
The role of machine learning in closing the

moments of the stationary radiative transfer

equation

T.R. Veurink

April 2024

1 Abstract

When solving the radiative transfer equation, it is common to take the moments
against the Legendre polynomials. However, solving this set of equations is dif-
ficult because it has n variables and n + 1 unknowns. In this paper we take
a look if this gap in knowledge can be overcome with a solution in the form
of machine learning. We experiment with proper normalizations and try to of-
fer good neural network structures to circumvent not knowing 1 of the moments.

We find that neural networks with the gradients, fluxes, and moments, all give
good approximations to the fifth moment. Here the gradients perform best and
the moments perform worst.
Even though a normalization with m0 did significantly improve the performance
of a neural network with moments as inputs, good normalization factor were not
found for the other structures.

1

Contents

1 Abstract 1

2 Introduction 3

3 Theoretical Background 3
3.1 Neural Networks . 3

3.1.1 What is a neural network? 3
3.1.2 The optimization . 4

3.2 The RTE . 5

4 Network Architecture 6
4.1 The networks architecture . 6
4.2 Determining the hyperparameters 7
4.3 Power comparison . 9
4.4 Other hyper parameters . 9

5 Results 11
5.1 Moments . 11
5.2 Gradients . 12
5.3 Fluxes . 12
5.4 Comparison of moments, gradients and fluxes 13

6 Conclusion and Discussion 16

7 Acknowledgment 16

8 Appendices 17
8.1 The python implementation . 17

2

2 Introduction

The radiative transfer equation (RTE) is a widely used equation used in many
branches of science like astrophysics, heat transfer, remote sensing, and medical
imaging [2]. It describes how radiation propagates through a medium. However,
solving this equation can give rise to problems. It contains an integral that is
not analytically solvable. Throughout scientists have found various numerical
ways to solve this. Methods have been used like the Direct Simulation Monte
Carlo when trying to take a probabilistic approach and the moment method
when taking a deterministic approach.

In this paper, we will take a closer look at the moment method. The idea
of this method is to describe this integral as the sum of many different mo-
ments. To help build intuition for what these moments are, the zeroth moment
is the intensity of the radiation and the first moment is the flux. What the flux
exactly means in this context will be discussed in the theoretical background.

When trying to work with the moment method there is the problem that to
calculate the n′th moment, we need the n+ 1′st moment. So this system is not
closed. One is always one moment short. In this paper, we will take a look if
we can find a machine learning setup to accurately predict this moment. In this
paper, exclusively the fifth moment will be considered.

3 Theoretical Background

3.1 Neural Networks

3.1.1 What is a neural network?

When training a neural network, one solves a big optimization problem. Here
one tries to minimize the error between the predictions the network makes and
the known results. By training it against known data, we hope to achieve ac-
curate predictions on data the network has not seen before. Data the network
uses to train is the train data and data the network has not seen before is the
test data.

The (simplified) neural network used in this report has the shape seen in figure
3.1.1[1].

This neural network is fully connected, meaning that every circle in a layer
is connected to all circles of the layers beside it. Except for the circles in the
input and output layer, every one of these circles represents a linear operation.
When a circle receives n inputs, it multiplies these inputs with so-called weights
and adds a bias. So if you have an input vector x, the circle returns Wx + b.
Here W is a n×n matrix and b is n× 1 vector. The weights and biases are also
what we optimize when we talk about optimizing a neural network. We will also

3

Figure 1: Layers of a neural network

call the weights and biases the parameters(θ) of the neural network. Yet, this
linear approach is not sufficient for predicting a non-linear function. Therefore,
we add an activation function (tanh) over the results, making the final function
tanh(Wx + b).

