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Management Summary

In this thesis, we provide a practical model for Diakonessenhuis to re-evaluate its surgery schedule.
This tool is a model that optimises an existing surgery schedule by moving a limited number of patients
to a different surgery session, which we define as a surgery schedule re-evaluation problem. The need
to re-evaluate a surgery schedule arises when a current surgery schedule is inefficient, for example,
because patients cancel their appointment between the time of composing and executing the surgery
schedule. For Diakonessenhuis, a logical moment to re-evaluate is during the feasibility meeting about
the surgery schedule, one week in advance. Diakonessenhuis’s challenge is to improve the surgery
schedule whilst only being able to make a few changes to the schedule, as a change means a patient
needs to be manually called and transferred to a different date. The literature contains extensive
research on surgery scheduling. However, as far as we know, no literature re-evaluates an existing
surgery schedule with the option to reschedule patients. Therefore, we conclude there is a gap in the
literature, which we define as the re-evaluation operational surgery scheduling level.

As the duration of surgeries is uncertain, we solve the identified gap in the literature by formulating
a stochastic programme. We assume the surgery durations follow a log-normal distribution and differ
per surgeon. The sum of two independent differently distributed log-normal variables does not have a
closed-form distribution. Therefore, we cannot use an exact approach and have to use an approxima-
tion. We approximate the stochastic programme by a sample average approximation (SAA) approach
with the objectives of minimising overtime, risk of “extreme” overtime, and size of the utilisation
slack factors. For the risk of “extreme” overtime, we use the conditional value at risk (CVaR) in our
objective function to penalise the 5% most “extreme” overtime cases. We show the impact of changes
from our model on operating room (OR) sessions in Figures 1 and 2.

Figure 1: Chance of overtime in OR sessions be-
fore and after our model.

Figure 2: Utilisation in OR sessions before and
after our model.

Figures 1 and 2 show that our model reduces the total chance of overtime and reduces the outliers in
the utilisation of the OR sessions. The results of experimentation with our SAA approach indicate
that changes in the objective weights impact the model decisions. When we use utilisation and risk as
the single-objectives, they positively influence overtime. Further reducing the overtime of a schedule
creates higher risk and less desirable utilisation of the OR sessions. Furthermore, the model offers the
possibility of fixing patients to their current slot in the surgery schedule. We show a trade-off between

1



CONTENTS

the model value and the percentage of fixed patients, proving that our model remains useful when
the percentages of patients are fixed. From experiments, we conclude that the CVaR is a valuable
addition to our model, as it limits an extreme increase in risk for a slight improvement in overtime or
utilisation. However, with the 100 scenarios we use, there is still a significant sample bias. The sample
bias is not necessarily a problem, as our goal of limiting the risk is already sufficiently satisfied with the
current number of scenarios. In multiple experiments, we encounter the challenge of an exponential
increase in the runtime of our model when we increase the number of possibilities. This means our
model is only helpful for a surgery schedule with a limited planning horizon, restricted number of
moves and restricted move opportunities. In reality, these restrictions are present at Diakonessenhuis,
which means the runtime is not a problem. However, for other hospitals, the SAA approach we used
might be less suitable.

We recommend that Diakonessenhuis only moves patients when the improvement in objective values
gained by moving outweighs the effort of moving patients around. Furthermore, Diakonessenhuis needs
to take into account that the transfer of a patient might require another patient to be transferred as
well. For further research, we recommend investigating the value of this model for other instances, as
our instances reflected the current schedules of Diakonessenhuis, which were not optimally constructed
before our analysis. Lastly, we recommend expanding on our model by using a heuristic to solve larger
instances, analysing the effects of the OR on the rest of the hospital, or adding resource constraints.
All of these points are out of the scope of our research.
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1 INTRODUCTION

1 Introduction

In this chapter, we introduce Diakonessenhuis and discuss the problem setting. We start in Section 1.1
by introducing Diakonessenhuis and continue in Section 1.2 by motivating this research. In Section 1.3
we analyse the problem and in Section 1.4 we define the design for this research to solve the identified
core problem.

