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Making Power Quality Monitoring more accessible
By emulating grid behavior and creating a tool to visualize power quality data.

Menno Ketelaar

Abstract—Power quality monitoring is becoming more and
more relevant, due to the increasing market penetration of
renewable energy sources. In addition to this power quality
monitoring is currently very costly and only done by large
power companies. This suffices if you are connected to a large
stable grid, but what if you want to make use of your own
generated power more effectively, or you have to manage a
smaller microgrid, mostly reliant on renewable sources. For
this reason, this paper first analyzes power quality and current
power quality monitoring. After which the problems with current
power quality monitoring are identified. Then a power-quality
monitoring (PQM) device is introduced and analyzed, such that
its behavior can be emulated. Then a visualization tool is used to
make its data more accessible. This work is done to increase the
effectiveness of the PQM-device and to show what can be done
with power quality monitoring if done effectively.

I. INTRODUCTION

Microgrids are a great way to create an electrical infras-
tructure in remote places, where there would normally not
be any electricity at all. Microgrids in combination with
renewable energy sources have large potential in developing
countries, due to the social, economic and environmental
benefits imposed by such a microgrid [1]. In addition to
that microgrids are also seeing an increase in relevance in
developed countries, where renewable energy sources are being
utilized more frequently to reduce carbon emissions [2]. In
developing countries, microgrids are likely to have outages
due to the the inconsistent nature of sustainable energy and the
unknown use cases of these microgrids. In developed countries
the increasing penetration of renewable energy sources can
cause the grid frequency stability to suffer, which in turn can
cause grid instability and in worse cases grid failures [3] [4].
To reduce the risk of grid failures and therefore, increase
the return of microgrids, data must be collected in order to
gain insight into what is causing these malfuntions. Therefore
new ways to monitor and maintain these microgrids should be
implemented and designed. To introduce the topic of power
quality a paper by Leferink [5] on increasing Electromagnetic
interference (EMI) issues will be discussed. In addition to
that 4 other scientific papers on power quality monitoring
will be discussed. Firstly the paper that discusses the design
of a relatively cheap and simple power quality monitor by
Grootjans and Moonen [6]. Then Kilter et al. [7], discuss
different purposes of power quality monitoring and present
guidelines on what types of measurements should be per-
formed to achieve this purpose are summarized. After which
Kamyshev et al. [8], discuss methods to detect events, such as
devices being connected to the grid, based on measurements
performed on the grid. Even though the work in this project

does not have a direct relation to the work presented in the
paper, the methodologies presented can be useful in the future
if the sampling rate of the PQM-device is changed to a higher
sampling rate, as attempted by de Graaff [9]. The last paper
has a similar goal to this project, as it discusses the OrigAMI
system in Poland, which is a system of over 180,000 smart
meters. Smolenski et al. [10], introduce a method to use the
current smart meters in a way such that PQ issues can be
located and resolved. These issues mostly occur in Poland,
due to the increasing amount of prosumers, i.e. consumers
who are also delivering energy to the grid, using sources like
photovoltaic installations. All in all these papers are supposed
to function as preparation and background knowledge to create
a data classification algorithm and practical user-interface for
the device designed in paper [6].

II. PROBLEM STATEMENT

Currently data is often only available to grid operators and if
there is data available for the consumer, it is often not presented
in a way that is easily perceived. Not only is the data not
available, it is also not recorded frequent enough that finding
out what devices cause PQ-events is straightforward. Regular
smart meters take measurements every 10 to 15 minutes, like in
Poland, where the reactive and active power measurements are
taken every 15 minutes and voltage and current measurements
every 10 minutes [10]. Therefore, in order to make power
quality monitoring accessible for consumers, or grid operators
of small grids, a new power quality monitoring device has been
designed, which takes measurements every 2 seconds and can
be deployed easily.

The power quality monitor device designed in [6] saves data,
such as the RMS-voltage, frequency and phase and sends it to
a server for storage. The data is in tabular format as can be
seen in Figure 1 and since no PQ events are flagged, the data
from the device is difficult to interpret for the user. This is
why a data qualification algorithm should be designed, coupled
to a useful user-interface. By classifying and detecting events
happening in the grid connected to the PQM, the cause of grid
malfunctions can be more easily identified. In addition to that
there should be an interface like in the OrigAMI system [10],
of which a screenshot can be seen in Figure 2 with an overview
of all deployed devices. This overview will make it easier
to monitor many different points in the low voltage grid. In
the case of the OrigAMI system the voltage is measured at
transformer stations [10] and shows in red when the voltage
is exceeding regulatory levels, or green when the voltage is
within the limits. Using the PQM-device designed, the voltage
can be measured at the consumer level of the grid, thus closer
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to the possible sources of disturbances, such as private PV-
installations or high impedance loads.

Fig. 1: A screenshot of part of the current way data is displayed

Therefore, this project can allow end users to deploy af-
fordable PQ-monitors in their house to monitor at what times
power is consumed and produced. This data can be used to
optimize their power usage, such that they consume more of
their own power, instead of power from the power company,
which results in costs saved on both consuming power, but also
delivering power to the grid. As in the Netherlands, prosumers
now have to pay a fee to the power company for delivering
power to the grid [11].

In addition to that it can also be deployed in microgrids,
to be used by the grid operator to gain insight in power
production and consumption. The device can be installed in
line with the power source, for example a PV-array. In this
case it is possible to monitor power production, in combination
with one or multiple devices, monitoring power consumption,
the grid operator can adapt consumption to reduce the chance
of grid failures. In addition to this, the PQM-devices can be
used to find points where disturbances occur, which allows the
operator to install a small energy storage device, to combat
these disturbances [10].

Therefore the goal of this project is to find out, how can
power quality monitor data be processed and displayed in a
user-interface, such that causes of grid malfunctions can easily
be identified and resolved.

III. RELATED WORK

The first paper by Leferink [5] introduces the topic of
conducted interference. Conducted interference is interference,

Fig. 2: Screenshot of the OrigAMI system interface [10]

which spreads from components which are physically con-
nected to each other via the grid. In the past this used to
consist mainly of the main hums and power supply harmonics
and flicker, however over time more devices have started to
create conducted interference. In 1987 a study was performed
on the grid in 4 different environments. This study measured
many voltage surges and transients, which were mostly caused
by lightning or relay switching in devices, since these were the
only known causes of conducted interference back then, these
are the only causes the following electromagnetic compatibility
(EMC) directive [12] attempted to address. After this EMC
directive was released by the European Union, regulations were
installed which then prompted industrialists to start protecting
their devices against these causes. In recent years no surges and
transients were measured, which is presumably caused by the
protection circuits also working on devices connected to the
same grid in parallel. Although this directive appears to have
addressed the most common EMI issues, other EMI challenges
caused by conducted interference persist. Leferink states that
they are currently observing an increase conducted interference
causing EMI issues. Currently society is moving more and
more towards creating so called smart cities. From an EMI
perspective, these are cities which have many energy efficient
power electronic devices and measuring devices attached to
the same grid. The energy efficient devices are often non-
linear, which results in more reactive power, which is often
overlooked when calculating power requirements. The mea-
suring devices are there to gain insight into the performance
of the network, but they also cause interference themselves.
Using many of these devices will require additional protective
devices, like varistors and filters to be used, which in turn
will causes large current spikes between devices. All of these
factors combined result in EMI issues in the 2-150 kHz range.
As of right now not enough attention is paid to these EMI
issues, which could cause problems in future cities, with even
more non-linear and power quality measuring devices.

