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ABSTRACT

Vessel re-identi�cation tries to identify a new ship as a ship that has

been seen before or as an unknown ship. This �eld has made some

good progress. However, all the literature only makes use of the

visible light (RGB) modality. The use of the infrared (IR) modality

has not yet been explored in this �eld. Using an IR modality next

to the RGB modality adds new information to a sample. Exploit-

ing this new information might result in a more generalised and

expressive model and therefore a better-performing model. In this

research, RGB-IR multi-modal models will be compared with the

RGB-only models. In order to achieve this, a new RGB-IR vessel

re-identi�cation dataset is presented. Results show an increase of

0.023 of the weighted sum of rank-k accuracies and area under the

precision-recall curve for the best RGB-IR model compared to the

best RGB-only model. These results show that IR adds valuable

information for vessel re-identi�cation.
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1 INTRODUCTION

In this world where maritime tra�c is a vital piece of our infrastruc-

ture, we require our ships to travel safely. The crew on a ship needs

to monitor its surroundings. This can involve a lot of work if done

manually. Cameras systems are one of the tools that can help to

monitor the surroundings of a ship automatically. Especially when

a ship sails in dangerous waters and needs to track multiple hostile

ships simultaneously.

The current technology available today has the capability to

identify ships. Take for example Thales Nederland B.V. which is a

company that produces such camera systems for ships and where

this research is performed. Their technology is a good basis among

others for monitoring the surroundings of a ship. For example, with

the Gatekeeper which is a camera surveillance system with 360

degrees horizontal �eld of view and visible light (RGB) and infrared

(IR) cameras. However, certain situations are not fully explored in

the literature yet. One of these situations occurs whenever a ship

disappears and later reappears in the view of the camera. This can

happen for example, when a ship sails behind another ship. The

camera can not know if this ship is the same ship from before or if

another ship has entered the view of the camera. This problem can

be solved by the task of vessel re-identi�cation.

The task of vessel re-identi�cation is explained in Figure 1.

In the real world, the set of known ships for re-identi�cation is

de�ned as the ships seen in the last several minutes by a camera sys-

tem. The model and threshold used by re-identi�cation are gained

by training and evaluating on a vessel re-identi�cation dataset.

Figure 1: A schematic overview of how vessel re-

identi�cation is done. A system has a database of known

ships, a model that can extract a feature vector from a ship

and a threshold that decides given a similarity score gained

from a pair of ships, whether the pair is from the same ship

or not. With these components, a new ship is fed into the

system and the system decides whether it is an unknown

ship or it can be re-identi�ed as one of the known ships.

The current literature focused on the use case of this problem

in harbours or canals. Here, the harbour/canal management needs

to monitor the space with cameras. However, the cameras do not

cover the complete space and there are areas where a ship is not

in the view of any camera. In this case, the use case behind re-

identi�cation stems from mapping ships to the same identity across

multiple cameras. Furthermore, in these researches, there are no

ships that are seen for the �rst time by the system. In other words,

every sample in the dataset has at least one other sample from the

same class. In the literature, this task is then seen as a classi�ca-

tion problem during training and evaluation. In contrast, in this

research, a ship might not belong to any seen class. However, with

an extension these unknown boats can be incorporated into the

model which is also seen in Figure 1 (when the threshold is higher

than the similarity score of the most similar boat). Apart from this

extension, the methodology of training and evaluating known boats

for both use cases is the same. Therefore, the literature on vessel

re-identi�cation can be used and built upon.

When compared to the �eld of vessel re-identi�cation, the �eld

of person re-identi�cation is more advanced. Therefore, some tech-

niques used in this �eld can be used as inspiration for vessel re-

identi�cation.
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One of the techniques used by person re-identi�cation is the

use of both RGB and IR data. This has not been explored yet in the

�eld of vessel re-identi�cation. This research will explore the use

of these two modalities. The combined modalities will be compared

to single-modality approaches to show if an improvement can be

made. The modalities can be combined by focusing on modality-

shared features (features seen in both modalities) or by focusing

on modality-speci�c features (features seen in only one modality).

These two approaches will be researched to see which one improves

re-identi�cation the most.

This paper has the following contributions:

• A new dataset with paired RGB-IR data is presented. This is

the �rst dataset that contains vessels with both RGB and IR

samples that can be used for vessel re-identi�cation.

• The results show an improvement over the state-of-the-art

by adding IR input next to the RGB input and focusing on

the modality-speci�c features. With the dataset and models

used in this paper, an increase of 4.5% rank-1 accuracy and

0.03 AUPRC is gained. When these metrics are combined,

the combined score is increased by 0.023.

The structure of this paper is as follows. In section 2, the related

work will be analysed. In section 3, the gap in the literature will be

identi�ed and a research question will be formulated. The approach

to answering this question will be described in section 4. The results

gained by following the approach are presented in section 5. The

implications of the results on the research question will be discussed

in section 6. Finally, the limitations of this research and the open

issues are listed in section 7.

2 RELATED WORK

In 2019, Spagnolo et al. [19] started with vessel re-identi�cation.

They created a publically available dataset named Boat Re-Id con-

taining 5523 images and 107 di�erent identities. This dataset is still

the basis for most vessel re-identi�cation literature. As the �rst

dataset was very small, this introduced a less robust model. So,

other researchers improved on this by creating a larger dataset. The

research of Qiao et al. [15] worked on a much larger dataset and

proved that their method creates a more robust model for vessel

re-identi�cation.

Spagnolo et al. [19] used the pre-trained network ResNet50 [6].

This model is used for image classi�cation and is a well-performing

model on the ImageNet dataset [1]. The reason behind using a con-

volutional neural network (CNN) for processing the image is that a

method is required to match similar ships with slight deviations.

These deviations include a di�erent viewpoint at the target ship,

di�erent lighting conditions, occlusions of the target ship et cetera.

This is why classical image classi�cation is not useful and machine

learning comes in handy. The ResNet50 is adapted such that it maps

an image to one of the 107 classes in the dataset. This is an adaption

that can extract only the prominent features of each ship. This

works for basic cases but when samples become harder this model

struggles.

Other researchers noticed this struggle and ampli�ed the model

by adding local feature extraction (i.e. on parts of the image) next to

global feature extraction (i.e. the whole image). Groot et al. [31] used

an adaption of the Multiple Granularity Network (MGN) model

[20]. This is a network with three branches and the ResNet50 model

as backbone. The �rst branch captures the image fully, the second

splits the image in an upper and lower part and the third splits the

image in an upper, middle and lower part. The �rst branch then

captures the global features and the other branches capture the fea-

tures per split part of the image (i.e. the local features). Ghahremani

et al. [4] applied the principle of MGN to create a similar network

named Maritime Vessel Re-identi�cation Network (MVR-Net). Next

to splitting in the height dimension, MVR-Net also splits the image

in the width dimension and channel dimension. The width branch

has three branches that splits the image into one, two (left and

right) and three parts (left, middle and right). The channel branch

splits the feature maps into four. Ghahremani et al. [4] state that

the height and width branches compensate for the varying input

resolutions due to di�erent viewpoints of the ship. Furthermore,

they state that the channel branch captures internal correlations

between feature maps better.

Qiao et al. [15] approached the split on local features di�erently.

They detected semantic regions in an image using a YOLO network

[16] and used the cropped regions as input for the speci�c branches.

Lastly, Groot et al. [31] employed some other interesting optimi-

sations applicable to their dataset. One interesting optimisation is

the use of vessel travel time �ltering. In the used dataset, the ships

appear in two cameras which are set up in a canal with a distance

of a few kilometers between the cameras. The time a ship takes to

travel between these two cameras is also considered. Only ships

that appear between a minimum time or maximum time in the

second camera after appearing in the �rst camera are considered

for re-identi�cation.

This summarises the state-of-the-art of vessel re-identi�cation.

Having a multi-branch network seems to perform the best as the

network allows to focus on speci�c parts of the target and combine

all the speci�c part features to result in a more expressive feature

set. The state-of-the-art only focuses currently on the RGBmodality.

To explore the capabilities of RGB-IR multi-modal learning, another

�eld needs to be analysed.

Take note that each of the above researches works on a closed

set of vessels. In other words, there are no unknown ships that

don’t belong to any of the ships in the query set. This is di�erent

from the use case of this research.