1.1 Diakonessenhuis

Diakonessenhuis is a hospital with its main location in Utrecht, the Netherlands, and subsidiary
locations in Zeist and Doorn. The location in Utrecht has an emergency department and an intensive
care unit. Zeist is a regional hospital where less complex treatments and operations are performed.
The last location is Doorn, an outpatient clinic mainly doing consultation sessions (Diakonessenhuis,
2024a).

Diakonessenhuis was founded in 1844 and has approximately 500 beds, 45000 admissions per year and
3000 employees. The hospital’s mission is threefold: be accessible and involved, whilst providing the
necessary patient care and continuously innovate and improve (Diakonessenhuis, 2024c). Diakonessen-
huis uses the ASA classification system, which was first constructed by Saklad and is designed to help
predict perioperative risks (1941). The scores are widely used and defined by the American Society of
Anesthesiologists (American Society of Anesthesiologists, 2020).

Diakonessenhuis has 13 operating rooms, distributed over Utrecht and Zeist. Zeist does not have an
intensive care unit and only treats ASA-1 and ASA-2 type patients, the most predictable and low-risk
surgery procedures. As a result, patients with higher ASA scores and emergency patients are treated
in Utrecht, and one of the operating rooms in Utrecht is dedicated to emergency patients.

Diak Clinic is an initiative within Diakonessenhuis which uses the existing surgery facilities. With
Diak Clinic, Diakonessenhuis focuses on less complex and plannable surgeries to provide this care even
more efficiently (Diakonessenhuis, 2024b). The goal is to shorten waiting lists and improve patient
care, which is necessary as Diakonessenhuis has to compete with increasing numbers of independent
treatment centres.

1.2 Research Motivation

In this section, we outline the motivation for this research. One of the critical drivers of a hospital
is the surgical department, as this department dictates the flow of patients to other departments.
Efficient planning in the surgery department can reduce healthcare costs and waiting time for pa-
tients. Therefore, a solid and efficient surgery schedule is of the utmost importance. Currently, the
surgery schedule at Diakonessenhuis is composed based only on the expected duration of the surgeries.
However, uncertainty of the duration of surgeries has a significant impact on the utilisation and the
probability of overtime in an operating room. As a result, Diakonessenhuis experiences too much
overtime and low utilisation in operating rooms, which is costly and decreases staff work satisfaction.

As a first step, a session duration predictor was developed to provide insight into the expected prob-
ability of having overtime and being finished early. The main goal was to make staff aware that
uncertainty and randomness should be considered when scheduling surgeries. The next step is to
implement the session duration predictor into Diakonessenhuis’s planning process. However, during
this step, questions arose about which actions were needed based on the results of the session duration
predictor. Research is necessary to determine the most effective interventions for staff to improve the
surgery schedule based on the data of the session duration predictor.

1.3 The Research Problem

In this section, we follow the framework of Heerkens and van Winden (2017) to identify the research
problem of this thesis. In Section 1.3.1 we define the action problem, which is the start of the problem
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1 INTRODUCTION

identification in Section 1.3.2. As a result of the problem identification, we are left with potential core
problems, from which we choose in Section 1.3.3.

1.3.1 Action Problem

An action problem is described by Heerkens and van Winden (2017) as a discrepancy between the
norm and reality, perceived by the problem owner. In our case, the problem owner is Diakonessenhuis.
The norm Diakonessenhuis wants to obtain in our research is that the realised utilisation and overtime
percentages of a planned surgery schedule are equal to their goals for these percentages. In this case,
the actual situation is that Diakonessenhuis still has a lower realised utilisation and higher overtime
for the operating rooms than their goals. The action problem is:

“Diakonessenhuis does not achieve its planning goals for utilisation and overtime in
the surgery department.”

1.3.2 Problem Identification

In this section, we identify the problems present in the context of the action problem. We show the
relations between the problems explained in this section in the problem cluster in Figure 3.