3.1.2 The optimization

We have established that we need to optimize the parameters to make accurate
predictions on the test data. To understand the exact math behind the network,
we will label the data used into 2 sets, the training data(Dtr) and the testing
data(Dte). The training and testing data will also have a sub-class for the input
and target data. This will be Dtri and Dtrt or Dtei and Dtet respectively. To
optimize our network, we try to minimize the error. We will consider the data in
batches, in the code these have a size of 32 data pairs. The batch size(bs) can be
considered the optimizer’s jumpiness. If an optimizer is too jumpy, the neural
network will never find the optimal minimum, because even when it would find
it, it would jump straight out of it. However, when one uses a batch size that is
too big, it barely jumps at all. This causes the optimizer to settle for the first
local minimum available, while better solutions might exist. A batch size of 32
is generally considered to be good in most cases [3] and is used in this report.
The error used in this report is the L2-squared error. Dte exists out of 1000
paired elements. Dtr exists out of 9000 paired elements of Dtri and Dtrt. The
n′th pair is denoted as Dtri,n and Dtrt,n. The loss function is given by equation
1.

LL2S(k,Dtri,n, Dtrt,n) =
1

bs
∗

j+k∑
n=j

∑
(N (Dtri,n) −Dtrt,n)2∑

Dtr2t,n
(1)

For j < 9000− k, otherwise the equation changes to have the first sum go from
j to 9000 and 1

bs becomes 1
9000−j This would only happen at the end of an

iteration, as 32 does not divide 9000. An iteration through all data is called
an epoch. The optimizer used in this report is a variant of the SGD optimizer
described in following algorithm [3].

4

Init: Choose initial parameters θ(0), batch size bs ∈ N, learning rate η and
number of epochs k. K is the total number of epochs and r is the batchsize.
For k=1 up to K do

Mark entire dataset as unsampled.
While dataset not fully marked as sampled do

If r unsampled points left in dataset then
Sample r points from dataset and mark them sampled.

else
Sample remaining points from dataset and mark them sampled.
Compute LL2S(θ)
Set θ(k+1) = θ(k) − η∇θLL2S(θ(k))

In this report we use a Nestorov accelerated variation of this algorithm where
we use a momentum of 0.9. After the optimization has finished, we test the
neural network on Dte and look at its performance. Every time we go through
all the training data, we will have completed 1 epoch.

3.2 The RTE

The time-independent RTE for a gray medium in slab geometry has the form
[2]:

v∂xf = σs

(
1

2

∫ 1

−1

fdv − f

)
− σaf, (2)

Where, f = f(x, v) is the specific intensity of the radiation, v is the cosine
of the angle between the photon velocity and the x-axis, and σa and σs are
the absorption and scattering coefficients. They are assumed to be piece-wise
constant functions, where these constants are taken from a uniform probability
distribution. Here σa is made up from constants in [0.1, 1.1] and σs is made up
from constants taken from [0.1, 20.1]. These were used for the generation of the
training and testing data.
It is common to take the moments of this differential equation against the Leg-
endre polynomials. The k-th order polynomial is denoted as Pk. σa, σs and are
dependent on x, but we will discard the (x) behind those variables for the sake
of simplicity. These moments take the form:

mk(x) =
1

2

∫ 1

−1

f(x, v)Pk(v)dv. (3)

Now we can use Bonnet’s recursion formula to derive the moment equations
(4).

5

∂xm1 = −σam0

1

3
∂xm0 +

2

3
∂xm2 = −(σs + σa)m1

...

N

2N + 1
∂xmN−1 +

N + 1

2N + 1
∂xmN+1 = −(σs + σa)mN

(4)

With odd N. The last equation of (4) can be rewritten to:

mN =
N

−(2N + 1)(σs + σa)
∂xmN−1 +

(N + 1)

−(2N + 1)(σs + σa)
∂xmN+1. (5)