2.1 RGB-IR multi-modal learning in person
re-identi�cation

In the �eld of vessel re-identi�cation, there has been no usage of

multiplemodalities yet but when the �eld of person re-identi�cation

is analysed, some valuable lessons can be learned that can be used

in the �eld of vessel re-identi�cation.

Nguyen, Hong, Kim and Park [14] were the �rst ones to pioneer

the use of both RGB modality and IR modality. According to them,

the use of two di�erent kinds of images helps us to reduce the

e�ects of noise, background, and variation in the appearance of a

human body. Wu, Zheng, Yu, Gong and Lai [21] continued their

work. According to them, RGB images are not always suitable e.g.

in a dark environment or at night. Therefore, IR imaging becomes

necessary in many visual systems.
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On a high level, there are two ways to combine both modali-

ties. The �rst is shared feature learning which aims to embed the

features of both modalities into the same feature space. Therefore,

the modality-speci�c features (features only seen in one modality

and not in the other modality) are left out and the modality-shared

features are only used (features shown in both modalities). This

approach excels in �ltering background noise. This is because the

noise has to be present in both modalities to be used in the shared

feature learned model.

The second approach to combining RGB and IR is feature com-

pensation learning. This compensates for the missing modality-

speci�c cues in the shared space. This can be done by consider-

ing each modality individually. This might bring noise from one

modality in the feature space but modality-speci�c cues are also

incorporated in the feature space.

Starting in the shared feature learning, Nguyen et al. [14] re-

searched multiple feature vector extraction methods for only RGB,

only IR and for both the RGB and IR frames. These feature vec-

tors are concatenated followed by a Principal Component Analysis

(PCA) to reduce the size of the feature vector. This resulted in com-

bining RGB and IR frames in a CNN that had the best performance.

However, this requires two networks for both RGB and IR. Ye,

Lan, Li and Yuen [23] took the �rst step into having combined

weights for both modalities. The backbone CNN is not shared be-

tween the modalities. However, some fully connected layers are

added with shared weights. Ye, Lan, Leng and Shen [22] improved

this by sharing weights in the backbone CNN. Here, the �rst stage of

the ResNet50 model is still modality-speci�c but the other 4 stages

have shared weights such that the modality-shared feature space

is learned earlier in the process. Liu, Tan and Zhou [13] noticed

that sharing weights after the �rst stage of ResNet50 is not very

grounded and experimented with how many stages should have

shared weights.

Wu et al. [21] took another approach angle by converting RGB

to grayscale. They appended a zero vector to the grayscale image

and prepended a zero vector to the IR image. Both vectors are then

used in a CNN to learn a feature vector to re-identify people.

Finally, Hao, Zhao, Ye and Shen [5] didn’t supply the modality in

the network. Therefore, the network is forced to learn the modality-

shared feature space.

In cases where there are important modality-speci�c cues, a

feature compensation learning approach is better as it focuses more

on modality-speci�c cues. It has some interesting approaches.

Zhong et al. [30] used a complicated network resulting in IR

features, RGB features and generated coloured features from the

IR sample. Zhang, Zhao, Kang and Shen [27] introduced a modal-

ity synergy and a modality complement module to respectively

learn both modality-shared features and modality-speci�c features.

Huang et al. [9] generated a third modality from IR and RGB that

contains information from both modalities. These 3 modalities are

then used to classify.

Zhang et al. [27] state the advantage of their approach for person

re-identi�cation as follows. The visible features are discriminative

enough to a large amount of identities. Infrared tends to capture

the thermal features but due to this thermal sensitivity, it loses

semantic value and becomes much more background robust. There-

fore, infrared images become stable across the same identity and

become very robust to noise. Therefore, learning to synergise these

modality-speci�c features brings the strengths of both modalities

together.

As a �nal note, after the addition of IR data, other researchers

noted that the addition of video-based samples improves the re-

identi�cation process even more [3] [12]. This step is too big for

this research but a good direction for improvements on the current

methods. In subsection 4.1, this improvement will be taken into

account.

2.2 Loss functions

In order to train re-identi�cation models a loss function is required.

The objective of this loss function is to keep similar ships together

in the feature space and keep dissimilar ships distant in the feature

space. Most researches mentioned above use one of the contrastive

loss functions [4] [19] [27] [9] [13] [15] [22] [23] [30] [31] and/or

a cross-entropy loss [9] [13] [15] [22] [23] [30] [31] [21] to ob-

tain a good feature representation that achieves this goal. Since a

loss function is required an overview of the loss functions used in

literature is given below.

Triplet loss is a common contrastive loss function for re-identi�cation

models. Triplet loss extends on the basic contrastive loss by adding

another sample. Instead of having a single pair that can be either

similar or dissimilar, triplet loss has 3 samples and 2 pairs. There is

an anchor, a positive sample and a negative sample. The anchor-

positive pair belong to the same vessel, while the anchor-negative

pair are di�erent vessels. The triplet loss function minimises the

distance between the anchor and positive sample and maximises

the distance between the anchor and negative sample using a dis-

tance function. Di�erent distance functions can be used for the

triplet loss.

With 0 as anchor, ? as positive sample, = as negative sample and

U as margin, the triplet loss is then de�ned as:

! = 3 (0, ?) − 3 (0, =) + U (1)

Triplet learning is popular in re-identi�cation as it trains simul-

taneously on having similar outputs for similar ships and dissimilar

outputs for dissimilar ships. Therefore, a ship that has never been

seen by the ’database’ of known ships, will have an output dis-

similar to any known ship and therefore will be classi�ed as an

unknown ship. On the other hand, a ship similar to a known ship

that has not been seen by training (and not completely di�erent

from any training ship) will have a similar output and therefore

will be identi�ed as that known ship.

If random triplets were selected the model would easily start to

distinguish between these triplets. E.g. a container ship is easily dis-

tinguishable from a speedboat. The model has a harder time when

it has to distinguish two di�erent but similar-looking container

ships. These harder samples are known as hard triplets which is

introduced by Schro�, Kalenichenko and Philbin [17] in the notion

of hard triplet mining. Here the positive and negative in the triplet

are chosen based on their distance to the anchor. The positive is

chosen such that it is the furthest from the anchor and the negative

is chosen such that it is the closest to the anchor. From this hard

triplet, the model should learn how to distinguish even the hardest

samples.
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Next to this Schro� et al. [17] suggest applying the following

condition to combat the cases where the model converges to an

early local minima because the model collapses, i.e. the output

of every output neuron becomes nearly 0. The condition is that

3 (5 (G0), 5 (G? )) < 3 (5 (G0), 5 (G=)). In other words, it means that

the anchor-positive distance should be smaller than the anchor-

negative distance.

Next to a contrastive loss function, other researchers also use

a cross-entropy loss to obtain a better optimisation [31]. Cross-

entropy is usually given as:

! = −log 4
(,)

~8
G~8 +1~8 )

∑#
9=1 4

(,)
9 G8+1 9 )

(2)

Deng, Guo, Xue and Zafeiriou [2] noticed that cross-entropy

lacked the strength of grouping similar samples together which does

happen for contrastive loss functions. Therefore, they created the

Arcface loss which has the strength of cross-entropy and contrastive

loss functions combined. The formula can be found in Equation 3.

Starting from Equation 2, the bias 1 is set to 0. The logit,)
9 G8

is transformed to


,9



 ∥G8 ∥ cos \ 9 where cos \ 9 is the angle be-
tween ,9 and G8 . This converts the logit to an angular feature.

Furthermore,


,9



 is scaled to 1 and ∥G8 ∥ is scaled to s using ;2
normalisation. This results in a logit on the hypersphere. Finally,

an additive angular margin penalty m is added to result in the

following loss function [2]:

! = −log 4B 2>B (\~8+<)

4B 2>B (\~8+<) +∑#
9=1, 9≠~8 4

B 2>B\ 9
(3)

Following Zhang et al. [26], in this equation s can be set to the

following:

B = log(number of classes) ∗
√
2

By having cross-entropy as a basis, Arcface compares the ground

truth label with other label outcomes and adapts the weights such

that the boat will be classi�ed as the ground truth boat and not as

any other boat. Next to this, Arcface adapts an angular conversion.

With this, the function puts all the classes in separate clusters which

does not happen for cross-entropy. This strength of clustering the

same boat to the same angle also happens in triplet loss.