The goal of problem identification is to find the root cause of the action problem. We start with the
action problem identified in Section 1.3.1 and look into the problems that cause this action problem
to exist. The next step is to look for the causes of these problems; we look for causes until we do not
find any more causes, leaving a list of potential core problems.

The action problem is that the surgical department is unable to match their utilisation goal of 93%
to the chance of overtime goals when scheduling surgeries. The session duration predictor, a model
that provides a complete distribution of the duration of a surgical session, was designed to help reduce
overtime, schedule surgeries and create insight for Diakonessenhuis. The fact that the session duration
predictor is not used sufficiently is the reason that the surgical department still perceives the action
problem.

There are three related causes for the session duration predictor not being used: the staff does not
unanimously trust or see potential in the session duration predictor, it is unclear for planning staff
how to act upon the predictions of the session duration predictor, and in the current planning method
there is no perceived need for an overtime probability estimation. The cause for the last reason is that
the planning goals, seen as sufficient and optimal, do not consider the variability of surgery times of
the planned surgeries.

The problem that staff does not unanimously trust or see potential in the session duration predictor is
due to the following problems: there is still little experience with the session duration predictor, and
the tool can still improve in accuracy. The session duration predictor’s accuracy is still improvable
because it uses a simplification of reality with only surgeries and switchover times, and not all surgery
characteristics that influence the duration of the surgery are considered in the duration estimation.
Lastly, the staff’s confusion about how to act on the session duration predictor’s results is due to the
fact that it is unknown what modifications are necessary based on the session duration predictor.
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Figure 3: Problem Cluster

1.3.3 Core Problem and Motivation

After the problem identification in the previous Section 1.3.2, five potential core problems are identi-
fied. We show these potential core problems in Figure 3, numbered and coloured yellow. We proceed
by elimination to choose our final core problem.

We do not choose potential core problem one as staff is already trying to include the session duration
predictor in its current state, which means the experience will come with time. Ultimately, our research
might help by providing more insight and understanding into the session duration predictor.

We eliminate potential core problems two and three because it is currently unknown whether solving
them significantly affects the session duration predictor’s staff utilisation. It will probably increase
the trust in the session duration predictor, but if it is still unclear what to do with the prediction,
the problem remains. Also, it has not been proven that the session duration predictor is not accurate
enough.

We exclude potential core problem five because it does not solve the problems with the planning staff’s
use of and trust in the session duration predictor. As a result, the planned utilisation accuracy would
not improve. When the planning staff uses the session duration predictor more, trust will come that
a change in utilisation norm is necessary and logical.

We choose to solve potential core problem four, as it directly impacts the potential of the staff working
with the session duration predictor. The selected core problem of this research is:

“It is unknown which modifications will reduce the probability of overtime and improve
utilisation of the operating room sessions at Diakonessenhuis.”
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1 INTRODUCTION

In this thesis, we address the core problem by creating a model to modify the surgery schedule to help
Diakonessenhuis’s surgery department reach its planning goals.

1.4 Research Design

In this section, we explain the research design. We divide the main research question into sub-questions
in Section 1.4.1 and further scope the research in Section 1.4.2.

1.4.1 Research Questions

In this section, we introduce the main research question, explain how it relates to the chosen core
problem of this research and set up sub-questions to answer the main research question systematically.
We formulate the main research question as follows:

“How can the surgery schedule at Diakonessenhuis, using session duration
distributions, be optimised to help Diakonessenhuis reach its planning goals for the

operating rooms?”

To ensure that we answer the main research question correctly, we divide the main question into
sub-questions. For each sub-question, we explain which steps we take to answer it. We formulate the
sub-questions:

1. How are surgeries currently scheduled at Diakonessenhuis?

In Chapter 2 we answer this question by conducting interviews with the current persons in-
volved. The goal is to create an overview of how the surgery schedule gets constructed and who
is responsible for each part of the planning process.

• Which roles reschedule surgeries and develop the surgery schedule?