The second related work is a paper describing the design of
a cost-effective and easy to implement power quality monitor
(PQM), by Grootjans and Moonen [6]. This paper describes
the design of an earlier iteration of the device for which a user
interface and data processing algorithm will be created. This
device is designed for use in multinode systems, where data
will be sent to a central unit for processing. The device uses
an ATM90E26 energy meter and a WSEN-HIDS humidity and
temperature sensor, which connects to an ESP32, where the
data is collected every 2 seconds and then grouped in chunks
before it is uploaded to the server. Since this data is collected
every 2 seconds and stored on an SD-card, detecting behaviour
of devices over a longer time period is simple. However, if a
certain device is plugged in and instantly overloads the grid,
then the device will not be of much use. One can argue that
this is irrelevant as when such a device is plugged in the user
will instantly notice that the grid malfunctions, however it still
should be taken into account that the sample rate may be too
low for certain applications. According to the paper the analog
signal is also connected to an ADC of the ESP32, which could
allow the device to take more samples of the signal directly,
however this may prove ineffective if the SD-card storage is
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TABLE I: Measurements produced by the device

Measurement Unit Description
Line Current ARMS Current
Voltage VRMS Voltage
Line mean active power W Used power
Line mean reactive power VAR Power flowing back and forth

due to capacitive and inductive loads
Frequency Hz Frequency
Line power factor kVA Ratio of active to apparent power
Phase angle ◦ (degrees) Phase angle with respect to

calibrated value
Line mean apparent power VA Sum of active and reactive power
Forward active energy Wh Consumed active energy
Reverse active energy Wh Exported active energy
Absolute active energy Wh Total active energy
Forward reactive energy Wh Consumed reactive energy
Reverse reactive energy Wh Exported reactive energy
Absolute reactive energy Wh Total reactive energy
Temperature ◦C
Humidity g/kg

filled quickly in combination with an unreliable network to
send the data to a central server for processing. In order to
find points of interest when an error occurs somewhere in
the network, multipoint power quality monitoring is essential.
Due to the affordability of this device, it would be easy to
implement multiple of these in a microgrid. The device also
has additional connections for extra sensors, for example for
measuring electric fields, which could make it applicable to
more complex grids with more devices connected as well. This
device is able to produce the measurements on the variables
in Table I with an error rate below 1%, which technically
would classify it as a type B energy meter. This device will
function as the backbone of the project.

Kilter et al. [7], recognizes the increase in power quality
monitoring and attempts to create a guideline for how power
quality should be measured for different applications. They
discuss 6 main reasons for PQM, for each they have listed
requirements in a table. It is to note that these guidelines
are based on research performed with respect to transmission
system operators and distribution system operators, which
are in most cases large companies controlling major grid
structures. These companies have large budgets for ensuring
their power quality is in order and will therefore be able to
afford expensive measuring equipment. In the case of the cost
effective PQM-device [6], some guidelines can be adhered to
somewhat loosely, as the device is mainly supposed to give
insight into what causes microgrids to malfunction, which is
on a much smaller scale. The paper recommends permanent
monitoring at high and medium voltage points, which may
not be relevant for microgrids; however, it would likely be
beneficial at the energy source. Nonetheless, this is not the
intended use of the device. The use case in this project is
mainly troubleshooting and performance analysis, for which
the requirements can be seen in a table from [7] in Figure 3.

For troubleshooting a sampling rate 500 kHz is recom-
mended, which is a lot higher than the 0.5 Hz the device
produces data at now, which may introduce difficulty when
encountering issues like transients or large inrush currents.

A paper by Kamyshev et al. [8] describes two methods
of energy disaggregation, which is a way of deconstructing

signals into more single appliance signatures. Aplliance sig-
natures are recognizable patterns within the grid current mea-
surements, from which can be concluded what type of device
is connected. Gaining insight into connected devices could
help to find which devices often cause grids to malfunction.
This paper discusses the drawbacks present in disaggregation,
due to overfitting on limited data and proposes a physics
based solution on both low and high sampling rate energy
measurements. Previously generated data was used to model
different appliances, however this is often limited to several
appliances, while in real households dozens of devices are
connected to the grid. Therefore, this paper focuses on methods
to generate appliance signatures, based on prior knowledge
on the characteristics of an electrical device. The methods
this paper discusses can be divided into two categories, high
and low sampling rates. The high sampling rate method [8],
samples the current of the grid with a very small sampling
period. This allows for a precise signature of a device to
be recorded. The spectrum of the frequency harmonics of
this signature are then described using a set of complex
variables. For the low sampling rate method [8], primitive
cycles are detected, primitive cycles here mean continuous
non-zero power consumption. These primitive cycles can be
deconstructed into five basis functions, which can be multiplied
by each other to form most primitive cycles found in the
REDD [13] and UK-DALE [14] datasets, that were used in
the paper. Using the synthetic dataset can prove useful if a
disaggregation algorithm is used to identify connected devices.
Considering that the device discussed in [6] only samples
once every 2 seconds, only the low sampling rate methods
are interesting at this time, however the high sampling rate
method could also be considered in the future if the device
would be set up differently, as should be possible according
to [6].

A different application of power quality monitoring, which
can also be done with the device mentioned in [6], is de-
scribed by Smolenski et al. [10]. This paper describes how
monitoring the power quality in different parts of the grid
can help power companies to gain insight into where they
should invest in power storage. In the case of this paper it is
not about microgrids, but more about managing an increasing
amount of energy sources installed by consumers, such as PV-
installations. These new power sources are all dependent on
the weather, causing the production to be unstable. When there
is a lot of power generated, but not used the power quality
of the grid drops, due to an increasing RMS voltage. This
happens locally, making it very difficult for grid operators
to manage these PQ-issues. Therefore, there is a regulation
which states that power generation with PV-panels should be
stopped when the voltage measured is above 253 V [10]. This
would however result in these PV-installation inverters to keep
switching on and off in certain intervals, which is undesirable
for both the prosumer and the distribution system operator.
Therefore energy storage installations could prove to be a
solution, such that the energy does not go to waste. Finding
where energy storage devices should be installed could be an
additional application of the PQM device and adding a location
tag to each of the power quality monitors when installed should
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Fig. 3: Guidelines on power quality monitoring in table form, from paper [7]
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not be too difficult. However, if the plugs can be accessed by
everyone then it might be necessary to implement some kind
of geolocation method, to maintain a correct location in the
database.

IV. METHOD

This project comprises three primary components: conduct-
ing research, processing and visualizing data, and, finally,
evaluating the current system to identify potential applications
and areas for improvement.

In the research phase, information was gathered on what data
is needed to qualify PQ-events and how this data can be used
to qualify PQ-events, this is already mostly done in section III.
Then in the second stage, the current state of the system has to
be assessed, emulated and then the processing system can be
created. Currently the PQ-monitors send out data to a database,
which is connected to a web interface of which a snippet can
be seen in Figure 1. This database will first be copied and
ran locally, such that the data processing can be done without
tampering with the actual live database. This is done to make
sure that none of the collected data is lost. An additional benefit
to the separate database, is that it is now possible to experiment
with simulated data and it is also possible to experiment with
other structures of the database, such as extra tables. Then any
added functionality to the database and flaws are discussed and
suggestions to improve the system in the future are made.

A. The setup
The testing setup was made in a program called Docker [15].

This program allows the user to make a container with images
of programs that you want to use. An image contains all neces-
sary information to recreate a program, in this case locally. In
the case of this project there are four images, PostgreSQL [16],
pgAdmin, Grafana [17] and a Python application. Postgres
runs the local database, pgAdmin is a graphical user interface
for Postgres that allows accessing and modyfing PostgreSQL
databases and Grafana is a tool to make dashboards with
functional visualizations of the data in the database. Lastly
Python was used to simulate data, since the dashboard is
not connected to the actual database used by the device. In
addition to that, actual measurements from the grid are less
likely to trigger alerts, since the grid in the Netherlands is quite
stable. Therefore, PQ-events were simulated, in order to test
the triggering of alerts. An overview of the architecture of this
setup can be seen in Figure 4, where the Python application
acts as a replacement for the measurements coming from the
PQM-device. At the time of writing this thesis three prototypes
of the PQM-Device were taken to Turkey, in order to perform
measurements in a hospital. This will likely result in data for
future use.