This summarises the background on triplet, cross entropy and

Arcface losses and how they are used to train re-identi�cation

models.

3 RESEARCH QUESTION

To conclude the previous section, vessel re-identi�cation has made

some good progress. The best results out there involve a global and

local feature extraction network like MGN [20] or MVR-Net [4].

Using one of the networks described in the vessel re-identi�cation

papers is a good starting point for this research.

However, the use of only RGB data restricts the vessel re-identi�cation

task. Some reasoning on what IR adds to the �eld has been given in

the section 2. The following three points summarise and complete

the advantages of IR for vessel re-identi�cation:

(1) Samples in low illumination or at night are hard or impos-

sible to classify with only RGB as Wu et al. noted [21]. IR

Figure 2: Some examples of persons from a person re-

identi�cation dataset [23]

doesn’t require light to work and therefore can help the

model to also classify these harder samples.

(2) The physical nature of how RGB and IR are captured is di�er-

ent. Therefore, the things that are captured are also di�erent.

RGB is captured by �ltering wavelengths that correspond to

the RGB channels (630, 532 and 465 nanometers). IR captures

infrared wavelengths which are from 700 nanometers to 1

millimeter. Speci�cally, in this research LongWave IR (LWIR)

is used which detects wavelengths between 8-12 microme-

ters. These wavelengths no longer capture light but capture

heat. Due to the di�erence in what the wavelengths capture,

a part of the image can be semantically di�erent when look-

ing at the RGB and IR modalities. Additional information

can be gained to increase the performance by including the

IR modality. 1

(3) The use of two modalities can help to reduce the e�ect of

noise and background distractions as noted by Nguyen et al.

[14] and Zhang et al. [23].

All these advantages can be used to increase the e�ectiveness of

the model for vessel re-identi�cation. On the other hand, the use

of another modality introduces the complexity of another modality.

The approaches on how to add this complexity to increase the ef-

fectiveness have been studied in the �eld of person-reidenti�cation

for some time, as seen in subsection 2.1. It would be ideal if these

approaches could be used for vessel re-identi�cation. However,

the �eld of person re-identi�cation is di�erent from vessel re-

identi�cation. The di�erences in features that are learned are vast.

(see Figure 2 and Figure 3 for examples between the �elds)

The di�erences between these modalities are:

(1) A person’s form consistently includes a head, a torso, two

arms and two legs, so it doesn’t vary much between individu-

als. In contrast, a ship’s structure can vary greatly, making it

a more important feature. For example, a sailing boat di�ers

signi�cantly from a motor boat or a container ship.

1Take note that this advantage can impact the problem very di�erently in person
re-identi�cation versus vessel re-identi�cation. The content of an image becomes very
di�erent. So, IR can possibly show much more di�erences for vessels than persons
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Figure 3: Some examples of the images in the boat re-id

dataset [19]

(2) The colour of the clothing of a person can be used to identify

the person. Ships mostly have the same colour but can be

identi�ed by markings, logos or structural characteristics

which is more subtle than the colour of the clothing of a

person

(3) Ships emit heat in their engine part which might be a feature

visible only in the IR modality. Therefore, the IR modality

contains speci�c information not visible in the RGBmodality.

(4) If a person rotates, the width isn’t drastically changed. If a

vessel rotates, the width of the ship in the image changes a

lot, especially in cases where the length-to-width ratio of a

ship is very high.

(5) Two ships can be of the same model and therefore look

exactly the same. The only distinguishment that can be made

is the contents on the ship or maybe a visible name on the

side of a ship. Persons can look the same but this occurence

is less common than two ships being of the same model.

(6) Images of ships are captured in open sea, harbours or canals

while images of persons are captured in more controlled

settings (e.g. by security cameras in buildings, streets etc.).

Therefore, person re-identi�cation usually has a static back-

ground while vessel re-identi�cation has a dynamic back-

ground which can be distracting.

(7) Persons are captured by cameras that are relatively close

range while ships are captured by cameras that are much

further away. Therefore, the level of detail for person images

is higher while ships have a lesser level of detail.

As the di�erences are many between the two �elds, the ap-

proaches cannot be mapped one-to-one. A deeper understanding

of the addition of the combination of RGB and IR modalities for

vessels is required.

From the above di�erences, it is at least known that the RGB

modality contains useful information. Therefore, the model should

at least contain the features from the RGB modality. The addition

of IR modality can be done by approaches that embed the modality-

shared RGB-IR features or embed the modality-speci�c RGB and

modality-speci�c IR features.

The research question is then: What speci�c features of the

infrared modality enhance the feature representation for vessel

re-identi�cation?

To answer this question, the addition of IR to a network has to be

measured. As seen in subsection 2.1, IR can be added by focussing

on themodality-speci�c features or on themodality-shared features.

The e�ect of these features on vessel re-identi�cation is unknown so

in order to answer the research question, the modality-speci�c and

modality-shared features need to be analysed individually. There-

fore, the research question is divided into two subquestions:

• How much do the modality-speci�c IR features enhance the

feature representation for vessel re-identi�cation?

• How much do the modality-shared RGB-IR features enhance

the feature representation for vessel re-identi�cation?

3.1 Evaluation metrics

A good feature representation results in better re-identi�cation.

So, by measuring the re-identi�cation task, the strength of the

feature representation is measured as a consequence. Therefore, by

measuring re-identi�cation task performance the research question

can be answered. The task of re-identi�cation de�ned in Figure 1

can be split into two subtasks. The �rst subtask is to decide whether

the new ship is a previously identi�ed ship or an unseen ship. The

second subtask is to decide which of the previously identi�ed ships

this new ship is, given that the new ship is a previously identi�ed

ship. The �rst task will be referred to as the known/unknown

classi�cation task and the second task will be referred to as the

identi�cation task. To measure the known/unknown classi�cation,

the Area Under the Precision-Recall Curve (AUPRC) will be used.

In the literature, a common metric used to measure identi�cation

is the rank-k accuracy which will also be used in this paper. By

combining both metrics, the re-identi�cation task is measured.

To determine the AUPRC, the model needs to classify whether

some ship is known or unknown by comparing it with the known

ships. If the most similar known ship (compared with the new ship)

has a higher similarity score than some de�ned threshold it will be

classi�ed as a known ship. By managing stricter or more lenient

thresholds, the precision and recall of this binary classi�cation

problem change and the precision-recall curve can be determined.

The area under this curve determines how well the model predicts

known and unknown ships under di�erent thresholds. The imple-

mentation of this metric will be further explained in subsection 4.5.

To calculate the rank-k accuracy, a sample from the query set is

compared with every sample from the gallery set. The similarities

are ranked from most similar to most dissimilar. For every query

sample, it is evaluated if the k most similar gallery samples contain

the ground truth. The percentage of query samples that contain

the ground truth in the top k predictions is the rank-k percentage.

The rank-1 metric focuses solely on whether the top prediction

is correct, which is analogous to the accuracy metric. The rank-

k metric with k > 1, also gives insight into how well the model

performs beyond the top prediction. This is interesting because

once the model is deployed, the database of known boats might

contain fewer boats than the gallery set making the prediction

easier. This easier prediction resembles the rank-k accuracy with k

> 1. The rank-k accuracy states how good the model is in matching

a new ship with a known ship. So, given that the model knows

the ship has already been seen before, it indicates how good the

model is in identifying it with the right ship. The AUPRC tells how
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Name no. identities no. images background trajectories/

single images

annotations publicly available has IR

Boat Re-ID [19] 107 5K static single images none yes no

VesselID-539 [15] 539 149K dynamic single images ship name, hull color,

vessel type, orientation

no no

VR-VCA [4] 729 5K static single images vessel type, orientation no no

Zwemer et al.’s

dataset [31]

1237 137K static trajectories none no no

Zhang et al.’s

dataset [25]

1248 31K dynamic single images none On request no

VeRis [24] 2904 151K dynamic single images vessel type no no

Marvel [11] 2665 25K dynamic single images none only at Thales no

Own created

dataset

70 5K dynamic trajectories none only at Thales yes

Table 1: Comparison between di�erent vessel re-identi�cation datasets. A K means thousand, e.g. 151K = 151.000. A static

background means that the camera that took the images is stationary and the background is mostly the same. A dynamic

background could be any background. Trajectories mean that the images came from a video and sequential images can be

interpreted as a video. Annotations are extra information for each sample that can be used for re-identi�cation. The last dataset

is the dataset that is curated during this research to solve the absence of an RGB-IR dataset.

good the model is in classifying known versus unknown ships. A

higher score gives better discriminative thresholds and decreases

the chances that an unknown ship is classi�ed as known or a known

ship is classi�ed as unknown.