• How does each role contribute to rescheduling a surgery?

• How do the contributions of the involved roles to rescheduling a surgery influence and relate
to each other?

• How does the current session duration predictor work?

• What does a surgery schedule constructed with the current planning method look like?

2. What are relevant surgery scheduling methods in literature?

In Chapter 3 we answer this question by conducting a literature review of the current state
of knowledge about surgery rescheduling, surgery schedule optimisation and the probability of
overtime minimisation.

• Which methods are available in the literature to optimise an existing surgery plan?

• Which methods are available in the literature to minimise the probability of overtime in a
surgery plan?

3. How can we optimise the surgery schedule at Diakonessenhuis?

In Chapter 4 we answer this question by choosing and implementing a surgery schedule op-
timisation method.

• What improvements must be made to the session duration predictor implemented at Di-
akonessenhuis?

• How can we formulate and implement a surgery schedule optimisation model for Di-
akonessenhuis?
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4. How does our re-evaluation model perform?

In Chapter 5 we answer this question by comparing the current planning method and our sug-
gested rescheduling model with the optimal surgery schedule.

• What does an optimal surgery schedule look like?

• How does our re-evaluation model compare with the optimal surgery schedule and current
planning method?

• What variables can be altered to make the suggested model more practical for Diakonessen-
huis?

5. What conclusions and recommendation can we make for our re-evaluation model at Diakonessen-
huis?

In Chapter 6.1 we answer this question by drawing conclusions based on the conducted research.
Based on the conclusions, we make recommendations for further research and recommendations
for Diakonessenhuis.

• What do we conclude based on the research conducted in this thesis?

• What are the recommendations for Diakonessenhuis?

• What are the limitations of this research?

• What are the theoretical and practical contributions of this research?

• What are the recommendations for further research?

1.4.2 Scope

This research’s primary assumption is that we assume the surgery schedule is already constructed. As
a result, we must consider certain limitations when rescheduling and optimising the surgery schedule.
The main reason for this constraint, next to the time it would take, is that changing the surgery
schedule construction system in Diakonessenhuis is undesirable, as we would like to have a minimal
impact on the current way of working in Diakonessenhuis.

More assumptions result from the desire to have minimal impact on the current way of working in
Diakonessenhuis. For example, we leave the decision for the time a patient needs to arrive at the
hospital up to the nursing staff. This decision has quite some impact on the probability a patient is
on time in the operating room but it would change the surgery planning process for Diakonessenhuis
too much.

We do take every constraint currently present at Diakonessenhuis as a constraint, as there would
be little room left for change without altering or interfering with the current way of working in
Diakonessenhuis. Also, this means that our research becomes more relevant for other healthcare
institutions and can show Diakonessenhuis the benefit of changing specific working methods. The
constraints considered in this research’s improvement model are explained in Chapter 4.
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2 CONTEXT ANALYSIS

2 Context Analysis

In this thesis chapter, we answer the first sub-question: “How are surgeries currently scheduled at
Diakonessenhuis?”, by describing the current situation at Diakonessenhuis. We explain the current
planning process in Section 2.1, the rescheduling process in Section 2.2 and how the session duration
predictor works in Section 2.3.

2.1 Current Planning System

Hans et al. (2011) divide the planning process into four levels: strategical, tactical, offline operational
and online operational. In this section, we only explain roles that are involved at an offline or online
operational planning level. We do not expand on the roles involved at a tactical and strategic planning
level, as these roles have no direct impact on an operational surgery schedule.

At an operational level, four roles are involved in constructing the surgery schedule after a patient
received an ASA-score. These roles are the decentralised surgery planners who determines the date
of surgery, the centralised surgery planners who determine the sequence of surgeries, the nursing staff
of a speciality who determine the time of arrival at the hospital for the patient and the programme
coordinator who dictates the flow of the patients through the operating theatre. We explain these
roles and their contributions in the rest of this section. We provide an overview of these roles and
their contributions in Figure 4. In practice, the surgery schedule creation is more complicated as more
roles and communication flows are involved.