Here we can see an important relationship. The odd moments can be seen as
a combination of the gradients of the even moments. The gradients themselves
are then also dependent on the actual moment. The fluxes are the left sides of
equation (4)
These equations can not be solved analytically since the N ′th moment is always
dependent on the N +1′st moment. This makes for a system of N equations and
N + 1 unknowns. In the PN-method this is solved by setting the last moment
equal to zero. However, this needs a very large N to give accurate results in
general. This paper researches if machine learning can offer a solution here by
estimating one of the moments as a combination of other known properties of
the system like the other moments, gradients or fluxes. This gives inspiration
for neural networks of the following forms:

mN ≈ N (m0,m2, . . . ,mN+1) (6)

mN ≈ N (∂m0, ∂m2, . . . , ∂mN+1) (7)

mN ≈ N (f0, f2, . . . , fN+1) (8)

Here N is an odd integer and fn is the flux of the n′th moment.
These networks will be referenced as MO12MO1(Moment over 1 to Moment over
1), GO12MO1(Gradient over 1 to Moment over 1), and FO12MO1(Flux over
1 to Moment over 1) respectively. The results of these networks and possible
optimization will be discussed later in this paper.

4 Network Architecture

4.1 The networks architecture

We will be looking at neural networks in the form of neural networks (6), (7)
and (8). However, these might not be completely optimized yet, since no nor-
malization is taking place. A method of normalization that has been used before
in [2] is division by m0. So as a starting point for designing the neural networks,
we use the form:

mN

m0
≈ N

(
m2

m0
,
m4

m0
, . . . ,

mN+1

m0

)
(9)

6

mN

m0
≈ N

(
∂m0

m0
,
∂m2

m0
, . . . ,

∂mN+1

m0

)
(10)

mN

m0
≈ N

(
f0
m0

,
f2
m0

, . . . ,
fN+1

m0

)
(11)

These networks will be referenced as MOM2MOM(Moment Over Moment
to Moment Over Moment), GOM2MOM and FOM2MOM respectively. Other
interesting cases are the following:

mN

m0
≈ N

(
∂m2

∂m0
,
∂m4

∂m0
, . . . ,

∂mN+1

∂m0

)
, (12)

mN

m0
≈ N

(
f2
f0

,
f4
f0

, . . . ,
fN+1

f0

)
, (13)

mN

∂m0
≈ N

(
∂m2

∂m0
,
∂m4

∂m0
, . . . ,

∂mN+1

∂m0

)
, (14)

mN

f0
≈ N

(
f2
f0

,
f4
f0

, . . . ,
fN+1

f0

)
. (15)

These networks will be referenced as GOG2MOM, FOF2MOM, GOG2MOG
AND FOF2MOF respectively.

In this paper, we will be evaluating the neural networks by their performance
in the L2 error defined as:

LL2 =
√
LL2S(k,Dtei,n, Dtet,n) (16)

4.2 Determining the hyperparameters

To configure the optimal neural network, we will be using equation (9) as an
initial condition. For simplicity, we will also solely be considering solving for
m5. Literature[2] found m5 to be a moment that is not so high the solution
becomes very small, but also not so small that neural networks can’t approach
them very well anymore. To find the best configuration for this neural network,
we trained a series of them with different amounts of layers and neurons. Our
methodology was to first train a neural network with various amount of lay-
ers, take the amount of layers that performed best, and then start to vary the
amount of neurons per layer. This should lead to the best results with a lim-
ited amount of training. Below you can find the result of training the network
with 512 neurons per layer and various amounts of layers. Here 512 was chosen
because in this paper we will be estimating m5 and the normalized variant will
have 300 inputs. This makes 512 the first power of 2 which does not force the
data to compress. Going over 300 also allows the network to express any addi-
tional complexity. The results of this testing you can seen in 4.2. in 4.2 we can
see that 5 layers is the optimal amount. This will be the basis on which we test
for the optimal amount of neurons per layer. This is plotted in 4.2. In figure:

7

Figure 2: Error to layers

Figure 3: Error to neurons

4.2 we observe that this network benefits significantly from being wide. For
computational reasons, we will train our network with 2048 neurons per layer.
However, the network can most likely be significantly improved when expanded.