4 APPROACH

Before the proposed models can be described, which can be evalu-

ated to answer the research subquestions, the availability of datasets

and the new dataset creation need to be discussed.

4.1 New dataset creation

An overview of vessel re-identi�cation datasets is shown in Table 1.

The last dataset in the table is created during this research and the

other datasets stem from literature papers.

As can be seen, from all the datasets used in the literature, only

one dataset is publicly available. Furthermore, none of them have

IR samples in their datasets. This creates another challenge for the

research, namely that there are almost no datasets available and

none have IR samples.

To solve this problem a new dataset has to be created. Thales

already has available video data that can be used to create such a

dataset. This video data has timestamps and RGB and IR cameras

directed to the same view. Therefore, from the video data, paired

RGB and IR images can be extracted. The only part required is to

label the videos.

In order to label this data, an automatic pipeline is created. This

approach is also used in literature for example by Du et al. [3],

Zheng et al. [28], Zheng et al. [29] and Zwemer et al. [31]. The

idea is to use an object detection module followed by a labelling

module. The object detection module is the YOLOv8 network which

can detect 80 di�erent objects including boats [16]. The labelling

module then takes detected objects from successive frames in a

video that are close to the same position and gives the objects the

same label.

Figure 4: Two examples of incorrectly cropped images by the

YOLO network

This approach has the advantage over manual labelling in that

labelling goes mostly automatically and a much larger dataset can

be created.

However, there are some technical di�culties arising from using

this method. The YOLO network might misclassify a lot of objects.

With some semantic knowledge and the labelling module, some

issues can be alleviated (e.g. by only saving a detected object if it

still is detected after 1.25 seconds which removes incidental random

objects that are detected). Still, the resulting dataset contains a lot

of non-ship samples, bad-cropped samples and di�erent sequences

of the same ship.

To �x the �rst and third issues, manual �ltering needs to be ap-

plied. Due to the fact that a detected object needs to be at the same

position to get the same label, it is assumed that a sequence can

only contain one object. Therefore, if some images in a sequence of

objects are not a ship, the whole sequence can be removed. After-

wards, every sequence of ships can be inspected. If two sequences

are from the same ship, these sequences can be put under the same

label. The resulting dataset still has the shortcoming that a ship can

be badly cropped. Two examples can be seen in Figure 4
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Another issue is that YOLO also cannot classify in low or no illu-

mination. As a consequence, all the resulting samples in the dataset

will have normal illumination and the performance di�erence of

RGB-IR against RGB-only in low illumination will not be assessed

in this paper.

However, if it is assumed that in no illumination every pixel value

of a RGB image is 0, a RGB model cannot extract any meaningful

features and only adds noise to the model. Therefore, it is better to

use an IR-only model. This can be simulated by only supplying IR

images and not any RGB images2. In this research, the networks

are also assessed with IR-only input. These results can then also be

re�ected to the cases where there is a setting with no illumination.

At the end of section 2, the addition of video-based samples is

brie�y touched upon. When automatically creating this dataset,

images are stored in a sequence. This allows the use of video-based

techniques instead of image-based techniques for this dataset. As

noted at the end of subsection 2.1 this should improve the per-

formance of the model. To not overcomplicate this research, the

models will use single images. This is considered a limitation of

this approach as video-based techniques are better.

With the newly created dataset, the networks can be trained

and evaluated. The networks will be described in the upcoming

subsections.

4.2 Modality-speci�c feature learning network

To answer the �rst research sub-question, a network is proposed

that will test the improvement gained from modality-speci�c IR

features. In order to do this, a network is designed that learns both

RGB and IR features in separate branches. This is done because the

branches do not depend on each other and can go their own way in

learning their best representation. The �rst branch learns the best

representation for RGB and the second branch learns the best repre-

sentation for IR. Both output feature vectors are then concatenated.

Combined they produce a feature vector of modality-speci�c RGB

and modality-speci�c IR features. Take note that modality-shared

features are still present in this network but since both branches

can embed these features, they can be embedded twice in the result-

ing feature vector and therefore become disadvantageous for the

representation strength since it contains redundant information.

Figure 5a shows a simple representation of the proposed model.

4.2.1 RGB and IR only. In order to compare the added value of the

other modality, the networks also need to be trained and evaluated

on a speci�c modality alone. Therefore, a RGB-only and an IR-

only approach is also required. Figure 5b and 5c show a simple

overview of the network for the modality-only approaches. When

these modality-only approaches are evaluated and a decrease in

the performance metrics is measured it indicates that the other

modality adds valuable information to the network. However, if

an increase in the performance metrics is measured, it means that

the other modality distracts from the problem and adds more noise

than meaningful information to the resulting feature vector.

2Technically speaking, there is a small semantical di�erence in the IR modality during
the night. Since the night is cooler, objects are cooler as well and the IR sensor should
detect lower values than during the day. For this research, this is not taken into account.

Figure 5: The proposed system for a modality-speci�c learn-

ing network. In a) the model uses both RGB and IR input, in

b) only RGB input is used and in c) only IR input is used.

In order to make these modality-only networks, the other modal-

ity branch is removed and the output of the remaining branch is

also used as the output of the network.

4.2.2 RGB and IR branch. For the RGB branch, a ResNet50model[6]

initialised with pre-trained weights is used as a starting point.

The advantage of having pre-trained weights is that it has a good

backing knowledge of objects from the ImageNet dataset [1]. By

�ne-tuning this knowledge (i.e. training only on the last layers of

ResNet), it keeps the general knowledge while also learning the �ne

details of ships in the area of vessel re-identi�cation. The ResNet

is con�gured and �ne-tuned di�erently depending on the hyper-

parameters which are discussed in subsection 4.6 (output sizes,

number of fully connected layers etc.).

Since the research question is about the di�erence between RGB-

only and RGB-IR it is not necessary to use the best RGB network

as long as the RGB network is consistent such that a comparison

can be made. The literature showed that there are better options

than the ResNet50 model but to keep the approach simple, these

more complex options will not be used.

For the IR branch, four options are proposed. The �rst option is

a pre-trained network while the other three options are untrained

networks.

The pre-trained network is trained on the ImageNet dataset [1].

Therefore, it has the advantage that it is pre-trained on a lot of data

and therefore has a good general basis for all kinds of objects. The

disadvantage is that this basis is based on the RGB feature space

and not on the IR feature space. IR-speci�c cues can therefore be

disregarded as unimportant due to that the cues are not existent in

the RGB space.

The other untrained IR networks have the advantage that the

model trains on IR from scratch. Therefore, the model can capture

all IR-speci�c features as long as it has the capacity to capture the

complexity. The disadvantage is that in order to train a model from

scratch, a good dataset needs to be available. Having not enough

data results in a less robust model when doing re-identi�cation. As

seen in Table 1 our dataset has 5K images which is a reasonable size

but might not be enough to learn as much as a pre-trained ResNet.

All these options will be implemented and evaluated. For every

option, some fully connected (FC) layers are added in order to learn

the complexity of the output. This is con�gured according to the

hyperparameters which will be further discussed in subsection 4.6.
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Layer name Output size Convolutions

Conv1 48x48 7x7, 16, stride=2

Stage1 24x24
©­
«
1x1 8

3x3 8

1x1 32

ª®
¬
4x

Stage2 12x12
©­
«
1x1 16

3x3 16

1x1 64

ª®
¬
4x

Stage3 6x6
©­
«
1x1 32

3x3 32

1x1 128

ª®
¬
4x

Average pool, �atten 128

Table 2: Stages in the ResIRNet. A convolution of kxk, d

means a kernel of size k and output feature map depth of d.

The �rst 3x3 convolution layer of each stage has a stride of 2

and halves the output size. The rest of the convolution layers

in the stage have a stride of 1. At the end of each bottleneck

block, the residual part is added to the vector just like in

ResNet (see also Figure 6)

4.2.3 Pre-trained ResNet. The �rst option for the IR network, is

to use a pre-trained ResNet50 model and �ne-tune the network to

learn the IR features instead of RGB features.