Decentralised Surgery Planners

The decentralised surgery planners are responsible for scheduling surgeries. When a patient completes
the pre-operative screening and fills out the accompanying questionnaire, they receive an ASA score.
Soon afterwards, the decentralised surgery planners call the patient and try to schedule them in the
earliest spot. If the patient is unavailable for this date, the next earliest spot is tried until a suitable
date is found. The decentralised surgery planners assign the patient to a surgery session on the fly;
they do not wait to plan a group of patients at once.

There are exceptions to the earliest available spot rule, like patients’ and surgeons’ preferences to
be taken into account. An example an agreement made with surgeons is to have eight of the same
surgeries in a session. The agreements and preferences tend to differ between specialities and surgeons,
which make the surgery planning process complicated. In the end, the goal of the decentralised surgery
planners is to compose the surgery schedule with a utilisation of at least 85%. However, the goal is to
have a utilisation of 93%, with the optimal utilisation being between 97% and 103%.

In addition to their general planning role, the decentralised surgery planners communicate with the
centralised surgery planners (CSP), the surgeons, and the patients. They are in charge of cancelling
and re-planning patients when necessary or requested by the CSP or surgeons.

8



2 CONTEXT ANALYSIS

Figure 4: Planning system Diakonessenhuis from patient perspective

Centralised Surgery Planners

The centralised surgery planners (CSP) checks the surgery schedule and determines the sequence
of surgeries one week before the surgeries take place. The CSP determines the sequence by rules of
thumb, surgeon preferences and logistical restrictions. The CSP then calls the programme coordinator
to double-check the feasibility of the schedule, after whose approval the surgery schedule is “fixed” and
the responsibility of the CSP. On the day itself, the responsibility shifts to the programme coordinator.
As a result, only the CSP makes changes to the schedule during this period. In practice, this leads to
a lot of communication between the CSP and the decentralised surgery planners as the decentralised
surgery planners try to plan another patient or when a replacement surgery is sought for a cancelled
patient.

In the near future, the surgery schedules for the next week will be checked in a weekly meeting on
Wednesday. However, this might also have drawbacks, like the decentralised surgery planners having
less time to compose the Thursday and Friday surgery schedules. In the current situation with short
waiting lists, this could result in surgery schedules with lower utilisation and extra communication
between the CSP and the decentralised surgery planners to compose the schedule still.
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Nursing Staff

The afternoon of the day before the surgery, the nursing staff of the department admitting the patient
calls the patient. In this call, the nurse communicates the time the patient needs to be present and
additional information like the fasting rules relevant to the patient. No strict guidelines exist for the
time a patient needs to be present before the expected start of the surgery. However, the nursing staff
might take into account the time it takes to prepare the patient, the age of the patient and other
factors.

Figure 5: Session Duration
Predictor

Programme Coordinator and Operating Room staff

On the day of surgery, a programme coordinator is responsible for
the proper execution of the surgery schedule at one of the hospital
locations, either Zeist or Utrecht. The programme coordinator makes
sure everything moves smoothly in the operating room complex and
is responsible for the emergency operating room when assigned to
Utrecht. Some time before the patient undergoes surgery, the operat-
ing room staff or the programme coordinator calls the nursing staff of
the department to collect the patient. Next, the nursing staff moves
the patient to the holding area, and the patient is prepared for the
surgery procedure.

The programme coordinator stationed in Zeist does extra adminis-
trative work, like creating staff schedules on an offline operational
level.

2.2 Current Rescheduling System

Most cancelled surgeries are not urgent and the patient returns to
the waiting list. When surgery is urgent, planning staff searches for
a spot for the rest of the week. If no spot is available and the surgery
is urgent, it is treated as emergency surgery.

