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Abstract
This research develops a strategy to optimize electric vehicle (EV) charging speeds based on imbalance
settlement prices, enhancing profitability for charge point operators (CPOs) while minimizing costs.
The growing integration of renewable energy sources (RES) introduces significant volatility in elec-
tricity markets, creating challenges for grid stability and CPO operations due to mismatches between
energy generation and consumption patterns.

Employing a mixed-methods approach—including comprehensive literature review, data analysis, and
econometric modeling—the research identifies key parameters influencing EV charging behavioUr and
grid imbalance dynamics. It proposes a dynamic strategy that adjusts charging speeds in response to
real-time imbalance settlement prices, incorporating flexible adjustments both upwards and downwards
(steering up and down). Central to this strategy is a dynamic strike price mechanism optimizing the
timing of charging speed adjustments based on factors like the rebound effect and remaining steering
periods. Cost management is enhanced through expected cost calculations, accounting for potential
lost revenues from unfinished charging sessions and the impact of deferred loads returning later.

The strategy integrates participation in the Day-Ahead Market (DAM) and the Intraday Market
(IDM), to align charging schedules with periods of lower energy costs and allowing real-time en-
ergy procurement or sales to manage deviations from forecasts. The most advanced model improved
rewards over the tested period with 32% compared to the simplest model, mostly coming from im-
proved timing of steering actions and cost mitigation through optimized energy procurement. Yet,
the simplest model already protects against peak imbalance prices, making the actual improvement
on standard charging strategies likely to be above this percentage. Hence, it can be stated that this
model effectively transformed the undesired balancing costs into a an additional source of income,
while contributing to grid stability.

The findings offer practical insights for energy companies and policymakers, advancing the understand-
ing of smart grid technologies and providing a framework for scaling these strategies across different
markets. By showcasing how intelligent EV charging strategies could contribute to grid balancing and
enhance the integration of RES into the grid, the study contributed to sustainable energy management
and opens avenues for future research and implementation.

Keywords: electric vehicles, smart charging, imbalance settlement prices, charging speed optimiza-
tion, grid stability, dynamic strike price, energy markets, sustainable energy management.
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Chapter 1

Introduction

This first chapter introduces the aim of the thesis by covering the problem context and motivation be-
hind the energy transition, the need for grid balancing, and the integration of EVs and their charging
infrastructure into the energy system. It discusses the core problem derived from the current situation
and presents the problem-solving approach. The chapter highlights the literature gap to emphasize the
importance of this thesis. Finally, it presents the research questions and scope, providing an outline
of the thesis structure to ensure clarity on the objectives and a systematic approach to address the
core problem.

1.1 Relevance
Transitioning from polluting fossil fuels to more environmentally friendly options is a global impera-
tive. Globally accepted climate targets were established in (UN, 2015) to guide the shift towards a
more sustainable global economy. In response to these challenges, electrification is a pivotal method
for decarbonizing the economy. By integrating RES such as wind and solar, electrification offers a way
to contribute to the climate targets (Steinberg, 2017). This has been confirmed by many long-term
energy scenarios (Tsiropoulos, 2020), which predict that the ongoing adoption of EVs is crucial for en-
vironmental sustainability but increases pressure on the stability of the electricity grid (Prettico et al.,
2022) and introduces volatility and unpredictability into energy markets (Pen, 2023b); as electricity
production from RES like wind and solar power is volatile and cannot be planned (Kempton et al.,
2008; Milligan et al., 2011).

Volatility in production can create an imbalance between supply and demand, which might cause
changes in the frequency or voltages of the grid and possibly cause outages. Hence, to maintain
proper grid functionality, electricity supply and demand must always be balanced. Addressing these
challenges requires innovative solutions to maintain grid stability and balance supply and demand
efficiently.

An innovative approach that significantly contributes to maintaining grid stability is the use of im-
balance settlements (Greunsven & Derks, 2018). Imbalance occurs when market participants deviate
from their scheduled production or consumption levels. However, as illustrated in Figure 1.1, when
such deviations help to mitigate overall grid imbalance, market participants are often rewarded ac-
cordingly (ENTSO-E, 2020). Depending on the grid’s current needs, imbalances can be addressed
by either increasing electricity supply to the grid or reducing demand. Increasing supply or reducing
consumption is referred to as “regulating up”, while decreasing production or increasing consumption
is termed “regulating down.” The extent to which consumption or production can be adjusted in the
desired direction is traded on imbalance markets (IEA, 2011). This adjustment is monetized through
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mechanisms such as imbalance settlements (Greunsven & Derks, 2018), and has demonstrated poten-
tial for financial gain (Eicke et al., 2021; Lisi & Edoli, 2018).

Figure 1.1: Process of Steering EV Charging Sessions.

Road transport accounts for a significant part of global emissions (IEA, 2020). The switch to EVs is a
crucial component for reducing these emissions and is gaining popularity (McKinsey, 2023). However,
the energy demand of EVs is significant; the average EV charging session consumes the same amount
of energy (Database, n.d.) as one Dutch household in ten days (CBS, 2023). Hence, it can be concluded
that smart EV charging on a large scale is a hard requirement (Monteban & Geerts, 2023), recognizing
EVs not only as large-scale electricity consumers but also as a flexible resource capable of supporting
grid stability (M. A. Amin et al., 2022; McKerracher & Soulopoulos, 2021; Nelder et al., 2019). This
thesis explores the potential of EV charging as a strategic asset in Dutch imbalance settlements on
behalf of TotalEnergies, where the objective is to develop a strategy that leverages the flexibility capa-
bilities of EVs to address and monetize grid imbalances and optimize the timing of energy consumption.

1.2 Company Description
TotalEnergies SE is considered one of the major energy companies worldwide. It finds its business
through the whole value chain of the energy sector, with a growing focus on RES. This can be seen
through the expansion of its charging infrastructure in the Netherlands and other European coun-
tries. With more than 17,500 charging points (CPs) in the Netherlands at the time of writing, with
an installed capacity exceeding 200 MW, its EV charging solutions are becoming a significant part
of the business. An increasing number of CPs are using smart charging technologies to optimize the
charging process on, among others, electricity costs in different markets and the timing of energy usage.
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1.3 Problem Context
Increasing renewable energy generation is a good start, but as illustrated in Figure 1.2a, it often does
not align with consumption at that time (IEA, 2021). The figure shows that production from RES
is volatile and cannot be controlled as precisely as conventional generation methods (Shazon et al.,
2022) and increases the frequency and severity of imbalance on the grid.

Consequently, CPOs face rising balancing costs (Pfenninger et al., 2014) and decreasing operating
margins. This situation underscores the urgent need for strategies that mitigate balancing costs by
adjusting EV charging speeds to a stated level (henceforth, steering) (Pen, 2023c). Steering aims to
synchronize electricity demand with energy availability within specific periods, thereby enhancing grid
stability and optimizing financial performance for CPOs.

(a) Average Daily Energy Supply &
Demand Loads (Edrisian et al., 2013).

(b) Imbalance prices in NL on Arbitrary Day
(Tennet, 2024).

Figure 1.2: Daily Energy Loads and Prices for Resulting Imbalance.

According to research by Dexter Energy, balancing costs in the EU have surged by 40% year-on-year,
reaching over e 20 billion in 2022 Pen (2023b, 2023c). This surge is driven by increased usage of the
grid capacity and fluctuating RES energy flows, making grid balancing more challenging (Shazon et
al., 2022). Figure 1.2b depicts a representative imbalance price pattern, illustrating how these prices
can peak throughout the day — a trend expected to intensify in the future (de Boer, 2024). However,
the actual imbalance prices for the next price-time unit (PTU), a 15-minute period, remain unknown
until two weeks after the PTU (TenneT, 2019a). Therefore, this research utilizes forecasted imbalance
prices for the current and next PTU, sourced from an external party.

Figure 1.3 presents a flowchart that covers the problem context for CPOs and helps to identify the
core problem for TotalEnergies in Section 1.5. This flowchart helps to understand why balancing costs
are rising due to increased grid imbalances and volatile prices. The volatility in imbalance prices is
primarily driven by the growing share of RES and their unpredictable energy generation, necessitating
greater flexibility to manage these fluctuations. Given that flexibility is both costly and limited, the
integration of more RES alongside rising electricity consumption makes grid balancing increasingly
challenging and costly (Shazon et al., 2022), thereby shrinking operating margins for CPOs (Pen,
2023c). The resulting grid imbalances and subsequent price volatility not only present profit opportu-
nities when leveraging this volatility but also highlight the critical need for effective steering strategies.
Without such strategies, the viability of operating charging infrastructures could be severely under-
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mined. Conversely, with robust steering mechanisms, rising balancing costs can be mitigated, and
imbalance settlements can be transformed into additional revenue streams, as depicted in Figure 1.3.

Figure 1.3: Problem Context.

Furthermore, cars are electrified at high speed. EVs in the Netherlands increased by 35% in 2022 and
are on track to reach 10 million by 2050 Marktontwikkeling (2024). The increasing number of EVs on
the road directly correlates with an increasing demand for charging sessions (IEA, 2023a) and higher
(peak) electricity demand. This increased usability provides more potential for steering strategies and
an increased profit potential for CPOs. Moreover, EV batteries have a faster response than energy
sources from fossil fuels, making the adjustment of EV charging speeds a practical option for grid
balancing (Nour & Chaves-Avila, 2020).

Traditionally, managing grid imbalances was handled by large centralized electricity producers, such
as gas turbines, that could adjust their generation capacity to cover grid imbalances. Nowadays, a
wider range of producers and consumers are engaged in balancing services. Financial rewards can be
earned when contributing to balancing the grid. One potential method to contribute to the balance
is smart charging of EVs (Nour & Chaves-Avila, 2020), where charging could be slowed or completely
stopped during grid shortages (negative imbalance). In contrast, charging could be accelerated during
surpluses (positive imbalance).
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1.3.1 Current Situation

TotalEnergies procures energy for its EV charging operations based on the forecasted energy consump-
tion for the next day (hereafter referred to as ‘the forecast’), utilizing future contracts and the energy
bought on the DAM as shown in Figure 2.2. The acquired energy is distributed through charging
sessions in the CPs, which can regulate (steer) the charged loads per PTU by temporarily stopping
the charging sessions. The imbalance settlement graph in Figure 2.2 shows how pausing the charging
session results in a deviation from the forecast and leads to an imbalance settlement.

As a Balance Responsible Party (BRP), TotalEnergies is penalized or rewarded based on deviations
from its forecasted energy consumption in a PTU. If the forecasted imbalance settlement price (here-
after, “imbalance price”) indicates a high value for reducing consumption, EV charging sessions can be
paused (steered down) in exchange for compensation. This reduction in consumption lowers the need
for the Transmission System Operator (TSO) to provide reserve energy, thereby decreasing balancing
costs. These reduced balancing costs translate into financial rewards for the BRP, calculated based on
the imbalance price per offered MWh. Therefore, by reducing consumption, the BRP can monetize
imbalance prices and create an opportunity to be rewarded for deviations from the forecast. The en-
ergy offered through such deviations is called an imbalance settlement and forms the main concept of
this thesis. In this thesis, it is assumed that TotalEnergies’ steering actions do not influence imbalance
prices.

Steering down is permitted only within the steering window (17:00 - 08:00) to minimize the effect
on the amount of charged loads within a charging session. However, uncertainty lies in the exact
departure time and the desired amount of energy needed within the charging session. This means the
precise amount of flexibility, indicating to what extent a charging session can be interrupted without
revenue loss, is still unknown. Moreover, the imbalance (settlement) price for only 15 minutes ahead is
forecasted with high enough accuracy. Hence, many uncertainties should be considered when creating
a strategy for adjusting (steering) EV charging sessions, as visualized in Figure 1.4.

Figure 1.4: Uncertainties within EV Charging Sessions in this Research.

As mentioned, the charged load in a PTU could be set to zero (steer down) when the forecasted
imbalance price (in e /MWh) rises above the strike price. This strike price (in e /MWh) can be set
manually, but in this research is equivalent to the selling price (in e /MWh) at that time. To overcome
inefficiencies in energy transmission, it is chosen that the charging speed cannot be above 0 kW while
steering down. While the DAM optimization (explained in Section 3.2.3) charges at a reduced rate of
8 kW, steering down would be most effective below that rate. At lower rates, a larger proportion of
energy is lost due to resistance and other inefficiencies. Fixed losses in the charger and cables, such
as standby power consumption and heat generation, become more significant compared to the energy
delivered to the battery (Apostolaki-Iosifidou et al., 2017). This would lead to lower charging efficien-
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cies and higher total energy consumption per kWh charged, making a complete pause more convenient.

It is stated in agreements with municipalities that steering down actions are allowed for a maximum
of three (non-subsequent) times per day for up to 15 minutes. In this way, when the imbalance prices
are forecasted to be high, a reward can be received for contributions to balance the grid. This method
is expected to decrease TotalEnergies’ total balancing costs or add another source of profit. The-
oretically, this steering method is rather effective, as only a small part of PTUs significantly affect
total balancing costs for energy companies. The research of (Pen, 2023a) states that a strong steering
strategy can increase revenues by 19 percentage points and could offset balancing cost (Penn & Gastel,
2024). However, the result of its application on EV charging sessions remains to be seen.

1.3.2 Core Problem

In Section 1.3, it was explained how increasing balancing costs for CPOs present an urgent need for
an intelligent and dynamic steering strategy for EV charging sessions. The core problem builds upon
the sector-specific problem context outlined in 1.3 and shall be based on discrepancies between norm
and reality specifically for TotalEnergies.

Steering EV charging sessions based on forecasted imbalance prices cannot be done without consid-
ering its effects on subsequent charging behaviour. Since EVs are charged until a full state of charge
(SoC) and the loads that are not charged during the PTUs of steering are charged in later PTUs,
it can cause an undesired rebound. This is the steered load that returns later, as visualized in Fig-
ure A1. The forecast, and therefore the purchased amount of energy during these PTUs, did not
anticipate on the extra loads during rebound periods. This makes the actual consumption deviate
from the forecast and creates a positive imbalance during the later periods. A rebound could lead to
costs that are higher than the revenue from steering and, therefore, forms a notable cost when steering.

Currently, steering is done on a small part of the CPs when the forecasted imbalance price rises above
a fixed price level, being the strike price. As illustrated in Figure 1.5, this static policy does not
consider current and future charging loads, nor its operating environment, and does not mitigate or
quantify potential costs from steering actions. This leaves steering opportunities unfulfilled when the
price peaks slightly below the strike price and does not peak again in a later PTU. However, lower
strike prices might cause steering actions to be triggered during sub-optimal times. Since the number
of steering actions within a steering window is limited, this might cause missing the opportunity of
steering when it is the most advantageous. Additionally, the performance of the current steering ac-
tions is not adequately tracked or tested on a benchmark. Hence, the current steering strategy does
not reach the desired level of performance, as it is entirely static and unable to mitigate eventual costs,
leaving much of its profit potential unfulfilled.
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Figure 1.5: Problem Cluster.

The problem cluster illustrated in Figure1.5 starts with the core problem, which is the leading cause for
the observed discrepancies between the norm and reality, as perceived by the problem owner (Heerkens
& Winden, 2017). The core problem causes direct consequences (action problems) and describes the
potential costs that arise with steering and the sub-optimal timing of steering. The method of Heerkens
& Van Winden (Heerkens & Winden, 2017) is used to define the core problem of this research:

“Not having an intelligent and dynamic strategy for steering EV charging sessions.”

This was concluded to be the core problem, as it can resolve all direct and indirect consequences. The
direct and indirect consequences are elaborated on in Sections 1.1, 1.3, and 1.3.1, which provide a
more elaborated analysis of these discrepancies.

1.4 Problem-Solving Approach
Addressing the challenge of price uncertainty in imbalance prices with an intelligent steering strategy
for EV charging sessions requires an inductive multidisciplinary research approach (Streefkerk, 2019),
combining knowledge of energy market dynamics with the financial implications of energy trading and
cost management. Its complexity arises from, on the one hand, the need for a thorough understanding
of energy market dynamics and the possibility EV charging offers to enter these markets, which is
mainly discussed in literature and tested through data analysis. On the other hand, models and poli-
cies need to be developed and tested to test the performance of the steering actions. This approach is
executed following the framework of Figure 1.6.
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Figure 1.6: Research Framework.

Developing an optimal control (steering) strategy for EV charging sessions to monetize on imbalance
settlements requires an understanding of parameters that influence the robustness of steering decisions.
The strategy must consider EV users’ behaviour to manage lost loads from steering actions, recognize
existing constraints that limit the strategy, and account for the negative effect (impact) of the rebound
effect — temporary load reductions affecting future consumption. Minimizing the rebound’s impact
involves optimizing its value and severity.

Figure 1.7 illustrates the main components of the development of the strategy. The figure shows that
the imbalance price forecasts and flexibility analysis are the primary input data for this research. To
start the modelling process (steering execution), a flexibility analysis was performed through which the
expected lost loads per PTU were computed. This analysis considers instances where EVs disconnect
before charging completes and cause revenue loss and potential customer dissatisfaction. Moreover,
excessive lost loads harm TotalEnergies’ reputation as a CPO, especially if due to steering actions.
The figure shows that the strategy needs steerable CPs to monetize imbalance settlements.
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Figure 1.7: Illustration of the Steering Principle.