An important limitation of this method of determining the number of layers
and neurons is that finding the optimum in 2 directions might not yield the
global optimum. However, due to computational restrictions, it is a good ap-
proximation.

8

4.3 Power comparison

At last, we want to make an interesting observation. We found earlier that both
the neural networks in equation (6) and (9) converge quite well. Given that not
normalizing is the same as normalizing by m0

0, it raises the question:
”What is the best value of x that normalizes a neural network of the form:”

mN

m0
x
≈ N

(
m2

m0
x
,
m4

m0
x
, . . . ,

mN+1

m0
x

)
(17)

This question is difficult to answer and will not be answered in this paper. The
problem is that when we talk about machine learning, normalization is quite
closely bound to the learning rate, this causes the power of x to be dependent
on the learning rate and in 3 simulations, no clear pattern was found. What
makes this finding significant, is that many neural networks work with declining
learning rates. This research shows that when one does this, a neural network
might end up sub-optimal. In 4.3 We can see how the power develops throughout
some learning rates. Over the course of this paper, we will use a learning rate

Figure 4: Error to power for different learning rates

of 0.001 and a normalization power of 1. This is normalizing with a power
of 1 has been successful in the past[2] and we need a learning rate of 0.001
to be able to make proper comparisons later. Picking a learning rate of 0.01
will give normalization errors in the code. We also don’t know exactly what the
influence of these factors is when expanding our research to gradients and fluxes.
Therefore taking a small learning rate is best for making good comparisons.

4.4 Other hyper parameters

This neural network was trained using the Python library ’pytorch’ which has
extensive documentation [5]. The training data for this neural network was
provided by a numerical solver using the methodology of DSA preconditioned

9

source iteration for a DGFEM method for radiative transfer [4]. In the numer-
ical solver, we solved for 1000 data points per test case and 10 different layers.
Afterwards we took a pairwise average of the even moments to make them have
an equal amount of points as the odd moment, followed by taking the average
per 10 points to reduce the data to 100 data points. For the loss curves we did
testing every 10 epochs.
During the training phase of the neural network, we would run the neural
network for 1000 epochs. Even though the testing/training errors have not
plateaued yet at this point, enough epochs have been done to give a clear in-
sight into what machine learning method gives a lower testing error.
We used a plethora of learning rates while testing, but unless otherwise stated,
0.001 was used for everything except the neuron and layer determination, where
a learning rate was used of 0.01. It has already been stated that we used the
Nestorov variant of the SGD optimizer. Alternatives like the Adam optimizer
and custom loss functions were tried, but none gave better results.

10

5 Results

We are splitting up the results into 3 sections. First, we’ll evaluate our baseline
by seeing how one can estimate the fifth moment using the even moments. After
that, we will discuss the results of the neural networks using the gradient and
eventually the fluxes.

5.1 Moments

When it comes to moments, we discuss the networks in equations (6) and (9).
The results one can find in figure 5:

Figure 5: Error curves of MO12MO1 and MOM2MOM

We can clearly see that the NN with a normalized moment outperforms the
NN without normalization. The errors on the training data and testing data
are also very close, meaning that the NN regularizes well.

11

5.2 Gradients

Below, one can see the learning curves of the 4 gradient dependent neural net-
works, those of equation (7), (10), (12) and (14).

Figure 6: Error curves of estimations with the gradients

To be brief about the results of GOG2MOM and GOG2MOG. They don’t con-
verge very well. The random initialization of GOG2MOG was a better predic-
tion than the solution it settled on eventually.
One might say that GOG2MOM might work better if the NN would be more
regularized because of the big gap between the error of the training data and
testing data. However, when we take a look at the comparison of training data
errors of the 3 NN’s, we see that even when the error of the testing data would
perfectly follow that of the training data, GOG2MOM would still fall short.

5.3 Fluxes

Below one can find the results of the NN’s using the fluxes as inputs, (8), (11),
(13) and (15) as F2M, FOM2MOM, FOF2MOM and FOF2MOF.