Whether the remaining free spot is used depends on how much time
is still left. In general, the decentralised surgery planners try to fit
in another (urgent) surgery, but they do not always succeed. Which
patients are scheduled first and when it is too late to schedule a new
patient is unregulated and not systematic. An added difficulty with
a “fixed” surgery schedule is the fact that new patients first need to
be discussed with the CSP. As a result, the rescheduling system is a
puzzle right now.

2.3 The Session Duration Predictor

In this section, we explain how the session duration predictor works
and how it creates the predictions. The predictor was created to
provide insight to planning employees regarding the probabilities of
overtime and early finish of the operating rooms. The session duration
predictor has an accompanying dashboard, which we show in Figure 6.

The session duration predictor uses historical data to create a log-
normal distribution for each surgery. The historical data is divided
based on the main surgery code, surgeon and city where the surgery
was performed. The assumption that surgeries are log-normally dis-
tributed is reasonable as the most complicated surgeries are not per-
formed in Diakonessenhuis but in the Universitair Medisch Centrum
Utrecht.
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2 CONTEXT ANALYSIS

The log-normal distributions cannot easily be added since the sum of two independent non-identically
distributed lognormal variables does not have a known closed-form distribution (Azar et al., 2022).
Therefore, the distribution of the total session duration needs to be estimated. The estimation can be
done with multiple methods like those researched in the paper of Beaulieu et al. (1993). Examples are
the Fenton-Wilkinson Approximation (Marlow, 1967) or using a Monte Carlo simulation. The Fenton-
Wilkinson approximation is not used as it is complex, especially when 7 to 8 log-normal variables are
used. The Monte Carlo simulation was assumed to be the easiest option to use and implement, having
sufficient accuracy when used with enough iterations.

The predictor performs 10000 iterations of the Monte Carlo simulation. After the Monte Carlo sim-
ulations, the probability of a session being finished in a specific interval is calculated; the number of
times an iteration was finished in that interval is divided by the total number of iterations. These
percentages are returned to the dashboard, and the analysis for the next session is started. We provide
a flowchart of this tool in Figure 5.

On the dashboard of the predictor, the employees are provided with statistics, numbered in Figure 6.
Column 1 provides the employees with the general chance of overtime of a surgery session. Column
2 provides the planned utilisation of the session. Column 3 provides the planned ending time of the
session, and column 4 provides the predicted end time of the predictor. Column 5 provides the official
ending time of the session, after which additional time counts as overtime. Columns 6 to 11 provide
the chance the surgery session is finished within a specific time window.

Figure 6: Statistics provided by the session duration predictor

After conducting interviews, it is clear that the staff does not unanimously comprehend and understand
the dashboard, but most employees acknowledge the tool’s potential and use. Some employees consult
the dashboard when they have doubts about adding another surgery. However, how often this happens
and if it has the desired effects on the surgery schedule is unknown. Also, some employees still have
doubts about the accuracy of the tool. According to employees, there are more indicators for the
length and variability of a surgery. Some named examples of indicators are the gender of the patient,
a “second” procedure during surgery, the weight of the patient, the ASA score of the patient, the type
of anaesthesia, and whether a doctor in training is present in the room.
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3 Literature Analysis

In this chapter, we explore the literature to answer the sub-question: “What are relevant surgery
scheduling methods in literature?” We start by positioning ourselves in the literature in Section 3.1
and explain the literature interesting to our research in Section 3.2 and Section 3.3. In the last Section
3.4, we draw a conclusion about the literature mentioned in this chapter.

3.1 Position in Literature

A surgery case scheduling problem is often distinguished as a block or non-block scheduling system
(Pham & Klinkert, 2008). In block systems, surgical cases are scheduled in OR time blocks, whereas
non-block systems do not make use of these OR time blocks. In this thesis, we work with a block
scheduling policy, where each surgical speciality receives a given number of operation room blocks in
which it can schedule its surgical cases, blocks cannot be shared with another speciality (van Oostrum
et al., 2010).