Since steering EV charging sessions might result in costs that are higher than the reward, it is crucial
to measure and manage these costs. Measuring the cost from each steering action involves computing
the expected costs from lost revenues and the rebound effect. This metric provides insights into costs
from steering decisions and can illustrate the impact of cost management on the total reward. Since
imbalance prices are known only up to 15 minutes before each PTU, determining the impact of rebound
is feasible only for the next PTU.
The last modelling phase included developing a formula for the dynamic strike price for steering down.
This evolving price limit triggers steering down when the imbalance price for regulating up exceeds
the threshold. The strike price is based on current and future charging loads to optimize revenue
potential while considering steering costs to ensure effective decisions.

Lastly, several choices are made during the development of the steering strategy. One is to select a
modelling method that accurately represents EV charging dynamics, steering effects, and interactions
with electricity markets while accounting for external factors like imbalance prices, rebound effects,
and expected lost loads. Within the model, constraints are established by which the steering strategy
needs to operate. The constraints might include technical limitations of the charging infrastructure,
limitations on steering actions, and physical limitations of the grid.

1.4.1 Literature Gap

In recent years, substantial research has been conducted on the behaviour of market participants in
energy-balancing markets and smart EV charging solutions. However, the potential of EVs to mon-
etize imbalance settlements is relatively understudied in the academic literature. Traditionally, load
steering has been extensively studied for applications such as heating (HVAC) systems (Lu, 2012) and
Home Energy Management Systems (HEMS) (GridX, 2022), showing that load management tech-
niques are established in specific domains but not fully explored in the context of EV charging.

In addition, extensive research has been conducted and is still ongoing on how EVs can help alleviate
grid stress by contributing to peak shaving or reducing grid tension (Gu et al., 2023; Moncecchi et al.,
2021; van der Klauw et al., 2014). While the studies of IEA (2020, 2023b), IRENA (2020), Refa et al.
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(2024), and Zeromski et al. (2024) recognize the potential of EVs in addressing grid imbalances, they
often conclude without providing a well-defined strategy or methodology for effectively deploying EV
charging in this role. Moreover, current research mainly focuses on bidding strategies in the DAM
(R. Bessa & Matos, 2014; Philipsen et al., 2019) and IDM (Koch, 2022; Vardanyan et al., 2018), or a
combination of both (Löhndorf & Wozabal, 2023; Weerd et al., 2022). However, strategies specifically
designed to optimize EV charging sessions in imbalance settlement bidding remain unexplored.

Moreover, the literature frequently addresses imbalances from the production side, particularly con-
cerning RES such as photovoltaics (Lee & Won, 2021; Zakariazadeh et al., 2014) or wind farms (Foley
et al., 2010; Jiang et al., 2018; Morales et al., 2010), potentially in conjunction with a battery energy
storage system (Mohamed et al., 2014). These discussions reveal a literature gap in how EVs, as mobile
energy storage systems, could be used for active participation in real-time energy (imbalance) markets.

1.5 Research Questions
As mentioned above, this research aims to develop a strategy that optimizes the steering decisions for
EV charging sessions based on forecasted imbalance prices. During the development of this strategy,
more knowledge is obtained about the concept of smart charging, as well as factors that influence the
profitability of steering EV charging sessions and the potential costs that come with it. The research
questions below contribute to obtaining the required knowledge to develop the steering strategy. The
main research question is as follows:

“How can flexibility in EV charging be used to increase profits for CPOs through imbalance
settlements while contributing to balance the Dutch electricity grid?”

We try to answer this question using sub-research questions that can be divided per stage of the
research, as presented in the research framework in Figure 1.6.

Phase 1: Literature Research
What is smart charging, and in which situations is it desired? (Literature research & data analysis)
Through literature research, the concept of smart charging is concretized, as well as the forms of smart
charging. However, in this research, the main focus lies on steering EV charging sessions, a form of
smart charging. With data analysis, the potential effects of steering are examined. This research ques-
tion brings more insights into the problem context and why smart charging is essential in managing
EVs’ energy demand and optimizing their integration into the electrical grid. Furthermore, identifying
the scenarios in which steering EV charging sessions is most beneficial contributed to the development
of the strategy, as understanding and recognizing the effects of external factors stimulates the learning
process for the development of a strategy.

How can steering EV charging sessions be used to monetize imbalance settlement prices? (Literature
research)
This research question helps to familiarize with imbalance markets and elucidates how fluctuations
in imbalance prices can be used to monetize imbalance settlements. Literature research is done on
existing energy trading strategies and models that monetize the flexibility in EV charging sessions.

What potential costs arise when steering EV charging sessions based on forecasted imbalance prices,
and how can they be concretized? (Literature research & data analysis)
This research question requires identifying, concretizing, and quantifying the potential costs of steering
EV charging sessions based on imbalance prices, which is critical for developing a profitable steering
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strategy. Understanding these costs involves literature study and data analysis and helps formulate
mitigating methods.

What modelling method can be used to model the research problem? (Literature research)
This research question delves into mathematical modelling methods and addresses why the current
method has been chosen.

Phase 2: Problem Context Analysis
What are the effects of the current smart charging strategy of TotalEnergies on EV charging sessions,
and what is the role of steering in imbalance settlements monetization? (Data analysis)
Examining TotalEnergies’s current steering strategy can provide insight into its effectiveness, effi-
ciency, drawbacks, and potential costs. Hence, it could be the benchmark for the developed strategy
against which performances can be compared.

What do imbalance settlement bidding strategies look like, and what factors increase their effectiveness?
(Literature research & data analysis)
Different strategies to monetize imbalance settlements are examined to answer this research question.
In addition, approaches that enhance the effectiveness of strategies and features that increase prof-
itability are identified while considering their applicability to EV charging. For this research question,
different strategies are found through literature research. The strategies are not always applied to EV
charging, but their frameworks and modelling methods could form an inspiration for modelling the
steering strategy.

Phase 3: Solution Design
How can the steering policies be modelled? (Modelling)
This research question discovers how the chosen modelling method can be applied, what the modelling
procedures are, and what constraints must be followed to ensure feasibility.

How do the steering up and steering down policies differ across the three MDP models, and what are
their respective impacts on adaptability and performance? (Modelling)
This research question examines the variations in steering policies among the models, highlighting how
each policy contributes to the models’ adaptability to changing market conditions.

How can the costs associated with the steered loads (that return in later PTUs) be most efficiently
mitigated? (Modelling)
This research question addresses how the strategy should handle the potential costs of steering EV
charging sessions. Potential answers could come strategically, technically, or financially. A more strate-
gic approach evaluates the timing of steering and investigates its effects on charging sessions. The
technical method examines parameter tuning and the optimization of strike prices. Lastly, a financial
approach covers mitigation methods through more intelligent energy procurement, using different en-
ergy markets or deviations from the current energy purchasing strategy.

How can the strike price for steering down be made dynamic, and what parameters should have an
influence? (Modelling)
The third and most sophisticated policy contains a dynamic strike price for steering down. This
research question covers the development method for this dynamic strike price and examines what
parameters are convenient to consider.
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Phase 4: Evaluation of Performance
What are the results of the proposed steering strategy for TotalEnergies? (Modelling)
This question evaluates the effectiveness of the proposed steering strategy on different topics. It ex-
amines the effects of the strategy on the charging behaviour during the field tests and visualizes the
outcomes.

How do the inclusion of the DAM optimization and IDM trading influence the performance of the
steering policies? (Modelling)
This question investigates the benefits of integrating DAM and IDM into the steering policies, as-
sessing how market participation and the resulting increase in flexibility affect the models’ ability to
handle the rebound, behaviour towards lost loads, and total expected reward.

In what ways does the dynamic strike price mechanism enhance the flexibility and profitability of the
steering strategy? (Modelling)
This question delves into the integration of the dynamic strike price within the MDP models by ex-
ploring its functionality and analyzing its role in optimizing charging speeds. It aims to improve the
timing of steering to improve the probability of steering during the optimal PTUs and better utilize
the full steering potential.

1.6 Research Scope
The research aims to develop a strategy for intelligently steering EV charging sessions to monetize
imbalance settlements and maximize profit while contributing to balancing the Dutch electricity grid.
A core objective of this undertaking is mitigating undesired balancing costs. The most sophisticated
strategy contains, among others, a variable strike price for every PTU within the steering window.
This strike price directly influences the strategy’s actions and performance and is pivotal for this re-
search.

The research also addresses the management of uncertainties in imbalance settlement prices. This
includes exploring various strategic, technical, and financial approaches to effectively handle these
uncertainties, as multiple methods are likely feasible and beneficial. Lastly, the strategy must be com-
patible with the existing smart charging strategy, specifically integrating with the DAM optimization
algorithms. The goal is to ensure that the steering strategy functions as an individual component and
in combination with existing optimizations.

However, to maintain focus and manageability, certain topics are consciously excluded from the scope
of this thesis. For example, speculation on future imbalance prices by holding positions different than
the optimized or forecasted demand is outside the scope. The research aims to develop a practical
strategy rather than a thorough prediction of market movements. Additionally, current models used
for predicting imbalance prices are assumed to be optimal and improving their performance is outside
the scope of this thesis. Hence, their predictions are taken as a perfect forecast of the actual imbalance
price for that PTU.

Moreover, this research uses existing forecasting methods and algorithms that might include inac-
curacies. As this research wants to examine the performance of the steering policies created in this
research, the effects of inaccuracies in external forecasts are considered out of scope. This means
that the policies in this research are not penalized for forecast errors for energy consumption or the
imbalance price per PTU.
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This research does not explore the calculation of flexibility within individual charging sessions (the
extent to which it can be steered until demand is not fulfilled) or the optimization of load-shifting
strategies based on DAM prices, as these are considered to be adequately optimized in historical stud-
ies and projects in the company. Furthermore, the potential use of bidirectional charging in the forms
of Vehicle-to-Grid (V2G), Vehicle-to-Vehicle (V2V), and Vehicle-to-Load (V2L), which introduce an
additional dimension of complexity to a charging strategy and bring regulatory difficulties, are not
explored.

Furthermore, this thesis focuses on steering Dutch CPs to bid on the Dutch market for imbalance
settlements. The developed strategy must adapt to the behaviour of EV drivers, which could deviate
internationally. Moreover, extending the exploration to international imbalance settlement markets
brings different market dynamics, as generation methods and market structures strongly deviate per
country. Furthermore, it does not consider the financial impacts of energy taxes, distribution fees, or
the specifics of delivery rights, as their economic impact is minimal but deviates per region within the
Netherlands. Hence, these factors are assumed to not significantly influence the steering strategy’s
outcomes.

1.7 Conclusion
What is smart charging, and in which situations is it desired?
Smart charging refers to the intelligent management of EV charging sessions by using steering signals
to deviate from the regular charging speed. In this research, smart charging aims to optimize the tim-
ing of energy usage based on electricity prices, grid conditions, and resulting imbalance prices. Smart
charging allows EVs to unlock their flexibility potential towards the grid by dynamically adjusting
their charging schedule. This can be based on the DAM prices, the expected flexibility, available re-
newable energy, grid conditions, and the resulting imbalance price forecasts. This means that during
periods of shortages on the grid, smart charging algorithms can decide to temporarily stop charging,
while during periods with low DAM prices or high renewable energy availability, charging speeds can
be increased to the maximum available speed.

With the increasing integration of RES in the energy system, severe imbalances are observed more
frequently and could lead to high costs when deviating from the forecast. Hence, smart charging
is desired in situations of (severe) imbalances on the grid to protect CPOs from using more energy
than forecasted in PTUs with peaking imbalance prices. This is particularly relevant during PTUs of
high volatility in energy consumption and supply, often caused by the fluctuating nature of RES. By
synchronizing EV charging speeds with the state of balance on the grid, smart charging helps reduce
the need for fossil fuel power plants and minimize consumer electricity costs.
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Chapter 2

Theoretical Framework

This chapter discusses how the literature search was conducted. It presents essential topics from the
literature to improve understanding of the matter required to develop an effective steering strategy
for EV charging sessions. The chosen topics enhance the knowledge of the operational environment,
directly relate to the research area, and address the knowledge gap explained in the previous chapter.
Examples include energy (imbalance) markets, settlement mechanisms, and integrating EVs on the
grid.

2.1 Literature Study
This study follows the PRISMA framework illustrated in Figure 2.1, which structures the literature
selection process and makes the systematic review transparent and traceable. This enhances the reli-
ability of the research by ensuring repeatability. The PRISMA framework is widely used for literature
studies and serves as a checklist to determine whether literature should be included in research. It
provides a flow chart showing the number of studies identified and their inclusion status. This process
illustrates the literature search and maintains the quality of the systematic review.
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Figure 2.1: PRISMA Flow Diagram for New Systematic Reviews (Page, McKenzie, et al., 2021),
Including Searches of Databases, Registers, and Other Sources.

The literature sources for this research are scientifically rigorous and focus on energy markets, prefer-
ably in combination with EV charging. The primary sources come from IEEE, which publishes nu-
merous journals and conference papers accessible through IEEE Xplore. Relevant journals include
IEEE Transactions, IEEE PES (on Smart Grid Technologies), and Energies, which provide the latest
research on EV charging and smart grids. Additionally, Energy Economics is frequently used for its
focus on finance in the energy sector. Non-IEEE journals were identified using search engines like
Scopus, Google Scholar, and EBSCO.

Search Query Keywords

To search for relevant literature in the literature sources mentioned above, the following keywords
have been used:

• (Imbalance Market OR Balancing Market OR Imbalance Settlement) AND (EV OR Electric
Vehicle)

• (Imbalance Market OR Balancing Market OR Imbalance Settlement) AND (EV Charging OR
Electric Vehicle Charging OR Mobility Charging)

• (Energy Trading OR Trading Algorithm) AND (EV OR Electric Vehicle)
• (Energy Trading OR Trading Algorithm) AND (Balancing OR Smart Charging)
• (Smart Charging OR Intelligent Charging) AND (EV OR Electric Vehicle)
• (Trading Algorithm) AND (Energy Markets OR Balancing Markets OR Imbalance Markets OR
Imbalance Settlement)

• (Imbalance Settlement Trading Strategies)
• (Cost Management) AND (Imbalance OR Energy Markets)
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Selection Criteria

A well-argumented literature selection process is crucial in securing the validity and reliability of the
research. In addition, transparency of the process is required to ensure the integrity and repeatability
of this research. This is done by stating the selection criteria in Table 2.1 that cover the reasons for
excluding literature from the study.

To ensure the validity and reliability of this research, selection criteria have been established to address
reasons for excluding literature from this research. The selection criteria are presented in Table 2.1
and caused the exclusion of 114 references.

Selection Criteria Reason Papers
Excluded

Models Published
before 2012

It is assumed that before this date, the effects of RES on
Dutch energy markets could not yet be modelled accurately
(Ball et al., 2022)

14

Written in English Only English literature is included to ensure repeatability. 0

Considering balanc-
ing markets or EV
charging

Lack of relevance making the literature inapplicable 31

Decentralized bal-
ancing markets

US balancing markets are centralized and, therefore, lack the
market mechanism aspect.

6

Non-commercial
perspective

The research needs to have the objective of developing a prof-
itable solution instead of conserving the grid

53

Table 2.1: Literature Selection Criteria.
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2.2 Literature Review
This chapter reviews the 45 literature studies to form a foundation for this research on steering EV
charging sessions for imbalance settlement bidding. We start with an overview of the energy markets,
focusing on the balance of supply and demand in DAM and IDM. Next, we examine the integration
of EVs into the grid, discussing their potential to enhance grid stability by charging during energy
surplus PTUs and contributing to balancing the grid. We then explore smart charging technologies,
which optimize EV charging sessions using real-time data analytics to manage grid stress and reduce
costs. We also review imbalance markets and settlement mechanisms, explaining how these markets
balance scheduled and realized electricity consumption and provide financial incentives. Finally, we
address cost management in energy trading, highlighting strategies to handle the potential costs from
monetizing imbalance settlements, including using advanced models and decision-making strategies.

2.2.1 Electricity Markets and Settlement Mechanisms

Before physically acting on energy markets, it is crucial to understand the Dutch electricity markets
and their relations and dynamics. After being deregulated, the dynamics of the Dutch electricity mar-
kets changed and have been studied, for example, in Tanriserver (2015). Similarly to other European
markets, the Dutch market transitioned to a liberalized form following the 1998 Electricity Act, giving
customers and suppliers greater autonomy in electricity transactions (Jong & Dieperink, 2019). This
transition has resulted in a more resilient, sustainable, and efficient market structure, with the vertical
supply chain now fragmented among various entities.