The results of the NN’s using the fluxes are very similar to those of the
gradients. The exception is that in this case, FOM2MOM might have more
potential for further decline since the tail of the neural network is declining
steeply. Similar to the gradients, it is clear that no normalization works best
for the fluxes

12

Figure 7: Error curves of estimations with the fluxes

5.4 Comparison of moments, gradients and fluxes

When comparing the NN’s we decided that the regular moment, the normalized
moments and the regular G2M and F2M will be compared. When plotting the
curves against each other we get the following:
This data makes a lot of sense when compared to the moment’s equations (4).
We expect the fluxes to do best, then the gradients, and then the moments.
We see that the gradients do outperform the fluxes by a small margin, but we
also have to keep in mind that neural networks perform differently depending
on how it was initialized, so differences can occur by chance. We also see that
the normalization of the moments is very effective. It is however not effective
enough to make it competitive with the gradients and fluxes.
Now we will look at the accuracy of these networks. We have been talking a
lot about the L2 error, but what does that mean visually? For that reason,

13

Figure 8: Comparison of error curves

we computed the median error of the testing set and found the test case that
belongs to it. This was the same for all 3 NN’s. That function being 5.4.
The errors are compressed on the right side of the graph because the magnitude

Figure 9: The fifth moment

is much bigger on the left. We can now observe these predictions where the left
side is cut off. This graph is shown in 5.4.
There are a couple of things to notice here, the big thing is that GO12MO1 and
FO12MO1 seem not to learn that moment values are close together and since
the squared L2-error does not differentiate whether the prediction is below or
above the target value, it doesn’t train for it. This gives these graphs a very
chaotic nature. However, one can see that the lines do follow the graph closely.
Also, this might look worse than it is, because these peaks are just individual
points, and if you look at the number of points that is a peak and that are

14

Figure 10: The right side of the fifth moment

close to the moment. there are many fewer peaks. It is also expected that the
predictions of small points are worse. This is because a neural network finds it
harder to approximate small values. The last thing to notice is that moments
are not meant to become smaller than zero. This means that the error of the
neural network to reality is primarily influenced by the error of the training
data to reality. So for this model to improve, the biggest factor could be more
precise training data.

15

6 Conclusion and Discussion

We believe that neural networks can play an important role in determining
the moments when the physical properties σa and σs are unknown. M2M,
MOM2MOM, G2M, GOM2MOM, F2M, and FOM2MOM all give good results,
but our recommendation goes out to using MOM2MOM, G2M, and F2M. Nor-
malization for the last 2 is not necessary since it does not significantly decrease
the error. When given a more physical interpretation. When you can’t learn
the moment, but you can measure the gradients or fluxes, you probably also
can’t measure the zeroth moment used for normalization. So it is good to know
that not being able to measure this will not lead to worse predictions of the odd
moments.
Even though the moment has not been specifically closed in this paper, we hope
that this may serve as a setup for future research.

For future research, we recommend to let the simulations run for longer and
with more neurons per layer, since this seems to significantly improve the qual-
ity of the neural networks.
Another recommendation is to use dynamic normalization when it comes to the
power of m0 and the learning rate since the best optimization has been proven
not to be constant.
It would also be useful to expand this paper to accommodate for other moments
than just the fifth one.
It would also be interesting to see how the results in this paper stack up against
the PN method both in terms of accuracy in predicting as in computational
efficiency.
Another point that could improve the model is that in the end, the error was
about 5 ∗ 10−3. When squaring this, it would be 2.5 ∗ 10−5. The code is using
32 bit floats, which gives precision to about 10−8. This means that it is pos-
sible that the accuracy of the number representation has a negative effect on
the training of the neural network and we recommend to train a neural network
with 64 bit representation instead.

The last thing is, that this paper has delivered further proof that a normal-
ization function can greatly improve the performance of a neural network. Yet,
it is not known if the zeroth moment is even the optimal function to normalize
with. It could be very interesting to see what would happen if one trains a
neural network to find an optimal normalization function.