B. Database
The database was a copy of of the actual postgreSQL

database connected to the PQM-devices. This was done by
creating a backup of the live database and then restoring
it on the database ran in the Docker container. The current

Fig. 4: Architecture of the test setup

database consists of two main tables in which the data is
stored. In addition to that there are some tables for permission
groups and some for the old interface, which can be seen
in Figure 1. The two important tables are cloud device and
cloud measurement. The cloud device table contains the
device names and generates a unique incrementing device
id for each new name added to the table. The device name
has to be unique and is of the datatype “character varying”.
The device id is an integer of type bigint. The second table
cloud measurement also has an id of type bigint, which is
a unique incrementing number assigned to each row added
to the table. In addition to this id the measurements from
the ATM90E26 energy metering integrated circuit and from
the humidity sensor [6] accompanied by a timestamp and the
corresponding device id are stored in this table.

A proposed change that was made during this project, is the
addition of a new table. This table contains deployment data of
each device. In this table the device name are stored together
with the latitude, longitude and time and date of deployment.
This allows the dashboard to select the latest location of each
device and then show them on a map, such that the user will
have an easy overview of all deployed devices.
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C. The dashboard design

The user interface designed consists of one main page,
which allows the user to gain a quick overview of all de-
ployed devices, together with some important data and alerts.
Another page was created which allows the user to see specific
information of a device, such that once the location of the PQ
issue is found, that it can be further analysed.

To do this it is important to keep in mind the deployment
page, however the device specific page was first created, as
this is where all data is gathered and processed.

1) Device page: The device page presents the following
data:

• RMS Voltage over time
• RMS Current over time
• Power generated/consumed over time
• Grid frequency

From this data multiple PQ-events need to be derived and made
aware to the user: firstly voltage swells and dips, secondly
whether or not devices are connected to the PQ-monitor and
what class of power consumption it belongs to. Lastly any
abnormalities in the grid frequency should be noted.

To achieve this, a graph plotting the last hour of voltage
and power data was plotted. In addition to this a histogram
of the past frequency can be plotted, to show if there are any
abnormalities occurring in the frequency. Lastly PQ-events are
indicated through the use of alerts and annotations. Alerts only
work on current data, while annotations mark abnormalities in
the graphs, such that abnormalities which occurred in the past
can also easily be identified. On this page a single device can
be selected, such that the user can get a detailed overview of
that sensor.

2) Overview page: In the main overview page, the first thing
that is shown is a map, on which all deployed devices are be
visible. Then this map marks any devices where PQ-events
occur with a different colour, such that the user knows from
which device the specific data needs to be analysed. In addition
to this, the overview page has an alert list, which shows how
many PQ-events are occurring and in which device they occur.
This was decided, such that a user can quickly navigate to the
device page of a PQM-device where a PQ-event is measured.
The page should also show how many events occurred in the
past couple of hours, ideally this window can be selected on
the page, since the user will not monitor all devices at all times
and might miss the moment when PQ-events occur.

On the overview page, there should also be some statistics
from which the user can easily see if any PQ-events occurred
in the past 24 hours. This is useful when the operator has not
checked the dashboard recently, such that they are still being
informed about the past events or lack thereof. In the absence
of recorded events, the user is required to review only the
dashboard overview page once a day, a task that takes less
than one minute.

If PQ-events did occur, then it is possible for the user to
easily find the time period where these occurred and their
respective data, such as voltage and power consumption over
time.

D. Simulation of data

Data simulation is done using a python script. In the end
this script can run continuously, to emulate a connected PQ-
device. At first some extreme data was be simulated, in order
to test the data processing. This however gave an unrealistic
view of what the interface will eventually look like with real
data. Therefore, the data was made more realistic later. This is
done by analyzing what PQ-events look like, in order to test
the interface for a wide variety of events. An additional factor
in this research is gathering actual data with the device, such
that the emulated data is delivered to the database in the right
format.

A couple of key events are emulated:
• Voltage dips and swells
• High, medium and low power draw or production.
• Reactive, apparent and real power
• Device failure or disconnection
• Optional: Deviation from grid target frequency (50Hz)
Frequency monitoring is optional and will only be done if

there is time left. Since with the current system the frequency
monitoring is not really useful, due to the frequency being
stored as an integer.

1) General data emulation: The PQM-device takes a mea-
surement every 2 seconds and these are sent in chunks every 15
seconds. To closely resemble this a data point is made for every
2 seconds. The data is created in chunks of 16 seconds in order
to allow for more coherent data, as using purely random values
would not resemble true grid data very well. Since the Grafana
dashboard queries mostly in time ranges of 1 hour, starting the
Python script at some point for 5 minutes, results in a possibly
unusable selection of data, since the SQL query then selects 5
minutes of the current time and the 55 minutes of data before
that. If this is a long time ago, the timescale in the graph will
be extremely large, thus resulting in an unusable representation
of data. This can probably be resolved by changing the SQL
query, however this was not done at first since the PQ-devices
in a real situation, are running continuously. Therefore a startup
function was made within the Python application, which makes
sure that there is at least 1 hour of data before the current time.
The data generated in the startup function is mostly around
the expected mean values of most parameters, as generating
realistic signatures is easier to do within the smaller chunks,
rather than one large chunk of data. Another important feature
of the current database is that all values are stored as integers,
therefore the columns for voltage, current and power are stored
in millivolts, milliamps, milliwatts respectively. Therefore all
data is also generated in this order of unit, such that the
simulated data is in the same format as the real data.

2) Voltage dips and swells: In order to simulate voltage
dips and swells the voltage was emulated first. This was done
by generating small chunks of voltage varying slightly with a
uniform distribution around a mean value chosen per chunk.
Here a base value of 230 Volts is used, after which the base
value will be set to the last value of the last chunk. Every
time a new chunk is created the mean voltage level will be
changed by a random value between -1.5 and +1.5 Volts. This
should result in a voltage level fluctuating relatively slowly
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and sometimes triggering a voltage alert, ideally approximately
once every couple of hours.

3) High, Medium and low power draw or production:
Power consumption is related to voltage and current, so it is
simulated in relation with the voltage and current. Therefore
the current draw was first simulated, there is a chance of it
being zero, meaning that there is no device connected in line
with the PQM-device. However there is also a chance that
a device is connected. This is decided based on a random
number generated, but also the previous state. As it is not
logical for a device to be connected for only 16 seconds at a
time. If the script is in the device connected state it will pick a
random current between -10000mA and 10000mA, such that
it can also emulate generated power, e.g. from PV-installations
connected to the device. It is unlikely for this device to both
be connected to a power generating and a power consuming
device at the same time, however it would be possible and
the grafana dashboard should be able to show either properly.
Within grafana the power levels are classified based on their
current draw or delivery.

4) Power: From the generated current values, the power
draw or generation can be calculated. In order to emulate
reactive and real power in addition to apparent power the phase
angle was also generated. Apparent power will be calculated
by multiplying the RMS Voltage and current, then the phase
angle is determined per value of current. To first get an idea
of how the device measures reactive, real and apparent power,
measurements have been be performed with different loads.
Based on this the phase angle was simulated with the python
script. The phase angle will mostly correspond to a normal
power factor of above 0.9, however there is a small chance that
the phase angle is larger, such that the power factor is below
0.9, in that case the dashboard should show a notification.

5) Device failure or disconnection: When a device is dis-
connected the current will become zero, which sends an alert
to the grafana dashboard.

