-dimensional space to arbitrary dimensions. In general, it is a (d−1)-

56 M. van Wijk

flat in d-dimensional space [57]. This means that in 2-dimensional space, a hyper-
plane is a line and a plane in 3-dimensional space. We will need affine hyperplanes
to describe convex hulls in Section 7.1.5 and to understand separating hyper-
planes in Section 7.1.10, which are fundamental building blocks of Algorithms 8,
10 and 11. We can express an affine hyperplane using its normal vector and an
offset from the origin.

Notice the word “affine” in “affine hyperplane”. The affine prefix indicates
that the hyperplane is part of an affine space. In the words of the mathemati-
cian Berger “An affine space is nothing more than a vector space whose origin
we try to forget about, by adding translations to the linear maps” [13]. This
simply means that we do not care whether the origin is included in the hyper-
plane. However, when we perform computations on geometric structures in affine
spaces such as affine hyperplanes, we will typically require to shift the geometric
structure, to include the origin.

Definition 35. An affine hyperplane is the tuple H = ⟨⟨a1, . . . ad⟩ , b⟩, and
contains all points: {

⟨x1, . . . , xd⟩ ∈ Rd |
d∑

i=1
ai · xi = b

}
.

The set of all affine hyperplanes in d-dimensional space, is denoted as Hd.

In order to find the affine hyperplane through d affine independent points
{x1, . . . ,xd} ∈ Rd, we can create a system of linear equations such that for each
point

∑d
j=1 aj · xij − b = 0. Recall that a null space of the matrix M is:

Null(M) =
{
x ∈ Rd+1 |Mx = 0d

}
.

This means that we should find the null space of the matrix: Mhyp =

x
T
1 −1
...

xT
d −1

 .

For any vector ⟨y1, . . . , yd, yd+1⟩ in the null space of Mhyp, the affine hyperplane
⟨⟨y1, . . . yd⟩ , yd+1⟩ contains all points xi.

An important feature of hyperplanes is that they divide the space into two
half-spaces [4]. Using hyperplanes, we can determine in which of these two half-
spaces any given point lies. The overlap between several half-spaces can be con-
sidered as a shape. We will use this fact to express a convex polygon as a set of
hyperplanes in Section 7.1.5.

To compute in which half-space from an affine hyperplane ⟨⟨a1, . . . ad⟩ , b⟩ a
vector ⟨x1, . . . , xd⟩ ∈ Rd lies, we can evaluate the following sum

∑d
i=1 ai · xi− b.

All points in the same half-space will have the same sign. So for all points in one
half-space of the hyperplane, the summation will be positive, and for all points
in the other half-space of the hyperplane the outcome will be negative.

Another important property of hyperplanes, which we will use, is that we
can calculate the distance from a hyperplane to a point by scaling the sum that
we used to determine the half-space.

The State of Multi-Objective Model Checking 57

Proposition 9. The distance from the hyperplane ⟨a, b⟩ ∈ Hd and the point
x ∈ Rd, is:

|a · x− b|
∥a∥

.

Proof. Since a is the normal vector of the hyperplane, the distance between the
point x and the hyperplane, is the distance between x and the intersection of the
line x + λa and the hyperplane. At this point, the distance is minimised. For
x + λa to be on the hyperplane, by Definition 35 we must have:

a · (x + λa) = b

a · x + λa2 = b

a · x + λ∥a∥2 = b

λ = −a · x + b

∥a∥2

So we now need to calculate the distance between x and x + −a·x+b
∥a∥2 · a. We see

that both vectors are offset by x, so the distance between these two points is the
length of the vector −a·x+b

∥a∥2 · a. Well:

∥−a · x + b

∥a∥2 · a∥

= |−a · x + b

∥a∥2 | · ∥a∥

= |−a · x + b|
∥a∥2 · ∥a∥

= |−a · x + b|
∥a∥

= |a · x− b|
∥a∥

.

⊓⊔

7.1.4 Affine Subspace To compute the convex hull as covered in Section 7.1.5
in an arbitrary number of dimensions, the points should not all lie in a lower-
dimensional shape. Otherwise, the set of points is said to be degenerate [32].

Example 27. If we have the points
{[

1
1

]
,

[
2
2

]
,

[
3
3

]}
, if we take each point to

be represented as
[
v1
v2

]
all these points are on the line v1 = v2 as shown in

Figure 22a. This means that all linear combinations of these points will end up
on this line. Since their linear combinations only span a line and not the entire
affine space, we consider the points to span an affine subspace.

58 M. van Wijk

0 1 2 3 4
0

1

2

3

4

(a) Points span 1 dimension

0 1 2 3 4
0

1

2

3

4

(b) Points span 2 dimensions

Fig. 22. Examples of points in an affine space

If on the other hand, we have the points
{[

1
1

]
,

[
2
1

]
,

[
3
3

]}
, we cannot express

v1 or v2 in terms of the other. As shown in Figure 22b observe that in 2 dimen-
sions this results in the shape having an area. If we would now take the set of
all linear combinations of these points, we would obtain the entire affine space.

If points only span an affine subspace, some dimensions are linearly dependent
on the other dimensions, and thus we can eliminate these linearly dependent
dimensions without losing information. For example, if v1 = v2, it means that
the first dimension is linearly dependent on the second. Therefore, we can find a
linear transformation to remove these linearly dependent dimensions from each
point to transform each point to a lower dimension. In this case, we go from 2
dimensions to 1, since we remove the first dimension. The advantage of using a
linear transformation is that if a point is inside of the convex hull in the subspace,
it is also inside of the convex hull if we transform all points back to the original
space. To use a linear transformation, we must offset the points such that the
origin is included, since a linear transformation uses a vector space instead of an
affine space. This does not change the relative positioning of the points and thus
does not change the structure of the convex hull. The offset can be achieved by
subtracting any of the points from all points.

Example 28. If we take the set
{[

1
1

]
,

[
2
2

]
,

[
3
3

]}
again, we can express each point

as
[
v1
v2

]
=

[
v2
v2

]
. Hence, we can remove v1 without loss of information. We can

achieve this by using the linear transformation
[
0 1

]
. For a linear transformation

to work, we need to shift the points so that the origin is included. We do this

by subtracting
[
1
1

]
from each point before the transformation. We then obtain[

0 1
]

(
[
v1
v2

]
−

[
1
1

]
) =

[
v2 − 1

]
. The point

[
v2 − 1

]
has only one dimension, but

The State of Multi-Objective Model Checking 59

Alg. 5. Subspace Transformation - ComputeSubspace

Input: Points {x1, . . . ,xn} ∈ P(Rd)
Result: Transformation T , inverse transformation T −1, offset o ∈ Rd

1 ⟨y1, . . . ,yn⟩ ← ⟨x1 − x1, . . . ,xn − x1⟩
2 M ← RowReducedEchelonForm(

[
y1 y2 · · · yn Id

]
)

3 f ←

{
⟨di, ri⟩ |di, ri ∈ {1, . . . , d} , M [ri, n + di] ̸= 0,

∀ci ∈ {1, . . . , n + di− 1} : M [ri, ci] = 0

}
4 r ← {⟨di ∈ {1, . . . , d} , ∥{di′ ∈ {1, . . . , d} | di′ /∈ f, di′ ≤ di}∥⟩ | ∀ri : ⟨di, ri⟩ /∈ f}

5 T ← (d− ∥r∥)× d matrix filled with zeros
6 T −1 ← d× (d− ∥R∥) matrix filled with zeros
7 foreach di ∈ {1, . . . , d} do
8 if ∀ri : ⟨di, ri⟩ /∈ f then
9 foreach ⟨di′, di′′⟩ ∈ r do

10 T −1[di, r(di′)]← −M [f(di), di′]
11 else
12 T [r(di), di]← 1
13 T −1[di, r(di)]← 1
14 return T, T −1,x1

it contains the same information as
[
v1
v2

]
, since v1 = v2. Therefore, the point

can be converted back using a linear transformation as well. To do this, we first

apply the inverse transformation
[
1
1

]
and then add the offset

[
1
1

]
that we used

to convert the set points to a vector space: (
[
1
1

] [
v2 − 1

]
) +

[
1
1

]
=

[
v2
v2

]
=

[
v1
v2

]
.

The procedure we use to convert the points into the corresponding sub-
space is shown in Algorithm 5. On the first line, we transform the affine space
into a vector space by ensuring that the origin is in the set of points without
changing the relative positioning of the points. We then construct the matrix[
y1 y2 · · · yn Id

]
. Since the vector space spanned by the vectors {y1, . . . ,yn}

is expressed as {
∑n

i=1 λiyi | λ ∈ Rn}, each row in the matrix M corresponds
to the equation for a dimension. The first n columns on row ri, represents the
sum

∑n
i=1 λiyiri and the equation is equal to the sum of dimensions in the last d

columns. We then find the row reduced echelon form [58] of this system of linear
equations to find which dimensions depend on each other. This is the case where
there is no λi left in an equation but there are still dimensions present.

Example 29. We take the set of points
{[

1
1

]
,

[
2
2

]
,

[
3
3

]}
again. This gives us

the matrix
[
0 1 2 1 0
0 1 2 0 1

]
, whose row reduced echelon form is

[
0 1 2 0 1
0 0 0 1 −1

]
. This

matrix represents the equations λ2 + 2λ3 = v2 and 0 = v1 − v2, which means
that v1 = v2. Hence, we know that v1 is linearly dependent on v2.

60 M. van Wijk

On line 3, we search for the equations where no λi is present, since equations
without any λi can be written in the form of vi =

∑d
j=i+1 ajvj ,a ∈ Rd. This

means that the ith dimension is fixed based on the other dimensions. We store
the dimension i and the line on which the equation is written, so that we can
use the equation later in the algorithm.

Example 30. We start with M =
[
0 1 2 0 1
0 0 0 1 −1

]
. We need to store the dependent

dimension, which as we determined is v1, which is represented by a 1, the index
of its corresponding column. The linear dependence on the other variables is
described in the second row. Hence, we obtain f = {⟨1, 2⟩}.

Now that we know which dimensions can be expressed in terms of the other
dimensions, we can compute the transformation to a subspace by removing all
fixed dimensions. We do this on line 4 by storing for each free dimension di how
many free dimensions are present in the dimensions up to and including di. This
means that each free dimension has its own unique number between 1 and the
number of free dimensions, which corresponds to the dimension it will end up in
after the transformation.

Example 31. The free dimensions are the dimensions that are not fixed and
therefore are not part of f . In our case, this means that 2 is the only free
dimension. Since there is no smaller free dimension, we notice that the second
dimension will end up as the first dimension after the transformation. This results
in r = {⟨2, 1⟩}.

After that, we create the forward transformation from the higher to the lower
dimension on line 5, and the inverse transformation on line 6. For any linear
transformation, observe that x1,1 · · · x1,d

...
. . .

...
xd′,1 · · · xd′,d


v1

...
vd

 =


∑d

i=1 x1,i

...∑d
i=1 xd′,i

 .

For the forward transformation, we need to ensure that for each free variable
in dimension di, that ends up in dimension r(di). To do this, we need to set
Tr(di),di = 1, since this will ensure that vdi ends up in position r(di) in the new
vector.

For the inverse transformation, we need to ensure that the rows in the re-
sulting vector are equal to the weights for the linear combination of the free
variables. Observe that the row di in the inverse transformation T −1 should
contain the weights for the linear combination of the dith dimension after the
inverse transformation has been applied. Hence, for a free variable, in position
di, we only need to set T −1

di,r(di). We do this on line 13. For a fixed variable, we
need to set the value equal to the linear combination found on line 2. This is
done on line 10.

The State of Multi-Objective Model Checking 61

Example 32. Since only the second dimension is free, we obtain the forward
transformation T =

[
0 1

]
. Furthermore, the linear combination v1 is v2 and v2

is stored in the first dimension of the transformed vector, the same holds for v2.

Therefore, we obtain the inverse transformation T −1 =
[
1
1

]
.

Notice that T −1T

[
v1
v2

]
= T −1 [

v2
]

=
[
v2
v2

]
, which is indeed the form of all

the vectors in the subspace spanned by the points
{[

0
0

]
,

[
1
1

]
,

[
2
2

]}
.

In fact, an important property of Algorithm 5 is that, when applied to the
set X, for each point y in the same subspace as the points in X, we have
T −1T (y− o) = y− o. The inverse also holds. Moreover, if a point is not in this
subspace, this equation does not hold. Therefore, we can check using Algorithm 5
whether a point is in the same subspace.

Proposition 10. When T , T −1, and o are obtained by applying Algorithm 5 to
the set X we have T −1T (y − o) = y − o if and only if
(y − x′) ∈ Span({x− x′ | x ∈ X}) with x′ ∈ X.

Proof sketch. We have chosen x′ to be an arbitrary vector in X, just like o. For
the remainder of this sketch, we will only consider the case x′ = o. In this case,
we can take the set Y = {x− o | x ∈ X} and show that when T , T −1, and o
are obtained by applying Algorithm 5 to the set Y , then T −1Tz = z if and only
if z ∈ Span(Y).

– Span(Y) is the subspace spanned by the vectors in Y . When we have z ∈
Span(Y), Tz will remove only the dimensions that are fixed for each vector
in the subspace that contains all the points in Y , and thus all the points in
Span(Y). These fixed dimensions are reconstructed from its linear combina-
tion when T −1(Tz) is applied as explained above, so T −1Tz = z.

– When we have T −1Tz = z, we know that by its construction Tz is the same
as z, but potentially with fewer dimensions. In the case where the number
of dimensions is equivalent, we know that there were no fixed dimensions.
Therefore, each dimension is free and Span(Y) must be the entire vector
space and thus z ∈ Span(Y). If the number of dimensions is smaller, at
least one dimension must have been fixed and removed in Tz compared to z.
Since T −1Tz = z, we know that the linear combination for these removed di-
mensions must have been the same as for each vector in Y . Since all removed
dimensions can be expressed using the same linear combinations required for
each point in Y , we can come up with a linear combination of the vectors in
Y to construct z, thus z ∈ Span(Y).

Since z ∈ Span(Y) implies that T −1Tz = z and the other way around, we know
that T −1Tz = z if and only if z ∈ Span(Y).

62 M. van Wijk

Example 33. We take T =
[
0 1

]
, T −1 =

[
1
1

]
, and o =

[
1
1

]
as in the previous

example. In this case, we observe that a point outside of the subspace such as[
0 1

]
would result in: [

1
1

] [
0 1

]
(
[
0
1

]
−

[
1
1

]
)

=
[
1
1

] [
0 1

] [
−1
0

]
=

[
1
1

] [
0
]

=
[
0
0

]
̸=

[
0
1

]
.

We observe that a point y outside of the subspace indeed does not satisfy the
condition T −1T (y − o) = y − o.

7.1.5 Convex Hull If we take all the convex combinations of a set of vectors
X, we get the convex hull of that set of vectors [12]. If X is a finite set, then the
convex hull will be a convex polytope. In this paper, we will only consider the
convex hull of finite sets, so their convex hull will always be a convex polytope.