7 Acknowledgment

I want to thank Matthias Schlottbom for guiding me throughout this project
and providing the numerical solver to generate the training data for the neural
networks. I also would like to thank Harald Rutsch for providing the GPU that
ran nearly all simulations.

16

References

[1] harkiran78. Artificial Neural Networks and its Applications - GeeksforGeeks,
6 2023.

[2] J. Huang, Y. Cheng, A.J. Christlieb, and L.F. Roberts. Machine learning
moment closure models for the radiative transfer equation I: Directly learn-
ing a gradient based closure. Journal of Computational Physics, 453, 2022.

[3] Ruben Hoeksma Mengwu Guo, Tjeerd Jan Heeringa. Non-linear optimisa-
tion and learning. 3 2024.

[4] O. Palii and M. Schlottbom. On a convergent DSA preconditioned source
iteration for a DGFEM method for radiative transfer. Computers and Math-
ematics with Applications, 79(12):3366–3377, 2020.

[5] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, J. Bai, and S. Chintala. PyTorch: An
imperative style, high-performance deep learning library. In Advances in
Neural Information Processing Systems, volume 32, 2019.

8 Appendices

8.1 The python implementation

This is the code for the normalized moment, but the other neural networks had
very similar architectures.

import torch
import torch . nn as nn
import numpy as np
import s c ipy . i o as s i o
from torch . u t i l s . data import Dataset , DataLoader ,

random spl i t , Subset
import time
import random

check i f GPU i s a v a i l a b l e and use i t ; o the rw i s e use CPU
dev i c e = torch . dev i c e (”cuda : 0 ” i f torch . cuda . i s a v a i l a b l e

() else ”cpu”)
torch . s e t d e f a u l t d e v i c e (dev i c e)

Here we determine the p r o p e r t i e s o f the da t a s e t :
class MomentDataset (Dataset) :

def i n i t (s e l f) :
s e l f .num mom = 5 # Must be odd , t h i s i s the

moment you determine

17

s e l f . half num mom = int ((s e l f .num mom+1)/2) #
Mostly used to determine the amount

s e l f . num train data = 9000
s e l f . num test data = 1000
data = s i o . loadmat (’ r e s u l t s 3 . mat ’)
even m = torch . t en so r (data [’ po s t ph i e ’]) . to (torch

. f l o a t 3 2)
odd m = torch . t enso r (data [’ po s t ph io ’]) . to (torch .

f l o a t 3 2)
grads = torch . t enso r (data [’ po s t g rads ’]) . to (torch

. f l o a t 3 2)
f l u x e s = torch . t en so r (data [’ p o s t f l u x e s ’]) . to (

torch . f l o a t 3 2)

s e l f . mode = ”MOM2MOM”
chars = [∗ s e l f . mode]

i f chars [0] == ”M” :
s e l f . numerator input = even m [: (s e l f .

half num mom + 1) ∗ 100 , :]
e l i f chars [0] == ”G” :

s e l f . numerator input = grads [: (s e l f .
half num mom + 1) ∗ 100 , :]

e l i f chars [0] == ”F” :
s e l f . numerator input = f l u x e s [: (s e l f .

half num mom + 1) ∗ 100 , :]
e l i f chars [0] == ”1” :

s e l f . numerator input = torch . ones (even m [: (
s e l f . half num mom + 1) ∗ 100 , :] . shape)

i f chars [2] == ”M” :
s e l f . norm fac = even m [: 1 0 0 , :]

e l i f chars [2] == ”G” :
s e l f . norm fac = grads [: 1 0 0 , :]

e l i f chars [2] == ”F” :
s e l f . norm fac = f l u x e s [: 1 0 0 , :]

e l i f chars [2] == ”1” :
s e l f . norm fac = torch . ones (even m [: 1 0 0 , :] .