4.2.4 Untrained ResNet. The second option for the IR network,

is to take an untrained ResNet50 network with 1 channel input

instead of 3 channel inputs by changing the �rst convolutional

layer and keeping the rest of the architecture the same. In essence,

this is the previous network without pre-trained weights.

4.2.5 New network: ResIRNet. For the third option, a new IR net-

work is created from scratch. The �rst reason behind this is that

ResNet requires 3 input channels while IR only has 1 channel. So,

creating a network with one input channel instead of three removes

the initial redundancy of additional channels. The second reason is

that the input IR images in the dataset have a lower resolution than

the RGB images. The ResNet50 network is trained and evaluated

on an input resolution of 224x224. To achieve this resolution some

upsampling is always required for the IR images. A lot of pixels are

therefore reused and a lot of information becomes duplicated. To

alleviate the redundant information, a network is designed with

an input resolution of 96x96 and a similar output width and height

resolution. Due to the lower amount of input channels and lower

resolution, the output size is chosen to be 8 times lower than the

ResNet50 (128 output neurons). The network will be called ResIR-

Net. The complete architecture is found in Figure 6 and Table 2.

For the model, an architecture similar to ResNet is used. Just

like ResNet, the network starts with 7x7 convolution followed by

batch normalisation and relu activation. The 7x7 convolution is

applied for a quick increase of the receptive �eld while the input

channel dimension is still one3. Note that the 2x2 maxpool layer is

3As an alternative, applying 3 times a 3x3 convolution would give the same receptive
�eld. However, this would result in more FLOPs and learnable parameters which is
not bene�cial. The 7x7 convolution has 7 ∗ 7 ∗ 1 ∗ 16 = 784 learnable parameters and
the 3 times 3x3 convolutions have 3 ∗ 3 ∗ 1 ∗ 16 + 2 ∗ (3 ∗ 3 ∗ 16 ∗ 16) = 4752 learnable
parameters. The 7x7 convolution has 784 ∗�>DC ∗,>DC FLOPs and the 3 times 3x3

Figure 6: Overview of stages in the ResIRNet. On the left,

the complete network is shown. In the middle, a stage is

shown. Note that the 3 stages are the same apart from the

input and output dimensions. On the right, a convolution

block is shown. The �rst convolutional block in a stage has

a downsample in the residual part before the residual and

convoluted parts are added together which is not shown here.

Apart from that the convolutional blocks are the same. After

the network, some fully connected layers are added depend-

ing on the hyperparameters which is not shown in this �gure.

The exact input and output shapes of each layer can be found

in Table 2

not present in ResIRNet but the �rst convolutional block of the �rst

stage does have a stride of 2 instead of 1. This changes the layer

from a simple downsample with a pooling layer to a more complex

convolution layer allowing for a bit more complexity to be learned.

Afterwards, some stages with bottleneck blocks are used which

are also present in ResNet50. Four bottleneck blocks are combined

in a stage where the �rst block halves the input size and doubles the

feature map depth. The other 3 blocks keep the width and height

dimensions. The role of the �rst convolutional block is to learn

to convolute the matrix to a lower width and height and higher

depth. The role of the other identity blocks is to learn to adapt

the input slightly for a better feature space representation. The

choice for a total of 4 blocks is because the model then has some

capacity to learn complexity. Using only 1 or 2 convolutional blocks

results in too few parameters that can be tuned which results in

a less complex feature representation. If the model doesn’t have

enough complexity it might not be able to distinguish between

similar boats.

Three stages are used to end up at a matrix of 128x6x6 (ResNet50

ends up with 2048x7x7). Take note, that 3 stages are used while

convolutions has 4752 ∗�>DC ∗,>DC FLOPs (where �>DC and,>DC are the height
and width of the output). Note that there is no bias in this layer just like in ResNet.
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Figure 7: The modality-shared network. In a) the model uses

both RGB and IR input, in b) only RGB input is used and in

c) only IR input is used. The green model for both branches

means that this is the same model for both branches. The

double blue and double grey bars in b and c mean two times

the exact same feature vector (as the input and the model are

the same for both branches)

ResNet uses 4 stages. This is due to the lower input resolution.

Within 3 stages the ResIRNet reaches an output size of 6x6 which is

similar to the 7x7 output size of ResNet. Finally, an average pooling

layer and �attening layer similar to ResNet are used to end up with

a feature vector of 128 values.

4.2.6 UntrainedMobileNet. The ResIRNet has far fewer parameters

and FLOPs than the ResNet50. This is due to lower input resolution

and lower depth of the feature maps in the model. Due to this

di�erence in the number of parameters, another network is added

as an option to compare the performance di�erence between the

ResIRNet and a network of equal size.

For this fourth option, the MobileNetV3_small is chosen [7].

The MobileNet networks [8] are smaller networks made to be able

to run on machines with low computational power (e.g. mobile

phones). For MobileNetV3_small (from now on MobileNet), an

input resolution of 96x96 is used. Since MobileNet usually operates

on input resolutions of 224x224, this changes the global average

pooling layer functionality. Instead of pooling a 7x7 matrix, it pools

a 3x3 matrix resulting in a less dense pooling operation.

The MobileNet and ResIRNet are both trained from scratch. The

networks can be pre-trained with ImageNet data, but to limit the

approach scope, this will not be done. It is expected that a pre-

trained ResNet will have better performance metrics than a pre-

trained ResIRNet or pre-trained MobileNet due to the ResNet being

bigger and therefore having the capacity to capture more complex

features.

4.3 Modality-shared feature learning network

For the second sub-research question, a network is required that

learns the modality-shared features. This can be achieved by using

one model for both modalities. Then the model is forced to learn

both modalities together. A simple model overview is given in

Figure 7a.

The model will consist of a single ResNet50 network with pre-

trained weights initialised. Both RGB and IR input will �ow through

this model with the same sharedweights. Consequently, the weights

are then also trained on both RGB and IR together. Both outputs

are then merged using some FC layers which are dependent on the

hyperparameters which are described in subsection 4.6. In order

to adapt IR from 1 channel to 3 channels, the channel contents

are copied to all three channels. In the end, the network learns to

embed both RGB and IR in the same feature space.

In order to assess the e�ect of adding another modality to this

network, the RGB-only and IR-only approach is again applied to

measure the di�erences. In order for the network to accommodate

one modality only, the input has to be copied to both branches.

This is shown in Figure 7b and 7c. For a more e�cient network, the

output of ResNet which is the input of the FC layers, is copied twice

instead of having two times the same input for the same model.

4.4 Used loss functions

The proposed models have to be trained with a loss function. Each

model described above will be trained with a triplet loss function

or an Arcface loss function as described in subsection 2.2.

The triplet loss requires a distance function. Since the similarity

score for re-identi�cation is also determined using cosine similarity,

the loss function uses cosine distance as distance function. Cosine

similarity is given as:

cosine similarity(G,~) = G · ~
∥G ∥ × ∥~∥ (4)

Furthermore, the margin U is set to 1. The triplet loss with cosine

distance as used in this paper is then given as:

! = 3 (0, ?) − 3 (0, =) + 1

3 (G,~) = 1 − cosine similarity(G,~) (5)

Hard triplet mining as described in subsection 2.2 by Schro� et

al. [17] will be used to select better triplets. Furthermore, Schro� et

al. simplify the process by picking every possible anchor-positive

pair within the mini-batch. In this paper, this is adapted to picking

a random positive for each anchor (if available).

The Arcface loss function (found in Equation 3) also requires a

margin which is set as a hyperparameter which is further described

in subsection 4.6. The s in the loss function is set to log(number of

classes) ∗
√
2 following Zhang et al. [26].

4.5 Measuring known/unknown ship
classi�cation

To measure the known/unknown classi�cation, the AUPRC metric

is used. To do this, the problem is considered as a binary classi�ca-

tion problem. Something is either a known ship or an unknown ship.

In the gallery set, 50% of the boats are removed. If a sample in the

query set still has the corresponding boat in the gallery set, then it is

a known boat. Otherwise, it is an unknown boat. The known boats

are positives and the unknown are negatives. Furthermore, the

query set is sampled such that the number of known and unknown

boat images are both 200 such that the known/unknown boats

have an equal distribution. It is out of the scope of this research to

analyse how the PR curve and AUPRC adapt when the gallery and

query sets contain di�erent ratios of known and unknown boats.