Definition 36. The convex hull of a set of vectors X = {x1, . . . ,xd} ⊆ Rn is
the set of all convex combinations:

conv(X) =
{

d∑
i=1

wi · xi | wi ∈ R,∀i ∈ {1, . . . , d} : wi ≥ 0,

d∑
i=1

wi = 1
}

.

Example 34. The convex hull of the points X = {⟨0, 0⟩ , ⟨0.85, 100⟩ , ⟨3.4, 1120⟩}
is shown in Figure 23. The points in X correspond to the memoryless strategies
in Figure 8.

A convex hull can also be described in a geometric way. In essence, we try to find
the smallest convex polytope that contains all the given points. We describe these
convex polytopes using hyperplanes at the boundary of the convex polytope, for
which the entire convex polytope is in one half-space of each hyperplane [59,72].
This will allow us to determine whether a point is inside of the convex hull by
checking whether the point is in the half-space of the convex hull for all of the
hyperplanes.

Definition 37. A convex hull in d-dimensional space can be described a tuple〈
F, c,

〈
T, T −1,o, SC

〉〉
, where:

– F is the set of facets, where each facet is a tuple ⟨R, H⟩, with R a set of
d ridges, where each ridge is a set of d − 1 points in Rd, and H ∈ Hd a
hyperplane containing the ridges in R,

The State of Multi-Objective Model Checking 63

−1 0 1 2 3 4

0

200

400

600

800

1,000

1,200

Expected hiring points

E
xp

ec
te

d
co

st
s

Fig. 23. Convex hull of {⟨0, 0⟩ , ⟨0.85, 100⟩ , ⟨3.4, 1120⟩}

Alg. 6. ConvexHullContains

Input: The convex hull description C =
〈
F, c,

〈
T, T −1,o, SC

〉〉
, the

point to check x ∈ Rd

Result: Whether x is inside the convex hull described by C
1 if

〈
T, T −1,o, SC

〉
̸=⊥ then

2 return T −1T (x− o) = x− o ∧ ConvexHullContains(SC, T (x− o))
3 return ∀ ⟨R, ⟨a, b⟩⟩ ∈ F : a · x ≤ b

– c ∈ Rd is a point inside of the convex hull,
– T is the transformation to the subspace,
– T −1 is the inverse transformation from the subspace,
– o the offset for the subspace transformation, and
– SC is the convex hull in the subspace.

This tuple description of a convex hull is more convenient in steps later on.
Notice that to check whether a point is in the same half-space as the convex
hull, we only need one point inside the convex hull, which is the point c in the
description. Hence, if for all hyperplane describing a convex hull the point c is
in the same half-space as some target point, the target point is inside the convex
hull. We show the computation to check whether a point is inside a convex hull
in Algorithm 6.

Example 35. In Figure 23 we have drawn a convex hull. Notice that if we use
the tuple description for the same convex hull and draw the hyperplanes and
point c inside of the convex hull, we obtain Figure 24. Notice that for all points
inside of the convex hull, they are in the same half-space as the point c for each

64 M. van Wijk

−1 0 1 2 3 4

0

200

400

600

800

1,000

1,200

Expected hiring points

E
xp

ec
te

d
co

st
s

Fig. 24. Tuple description of Figure 23

hyperplane. For any point outside of the convex hull however, there is at least
one hyperplane for which c is in the other half-space.

To find the tuple description of a convex hull, we will use the Quickhull algo-
rithm [7]. We chose to choose this algorithm over alternatives [17,33,45,49] since
Quickhull works in arbitrary many dimensions, is straightforward to implement,
and it keeps track of the facets during the construction.

We adapt Quickhull to handle the degenerate case in which all the points
are in an affine subspace. This degenerate case is often noted in literature, but
usually no solution is given to handle this case. We use the approach of Sec-
tion 7.1.4 to transform the points into a lower dimension. Moreover, since in
our approach we iteratively add points to our convex hull, instead of knowing
the points beforehand, we provide the way to add a point to a convex hull in
Algorithm 7.

On the first line, we check whether the point is already inside of the convex
hull. If this is the case, the convex hull does not grow and thus does not need to
be modified. On the second line, we get all the points based on which the convex
hull is constructed and store this in the set X. We then compute the subspace
on line 3.

We use this to check whether all points lie in a lower-dimensional structure
on line 4. If all the points in X all lie in a lower dimensional structure, we create
a convex hull in this dimension by adding all the points in X on line 8. On line
9, we then check whether adding one more affine independent point will create
a facet. If this is the case, we construct the ridges such that we can use them in
the if block on line 12 when this point is added.

The State of Multi-Objective Model Checking 65

Alg. 7. Adapted Quickhull Algorithm - ConvexHullAdd

Input: The current convex hull description C =
〈
F, c,

〈
T, T −1,o, SC

〉〉
,

new point y ∈ Rd

Result: The convex hull description containing y and all points in C
1 if ConvexHullContains(C,y) then return C
2 X ←

⋃
{
⋃

R | ∃H : ⟨R, H⟩ ∈ F} ∪ {y}
3 T, T −1,o← ComputeSubspace(X)
4 if T.rows ̸= T.columns then
5 F ′ ← ∅
6 c′ ← 0d

7 foreach x ∈ X do
8 ⟨F ′, c′, SS ′⟩ ← ConvexHullAdd(⟨F ′, c′,⊥⟩ , T (x− o))
9 if T.rows < d− 1 then return

〈
⊥,⊥,

〈
T, T −1,o, ⟨F ′, c′,⊥⟩

〉〉
10 F ′′ ←

{〈{
T −1x′ + o | x′ ∈

⋃
{R | ∃H : ⟨R, H⟩ ∈ F ′}

}
,⊥

〉}
11 return

〈
F ′′, c′,

〈
T, T −1,o, ⟨F ′, c′,⊥⟩

〉〉
12 if ∥F∥ = 1 then
13 c′ ←

∑
x∈X

x
∥X∥

14 F ′ ← ∅
15 foreach ⟨R, H⟩ ∈ F do
16 foreach r ∈ R do
17 R′ ← {{y} ∪ r \ z | z ∈ r ∪ {y}}
18 ⟨a, b⟩ ← AffineHyperplane(r ∪ {y})
19 if a · c′ > b then ⟨a, b⟩ ← ⟨−a,−b⟩
20 F ′ ← F ′ ∪ {⟨R′, ⟨a, b⟩⟩}
21 return ⟨F ′, c′,⊥⟩
22 VF ← {⟨R, ⟨a, b⟩⟩ ∈ F | a · y ≥ b}
23 F ′ ← F \VF
24 HR← {R | ∃H : ⟨R, H⟩ ∈ F ′} ∩ {R | ∃H : ⟨R, H⟩ ∈ VF}
25 foreach R ∈ HR do
26 foreach r ∈ R do
27 R′ ← {{y} ∪ r \ z | z ∈ r ∪ {y}}
28 ⟨a, b⟩ ← AffineHyperplane(r ∪ {y})
29 if a · c > b then ⟨a, b⟩ ← ⟨−a,−b⟩
30 F ′ ← F ′ ∪ {⟨R′, ⟨a, b⟩⟩}
31 return ⟨F ′, c,⊥⟩

66 M. van Wijk

−1 0 1 2 3 4

0

200

400

600

800

1,000

1,200

Expected hiring points

E
xp

ec
te

d
co

st
s

Original facet
New facets

Fig. 25. From facet to convex polytope with a new point

When the condition on line 12 is satisfied, we know that the points do not lie
in a subspace, since line 4 is not satisfied. Moreover, only one facet is constructed.
This can only happen if line 12 has not been executed before, since this can
only happen if line 10 has been performed and line 20 has not ran. From this
facet, we will then construct a convex polygon by connecting the new point to
the constructed facet as we visualise in Example 36. Since each ridge is a (d-2)-
dimensional structure while the facet is a (d-1)-dimensional structure, each ridge
excludes one of the points of the facet. This is done on line 17. On line 18 we
then compute the hyperplane that includes the entire facet, using the procedure
shown in Section 7.1.3. On line 19, we ensure that for each hyperplane, the points
inside of the convex hull are in the negative half-space. Notice that this update
is valid, since a · x = b accepts the same points x as the equation −a · x = −b.
This update is not strictly necessary, but simplifies the implementation, since
we can ignore c to check whether a point is in the same half-space as c.

Example 36. In Figure 25 we have drawn the facet between ⟨0, 0⟩ and ⟨3.4, 1120⟩.
We then add the point ⟨0.85, 100⟩ to construct two new facets, which together
form a convex polytope.

If we already have a convex polygon, we reach line 22. In this case, we find all
“visible facets”, which are the facets that can “see” the new point y. Seeing the
point is equivalent to the point being in the other half-space of the hyperplane
than the interior of the convex polygon. To verify this, we use the technique
shown in Section 7.1.3. We store the new facets in the set F ′, each facet that
cannot see the new point will not be changed and is thus already added to F ′

on line 23. We then search for the “horizon ridges”, which are the ridges that
lie on the horizon of being seen and not being seen. This means that the ridge

The State of Multi-Objective Model Checking 67

is part of a facet that can be seen but also of a facet that cannot be seen. From
these ridges, we construct the facets that connect the new point y on lines 26 to
30. Notice that this construction is equivalent to lines 16 to 20.

Example 37. The convex hull of the points {⟨0, 0⟩ , ⟨0.85, 100⟩ , ⟨3.4, 1120⟩}, is
shown in Figure 26a. We now want to add the point ⟨2, 400⟩ which is not yet
part of the convex hull as is clear from Figure 26b. Consequently we will need
to grow it, the first step of this process is to determine the visible facets. Notice
that only the facet that includes the points ⟨0, 0⟩ and ⟨3.4, 1120⟩ cannot see the
point ⟨2, 0⟩ as shown in Figure 26c. We then determine the horizon ridges, which
are points in 2 dimensions. We observe that the points ⟨0, 0⟩ and ⟨3.4, 1120⟩ are
both part of visible and invisible facets. Therefore, they are the horizon ridges
which we show in Figure 26d. Finally we construct the new ridges from the
horizon ridges to the new point as shown in Figure 26e. This last construction
is equivalent to the approach taken in Example 36.

7.1.6 Downward Closure As we have seen in Definition 31, all values dom-
inated by an achievable value are achievable. To describe all achievable values,
we will use the downward closure. For simplicity, we will only consider the case
where we want to maximise each property. We have seen in Proposition 8 that we
can transform any multi-objective property into a form where this is sufficient.

Definition 38. The downward closure of a set of vectors X = {x1, . . . ,xd} ⊆
Rn is the set of vectors that are below or equal to an element of the convex hull
of X:

down(X) = {y ∈ Rn | ∃x ∈ conv(X) : ∀i ∈ {1, . . . , n} : yi ≤ xi} .

Example 38. In Figure 19e the under approximation is the downward closure of
the points {⟨0, 0⟩ , ⟨0.85,−100⟩ , ⟨3.4,−1120⟩}.

Convex hulls are quite well known, therefore it is typically easier to come by a
convex hull algorithm than a downward closure algorithm. Fortunately, we can
express a downward closure using a convex hull using Proposition 11. All we
need to do is add d points in d-dimensional space, so that each dimension is
extended to negative infinity.

Proposition 11. The downward closure of a set X ∈ P(Rd) is the set of convex
combinations of:

X̂ = X ∪

{〈
−∞ · [i = j] + (min

x∈X
xi) · [i ̸= j]

〉
i∈{1,...,d}

| j ∈ {1, . . . , d}

}
.

Proof. In order to prove that the downward closure of X is equivalent to the set
of convex combinations of X̂, we will first prove that down(X) ⊆ conv(X̂) and
then conv(X̂) ⊆ down(X).

68 M. van Wijk

−1 0 1 2 3 4

0

200

400

600

800

1,000

1,200

Expected hiring points

E
xp

ec
te

d
co

st
s

(a) Starting convex hull

−1 0 1 2 3 4

0

200

400

600

800

1,000

1,200

Expected hiring points

E
xp

ec
te

d
co

st
s

(b) Add new point ⟨2, 0⟩

−1 0 1 2 3 4

0

200

400

600

800

1,000

1,200

Expected hiring points

E
xp

ec
te

d
co

st
s

(c) Determine visible facets

−1 0 1 2 3 4

0

200

400

600

800

1,000

1,200

Expected hiring points

E
xp

ec
te

d
co

st
s

(d) Determine horizon ridges

−1 0 1 2 3 4

0

200

400

600

800

1,000

1,200

Expected hiring points

E
xp

ec
te

d
co

st
s

(e) Construct new facets

Fig. 26. Convex hull construction example

The State of Multi-Objective Model Checking 69

– By the definition of a downward closure, we have that for any y ∈ down(X),
∃x ∈ conv(X) : ∀j ∈ {1, . . . , n} : yj ≤ xj. This means that for an arbitrary
number of dimensions, the value of y is smaller than x. For each such di-
mension j, we can take the convex combination of x and an infinitely small
fraction of the vectors ej = ⟨−∞ · [i = j] + (minx∈X xi) · [i ̸= j]⟩i∈{1,...,d} to
obtain y. Since x and all ej are in X̂, y is also present in conv(X̂). Since
the choice of y was arbitrary, we obtain down(X) ⊆ conv(X̂).

– Each element x ∈ conv(X̂) is a convex combination. We modify the weights
of this combination so that the weights for all vectors in X̂\X are set to 0 and
the sum of their original weights is added to the weight of one of the vectors
in X to obtain the convex combination y. Since the values in X̂ \ X are
lower bounds on the values in X, we conclude that ∀i ∈ {1, . . . , n} : xi ≤ yi.
Moreover, since only the vectors in X are used in the convex combination of
y, we get y ∈ conv(X). Combining these two facts, we get x ∈ down(X) by
the definition of the downward closure. Since the choice of x was arbitrary,
we obtain conv(X̂) ⊆ down(X).

Since down(X) ⊆ conv(X̂) and conv(X̂) ⊆ down(X), we infer that down(X) =
conv(X̂). ⊓⊔

7.1.7 Pareto Query The first type of query that we consider is the Pareto
query. This is a strongly altered version of the one shown in [30]. In the original
paper, only the 2-dimensional case is considered, however, we want to support
more than two unknowns. We do only consider maximising cumulative rewards.
Recall that we can turn probabilistic reachability properties into cumulative
rewards using Proposition 7. Moreover, we can turn min into max targets as
shown in Proposition 8.

The intuition behind this approach is shown in Section 7.1.1. We aim to
generate the entire Pareto curve with this algorithm. The adapted algorithm is
shown in Algorithm 8. The set X contains boundary points of the achievable
values. The set Y contains a queue of facets for which we still need to check
whether there is an achievable point on the outside of the facet.

As shown in Section 7.1.1, we first construct the initial facet by finding the
maximum value for each dimension. We then try to expand the convex polygon
of achievable solutions by finding the point that is the furthest away from that
facet. If there exists a point outside the facet, we can grow the convex polygon
to contain the point. We can then construct d new facets by including this new
point. We then check for all of these facets whether they can still be grown.
Notice that this construction is extremely similar to the Quickhull algorithm [7],
however, we do not know the points in advance.