shape)

s e l f . power = 1
s e l f . inputs = s e l f . numerator input / torch .pow(

s e l f . norm fac . r epeat (s e l f . half num mom + 1 , 1)
, s e l f . power)

i f chars [0] == chars [2] : # Changed
s e l f . inputs = s e l f . inputs [1 0 0 : , :]

18

s e l f . inputs = torch . t ranspose (s e l f . inputs , 0 , 1)
We transpose so every d i f f e r e n t po in t i s an
input node

i f chars [6] == ”M” :
s e l f . norm fac output = even m [: 1 0 0 , :]

e l i f chars [6] == ”G” :
s e l f . norm fac output = grads [: 1 0 0 , :]

e l i f chars [6] == ”F” :
s e l f . norm fac output = f l u x e s [: 1 0 0 , :]

e l i f chars [6] == ”1” :
s e l f . norm fac output = torch . ones (even m

[: 1 0 0 , :] . shape)

s e l f . outputs = odd m [100 ∗ (s e l f . half num mom −
1) :100 ∗ s e l f . half num mom , :] # This i s the
5 th moment

s e l f . outputs = s e l f . outputs / torch .pow(s e l f .
norm fac output , s e l f . power)

s e l f . outputs = torch . t ranspose (s e l f . outputs , 0 ,
1)

s e l f . norm fac output = torch . t ranspose (s e l f .
norm fac output , 0 , 1)

s e l f . n samples = even m . shape [0] # Could a l s o be
odd m doesn ’ t r e a l y matter

s e l f . l e n i n p u t = s e l f . inputs . shape [1] # Used f o r
number o f input nodes

s e l f . l en output = s e l f . outputs . shape [1] # Used
f o r number o f output nodes

def g e t i t e m (s e l f , index) :
return s e l f . inputs [index] , s e l f . outputs [index] ,

s e l f . norm fac output [index]

def l e n (s e l f) :
return s e l f . n samples

Define the t r a i n i n g and t e s t d a t a s e t s :
datase t = MomentDataset ()
datase t . inputs . to (dev i ce)
datase t . outputs . to (dev i ce)
datase t . norm fac . to (dev i c e)

19

t r a i n d a t a s e t = Subset (dataset , range (datase t .
num train data))

t r a i n l o a d e r = DataLoader (datase t=t r a i n d a t a s e t ,
b a t c h s i z e =32) # This number

can be var ied , but 32 i s
g e n e r a l l y q u i t e good

def l 2 e r r o r (x , y) : # This func t i on was prov ided by
ChatGPT, but I understand and stand behind i t
s q u a r e d e r r o r = torch .sum((x − y) ∗∗ 2)
y squared = torch .sum(y ∗∗ 2)
s q u a r e d e r r o r d i v i d e d b y y s q u a r e d = s q u a r e d e r r o r /

y squared
rmse d iv ided by y = torch . s q r t (

s q u a r e d e r r o r d i v i d e d b y y s q u a r e d)
return rmse d iv ided by y

Every epoch I t e s t the NN on the t e s t s e t so I can see
how the error deve l op s

def v e r i f y (NN, datase t) :
global e r r o r d a t a
global s t a r t t i m e
t e s t d a t a s e t = Subset (dataset , range (datase t .

num train data , datase t . num train data+datase t .
num test data))

t e s t l o a d e r = DataLoader (datase t=t e s t d a t a s e t)

random numbers = random . sample (range (0 , datase t .
num train data) , datase t . num test data)

t r a i n t e s t = Subset (dataset , random numbers)
t r a i n t e s t l o a d e r = DataLoader (datase t=t r a i n t e s t)

l 2 e r r o r s = []
ms e r ro r s = []
for inputs , outputs , norm fac in t r a i n t e s t l o a d e r :

opt . z e ro g rad ()
pred = NN(inputs . to (dev i ce))
norm fac . to (dev i c e)
l = l o s s (norm fac . to (dev i c e) ∗pred , norm fac . to (

dev i c e) ∗ outputs . to (dev i ce)) . to (”cpu”) . detach ()
. numpy()

l 2 e r r o r s . append (l 2 e r r o r (norm fac . to (dev i c e) ∗
pred , norm fac . to (dev i c e) ∗ outputs . to (dev i ce)) .