6) Stability of grid frequency: In the current iteration of the
PQM-device, the grid frequency is measured and stored as an
integer, however in a real grid, the frequency can slightly differ
based on the loads or power supplies connected. These small
differences could have an effect on grid stability and the life
cycle of devices connected to the grid. Therefore it would be
useful for research if the frequency is stored as a float instead
of an integer. For this more research would have to be done in
order to figure out the relation with PQ issues and the stability
of the frequency. It should be relatively easy to change the
data type to a float, and therefore it will also be simulated as
a float.

V. IMPLEMENTATION

A. The setup
At first the setup was made to run locally on a windows

laptop, however it was soon found that running it through
docker would make it easier to manage. Setting up the docker
containers was quite simple and was done using a compose
file, which can be found in subsection IX-B. In here the ports
of the container images were defined, together with respective

Fig. 5: Screenshot of the new table with deployment data

usernames and passwords such that the containers can interact
with each other.

B. Database
As mentioned in subsection IV-B the database in the docker

container is created based of of a backup of the live database.
This results in a TAR file, which can then be imported through
pgAdmin into the local database. Before it was possible to
import this TAR file, a permission group had to be made
which is equal to the permission group in the live database,
such that the backup could be restored. After this was done a
table called cloud device location was added which contains
the deployment data of the devices as discussed in subsec-
tion IV-B. The data structure of this table can be seen in
Figure 5 and SQL code which generates this table can be found
in subsection IX-C.

C. The design
In grafana two dashboards were created and connected to

the database, the first dashboard shows data of a specific
PQM-device, the other one shows an overview of all selected
deployed devices.

D. Device page
The device page gives a detailed overview with graphs, such

that relations between different variables can be analysed. An
example of this is the current draw and grid voltage, if there is
a large voltage drop in the grid, it is most likely due to a device
being connected which draws a lot of current. Therefore, these
graphs are below each other. In addition to this there is also a
graph showing apparent, reactive and real power. These graphs
were created with similar SQL queries all selecting data based
on the device selected in the dropdown menu at the top of the
page. This page also creates alerts based on the last data in
the database. This is done to indicate voltage dips, swells, but
also large power consumption or generation. The queries used
on this page can be found under subsection IX-D.

1) Voltage monitoring: The first graph that is implemented
is the voltage graph. By default this graph shows the last 1 hour
of data of the device selected in the dropdown menu, however
other time frames can also be selected with Grafana. In order
to make it easier for the user to interpret the voltage a couple
of voltage levels were defined. These are normal, low, high, too
low or too high. Normal is defined as a voltage between 220
volts and 240 volts, this was chosen because the grid is made to
have a voltage of 230 volts RMS and the voltage may fluctuate
slightly, without any negative consequences. Low is between
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Fig. 6: High voltage alert in the Grafana [17] dashboard

Value [A] Label
I <0 Power being delivered to grid
I = 0 No current draw
0 <I <1 Low power draw
1 ≤ I <5 Medium power draw
I ≥ 5 High power draw

TABLE II: Current value to annotation label mapping

207 and 220 volts and high is between 240 and 253 volts,
these ranges are getting close to the definition of a voltage dip
or swell, namely at a 10% offset. If the voltage is below 207
volts, then the voltage drop can be classified as a voltage dip,
this is considered too low, since it dropped 10% below the level
it is supposed to be. If the voltage is above 253 volts, then it
can be classified as a voltage swell, since the voltage is 10%
above the level that it is supposed to be. For these levels alerts
are created, the voltage is high alert is shown in Figure 6. The
alert below it, is for the other devices, for which the voltage
level is currently normal. Since they are not receiving any data,
they remain constant.

2) Current monitoring: The current graph does not have
levels as the voltage graph, since there are no ”correct” or
”wrong” current levels defined. Therefore, the current graph
shows annotations when a device is connected or disconnected.
Annotations are dashed lines and when hovering above them
a description of the annotation is shown. The annotations and
their conditions can be seen in Table II

In addition to the annotations there are also alerts, showing
the current state of the current level measured by the device.
An example of this alert can be seen in Figure 7, where the
alert which is happening since 30 seconds corresponds to the
graph shown, the other alerts are from other devices, which
are currently inactive.

3) Power monitoring: The power graph shows 5 different
parameters, which are: the power factor, the phase angle
and the real, reactive and apparent power. The power factor
shows how efficient the apparent power is being utilized, this

Fig. 7: A screenshot of the current graph, its annotations and
alerts in Grafana

Fig. 8: A screenshot of the power graph in Grafana, with an
annotation

Fig. 9: Average frequency shown in Grafana gauge

parameter is also alerted on if it is below 0.8, since this results
in larger energy losses [18]. It is difficult to determine how
severe this low power factor is, since it depends on the draw
of the power and how resilient the grid is to voltage drops
and swells. However the EU has regulations which state that
the power supplies of desktop computers should have a power
factor of at least 0.9 at full load [19]. An example of how this
power monitoring looks can be seen in Figure 8, where the
annotation was moved, such that it can be seen in the same
figure. The power factor is also given as a percentage, since
the database can only store integers as of right now.

4) Frequency monitoring: The device page also shows a
frequency panel, this states the average frequency of the past
hour. This panel was supposed to be replaced by a histogram,
however in the current state of the device, the frequency is
stored as an integer, so only fluctuates between 49 and 50
Hertz. Further research should be done on a proper imple-
mentation of frequency monitoring. If the frequency would be
stored as a float, displaying the frequency in a graph would
most likely be the most insightful, since its data can then be
correlated with the other data. As of now the frequency is not
simulated to be any other value then 50Hz, therefore there is
only an average frequency of the past hour shown with a gauge,
which always displays 50Hz, this can be seen in Figure 9.

E. Overview page

In the top of the overview page a dropdown menu can be
used to select which devices should be shown on the map.
Next to the map there is a section where alerts are shown about
all deployed devices. Below the map there is a table with all
deployed devices, where a device can be clicked to view the
details of that device. In section IV it was mentioned that a
counter or a list of all alerts of the past 24 hours should be



9

Fig. 10: A screenshot of the overview page in the Grafana
dashboard, also larger in Figure 14

added. This has unfortunately not happened. There is no simple
way to achieve this in Grafana and due to time constraints more
effort was put into the device page. The alert list does show
all current voltage and current alerts. The dropdown menu can
be used to select which devices need to be included on the
map and which devices their voltage needs to be put into the
voltage histogram. The histogram takes the last hour of data
from all of the selected devices and plots them, this way it
is easy to see how stable or unstable the voltage has been in
the past hour for all devices. A screenshot of this page can
be seen in Figure 10. Currently the color of the blip does not
change based on its current voltage, however this would be a
nice addition inspired by Smolenski et al. [10]. The queries
used in the overview page can be found in subsection IX-E.

F. Simulation of data
In order to simulate measurements taken by the PQM-

device, the current state of the device was assessed. As
mentioned in section II and subsection IV-D, the device takes
a measurement every 2 seconds and are sent in chunks every
15 seconds. Since 15 seconds is not divisible by 2 and it is not
efficient to create a queue of rows and then send as many as
possible every 15 seconds in a system where the connection
is always stable, the chunks are sent every 16 seconds instead.
The connection in the simulation is always stable, because
both the Python application and the database run on the same
system. As mentioned above, the simulation of data is done in
a Python script, of which the functionality is described in de
following subsections. The data simulation script can be found
in subsection IX-F.

1) Setup: In order to generate rows and send them to the
database, a couple of libraries were used. The first library
used is NumPy [20]. This library was used to create and
alter arrays and to generate random and uniform distributed
data. The second library used is psycopg2 [21]. This library
allows a Python script to interact with a PostgreSQL database.
Furthermore, three Python modules had to be imported, these
are time [22], math [23] and datetime [24]. The time module
is used for the sleep function, such that the time between data
chunks does not load the system it is running on unneccesarily.

The math module is used to perform certain calculations and
to round values. The datetime module is used to get, convert
and calculate timestamps.