Figure 2.2 shows how electricity markets can be segmented into five distinct categories, each serving
a specific purpose: forward and futures markets concentrate on long-term contracts to ensure price
stability and hedge potential volatility (Kupiec, 2017). The DAM is most importantly used to fulfil
the forecasted energy consumption, and the IDM helps to act upon foreseen changes in consumption.
The DAM is still the most used market for electricity trading (EPEX, 2024a), as it allows electricity
to be traded for each hour of the following day, allowing participants to interact on trends at relatively
short notice (EPEX, 2024b). In addition, Figure 2.2 shows how balancing markets provide the energy
to directly cover imbalances in the grid using reserve capacity, and imbalance settlements aim to stim-
ulate balancing the grid by real-time steering on system imbalance and compensating or penalizing
deviations from the purchased energy amount. However, as actual imbalance settlement prices are
unknown and the results are processed afterwards, it is seen as a settlement mechanism instead of an
energy market.

Figure 2.2: Dutch Electricity Markets on Chronological Dispatch (TCSNL Solutions Team, 2023).

Market parties submit their bids on the DAM for the following day before noon. Each bid specifies
the offered or demanded energy volume during a certain hour and the price for that energy. A uniform
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market clearing price is determined at the price where supply and demand intersect. Figure 2.2 shows
how TotalEnergies purchases the largest part (area under the curve) of their electricity on the futures
market and buys the loads missing in their consumption profile on the DAM. This consumption profile
is generated using the energy used in historic EV charging sessions, determining the volume per hour
bought on the DAM. However, participation in the IDM is also examined in this research.

Even after the DAM closes, trading is still possible on the IDM, which means that the IDM allows
for trading closer to the delivery time. This proximity to delivery time enables better responses to
unexpected changes in energy consumption or supply, such as fluctuations in the production of RES
or sudden spikes in consumption for EV charging. The IDM includes three market time windows,
allowing bids to be placed on loads delivered during 1 hour, 30 minutes, and 15 minutes (EPEX,
2024c). As delivery times approach, the accuracy of forecasts improves. Higher accuracies allow BRPs
to bid more aggressively, as the actual value of energy offered on the IDM can be calculated more
robustly and be a potential method to cover forecasted short-term imbalances (Kiesel & Paraschiv,
2017). Weron et al. (2023) states that this flexibility leads to higher average prices than the DAM,
as market participants may be willing to pay more to secure electricity at short notice. IDM prices
combine imbalance settlement prices and DAM prices in wholesale electricity markets (Larrieu, 2016).
On the contrary, the research of Wolff and Feuerriegel (2017) argues that nowadays, IDM prices are
more affected by volatilities in production from RES, where the prices on the DAM are increasingly
influenced by the forecasted generation from RES (Wei, Li, et al., 2021), but still are mainly correlated
with the prices of natural gas (Elbourne et al., 2023).

However, if IDM trades do not adequately rectify imbalances in the consumption and production of
the purchased energy on the DAM, the Transmission System Operator (TSO) intervenes through the
imbalance market to restore equilibrium. Here, all market participants must settle for deviations from
the forecasted levels, with prices determined based on the TSO’s cost price to rectify the imbalance
(Zheng & Wang, 2022).

The energy that is primarily used to cover imbalances on the grid is traded on balancing markets.
Participation in balancing markets is comparable with submitting to the DAM, as market parties
must submit their bids and specify the offered volume or capacity for extra consumption and the price
for that energy in a PTU (Parliament, 2019). As illustrated in 2.3, the point of intersection of the
supply and demand curves during a PTU determines the market clearing price per MWh (mid-price)
and resulting volumes. This uniform clearing price is established through marginal pricing, where all
market participants pay or receive the same clearing price per MWh.

Once the market results are determined, the market participants must convey their commercial trade
schedule to the TSO directly or through a chosen BRP. A BRP is a market participant or its chosen
representative responsible for its imbalances’ (Union, 2017). This trade schedule outlines the planned
selling or buying amounts and their feeding or consumption from the system for each time interval.
The BRP is accountable for following its schedule after submitting it; any deviations from the position
during a PTU result in an imbalance settlement.

2.2.2 Imbalance Markets

Imbalance markets are essential for adjusting the discrepancies between forecasted and actual electric-
ity consumption and production. Wilson and Zhang (2018) provide a comprehensive look at how these
markets operate to balance supply and demand in real-time. Thompson (2022) highlights that imbal-
ance settlements incentivize market participants to follow their schedules or compensate for deviations.
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Figure 2.3: Bidding Ladder for Imbalance Regulation (Tennet, 2024).

Each PTU results in a balance delta, which indicates the direction the grid must be balanced by the
Transmission System Operator (TSO) (TenneT, 2019a). This delta can be positive (regulating up)
or negative (regulating down). The grid regulation states reflect these shifts: -1 (surplus), 1 (deficit),
or 2 (direction change). In the Netherlands, imbalances in states -1 and 1 result in equal pricing per
MWh (Zheng & Wang, 2022), while state 2 imposes balancing costs regardless of direction (TenneT,
2019b). The price for regulating up or down within a PTU (the imbalance price) is determined by the
direct balancing costs incurred by the TSO. Figure 2.3 shows how balancing service providers (BSPs)
bid their available energy, with the lowest bids selected to meet grid needs. The imbalance price is
calculated from the energy used and the associated balancing costs. This ensures that only the most
economically viable energy is utilized for grid balancing.

The price for regulating up or down during a PTU comes from the direct cost for TenneT that comes
from grid balancing during a certain PTU, which determines the price for regulating up or down
during a certain PTU. Figure 2.3 shows how this imbalance price is determined as balancing service
providers (BSP) offer their available energy and receive compensation when the power is used. This
bidding happens through a merit order, from which a bidding ladder is created, meaning that prices
are sorted from high to low and per MWh demanded, the cheapest option is chosen. Logically, TenneT
uses only the required energy during a PTU and calculates the balancing costs per PTU per MWh,
which forms the imbalance price. This means that energy offered against a price above the upward
regulation or below the downward regulation price will not be used, and the available energy stream
of the BSP will not be monetized.

2.2.3 Imbalance Settlement Bidding Strategies

Over the years, many different bidding strategies have been developed for acting on imbalance markets
using batteries (M. Bessa, 2012a; Lund et al., 2015; Sioshansi, 2012), hydro reservoirs (Lund et al.,
2015; Wang et al., 2021), minimizing balancing costs for RES (Edwards & Li, 2021; Hou et al., 2021;
Zhang & Fan, 2019), and even already using EVs (R. Bessa & Matos, 2014; Liu et al., 2013; Masuta
& Yokoyama, 2012; Ota et al., 2012; Vagropoulos & Bakirtzis, 2013). However, even per the appli-
cation method, the bidding strategies deviated from their approach and main objective. Where the
strategies of Linda et al. (2022) and Bailey and Gupta (2021) prioritized avoiding exposure towards
high imbalance prices, other strategies try to maximize profits by steering EV charging sessions based
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on only imbalance prices (R. Bessa & Matos, 2014; Rashidizadeh-Kermani et al., 2018; Vagropoulos
& Bakirtzis, 2013), or arbitrages between different energy markets (Das et al., 2023; Rashidizadeh-
Kermani et al., 2018; Tomašov et al., 2023). It is seen that in most studies, the price component is the
leading parameter within steering decisions, and often a penalty is given for uninstructed deviations
from the forecast Boomsma et al. (2014) and Koch (2022) or not finishing a charging session (Li et al.,
2020; Vagropoulos & Bakirtzis, 2013; van der Klauw et al., 2014).

Moreover, for more simple bidding strategies, the energy of the forecast is bought on the DAM (Klæboe
et al., 2022). In contrast, more advanced strategies prefer to buy their energy on the DAM than the
IDM (Koch, 2022) or a combination of both (Boomsma et al., 2014). More straightforward strategies
using EV charging sessions as underlying energy consumption often limit their focus on the behaviour
of individual charging sessions (van der Klauw et al., 2014), whereas more advanced strategies focus on
the dynamics of the aggregated energy consumption (M. Bessa, 2013; Shinde et al., 2022; Vagropoulos
& Bakirtzis, 2013).

With the rise of reinforcement learning (RL) in the past years, predicting the value of uncertainties
within the model using RL has become a more frequently covered topic (Li et al., 2020; Poplavskaya
et al., 2020; Shahriar et al., 2020). Nevertheless, Shahriar et al. (2020) shows that studies using RL do
not particularly achieve better results, as their focus lies more on prediction accuracy than on using
the outcome. In these studies, the bidding strategy itself is rather limited and achieves poorer results
than the conventional but advanced strategies mentioned above (Chifu et al., 2024). However, as the
integration of RL applications shows potential to get more insight into uncertainties, it could further
improve the performance of the more advanced strategies (Davis & Lee, 2023).

The literature review of Rashidizadeh-Kermani et al. (2018) concludes that trading strategies’ perfor-
mance is mainly affected by their flexibility to operate in different energy markets and the risk-aversion
of the decision-maker. A case study showed that the ability to choose between buying on the IDM
or DAM and both regulate up and down significantly increased profits while costs remained stable.
Costs mainly influence the volatility in daily rewards, where strategies that steer more frequently and
for longer periods show higher volatility and long-term average profits.

2.2.4 Electric Vehicles and Grid Integration

EVs are increasingly considered integral components of modern energy systems, contributing to envi-
ronmental sustainability and energy security. Integrating EVs into the grid poses unique challenges
and opportunities for grid management. Studies by Smith and Johnson (2020) highlight that EV
charging can create significant peaks in electricity consumption, necessitating advanced grid manage-
ment solutions. Conversely, much research has already been conducted on steering strategies that
cover imbalances in the energy production of RES. The study of Jones et al. (2021) and Moncecchi
et al. (2021) discusses the potential of EVs to decrease imbalances by charging EVs faster in times
of surplus energy from RES, which discovers the potential to regulate down (consuming more than
expected). In this case, EVs overcome the waste of this energy, known as curtailment, in times of
oversupply.

In the research of M. Amin (2022), an optimization was done on costs and CO2 emissions by adjusting
charging rates based on the availability of wind energy. Renewable integration strategies, as discussed
by Patel and Kumar (2022), often involve improved energy storage solutions and improved forecasting
techniques to mitigate the effects of fluctuations in energy generation.
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Furthermore, the research papers of R. Bessa and Matos (2014), Das et al. (2023), and Rashidizadeh-
Kermani et al. (2018) and Tomašov et al. (2023) examine the participation of CPOs in imbalance
markets. They propose an optimization approach that allows parties to bid in both the DAM and
imbalance markets, leveraging the flexibility of EV charging to provide energy in case of imbalances
on the grid. This flexibility allows CPOs to contribute to the balance of the grid while optimizing
their bidding strategies and reducing charging costs. However, all of these studies regulating down
(consuming less than forecasted) is done with V2G technologies, which is outside the scope of this
research. Nevertheless, their structures and modelling techniques are still beneficial for this research.

2.2.5 Smart Charging Technologies

As discussed by Hannah et al. (2023), steering strategies have evolved with the rise of smart charging
technologies. The flexibility offered by EV charging can be used to respond to imbalances, reducing
the need for conventional peak power plants, as described by Hughes and Roberts (2022).
Smart charging refers to the intelligent management of EV charging using steering signals to optimize
energy consumption based on the balance on the grid and electricity prices (Alberts et al., 2023).
This steering signal is sent when the EV is plugged in. The power with which the EV is charged is
determined and communicated with the charging station based on the steering signal. The two most
common steering signals are electricity prices and the forecasted consumption (Uiterkamp, 2016).

Brown et al. (2020) defines smart charging frameworks that create steering signals by incorporating
real-time data analytics and price forecasts for IDM prices to adjust charging rates dynamically. This
technology aims to decrease charging powers during high grid stress while minimizing electricity costs
for consumers. Research by Edwards and Li (2021) has demonstrated how smart charging can ef-
fectively integrate with RES, ensuring that EVs charge primarily during periods of high renewable
production.

The research papers of Liu et al. (2013), Masuta and Yokoyama (2012), and Ota et al. (2012) develop
steering strategies for EV charging sessions based on balancing markets. In Figure 2.2, it is seen that
this is the initial load that covers for imbalances. These balancing markets handle minute-to-minute
random fluctuations, causing slight imbalances. In that regard, the models illustrate possible mod-
elling methods for steering strategy. However, since the strategies cover minute-to-minute volatility,
which has a less significant impact on charged loads, this research has not discussed the rebound effect.
Moreover, the study of Davis and Lee (2023) introduces RL models that try to predict the charged
load of EVs within a charging session and compute the resulting flexibility for steering actions to
minimize lost loads. Hence, these models show the potential of RL in steering strategies.

2.2.6 Cost Management in Energy Trading

As energy markets are complex and constantly evolving, unforeseen costs may arise that can form a
risk for market participants. Since, from a financial perspective, risks are by default unexpected, and
this research computes the model’s costs as expected costs, this research only involves cost manage-
ment. Nevertheless, risk- and cost-management methods are rather similar in structure and, therefore,
applicable to this research. The study of R. Weron (2014) the influence of unpredictable external fac-
tors, such as unsystematic deviations in weather conditions, on balancing costs in EV charging. Still,
it does not consider costs from instructed deviations in charging behaviour. However, unpredictable
external factors influence DAM and IDM prices, affecting profit margins. The research of Sorensen
and Bolwig (2018) supports the argument that regulatory policies greatly influence energy prices on
the DAM, emphasizing the influence of OPEC decisions on electricity prices as they are strongly cor-
related to oil prices.
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However, for CPOs, the costs do not only come from energy price fluctuations affecting IDM and
DAM prices. As highlighted in (Jong & Dieperink, 2019), the possible volatility in consumption cre-
ates another dimension of uncertainty. Unlike most financial products, energy products are physical
products that must be bought or sold during a predetermined PTU.

Monetizing imbalance settlements involves inherent uncertainties, primarily due to future imbalance
price uncertainty in PTUs where a rebound is seen. The research of Linda et al. (2022) examines
cost management strategies handled by various energy portfolio holders, emphasizing the importance
of accurate forecasting and hedging techniques. Additionally, the work by Bailey and Gupta (2021)
focuses on applying advanced econometric models to predict imbalance prices and manage associated
costs effectively. The research of Hou et al. (2021) created a decision-making strategy for energy
companies with a portfolio of RES. The main objective of this strategy was to minimize the financial
effects of imbalance, which are linearly penalized. However, in this research, penalties for imbalance
are known beforehand and capped with a maximum fee per MWh, which is not the case in practice.

In practice, associated costs might come in the form of opportunity costs - from uncharged (lost) loads
(M. Bessa, 2012b) - or deferred imbalance (rebound) costs (Shinde et al., 2022). Lost loads refer to the
portion of electricity demand from EV charging sessions that remains unmet due to intentional pausing
or slowing of charging. This occurs when the charging session does not reach its desired state of charge
(SoC) because of steering actions (Jaruwatanachai et al., 2023). The study of Yi et al. (2019) discusses
costs from lost loads and accounts by penalizing unfinished charging sessions. The rebound effect cre-
ates a new imbalance that must be settled, potentially incurring additional costs (Thwany et al., 2023).

Lastly, the paper of Shinde et al. (2022) introduces a modified progressive hedging strategy for trading
away expected imbalances on the German IDM, with EV charging sessions as underlying consumption.
This multistage stochastic programming problem aims to overcome uncertainties in energy demand
and price fluctuations forecasted by Monte Carlo simulation.
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2.3 Conclusion
The conclusion of this literature review reflects on the literature search process and clarifies the findings
of the literature study. The study reviewed research papers and industry reports on smart charging,
EV integration into the grid, imbalance settlement bidding, and cost management in energy trading.
This section summarizes how the literature was identified, the type of literature reviewed, and the
insights gained from these sources. Additionally, an answer is formulated on the research questions
that could be handled through a literature study.

The literature for this review was systematically selected through the PRISMA framework in Figure
6.4 to guarantee thoroughness and transparency. During the search process, various databases and
keywords relevant to the core topics of smart charging, imbalance markets, and EV grid integration
were used. The sources included (peer-reviewed) journals, conference papers, industry reports, and
institutional publications to ensure a diverse collection of research papers within the knowledge base
for this research. They can be used to answer the first part of sub-research questions.

What do overall imbalance settlement bidding strategies look like, and what factors increase their per-
formance? As stated in 2.2.3, overall imbalance settlement bidding strategies are diverse and can
adapt to various applications. The main objectives of these strategies vary from minimizing balancing
costs (Hou et al., 2021; Zhang & Fan, 2019) to maximizing profits through arbitrage between different
energy markets (Das et al., 2023; Rashidizadeh-Kermani et al., 2018; Tomašov et al., 2023) or steering
EV charging based solely on imbalance prices with known SoC and future imbalance prices (R. Bessa
& Matos, 2014; Vagropoulos & Bakirtzis, 2013).

Most strategies have in common that price signals are often the leading factor in decision-making, with
penalties for uninstructed deviations or incomplete charging sessions (Boomsma et al., 2014; Koch,
2022; Vagropoulos & Bakirtzis, 2013). More straightforward approaches purchase the forecasted con-
sumption only on the DAM (Klæboe et al., 2022), while more advanced strategies may dynamically
switch between buying on the DAM and the IDM, which maximizes flexibility (Boomsma et al., 2014;
Koch, 2022). Advanced strategies also tend to consider the aggregated behaviour of multiple charging
sessions rather than focusing on individual sessions (M. Bessa, 2013; Vagropoulos & Bakirtzis, 2013).
The performance of bidding strategies is heavily influenced by the flexibility in energy market partic-
ipation and the usage of energy assets. According to Rashidizadeh-Kermani et al. (2018), strategies
that allow participation in the IDM and DAM while bidding on imbalance settlements yield higher
profits with stable costs.