On line 3, we construct the weight vector that will maximise for the ith di-
mension. We then compute the achievable point q obtains the maximum distance
between the hyperplane ⟨w, 0⟩ and the rewards on lines 4 and 5. This compu-
tation is discussed in Section 7.1.8. Unfortunately, we might then still end up
with a degenerate point cloud. For example, we might have a Pareto property

70 M. van Wijk

Alg. 8. Pareto queries

Input: MDPM, Pareto property ϕ̃ =
〈
[CumRewM(ρ1)]≤k1

max , . . . , [CumRewM(ρd)]≤kd
max

〉
Result: Finite set X ⊂ Rd, such that down(X) = AchM(ϕ̃)

1 X ← ∅
2 foreach i ∈ {1, . . . , d} do
3 w ← ⟨[i = j]⟩j∈{1,...,d}

4 Find strategy σPs maximising
∑d

j=1 wj · CumRewM(ρj)(kj , σPs)
5 q ← ⟨CumRewM(ρj)(kj , σPs)⟩j∈{1,...,d} − 1
6 if q ∈ X then
7 qi ← −|qi| −

∑
x∈X |xi|;

8 X ← X ∪ {q}
9 Y ← {X}

10 while ∃F ∈ Y do
11 Y ← Y \ F
12 Find w such that ∀x1,x2 ∈ F : w · x1 = w · x2,

∑
i∈{1,...,d} wi = 1

13 if w ̸= ⊥ then
14 Find strategy σPs maximising

∑d
i=1 wj · CumRewM(ρi)(ki, σPs)

15 q ← ⟨CumRewM(ρi)(ki, σPs)⟩i∈{1,...,d}
16 if q /∈ down(X) then
17 X ← X ∪ {q}
18 foreach x ∈ F do
19 Y ← Y ∪ ({q} ∪ F \ {x})
20 return X

with two exactly the same subproperties. In this case, the points that maximise
for these two points might be equivalent. To prevent this from happening, we
include lines 6 and 7, which compute an achievable point, which is not a con-
vex combination of any of the other vectors. This point is achievable since the
updated point is dominated by the point before the update.

Since we do not know the points in advance, we need a different way to
handle degenerate convex hulls. It is important for the algorithm to work that
a facet is actually a facet and not a lower-dimensional structure. To ensure that
the initial facet is not a lower-dimensional structure, we use line 6 and 7. If we
want to maximise two different dimensions and end up with the same point,
we obviously lose one dimension, since we need at least d points to describe
a (d − 1)-dimensional structure. For example, we need 2 points to describe a
line. Fortunately, if all points are unique, because we are optimising different
dimensions, the points are independent. If two points are the same, we alter the
dimension that it was maximising, such that the value is still achievable, yet not
Pareto optimal. Since it is equivalent to another point, this newly constructed
point is still maximal for the other dimension for which this point was generated.

We then loop over the facets to check whether there are points on their out-
side. On line 12 we determine the weight vector that is the normal vector of the
facet F , which can be computed using the techniques of Section 7.1.3. The sum-
mation does require that all its dimensions sum up to one. This can be easily com-

The State of Multi-Objective Model Checking 71

puted from the hyperplane ⟨a, b⟩ in d dimensions as w =
〈

ai∑d

j=1
aj

〉
i∈{1,...,d}

.

On line 13, we continue if the points in F are not actually a facet, but all lie in
an affine subspace, which might happen due to line 19.

We then compute the point with the maximum distance from the hyperplane
through all points in q, which is q using the techniques of Section 7.1.8 on lines
14 and 15. On line 16, we check whether this point was not already achievable.
This computation is discussed in Section 7.1.6. If q was outside of the previous
under approximation, we update the under approximation on line 17. We then
construct the new candidate facets on lines 18 and 19 in the same way that we
construct new facets from a new point used in the Quickhull algorithm discussed
in Section 7.1.5.

7.1.8 Value Iteration Algorithm One of the main contributions of [30] is its
value iteration implementation. The value iteration part of the paper computes
a strategy that maximises the dot product between a given weight vector w and
the rewards with the corresponding step-bounds for a given property. This is
equivalent to finding the achievable point with the maximum distance from the
hyperplane ⟨w, 0⟩. We show our adapted version in Algorithm 9. We have only
included an absolute convergence threshold, but, just as in Section 2.7 a relative
convergence threshold might be used instead.

In the first loop, we compute the strategy that maximises the dot product
between the weight vector and the rewards, for subproperties with an infinite
step-bound. This corresponds to the reward for taking infinitely many steps.
Notice that this computation is extremely similar to its simple single-objective
counterpart shown in Algorithm 1. In each iteration, we take the action for which
the expected reward is the highest. We do this by computing for each branch
the sum of the expected sum in the resulting state and the reward for taking
the branch on line 6. On line 7, we compute the action that was taken on line 6,
notice that since the summations are equal, these two values can be computed
alongside at the same time in an implementation. We exit the loop at line 11
if the error is small enough. The type of value iteration is in this loop is called
Jacobi value iteration [66]. For users interested in optimising the run time, the
Gauss-Seidel method [67] might be considered. However, covering this difference
is beyond the scope of this paper.

In the second loop, we then compute the value for each individual reward-
structure with an infinite step-bound if the computed strategy is being used. This
is done on line 13, where again the equation is very similar to line 6, with the
exception that it does check all actions but only uses the previously computed
action. If all step-bounds are infinite, we are now done, otherwise we will still
need to enter the third loop in order to compute the values for the subproperties
with a finite step-bound.

In the third loop, we essentially perform the single-objective approach of
Section 2.7 again on lines 19 and 20. Notice that they are almost equivalent to
lines 6 and 7. The only difference is that we now also include the properties with

72 M. van Wijk

Alg. 9. Value iteration algorithm

Input: MDP M = ⟨S, sI ,A, δ⟩, weight vector w =
⟨w1, w2, · · · , wd⟩, multi-objective achievability property〈

[CumRewM(ρ1)]≤k1
≥c1

, . . . , [CumRewM(ρd)]≤kd

≥cd

〉
, convergence threshold

ϵ ∈ [0, 1]
Result: Step-positional strategy σS maximising

∑d
i=1 wi·CumRewM(ρi)(ki, σS)

and q = ⟨CumRewM(ρi)(ki, σS)⟩i∈{1,...,d}
1 x← y ← 0∥S∥
2 foreach i ∈ {1, . . . , d} do xi ← yi ← 0∥S∥
3 foreach s ∈ S do σS(s,∞)←⊥
4 do
5 foreach s ∈ S do
6 ys ← maxa∈αM(s)

(∑
s′∈S δ(s)(a)(s′) · (xs′ +

∑
{i|ki=∞} wiρi(s, a, s′))

)
7 σS(s,∞)← arg maxa∈αM(s)

(∑
s′∈S δ(s)(a)(s′) · (xs′ +

∑
{i|ki=∞} wiρi(s, a, s′))

)
8 ∆← maxs∈S |ys − xs| x← y

9 while ∆ > ϵ
10 do
11 foreach s ∈ S do
12 foreach {i | ki =∞} do
13 yi

s ←
(∑

s′∈S δ(s)(σS(s′,∞))(s′) · (xi
s′ +

∑
{i|ki=∞} wiρi(s, σS(s,∞), s′))

)
14 ∆← maxi∈{1,...,d} maxs∈S |yi

s − xi
s|

15 foreach i ∈ {1, . . . , d} do xi ← yi

16 while ∆ > ϵ
17 for l = max {ki | i ∈ {1, . . . , d} , ki ̸=∞} down to 1 do
18 foreach s ∈ S do
19 ys ← maxa∈αM(s)

(∑
s′∈S δ(s)(a)(s′) · (xs′ +

∑
{i|ki≥l} wiρi(s, a, s′))

)
20 σS(s, l)← arg maxa∈αM(s)

(∑
s′∈S δ(s)(a)(s′) · (xs′ +

∑
{i|ki≥l} wiρi(s, a, s′))

)
21 foreach {i ∈ {1, . . . , d} | ki ≥ j} do
22 yi

s ←
∑

s′∈S δ(s)(σS(s, l))(s′) · (xs′ + ρi(s, σS(s, l), s′))
23 foreach i ∈ {1, . . . , d} do xi ← yi

24 foreach i ∈ {1, . . . , d} do qi ← yi
sI

25 return σS , q

The State of Multi-Objective Model Checking 73

Alg. 10. Multi-objective achievability query

Input: MDP M, multi-objective achievability property
ϕ̄ =

〈
[CumRewM(ρ1)]≤k1

≥c1
, . . . , [CumRewM(ρd)]≤kd

≥cd

〉
Result: queryM(ϕ̄)

1 X ← ∅, c = ⟨c1, . . . , cd⟩
2 do
3 Find w separating c from down(X)
4 Find strategy σPs maximising

∑d
i=1 wi · CumRewM(ρi)(ki, σPs)

5 q ← ⟨CumRewM(ρi)(ki, σPs)⟩i∈{1,...,d}
6 if w · q < w · c then return false
7 X ← X ∪ {q}
8 while c /∈ down(X)
9 return true

a finite step-bound of at least l. Since this will be true exactly ki times for a
subproperty at index i with a finite step-bounds, we include the ith subproperty
only ki times, as intended. On line 22, we perform the equivalent of line 13,
but now we also include the subproperties with a finite step-bound. This is the
computation of the value for the individual subproperty.

7.1.9 Multi-Objective Achievability Query To compute an achievability
query we could compute the entire Pareto curve and determine whether the
target point is contained in the downward closure of the Pareto curve. However,
it turns out that we can take some shortcuts that significantly speed up the
computation [30]. We show the algorithm in Algorithm 10.

On the first line, we set c as the point for which we want to verify whether
it is achievable. On line 3 we find a new operation. Here, we search for any
hyperplane for which the downward closure of X, which is under approximation
discussed in Section 7.1.1, is in one half-space from the hyperplane, while the
point c is in the other. This differs from the approach of Section 7.1.7 since
we can discard any facet for which the point are in the same half-space as the
under approximation, since this can never grow the under approximation closer
to c. This significantly speeds up the algorithm. We discuss this computation in
Section 7.1.10.

On lines 4 and 5 we use the approach from Section 7.1.8 again to compute
the point q that has the largest distance to the hyperplane ⟨w, 0⟩. On line 6
we find another way to exit early. We check whether the distance from c to the
hyperplane ⟨w, 0⟩ is larger than the maximum distance for any achievable point,
which was obtained by q. If c is farther away than the furthest achievable point,
it must be impossible to achieve. This is equivalent to checking whether the c
point is outside the upper approximation. The distance between a hyperplane
and a point is discussed in Section 7.1.3.

74 M. van Wijk

−1 0 1 2 3 4

0

200

400

600

800

1,000

1,200

Expected hiring points

E
xp

ec
te

d
co

st
s

Fig. 27. Separating hyperplane for the point ⟨3, 200⟩

On line 8 we perform another optimisation. If we know that the point c is
in the downward closure of X, we know that c is in the under approximation of
the Pareto curve. If it is, then it must mean that the point is achievable, so we
can exit. This computation is discussed in Section 7.1.6.

7.1.10 Separating Hyperplane If we have a point that is not inside a convex
hull, we can always find a hyperplane that separates the point from the convex
hull according to the separating hyperplane theorem [68]. This is equivalent to
finding a hyperplane for which the entire convex hull is in one half-space, while
the point is in the other.

Example 39. The point ⟨3, 200⟩ can be separated from the Pareto curve for the
hiring points, using the hyperplane ⟨⟨400,−1⟩ , 620⟩, as shown in Figure 27.

In some cases, a separating hyperplane is used as the weight vector as demon-
strated in Section 7.1.1. While we can start with the standard basis vectors{

[i = j]{1,...,d} | i ∈ {1, . . . , d}
}

, we want one that represents a facet of the down-
ward closure after that. Therefore, we choose the hyperplane with the maximum
distance to the point. This seems to have the best results in practice [30]. We
can find this hyperplane, since in Section 7.1.6 we have shown how to compute
a downward closure using a convex hull description, which contains the hyper-
planes of the facets.

Furthermore, we even know that this hyperplane has a normal vector which
consists only of non-negative values [30]. We can scale these values such that the
sum of the values is equal to 1. This ensures that the scaled normal vector can
be used as the weight vector for a convex combination as done in Section 7.1.1.

The State of Multi-Objective Model Checking 75

−1 0 1 2 3 4
−1,200

−1,000

−800

−600

−400

−200

0

Expected hiring points

E
xp

ec
te

d
co

st
s

Fig. 28. Separating hyperplane for the point ⟨3,−200⟩

In the context of the downward closure, we will consider such a scaled normal
vector, a separating vector.

Example 40. The point ⟨3,−200⟩ can be separated from the Pareto curve for
the hiring points, using the hyperplane ⟨⟨1120, 3.4⟩ , 0⟩, which is the hyperplane
through the boundary points ⟨0, 0⟩ and ⟨3.4,−1120⟩, as shown in Figure 28. We
can scale this normal vector to

〈
1120

1120+3.4 , 3.4
1120+3.4

〉
, so that its values sum up

to one. We use this as the separating vector of the point ⟨3,−200⟩ from the
downward closure.

7.1.11 Multi-Objective Numerical Query The approach for multi-objective
numerical queries is very similar to the approach for multi-objective achievabil-
ity queries shown in Section 7.1.9. We can take fairly similar shortcuts to avoid
having to compute the entire Pareto curve. The procedure is shown in Algo-
rithm 11.

We start with the most pessimistic target point c on line 1 and iteratively
increase it throughout the algorithm. Therefore, we take the lowest possible value
for the reward in the unknown position. This value can be computed using any
technique for model checking one objective [5].

On line 3, we again find a separating hyperplane. We do this using the ap-
proach of Section 7.1.10. It is now important that wj > 0, since we always need
to select a point q such that there does not exist another point q̂, such that
∀i ∈ {1, . . . , d} q̂i ≥ qi and q̂j > qj [30]. For example, if we have the multi-
objective numerical property〈

[CumRewM(ρ1)]≤∞
max , [CumRewM(ρ2)]≤∞

≥1

〉
,

76 M. van Wijk

Alg. 11. Multi-objective numerical query

Input: MDP M, multi-objective numerical property ϕ̂ =〈
[CumRewM(ρ1)]≤k1

≥c1
, . . . , [CumRewM(ρj)]≤kj

max , . . . , [CumRewM(ρd)]≤kd

≥cd

〉
with the unknown in position j ∈ {1, . . . , d}

Result: queryM(ϕ̂)
1 X ← ∅, c =

〈
c1, . . . , queryM([CumRewM(ρj)]≤kj

min), . . . , cd

〉
2 do
3 Find w separating c from down(X), wj > 0
4 Find strategy σPs maximising

∑d
i=1 wi · CumRewM(ρi)(ki, σPs)

5 q ← ⟨CumRewM(ρi)(ki, σPs)⟩i∈{1,...,d}
6 if w · q < w · c then return ⊥
7 X ← X ∪ {q}
8 cj ← max {cj , max {c̄j ∈ R | ⟨c1, . . . , c̄j , · · · , cd⟩ ∈ down(X)}}
9 while c /∈ down(X) ∨w · q > w · c

10 return cj

we would never want to have q = ⟨0, 2⟩, if there exists a strategy such that
q̂ = ⟨1, 2⟩. We can achieve this by adding a small value to wi if it is 0. Another
way to implement this without the wj > 0 constraint is covered in Section 8.3.