A sample in the query set can then be compared with all the

known boats in the gallery set using cosine similarity. The high-

est cosine similarity is then used as a comparison value to assess

whether the sample is a known or unknown ship. Given a certain

threshold, some ships will be classi�ed as positive and others as

negative. With this binary classi�cation, the precision and recall
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Figure 8: An example of a precision-recall curve. At the point

in the graph, the exact threshold, precision and recall are

given. Given some speci�cations on how good the precision

and recall should be, a threshold can be de�ned for some

model

can be calculated. Setting a higher threshold will yield more pre-

dicted unknown boats, while a lower threshold will yield more

predicted known boats. By using the threshold as a variable, a

precision-recall curve can be de�ned. This curve can give insight

into how the threshold changes the precision and recall. With spe-

ci�c precision and/or recall requirements, an exact threshold can

be determined using this curve. An example of the precision-recall

curve can be seen in Figure 8.

The area under the precision-recall curve (AUPRC) gives an

indication of howwell the model generally performs under di�erent

thresholds. An area of 1 would mean that there is a threshold that

perfectly classi�es the unknown and known ships. An area around

0.5 would indicate that the precision stays around 0.5 while the

recall increases i.e. the model classi�es randomly between the two

classes.

4.6 Hyperparameters, setup and best model
selection

A set of hyperparameters are tuned to gather the best results for re-

identi�cation. A grid search is applied for the applicable parameters

to exhaust every possible option. The reason behind grid search is

because the options per hyperparameter are not extensive (either

2 or 3 options) so smart searching within these few options is not

very helpful. Furthermore, a grid search results in a complete set of

results and a good hyperparameter set is never accidentally skipped.

4.6.1 General hyperparameters. For every model, the following

hyperparameters are used:

• The loss function: Arcface or triplet loss

• In case of Arcface, the margin m in Equation 3: 0.05 or 0.2.

According to Zhang et al. [26], a too large m (e.g. 1) won’t

allow the model to converge. Therefore, these much smaller

margins are chosen.

4.6.2 Pre-trained Resnet hyperparameters. When RGB or RGB-IR

input is used, the ResNet50 model introduces the following hyper-

parameters:

• The number of output neurons at the end of the ResNet50

model: 128, 256 or 2048 output neurons. Having too many

neurons in the feature vector makes some features redun-

dant which is bad for the distinctiveness of the feature vector

and therefore makes re-identi�cation worse. Removing too

many neurons removes too much present generality in the

pre-trained network and makes the network too biased to-

wards the trained boats. It keeps the information that can still

distinguish the boats in the train set but it loses information

that can distinguish boats outside the train set. Therefore,

some numbers are chosen that retain the information (2048)

or compress the information (128 and 256).

• After the Resnet50 the amount of fully connected layers that

are appended: 1 or 2. More layers result in a more complex

understanding of the output features of ResNet but could also

lead to a less general interpretation of the output features.

• The amount of unfrozen ResNet stages: 1 or 2 stages. The

trainable parameters in the pre-trained Resnet50 model are

initially frozen (untrainable). As a hyperparameter, the last

stages can be unfrozen (made trainable) in order to �ne-

tune the Resnet50 model on the problem. Shermin et al. [18]

noted that unfreezing the �nal few layers is bene�cial for

�ne-tuning but unfreezing too many layers results in perfor-

mance loss.

4.6.3 Modality-specific IR network hyperparameters. In the case of

the modality-speci�c system, there are di�erent IR networks which

bring their own hyperparameters:

• In the case of a ResNet50, the hyperparameters that are used

for the RGB ResNet model are also used for the IR ResNet

model (number of output neurons, FC layers and unfrozen

stages). This is done to reduce the amount of possibilities for

the grid search.

• In the case of a ResNet50, the IR network can be initialised

with pre-trained weights or not. If the network is randomly

initialised nothing is frozen.

• In the case of ResIRNet, the number of output neurons at

the end of the IR network can be 64 or 128. (The output size

before the FC layers is 128)

• In the case of MobileNet, the number of output neurons at

the end of the IR network can be 128 or 256 (The output size

before the FC layers is 576)

• In the case of ResIRNet and MobileNet, the amount of FC

layers after the last convolutional block: 1 or 2. For fewer

possibilities in the grid search, the RGB ResNet50 network

has the same amount of FC layers.

The experiments are performed on a Nvidia RTX A5000. The

batch size is 32 for Arcface and 128 for triplet loss. The higher

batch size for triplet loss is due to the hard triplet mining. The hard

triplets are searched within the batch. That means there has to be

room for positive pairs. There are 53 ships in the train set (which
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will be further described in subsection 5.1). With 53 ships and 128

samples, there is room enough for positive pairs. Adam [10] is used

as optimiser with hyperparameters learning rate=0.001, V1=0.9 and

V2=0.999. The models are trained for max 100 epochs.

To check the model’s performance, the gallery and query set

are evaluated for the rank-k accuracies and AUPRC metrics after

each epoch. The performance of the model is then measured by the

following formula:

argmax\
©­
«
rank-1(\,�: , &: ) +

rank-3(\,�: , &: )
3

+

AUPRC(\,�D , &D )
ª®
¬

(6)

Where \ are the model parameters, �: and &: are the gallery

and query sets where all boat IDs in the query set are known (i.e.

in the gallery set) and �D and &D are the gallery and query sets

where half of the boat IDs from the query set are unknown (i.e. not

in the gallery set).

Empirically, the ’good’ rank-3 accuracy lies between 0.9 and

1.0 while the ’good’ rank-1 accuracy lies between 0.75 and 0.95.

Logically, this is due to rank-3 accuracy being easier to optimise

than rank-1 accuracy. Therefore, the rank-3 accuracy is divided

by 3 in Equation 6 to make it less important in selecting the best

model.

This formula optimises the rank-k accuracies and PR curve. By

optimising this, it optimises both matching the input with the cor-

rect ship and recognising whether the input is a known or unknown

ship. If more training results in a higher score, the model was still

under�tted. If more training doesn’t result in higher scores for

many epochs, the model is probably over�tting on the training set.

If a model doesn’t improve for 20 epochs according to Equation 6,

the training is early stopped and the model’s performance of 20

epochs ago is selected as the best model. 4

Since the gallery set�: contains 17 boats, a high rank-k accuracy

will be meaningless. A rank-3 accuracy is almost always above 90%

in the best performances of each hyperparameter combination. A

higher k will give even higher percentages up to a point where the

di�erence between two models becomes marginal. Therefore, only

the rank-1 and rank-3 accuracies will be used in selecting the best

model.

5 RESULTS

In this section, the resulting dataset and usage of this dataset are

described. Furthermore, the performance metrics of the models

and the computational metrics are presented. Finally, given these

metrics, an ablation study is performed on the gathered results.

5.1 Resulting dataset

The dataset is constructed by applying the detection module and

labelling module described in subsection 4.1, to recordings from

the Gatekeeper of Thales (see section 1). These labelled objects are

then �ltered by removing sequences of objects that are not ships.

Afterwards, it is �ltered by merging sequences of ships that are the

same. Remember that individual images within sequences are not

considered while �ltering. Therefore, it can happen that a ship is

badly cropped as shown in Figure 4.

4The use of early stopping could result in under�tting models which is less ideal.

The initial �ltered dataset contains 111 di�erent ships. However,

some ships only have 1 or 2 images making the ships not very

useful for re-identi�cation. Furthermore, there are some images of

ships that are far away and have a low resolution in the IR modality

(number of pixels in the length ∗ number pixels in the width < 500).

Therefore, these ships are also left out of the dataset. This results

in 70 di�erent ships with 5169 images.

In order to train and evaluate the models the boats will be split

into seen and unseen data sets. This split will be made on the IDs

of the boats, e.g. a boat with samples in the seen set will not have

samples in the unseen set. The split will be 75% of the IDs in the

seen set and 25% of the IDs in the unseen set. The seen set contains

53 ships and 3816 images and the unseen set contains 17 ships and

1353 images.

The seen set will be split into a training and validation set with

a 90/10% split. The samples within a boat identity are very similar

because every 1.25 seconds in a recording, a cropped image is ex-

tracted (as described in subsection 4.1). Due to this lack of diversity,

the validation set can have less data and keep the same validation

power.