After the important components required to make the code
function are imported the functions are defined, which are
discussed in their corresponding sections. And some variables
can be set. The variables that need to be set are: the device
id, the simulation time, the base voltage, the voltage deviation,
the amount of rows in one data chunk and the information to
connect to the database. In addition to this two global variables
are declared, namely the last voltage and the last current. This
is done such that the functions can use the data from the
previous chunks to create more realistic looking data.

The device id simply has to be set to the unique increment-
ing integer corresponding to the device you want to generate
data for. This id can be found in the cloud device table for
its corresponding device name.

The simulation time defines for how many minutes the
Python application should generate data.

The base voltage defines the average voltage, for which you
want to generate data, this can be useful if you want to simulate
different kind of grids, in this case it was set to 230 Volts, since
this is normal for most European grids, however in the US the
grid voltage is around 120 Volts [25].

The voltage deviation is the maximum positive or negative
deviation that can happen within the voltage of a chunk,
which is generated with a uniform distribution around a value
generated per chunk as is discussed in subsubsection V-F3.

Lastly the information required to connect to the database
is stored in a psycopg2.connect object. This information
includes: the database its hostname, its port, the username,
the password and the database name.

2) Startup cycle: The startup cycle of the Python application
is ran every time that the application is started. This function
first checks what the last datapoint in the database is, for the
device id for which data is being generated. If this datapoint is
further than one hour in the past compared to the current time,
the function creates data from 1 hour in the past to the current
time and then start generating the data chunks as normal. If
the last datapoint is less than one hour in the past, then the
script simply creates datapoints between the timestamp of the
last datapoint and the current time. To achieve this the startup
function uses the same functions as the main loop, however
it uploads the data in one large chunk, instead of uploading a
small chunk every 16 seconds. As mentioned, this results in it
just varying the voltage uniformly around 230 Volts with the
specified voltage deviation.

3) Voltage simulation: Simulating the voltage was done as
specified in subsection IV-D. Normally voltage levels in a grid
depend on a lot of factors, such as loads connected, but also on
the current power of the sun if PV-installations are connected,
or wind strength if there are windmills connected. However in
this case to keep the simulation relatively simple, no external
factors were modeled. Since this simulation of data functions
as a way to test a dashboard and its accompanying features,
with which insight can be gained in the power quality of the
network.

The voltage simulation function has a couple of steps, first
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Fig. 11: Flowchart of the current gen function

it checks the last voltage entered into the database. If this is
within 205 and 255 volts, a random value between -1500mV
and 1500mV is picked, which is then added to the last value
entered, the sum of this then becomes the new base value.
The voltage generation function then creates an array with
the length of one chunk which contains a uniform distribution
around the new base voltage with a deviation of plus or minus
the voltage deviation specified earlier. If the voltage is outside
of this range, so smaller than 205 volts or larger than 255
volts, then the random value added to create the new base
value is biased to make sure the voltage value does not diverge
too much from regular values. So in the case of the last
voltage being smaller than 205 volts the random value is picked
between -500mV and 1800mV and if the last voltage is larger
than 255 volts the random value is picked between -1800mV
and 500mV. These values were determined based on trial and
error, using these values the voltage levels were simulated
according to the desired specifications in subsection IV-D.

4) Current simulation: The current simulation is done in
a similar data type as the voltage, namely an array with
the length of a chunk size. What is different however is
that the voltage level constantly should have a value, often
around 230 volts, while the current level depends on whether a
device is connected to the PQM-device. Therefore, the current
generation function is also based on chance, however in this
case there is a small chance per chunk that the value has to
switch from 0 amperes to a positive or negative randomly
generated value or the other way around. The larger chance
is that the value of the current remains the same. A flowchart
of this function can be seen in Figure 11, where the value
generated is a random value between 0 and 1 and the small
chance is 13%, therefore it is checked if the value is smaller
than 0.13.

5) Power: Real measurements were taken of a vacuum
cleaner being connected in line with the PQM-device to the
grid, this data was then visualized in the Grafana dashboard,
but also inspected in pgAdmin in order analyze what pa-

rameters are recorded and how they relate to each other.
From the data that can be seen in Figure 13. From this the
conclusion was drawn that the voltage and current multiplied
approximately equal the mean apparent power. To verify this
the average absolute error in this assumption was calculated
using the 243 rows of data from this measurement which
contained power values, this is equal to 7.8 minutes of data.
This calculation was done using an excel sheet made by
exporting the results of the SQL query showing the right time
frame. This resulted in an average error of approximately 121
millivolts.

In order to generate data for the three different types of
power that are measured: real, reactive and apparent power.
First the apparent power is calculated based on the voltage
and current, simply by multiplying the arrays of voltages and
currents with each other and then the phase angle for the
device is generated in order to calculate the real and reactive
power. This is done such that all power data generated obeys
the laws of physics and therefore should give an accurate
representation of real data. For each load with a different con-
stant current draw, there is a corresponding relatively constant
phase angle. Therefore, a new phase angle is generated every
time the current changes. The phase angle further depends
on the impedance of the load, which depends on the type
of device connected. This is however not simulated, so the
phase angle only depends on the current, while keeping a
relatively normal power factor. This was the method discussed
in subsection IV-D, however for power quality monitoring it
is more interesting to detect whether a device has a bad power
factor as opposed to a certain phase angle. Therefore, the phase
angle was determined from the power factor and not the other
way around. In this case it is simulated that there is a 20%
chance at a device with a bad power factor, between 0.4 and
0.8 and a 80% chance at a device with a power factor between
0.9 and 0.98. After which the phase angle can be calculated
using Equation 1 from Cadence [26].

PF = cosφ =
Re[S]

|S|
φ = arccos (PF )

(1)

Then using the power triangle [27], which is a right angled
triangle which shows the relation between apparent, real and
reactive power, the equations for the corresponding real and
reactive power can be derived. These can be found in Equa-
tion 2.

Preal = P = S cos (φ) [W ]

Preactive = Q = S sin (φ) [V AR]
(2)

Now the reactive and real power can be calculated as well.
After which the reactive, real and apparent power are returned
to the main function together with the phase angle and the
power factor. A flowchart of this function can be seen in
Figure 12
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Fig. 12: Flowchart of the gen power function

VI. USAGE

In order to evaluate how the implementation of the dash-
board works, a segment of data measured by the PQM-device
was analysed using the Grafana dashboard. The data recorded
is of a vacuum cleaner being used, then turned to a different
setting for a short period of time and then returned to the
original setting and turned off.

A screenshot of the dashboard is shown in Figure 13. In this
screenshot multiple grid parameters are shown in graph form,
these are: RMS voltage, RMS current, mean apparent power,
mean actual power, mean reactive power and the phase angle.
As an operator of a small scale grid these measurements can
be useful to monitor grid performance under heavy load. Note
that the phase angle is plotted here opposed to the normally
plotted power factor. This is done, because there was no power
factor data for these measurements, or there was data, but every
entry was zero. The cause of this and a possible solution are
discussed in section VII.