We then continue with lines 4 and 5 by computing the point q with the
maximum distance to the hyperplane ⟨w, 0⟩ with the calculation shown in Sec-
tion 7.1.8. On line 6, we check whether the point c is farther away from this
hyperplane than the furthest point q. Since cj is always an under approxima-
tion, if c is farther away than the furthest achievable point q, must mean that
the property is unachievable. This is equivalent to checking whether the point
c is outside of the upper approximation. On line 7 we update the under ap-
proximation of the Pareto curve. On line 8, we find the optimal value for cj

in the downward closure of our known points, given that all constraints need
to be satisfied. This is the maximum point on the current Pareto curve under
approximation, where all constraints are satisfied. Notice that this point might
not (yet) exist. We do this using the approach of Section 7.1.12. This is now the
best point we can now achieve.

We stop the algorithm on line 9 only if c is part of the under approximation
and if it is on the edge of the upper approximation. Checking whether the point
is part of the under approximation is important, since before we exit, we need
to ensure that the point c is actually achievable. If it is not part of the under
approximation, we are not yet sure that it can be achieved. Checking whether the
point is part of the under-approximation is done by checking whether the point
is part of the downward closure of X, using the techniques of Section 7.1.6.
If the point is part of the downward closure and is on the edge of the upper
approximation, we are finished. We cannot do any better than achieving a point
on the upper approximation. Checking whether the point is part of the upper

The State of Multi-Objective Model Checking 77

Alg. 12. Maximal Point of a Convex Hull - MaxConv

Input: The convex hull C =
〈
F, c,

〈
T, T −1,o, SC

〉〉
, the constraints

c = ⟨c1, . . . , cd⟩ ∈ Rd and the dimension to maximise
j ∈ {1, . . . , d}

Result: max {c̄j ∈ R | ⟨c1, . . . , c̄j , · · · , cd⟩ ∈ C}
1 if

〈
T, T −1,o, SC

〉
= ⊥ then

2 r ←⊥
3 foreach ⟨R, ⟨a, b⟩⟩ ∈ C do

4 cj ←
b−

∑
i∈{1,...,d}\{j}

ai·ci

aj

5 if ConvexHullContains(C , c) then r ← cj

6 return r

7 else if ∃j′ : Tj′,j = 1 then
8 if T −1T (c− o) ̸= c− o then return ⊥
9 return MaxConv(SC , T (c− o), j′)

10 else
11 c′ ← T −1T (c− o) + o
12 cj ← c′

j

13 if c = c′ ∧ ConvexHullContains(SC , c) then return cj

14 else return ⊥

approximation is done by checking the distance to the hyperplane ⟨w, 0⟩ as
discussed in Section 7.1.3.

7.1.12 Maximal Downward Closure As we have seen in Section 7.1.11,
we need to find the maximum value of an unknown on the under approximation
given a set of constraints. This means that we need to find the maximum value
in a downward closure, with one dimension being unknown, while the others
are fixed. Formally, for a convex hull description C =

〈
F, c,

〈
T, T −1,o, SC

〉〉
, a

point ⟨c1, . . . , cd⟩ ∈ Rd and the unknown dimension j ∈ {1, . . . , d}, we want to
find max {c̄j ∈ R | ⟨c1, . . . , c̄j , · · · , cd⟩ ∈ C}.

To do this, we observe that any point with one unknown and a set of con-
straints must lay on a line, where the unknown is the only variable. Moreover,
since we are looking for a point on the edge of the convex hull, the maximal
point, if it exists, must be at the intersection of one of the facets of the down-
ward closure and this line. For each such intersection, we must verify whether
the intersection is part of the convex hull described by C. The result is the valid
intersection with the highest value for c̄j . We show these steps in Algorithm 12.

On the first line of this algorithm, we check whether the convex hull is not
in a subspace. If not, we continue to line 2, where r will store the result. We
loop over all facets and compute the intersection of the hyperplane and on line
4. This computation works, because each point x on the hyperplane must satisfy
the equation a ·x = b as shown in Section 7.1.3. Since we have only one unknown

78 M. van Wijk

in c, we can rewrite this formula to obtain cj :

a · c = b

d∑
i=1

ai · ci = b

aj · cj = b−
∑

i∈{1,...,d}\{j}

ai · ci

cj =
b−

∑
i∈{1,...,d}\{j} ai · ci

aj

Notice that we ensure that aj ̸= 0 when this computation is reached from Algo-
rithm 11, because of the wj > 0 constraint on line 3 of that algorithm. On line
5 we then verify whether the computed point c is in the convex hull described
by C, this computation is shown in Section 7.1.5. We then return the best value
for cj on line 6.

If the entire convex hull described by C lies in a subspace, we do not have a
polytope in d dimensions. Therefore, we use a different approach. In this case,
the line describing all potential values for c is a line in d-dimensional space, but
in the subspace it might not be. It could be that the entire line is only a point
in the subspace, or it could be that it does not even pass the subspace. We start
on line 7 by checking whether the unknown dimension is a free dimension. If it
is, we know that the line must either be a line in the subspace as well, or it is
not in the subspace at all. Because of this, we can pick any point on the line and
check whether it is in the subspace, which is done on line 8 using the theory of
Section 7.1.4. If the point is in the subspace, the entire line and we can return
the maximum point for the convex hull in the subspace. Otherwise, the line does
not intersect the subspace, so there is no solution.

If the unknown is a fixed dimension, there is no way in the subspace for the
variable on the line to change, hence the line must be a point in the subspace or
not be in the subspace at all. On lines 11 to 13 we compute whether the point
representing the line is in fact part of the subspace using the technique shown
in Section 7.1.4. If the point is in the subspace, the point is the maximal point
for this convex hull if and only if it is contained in the convex hull.

7.2 Linear Programming Approach

The other prevalent way to implement multi-objective queries is by using the
linear programming approach from [29]. This approach should be easier to un-
derstand for most readers, since the complexity of the analysis is hidden behind
a linear optimisation solver. Since we assume the linear optimisation solver to
be a library, we will not cover its internals. For this approach, we only need to
be able to express the MDP and the constraints of the multi-objective property
as constraints in the linear program.

In case of a multi-objective numerical property, we can let the linear program
optimise for its unknown. In case of a multi-objective achievability property, we

The State of Multi-Objective Model Checking 79

qI qG

¬G

G

τ

Fig. 29. Deterministic Rabin automaton for ♢G

do not need to optimise for anything, we merely need to verify whether the linear
program is feasible.

Notice that we can optimise for only one linear function in a linear program.
Therefore, the approach from [29] does not cover Pareto properties. However, it
is straightforward to extend the approach taken using a multi-objective linear
optimisation solver by optimising for all unknowns [11,25]. These are for example
included in MATLAB13 and ALGLIB14. Another possibility would be to use
linear programming instead of the value iteration approach shown in Algorithm 9
as part of Algorithms 8, 10 and 11.

7.2.1 Construct MDP So far, we have used Proposition 7 to transform the
MDP to query probabilistic reachability properties. The algorithm for linear
programming however, uses a more general approach that supports all LTL
properties instead of just the reachability of a goal set as we have used so far.
Unfortunately, the Modest Toolset, in which we implement this algorithm, does
not support arbitrary LTL specifications right now. Only a subset is supported.
Since allowing the Modest Toolset to handle arbitrary LTL specifications would
require a lot of work in an area that is not the focus of this paper, we stick
with the reachability of a set of states. We will do so using its LTL equivalent
to demonstrate how LTL properties can be handled.

The reachability of a set of states, corresponds to the LTL property ♢. If we
want to eventually reach any state in G, this can be described in LTL as ♢G. The
DRA corresponding to this LTL property is R = ⟨{qI , qG} , qI ,A, λ, ⟨∅, {qG}⟩⟩
shown in Figure 29. If we now take the approach from Section 2.10, we can
compose the DRA with the MDPM on which we want to evaluate the property.
The MDP which embeds the LTL property is then the compositionM⊗R. Notice
that this MDP is isomorphic to the MDP resulting from Proposition 7. The only
difference is the name of the states, each false is replaced by qI and each true
by qG.

Example 41. When we compose the MDP for the certification process model
from Figure 2 with the DRA for ♢ {finished} as shown in Figure 29, we obtain
the MDP shown in Figure 30.

Now that the LTL property is embedded in the composition of the MDP
and DRA, we would like to evaluate the property. To do this, it is convenient to
13 https://mathworks.com/discovery/multiobjective-optimization.html
14 https://www.alglib.net/multi-objective-optimization/

https://mathworks.com/discovery/multiobjective-optimization.html
https://www.alglib.net/multi-objective-optimization/

80 M. van Wijk

⟨sI , false⟩

⟨passed1 , qI ⟩

⟨finished, qI ⟩

⟨passed1 , qG⟩

⟨finished, qG⟩

⟨sI , qG⟩
try1

0.85

0.15
stop

1

try2

0.2

0.8

stop

1

τ1

τ
1

try1

0.85

0.15
stop

1

stop

1

try2

0.2

0.8

Fig. 30. Figure 2 composed with the DRA for ♢ {finished}

construct a reward-structure again such that we can constrain the algorithms to
reward-structures.

An LTL property is satisfied for a path if the path ends by staying within an
accepting end component forever. Therefore, we will add a transition from each
end component to a new state sdead . Taking a transition to sdead corresponds
to staying in the end component from which the transition was taken for ever.
For these sdead transitions, we set a reward of +1 for each LTL property for
which the end component is accepting and 0 otherwise. Of course, this approach
only guarantees a correct outcome if there are no rewards in the end component
itself. However, we consider such end component modelling errors, and hence
we do not evaluate properties on MDPs containing such rewards as discussed in
Section 6.2. We show the transformation to add sdead in Proposition 12.

Proposition 12. Let M = ⟨S, sI ,A, δ⟩ be an MDP. Let

M′ = ⟨S ∪ {sdead} , sI ,A ∪ {loop} , {δ(s) ∪ δ′(s) | s ∈ S}⟩

be the MDP, with δ′ the smallest partial function such that:

– ∀ ⟨Se, se,Ae, δe⟩ ∈ EC (M), s ∈ Se : δ′(s) = {loop 7→ {s′ 7→ [s′ = sdead]}},
– δ′(sdead) = {loop 7→ {s 7→ [s = sdead]}}.

Then for every branch reward-structure ρ, we have

queryM([CumRewM(ρ)]≤∞
◦) = queryM′([CumRewM′(ρ)]≤∞

◦)

when M does not contain infinite cumulative rewards [29].

Proof. Shown in [29, Proof of Proposition 3]. ⊓⊔

Example 42. When we apply Proposition 12 to the certification process model
in Figure 30, we obtain Figure 31. The only end component in the MDP is the
⟨finished, qG⟩ state with its τ transition. Therefore, we only need a transition
from ⟨finished, qG⟩ to sdead .

The State of Multi-Objective Model Checking 81

⟨sI , false⟩

⟨passed1 , qI ⟩

⟨finished, qI ⟩

⟨passed1 , qG⟩

⟨finished, qG⟩

⟨sI , qG⟩

sdead

try1

0.85

0.15
stop

1

try2

0.2

0.8

stop

1

τ1

τ
1

try1

0.85

0.15
stop

1

stop

1

try2

0.2

0.8

loop

1 loop

1

Fig. 31. Proposition 12 applied to Figure 30

To transform the DRA to a reward-structure, we now use Proposition 13. This
allows us to only verify cumulative reward properties.

Proposition 13. Let M′ = ⟨S ′, sI ,A′, δ′⟩ be an MDP transformed by Propo-
sition 12 and R = ⟨Q, qI ,A, λ, C⟩ be a DRA. Let ρS ∈ StructM′ be the branch
reward-structure such that:

– ∀s ∈ S ′ : ∀a ∈ A : ∀s′ ∈ S ′ : ρ(s, a, s′) = 0, and
– ρ(s, loop, sdead) = [∃Me = ⟨Se, se,Ae, δe⟩ ∈ EC (M′) : s ∈ Se ∧Me |= R].

Then queryM′([R]≤k
◦) = queryM′([CumRewM(ρ)]≤k

◦) [29].

Proof. Shown in [29, Proof of Proposition 3]. ⊓⊔

Example 43. When we apply Proposition 13 to the certification process model
in Figure 31, we obtain Figure 32. We only need to add a reward on the loop
transition from ⟨finished, qG⟩ to sdead . Notice the similarity to Figure 4.

7.2.2 Algorithm Now that we know how to construct the MDP using Propo-
sition 12 and create reward-structures for LTL properties that are suitable to
be checked by a linear program using Proposition 13, we need to construct the
linear program itself. We show this linear program in Algorithm 13.

The paper requires step-bounds to be infinite. This makes sense since linear
programming is not an approach that goes over each step such as value iteration,
but is instead able to compute the value in the limit. When all step-bounds are
infinite, it turns out that a probabilistic memoryless strategy suffices [29]. A
strategy can only benefit from being step-aware if the step-bounds are finite.
Otherwise, the choice in the kth step should be the same as in the k + 1th step.
Hence, we do need to ensure that the linear program computes the result based
on a memoryless step-positional strategy.

We do so by computing the expected number of times each transition is taken.
The expected number of times the transition with the action a is taken from the

82 M. van Wijk

⟨sI , false⟩

⟨passed1 , qI ⟩

⟨finished, qI ⟩

⟨passed1 , qG⟩

⟨finished, qG⟩

⟨sI , qG⟩

sdead

try1

0.85

0.15
stop

1

try2

0.2

0.8

stop

1

τ1

τ
1

try1

0.85

0.15
stop

1

stop

1

try2

0.2

0.8

loop
+1

1 loop

1

Fig. 32. Proposition 13 applied to Figure 31

state s is modelled as the variable y⟨s,a⟩. To model compute the expected number
of times each transition is taken, we use the fact that the number of times a state
is entered must be equal to the number of times it is left, except for the initial
state, which is left one more time than it is entered. This is the second constraint
of the linear program. Moreover, we know that the expected number of times
a transition is taken cannot be negative, which is the fourth constraint in the
linear program.

The constraints of the multi-objective property are encoded as the first con-
straint in the linear program. The expected reward for a branch-reward structure
is the sum of each branch-reward multiplied by the expected number of times
the corresponding branch is visited. The expected number of visits to a branch
is equal to the expected number of times the transition containing the branch is
taken, multiplied by the probability of taking that branch when the transition
is taken.

When we optimise for a numerical query, we optimise for the sum of the
expected rewards of the unknown.

To ensure that the rewards are used, we also need to ensure that the sum of
the expected number of visits to the transitions leading to sdead is 1. This is the
third constraint of the linear program.