Due to the classi�cation nature of the Arcface loss, when this

loss function is used, the model becomes biased on the validation

data because these boat IDs have been seen before. Though the

validation samples themselves are not seen before, the training

samples only have slightly di�erent viewpoint angles, lightning,

background changes etc. than the validation samples . Due to this

bias, the model is very good in re-identifying the boats from the

validation set5. Due to this strong bias, the validation set can not be

used for the gallery and query sets. Otherwise, the metrics become

biased and less meaningful. To keep the gallery and query set clean,

only the unseen boats are used which are unbiased since they are

unseen by training.

The samples in the unseen set will be split into the query set

and gallery set such that samples in the query set can be matched

with the samples in the gallery set to gain a rank-k accuracy (i.e.

�: and &: in Equation 6). Next to this, a second gallery set is

created where not every ID is available (i.e. �D in Equation 6).

With this second gallery set and by sampling the query set (to

obtain &D as described in subsection 4.5) the AUPRC metric can be

determined. In a deployed re-identi�cation system, the time since

the ship was seen last seen would decide whether a ship is known

(i.e. in the gallery set). However, to make the gallery set and query

set challenging enough, the �ltering on the time aspect will not be

taken into account.

The whole unseen set has been manually analysed if for every

boat a boat of the same type exists in a training set. For example, if a

container ship is in the unseen set but there are no other container

ships in the training set, the model has a hard time re-identifying

container ships. This is not the case, so this e�ect doesn’t need to

be taken into account.

5This can also seen in the metrics when these validation boats are re-identi�ed with
extremely high accuracies. Furthermore, this is seen in the weaker correlation between
validation loss and re-identi�cation accuracies (rank-k and AUPRC) on the unseen set.
These statistics will not be shown further on in this research.
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Figure 9: The rank-1 accuracy (y-axis) plotted against the

AUPRC (x-axis). Every point represents a model run with a

di�erent set of hyperparameters or a di�erent approach. As

can be seen, the data seems to be uncorrelated as most points

seem to be grouped in a vertical bar. The Pearson correlation

coe�cient of this plot is 0.06.

5.2 Performance metrics

Before the performance metric results are presented, the correla-

tion between rank-k and AUPRC will be analysed. With this, the

modality-speci�c approach as described in subsection 4.2 is eval-

uated. Within this approach, the di�erent IR networks are also

compared. Finally, the modality-shared approach as described in

subsection 4.3 is evaluated.

5.2.1 Correlation between rank-k accuracy and AUPRC. Evaluating

the models only on the combined score from Equation 6 is simple

and gives a good overview of how the model performs generally.

However, the metrics correspond to di�erent tasks that the model

performs. In Figure 9, a plot is given of every best result of each

hyperparameter and model architecture combination where the

AUPRC is plotted against the rank-1 accuracy. The plot and the

Pearson correlation coe�cient of 0.06, show that the metric results

gained are not very correlated. Good discriminative thresholds do

not indicate good rank-k accuracies and vice versa. Therefore, in

order to show a more complete picture, the rank-k accuracies and

AUPRC are also separated in the upcoming results. When separated,

the best results are chosen based on only the respective metrics,

either the rank-k accuracies or the AUPRC.

5.2.2 Comparison between modality-specific approach. First, the

RGB-only, IR-only and RGB-IR approaches of the modality-speci�c

approach are compared.

The results can be found in Table 3. The �rst thing that pops out

is the clear improvement of RGB-IR compared to RGB-only and

IR-only. For both the combined and individual metric scores, the

RGB-IR performs better. This performance increase is seen in an

increase of 4.5% rank-k score which indicates around 4.5% rank-1

accuracy increase, an increase of 0.03 AUPRC and an increase of

0.023 combined score.

Another interesting point is when RGB-only and IR-only are

compared next to each other, the RGB performs better. This con-

�rms the claim in section 3 that RGB contains useful information,

and if available, the RGB modality should be present in the model

as it is more discriminative than IR.

Combined score Rank-k score AUPRC score

RGB-IR 2.163 (T, R) 1.286 (A, N) 0.955 (T, R)

RGB-only 2.140 (T) 1.241 (T) 0.924 (T)

IR-only 1.857 (A, R) 1.055 (A, R) 0.888 (A, M)

Table 3: The performances of the modality-speci�c networks.

The combined score is both rank-k and AUPRC combined

while the other two columns consider these metrics individu-

ally. The letters after the score indicate the loss function and

IR model used to obtain this best result (A=arcface, T=triplet,

R=pre-trained ResNet, N=ResIRNet, M=MobileNet)

5.2.3 Comparison between IR networks. In subsubsection 5.2.2, the

best IR networks di�er per table cell though the pre-trained ResNet

seems to have the best models for most results. To properly �nd out

which IR network has better performance metrics, the metrics are

compared when di�erent IR networks are used. Since the results

above showed that RGB-IR is better, only those results are presented.

The results are shown in Table 4.

Combined score Rank-k score AUPRC score

Pre-

trained

ResNet

2.163 (T) 1.259 (A) 0.955 (T)

Untrained

ResNet

2.064 (A) 1.216 (A) 0.907 (A)

Untrained

ResIRNet

2.162 (A) 1.286 (A) 0.941 (A)

Untrained

MobileNet

2.140 (A) 1.252 (A) 0.939 (A)

Table 4: Themodality-speci�c IR network performances com-

pared next to each other. All performances are measured

with RGB-IR enabled. The letter after the score indicates the

loss function used that resulted in this best result (A=arcface,

T=triplet).

The results are simple, the pre-trained ResNet and the ResIRNet

are the better performers for re-identi�cation. Untrained ResNet

lags behind, possibly due to the lack of enough IR data and the

corresponding bigger network which requires more data to learn

more complex feature representations.

The individual rank-k and AUPRC metrics do not present addi-

tional insights.

5.2.4 Comparison modality-shared approach. Now for the second

approach that focuses on modality-shared features. The results can

be seen in Table 5.

RGB-IR now performs worse than RGB-only. This is interesting.

Apparently, the addition of IR in the modality-shared network next

to the RGB distracts the model from re-identi�cation. It is better

for a model to focus only on the RGB features instead of a good

focus on the RGB-IR modality-shared features.
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Combined score Rank-k score AUPRC score

RGB-IR 2.115 (A) 1.232 (A) 0.899 (A)

RGB-only 2.161 (T) 1.253 (A) 0.946 (A)

IR-only 1.990 (A) 1.132 (A) 0.905 (A)

Table 5: The performances of the modality-speci�c networks.

The combined score is both rank-k and AUPRC combined

while the other two columns consider these metrics individ-

ually. The letter after the score indicates the loss function

used that resulted in this best result (A=arcface, T=triplet).

The individual rank-k and AUPRC metrics do not present addi-

tional insights.

5.3 Computational metrics

Di�erent models have di�erent sizes. These sizes have a high impact

on speed and memory usage. Therefore, the computational metrics

are also measured to compare the options. For this, the amount of

FLoating point OPerations (FLOPs) and the number of parameters in

the model are measured. FLOPs indicate how many operations are

needed to do one forward pass through the network and therefore

measure the speed of the network. The number of parameters

indicates the amount of memory required to store the network.

Together, these metrics indicate how fast and how big a model is.

The metrics can be seen in Table 6

FLOPs Parameters

ResIRNet 22.33M 136.43K

MobileNetV3_small 21.81M 1.00M

ResNet50 8.21G 22.33M

ResNet50 + ResIRNet 8.23G 22.71M

ResNet50 + MobileNetV3_small 8.23G 23.33M

ResNet50 + ResNet50 16.26G 45.18M

Modality-shared ResNet RGB/IR-only 8.21G 23.11M

Modality-shared ResNet 16.43G 30.45M

Table 6: Comparison of the number of FLOPs (computational

cost) and number of parameters (memory cost) between dif-

ferent models. In this table, K means times 103, M means

times 106 and G means times 109. All entries belong to the

modality-speci�c approach apart from the two entries that

speci�cally state modality-shared. A model can be used in

di�erent settings. For example, the ResNet50 is used as a

pre-trained RGB-only network but also as a pre-trained and

untrained IR-only network. These numbers are slightly de-

pendent on the amount of FC layers and output sizes of a

network which are hyperparameters. These hyperparame-

ters are selected based on the corresponding best models in

the previous section. Due to these hyperparameters, the re-

sults might di�er from what is in the papers [6] [7]

As expected the ResIRNet and MobileNet are much smaller than

the ResNet50 in terms of FLOPs and parameters. ResNet has at least

350 times more FLOPs than ResIRNet and MobileNet making it a

much slower model. The number of parameters for ResNet is also

22 times bigger than MobileNet and around 160 times bigger than

ResIRNet.