20

to (”cpu”) . detach () . numpy())
ms er ro r s . append (l)

e r ro r row1 = ms er ro r s + l 2 e r r o r s
e r ro r row = error row1
l 2 e r r o r s = []
ms e r ro r s = []
for inputs , outputs , norm fac in t e s t l o a d e r :

opt . z e ro g rad ()
pred = NN(inputs . to (dev i ce))
norm fac . to (dev i c e)
l = l o s s (norm fac . to (dev i c e) ∗ pred , norm fac . to (

dev i c e) ∗ outputs . to (dev i ce)) . to (”cpu”) . detach ()
. numpy()

l 2 e r r o r s . append (l 2 e r r o r (norm fac . to (dev i c e) ∗
pred , norm fac . to (dev i c e) ∗ outputs . to (dev i ce)) .
to (”cpu”) . detach () . numpy())

ms er ro r s . append (l)

e r ro r row2 = ms er ro r s + l 2 e r r o r s
e r ro r row = erro r row + error row2

e r r o r d a t a . append (e r ro r row)
Here we have the f o l l ow i n g e r ro r s : [mse train ,

l 2 t r a i n , mse tes t , l 2 t e s t , runtime]
return np . mean(ms er ro r s) , np . mean(l 2 e r r o r s)

Define the NN a r c h i t e c t u r e
num neurons = 2048 # This i s compressing the data , but

even when you don ’ t , i t s t i l l g i v e s very s im i l a r
r e s u l t s

num layers = 5
NN = nn . Sequent i a l (nn . Linear (datase t . l en input ,

num neurons) , nn . Tanh () , # num mom−1+2
nn . Linear (num neurons , num neurons) ,

nn . Tanh () ,
nn . Linear (num neurons , num neurons) ,

nn . Tanh () ,
nn . Linear (num neurons , num neurons) ,

nn .Tanh () ,
nn . Linear (num neurons , num neurons) ,

nn .Tanh () ,
nn . Linear (num neurons , datase t .

l en output))

21

NN. to (dev i c e)

Define the op t imi ze r and l o s s f unc t i on :
l r = 0 .001
opt = torch . optim .SGD(NN. parameters () , l r=l r , momentum

=0.9 , ne s t e rov=True)

l o s s = nn . MSELoss ()

Now we s t a r t t r a i n i n g
s t a r t t i m e = time . time ()

e r r o r d a t a = []
epochs = 1000
for epoch in range (epochs) :

for inputs , outputs , norm fac in t r a i n l o a d e r :
opt . z e ro g rad ()
pred = NN(inputs . to (dev i ce))
l = l o s s (pred , outputs . to (dev i c e)) / l o s s (torch .

z e r o s ((outputs . to (dev i c e)) . shape) , outputs . to (
dev i c e))

l . backward (r e t a in g raph=True)
opt . s tep ()

i f epoch % 10 == 0 or epoch == epochs −1:
mean MSE , mean r e l l 2 = v e r i f y (NN, datase t)
print (” code2 epoch : ” , epoch , ”mean e r ror ,

l 2 e r r o r : ” , mean MSE , mean re l l 2 , ” epochtime
=” , (time . time ()−s t a r t t i m e) /60)

s a v e s t r i n g = ’mom’ + str (datase t .num mom) + ’ ’ + str (
datase t . mode) + ’ ’ + str (num layers) + ’ lay ’ + str (
num neurons) + ’ neurons ’ + str (datase t . power) + ’pow ’

torch . save (NN, s a v e s t r i n g + ’ . pth ’) # Save the Neural
Network

e r r o r d a t a = np . array (e r r o r d a t a)
np . save (s a v e s t r i n g + ’ . npy ’ , e r r o r d a t a)

22