If we compute a multi-objective numerical query using this linear program,
the final result of queryM(ϕ) should just like for the constraints be the sum of
the branch-rewards multiplied by the expected times the branches are visited:∑

s∈S\{sdead}

∑
a∈αM(s)

∑
s′∈S

ρj(s, a, s′) · δ(s)(a)(s′) · y⟨s,a⟩.

If we want to compute a multi-objective achievability query instead, we can
slightly alter the property such that it becomes a multi-objective numerical prop-
erty. We transform one of the constraints to an unknown and check whether the
value computed for this unknown satisfies the required bounds. We show this in
Algorithm 14.

The State of Multi-Objective Model Checking 83

Alg. 13. Multi-objective numerical query - LPNumQuery

Input: MDP M = ⟨S, sI ,A, δ⟩ obtained through Propo-
sition 12, multi-objective numerical property ϕ̂ =〈

[CumRewM(ρ1)]≤∞
≥c1

, . . . , [CumRewM(ρj)]≤∞
max , . . . , [CumRewM(ρd)]≤∞

≥cd

〉
with the unknown in position j ∈ {1, . . . , d}

Result: queryM(ϕ̂)
1 Solve the linear program

maximise
∑

s∈S\{sdead}

∑
a∈αM(s)

∑
s′∈S

ρj(s, a, s′) · δ(s)(a)(s′) · y⟨s,a⟩

subject to
∑

s∈S\{sdead}

∑
a∈αM(s)

∑
s′∈S

ρi(s, a, s′) · δ(s)(a)(s′) · y⟨s,a⟩ ≥ ci ∀i ∈ {1, . . . , d} \ {j}

∑
a∈αM(s)

y⟨s,a⟩ −
∑
s′∈S

∑
a′∈αM(s′)

δ(s′)(a′)(s) · y⟨s′,a′⟩ = [s = sI] ∀s ∈ S \ {sdead}

∑
s∈S

y⟨s,loop⟩ = 1

y⟨s,a⟩ ≥ 0 ∀s ∈ S, a ∈ αM(s)

2 return
∑

s∈S\{sdead}
∑

a∈αM(s)
∑

s′∈S ρj(s, a, s′) · δ(s)(a)(s′) · y⟨s,a⟩

Alg. 14. Multi-objective achievability queries

Input: MDP M, multi-objective achievability property
ϕ̄ =

〈
[CumRewM(ρ1)]≤∞

≥c1
, . . . , [CumRewM(ρd)]≤∞

≥cd

〉
Result: queryM(ϕ̄)

1 ϕ′ ←

〈{
[CumRewM(ρi)]≤∞

≥ci
, i ̸= 1

[CumRewM(ρ)]≤∞
max , otherwise

〉
i∈{1,...,d}

2 return LPNumQuery(M,ϕ′) ≥ c1

8 Replication Of Most Prevalent Papers

So far, we have evaluated existing implementations of model checking algorithms.
We will now also evaluate the papers that describe these algorithms. To do
this, we implement the approach laid out in these papers to find mistakes and
curiosities in these papers. We implement these approaches in the Modest Toolset
[35], since it already has a solid framework for probabilistic model checking but
does not yet support multi-objective model checking.

We provide practical information on important parts of the implementation
we noticed during our implementation, which are not always present in these
mostly theoretical papers. The results of our algorithms implemented are dis-
cussed in Section 9.

84 M. van Wijk

8.1 Value Iteration

During the replication of [30], we found a few peculiarities in the paper. Firstly,
all algorithms only support cumulative rewards, although the paper briefly men-
tions in [30, Extensions] that it is possible to combine the algorithm with Rabin
automata to support ω-regular properties, which allow for checking of LTL prop-
erties. However, all models provided, except for two, use LTL properties.15 This
makes it difficult for programmers to test whether their basic implementation
works as intended. It would be convenient to have models that only use properties
with cumulative rewards in the format required, for example, by Algorithm 11.
This would allow for testing only the specified algorithms without the need for
additional transformations.

Next, we also noticed that the linear program given in [30, Heuristics and
optimisations], appears to be incorrect. This linear program solves line 3 of
Algorithms 10 and 11 using linear programming instead of finding the separating
hyperplane using geometry.

The linear program uses q in its computation, which is not available in the
context on line 3, although we could interpret this as the q computed in the
previous iteration. However, if we change q to c, the linear program makes more
sense. This would find the vector that has the maximum distance to the reward,
instead of the last used vector, which thus gives us the maximum separating
hyperplane. This would also address the question of why the paper mentions
that point c and set X are being used for the linear program, while c is not used
in the linear program.

In the same linear program, we also notice that “wi·(qi−xi) ≥ d for all x ∈ X”
is used. However, there is no way to access i in the equation. However, given the
description two lines above, the equation should implement a dot product. This
can be achieved by adding a

∑n
i=1 in front, to get: “

∑n
i=1 wi · (qi − xi) ≥ d for

all x ∈ X”.
To use models that are not described in the “basic form”, [30, Proposition

2] is used. This conversion aims to do the same as our transformation shown in
Proposition 8. However, instead of the equality

queryM([RewM]≤k
≤c) = queryM([−RewM]≤k

≥−c),

the paper claims that

queryM([RewM]≤k
≤c) = queryM([−RewM]≤k

≥c).

The difference between these two equations is that in their approach the c is not
negated. However, as can be seen from the proof of Proposition 8, this would
correspond to a ≤ b ⇐⇒ −a ≥ b, which is obviously incorrect. Hence, c should
also be negated.

Another problem can be found in [30, Alg. 2], which is their version of the
value iteration part of the algorithm shown in Algorithm 9. Due to Proposition 8,
15 https://www.prismmodelchecker.org/files/atva12mo

https://www.prismmodelchecker.org/files/atva12mo

The State of Multi-Objective Model Checking 85

we know that the rewards might be positive and negative. The paper computes ∆
by computing the largest difference between two consecutive iterations, without
taking an absolute value. However, this means that ∆ can also be negative when
no absolute value is taken (since value iteration can only decrease rather than
increase values for negative rewards). Moreover, taking a negative convergence
threshold would not solve the problem since this would also require a sign switch
from > to <. Moreover, even with the sign switch, if positive and negative
rewards are mixed, the approach breaks down again. Therefore, the absolute
value of ∆ should be used so that ϵ can always be a small positive number, as
shown in Algorithm 9.

Another small notational problem lies in their value iteration algorithm [30,
Alg. 2]. In our adaptation of the algorithm shown in Algorithm 9, we used ∆ for
the largest difference between two iterations. However, the original paper uses δ
for this difference, while it also uses δ as the transition function of the MDP.

Moreover, while the approach compares the speed of the approach in the
experiments shown in [30, Experimental results] to the linear programming ap-
proach, it does not compare the results of the queries. The results of these queries
are extremely interesting, since value iteration can only approximate the result
of a query. It is fairly easy to quickly output any number, but the number is
meaningless if it is not clear how accurate the number is.

8.2 Linear Programming

The linear programming paper [29] appears to contain significantly fewer mis-
takes than the value iteration paper [30]. Also in [29, Experimental Results], in
addition to the speed, they compare the results of the queries themselves to the
previously known method.

Only a small issue appears to be present in [29, Fig. 2.]. This is the linear
program shown in Algorithm 13. In their notation, they use µ′(s) while µ′ is not
defined in the context. However, since the summation in which it occurs sums
the sum of the expected number of times the state s is entered, µ′(s) should
be changed to µ̂(s). This corresponds to our use of δ(s′)(a′)(s) in the second
constraint of Algorithm 13.

8.3 Floating-Point Values

Most implementations, including ours, do not use exact representations for num-
bers, but instead use double-precision numbers as defined in IEEE 754 [44]. This
means that theoretical equalities, such as in the linear program described in Al-
gorithm 13, should not be programmed as equalities. Otherwise, the same issue
from Section 5.1.2 would arise. This would mean that due to floating point inac-
curacies, not all constraints might be satisfied, thus failing the entire program.
To achieve this, we can change such equalities x = y, to two inequalities x ≥ y−ϵ
and x ≤ y + ϵ, for some small ϵ. In our program, we use ϵ = 10−6.

The same rounding errors must be taken into account when implementing
inequalities. For example, on line 6 of the value iteration approach shown in

86 M. van Wijk

Algorithm 11. In this case, to achieve a strictly greater than, we can change
w · q < w · c to w · q < w · c + ϵ. It is important to note that such changes
do slightly alter the precision of the outcome of the algorithm. The bigger the
choice of ϵ, the more inaccurate the result might get. However, if ϵ is too small,
the program might fail since an (in)equality might not be satisfied using double-
precision values, while with exact values the (in)equality would be satisfied.

Another important inequality is the wj > 0 constraint for the separating
vector on line 3 of Algorithm 11. This ensures that when there are two strategies
that produce the same values for all dimensions, except for the unknown dimen-
sion, the strategy with the highest value in the unknown dimension is selected.
This means that this inequality can also be checked inside Algorithm 9 by stor-
ing the value for the unknown as well. In fact, this is also how the authors of
the original paper implemented this inequality.16

8.4 Infinity

In practice, it can be hard to model the downward closure using infinities as
described in Proposition 11. The reason for this is that for example ∞−∞ is
undefined. However, for steps such as Gaussian elemination, we would require
∞ − ∞ = 0. If we are using double-precision numbers, we can approximate
infinity using any large number. We choose the maximum signed integer that
can be described using 32 bits. However, another large number might also be
used as well. It is important to not choose a number that is too small, since this
will, for example, influence the Gaussian elimination, making the results even
more inaccurate.

Moreover, the value should not be chosen too large. If this is the case, the
Gaussian elimination will fail again, but this time it will fail due to an overflow
or underflow. Otherwise, we might, for example, end up with −∞′ − ∞′ > 0,
where ∞′ is the value that we use to represent infinity in the program.

8.5 LTL Properties

We have not implemented LTL properties, but we understand that future im-
plementers might want to do this. For this, most model checking tools use the
Spot library [24]. This library can generate an ω-automaton that is equivalent
to a given LTL property. A user can then provide an LTL property, since this is
user-friendlier than asking the user for a DRA.

9 Experimental Validation

To check the effectiveness of the changes shown in Section 5 and the algorithms
implemented in Section 8, we use an approach very similar to that taken in
Section 4.
16 https://github.com/prismmodelchecker/prism/blob/1f86cc2241fa4353fd16c5

8d1c69256ba8be7a5b/prism/src/sparse/PS_NondetMultiObjGS.cc#L342

https://github.com/prismmodelchecker/prism/blob/1f86cc2241fa4353fd16c58d1c69256ba8be7a5b/prism/src/sparse/PS_NondetMultiObjGS.cc#L342
https://github.com/prismmodelchecker/prism/blob/1f86cc2241fa4353fd16c58d1c69256ba8be7a5b/prism/src/sparse/PS_NondetMultiObjGS.cc#L342

The State of Multi-Objective Model Checking 87

9.1 Approach
We use the same approximation approach as shown in Algorithm 2 and the
following models from Section 4: care home (CH), client server (CS), dining
philosophers (DP), dynamic power management (DPM), hiring points (HP),
Mars rover (MR), network virus (NV), randomised consensus (RC), resource
gathering (RG), sensor network (SN), task graph scheduling (TGS), zeroconf
network (ZN), zeroconf time based (ZTB). These are all models from Section 4,
with the exception of the “team formation” model. This model is excluded since
the approach to convert the model to an input formalism accepted by Modest
cannot convert this model.

To convert these models, we use the storm-conv executable shipped with
Storm [40] to convert the model to JANI [16] and then use the Modest [35]
convert tool to convert the JANI model to a Modest model.

9.2 Results
Using this approach, we get the data shown in Table 5. While we do not perform
a benchmark, the speed for the approaches differs significantly. Storm seems to
be the fastest tool on this set of models. It is followed by PRISM and our
implementation which have comparable speeds. ePMC takes the longest time on
these models.

In Table 5, we also show the reason why a value is not present if it was not
computed. We list “· · · ” if the computation did not finish in 2 minutes for a value
iteration query and 10 minutes for a linear programming problem. For infinite
cumulative rewards, we use “I∞”, for unsupported properties “-”, “↑” when we
run out of memory. The code for these improved experiments is also available.17

Just like in Section 4, we denote a non-achievable multi-objective numerical
property by ⊥ and show a value if it was constant for all convergence thresholds,
otherwise we show a plot of how the result changes based on the convergence
threshold.

We observe in Table 5 that most entries are similar to Table 3. However, for
all tools, there have been a few changes.

9.2.1 Storm For Storm, we observe that its linear programming results now
align with the other model checkers. This suggests that it is important to use
the ––exact flag for Storm when using linear programming as suggested in
Section 5.1.2. The segmentation fault has been resolved and instead, the com-
putation is timed out, suggesting that the fix from Section 5.1.1 has worked.

9.2.2 PRISM The PRISM results also seem more promising when using lin-
ear programming. The approximation results align much more closely with the
results for the other tools and PRISM’s own direct query. This suggests that the
change made in Section 5.2.1 has a positive effect on the results.
17 https://github.com/Chickenpowerrr/multiobjectiveanalysis/releases/tag/

v1.1

https://github.com/Chickenpowerrr/multiobjectiveanalysis/releases/tag/v1.1
https://github.com/Chickenpowerrr/multiobjectiveanalysis/releases/tag/v1.1

88 M. van Wijk

Table 5. Validating results

Va
lu

e
It

er
at

io
n

R
el

at
iv

e
co

nv
er

ge
nc

e
th

re
sh

ol
d

A
bs

ol
ut

e
co

nv
er

ge
nc

e
th

re
sh

ol
d

Li
ne

ar
Pr

og
ra

m
m

in
g

PR
IS

M
eP

M
C

M
od

es
t

St
or

m
PR

IS
M

eP
M

C
M

od
es

t
St

or
m

PR
IS

M
M

od
es

t
M

od
el

Pr
op

er
ty

C
on

st
an

ts
A

pp
ro

x
D

ire
ct

A
pp

ro
x

D
ire

ct
A

pp
ro

x
D

ire
ct

A
pp

ro
x

D
ire

ct
A

pp
ro

x
D

ire
ct

A
pp

ro
x

D
ire

ct
A

pp
ro

x
D

ire
ct

A
pp

ro
x

A
pp

ro
x

D
ire

ct
A

pp
ro

x
D

ire
ct

C
H

1
1

··
·

··
·

⊥
10

00
.0

I ∞
I ∞

Fi
gu

re
11

a
··
·

··
·

··
·

··
·

I ∞
I ∞

··
·

68
.0

00
0

68
.0

00
0

I ∞
I ∞

C
H

1
2

··
·

··
·

··
·

··
·

I ∞
I ∞

··
·

··
·

··
·

··
·

··
·

··
·

I ∞
I ∞

↑
··
·

··
·

I ∞
I ∞

C
H

2
1

-
-

⊥
0.

00
00

-
-

⊥
⊥

-
-

⊥
0.