How can steering EV charging sessions be used to monetize imbalances settlement prices?
Figure 2.4 illustrates the amount of energy purchased on the DAM based on the forecasted energy
consumption per hour (green line). This forecast serves as the basis for the steering strategy, as it
is the fundament for charging revenues and determines the volume for potential steering actions. To
monetize imbalance settlements through EV charging sessions, steering actions are triggered when
the forecasted imbalance price reaches a predetermined strike price (blue line). When steering down,
charging sessions are temporarily paused to reduce consumption in that period. This reduction is a
strategic deviation from the forecast and generates an imbalance settlement bid to regulate up. Inte-
grating the existing DAM optimization causes charging speeds to reduce in periods with higher DAM
prices (red line). When charging at a reduced rate (caused by DAM price-optimized charging speeds)
and steering up (blue line), all charging sessions charge at maximum speed. This causes the charg-
ing sessions to consume more energy in that PTU than forecasted and creates a bid for regulating down.
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Figure 2.4: Standardized Energy Consumption in Different Charging Profiles

The steered load (in kWh) represents the deviation between the consumption and the forecast in a
PTU. The imbalance price (in e /MWh) is the price for regulating up when steering down or for
regulating down when steering up. The steering revenue (in e ) is calculated based on the direction
and size of the deviation from the forecast. It applies to steering up and down:

Steering Revenue = Steered Load · Imbalance price (2.1)

What potential costs arise when steering EV charging sessions based on forecasted imbalance prices,
and how can they be concretized?
Steering EV charging sessions based on forecasted imbalance prices introduces potential costs that
must be addressed to ensure an effective steering strategy. The two primary costs come from not fully
charging the demanded load after having steered down and the impact of the rebound. The rebound
represents the steered load that returns in later PTUs, making the realized consumption deviate from
the forecast and creating an imbalance. Without managing this rebound, its impact is unforeseen,
and it could lead to higher costs than the steering revenue.

Lost loads occur when EV charging sessions are stopped before they are completed due to the steering-
down actions. This can lead to customer dissatisfaction and lost revenues because less energy is sold.
The amount of lost loads is computed as an expectation and calculated by a long-term average for each
PTU on that weekday in the historical data discussed in Chapter 4. Lost revenues can be calculated as
the difference between the revenue from the forecasted consumption and the actual revenue received.
More than the probability of hot unplug, the lost revenue directly concertizes the costs of unfinished
charging sessions when steering down and is used in this thesis’s continuance.

Steering down causes a positive imbalance in later PTUs, and steering up creates a negative im-
balance. For later PTUs, imbalance prices cannot be forecasted yet and are still unknown. Hence,
the impact of the rebound is only measurable for the next PTU by multiplying the rebound volume
with the imbalance price (in e /MWh). A cost forms when imbalance prices to regulate up during
later PTUs are higher than the regulate up prices during the steering action. The volume is repre-
sented by the deviation (positive or negative) between the forecast and the realized consumption in
a PTU. Chapter 3 will continue upon this topic and discuss the developed models and steering policies.
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2.3.1 Research Gap and Contribution

Despite the extensive research on imbalance settlement bidding strategies, smart charging technolo-
gies, and the integration of EVs into the grid, several topics remain unaddressed in literature. Existing
studies focus on maximizing profitability through imbalance price arbitrage or minimizing balancing
costs by regulating EV charging behaviours. However, there is a lack of comprehensive models that
simultaneously optimize both steering up and steering down actions within the context of the Dutch
imbalance settlement mechanisms. Furthermore, while advanced strategies consider aggregated energy
consumption dynamics, they often overlook the intricate rebound effects and lost loads that arise from
pausing EV charging sessions. These rebound effects, which create subsequent imbalances and incur
additional costs, are inadequately quantified and managed in current models.

This research aims to bridge these gaps by developing a novel steering strategy that integrates both
steering up and steering down decisions, effectively balancing the dual objectives of maximizing rev-
enue and minimizing balancing costs. By incorporating a scalable and consistent approach to handling
charging revenues—albeit using scaled fictional numbers due to confidentiality constraints—this study
maintains the dynamic integrity of real-world scenarios. Additionally, it introduces a comprehensive
cost management framework that accounts for both the immediate and deferred costs associated with
rebound effects and lost loads. This dual optimization approach not only enhances the financial via-
bility of CPOs but also contributes to grid stability and the efficient integration of RES.

Addressing these gaps, this research provides a more holistic and resilient framework for EV charging
steering strategies, offering valuable insights for both academia and industry stakeholders seeking to
optimize energy trading and grid balancing in increasingly electrified and renewable-driven energy
markets.
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Chapter 3

Modelling & Policies

This chapter focuses on the three developed models that form the basis of the proposed steering
strategy. For each model, we specified a policy that contains decision-rules for steering up and steer-
ing down decisions. We begin by explaining the relevant sets and parameters, and follow with the
transition formulas and constraints. Hereafter, the distinguishing features and their contribution is
discussed for each model. Lastly, the developed methodology to quantify and optimally control costs
is elaborated.

3.1 Steering Models
0To develop a steering strategy for EV charging sessions based on imbalance prices, we draw inspira-
tion from the policies proposed in the works of M. Bessa (2012a), Shinde et al. (2022), and Vagropoulos
and Bakirtzis (2013) and R. Bessa and Matos (2014), but are significantly adjusted to improve un-
derstandability and applicability to our use case. The models are formulated as a Markov Decision
Process (MDP) since the outcomes are partly random, affected by uncontrollable factors influencing
behaviour and rewards, while our actions control the other part, as is typical in MDPs (Spieksma,
2015). Moreover, the next state depends only on the current state and action, not on prior states or
actions. Hence, we created three MDP variants, each containing a policy that states when to steer up
and when to steer down. The objective is to optimize the expected cumulative reward by determining
optimal actions for each state within the state space.

Formulating the model as an MDP requires defining several components. The MDP optimizes decision-
making across 60 discrete stages (t) within the steering window (T ). Each stage corresponds to a PTU,
and the steering window spans from 17:00 in the evening to 08:00 the following morning. The sets
and parameters represent the factors that are not influenced by the actions taken. The state space
(St) represents all possible operating environments during a PTU using state variables. This includes
endogenous state variables (st ∈ St), which are directly influenced by the models’ actions in a PTU.
The model has no exogenous state space since the uncertainty factors follow a non-defined and in-
dependent probability distribution. The uncertainties in the model are represented by (some of the)
parameters that are given for each PTU and represent the evolving but random uncertainties within
the model.

The action space (At) is the set of all possible actions in a PTU. For each PTU, one action (at ∈ At)
is chosen from the action space. The reward function (rt) calculates the immediate reward per PTU
by the state variables from the current en next PTUs and the actions taken in the current PTU.
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The total reward (R) is the sum of all immediate rewards (rt) within the steering window and follows
directly from the accumulated reward from steering actions. From each MDP, we retrieve a policy
that aims to maximize the total expected reward over time (elaborated on in 3.3).

Given the complexity introduced by fluctuating imbalance prices and extensive state spaces, estab-
lishing a unique optimal policy within the MDP framework is challenging. Multiple policies may
yield similar cumulative rewards under varying market conditions, indicating that the optimal solu-
tion is not necessarily unique. Furthermore, the high dimensionality of the state space would make
it computationally impossible, making traditional optimization methods impractical due to the curse
of dimensionality. As a result, heuristic-based decision rules are used to overcome these complexities
and offer a practical and scalable method to implement the steering policies. Additionally, to ensure
that certain variables remain discrete, constraints are incorporated into the model to restrict these
variables to integer values. For instance, binary decision variables such as δupt and δdwn

t are constrained
to take values in 0, 1, representing a steering action in that PTU. Integer variables like ηt are restricted
to non-negative integers to count the number of PTUs steered down. These discrete constraints are
crucial for the correctness of the model and ensure that the outcomes are feasible.

3.1.1 Model Notations

To elaborate on the features of each model, mathematical formulations and -notations are made using
the following sets, parameters and variables. Note that not every variable is used in each model and
this Section represents the sets and variables for Model 3. For all parameters and variables below,
the parameters and variables related to regulating down are excluded in Model 1, and the variables
related to the IDM are excluded in Model 1 and Model 2.

Sets & Parameters

The sets and parameters presented in 3.1 represent the values on which the policies respond, but on
which they do not have an influence. In this research, energy prices are assumed to be entirely random,
do not follow a probability distribution, and cannot be categorized as exogenous state variable.

T Set of PTUs within the daily steering window

I Set of EV charging sessions ι

SP Selling price per MWh charged (in e /MWh)

δmax Maximum number of PTUs in which steering down is allowed

Xdwn
t Strike price for regulating down in t (in e /MWh)

Efct
t Forecasted energy consumption in t (in MWh)

Emax
t Maximum load that can be charged in t (in MWh)

P up
t Imbalance price for regulating up in t (in e /MWh)

P dwn
t Imbalance price for regulating down in t (in e /MWh)

P IDM
t Price of energy on IDM at time t (in e /MWh)

Table 3.1: Sets & Parameters.
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State Space (st ∈ St)

The state space consists of endogenous state variables presented in Table 3.2. The state space deviates
per stage and is therefore time-dependent. The state space of Model 1 excludes Edwn

t and δdwn
t .

Et Realized energy consumption in t (in MWh)

Eup
t Steered load for regulating up in t (in MWh)

Edwn
t Steered load for regulating down in t (in MWh)

Xup
t Strike price for regulating up in t (in e /MWh)

δupt Bin. var. indicating if steering down in t

δdwn
t Bin. var. indicating if steering up in t

∆t Volume of the rebound in t (in MWh)

ηt PTUs steered down in steering window at start of t

Table 3.2: Endogenous State Variables.

Actions (at ∈ At):

The possible actions per PTU are shown in Table 3.3, representing the action space. However, the
action space of Model 1 excludes steering up and IDM trading actions, while the action space of Model
2 excludes IDM trading actions.

Action Mathematical Representation

Steer up Et = Emax
t

Steer down Et = 0

Sell on IDM EIDM−
t = Efct

t − Et

Buy on IDM EIDM+

t = Et − Efct
t

Steer to forecast Et = Efct
t

Do not steer Et = Efct
t +∆t

Table 3.3: Possible Actions per PTU.

For all given periods (of one PTU) and states (t, st, wt) ∈ T × St × Wt, one action is taken. The
resulting policy is a collection of decision-rules that determine the action for every state, resulting in
an immediate reward for the PTU and a transition to the next PTU.

Rewards (rt ∈ R)

The reward function of the model aims to maximize the total expected cumulative reward over the
steering window. It achieves this by summing the expected immediate rewards for each PTU derived
from the actions taken in each state. By improving upon the heuristics-based decision rules and se-
lecting the optimal policy from the set of all possible policies, we aim to find the strategy that yields
the highest expected cumulative reward. This relationship is mathematically represented as:

max
π∈Π

E

[∑
t∈T

rt (s
π
t , A

π
t (s

π
t )) |(st−1)

]
(3.1)
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The immediate reward in each PTU results directly from the action taken during that PTU. For all
models, this reward is calculated in every PTU using the formula provided below. All components
within the formula represent financial outcomes measured in euros.

Immediate Rewardt = (Charging Revenuet) + (Imbalance Resultt)− (Impact of Reboundt) ∀t ∈ T
(3.2)

Assuming that the forecasted energy consumption is perfect. The charging revenue is, therefore,
derived from the forecasted energy consumption minus the lost loads caused by steering actions. This
calculation leads to the realized consumption and the corresponding revenue, which is computed using
the following formula:

Charging Revenuet = (SP · Et) ∀t ∈ T (3.3)

The imbalance result comes from instructed steering up or steering down actions and is calculated by
the formula:

Imbalance resultt =
(
Eup

t · P up
t + Edwn

t · P dwn
t

)
∀t ∈ T (3.4)

As discussed in Section 3.3, the value of the rebound (P̃∆
t ), measured in e /MWh, is minimized using

a comparison between the imbalance price and IDM price in the PTU:

P̃∆
t = min

(
P IDM
t , P

up/dwn
t

)
(3.5)

Lastly, the minimized value of the rebound enables calculating the impact of the rebound through:

Impact of Reboundt = Value of Rebound ·Volume of Rebound

Impact of Reboundt = P̃∆
t ·∆t (3.6)

The value of the rebound when accepting the imbalance (∆t · P up/dwn
t ) depends on the regulation

state in that PTU. If compensated for regulating up, the imbalance price corresponds to the price
for regulating up; similarly, if compensated for regulating down, the imbalance price corresponds to
the price for regulating down. Consequently, a positive rebound has an unfavourable (positive) value
when compensated for regulating up, and a negative rebound carries an unfavourable value when
compensated for regulating down. The rebound value is therefore calculated as follows:

P
up/dwn
t =

{
P up
t if RS = 1 (reg. up)

−P dwn
t if RS = -1 (reg. down)

As discussed in Section 3.3, a positive rebound generally results in additional costs, so all minimization
outcomes are treated as positive by default. However, because regulating down compensates for the
rebound in the opposite direction, its value must be represented as the negative product of its price.
Additionally, since IDM prices are negative only 3.7% of the time during the steering window, selling
the negative rebound on the IDM yields extra profit 96.3% of the time.
Thus, the total reward (R) is calculated as the sum of all immediate rewards (rt) within the steering
window (T ), as shown below:

R =

T∑
t=1

[
(SP · Et) + (Eup

t · P up
t + Edwn

t · P dwn
t )− (∆t · P̃∆

t )
]

(3.7)
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Transition Formulas

Transition formulas are given for the endogenous state variables to capture the dynamics of the model
and define the values or ranges of its state variables. Since the first model does not account for the
ability to regulate down (steer up), equations 4, 6, and 7 do not apply, and equation 9 would be limited
to the last two options.

1. Calculation of Aggregated Load:

Et =
∑
ι∈I

Eι
t ∀(ι, t) ∈ I × T (3.8)

The realized (aggregated) energy consumption in each PTU aggregates the energy used in each charging
session (ι) during that PTU.

2. Measurement of Upward Regulation Volumes:

Eup
t =

{
Et − Efct if Efct > Et

0 if Efct ≤ Et

∀t ∈ T (3.9)

As the energy for regulating up indicates to what extent a negative deviation from the forecasted energy
consumption is seen, the energy used for up-regulating cannot exceed the forecasted consumption during
each PTU.

3. Measurement of Downward Regulation Volumes:

Edwn
t =

{
Emax

t − Efct
t +∆t if Efct < Et

0 if Efct ≥ Et

∀t ∈ T (3.10)

The energy for regulating down indicates to what extent a positive deviation from the forecasted energy
consumption is seen. The volume used for down-regulation cannot exceed the amount with which the
charging speed can be increased compared to the forecasted consumption plus the rebound volume during
each PTU.

4. Strike Price Constraint for Regulating Up Steering Actions

δupt =

{
1 if (Xup

t ≤ P up
t ) ∧ (ηt ≤ δmax)

0 otherwise
∀t ∈ T (3.11)

Indicates if regulating up would be allowed in that PTU since regulating up is allowed only if the price
for regulating up exceeds the stated strike price for regulating up and the maximum frequency for steer-
ing down has yet to be reached.

5. Strike Price Constraint for Regulating Down Steering Actions

δdwn
t =

{
1 if Xdwn

t ≥ P dwn
t

0 otherwise
∀t ∈ T (3.12)

Steering up is only allowed if the price for regulating down is above the stated strike price for regulating
down.
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6. Determination of the Dynamic Strike Price

Xup
t = SP ·

(
1 + α ·∆t + β

t

T
+ γ

δt
δmax

)
(3.13)

In the third model, the strike price for regulating up is dynamic and aims to optimize the timing of
steering decisions based on the size of the rebound in PTU t, the remaining PTUs in the steering
window, and the number of remaining steering acitons. The more details regarding the formula for the
dynamic strike price are discussed in Section 3.2.4.

7. Measurement of Total Upward Regulation Frequency

ηt = ηt−1 + δt−1 ∀t ∈ T (3.14)

The total number of steering times within the steering window time frame is measured with ηt, whose
value increases by 1 when steering in a PTU.

8. Volumes of the Rebound

∆t =



EIDM+

t if (P IDM
t ≤ P up

t ) ∧ (∆t > 0)

−EIDM−
t if (P IDM

t ≥ P dwn
t ) ∧ (∆t < 0)

Edwn
t if (Xdwn

t ≤ P dwn
t ) ∧ (ηt ≤ δmax)

0 if (E[Efct
t − Et] · SP) <

(
∆t · P̃∆

t

)
∆t otherwise

∀t ∈ T (3.15)

Whenever IDM trading optimizes the impact of the rebound on the immediate reward in PTU t, the
volume of the rebound (∆t) is represented as the traded volume. As selling energy on the IDM creates
a negative deviation, the variable becomes negative. When the imbalance price for regulating down is
higher than the strike price, the volume of the rebound is used to regulate down. Moreover, when the
expected value of the lost loads is less than the impact of the rebound, we steer to zero and make the
rebound impactless in that PTU. Lastly, when it is advantageous to accept imbalance, ∆t is maintained
and represents the unintended imbalance.