However, as seen in the previous section, the IR-only approach

(ResIRNet and MobileNet in Table 6) is missing important features

compared to the RGB-only or RGB-IR approach. Therefore, to get

some good performance results, a ResNet50 + IR network is re-

quired.

So, for the RGB-IR approach, a ResNet is always added. The

choice of IR network impacts the FLOPs and parameters as well.

ResNet is a big network compared to the other networks. The IR

network is then either just as big as the RGB network (ResNet)

or has negligible size compared to the RGB network. Therefore,

the impact of the IR network is only seen in the double amount of

FLOPs and parameters when the ResNet + ResNet is used compared

to ResNet + ResIRNet/MobileNet.

It is out of scope to study di�erent RGB models as stated in

subsubsection 4.2.2. But at the cost of some accuracy, the ResNet

can be swapped out for a smaller RGB network (like a pre-trained

MobileNet). If speed and/or memory are critical, this can be con-

sidered as an alternative to ResNet. The other way around is also

possible as other researches have shown that networks with global

and local feature extraction obtain higher accuracies. Because these

networks have more branches, it follows that the speed is even

slower and the model size is even higher.

5.4 Ablation study

To quickly summarise the previous result sections, an increase in

performance is gainedwhen RGB and IR are both used in amodality-

speci�c network. That means that given the correct network for

the IR modality, the feature vector representation is strengthened

which results in better re-identi�cation.

The best performance for the modality-speci�c learning ap-

proach comes from using the ResNet as an IR network which is

logical as it is the biggest and therefore can capture the most com-

plexity. However, an almost similar performance is gained when the

ResIRNet as an IR network is used. This indicates that by removing

the unnecessary 3-channel input and one stage from the model, the

performance is nearly the same. All the while by removing these

redundancies, the model size is decreased and the inference speed

is increased. Therefore, the only case where the pre-trained ResNet

is better as an IR network is when computational metrics are of

no importance. Otherwise, the speed advantage gained from using

ResIRNet is very bene�cial at the cost of nearly no performance.

This makes the ResIRNet a good choice. Furthermore, this �nding

paves the way for designing better IR networks. Since the use of

1-channel inputs removes additional redundancies compared to

3-channel inputs this becomes a useful insight for designing IR

networks.

There are two limitations in the untrained IR networks compared

to the pre-trained network. First, in subsubsection 4.2.2 the discrep-

ancy in the dataset size was identi�ed. Therefore, this approach of

untrained ResIRNet might have su�ered from insu�cient amounts

of data. The scope of this research didn’t allow to analyse if the

dataset is big enough to learn su�cient unseen IR representations.

Therefore, this research is limited in this knowledge. However,

other researches (see Table 1) used datasets with 25-30 times more
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images which indicates there might be a discrepancy in the amount

of data in the dataset. If the dataset can indeed be improved by

more IR data, it would indicate that the RGB-IR approaches can

learn even more.

Second, there is the limitation of lower IR resolution in the

dataset as identi�ed in subsubsection 4.2.5. If a dataset is used

with IR resolutions similar to the RGB input resolutions, the input

resolution of ResIRNet can be the same as ResNet. The removed

stage of ResIRNet makes less sense then, which follows that a big-

ger ResIRNet can be created with more convolutions and therefore

more potential complexity. If this is exploited, IR might result in

even more added value than what was already shown here at the

cost of some more FLOPs and parameters.

When the modality-shared learning approach is analysed, it was

seen that RGB and IR combined resulted in lesser performance

than RGB-only. That means that modality-shared features are al-

ready very present in the RGB branch. The modality-speci�c RGB

features are cancelled out too much and the strengthened modality-

shared RGB-IR features do not compensate for this. That is why the

RGB-only approach performs better due to the better access to the

modality-speci�c RGB features. So, focusing on themodality-shared

features is not bene�cial.

The state-of-the-art approaches were missing the use of infrared

as a modality. This research shows that by focusing on the modality-

speci�c IR features, the feature representation strength is increased.

So, by incorporating this in the state-of-the-art approaches, the fea-

ture vectors are even better and a stronger vessel re-identi�cation

model can be created.

6 DISCUSSION

The research question was divided into two parts which anal-

ysed the contribution of respectively modality-speci�c features and

modality-shared features of IR. In order to answer these subques-

tions, two architectures were designed that measured the strength

of respectively modality-speci�c features and modality-shared fea-

tures. To measure the di�erence of the added modality, the results

were presented with only one modality and with both modalities.

By measuring performance di�erences the strength of the feature

vectors is found and the research question can be answered.

In the previous section, themodality-speci�c approach had better

performances when RGB and IR were combined in one architecture.

This translates that these modality-speci�c IR features are impor-

tant for a stronger feature vector. Furthermore, in the modality-

shared approach, the RGB and IR combination resulted in worse

performances. This then translates to that modality-shared features

in the IR modality do not strengthen the feature vector and are

therefore less important.

So by combining these �ndings, it can be stated that the modality-

speci�c IR features enhance the performance of the vessel re-identi�cation

task.

The improvements result in a combined score of 2.163 on vessel

re-identi�cation (following Equation 6). The relative improvement

compared to the RGB-only approach is a 0.023 combined score.

But when rank-k accuracy (from the identi�cation task) is indi-

vidually analysed an increase of 4.5% in rank-1 accuracy is found.

When the AUPRC (from the known/unknown classi�cation task) is

individually analysed, an increase of 0.03 is found.

So what does this research contribute to the context of vessel re-

identi�cation? First, the �rst RGB-IR vessel re-identi�cation dataset

has been created which can be used to continue the multi-modal

RGB-IR vessel re-identi�cation research.

Secondly, the state-of-the-art models can be enhanced even

further when IR is added to the network. So, combining these

�ndings with the state-of-the-art advances the �eld of vessel re-

identi�cation. (Note that in this research the models are limited and

not state-of-the-art. These limitations are listed in the next section.)

7 LIMITATIONS AND OPEN ISSUES

In this paper, some limitations and open issues are described. These

are collected in this subsection. For the limitations the �rst four

will (possibly) increase performances for re-identi�cation and the

last two will give more extensive results for this research. The

limitations are:

(1) The use of single images as input to the model. According to

the literature, video-based input should improve the model

(2) The dataset used is impure. Higher performances can be

gained if a method that creates less impure data is used.

(3) The model for the RGB is a ResNet50 model. In the literature,

better-performing models are used. A di�erent RGB model

will not change the outcome of this research but will result

in higher performances overall (for example using MVR-net

[4] or an adaption of MGN [31] as described in section 2).

(4) The dataset has not been analysed on whether it contains

enough versatile data to capture all the necessary features

for re-identi�cation. If this is the case, more data can improve

performances. Other researchers (see Table 1) used datasets

with 25-30 times more images. This might indicate that an

improvement can be made on the dataset.

(5) The AUPRC is bound to change when di�erent ratios are

used for known/unknown gallery ships and known/unknown

query ships. By adapting these parameters more extensive

results on AUPRC can be presented.

(6) The ResIRNet andMobileNet have only been evaluated when

it was trained from scratch. A pre-train on grayscale Ima-

geNet [1] can be done to have a basis of modality-shared

features just like the pre-trained ResNet50. It is expected

that this will have lower performance metrics than ResNet

because the model is smaller but it does have better compu-

tational metrics.

There is also an open issue in �nding a better IR network for

vessel re-identi�cation. In the approach, some IR networks were

compared in the modality-speci�c approach. Since this approach

gave promising results, it is interesting to research how to improve

this network further. This can be done by improving the RGB net-

work following the existing state-of-the-art but also by improving

the IR network. Since this is the �rst RGB-IR research in the �eld,

the way forward is still an open issue. The way forward can be

inspired by studying networks for the IR modality in other �elds

than re-identi�cation.
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