00
00

-
-

⊥
-

-
-

-
C

H
2

2
-

-
··
·

··
·

-
-

··
·

··
·

-
-

··
·

··
·

-
-

↑
-

-
-

-
C

S
1

n/
a

-
-

⊥
−

10
00

.0
-

-
Fi

gu
re

11
b

-
-

··
·

··
·

-
-

-
-

-
-

-
D

P
1

n/
a

-
-

⊥
−

10
00

.0
-

-
Fi

gu
re

11
c

-
-

··
·

··
·

-
-

-
-

-
-

-
D

PM
1

1
57

.7
58

9
57

.7
58

9
0.

00
00

0.
00

00
-

-
Fi

gu
re

11
d

57
.7

58
9

57
.7

58
9

0.
00

00
0.

00
00

-
-

-
-

-
-

-
H

P
1

n/
a

Fi
gu

re
12

a
··
·

··
·

Fi
gu

re
33

a
Fi

gu
re

12
b

Fi
gu

re
12

c
··
·

··
·

Fi
gu

re
33

b
3.

10
00

3.
10

00
3.

10
00

3.
10

00
3.

10
00

M
R

1
1

0.
00

00
0.

00
00

⊥
⊥

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

⊥
⊥

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
M

R
1

2
Fi

gu
re

13
a

⊥
⊥

⊥
⊥

Fi
gu

re
13

b
Fi

gu
re

13
c

Fi
gu

re
13

d
⊥

⊥
··
·

··
·

··
·

0.
87

24
0.

87
24

M
R

2
1

Fi
gu

re
14

a
0.

00
00

0.
00

00
Fi

gu
re

33
c

76
.6

66
7

76
.6

66
7

Fi
gu

re
14

b
0.

00
00

0.
00

00
··
·

··
·

76
.6

66
7

76
.6

66
7

76
.6

66
7

76
.6

66
7

76
.6

66
7

M
R

2
2

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
N

V
1

n/
a

-
-

4.
00

00
4.

00
00

-
-

3.
25

37
3.

25
37

-
-

··
·

··
·

-
-

-
-

-
-

-
N

V
2

n/
a

-
-

1.
00

00
4.

00
00

-
-

Fi
gu

re
11

e
-

-
··
·

··
·

-
-

-
-

-
-

-
R

C
1

n/
a

0.
89

17
0.

89
17

⊥
⊥

1.
00

00
1.

00
00

0.
89

17
0.

89
17

0.
89

17
0.

89
17

0.
89

17
0.

89
17

1.
00

00
1.

00
00

0.
89

17
0.

89
17

0.
89

17
1.

00
00

1.
00

00
R

G
1

1
Fi

gu
re

15
a

⊥
⊥

··
·

··
·

Fi
gu

re
15

b
Fi

gu
re

15
c

Fi
gu

re
15

d
··
·

··
·

0.
82

38
0.

82
38

0.
82

39
0.

82
38

0.
82

39
SN

1
n/

a
-

-
0.

00
00
−

10
00

.0
-

-
Fi

gu
re

11
f

-
-

··
·

··
·

-
-

-
-

-
-

-
T

G
S

1
1

··
·

··
·

0.
00

00
0.

00
00

I ∞
I ∞

I ∞
I ∞

··
·

··
·

0.
00

00
0.

00
00

I ∞
I ∞

I ∞
6.

20
00

6.
20

00
I ∞

I ∞
ZN

1
1

0.
00

03
0.

00
03

⊥
⊥

⊥
⊥

0.
00

03
0.

00
03

0.
00

03
0.

00
03

0.
00

03
0.

00
03

⊥
⊥

0.
00

03
0.

00
03

0.
00

03
⊥

⊥
ZT

B
1

1
0.

00
02

0.
00

02
⊥

⊥
⊥

⊥
0.

00
02

0.
00

02
0.

00
02

0.
00

02
··
·

··
·

⊥
⊥

0.
00

02
0.

00
02

0.
00

02
⊥

⊥

The State of Multi-Objective Model Checking 89

0 0.2 0.4 0.6 0.8
0

1

2

3

Relative convergence threshold

R
m

ax

Approximation
Direct

More iterations

(a) Hiring process, relative ϵ

0 0.2 0.4 0.6 0.8
0

1

2

3

Absolute convergence threshold

R
m

ax

Approximation
Direct

More iterations

(b) Hiring process, absolute ϵ

0 0.2 0.4 0.6 0.8
0

20

40

60

80

Relative convergence threshold

R
m

ax

Approximation
Direct

More iterations

(c) Mars rover, relative ϵ

Fig. 33. Value iteration using our Modest implementation

9.2.3 ePMC We observe that ePMC can now communicate unachievable
multi-objective numerical properties. In addition, the −1.000 result has been
resolved. Unfortunately, the −1000.0 entries are still present. It does not seem
likely that this issue will be resolved soon due to the lack of developers’ resources.
Therefore, ePMC does not seem like a solid choice as a model checker for most
purposes.

9.2.4 Our implementation Our own implementation appears quite promis-
ing. It is the only tool that does not seem to have a difference between its direct
query and the approximation. Moreover, the value iteration results seem to be
approaching the linear programming results.

Unfortunately, the results still often differ slightly from the results of other
model checkers, in particular PRISM and Storm. This might be due to the loose
rounding we have used in our implementation. We, for example, model infinity

90 M. van Wijk

as the largest integer that can be stored in 32 bits and as a result threat all
values smaller than 10−6 as being equivalent to 0. The other tools do not model
infinity since they compute the downward closure in a different way and typically
have a smaller number than 10−6 to handle rounding errors. This means that
our results might be less accurate.

Moreover, we do not use the same model file as the other model checkers since
Modest does not accept the same formalism. It is possible that the conversion to
another input formalism has introduced a small mistake. Either by the tool or
by the parts converted by hand. Unfortunately, the storm-conv utility we used
to convert PRISM files to JANI, only works one way. We can therefore not check
whether the results stay stable for PRISM and Storm after converting to JANI
and back.

Another important observation is that our implementation considers the first
property in the care home model invalid. This might explain why the results using
PRISM’s linear programming and Storm’s value iteration differ by so much.

10 Conclusion

We have explored and improved the state of multi-objective model checking. We
have done so by building upon our previous research, based on which we laid
out our research questions which we will revisit in this section.

In general, we found that Storm offers the most reliable results, moreover it
seems to be the fastest tool. However, in particular, when using linear program-
ming it is extremely important to use the ––exact flag. Based on a conversation
with the authors of the tool, we have to conclude that ePMC will not receive
the required updates. Hence, ePMC should not be used in most cases for multi-
objective model checking, as a significant amount of results appear to be incorrect
without a prospect of future change.

10.1 RQ1 Which mistakes are present in existing model checkers?

In Sections 4 and 6.1 we have identified concrete mistakes in existing model
checkers. This list might not be extensive, but it shows that many such mistakes
are present in the current generation of model checkers. With this approach, we
have shown that current implementations are still error-prone. Many mistakes
are made when implementing multi-objective model checking algorithms, which
find their way into the tools. Hence, a better approach to testing these tools
should be found. In fact, the entire Modest Toolset only tests by running a few
models to verify whether their results are correct. It would be beneficial to at
least include unit tests for critical transformations. This would already improve
confidence in the system.

Also, for Storm, PRISM and ePMC, more extensive tests should be present
for multi-objective model checking. The test suite we used in this research is also
by no means extensive in itself either. Most evaluated multi-objective numerical

The State of Multi-Objective Model Checking 91

properties seem to be quite close to the Pareto curve. This might disproportion-
ately highlight the effect of rounding errors. Moreover, there are relatively few
models that are small enough to be computed by hand so that the correct result
is known. This would simplify the finding of errors in model checkers and could
serve as a great test case. Right now we primarily need to rely on comparing
tools to themselves.

10.2 RQ2 What is the origin of the mistakes in existing model
checkers?

For most of the mistakes found in the existing model checkers, we were able
to find the origin as shown in Sections 5 and 6.1. Some of these have been
resolved by us, and we have made pull requests to resolve these issues. In the
cases where we were able to determine the problem, but solving the problem
would have been too time-consuming, we came up with minimal examples and
reported the problems to the maintainers with the minimal examples. This helps
the maintainers of the tool understand the problem as well and resolve the issue.
The big exception here is ePMC. We have had a meeting with their maintainers,
who explained that they do not have sufficient resources to update the tool. We
have still made some pull requests to fix some issues, but it is unlikely that more
time-consuming fixes will be made in the near future.

10.3 RQ3 Which mistakes are present in multi-objective model
checking theory?

To find mistakes in the current theory, we have replicated the results of [29,30].
We have found several mistakes in these papers, which we have shown in Sec-
tion 8. This helps future implementers avoid falling into these pitfalls, since we
also provide an explanation on how these mistakes should be corrected. To fur-
ther support future implementers, we explained the replicated papers in more
detail in Section 7. We also provided intuition for the algorithms, which, due to
the page limit in other papers, might have been hard to provide in the original
papers. This also helps to prevent mistakes, since understanding what you are
implementing can make it easier to spot mistakes. This is harder if one only
implements exactly what is stated in a paper and does not understand why the
algorithm is supposed to work.

10.4 RQ4 How should invalid models be treated?

In Section 6 we have explored the current ways in which models might be con-
sidered invalid. For some algorithms such as the linear programming approach
[29] such constraints on the model are required for the algorithm to work. How-
ever, we have also seen that in current model checkers, these constraints are not
always guaranteed. The procedure shown in [29] only disregards the smallest set
of models that it cannot model check. However, as we have seen, this requires

92 M. van Wijk

another multi-objective query, which is computationally expensive. Moreover,
the approach taken by Storm can lead to confusing results. Therefore, we came
up with our own approach in Section 6.2 that declares all models that need to
be invalid according to [29] invalid. However, it also declares any model with
an infinite minimising reward as invalid. This makes the computation efficient,
and also avoids the loophole in which users would change an infinite maximising
reward to a minimising reward while changing the sign of the rewards.

10.5 Future Research

A new question that arose from our research is why the value iteration approach
[30] seems to be non-monotonic in some cases, in particular for PRISM as seen
in Section 4. This would still require future research to verify whether this is an
inherent property of the algorithm or whether it is due to the implementation.

To ensure that model checkers can be compared more easily, it would be
beneficial if all of them could use the same models. Unfortunately, the JANI
language [16], which has been introduced to achieve interoperability between
several model checkers, does not yet support multi-objective properties. If this
were to be added, multi-objective models could be added to the Quantitative
Verification Benchmark Set [38], which can be used to benchmark model check-
ers.

More confidence in the current generation of model checkers can be achieved
by formally proving the underlying algorithms. There are still a lot of unproven
algorithms that could benefit from proofs. We hope that in the future a model
checker is developed that is formally proven. This would provide the ultimate
guarantee.

The State of Multi-Objective Model Checking 93

References

1. de Alfaro, L.: Formal verification of probabilistic systems. Ph.D. thesis, Stanford
University, USA (1997), https://searchworks.stanford.edu/view/3910936

2. Andriushchenko, R., Bork, A., Budde, C.E., Češka, M., Grover, K., Hahn, E.M.,
Hartmanns, A., Israelsen, B., Jansen, N., Jeppson, J., Junges, S., Köhl, M.A.,
Könighofer, B., Křetínský, J., Meggendorfer, T., Parker, D., Pranger, S., Quat-
mann, T., Ruijters, E., Taylor, L., Volk, M., Weininger, M., Zhang, Z.: Tools at
the Frontiers of Quantitative Verification. In: Beyer, D., Hartmanns, A., Kordon,
F. (eds.) TOOLympics Challenge 2023. Lecture Notes in Computer Science, vol.
14550, pp. 90–146. Springer (2024). https://doi.org/10.1007/978-3-031-67695-6_4

3. Aspnes, J., Herlihy, M.: Fast Randomized Consensus Using Shared Memory.
Journal of Algorithms 11(3), 441–461 (1990). https://doi.org/10.1016/0196-
6774(90)90021-6

4. Bagdasaryan, A.: On the Partition of Space by Hyperplanes. Euro-
pean Journal of Pure and Applied Mathematics 16(2), 893–898 (2023).
https://doi.org/10.29020/nybg.ejpam.v16i2.4713

5. Baier, C., de Alfaro, L., Forejt, V., Kwiatkowska, M.: Model Checking Probabilistic
Systems. In: Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook
of Model Checking, pp. 963–999. Springer (2018). https://doi.org/10.1007/978-3-
319-10575-8_28

6. Bals, S., Evangelidis, A., Kretínský, J., Waibel, J.: MULTIGAIN 2.0: MDP
controller synthesis for multiple mean-payoff, LTL and steady-state constraints.
In: Ábrahám, E., Jr., M.M. (eds.) Proceedings of the 27th ACM Inter-
national Conference on Hybrid Systems: Computation and Control, HSCC
2024, Hong Kong SAR, China, May 14-16, 2024. pp. 24:1–24:7. ACM (2024).
https://doi.org/10.1145/3641513.3650135

7. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The Quickhull Algorithm for Con-
vex Hulls. ACM Transactions on Mathematical Software 22(4), 469–483 (1996).
https://doi.org/10.1145/235815.235821

8. Barrett, L., Narayanan, S.: Learning all optimal policies with multiple criteria. In:
Cohen, W.W., McCallum, A., Roweis, S.T. (eds.) Machine Learning, Proceedings
of the Twenty-Fifth International Conference (ICML 2008), Helsinki, Finland, June
5-9, 2008. ACM International Conference Proceeding Series, vol. 307, pp. 41–47.
ACM (2008). https://doi.org/10.1145/1390156.1390162

9. Bashar, A., Muhammad, S., Mohammad, N., Khan, M.: Modeling and Analysis
of MDP-based Security Risk Assessment System for Smart Grids. In: 2020 Fourth
International Conference on Inventive Systems and Control (ICISC). pp. 25–30.
IEEE (2020). https://doi.org/10.1109/ICISC47916.2020.9171072

10. Basset, N., Kwiatkowska, M.Z., Topcu, U., Wiltsche, C.: Strategy Synthesis for
Stochastic Games with Multiple Long-Run Objectives. In: Baier, C., Tinelli, C.
(eds.) Tools and Algorithms for the Construction and Analysis of Systems - 21st
International Conference, TACAS 2015, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2015, London, UK, April
11-18, 2015. Proceedings. Lecture Notes in Computer Science, vol. 9035, pp. 256–
271. Springer (2015). https://doi.org/10.1007/978-3-662-46681-0_22

11. Benayoun, R., de Montgolfier, J., Tergny, J., Laritchev, O.: Linear programming
with multiple objective functions: Step method (stem). Mathematical Program-
ming 1(1), 366–375 (1971). https://doi.org/10.1007/BF01584098

https://searchworks.stanford.edu/view/3910936
https://doi.org/10.1007/978-3-031-67695-6_4
https://doi.org/10.1016/0196-6774(90)90021-6
https://doi.org/10.1016/0196-6774(90)90021-6
https://doi.org/10.29020/nybg.ejpam.v16i2.4713
https://doi.org/10.1007/978-3-319-10575-8_28
https://doi.org/10.1007/978-3-319-10575-8_28
https://doi.org/10.1145/3641513.3650135
https://doi.org/10.1145/235815.235821
https://doi.org/10.1145/1390156.1390162
https://doi.org/10.1109/ICISC47916.2020.9171072
https://doi.org/10.1007/978-3-662-46681-0_22
https://doi.org/10.1007/BF01584098