Model Constraints

1. Band Width of Charging Speeds per Charging Session

0 ≤ Eι
t ≤ Eι,max

t ∀(ι, t) ∈ I × T (3.16)

In the models in this research, charging speeds within each charging session (ι) cannot become negative
and are limited by the maximum charging speed the grid connection allows.

2. Determination of Actual Consumption:

Et = Efct
t − Eup

t + Edwn
t + EIDM

t +∆t (3.17)

The realized energy consumption during a PTU can only be influenced by steered volumes, volumes
from the IDM and the volume of the rebound.
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3. Limitation of Volumes Traded on IDM

EIDM+/− ≤ |∆t| (3.18)

As speculation on the direction of energy prices is out of scope for this research, the volume of bought
and sold energy on the IDM cannot exceed the volume of the rebound.

4. Non-subsequent Steering
δupt ≤ 1− δupt−1 (3.19)

A steering action can only be made when the previous PTU was not steered down.

5. Limitation on Frequency of Regulating Up

ηT ≤ δmax (3.20)

To avoid having too many charging sessions that do not reach completion and losing too much charging
revenues, steering down is permitted only for a limited number of PTUs within the steering window.
Therefore, the number of PTUs steered down during the steering window (ηT ) must be less than or
equal to the maximum number of PTUs for which steering down is permitted (δmax).

6. Integer Variables
ηt ∈ Z+ ∀t ∈ T (3.21)

ι ∈ Z+ ∀ι ∈ I (3.22)

δmax
t ∈ Z+ ∀t ∈ T (3.23)

The number of steering decisions already taken at the start of a PTU (ηt), EV charging sessions (ι),
and the maximum number of PTUs in which steering down is allowed (δmax

t ) can only have positive
integer values.

3.1.2 Model 1 Equations

The first and simplest model represents and approximates the current situation, being the steering
strategy of TotalEnergies at the start of the research. Figure A3 shows the mathematical representation
of the policy, which can only steer down or steer to the forecast. When not steering, EVs charge at the
maximum speed. The reward for this model is based solely on charged loads, steering-down actions,
and the impact of the rebound. The imbalance result, which is calculated by the formula below, arises
only from instructed steering down actions, which are calculated by the formula:

Imbalance resultt =
T∑
t=1

(Eup
t · P up

t ) (3.24)

The volume of the rebound ∆t can be made zero when steering to the forecast, making the rebound
impactless. However, it cannot be traded away on the IDM, and is therefore calculated through:

Impact of the Reboundt =
(
∆t · P up/dwn

t

)
(3.25)

Note that the total rebound will extend across multiple PTUs, but the equation above only addresses
how this rebound is handled within the current PTU. The method of treating the rebound in later
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PTUs cannot be determined since imbalance prices are still unknown for those PTUs.

When combining the equations above, we can calculate the immediate reward for Model 1:

rt =

T∑
t=1

[
(SP · Et) + (Eup

t · P up
t )− (∆t · P up/dwn

t )
]

(3.26)

In addition to the equations stated in 3.1.1, as the charging speed is set to the maximum charging
speed by default, only Model 1 is subject to the following constraint related to regulating up:

Eup
t ≤ Efct

t + (1− δupt ) ∀t ∈ T (3.27)

If the price for regulating up exceeds the strike price for regulating up, the consumed amount of energy
cannot exceed the forecasted consumption.

3.1.3 Model 2 Equations

Building on the first model, the second model introduces additional parameters and variables related
to steering up (regulating down). Its mathematical framework is illustrated in the Appendix, with
Figure A4 showing steering down and Figure 3.5 depicting steering up. These include the strike price
(Xdwn

t ) (in e /MWh), the binary variable indicating steering up for regulation down (δdwnt), and the
steered load for regulating down (Edwnt). Additionally, the action of steering up (Et = Emax

t ) is
incorporated into the action space.

For the reward calculation, the charged loads and the impact of the rebound follow the same approach
as the policy in Model 1. However, the imbalance result now also accounts for steering up (to regulate
down), leading to the following imbalance result formula:

Imbalance result =

T∑
t=1

(
Eup

t · P up
t + Edwn

t · P dwn
t

)
(3.28)

The calculation of the reward per PTU:

rt =

T∑
t=1

[
(SP · Et) + (Eup

t · P up
t + Edwn

t · P dwn
t )− (∆t · P up/dwn

t )
]

(3.29)

33



3.2 Model Intuition
It is illustrated in Figure 3.1 how each successive model shows increased feature capabilities, complex-
ity and adaptability to market conditions. This progression enables the policies to better coordinate
with uncertain external factors, manage costs more effectively, and enhance profit potential. After
the detailed modelling, we discuss in 3.3 how to quantify the costs associated with steering actions.
Lastly, the method for determining the dynamic strike price is discussed in Section 3.2.4 and how it
adapts to changing market conditions.

Figure 3.1: Overview of the Features of the Models.

3.2.1 Assumptions of the Models

Before introducing the models, several key assumptions are made to simplify the modelling process.
Firstly, the model treats forecast inaccuracies in both imbalance prices and hourly consumption as
out of scope, using a deterministic approach to optimize charging speeds based on imbalance prices,
chargeable load in the upcoming PTU, and expected lost loads. Inefficiencies or delays in steering ac-
tions are also not considered; steering down is assumed to reduce the charged load in a PTU to 0 kWh.

Since SoC at arrival and the exact arrival and departure times are unknown in advance, we calcu-
late the impact of steering actions on charged kWhs by back-testing on a large dataset of historical
charging sessions. This data allows us to derive customer patterns, as most consumption follows daily
or weekly trends (M. Bessa, 2013). Based on these patterns, the lost load and the probability of a
hot unplug can be estimated (Ansari & Keypour, 2023). Finally, energy costs incurred to meet the
forecast are considered sunk costs and do not influence the rewards from steering actions.

3.2.2 Model 1: Optimization on Imbalance Prices for Regulating Up

Model 1 represents the simplest improvement on the current situation and overcomes high balancing
costs within the steering window. Model 1 provides a policy for only steering down, which is defined
in 3.2, and aims to generate additional revenue and mitigate high balancing costs by steering down
when regulate-up prices are high. This policy is limited to steering down during three non-consecutive
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PTUs or steering to the forecast within the steering window and charges at maximum speed otherwise.
Steering to the forecast happens when a valuable rebound is detected. A more extended explanation
of the policy is given in 6.4, and the equations that specifically hold for Model 1 are given in 3.1.2. In
this section it is given that the reward is calculated by accumulating charging revenues, results from
steering down, and the impact of eventual rebounds.

Figure 3.2: Steering Decisions for Model 1.

3.2.3 Model 2: Optimizing on Imbalance and Day-Ahead Market Prices

Building upon Model 1, Model 2 follows the decision-rules in Figure 3.4 for steering down and in-
corporates DAM prices to optimize charging schedules. DAM prices deviate per hour and are known
beforehand. Therefore, energy costs from DAM prices can relatively easily be optimized by charging
slower when prices are high and faster when prices are low. The exact charging speeds are determined
using the framework of Van Dijk (2021) and shown in Figure 3.3, which illustrates how this delays part
of the charged loads to later in the night. This optimization yields an optimized load curve (Eopt

t ) as
shown in Figure 3.3, which replaces the forecasted (unsteered) load curve (Efct

t ) in both this model and
Model 3. Nevertheless, this optimization does not influence steering down decision-rules and operates
independently from the policies developed in this research.
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Figure 3.3: The DAM Optimized Load Curve.

Moreover, as the DAM optimization by default reduces charging speeds, the opportunity for steer-
ing up (charging faster) arises. For steering up, Model 2 follows the decision-rules of Figure 3.5 to
determine its actions. Charging faster further increases the imbalance result when compensated for
regulating down. Additionally, since charging faster reduces the time required for the vehicles to reach
full SoC, the likelihood of loads remaining uncharged decreases. Hence, expected lost loads and even-
tual rebounds decrease, charging revenues increase, and customer satisfaction increases. Furthermore,
when EVs charge faster in earlier PTUs, less energy is used in later PTUs. This creates a negative
deviation from the scheduled (optimized) consumption, which can be beneficial when compensated for
regulating up but introduces costs when compensated for regulating down.

Figure 3.4: Steering Down Decision for Model 2.
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The primary goals of Model 2 are: (1) to increase profitability by aligning charging speeds with
low DAM prices, thus reducing energy procurement costs; (2) to monetize imbalance prices by both
steering down (regulating up) and steering up (regulating down) when advantageous; and (3) to reduce
expected lost loads and increase customer satisfaction by charging faster than the optimized load curve
when appropriate. Since charging at reduced speeds increases the expected lost loads, Model 2 could
show higher potential costs than Model 1 when not mitigated. However, Model 2 introduces steering
up to (partially) manage the rebound effect and reduce the expected lost loads. The reward for Model
2 considers the imbalance results from both steering down and steering up actions, as well as the
impact of the rebound.

Figure 3.5: Steering Up Decision for Model 2.

3.2.4 Model 3: Optimizing on Imbalance and Day-Ahead Market Prices Using
the Intraday Market

Model 3 builds upon the policy introduced in 3.2.3. It enhances procurement decisions and the timing
of steering by utilizing the IDM for handling rebounds and incorporating a dynamic strike price. Via
this method, the policy uses a finite timeframe by considering the number of PTUs until the end
of the steering window. Other policies lack this consideration of time-based decisions, resulting in
sub-optimal steering decisions. Hence, this model offers the most advanced policy for both upward
and downward steering and represents the proposed steering strategy that results from this research.

For steering up, Model 3 follows the decision-rules outlined in Figure 3.6. As discussed in Section
2.2.1, the IDM permits trading until five minutes before the start of the PTU. This allows for better
management of costs associated with negative rebounds when compensated for regulating down. In
such cases, the excess energy (negative rebound) can be sold on the IDM and provides an additional
source of profit. When compensating for regulating up, this excess energy can either be sold on the
IDM or used for upward regulation. The decision between these options is determined by the respective
prices. IDM prices tend to be less volatile and are not based on forecasts, making selling on the IDM
the preferred action when prices are comparable.
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Figure 3.6: Steering Up Decision for Model 3.

Additionally, when deciding on steering down, Model 3 follows the decision-rules presented in Figure
3.6. The figure illustrates that the IDM can also be used to purchase energy when there is a positive
rebound (deficit) and when prices for regulating up are higher than the IDM price. By default, the
policy would limit the charged load in that PTU to the optimized consumption, accepting the possibil-
ity of lost loads and incomplete charging sessions. However, this issue can be mitigated by purchasing
additional energy on the IDM equal to the volume of the rebound, thereby ensuring charging sessions
are completed.

Figure 3.7: Steering Down Decision for Model 3.

Integrating IDM trading aims to optimize the value of the rebound by selecting the best option among
accepting the imbalance, trading on the IDM, or adjusting charging speeds. This adaptability is
expected to further enhance profit opportunities and improve cost management. Since IDM prices
are less volatile and have lower price peaks than imbalance prices for regulating up, trading on the
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IDM provides a more constant alternative for the value of the rebound. In addition to the actions
possible in Model 2, Model 3 includes buying and selling on the IDM. The ability to trade on the IDM
improves the model’s cost management capabilities, as the rebound effect can be actively managed.
Negative rebounds (excess energy) can be sold on the IDM. Optimizing the impact of the rebound (by
comparing imbalance and IDM prices) is expected to make the policy from Model 3 achieve higher
rewards than the previous policies due to its enhanced flexibility and optimization strategies.

Dynamic Strike Price

Another critical aspect of the intelligent steering strategy is the dynamic strike price for steering down.
This mechanism adapts to fluctuating conditions throughout the day by adjusting the imbalance price
at which a steering action is triggered, balancing profit and cost potentials. In this calculation, the
coefficients α, β, and γ are optimized to account for the impact of changes in the rebound volume,
the number of expired PTUs within the steering window, and the number of PTUs already steered
down. Under comparable circumstances, a higher strike price may lead to less frequent steering-down
actions. Lower strike prices might lead to more frequent steering down actions and increased reward
potential. On the other hand, when steering more frequently, the constraints regarding steering in
subsequent PTUs and the maximum steering-down frequency might increase the chance of missing
out on the most optimal steering times.

The formula for the dynamic strike price for steering down (Xup
t ) is defined as:

Xup
t = SP ·

(
1 + α ·∆t + β

t

T
+ γ

δt
δmax

)
(3.30)

Where the current PTU t (for t = 1, 2, ..., 60) represents the tth PTU in the steering window T . Ad-
ditionally, δmax represents the maximum number of PTUs allowing steering down within the steering
window. In Equation 3.30, α determines the sensitivity of the strike price to the volume of the re-
bound, where a higher α may indicate a higher strike price, potentially decreasing the number of times
steering down. β increases the strike price as time progresses to avoid missing the optimal period and
γ discourages using steering options before the optimal time. The resulting strike price is used to
maximize Equation 3.7, calculating the total reward.

This optimization of the values of α, β, and γ, is done through a grid search using historical data to
test the simulated performance of every combination of coefficients. Even though grid searches are
computationally extensive, this method is the most fitting as the optimization needs infrequent re-
peating and guarantees the optimal combination of values. The resulting values for α, β, and γ remain
fixed until a trend deviation is seen for one of the variables in the formula. Meanwhile, the strike price
for regulating down is much easier, as for every P dwn

t > 0, it is beneficial to charge faster than expected.

3.3 Cost Management
Before creating a steering strategy for EV charging sessions to monetize imbalance settlements, it is
crucial to be aware of the costs that come with it. Yet, managing costs is only possible when they
are measured and preferably appropriately quantified. In this model, this is challenging due to their
dependence on the value of the rebound and the lost revenue (from uncharged kWhs of unfinished
sessions). The value of the rebound (e /MWh) depends on its direction (positive or negative) and can
change per PTU as affected by imbalance prices. On the other hand, lost revenues are purely based
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on an expectation. Moreover, both uncertainties develop over time, which adds another dimension
of complexity. This chapter elaborates on the methods used to measure and manage costs from the
expected lost revenue and the impact of the rebound.

If revenues from selling energy decrease, as charging sessions become unfinished and less energy is
sold, steering down actions can lead to lost revenue. When the revenue from steering down cannot
cover the lost revenue, this could form a cost. Additionally, for both up- and down-steering, the
rebound might affect the immediate reward from steering actions when not being acted upon. In all
policies, the volume of the rebound is limited when its value per MWh reaches above the strike price
for steering down. In the policies of Model 2 and Model 3, this is done by comparing the impact of
the rebound with the expected lost loads. The policies could act upon this cost by steering to the
forecast, making the volume of the rebound unable to become positive in that PTU. This is triggered
when the imbalance price for regulating up exceeds the strike price, creating the following constraint:

∆t+1

{
> 0 if P up

t ≤ Xup
t

= 0 if P up
t > Xup

t

(3.31)

Furthermore, in the policy of Model 3, the impact of the rebound is limited by buying energy on the
IDM when the rebound becomes more valuable than the energy price on the IDM. Hence, Model 3
minimizes the negative impact of the rebound by either steering to the optimized load curve or buying
the volume of the rebound on the IDM.

The sum of the expected lost revenues and the impact of the rebound in a PTU is represented as the
expected costs from steering actions per PTU (E[Ct]). The calculation of expected costs is compared
with expected revenue. If the expected costs exceed the expected revenue, the steering action will not
proceed. The formula for calculating the expected revenue is provided in 3.4, but differs in Model 1
since steering up is not yet incorporated.

Moreover, the above-mentioned strategies aim to minimize the expected costs from steering actions for
every PTU within the steering widow. This minimization is independent per PTU, as the latter costs
depend on imbalance and IDM prices that are still unknown or fluctuating. Generally, the formula for
calculating these costs is as follows:

E[Ct] =
(
[Impact of Reboundt] + E[Lost Revenuet]

)
(3.32)

Which can be broken down into:

E[Ct] =
(
[Volume of Reboundt] · [Value of Reboundt] + E[Lost Loadst] · [Selling Price]

)
(3.33)

The actual cost in a given PTU cannot precisely be determined because it relies on an expected value
rather than an actual measure. Hence, expected lost loads represent an estimate of how a steering
action in the current PTU could affect the charged volumes for the remainder of the steering window.
This estimation comes from the long-term average of negative deviations from the forecasted volume,
based on a simulated steering action in each PTU within the 1,186 steering windows. We hereby
assume that if charging was ongoing in the last PTU, all the steered loads are considered lost loads.
Since this average serves as an estimate for future volumes, it is expressed as an expectation. This
allows for the calculation of lost revenue by multiplying the lost loads by the selling price, resulting in
the following formula:

E[Lost Revenuet] =
(
E
[
Efct

t − Et

]
· SP

)
(3.34)
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The second factor that influences expected costs is the impact of the rebound. P̃∆
t (in e /MWh) is

introduced as the variable that represents the minimized value of the rebound per PTU. The total
(optimized) impact of the rebound (in e ) can be calculated by multiplying the value of the rebound
in a PTU by the volume of the rebound in that PTU (in MWh). This gives the equation:

Impact of Reboundt =
(
∆t · P̃∆

t

)
(3.35)

The value of the rebound comes from the price of imbalance, or in Model 3, from the minimization
between the imbalance and the IDM price. Hence, for Model 3, having the opportunity to trade away
the rebound on the IDM, the equation becomes:

P̃∆
t = min

(
P IDM
t , P

up/dwn
t

)
, (3.36)

Where the imbalance price is dependent on the direction of the rebound.