Starting at the top graph we can see that the voltage
always remains within the orange lines, which means that the
voltage is within normal limits. If it were to reach beyond the
orange lines the voltage level would be moving towards being
classified as a dip or swell. However, outside of the red lines
the voltage level would classify as a dip or swell. When the
load is connected, in this case the vacuum cleaner being turned
on, a drop in voltage can be seen, at the same time the current
spikes shortly and then stabilizes at an almost constant level.
The red dashed line in the current graph shows that a device is
being connected, by hovering above this marker, one can also
see at what power class it is classified. This shows that the
vacuum cleaner falls into the high power device class at first,
however after stabilizing, it is in the medium power class. With
this classification devices using less than approximately 1150
Watts fall under the medium power devices. This means that
most household devices, are within the low and medium power
class, however kitchen appliances, such as electric kettles and

Fig. 13: Screenshot of the dashboard showing real data

ovens, will likely fall under the high power class. We can
also look at the power graph, here the phase angle is very
low and stable at first, which results in a high power factor,
which means that almost all power is used effectively. Later
however, the phase angle rises and the power draw decreases,
this happened because the vacuum cleaner was turned to a
lower setting. This most likely happened because the load on
the motor was reduced, as said by Kamran:”When the load on
the motor is small, its power factor reduces to 0.2–0.3 and it
increases to 0.8–0.9 at full load.” [28]. This of course depends
on the type of motor, however the general message can be
applied to any motor. From the graph it can be seen that the
power factor drops significantly. While in this case the rise in
reactive power was not significant enough to cause any issues,
in smaller and less stable grids, a device with a low power
factor could result in a large generation of reactive power, thus
increasing the grid voltage. It is also visible that even though
the current draw is only reduced by around 25%, the voltage
of the grid is almost back at its normal level.

VII. DISCUSSION

A dashboard was designed for the PQM-device designed by
Grootjans and Moonen [6]. In addition to this a full system was
setup to mimic the current PQM-device and the corresponding
database. This was done such that changes could be made to
the database, without tampering with real data. This dashboard
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visualizes the data from the simulated PQM-device in such a
way, that it is possible for users with little to no expertise in the
PQ field to monitor their own grid locally. In addition to this,
it is also possible to monitor multiple devices at once using
the overview page, such that this system is also interesting
for operators of microgrids. Before the Grafana dashboard is
deployed in the real world, some configurations still need to
be changed, such as the logging of alerts, which should be
quite easy with Grafana, since it can mail alerts to an email
address. With the dashboard a user can derive if a large load
should or should not be connected to the grid, by looking at the
voltage graphs, or checking if there are any alerts indicating
problems with the grid. In addition to that the queries in
Grafana, sometimes take quite a long time to return all the
data, this is partially caused due to limited resources available
to the programs through docker. However the queries are also
not optimized to the fullest extent yet, since some optimization
ideas are difficult to achieve in combination with Grafana
and PostgreSQL. The simulation of data was done with a
Python script, in order to achieve this simulation the PQM-
device its output was analysed first. After which the simulation
of data was done with some aspects depending on chance,
however most aspects are calculated using proven theories,
therefore resulting in quite realistic data. However, the way
that the voltage rises or falls is not quite realistic as it does
not depend on the load connected, but rather just climbs and
falls randomly. The other thing which is done randomly is the
connection and disconnection of a device, this is hard to avoid,
however could be improved by creating a couple of predefined
signatures of devices being plugged in and disconnected. For
example based on the work by Kamyshev et al. [8]. Linking
the voltage level to the current and power data would be
a great improvement and could turn this relatively simple
Python script into an interesting model for testing the effect
of certain devices on a specific grid. This could be done by
implementing a weight factor based on the total size and
stability of the grid. To implement this a grid would first
have to be analyzed thoroughly, however this could be done
in future work. The dashboard works quite well, however
could be improved by adding some extra functionality, namely
frequency monitoring and a more advanced deployment page.
The deployment page could be improved by making alerts
visible in the map, or getting specific PQ information by
hovering over a device on the map. In addition to this if alerts
could be customized in Grafana this would also allow for more
readable and compact alerting, therefore increasing the amount
of alerts that can be shown, such as recent alerts, instead of
only current alerts and also just showing the necessary data.
Frequency monitoring is becoming more relevant due to the
increasing usage of renewable sources in the grid, which results
in less frequency stability [4]. However, to implement this the
frequency monitoring of the device needs to be updated, right
now it is stored in the database as an int, however it should
be stored as a float, such that deviations below 1Hz can also
be observed. Another variable that needs to be changed is the
power factor, right now it does not seem store anything in
the database, which could be due to it being a float stored
as an int and therefore always truncating the number to 0,

since power factor is between 0 and 1. The last improvement
that can be made to the database is adding a table which
contains data on the location of the device. This was done in
the test database and allows a user to get a quick overview
of all deployed devices on a map. This is useful if there
are multiple devices deployed throughout a small town and
the location of a PQ problem needs to be found, such that
the cause can be investigated. Currently it is not possible in
the dashboard to select a larger amount of time than 1 hour
at once. This is because the time window selected cannot
be used in PostgreSQL queries. It may be possible with a
workaround, however it is currently not supported by Grafana
by default. A possible solution for this could be switching from
PostgreSQL [16] to Prometheus [29], which has a database
structure based on time series data, which is exactly what
the PQM-device uses, it also allows for easy alerting and
monitoring. Querying data should also be more efficient with
Prometheus resulting in a more responsive dashboard. Another
feature that could be implemented in the future is analyzing
data on a daily basis to check if there are any recurring
patterns, such as voltage level changes at a recurring time,
which could be caused by high loads being disconnected at
the end of a workday. This way certain PQ-issues could be
prevented, by either connecting or disconnecting a device at
or before that time. Lastly local energy storage devices could
also be connected based on the data from the PQM-device,
such as suggested by Smolenski et al. [10].

VIII. CONCLUSION

First of all the importance of power quality monitoring was
analyzed and discussed, after which a PQM-device by Groot-
jans and Moonen [6] was introduced. This device was created
to make in-depth and distributed power quality monitoring
more accessible and affordable. The output of this device was
then analyzed in order to get an idea of how to visualize
this data in a more accessible way. It was then decided
that this visualization should be done in a dashboard type
of environment, ideally accessible from any browser on any
device. In order to assist in developing this dashboard data was
required, at first a copy was made of real data, however this
data did not contain specific events, which were interesting to
monitor or act upon with alerting features. Therefore, research
was done into power quality in general and power quality
monitoring. In order to both work on the simulation of data
and creating the dashboard within a relatively small period of
time, an off-the-shelf data monitoring platform, Grafana [17]
was used. In the end a significant improvement to the currently
existing PQM-device its ecosystem was made, by developing
a tool in Grafana, which can graphically visualize the data.
The data can easily be selected based on a time range and
a drop-down menu to select a device. In addition to this a
second page, where an overview of all deployed devices can
be seen, was created. This page shows current alerts and in
which device it occurs, such that the user can take a closer
look at the data of that device. When taking a look at the data
of a specific device in a specific time range, the user is assisted
by some features, which create alerts of current occurrences
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and annotations in the graphs containing the data to classify
events. In addition to this a first step has been made towards
creating a mathematically correct model for simulating PQ-
events. Unfortunately linking the voltage to the current and
power draw was not done, however this would greatly improve
the simulation system. In addition to this realistic current
signatures inspired by the data from Kamyshev et al. [8] could
be made for devices and then inserted in this program to model
certain grid responses. Furthermore, certain suggestions have
been made to improve the functionality of the current system
its database, such as changing the frequency and power factor
data to floats and adding a table to contain information about
the deployment of devices.