94 M. van Wijk

12. de Berg, M., Cheong, O., van Kreveld, M.J., Overmars, M.H.: Computa-
tional geometry: algorithms and applications, 3rd Edition. Springer (2008).
https://doi.org/10.1007/978-3-540-77974-2

13. Berger, M.: Geometry I. Springer (1987)
14. Bertsimas, D., Tsitsiklis, J.N.: Introduction to linear optimization, Athena scientific

optimization and computation series, vol. 6. Athena Scientific (1997)
15. Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge University Press

(2014). https://doi.org/10.1017/CBO9780511804441
16. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:

JANI: Quantitative Model and Tool Interaction. In: Legay, A., Margaria, T. (eds.)
Tools and Algorithms for the Construction and Analysis of Systems - 23rd Interna-
tional Conference, TACAS 2017, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29,
2017, Proceedings, Part II. Lecture Notes in Computer Science, vol. 10206, pp.
151–168. Springer (2017). https://doi.org/10.1007/978-3-662-54580-5_9

17. Chan, T.M.: Optimal Output-Sensitive Convex Hull Algorithms in Two and
Three Dimensions. Discrete & Computational Geometry 16(4), 361–368 (1996).
https://doi.org/10.1007/BF02712873

18. Chatterjee, K., Henzinger, M.: Faster and Dynamic Algorithms for Maximal
End-Component Decomposition and Related Graph Problems in Probabilis-
tic Verification. In: Randall, D. (ed.) Proceedings of the Twenty-Second An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Fran-
cisco, California, USA, January 23-25, 2011. pp. 1318–1336. SIAM (2011).
https://doi.org/10.1137/1.9781611973082.101

19. Chen, T., Kwiatkowska, M.Z., Parker, D., Simaitis, A.: Verifying Team Formation
Protocols with Probabilistic Model Checking. In: Leite, J., Torroni, P., Ågotnes, T.,
Boella, G., van der Torre, L. (eds.) Computational Logic in Multi-Agent Systems
- 12th International Workshop, CLIMA XII, Barcelona, Spain, July 17-18, 2011.
Proceedings. Lecture Notes in Computer Science, vol. 6814, pp. 190–207. Springer
(2011). https://doi.org/10.1007/978-3-642-22359-4_14

20. Cicotti, G., Coronato, A.: Towards a Probabilistic Model Checking-based approach
for Medical Device Risk Assessment. In: 2015 IEEE International Symposium on
Medical Measurements and Applications, MeMeA 2015, Torino, Italy, May 7-9,
2015. pp. 180–185. IEEE (2015). https://doi.org/10.1109/MEMEA.2015.7145195

21. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
Fourth Edition. MIT Press (2022)

22. Courcoubetis, C., Yannakakis, M.: Verifying Temporal Properties of Finite-State
Probabilistic Programs. In: 29th Annual Symposium on Foundations of Computer
Science, White Plains, New York, USA, 24-26 October 1988. pp. 338–345. IEEE
Computer Society (1988). https://doi.org/10.1109/SFCS.1988.21950

23. Duflot, M., Fribourg, L., Picaronny, C.: Randomized dining philosophers
without fairness assumption. Distributed Computing 17(1), 65–76 (2004).
https://doi.org/10.1007/S00446-003-0102-Z

24. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, E., Xu, L.:
Spot 2.0 - A Framework for LTL and ω-Automata Manipulation. In: Artho, C.,
Legay, A., Peled, D. (eds.) Automated Technology for Verification and Analysis -
14th International Symposium, ATVA 2016, Chiba, Japan, October 17-20, 2016,
Proceedings. Lecture Notes in Computer Science, vol. 9938, pp. 122–129. Springer
(2016). https://doi.org/10.1007/978-3-319-46520-3_8

https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1017/CBO9780511804441
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/BF02712873
https://doi.org/10.1137/1.9781611973082.101
https://doi.org/10.1007/978-3-642-22359-4_14
https://doi.org/10.1109/MEMEA.2015.7145195
https://doi.org/10.1109/SFCS.1988.21950
https://doi.org/10.1007/S00446-003-0102-Z
https://doi.org/10.1007/978-3-319-46520-3_8

The State of Multi-Objective Model Checking 95

25. Ecker, J.G., Kouada, I.: Finding all efficient extreme points for mul-
tiple objective linear programs. Math. Program. 14(1), 249–261 (1978).
https://doi.org/10.1007/BF01588968

26. Farwer, B.: ω-automata. In: Grädel, E., Thomas, W., Wilke, T. (eds.) Automata,
Logics, and Infinite Games: A Guide to Current Research. Lecture Notes in Com-
puter Science, vol. 2500, pp. 3–20. Springer (2001). https://doi.org/10.1007/3-540-
36387-4_1

27. Finkbeiner, B., Kovács, L. (eds.): State of the Art in Software Verifcation and
Witness Validation: SV-COMP 2024, Lecture Notes in Computer Science, vol.
14572. Springer (2024). https://doi.org/10.1007/978-3-031-57256-2_15

28. Forejt, V., Kwiatkowska, M.Z., Norman, G., Parker, D., Qu, H.: Quantitative
Multi-objective Verification for Probabilistic Systems. In: Abdulla, P.A., Leino,
K.R.M. (eds.) Tools and Algorithms for the Construction and Analysis of Systems
- 17th International Conference, TACAS 2011, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2011, Saarbrücken, Ger-
many, March 26-April 3, 2011. Proceedings. Lecture Notes in Computer Science,
vol. 6605, pp. 112–127. Springer (2011). https://doi.org/10.1007/978-3-642-19835-
9_11

29. Forejt, V., Kwiatkowska, M.Z., Norman, G., Parker, D., Qu, H.: Quantitative
Multi-objective Verification for Probabilistic Systems. In: Tools and Algorithms for
the Construction and Analysis of Systems - 17th International Conference, TACAS
2011, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2011, Saarbrücken, Germany, March 26-April 3, 2011. Proceed-
ings. Lecture Notes in Computer Science, vol. 6605, pp. 112–127. Springer (2011).
https://doi.org/10.1007/978-3-642-19835-9_11

30. Forejt, V., Kwiatkowska, M.Z., Parker, D.: Pareto Curves for Probabilistic Model
Checking. In: Chakraborty, S., Mukund, M. (eds.) Automated Technology for Veri-
fication and Analysis - 10th International Symposium, ATVA 2012, Thiruvanantha-
puram, India, October 3-6, 2012. Proceedings. Lecture Notes in Computer Science,
vol. 7561, pp. 317–332. Springer (2012). https://doi.org/10.1007/978-3-642-33386-
6_25

31. Fu, C., Hahn, E.M., Li, Y., Schewe, S., Sun, M., Turrini, A., Zhang, L.: EPMC
gets knowledge in multi-agent systems. In: Finkbeiner, B., Wies, T. (eds.) Verifi-
cation, Model Checking, and Abstract Interpretation - 23rd International Con-
ference, VMCAI 2022, Philadelphia, PA, USA, January 16-18, 2022, Proceed-
ings. Lecture Notes in Computer Science, vol. 13182, pp. 93–107. Springer (2022).
https://doi.org/10.1007/978-3-030-94583-1_5

32. Gallier, J.: Basics of Affine Geometry, pp. 7–63. Springer (2011).
https://doi.org/10.1007/978-1-4419-9961-0_2

33. Graham, R.L.: An Efficient Algorithm for Determining the Convex Hull of
a Finite Planar Set. Information Processing Letters 1(4), 132–133 (1972).
https://doi.org/10.1016/0020-0190(72)90045-2

34. Haddad, S., Monmege, B.: Reachability in MDPs: Refining Convergence of Value
Iteration. In: Ouaknine, J., Potapov, I., Worrell, J. (eds.) Reachability Problems -
8th International Workshop, RP 2014, Oxford, UK, September 22-24, 2014. Pro-
ceedings. Lecture Notes in Computer Science, vol. 8762, pp. 125–137. Springer
(2014). https://doi.org/10.1007/978-3-319-11439-2_10

35. Hartmanns, A., Hermanns, H.: The Modest Toolset: An Integrated Environment
for Quantitative Modelling and Verification. In: Ábrahám, E., Havelund, K. (eds.)
Tools and Algorithms for the Construction and Analysis of Systems - 20th Interna-

https://doi.org/10.1007/BF01588968
https://doi.org/10.1007/3-540-36387-4_1
https://doi.org/10.1007/3-540-36387-4_1
https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1007/978-3-642-19835-9_11
https://doi.org/10.1007/978-3-642-19835-9_11
https://doi.org/10.1007/978-3-642-19835-9_11
https://doi.org/10.1007/978-3-642-33386-6_25
https://doi.org/10.1007/978-3-642-33386-6_25
https://doi.org/10.1007/978-3-030-94583-1_5
https://doi.org/10.1007/978-1-4419-9961-0_2
https://doi.org/10.1016/0020-0190(72)90045-2
https://doi.org/10.1007/978-3-319-11439-2_10

96 M. van Wijk

tional Conference, TACAS 2014, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13,
2014. Proceedings. Lecture Notes in Computer Science, vol. 8413, pp. 593–598.
Springer (2014). https://doi.org/10.1007/978-3-642-54862-8_51

36. Hartmanns, A., Junges, S., Katoen, J., Quatmann, T.: Multi-cost Bounded Trade-
off Analysis in MDP. Journal of Automated Reasoning 64(7), 1483–1522 (2020).
https://doi.org/10.1007/S10817-020-09574-9

37. Hartmanns, A., Junges, S., Quatmann, T., Weininger, M.: A Practitioner’s Guide
to MDP Model Checking Algorithms. In: Sankaranarayanan, S., Sharygina, N.
(eds.) Tools and Algorithms for the Construction and Analysis of Systems - 29th
International Conference, TACAS 2023, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2022, Paris, France, April
22-27, 2023, Proceedings, Part I. Lecture Notes in Computer Science, vol. 13993,
pp. 469–488. Springer (2023). https://doi.org/10.1007/978-3-031-30823-9_24

38. Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The Quan-
titative Verification Benchmark Set. In: Vojnar, T., Zhang, L. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems - 25th International Con-
ference, TACAS 2019, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 11427, pp. 344–350.
Springer (2019). https://doi.org/10.1007/978-3-030-17462-0_20

39. Hartmanns, A., Kohlen, B., Lammich, P.: Fast Verified SCCs for Probabilistic
Model Checking. In: André, É., Sun, J. (eds.) Automated Technology for Verifica-
tion and Analysis - 21st International Symposium, ATVA 2023, Singapore, October
24-27, 2023, Proceedings, Part I. Lecture Notes in Computer Science, vol. 14215,
pp. 181–202. Springer (2023). https://doi.org/10.1007/978-3-031-45329-8_9

40. Hensel, C., Junges, S., Katoen, J., Quatmann, T., Volk, M.: The probabilistic model
checker Storm. International Journal on Software Tools for Technology Transfer
24(4), 589–610 (2022). https://doi.org/10.1007/S10009-021-00633-Z

41. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate Probabilistic
Model Checking. In: Steffen, B., Levi, G. (eds.) Verification, Model Checking, and
Abstract Interpretation, 5th International Conference, VMCAI 2004, Venice, Italy,
January 11-13, 2004, Proceedings. Lecture Notes in Computer Science, vol. 2937,
pp. 73–84. Springer (2004). https://doi.org/10.1007/978-3-540-24622-0_8

42. Hoare, C.A.R.: Communicating Sequential Processes. Communications of the ACM
21(8), 666–677 (1978). https://doi.org/10.1145/359576.359585

43. Howard, R.A.: Dynamic Programming and Markov Processes. MIT Press (1960)
44. IEEE: IEEE Standard for Floating-Point Arithmetic. IEEE

Std 754-2019 (Revision of IEEE 754-2008) pp. 1–84 (2019).
https://doi.org/10.1109/IEEESTD.2019.8766229

45. Jarvis, R.A.: On the Identification of the Convex Hull of a Finite Set
of Points in the Plane. Information Processing Letters 2(1), 18–21 (1973).
https://doi.org/10.1016/0020-0190(73)90020-3

46. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement Learning:
A Survey. Journal of Artificial Intelligence Research 4, 237–285 (1996).
https://doi.org/10.1613/JAIR.301

47. Kemeny, J.G., Snell, J.L., Knapp, A.W.: Denumerable Markov Chains. Springer
(1976). https://doi.org/10.1007/978-1-4684-9455-6

48. Khachiyan, L.: Polynomial algorithms in linear programming. USSR Com-
putational Mathematics and Mathematical Physics 20(1), 53–72 (1980).
https://doi.org/10.1016/0041-5553(80)90061-0

https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/S10817-020-09574-9
https://doi.org/10.1007/978-3-031-30823-9_24
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/978-3-031-45329-8_9
https://doi.org/10.1007/S10009-021-00633-Z
https://doi.org/10.1007/978-3-540-24622-0_8
https://doi.org/10.1145/359576.359585
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1016/0020-0190(73)90020-3
https://doi.org/10.1613/JAIR.301
https://doi.org/10.1007/978-1-4684-9455-6
https://doi.org/10.1016/0041-5553(80)90061-0

The State of Multi-Objective Model Checking 97

49. Kirkpatrick, D.G., Seidel, R.: The Ultimate Planar Convex Hull Algorithm? SIAM
J. Comput. 15(1), 287–299 (1986). https://doi.org/10.1137/0215021

50. Komuravelli, A., Pasareanu, C.S., Clarke, E.M.: Assume-Guarantee Abstraction
Refinement for Probabilistic Systems. In: Madhusudan, P., Seshia, S.A. (eds.) Com-
puter Aided Verification - 24th International Conference, CAV 2012, Berkeley, CA,
USA, July 7-13, 2012 Proceedings. Lecture Notes in Computer Science, vol. 7358,
pp. 310–326. Springer (2012). https://doi.org/10.1007/978-3-642-31424-7_25

51. Kretínský, J., Meggendorfer, T.: Of Cores: A Partial-Exploration Frame-
work for Markov Decision Processes. In: Fokkink, W.J., van Glabbeek,
R. (eds.) 30th International Conference on Concurrency Theory, CONCUR
2019, August 27-30, 2019, Amsterdam, the Netherlands. LIPIcs, vol. 140,
pp. 5:1–5:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019).
https://doi.org/10.4230/LIPICS.CONCUR.2019.5

52. Kwiatkowska, M., Norman, G., Parker, D., Santos, G.: PRISM-games 3.0: Stochas-
tic Game Verification with Concurrency, Equilibria and Time. In: Lahiri, S.K.,
Wang, C. (eds.) Computer Aided Verification - 32nd International Conference,
CAV 2020, Los Angeles, CA, USA, July 21-24, 2020, Proceedings, Part II.
Lecture Notes in Computer Science, vol. 12225, pp. 475–487. Springer (2020).
https://doi.org/10.1007/978-3-030-53291-8_25

53. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilis-
tic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) Computer Aided
Verification - 23rd International Conference, CAV 2011, Snowbird, UT, USA, July
14-20, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6806, pp. 585–
591. Springer (2011). https://doi.org/10.1007/978-3-642-22110-1_47

54. Kwiatkowska, M.Z., Norman, G., Parker, D., Sproston, J.: Performance analysis
of probabilistic timed automata using digital clocks. Formal Methods in System
Design 29(1), 33–78 (2006). https://doi.org/10.1007/S10703-006-0005-2

55. Kwiatkowska, M.Z., Norman, G., Parker, D., Vigliotti, M.G.: Probabilistic Mo-
bile Ambients. Theoretical Computer Science 410(12-13), 1272–1303 (2009).
https://doi.org/10.1016/J.TCS.2008.12.058

56. Lacerda, B., Parker, D., Hawes, N.: Multi-Objective Policy Generation for Mo-
bile Robots under Probabilistic Time-Bounded Guarantees. In: Barbulescu, L.,
Frank, J., Mausam, Smith, S.F. (eds.) Proceedings of the Twenty-Seventh Inter-
national Conference on Automated Planning and Scheduling, ICAPS 2017, Pitts-
burgh, Pennsylvania, USA, June 18-23, 2017. pp. 504–512. AAAI Press (2017).
https://doi.org/10.1609/icaps.v27i1.13865

57. Lay, D.C., Lay, S.R., McDonald, J.J.: Linear Algebra and Its Applications. Pearson
(2014)

58. Meyer, C.D.: Matrix Analysis and Applied Linear Algebra. SIAM (2000).
https://doi.org/10.1137/1.9780898719512

59. Minkowski, H.: Allgemeine Lehrsätze über die konvexen Polyeder, pp. 121–139.
Springer Vienna, Vienna (1989). https://doi.org/10.1007/978-3-7091-9536-9_5

60. Naumowicz, A., Thiemann, R. (eds.): 14th International Conference on Interac-
tive Theorem Proving, ITP 2023, July 31 to August 4, 2023, Białystok, Poland,
LIPIcs, vol. 268. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023).
https://doi.org/10.4230/LIPIcs.ITP.2023

61. Norman, G., Parker, D., Kwiatkowska, M.Z., Shukla, S.K., Gupta, R.: Using prob-
abilistic model checking for dynamic power management. Formal Aspects of Com-
puting 17(2), 160–176 (2005). https://doi.org/10.1007/S00165-005-0062-0

https://doi.org/10.1137/0215021
https://doi.org/10.1007/978-3-642-31424-7_25
https://doi.org/10.4230/LIPICS.CONCUR.2019.5
https://doi.org/10.1007/978-3-030-53291-8_25
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/S10703-006-0005-2
https://doi.org/10.1016/J.TCS.2008.12.058
https://doi.org/10.1609/icaps.v27i1.13865
https://doi.org/10.1137/1.9780898719512
https://doi.org/10.1007/978-3-7091-9536-9_5
https://doi.org/10.4230/LIPIcs.ITP.2023
https://doi.org/10.1007/S00165-005-0062-0

98 M. van Wijk

62. Norman, G., Parker, D., Sproston, J.: Model checking for probabilistic
timed automata. Formal Methods in System Design 43(2), 164–190 (2013).
https://doi.org/10.1007/S10703-012-0177-X

63. Pnueli, A.: The Temporal Logic of Programs. In: 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA, 31
October - 1 November 1977. pp. 46–57. IEEE Computer Society (1977).
https://doi.org/10.1109/SFCS.1977.32

64. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley Series in Probability and Statistics, Wiley (1994).
https://doi.org/10.1002/9780470316887

65. Rabin, M.O.: Decidability of Second-Order Theories and Automata on Infinite
Trees. Transactions of the American Mathematical Society 141, 1–35 (1969).
https://doi.org/https://doi.org/10.2307/1995086

66. Saad, Y.: Iterative methods for sparse linear systems. SIAM (2003).
https://doi.org/10.1137/1.9780898718003

67. Seidel, L.: Über ein Verfahren, die Gleichungen, auf welche die Methode der kle-
insten Quadrate führt, sowie lineäre Gleichungen überhaupt, durch successive
Annäherung aufzulösen. Abhandlungen der Mathematisch-Physikalischen Classe
der Königlich Bayerischen Akademie der Wissenschaften 11(3), 81–108 (1874),
https://www.biodiversitylibrary.org/item/110049

68. Soltan, V.: Support and separation properties of convex sets in finite dimension.
Extracta Mathematicae 36(2), 241–278 (12 2021). https://doi.org/10.17398/2605-
5686.36.2.241

69. Tomy, M., Lacerda, B., Hawes, N., Wyatt, J.L.: Battery charge schedul-
ing in long-life autonomous mobile robots via multi-objective decision mak-
ing under uncertainty. Robotics and Autonomous Systems 133, 103629 (2020).
https://doi.org/10.1016/J.ROBOT.2020.103629

70. Visser, W., Mehlitz, P.C.: Model Checking Programs with Java PathFinder.
In: Godefroid, P. (ed.) Model Checking Software, 12th International SPIN
Workshop, San Francisco, CA, USA, August 22-24, 2005, Proceedings.
Lecture Notes in Computer Science, vol. 3639, p. 27. Springer (2005).
https://doi.org/10.1007/11537328_5

71. Webster, M., Western, D.G., Araiza-Illan, D., Dixon, C., Eder, K., Fisher, M.,
Pipe, A.G.: A corroborative approach to verification and validation of human-
robot teams. The International Journal of Robotics Research 39(1) (2020).
https://doi.org/10.1177/0278364919883338

72. Weyl, H.: Elementare Theorie der konvexen Polyeder. Commentarii Mathematici
Helvetici 7, 290–306 (1934). https://doi.org/10.1007/BF01292722

73. Xu, R., Li, L., Zhan, B.: Verified Interactive Computation of Definite Integrals.
In: Platzer, A., Sutcliffe, G. (eds.) Automated Deduction - CADE 28 - 28th In-
ternational Conference on Automated Deduction, Virtual Event, July 12-15, 2021,
Proceedings. Lecture Notes in Computer Science, vol. 12699, pp. 485–503. Springer
(2021). https://doi.org/10.1007/978-3-030-79876-5_28

74. Younes, H.L.S., Simmons, R.G.: Probabilistic Verification of Discrete Event Sys-
tems Using Acceptance Sampling. In: Brinksma, E., Larsen, K.G. (eds.) Computer
Aided Verification, 14th International Conference, CAV 2002,Copenhagen, Den-
mark, July 27-31, 2002, Proceedings. Lecture Notes in Computer Science, vol. 2404,
pp. 223–235. Springer (2002). https://doi.org/10.1007/3-540-45657-0_17

https://doi.org/10.1007/S10703-012-0177-X
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1002/9780470316887
https://doi.org/https://doi.org/10.2307/1995086
https://doi.org/10.1137/1.9780898718003
https://www.biodiversitylibrary.org/item/110049
https://doi.org/10.17398/2605-5686.36.2.241
https://doi.org/10.17398/2605-5686.36.2.241
https://doi.org/10.1016/J.ROBOT.2020.103629
https://doi.org/10.1007/11537328_5
https://doi.org/10.1177/0278364919883338
https://doi.org/10.1007/BF01292722
https://doi.org/10.1007/978-3-030-79876-5_28
https://doi.org/10.1007/3-540-45657-0_17

The State of Multi-Objective Model Checking 99

A Notation

Notation Meaning
N0 Natural numbers including 0
N+ Natural number excluding 0: N0 \ {0}

N0,∞ Natural numbers, including 0 and infinity: N0 ∪ {∞}
N+,∞ Natural numbers, excluding 0, including infinity: N+ ∪ {∞}

Z Integers
R Real numbers

[0, 1] Closed domain from 0 to 1: {x ∈ R | 0 ≤ x ≤ 1}
∅ Empty set

P(X) Powerset of X
f : X → Y Function definition for f with domain X and range Y
f : X ⇀ Y Partial function definition for f with domain X and range Y

Dist : X → [0, 1] Probability distribution over X
[P] Iverson bracket: 1 if P is true, 0 otherwise

x = ⟨x1, x2⟩ Tuple with elements x1 and x2
M = ⟨S, sI ,A, δ⟩ Markov decision process (Definition 1)

S State space, finite set of states (Definition 1)
sI ∈ S Initial state (Definition 1)

A Supported actions, finite set of actions (Definition 1)
δ : S → A⇀ Dist(S) Transition function (Definition 1)

αM : S → P(A) The available actions for a state in MDP M (Definition 2)
π = s1a1s2a2 . . . Path (Definition 3)

si
M−−→ sj sj is reachable from si (Definition 4) in MDP M

σm : S → A Memoryless strategy (Definition 5)
σS : S × N0 → A Step-positional strategy (Definition 6)

σPm : S → Dist(A) Probabilistic memoryless strategy (Definition 7)
σPs : S × N0 → Dist(A) Probabilistic step-positional strategy (Definition 8)

StratM ⊆ S × N0 → Dist(A) All probabilistic step-positional strategies for the MDP M (Definition 8)
Πσ

M All paths for a strategy σ in MDP M (Definition 9)
Prσ

M : Πσ
M → [0, 1] Path probability of π for strategy σ in MDP M (Definition 10)

StructM = S ×A× S → R Set of all branch reward-structures (Definition 11)
ρ : S ×A× S → R Branch reward-structure (Definition 11)

ρA : S ×A → R Transition reward-structure (Definition 12)
ρS : S → R State reward-structure (Definition 13)

CumRewM : StructM → N+,∞ × StratM → R Cumulative reward in MDP M (Definition 14)
LraRewM : StructM → N+,∞ × StratM → R Long-run average reward in MDP M (Definition 15)

RRewM : StructM × P(S)→ N+,∞ × StratM → R Reachability reward in MDP M (Definition 16)
ϕ̄ = [RewM]≤k

□c Achievability property (Definition 18)
ϕ̂ = [RewM]≤k

△ Numerical property (Definition 17)
ϕ = [RewM]≤k

◦ Achievability or numerical property

100 M. van Wijk

Notation Meaning

M, σ |= ϕ̄ In MDP M, ϕ̄ is satisfied under strategy σ (Definitions 18 and 28)
queryM(ϕ) Query in MDP M (Definitions 19 and 33)

ϵ Convergence threshold
⟨Se, seI ,Ae, δe⟩ End component (Definition 20)

R = ⟨Q, qI ,A, λ, C⟩ Deterministic Rabin automaton (Definition 21)
Q State space: a finite set of states (Definition 21)

qI ∈ Q Initial state (Definition 21)
A Supported actions: a finite set of actions (Definition 21)

λ : Q×A → Q Transition function (Definition 21)
C ⊆ P(Q)× P(Q) Acceptance condition (Definition 21)

M⊗R Composition of MDP M and DRA R (Definition 22)
Me |= R Me is an accepting end component for DRA R (Definition 23)

Γ̄ = [R]≤k
□c Achievability LTL property (Definition 18)

Γ̂ = [R]≤k
△ Numerical LTL property (Definition 24)

queryM(Γ) LTL query in MDP M (Definition 26)
ϕ = ⟨ϕ1, ϕ2, . . . , ϕn⟩ Multi-objective property (Definition 27)
ϕ̄ =

〈
ϕ̄1, ϕ̄2, . . . , ϕ̄n

〉
Multi-objective achievability property (Definition 28)

ϕ̂ =
〈

ϕ̄1, . . . ϕ̂j , . . . , ϕ̄d

〉
Multi-objective numerical property, unknown at j (Definition 29)

ϕ̃ =
〈

ϕ̂1, ϕ̂2, . . . , ϕ̂d

〉
Pareto property (Definition 30)

AchM(ϕ) ∈ P(Rd) The achievable values for Pareto property ϕ̃ with d unknowns (Definition 31)
>ϕ∈ P(Rd × Rd) Dominating relation under multi-objective property ϕ with d subproperties (Definition 32)

⊥ No value, nullx1
...

xn

 ∈ Rn Vector form of ⟨x1, . . . xn⟩

M =

 M1,1 · · · M1,n

...
. . .

...
Mm,1 · · · Mm,n

 ∈ Rmn m× n matrix

MT ∈ Rnm Transpose matrix of M ∈ Rmn

H = ⟨a, b⟩ Hyperplane satisfying ax = b (Definition 35)
Hd The set of all d-dimensional hyperplanes (Definition 35)

w ∈ [0, 1]d Weight vector for convex combination with d variables (Definition 34)
conv(X) ∈ P(Rd) Set of all points in the convex hull of X ∈ P(Rd) (Definition 36)〈

F, c,
〈
T, T −1, SC

〉〉
Convex hull (Definition 37)

down(X) ∈ P(Rd) The downward closure of X ∈ P(Rd) (Definition 38)

	The State of Multi-Objective Model Checking
	Introduction
	Related Work
	Origin Of Work
	Contributions

	Background
	Notation
	Markov Decision Process
	Path
	Strategy
	Rewards
	Reward-structures
	Properties

	Probabilistic Reachability
	Value Iteration
	Linear Programming
	End Component
	Linear Temporal Logic

	Multi-Objective Properties
	Definitions
	Tool Support
	Value Iteration
	Linear Programming

	Mistakes In Existing Model Checkers
	Approach
	Approximation
	Models

	Infinite Cumulative Reward
	Results
	PRISM's Non-Monotic Behaviour
	PRISM's Problem Using Linear Programming
	Storm's Problem Using Linear Programming
	ePMC's Problem Using Value Iteration
	Storm's Segmentation Fault
	ePMC's NullPointerException

	Solutions To Mistakes In Existing Model Checkers
	Storm
	Segmentation Fault
	Problem Using Linear Programming

	PRISM
	Problem Using Linear Programming

	ePMC
	NullPointerException
	Unachievable Numerical Queries
	Problem Using Value Iteration

	Status

	Infinite Cumulative Rewards
	Existing Approaches
	Our Approach

	Multi-Objective Model Checking Algorithms
	Value Iteration Approach
	Intuition
	Convexity
	Affine Hyperplane
	Affine Subspace
	Convex Hull
	Downward Closure
	Pareto Query
	Value Iteration Algorithm
	Multi-Objective Achievability Query
	Separating Hyperplane
	Multi-Objective Numerical Query
	Maximal Downward Closure

	Linear Programming Approach
	Construct MDP
	Algorithm

	Replication Of Most Prevalent Papers
	Value Iteration
	Linear Programming
	Floating-Point Values
	Infinity
	LTL Properties

	Experimental Validation
	Approach
	Results
	Storm
	PRISM
	ePMC
	Our implementation

	Conclusion
	RQ1 Which mistakes are present in existing model checkers?
	RQ2 What is the origin of the mistakes in existing model checkers?
	RQ3 Which mistakes are present in multi-objective model checking theory?
	RQ4 How should invalid models be treated?
	Future Research

	References
	Notation