P
up/dwn
t =

{
P up
t if ∆t > 0

P dwn
t if ∆t < 0

Combining the above equations, we can calculate the expected costs per PTU and the total expected
costs over the steering window. The latter is a simple aggregation of the costs per PTU, giving the
equation:

E[Ct] =
[
∆t · P̃∆

t + E[Efct
t − Et] · SP

]
(3.37)

As mentioned, imbalance prices for regulating up or down are time-dependent and highly volatile.
Prices on the IDM are less volatile but still fluctuate up to five minutes before the start of the PTU.
This makes it impossible to estimate the value of the rebound beyond the next PTU and obtain a
valid expectation of the total costs in the steering window. Fortunately, expected costs over the en-
tire steering window will never exceed total revenue when following the steering policy of Model 3.
Within this policy, the impact of the rebound cannot exceed the expected revenue from a steering
action, as we steer to the optimized load curve when the rebound becomes too valuable. This means
that the charged loads in a PTU are limited to a set amount to avoid the rebound. Moreover, since
most charging sessions contain flexibility, only a part of the steered load remains uncharged. When
steering back to the optimized load to avoid imbalance, more loads will likely remain uncharged, and
some revenue will be missed. However, expected costs will still decline as the impact of the rebound
decreases more significantly.

Charging faster can help manage the cost from the positive rebound and cause the expected lost rev-
enue to decline or even approach zero. While this model acknowledges that the financial outcome from
steering down (regulating up) is moderated by the energy costs on the IDM, it limits the deviation
between expected costs and actual costs. As a result, the probability that the actual costs per PTU
will surpass the actual revenue is minimized.
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3.4 Conclusion
How can the costs of steering actions be managed?
As mentioned in Section 2.3, steering actions introduce various types of cost. Among them are not
fully charging the demanded load (causing lost revenues) and the impact of the rebound, where de-
ferred loads return later and cause imbalances with unforeseeable costs. These costs must be managed
to ensure an effective steering strategy.

Within the models in this research, several methods are proposed to decrease costs. These methods
include steering to the forecasted (policy of Model 1) or DAM-optimized consumption (policy of Model
2 and Model 3), implementing a dynamic strike price, comparing expected revenues with expected
costs, steering up, and trading away the rebound on the IDM (policy of Model 3). Each method helps
manage and mitigate at least one type of cost, leading to a more intelligent and profitable strategy.

The simplest method is steering to a forecasted or optimized load curve, which involves aligning the
realized energy consumption with the predetermined consumption to avoid imbalance. This solution
helps stabilize the load profile and overcome balancing costs for that period, but will likely increase
the lost revenue. The method is most helpful when an impactful rebound occurs, but the maximum
number of PTUs for steering down has already been reached. Calculating the expected costs (from a
steering action in PTU t) helps to stay aware of the potential costs of the steering action and helps
to keep track of the strategy’s performance. This calculation is done through the formula found in
3.3 and involves the impact of the rebound and the lost revenues from unfinished charging sessions.
More informed decisions about a steering action can be made by comparing the expected costs with
expected revenues.

Steering up is beneficial in all scenarios where one is compensated for regulating down. Without
additional energy costs, EVs are charged faster than initially planned, which reduces the expected
lost loads. Moreover, the volume of a positive rebound decreases by steering up. When not having a
positive rebound, steering up might cause a negative rebound. This negative rebound allows antici-
pating the rebound from future steering actions, but on the other hand, might introduce a cost when
compensated to regulate down.

Implementing a dynamic strike price is another effective strategy. This method aims to optimize the
strike price for steering down by considering the volume of the rebound, the remaining PTUs and
steering actions. As a larger rebound brings higher cost, the strike price for steering down increases
in case of a larger positive rebound to decrease the likelihood of steering down and further expanding
this rebound. In addition, increasing the strike price when reaching the maximum number of PTUs in
which steering down is allowed overcomes reaching this limit prematurely and missing out on optimal
steering opportunities. The extent to which this is considered is scaled by optimization coefficients α,
β, and γ, which are optimized through a grid search on historical returns.

The last mitigation method is trading away the rebound on the IDM. IDM trading provides a real-time
opportunity to adjust the forecasted or optimized consumption by procuring (deficit) or selling (ex-
cess) energy. This method increases the model’s performance by reducing the value of the rebound or
allowing it to sell against the most favourable price. When a negative rebound occurs (excess energy),
it can be sold; when a positive rebound occurs (energy deficit), additional energy can be purchased.

In conclusion, this research introduces a comprehensive set of techniques to manage the costs associated
with steering EV charging sessions. By integrating multiple methods, the policies from the models
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establish a robust, multilayered cost management framework that addresses and mitigates each type
of cost.

43



Chapter 4

Data

This chapter provides an overview of the data sets used, exploring the operating environment of the
models from the previous chapter and emphasizing their relevance. The data is crucial to under-
standing market dynamics and charging behaviour, which helps to ensure model effectiveness. Data
collection and processing methods are described to ensure the research’s transparency, reproducibility,
and validity.

An in-depth evaluation of the data sets follows, analyzing imbalance prices and regulation states from
January 1, 2021, to April 1, 2024. It must be noted that this period includes price volatility driven
by the war in Ukraine, with geopolitical uncertainty causing energy prices to peak and potentially
bias the data. However, since the adoption of RES greatly influences imbalance price dynamics, this
timeframe is still the most representative of current imbalance prices.

4.1 Data Collection Methods
The collected data mainly refers to charging times, energy positions and energy prices. The data col-
lection process involved different methods for retrieving the required data. The first method contained
an API integration of forecasted imbalance prices for the next PTU, being the most critical data for
this research. This API was activated in the cloud environment of TotalEnergies and provides real-
time and historical price data, used for modelling and retrieving the values of different parameters
within the model. Data on DAM and IDM prices, as well as historic imbalance prices, is publicly
accessible through the website of Tennet (2024).

Additionally, charging session data was sourced from TotalEnergies’ data lake, which houses all data
from the Dutch EV charging division. This data is used to compute the charged loads per period,
the flexibility analysis, and analyse overall charging behaviour. However, the third and most repre-
sentative data collection method is the pilot field test on real-world CPs. The three different models
were practically tested on 200 CPs that were selected based on their representativeness for the general
charging behaviour of the 17,500 charging points across the Netherlands. The pilot provided valuable
real-world information on the models’ performances and highlighted its profit opportunities and po-
tential complications.

4.2 Data Processing Procedures
The collected data required processing before use in this research. Processing involved cleaning raw
data from the data lake, including removing null values, unnecessary columns, and inaccurate measure-
ments. The data was then aggregated by rounding charged loads and aligning arrival and departure
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times per PTU, reducing computation time and simplifying load profile analysis.

Imbalance prices were separated for regulating up and down to ensure the steering strategy works
for regulation state 2. In regulation state 2, one is fined for all directions of imbalance, but with a
different severity. Although this research does not focus on regulation state 2, this separation makes
it applicable for such scenarios.

The pilot test period was deemed too short to give valid results for lost loads, and unfinished sessions
made it impossible to determine how much load was actually lost. As an alternative, the effects of
steering down across 1,186 PTUs from January 1, 2021, to April 1, 2024, were back-tested, a period
considered sufficient to provide meaningful averages on lost loads.

Imbalance Price Data

The data set in Table 4.1 includes up- and down-regulation prices and IDM prices per PTU. This data
is essential for analyzing imbalance price dynamics, identifying profitable PTUs for steering actions,
and assessing the expected costs of each action, as both prices (in Model 3) influence potential revenues
and costs.

Variable Description

Date Date of the period

Period from Starting time of t

Period until End time of t

Regulation State Balancing state of the grid (1 = reg. up, -1 = reg. down)

To regulate up (P imb+
t ) Imbalance price for regulating up in t (in e /MWh)

To regulate down (P imb−
t ) Imbalance price for regulating up in t (in e /MWh)

Intraday (P IDM
t ) Intraday price in t (in e /MWh)

Table 4.1: Data Set for Imbalance and Intraday Prices (Tennet, 2024).

Charging Session data set

The charging session data set, presented in Table 4.2 contains in-session meter readings of charging
speeds and steering actions, providing insight into current charging behaviour. Allowing computations
of the aggregated charged load per PTU and estimating the expected lost loads when steering in a PTU.

Variable Description

Event DateTime (t) Date and start time of the charging session

Session ID (ι) Unique identification for each charging session

Observed kWh (Et) Realized energy consumption (load) in t (in kWh)

Unsteered kWh (Efct
t ) Charged load in t if not steered or DAM optimized (in kWh)

Is steering Binary variable indicating if the session is steered in t

Table 4.2: Charging Session Data Set (TotalEnergies, 2024).
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4.3 Data Set Evaluation
Data analysis was conducted on up- and down-regulation prices over the 1,186-day period to gain
deeper insight into price dynamics, while regulation states were examined to understand the model’s
operating environment.

4.3.1 Imbalance Prices

The two figures in Figure 4.1 display the frequency distribution of price bins for regulating up and
down prices during the steering window. Figure 4.1a shows a significant skewness to the left, indicat-
ing that most regulating up prices are concentrated in lower bins. When compensated for regulating
up, 59.0% of occurrences are within e 0 and e 200 per MWh. Remarkably, prices above e 450 still
occur in 13.0% of those PTUs, indicating that a steering-down action would be triggered for 13.0% of
those PTUs when handling the strike price of e 447.50/MWh, which is used in all policies. Moreover,
since Figure 4.2b illustrates how regulation state 1 occurs 39.3% of the time, steering down happens
on average 2.12 times per steering window.

In contrast, Figure 4.1b shows that regulate-down prices are more concentrated around e 0/MWh,
are less volatile and rarely peak above e 400. Prices above e 0 occur in 69.8% of the PTUs that
compensate for down-regulation. Regulate-down compensation happens in 41.2% of PTUs, meaning
that steering up happens on average 17.3 times per steering window.

(a) Price Bins for regulate up prices (P imb+). (b) Price Bins for regulate down prices (P imb−).

Figure 4.1: Distribution of imbalance prices.

Figure 4.2a displays the average P imb+ per hour of the day per weekday. The heatmap shows that
prices are relatively high during the evening, with a noticeable drop in prices at weekends and around
mid-day. Figure 4.2b (right) shows the regulation state frequencies per hour of the day, showing higher
frequencies for regulating up (reg. state 1) between 17:00 and 20:00. Figure A9 in the Appendix
substantiates the statement that apart from a slightly more frequent occurrence during these hours,
regulation states are entirely random.
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(a) Heatmap of Average Regulate Up Prices. (b) Regulation States per PTU.

Figure 4.2: Analysis of Regulate Up Potentials.

4.3.2 DAM & Intraday Prices

Figure 4.3 shows the average DAM and IDM (P IDM
t ) prices (in EUR/MWh) per hour of the day.

Both prices follow a clear trend, peaking in the morning and evening, with the highest in the evening
and a sharp drop overnight. This recurring trend is used in Models 2 and 3 to optimize the load
curve with DAM optimization. Even during peak hours, P IDM

t remains lower than P imb+
t but higher

than P imb−
t . The only scenario in which Model 3 will always return a loss for the period arises with

negative IDM prices when regulating down while wanting to sell the negative rebound on IDM. From
01-01-2021 to 01-04-2024, this occurred in 3.7% of the PTUs when compensated for regulating down
between 17:00 and 08:00 (and 1.5% of all PTUs), mainly due to DAM prices.

(a) Average DAM Prices per Hour. (b) Average IDM Prices per Hour.

Figure 4.3: Average DAM & IDM Prices per Hour on the Day.

47



Chapter 5

Results

This chapter presents the performance of the three models’ policies developed in Chapter 4. It con-
ducts a comparative review between the policies of Model 1 (only steering down), Model 2 (steering
both up and down, using DAM optimization), and Model 3 (steering up and down with DAM opti-
mization and IDM integration). The policies’ performance is illustrated through the reward metric,
which captures all factors that the policies directly influence but does not directly represent the total
profit or revenue. The reward does, among others, not consider the costs of energy or the depreciation
and maintenance costs for the CPs. On the contrary, it provides a clear view of the effects of the poli-
cies’ actions. Hereby note that since this thesis assumes demand forecasts to be perfect, no realistic
comparison can be made with the current situation that faces balancing costs.

More detailed explanations of the results of the individual KPIs are given in later sections of this chap-
ter. More thorough explanations and informative visualizations are given to understand and express
the dynamics of the model and the specific contribution of each feature.

5.1 Total Rewards
Due to publicity restrictions imposed by TotalEnergies, the actual charging revenue figures cannot be
disclosed within this research. Hence, Table 5.1 presents fictional charging revenues, being a random
but consistent multiplication of the original values. By ensuring that the presented relationships and
dynamics of the model remain inherent to the original data, the consistent scaling multiplier preserves
the integrity, validity, and representativeness of the model. Therefore, it must be noted that while the
presented values are fictional, the proportional adjustments guarantee that the outcomes and insights
derived from the model remain valid and applicable to the research.

The performance of the models’ policies in the field test is detailed in Table 5.1, showing the daily
average results across various key performance indicators (KPIs) based on 200 CPs. Although these
results provide useful comparative insight, they are only a fraction of TotalEnergies’ charging network
and do not represent the full reward potential. Their individual effects are separately detailed for
KPIs influenced by upward (U) and downward (D) steering. This is meant to show the effectiveness
of the policies from each model but is not guaranteed to properly represent the actual robustness.
Nonetheless, it is crucial to note that the performances only show a comparison with earlier situations
and are not compared to a benchmark. Hence, it remains unknown how well the policies perform.
Since the models imply heuristic-based decision rules for practical ease, it remains possible that even
slight adjustments significantly improve the models’ performance.
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Model 1 Model 2 Model 3

Charging Revenue (e ) 1663.11 1889.38 1896.09

Number of Steering Actions 1.7 7.3 (2.3D, 5.0U) 6.7 (1.7D, 5.0U)

Steered Load (kWh) 40.2 146.8 (117.7U,
29.1D)

140.5 (117.7U,
22.8D)

Imbalance Result (e ) 46.42 146.56 (81.08 U,
65.48D)

427.58 (81.08U,
346.50D)

DAM Result (e ) 0 19.94 19.94

Expected Value of Lost Loads
(e )

24.13 31.64 22.88

Impact of Rebound (e ) 14.79 27.95 -9.03

Expected Costs (e ) 38.92 59.59 13.85

Total Reward (e ) 1694.737692 2007.994615 2332.702308

Table 5.1: Daily Average Results for KPIs.

Table 5.2 extends upon the fictional daily average results to estimate the potential profit when applying
the models across the entire network of 17,500 chargers. This projection assumes a consistent reward
per CP and per day based on the results of the 200 CP sample. This allows for a more insightful view
of the economic impact of each model when applied on a larger scale.

Model 1 Model 2 Model 3

Daily Avg. Total Reward / CP (e ) 10.97 12.87 14.51

Yearly Total Reward / CP (e ) 4,003.45 4,699.03 5,295.29

Yearly Total Reward 17,500 CPs (e ) 70,060,335.63 82,232,994.38 92,667,614.38

Table 5.2: Total Rewards.

In Table 5.2, it is seen that Model 3 notably outperforms other models, yielding a 32% higher reward
than Model 1 and a 13% increase over Model 2. In addition, the extrapolated total annual rewards
for 17,500 chargers illustrate the significant revenue potential, with Model 3 increasing its reward with
e 22,607,278.75 compared to Model 1 and e 10,434,620 compared to Model 2.
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5.2 Load Profiles
Model 1 is tested during the steering windows from July 10th until August 6th 2024, and is limited
to steering down or steering to the forecast. Figure 5.1 illustrates the effects of steering-down actions
and the subsequent rebound.

Figure 5.1: Aggregated Loads During a Week for Forecasted Consumption and Steering Down.

Model 2 is tested from August 6th until September 17th 2024, resulting in the load profile shown in
Figure 5.2. Model 2 can steer up and down, resulting in a more dynamic load profile with higher
deviations from the forecasted load in the steered and subsequent PTUs. Steering up occurs more
frequently but tends to cause less noticeable deviations from the forecast compared to steering down.

Figure 5.2: Load Profile of Models 2 & 3.

Model 3 extends Model 2 by incorporating IDM trading. However, due to limitations related to market
access and the scale of traded loads, the policy of Model 3 has been tested only in a virtual environ-
ment. Importantly, Model 3 focuses solely on optimizing energy procurement without altering the
steering decisions of Model 2. As a result, the load profiles for both models remain similar, enabling
virtual testing of the policy of Model 3 during the same period used for testing the policy of Model 2.
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5.3 Steering Actions
As depicted in Figure 5.3a, the number of steering-down actions is often limited to the maximum
number of steered-down PTUs. Based on imbalance prices between 2021 and 2024, there were 269
steering windows in which a steering down action could have been triggered more than three times,
representing approximately 22.7% of the total steering windows.