Ultimately this project first shows the importance of power
quality monitoring, analyzes ways in which it is currently done
and identifies problems in current power quality monitoring.
Then introduces a device, which could make power quality
monitoring more accessible and then discusses the design of
a grid emulating Python application in order to assist in the
creation of a graphical user interface for this device. The
simulation and the dashboard are both not currently a finished
product, however do show a potential final form of the PQM-
device [6] and the systems surrounding it.
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IX. APPENDIX

A. Enlarged figures

Fig. 14: Enlarged version of Figure 10



15

B. Docker compose file

1 services:
2 db-new:
3 image: postgres
4 restart: always
5 environment:
6 POSTGRES_PASSWORD: ****
7 POSTGRES_USER: postgres
8 POSTGRES_DB: local_PQ
9 volumes:

10 - pgdata:/var/lib/postgresql/data
11 ports:
12 - 5432:5432
13 pgadmin4:
14 container_name: pgadmin4
15 image: dpage/pgadmin4:latest
16 restart: always
17 ports:
18 - 80:80
19 environment:
20 - PGADMIN_DEFAULT_EMAIL=default@default.com
21 - PGADMIN_DEFAULT_PASSWORD=default
22 grafana:
23 container_name: grafana
24 image: grafana/grafana-enterprise
25 restart: unless-stopped
26 user: ’0’
27 ports:
28 - 3000:3000
29 volumes:
30 - grafana:/var/lib/grafana
31 python_app:
32 build:
33 context: .
34 dockerfile: fake_data/docker/dockerfile
35 volumes:
36 - ./fake_data/docker:/usr/app/src
37 ports:
38 - "2000:2000"
39 volumes:
40 pgdata:
41 grafana:
42 python_app:

Listing 1: Docker compose file
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C. SQL code of the new suggested cloud device location table

1 CREATE TABLE IF NOT EXISTS public.cloud_device_location
2 (
3 id bigint NOT NULL GENERATED BY DEFAULT AS IDENTITY ( INCREMENT 1 START 1 MINVALUE 1 MAXVALUE

9223372036854775807 CACHE 1 ),
4 device character varying(17) COLLATE pg_catalog."default" NOT NULL,
5 latitude double precision NOT NULL,
6 longitude double precision NOT NULL,
7 deploy_date timestamp without time zone NOT NULL,
8 CONSTRAINT cloud_device_location_pkey PRIMARY KEY (id)
9 )

Listing 2: SQL code of the cloud device location table
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D. Grafana device page postgreSQL queries

1 SELECT (voltagerms::float / 1000) AS voltagerms, cast(datetime as timestamp)-INTERVAL ’1 hour’
2 FROM cloud_measurement
3 WHERE device_id= (SELECT id FROM cloud_device WHERE device = ’$Device_name’ )
4 AND datetime < ’2050-06-23T20:55:33Z’
5 ORDER BY datetime DESC
6 LIMIT 1800

Listing 3: Voltage selection query for voltage graph

1 WITH last_hour AS
2 (
3 SELECT DISTINCT ON (device_id) device_id, (voltagerms::float / 1000) AS voltagerms, datetime FROM

cloud_measurement
4 WHERE datetime < ’2050-06-23T20:55:33Z’
5 ORDER BY device_id DESC
6 LIMIT 1800
7 )
8

9 SELECT cast(d.device AS varchar), voltagerms, datetime
10 FROM last_hour data
11 JOIN cloud_device d ON data.device_id = d.id
12 WHERE data.device_id = d.id;

Listing 4: Voltage alert query. Using threshold logic in Grafana, this query was used for all voltage related alerts.

1 SELECT (lcurrentrms::float/1000) AS currentrms, cast(datetime as timestamp)-INTERVAL ’1 hour’ FROM
cloud_measurement

2 WHERE device_id = (SELECT id FROM cloud_device WHERE device = ’$Device_name’ ) AND datetime < ’2050-06-23T20
:55:33Z’

3 ORDER BY datetime DESC
4 LIMIT 1800

Listing 5: Current selection query

1 WITH last_hour AS
2 (
3 SELECT DISTINCT ON (device_id) device_id, (lcurrentrms::float / 1000) AS lcurrentrms, datetime FROM

cloud_measurement
4 WHERE datetime < ’2050-06-23T20:55:33Z’
5 ORDER BY device_id DESC
6 LIMIT 1800
7 )
8

9 SELECT cast(d.device AS varchar), lcurrentrms, datetime
10 FROM last_hour data
11 JOIN cloud_device d ON data.device_id = d.id
12 WHERE data.device_id = d.id;

Listing 6: Current alert query, Grafana thresholds were used to trigger the alert with the right name
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1 WITH RankedEntries AS (
2 SELECT lcurrentrms, cast(datetime as timestamp)-INTERVAL ’1 hour’ AS datetime,
3 ROW_NUMBER() OVER (PARTITION BY device_id ORDER BY datetime DESC) AS row_num
4 FROM cloud_measurement
5 WHERE datetime < ’2050-06-23T20:55:33Z’ AND device_id= (SELECT id FROM cloud_device WHERE device = ’

$Device_name’ )
6 ),
7 last_hour AS
8 (
9 SELECT lcurrentrms, cast(datetime as timestamp)

10 FROM RankedEntries
11 ORDER BY datetime DESC
12 LIMIT 1800
13 ),
14 state_text AS
15 (
16 SELECT lcurrentrms, datetime,
17 CASE
18 WHEN lcurrentrms BETWEEN ’1’ AND ’1000’ THEN ’Low current device connected’
19 WHEN lcurrentrms BETWEEN ’1000’ AND ’5000’ THEN ’Medium current device connected’
20 WHEN lcurrentrms > ’5000’ THEN ’High power draw’
21 WHEN lcurrentrms < ’0’ THEN ’Power being delivered to grid’
22 ELSE ’No current draw’
23 END AS state_text
24 FROM last_hour
25 ),
26 difference AS
27 (
28 SELECT lcurrentrms, datetime, state_text, LAG(state_text, 1)
29 OVER (
30 ORDER BY datetime ASC
31 ) prev_state_text
32 FROM state_text
33 )
34 SELECT lcurrentrms, datetime, state_text
35 FROM difference
36 WHERE state_text != prev_state_text

Listing 7: Current annotation query

1 SELECT lmeanactpower::float/1000 AS lmeanactpower,
2 lmeanreactpower::float/1000 AS lmeanreactpower,
3 meanapparantpower::float/1000 AS meanapparantpower,
4 lpowerfactor,
5 cast(datetime as timestamp)-INTERVAL ’1 hour’
6 FROM cloud_measurement
7 WHERE device_id= (SELECT id FROM cloud_device WHERE device = ’$Device_name’ ) AND datetime < ’2050-06-23T20

:55:33Z’
8 ORDER BY datetime DESC
9 LIMIT 1800

Listing 8: Power selection query
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1 WITH RankedEntries AS (
2 SELECT lpowerfactor, cast(datetime as timestamp)-INTERVAL ’1 hour’ AS datetime,
3 ROW_NUMBER() OVER (PARTITION BY device_id ORDER BY datetime DESC) AS row_num
4 FROM cloud_measurement
5 WHERE datetime < ’2050-06-23T20:55:33Z’ AND device_id= (SELECT id FROM cloud_device WHERE device = ’

$Device_name’ )
6 ),
7 last_hour AS
8 (
9 SELECT lpowerfactor, cast(datetime as timestamp)

10 FROM RankedEntries
11 ORDER BY datetime DESC
12 LIMIT 1800
13 ),
14 state_text AS
15 (
16 SELECT lpowerfactor, datetime,
17 CASE
18 WHEN lpowerfactor < ’80’ THEN ’Low power factor detected’
19 ELSE ’High power factor detected’
20 END AS state_text
21 FROM last_hour
22 ),
23 difference AS
24 (
25 SELECT lpowerfactor, datetime, state_text, LAG(state_text, 1)
26 OVER (
27 ORDER BY datetime ASC
28 ) prev_state_text
29 FROM state_text
30 )
31 SELECT lpowerfactor, datetime, state_text
32 FROM difference
33 WHERE state_text != prev_state_text

Listing 9: Power factor annotation

E. Grafana Overview page queries

1 SELECT device, latitude, longitude, MAX(deploy_date) as deploy_date FROM cloud_device_location
2 WHERE device IN ($Devices) GROUP BY device, latitude, longitude

Listing 10: Location selection query

1 WITH NumberedRows AS (
2 SELECT
3 voltagerms::float / 1000 AS voltagerms,
4 device_id,
5 datetime,
6 ROW_NUMBER() OVER (PARTITION BY device_id ORDER BY datetime DESC) AS row_num
7 FROM
8 cloud_measurement
9 WHERE