From the 1,200 PTUs in which the policy of Model 1 is tested, steering down occurred in 33 PTUs
(2.8%), averaging 1.7 PTUs per day. In the 2,520 PTUs that tested the policies of Models 2 and 3,
steering down occurred in 96 PTUs (3.8%) for Model 2 and in 70 PTUs for Model 3. This deviation
is caused by the dynamic strike price used in Model 3, which mostly causes an increased strike price.
For both models, 210 PTUs (8.3%) are steered up, averaging 5.00 PTUs up and 2.29 and 1.7 PTUs
down per day for Models 2 and 3, respectively.

Steering volumes heavily depend on the amount of ongoing charging sessions in that period, and their
current charging speed. Steering-down volumes are limited to the forecasted load for that PTU, while
steering-up volumes involve the difference between the realized charged load and the maximum possi-
ble charged load in a PTU. As shown in 5.2, the forecasted load fluctuates during the day and ranges
from 1 kWh to 117 kWh per PTU.

Figure 5.3b illustrates the daily steering volumes. Since steering-up was introduced on August 7th,
no steering-up volumes have been recorded prior to that date. Steering down averaged 40.2 kWh per
day in Model 1, 29.1 kWh for Model 2, and 22.8 kWh for Model 3. For steering up, 117.7 kWh was
the average load per day in Models 2 & 3, with 23.5 kWh per action. Over the entire period, 2,028
kWh was steered down, and 4,931 kWh was steered up.

(a) Number of Steered PTUs. (b) Steering Volumes per Day.

Figure 5.3: Steering Frequency and Volumes over Time.
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5.4 Imbalance Results
Imbalance results refer to the direct revenue from steering actions and do not consider the impact of
the rebound. They are calculated through the steered volume and the imbalance prices in the PTU
and heavily rely on the forecasted load that determines the steerable volume. As shown in Figure 5.4,
the imbalance results per steering action ranged between e 1.39 and e 64.89 when steering down and
e 0 and e 98.93 for steering up.

Figure 5.4: Imbalance & DAM Results.

The total imbalance result for Model 1 amounted to e 928.49, or e 46.42 on average per day. Model
2 resulted in e 6,155.56 (e 146.56 per day), which came from e 2,750.31 (e 65.48) from steering down
and e 3,405.25 (e 81.08) from steering up. Yet, the dynamic strike price caused an increased reward
for Model 3 of e 17,958.36, stimulated by increased steering down result of e 14.553 (e 346.50 per
day). Figure 5.5 shows the daily aggregated imbalance result when not considering the dynamic strike
price, differentiated on steering up and steering down.

Figure 5.5: Daily Profits for Steering Up & Steering Down.

As mentioned at the beginning of the chapter, no clear comparison can be made between the historic
balancing costs and current balancing costs since demand is assumed to be perfectly forecasted. Nev-
ertheless, it should be mentioned that average balancing costs per day for the 200 CPs before testing
Model 1 have been e 294.68, or e 107,557.16 per year. Assuming that balancing costs are consistent
per CP, this would indicate total balancing costs of nearly e 9.5 million for the entire charging network.
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5.4.1 Dynamic Strike Price

The dynamic strike price mechanism contributes to optimizing the timing of steering actions, enhanc-
ing responsiveness to changing operating environments, and maximizing total profits. Equation 3.2.4
is used to compute the dynamic strike price for steering down, incorporating steering opportunities,
rebound volume and the remaining duration of the steering window.

Figure 5.6 illustrates the development of the dynamic strike price and its interaction with the imbal-
ance price and steering decisions (indicated by the red dots). The optimized coefficients resulted to
be α = 0.157, β = −0.005, γ = 0.048, with a base strike price (Xup

0 ) of e 447.50. The figure shows
that the strike price remains relatively stable in most cases but shows peaks within a range between
e 10.67 and e 860.35.

Out of the 2560 influenced decisions, 33 sub-optimal steering actions have not been taken based on
the dynamic strike price but would have been taken with the base strike price. There were seven cases
where a steering action was taken with the dynamic strike price that would not have been taken with
the base strike price. This optimization further increased the total reward for Model 3 with e 1,803.60
(or 281.02 per day), mainly caused by steering down at peak imbalance prices instead of sub-optimal
prices.

Figure 5.6: Development of Dynamic Strike Price.

5.5 Expected Lost Loads
An essential aspect of steering strategies is the risk of losing loads, which occurs when energy that
would have been charged remains uncharged due to steering actions. Figure 5.7 illustrates the ex-
pected lost loads per PTU per day when steering down in that PTU and clarifies why steering-down
actions are exclusively performed between 17:00 and 08:00.

As illustrated in Figure A18 in the Appendix, 3,113 kWh was expected to be lost out of the 228,940
kWh charged during the analyzed steering windows. This means the total value of the expected lost
load amounted to e 1,393.34 and represented 1.7% of the total charging revenue. Per steering down
the action, the lost load had an average value of e 8.3 in Model 1 and e 10.53 in Models 2 and 3. This
is significantly below average, as seen in Figure 5.7. Furthermore, from the load that would have been
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Figure 5.7: Heatmap of the Average Expected Lost Loads.

charged in a PTU, an average of 47.0% is expected to be lost when steering down.

Note that deviating (daily average) charging revenues cannot directly be linked to lost loads since the
models are tested during summer and show strong seasonality. However, when comparing the realized
load with the forecasted load for Model 1, a negative deviation of 11,485 kWh is seen. Assuming the
forecast is perfect, this represents the actual lost load. Conversely, the steering-up actions of Model
2 steering-up actions increased the charged load by 6,747 kWh compared to the DAM-optimized load
curve, resulting in a net increase in charging revenue of e 3,019.65 over the tested period (or e 71.90
per day). Additionally, Model 3 further increased charging revenue by e 281.72 by trading on the IDM
instead of steering to the forecast.

5.6 The Rebound Effect
The rebound effect forms one of the main cost factors of steering actions. For this research, the re-
bound volume is estimated as a fixed percentage of the steered load. By comparing the forecasted
loads with the realized loads after steering down, the volume of the rebound is found to be, on average,
32.0% of the steered load. Additionally, it is observed that the rebound influences eight subsequent
PTUs after a steering action.

The rebound volume ranged from -27.3 kWh to 29.6 kWh per PTU, with an impact ranging from
-e 39.16 to e 36.00 for the non-optimized impact of the rebound. The average value of the rebound re-
sulted to be e 310.64. Notably, the most costly rebounds (highest impact of the rebound) are caused
by negative rebounds with a strongly negative value of the rebound, which is the case when high
compensation for regulating down. The most profitable rebounds (having a negative impact) are also
mostly caused by high compensation for regulating down, combined with positive rebounds.

54



Figure 5.8: Volume and Impact of the Rebound.

Model 1 saw a total impact of the positive rebound of e 488.10, or e 14.79 per steering action and
e 24.41 per day. For Model 2, the total impact of both rebound directions was e 1173.73 (e 27.95 per
day), whereas e 1,070.72 came from the negative rebound and e 103.01 from the positive rebound.
Model 1 steered twice to the forecast, as the impact of the positive rebound was larger than the value
of the expected lost loads in that PTU. Model 2 steered to the forecast in 6 PTUs, and Model 3 did
not steer to the forecast.

As visualized in Figure A22, Model 3 optimizes the value of the rebound by purchasing 9,780.02
kWh and selling 2,515.94 kWh on the IDM. The optimized value decreased the rebound’s impact by
e 1,553, to -e 379.27 (-e 9.03/day) and even made it profitable (negative). The impact of the opti-
mized rebound ranged between -e 132.14 and e 12.99 per PTU, with rebound savings ranging up to
e 82.54 accordingly. The average purchase and selling price was e 52.54/MWh and e 139.91/MWh,
respectively. As illustrated in Figure A23, IDM trading was utilized in 50.5% of the 2520 analyzed
PTUs and covered 49.2% of the rebound volume.

Figure 5.9: IDM Trading Load Profile.
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5.7 Conclusion
This chapter evaluated the performance of the three steering strategies for managing EV charging ses-
sions, revealing their performance and takeaways. Through a comparative analysis, valuable insights
were gained into the impact of these strategies on various factors, such as load profiles and the elements
that most significantly influence profits. Moreover, using the results of this chapter, more insights can
be retrieved on the effects of the current steering strategies and how the more sophisticated models
improve upon that situation. The current steering strategy, as represented by the policy of Model
1, offers limited flexibility and results in lower (total) rewards. While the policy of Model 1 limits
the impact of the rebound and the expected value of the lost loads, its inability to steer up restricts
monetizing regulate-down opportunities. This limitation results in decreased imbalance revenues and
a lower total reward.

The policy of Model 2 shows improved performance by introducing the ability to steer up and down,
along with DAM optimization. This additional flexibility creates a more complete strategy that lever-
ages a wider range of market opportunities. The policy of Model 3 further enhances imbalance results
and charging revenue by incorporating IDM trading and introducing a dynamic strike price for steer-
ing down. These features help to improve decision-making regarding the rebound and lower its impact.

However, the load shifts caused by DAM optimization have both benefits and drawbacks. While
increasing the expected value of the lost loads and reducing the volume available for steering down
during periods shown (in Figure 4.2a) to have higher regulating-up potential, they also enable steering
up, which adds another layer of flexibility and a source of profit. Each successive policy, representing
an increase in sophistication and intelligence, also shows an increase in total rewards. The policy
of Model 3 achieves the highest total reward, mainly due to the dynamic strike price. Other fea-
tures of Models 2 and 3 also effectively mitigate the impact of the rebound and minimize the value
of the lost loads, ultimately enhancing the overall performance and efficiency of the steering strategies.

This chapter provides a further understanding of what factors mainly affect the performance of the
steering strategy. Apart from the effects of deviating imbalance prices, several factors significantly
impact the performance of the steering strategies. For instance, the ability to steer both up and down
greatly improves the strategy’s adaptability to volatile imbalance prices. This flexibility allows for
more frequent and well-timed steering actions to increase imbalance results. Moreover, a dynamic
strike price further improves the timing of steering decisions. By preventing sub-optimal steering
actions, the effect of not being allowed to steer in the subsequent PTU and for a maximum of three
times is limited. This helps to ensure that only high-value opportunities are acted upon.

Additionally, effective management of the rebound reduces its impact and mitigates costs. Model 3
incorporates the IDM to trade positive and negative rebounds, eventually turning it into a source of
profit. Although the DAM optimization increases the expected value of the lost loads and reduces
the available steering down volumes during periods with high regulating-up potential, it raises the
number of steering opportunities. From Table 5.1, it follows that, on average, the flexibility for
steering up is much more impactful than the lost loads or mentioned volume reduction. However,
the effectiveness of the models remains uncertain. Given that these models employ heuristic-based
decision rules for practical implementation, there exists the potential that even minor adjustments
could lead to significant improvements in performance.
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Chapter 6

Conclusion

This research aimed to develop a strategy that intelligently adjusts EV charging speeds to lower bal-
ancing costs, contribute to stabilizing the Dutch electricity grid, or create an additional source of profit
for CPOs. The core problem addressed was the absence of a dynamic and intelligent strategy that
steers EV charging sessions to monetize imbalance settlements.

6.1 Conclusion
The Netherlands faces significant challenges due to the rapid growth in EV charging sessions and
required CPs, together with increasing (volatility) in imbalance prices. Currently, EV charging is a
critical pain point in the energy transition, but it shows opportunities for innovations that could stim-
ulate the transition. This highlights the urgency for intelligent EV charging strategies to contribute
to stability on the grid, enhance profitability for CPOs, and support the integration of RES. This
research aims to develop a strategy that intelligently steers EV charging sessions based on imbalance
prices, representing the grid’s balance.

The main contribution of this research lies in the development of a dynamic and effective steering
strategy that allows TotalEnergies, as a CPO, to optimize EV charging speeds based on their current
imbalance position, imbalance prices, IDM prices, the time of the day and the expected decrease in
charged loads when steering. This strategy aims to transform volatile balancing costs into an ad-
ditional source of profit. Moreover, the strategy enhances the company’s operational efficiency and
profitability, positioning it as a front-runner in smart EV charging technologies.

After answering the sub-research questions in previous chapters, we can conclude this research by
answering the main research question:

“How can flexibility in EV charging be used to increase profits for CPOs through imbalance
settlements while contributing to balance the Dutch electricity grid?”

Optimizing EV charging speeds based on imbalance settlement prices involves implementing a dynamic
and intelligent steering strategy that adjusts charging rates in response to real-time market conditions.
The developed strategy, represented by the policy of Model 3 in this research, integrates several key
components to maximize profitability and manage potential costs.

A vital aspect of the strategy is the flexible adjustment of charging speeds (steering), allowing to
charge faster (steer up), or pause the charging session (steer down). During periods of imbalance with
high prices for regulating up (indicating high compensation for charging less than forecasted), charging
sessions are paused to help balance the grid, minimize balancing costs, or even create an extra source
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of profit. Conversely, charging speeds are maximized when compensated to regulate down (indicating
compensation for charging more than forecasted). This enables the strategy to adapt and monetize
both directions of imbalance.

Furthermore, the strategy optimizes energy procurement costs from the DAM by adjusting charging
speeds on DAM prices. Reducing energy consumption in periods with higher costs unlocks the op-
portunity to steer up and increases the number of steering opportunities. Although it requires careful
consideration of the potential increase in expected lost loads due to longer charging durations, it pro-
vides another dimension of adaptability.

Incorporating IDM trading complements the adjustment of charging speeds by allowing for real-time
buying or selling of energy to manage eventual imbalances. The inclusion of the IDM enhances the per-
formance of the strategy by enabling the management of the risks from both the positive and negative
rebound. Additionally, it optimizes profits associated with steering up (to regulate down) and cov-
ers eventual rebound costs more efficiently, eventually turning them into an additional source of profit.

A dynamic strike price is introduced for steering down (to regulate up). The strike price adjusts based
on factors such as the volume of the rebound effect - the phenomenon where the deferred loads return
in later periods - and the number of remaining periods in which steering is permitted. By optimizing
the timing of charging speed adjustments, the strategy ensures that decisions to change charging rates
are made when they are most profitable and least risky. This dynamic approach prevents sub-optimal
steering actions, avoids reaching steering limits prematurely, and enhances overall decision-making.

Cost management is improved by quantifying the expected costs associated with steering actions,
including potential lost revenues from unfinished charging sessions and the impact of the rebound.
By comparing the imbalance (steering) results with the expected costs, the strategy further decreases
uncertainties regarding imbalance prices.

By integrating these components - flexible adjustment of charging speeds, a dynamic strike price
mechanism, comprehensive risk management, utilization of IDM trading, and DAM optimization - the
developed strategy demonstrates how optimizing EV charging speeds based on imbalance settlement
prices can create a strategy that maximizes profitability and manages risks. The strategy allows for
dynamic and more effective responses to market conditions from enhanced flexibility in actions, coming
from operating in different energy markets and monetization potential in case of both energy deficits
and energy surpluses on the grid.

Hence, the inclusion of the IDM enhances the effectiveness of the strategy by permitting the manage-
ment of potential costs from the negative rebound, optimizing profits that come along with regulating
down, and more efficiently covering risks from the positive rebound.
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6.2 Recommendations
Based on the findings of this research, it is recommended that TotalEnergies adopts the policy of Model
3 for managing EV charging speeds and on more of their CPs. This policy incorporates IDM trading
and a dynamic strike price and is expected to increase imbalance results while effectively managing
the rebound.

Furthermore, increased monitoring of actual real-time rebound volumes would increase the reactiv-
ity and adaptability to deviating imbalance prices. For instance, IDM trading outside the steering
window can be used to trade away costly imbalance positions. Moreover, further examining rebound
value dynamics through probability-weighted expectations or examining factors - apart from steering
actions - that influence the volume of the rebound, would increase the ability to anticipate.

Lastly, quantifying the effect of the DAM optimization on imbalance results and evaluating DAM
positions based on steering potential would be recommended. Since the decrease in steering down
results cannot be directly compared to DAM profits, it is unclear if the DAM optimization contributes
to the model’s results.

6.3 Discussion and Limitations
It must be acknowledged that this research incorporates multiple assumptions to simplify real-world
conditions and focus on the core objectives. These simplifications may cause practical situations to
differ from this research’s outcomes and the expected theoretical results.

The assumptions expected to have the most influence are the perfect information assumptions regard-
ing demand per period and imbalance price forecasts. Subsequently, the rebound volume is assumed
to be a fixed percentage of the steered load, which does not reflect reality. Additionally, the perfor-
mance of each model is heavily influenced by external factors, such as imbalance prices, IDM prices,
and charging demand, as well as by communication delays, technical limitations in charging speed
adjustments, and grid (congestion) constraints. These factors may limit the models’ ability to fully
reflect their real-world effectiveness.

Additionally, the assumption that the results from the pilot field test on 200 real-world CPs during
a limited period are representative for the actual performance of the models could be questioned.
While the field test provided valuable real-world data on the models’ performances, this research
assumed that external factors (such as imbalance prices, charged loads per PTU and charging time
per session) during the testing period are representative for the overall dynamics of these external
factors. Even though the frequency of regulation states per month has shown to be comparable
(Figure A11), and average imbalance prices per regulation state have - apart from during the energy
crisis - shown to be relatively constant, it is not guaranteed that future regulation states will show
similar dynamics. It could be the case that changed charging behaviour decreases charging times
and takes away the flexibility required for steering down. Moreover, increased availability of battery
storage systems might ease grid balancing and cause imbalance prices to be less volatile, making
steering actions less profitable. Lastly, more frequent occurrences of regulation state 2 (in which every
direction of imbalance is penalized), would decrease the profit opportunity of the model. Hence, the
future performance of the model is not guaranteed to be as presented in Table 5.2.
An important limitation relates to calculating expected lost loads when optimizing charging speeds
based on DAM prices. Since DAM optimization lowers charging speeds to align with lower-cost peri-
ods, charging sessions take longer to complete. The expected lost loads were calculated by comparing
the number of periods in which the charging session was completed without DAM optimization or
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steering. This comparison uses charging speeds when not optimized or adjusted, potentially underes-
timating expected lost loads. The impact on customer satisfaction and lost revenues may be greater
than estimated, necessitating further investigation.

In addition, the assumption that steering actions might not influence imbalance prices may not hold
when the strategy is expanded over the entire charging network. Since the the 17,500 CPs have an
installed capacity of 193 MW, steering actions might resolve low imbalance volumes entirely or cause
imbalance in the other direction. This state variable must be accounted for when starting a steering
action, causing limited opportunities for steering during PTUs with low imbalance volumes.

Lastly, the impact of reputational damage from increased unfinished charging sessions is not fully
explored. Adjusting charging speeds and accepting lost loads may increase profits, but it could harm
TotalEnergies’ reputation if customers experience frequent incomplete charging sessions. The extent
to which reputational damage affects future demand and revenues is not considered.

6.4 Topics for Further Research
Although this research provides valuable insights into optimizing electric vehicle (EV) charging speeds
based on imbalance settlement prices, there are several avenues for further investigation that could
refine the presented steering strategy - which is represented by Model 3 - and enhance its applicability
in practice. Improving the model on these topics in would make it more robust, efficient, and adaptive
to varying grid conditions and forecast inaccuracies.

One area worth examining is the effects of regulation state 2 — where the electricity grid experiences
complete imbalance, and penalizes all directions of imbalance — are not considered in the analysis
of the performance of the models. Currently, the model considers the grid to experience a deficit
(compensated to regulate up), surplus (compensated to regulate down), or balance (no compensa-
tion). Yet, the scenario of complete imbalance occurs in 10% of PTUs and forms a serious threat to
the models’ performance and profitability. The greatest difficulty comes from the unpredictability of
this imbalance, which is caused by the different directions of imbalance within the PTU. However,
imbalance prices for regulating up and regulating down are separated to make the model applicable
also in that scenario. By further examining the scenarios in which Regulation State 2 occurs, future
research could identify strategies to prevent unforeseen balancing costs.

Another topic that would be valuable to further investigate is the IDM trading strategy. Further
refinement could involve exploring optimal ranges for selling negative rebounds — situations where
previously surplus energy — and determine whether selling on the IDM or accepting the imbalance
would be more profitable. Moreover, a dual-market approach for energy procurement on both the DAM
and IDM would enhance the ability to correct inaccuracies in forecasted consumption and increase
profitability. Additionally, examining other IDM periods and purchasing a portion of the forecasted
consumption on the IDM could resolve the impact of forecast inaccuracies and ease managing the
rebound.

Further enhancing the dynamic strike price mechanism presents another topic for improvement. The
dynamic strike price has shown to significantly improve the total reward over the analyzed period.
Hence, extending the usage of this mechanism to steering-up decisions and incorporating seasonal
factors, as well as IDM or imbalance price volatilities, could further optimize the timing of steering
decisions and improve profitability. Furthermore, integrating reinforcement learning techniques could
optimize the model’s coefficients and uncover non-linear patterns that traditional linear models might
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overlook. This would enable the strategy to adapt in real-time to evolving market conditions and
demands and lead to a more complete and effective strategy.

A more extensive examination of customer behaviour after an unfinished charging session would be
a valuable topic for further research. This allows to reevaluate the assumptions regarding the lost
load, and is essential for validating those results. Currently, the models assume that uncharged loads
remain uncharged indefinitely, which may not reflect actual customer behaviour. By determining the
percentage of instances where uncharged energy is eventually sold and understanding how unfinished
charging sessions influence future demand, the model can be adjusted to more accurately represent
customer patterns. This insight would enhance demand forecasting and enable the consideration of
lost loads in the model, ensuring that customer satisfaction remains sufficient while optimizing profits.

Lastly, examining the influence of forecast inaccuracies on imbalance prices and energy consumption
can significantly improve the models’ robustness. By considering the forecast errors in imbalance
prices and consumption, and introducing penalties for these inaccuracies, the model can become more
resilient to real-world uncertainties. Utilizing forecast errors as a parameter in the model could enable
anticipation opportunities, allowing the model to adjust to inaccuracies and maintain profitable even
under inaccurate forecasts.
In conclusion, delving into these areas of further research would not only refine the existing model
but also contribute substantially to the practical implementation of advanced EV charging strategies.
By addressing these topics, future studies can develop more nuanced and adaptable approaches that
maximize profitability and manage costs more effectively. Such advancements would strengthen To-
talEnergies’ EV charging strategy by transforming volatile balancing costs into a source of profit while
enhancing the stability of the Dutch electricity grid. Moreover, these improvements would support
the energy transition in the Netherlands, aligning with national sustainability goals and contributing
to a more resilient and efficient energy system.
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Appendix

Appendix A: Additional Problem Context Visualizations

Figure A1: The Rebound Effect

Figure A2: Flowchart of the Imbalance Monetization Process
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Appendix B: Literature Study
Moreover, many reports from energy-related institutions like the International Energy Agency (IEA),
the International Renewable Energy Agency (IREA), Dexter, and ElaadNL have been used. These
provided more insight into the problem context than into the solution approach.

Literature Sources The relevant literature sources were as follows:
• Dexter’s Knowledge Hub: Whitepapers and literature on forecasting processes, market dynamics
and trend analyses.

• IEEE Transactions journals: Peer-reviewed research journals on smart grids, electricity markets
and EVs. Research articles from IEEE Transactions journals are often more technical and provide
more background knowledge.

• Energies: Research papers on energy-related topics with a more social orientation.
• IEA Energy and EV Outlook: These outlooks provide comprehensive analyses and forecasts on
EV and energy markets, which highlight the effects of ongoing transitions

• Elaad EV Outlook: This outlook represents the latest findings on smart charging, the integration
of EVs into the grid and the latest EV developments within the Netherlands.

• IEEE Electric Vehicle Conference and IEEE International Conference on Smart Grids: Con-
ference papers regarding the latest findings on the applicability of EVs in smart grids and the
development of models for energy trading.

• Energy Economics: Research papers focusing on finance-related topics in the energy sector.
• The Energy Journal: A journal that publishes quantitative research on the financial aspects of
the energy sector.

Notable Authors
• Amory Lovins: Co-founder of the Rocky Mountain Institute, and finds its expertise in energy
policy and RES.

• Paul Joskow: Professor of Economics at MIT, whose work on electricity markets and regulation
has been highly influential.

• Benjamin F. Hobbs, Theodore M., and Kay W. Schad: Professors in Environmental Manage-
ment and well-known for their work on electric power market modelling.
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PRISMA Framework

To ensure the research’s integrity, transparency, and repeatability, the PRISMA framework below 2.1
transparently provides the literature selection process and results.

1. Reports identified from: Conducting individual searches in various databases (with the search
query of 2.1) using relevant search terms and finding the total number of reports. Moreover,
several reports come from relevant institutions directly.

2. Remove duplicates: Use Mendeley to remove duplicate articles from the search results.
3. Reports screened or title/abstract screening: Determining the number of articles to be

screened by subtracting the number of removed duplicates from the total number of records.
4. Reports excluded or title/abstract screening: Screening both the title and abstract of the

remaining articles and excluding irrelevant ones.
5. Reports sought for retrieval: Calculate the number of articles for full-text screening by

subtracting the number of excluded records from the total number screened at the title/abstract
level.

6. Reports not retrieved: The number of articles that cannot acquire the complete text of.
7. Reports assessed for eligibility - full-text screening: Read the full text of the relevant

reports to see if they qualify for the systematic review.
8. Reports excluded: After the full-text screening, write down the total number of excluded

articles and provide reasons for their exclusion.
9. Reports included in review: The resulting number is calculated by subtracting the number

of excluded records from the total number of articles assessed for eligibility. The resulting studies
are expressed in the literature review and considered the most contributing to this research.
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Appendix C: Policy Explanations
Appendix B represents the mathematical notations for the steering up and -down decisions for each
model.

Model 1

Model 1 can steer down. However, this is only possible if the maximum number of steering times
has not yet been reached (ηt < δmax), and no steering down action took place in the previous PTU
(δt−1 = 0). When both conditions are satisfied, the model steers down. If one of those conditions is
not met, the model steers to the forecast when a rebound is detected ( indicating that ∆t > 0 ) or
does not steer when no rebound is detected. When not having a rebound, or if P up

t < Xup
t , the model

does not steer and thus charges at full speed, accepting the eventual impact of the rebound in the
form of imbalance costs.

Figure A3: Mathematical Formulation for Steering Down Decision for Model 1.

Model 2

The policy for Model 2 extends on the policy of Model 1 and heavily relies on the underlying opti-
mization of charging speeds based on DAM prices. When compensated for regulating up, the model
follows the steering down flowchart below to determine its actions. The process begins similarly to
Model 1 by assessing the regulation state, comparing the imbalance price for regulating up with the
strike price and checking the feasibility of steering down. Steering down is feasible when the number
of steering down actions is below the maximum allowance, and the previous PTU is not steered down.
If possible, the model steers down by setting the energy consumption to zero.

Consequently, the model assesses the rebound. However, if there is a positive rebound, the model
evaluates the expected value of the lost load (E[Efct

t − Et] · SP) against the impact of the rebound
(∆t ·P imb+

t ). If the value of the lost load is less, the model steers to the DAM-optimized consumption.

71



Otherwise, the model accepts the imbalance costs and charges at the maximum speed (Et = Emax
t ).

Figure A4: Mathematical Formulation for Steering Down Decision for Model 2.

As mentioned before, DAM price optimization default decreases charging speeds and enables steering-
up decisions as presented in Figure A5. Model 2 uses this potential when compensated to regulate down
and follows the steering up framework below to determine its actions. The process starts with setting
the realized energy consumption to the maximum (Et = Emax

t ) to ensure that EVs charge at full speed.
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Figure A5: Mathematical Formulation for Steering Up Decision for Model 2.

In addition, the model checks for a negative rebound (∆t < 0). If this is not the case, the model accepts

the profit on the imbalance and earns P dwn
t ·∆t. If ∆t < 0, the model increases ∆t with (Emax

t −Efct
t )

by charging at maximum speed. This decreases imbalance costs with P dwn
t · (Emax

t −Efct
t ), and leaves

the costs of the inevitable imbalance of P dwn
t · ∆t. This action will decrease ∆t for the following

PTUs, which could form a risk when compensated for regulating down but also an opportunity when
compensated for regulating up.

This policy could lead to the load profile shown in Figure A6.

Figure A6: Expected Load Profile of Model 2.
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Model 3

Model 3 follows the flowchart for steering down below if compensated for regulating up. If the regula-
tion state is 1, indicating that one is compensated for regulating up, the model compares the imbalance
price for regulating up (P imb+

t ) with the strike price for regulating up (Xup
t ). If the imbalance price is

higher (P imb+
t > Xup

t ), it is considered beneficial to steer down.

To determine if steering down is feasible, the model checks two conditions: the number of steering
actions within the steering window being less than the stated maximum (ηt < δmax), and not having
steered down in the previous PTU (δt−1 = 0). If both conditions are satisfied, the model steers down,
meaning the energy consumption is set to zero (Et = 0).

If the conditions to steer down are not met, the model assesses the volume of the rebound due to
earlier steering events. If there is a positive rebound (∆t > 0), the IDM price (P IDM

t ) is compared
with the imbalance price for regulating up (P imb+

t ). If (P IDM
t < P imb+

t ), the model charges on the
maximum speed and buys a volume of ∆t on the IDM to cover this rebound. If P IDM

t > P imb+
t , the

model evaluates the expected value of the lost load against the impact of the rebound (∆t · P up
t ). If

the value of the lost load is less, the model steers to the optimized (forecasted) load (Et = Efct
t ).

Otherwise, the model accepts the costs of the impact of the rebound and charges at maximum speed.

Figure A7: Mathematical Formulation for Steering Down Decision for Model 3.

If one is compensated to regulate down, the final model follows the steering up flow chart below. The
process starts with an assessment of the regulation state. When this is -1, indicating being compensated
to regulate down, the model sets the realized energy consumption to the maximum (Et) = (Emax

t ).
This ensures that EVs charge at full speed, aligning with the grid’s requirement to consume more
energy.

Subsequently, the model checks for a negative rebound (∆t < 0). If this is the case, the model com-
pares the IDM price (P IDM

t ) with P imb−
t . If P IDM

t > P dwn
t , it indicates a favourable market condition
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to sell the excess energy on the IDM instead of accepting the imbalance, thereby earning P IDM
t ·∆t.

In situations where the IDM price is smaller than the imbalance price, the model attempts to decrease
the volume of the negative rebound with (Emax

t − Efct
t ) by charging at maximum speed. Charging

at maximum speed helps to bring realized consumption closer to optimized consumption. If there is
no negative rebound or the IDM price is not favourable, the model accepts the imbalance and earns
∆t · P dwn

t .

Figure A8: Mathematical Formulation for Steering Up Decision for Model 3.
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Appendix D: Additional Data Set Evaluation

Additional Regulation States Analyses

The autocorrelation (the correlation between current and future regulation states) is represented in
Figure A9. The figure shows (partial) autocorrelation scores of 0.5, which can be explained by random
occurrences of regulating up (reg. state 1) and regulating down (reg. state -1) happening in the vast
majority of cases.

Figure A9: Autocorrelation of Regulation States.

As regulation states determine whether one is compensated for a negative or positive direction from
the forecast, understanding the dynamics of regulation states helps to understand the operating en-
vironment of the models. The occurrence of each of the regulation states per day of the week and
PTU throughout the day is examined, as this represents how often steering up and steering down
would be compensated. Figure A10 shows that compensation for down-regulation (regulation state 1)
occurs more often during workdays than weekend days. Moreover, it is seen in the right graph that
compensation for regulating up (regulation state -1) is more often seen in peak hours (17:00 - 20:00).
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Figure A10: Frequency of Regulation States per Day of the Week.

Figure A11: Frequency of Regulation States per Month
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Figure A12: Monthly Average Imbalance Prices per Regulation State.
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Additional Energy (Imbalance) Prices Analyses

Figure A13: Heatmap of Average Regulate Down Prices per Weekday & Hour.

FigureA13 shows that regulating down prices are relatively stable across weekdays, particularly during
the evening and night.
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Figure A14: Heatmap on Average IDM Prices per Weekday & Hour.

Figure A14 shows that IDM prices fluctuate significantly across hours and days, with peaks during
weekday evenings reaching e 150/MWh. Lower average prices are seen during the weekends, with a
minimum on Sunday midday of e 8.40/MWh, which is nearly 90% lower than on several weekdays
during that hour.

Figure A15 represents the price spreads (volatility) in imbalance prices per day.
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Figure A15: Imbalance Price Spreads.

Appendix E: Additional Results

Expected Lost Loads

By analyzing the time between the last PTU in which the EV was plugged in and the last PTU in
which the EV was charging, the average flexibility for steering actions is determined. Table A16 rep-
resents the probability that the stated amount of flexibility is available within the EV charging session ι.
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Figure A16: Flexibility Table.

Figure A17 presents the expected lost loads per PTU for every weekday, and shows that noticeable
peaks on Tuesday morning.
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Figure A17: Average Value of the Expected Lost Loads per PTU on Weekdays.

Figure A18 compares the forecasted loads with the lost loads, providing insight into the effectiveness
of the steering strategies in managing lost loads.

Figure A18: Forecasted and Lost Loads.
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Figure A19: The Probability of Hot Unplug from Steering Action in PTUs throughout the Week.

Steering Profits

Figure A20 provides a detailed view of the financial impact of individual steering actions.

Figure A20: Imbalance Results

Figure A21 represents the imbalance prices that triggered a steering action.
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Figure A21: Imbalance Prices During Steering Actions.

Figure A22: Impact of Rebound.

IDM Trading

Figure A23: IDM Trading Frequency.
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Figure A24: Effects of Model 3.

Figure A25: Savings per PTU from IDM Trading.
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