10 device_id IN (SELECT id FROM cloud_device WHERE device IN ( $Devices ))
11 AND datetime < ’2050-06-23T20:55:33Z’
12 )
13 SELECT
14 datetime,
15 voltagerms
16 FROM
17 NumberedRows
18 WHERE
19 row_num <= 1800
20 ORDER BY
21 datetime DESC;

Listing 11: Voltage histogram selection query
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F. Python script

1 import numpy as np
2 import psycopg2
3 import time
4 import math
5 from datetime import datetime, timedelta
6

7 #Function which generates the current values to be inserted
8 def gen_current(num_rows, last_current):
9 fake_current = np.array([])

10 if (np.random.rand(1,1) < 0.1):
11 if last_current != 0:
12 fake_current = np.zeros(num_rows, dtype=int)
13 else:
14 current_level = np.random.randint(low=-10000, high=10000)
15 for j in range(num_rows):
16 fake_current = np.append(fake_current, current_level)
17 else:
18 if last_current != 0:
19 current_level = last_current
20 for j in range(num_rows):
21 fake_current = np.append(fake_current, current_level)
22 else:
23 fake_current = np.zeros(num_rows, dtype=int)
24 fake_current = fake_current.astype(int)
25 return fake_current
26

27 #Function which generates the voltage values to be inserted
28 def gen_voltage(num_rows, last_voltage, V_deviation):
29 fake_voltage = []
30 if last_voltage > 255000:
31 new_voltage = last_voltage + np.random.randint(low=-1800, high=500)
32 elif last_voltage < 205000:
33 new_voltage = last_voltage + np.random.randint(low=-500, high=1800)
34 else:
35 new_voltage = last_voltage + np.random.randint(low=-1500, high=1500)
36 fake_voltage = np.random.uniform(new_voltage-V_deviation, new_voltage+V_deviation, num_rows)
37 fake_voltage = fake_voltage.astype(int)
38 return fake_voltage
39

40 #Function which generates the timestamps to be inserted
41 def gen_fake_dates(num_rows, startup_offset):
42 fake_dates = []
43 current_time = datetime.now()
44 timestamp = datetime.timestamp(current_time)
45 timestamp = math.trunc(timestamp)
46 print(timestamp)
47 current_time = datetime.fromtimestamp(timestamp-startup_offset)
48 for i in range(num_rows):
49 time_offset = timedelta(seconds=(2*i))
50 new_time = current_time+time_offset
51 fake_dates.append(new_time.strftime("%Y-%m-%dT%H:%M:%SZ"))
52 return fake_dates
53

54 #Function which generates the power and power related values to be inserted
55 def gen_power(fake_voltage, fake_current, powerFactor):
56 p_apparent = fake_voltage*fake_current
57 p_apparent = p_apparent/1000
58 if (fake_current[-1] != last_current):
59 if (fake_current[-1] != 0):
60 if (np.random.rand(1,1) < 0.2):
61 powerFactor = np.random.uniform(0.4, 0.8)
62 else:
63 powerFactor = np.random.uniform(0.9, 0.98)
64 else:
65 powerFactor = 1
66 phaseAngle = round(math.acos(powerFactor)*(180/math.pi))
67 p_real = p_apparent*powerFactor
68 p_real = p_real.astype(int).tolist()
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69 p_reactive = p_apparent*math.sin(phaseAngle/(180/math.pi))
70 p_reactive = p_reactive.astype(int).tolist()
71 p_apparent = p_apparent.astype(int).tolist()
72 return p_apparent, p_real, p_reactive, phaseAngle, powerFactor
73

74 #Function which inserts the generated values, by putting them in a query per row of data
75 def insert_rows(num_rows, fake_current, fake_voltage, fake_dates, p_apparent, p_real, p_reactive, phaseAngle,

powerFactor):
76 sql_insert = "INSERT INTO cloud_measurement(lcurrentrms, voltagerms, lmeanactpower,lmeanreactpower,

frequency,lpowerfactor,phaseangle,meanapparantpower,forwardactenergy,reverseactenergy,absactenergy,
forwardreactenergy,reversereactenergy,absreactenergy,meteringstatus,sysstatus,temperature,humidity,
datetime, device_id) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s,
%s);"

77 for i in range(num_rows):
78 data = (fake_current[i].item(), fake_voltage[i].item(), p_real[i], p_reactive[i], 50, powerFactor

*100, phaseAngle, p_apparent[i],0,0,0,0,0,0,0,0,0,0, fake_dates[i], device_id)
79 cur.execute(sql_insert, data)
80

81 #insert first hour of data instantly such that you don’t have to run the program for 1 hour before data gets
updated properly

82 def startup(powerFactor):
83 cur.execute("SELECT datetime FROM cloud_measurement WHERE datetime < ’2050-12-12T08:54:37Z’ AND device_id

= ’%s’ ORDER BY datetime DESC LIMIT 1;", [device_id])
84 last_date = list(cur.fetchone())
85 #print(type(last_date))
86 last_timestamp = datetime.strptime(last_date[0], "%Y-%m-%dT%H:%M:%SZ")
87 current_time = datetime.now()
88 timestamp = datetime.timestamp(current_time)
89 timestamp = math.trunc(timestamp)
90 current_time = datetime.fromtimestamp(timestamp)
91 time_delta = current_time - last_timestamp
92 time_delta = timedelta.total_seconds(time_delta)
93 if (time_delta > 3600):
94 num_rows = 1800
95 startup_offset = 3600
96 else:
97 num_rows = math.ceil(time_delta/2)
98 startup_offset = time_delta
99 fake_current = gen_current(num_rows, last_current)

100 fake_voltage = gen_voltage(num_rows, last_voltage, V_deviation)
101 fake_dates = gen_fake_dates(num_rows, startup_offset)
102 p_apparent, p_real, p_reactive, phaseAngle, powerFactor = gen_power(fake_voltage, fake_current,

powerFactor)
103 insert_rows(num_rows, fake_current, fake_voltage, fake_dates, p_apparent, p_real, p_reactive, phaseAngle,

powerFactor)
104 #Commit data to the database
105 conn.commit()
106 return powerFactor
107

108 device_id = 1
109 sim_time = 120
110 #simulation time in minutes rounded up per 16 second chunk. e.g. 5 minutes becomes 304 seconds instead of 300
111 #voltages in millivolts
112 base_voltage = 230000
113 last_voltage = base_voltage
114 last_current = 0
115 V_deviation = 200
116 powerFactor = 0.92
117

118 #Define the connection object and cursor
119 conn = psycopg2.connect(host=dbhostname, port=dbport, user=dbusername, password=dbpassword, dbname=dbname)
120 cur = conn.cursor()
121

122 powerFactor = startup(powerFactor)
123

124 #set num rows to the amount of rows of data you want to send to database per chunk.
125 num_rows = 8 #number of samples per chunk sent to database
126 chunk_count = math.ceil((sim_time*60)/(num_rows*2))
127

128 #Main loop cycling through all functions per chunk of data
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129 for k in range(chunk_count):
130 fake_current = gen_current(num_rows, last_current)
131 fake_voltage = gen_voltage(num_rows, last_voltage, V_deviation)
132 last_voltage = fake_voltage[-1]
133 fake_dates = gen_fake_dates(num_rows, 0)
134 p_apparent, p_real, p_reactive, phaseAngle, powerFactor = gen_power(fake_voltage, fake_current,

powerFactor)
135 last_current = fake_current[num_rows-1]
136 print(p_apparent)
137 print(type(p_apparent[1]))
138 #sleep time important, otherwise, arrays made with current time +, so if wrong sleep then wrong data.
139 time.sleep(num_rows*2)
140 insert_rows(num_rows, fake_current, fake_voltage, fake_dates, p_apparent, p_real, p_reactive, phaseAngle,

powerFactor)
141 #Commit data to the database
142 conn.commit()
143

144 cur.close()
145 conn.close()
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