We use the framework of Hans et al. (2011), to position our planning decision, the framework subdi-
vides decisions into four hierarchical levels and four managerial areas. The four hierarchical levels of
control are strategic, tactical, offline-operational and online-operational. The four managerial levels for
health care planning and control are medical planning, resource capacity planning, material planning
and financial planning. Regarding the hierarchical level of control, our research question is in between
the online-operational and offline-operational levels of control. Hans et al. (2011) state the difference
between online-operational and offline-operational is whether the decision-making is “in advance” or
“reactive”. The managerial area relevant to our research is “Resource capacity planning”, as this cat-
egory addresses dimensioning, planning, scheduling, monitoring and control of renewable resources.
Which, in our case, is the scheduling of the OR rooms. Additionally, we identify our research inside
the surgical healthcare service, as defined by Hulshof et al. (2017).

Currently, there is a trend to take a holistic system point of view and optimise operations by explicitly
modelling patient utilisation of multiple resources (instead of a single resource) in a hospital (Liu et al.,
2019). An example of measuring the impact of the operating rooms on the downstream resources is the
research of VanBerkel et al. (2011), who propose an exact approach to compute the ward occupancy
distributions required by recovering patients. They use the patient admission/discharge distributions
and estimations of how long patients need to recover in the hospital. By considering the impact
of multiple cycles of the master surgery schedule, they estimate the workload for the downstream
departments. We acknowledge the importance of an holistic system point of view, but focus only on
the surgical department due to the time constraints for this research.

For a more comprehensive overview of the surgery scheduling field, we refer to Hulshof et al. (2017),
Cardoen et al. (2010) and Sumadra et al. (2016).

3.2 Offline-Operational Planning

Offline-operational surgery planning is concerned with assigning a date and time to a specific surgical
case. Surgical case scheduling is often decomposed into four steps. In the first step, the planned
length of a surgical case is decided. In the second step, a date and an operating room are assigned to
a surgical case on the waiting list. The third step is to determine the sequence of surgical cases on a
specific day (also termed ‘allocation scheduling’). In the last step, the starting time for each surgical
case is determined (Hulshof et al., 2017). The determination of starting times is not within the scope
of this research and is therefore not further explored.

3.2.1 Length of Surgical Case

We can base the surgery duration estimation on multiple variables. Hulshof et al. (2017) mention
the surgeon’s experience and the patient’s acuteness, sex, and age. Next to the surgery duration, we
should also take the switchover and slack times into account when constructing a surgery schedule

12



3 LITERATURE ANALYSIS

(Hulshof et al., 2017). Slack is buffer capacity reserved to account for surgeries that take longer than
expected in advance.

Gomes et al. (2012) use data mining techniques to predict surgery durations and show a 36 % increase
in accuracy compared to the surgeon estimate. Furthermore, they prove that in their case, the surgeons
tended to overestimate the surgery time, showing that the most significant improvement comes from
surgeries that were overestimated instead of underestimated, relatively 49 per cent and 15 per cent.

Dexter et al. (2008) mention the surgical team and type of anaesthesia as good predictors and
indicate other predictors as not cost-effective. Each surgeon has a different surgery duration mean and
variance. This difference can be used to create a better surgery schedule. More patient information
is used by Fairley et al. (2019) who use patient information, such as gender, clinical parameters,
and comorbidities, in a machine-learning model to predict the duration of surgeries or stays at the
post-anaesthesia care unit.

The most common distributions to model and estimate the duration of surgeries are the log-normal,
gamma, and normal (Maleki et al., 2023). However, case length duration studies, such as the one
from Strum et al. (2000), show that log-normal distributions are superior when simulating surgery
duration. Azar et al. (2022) emphasise the importance of a good surgery duration estimation, as
improvements in surgery duration estimation would reduce the variability of surgery times.

3.2.2 Assign Date and Operating Room

According to Hulshof et al. (2017), the second step in offline-operational scheduling, the assignment
of a date and operating room to a patient, is the same as “advance scheduling”. Cardoen et al.(2010)
leave the operating room assignment out, as they define advance scheduling as: “the process of fixing
a surgery date for a patient”.

A challenge in advance scheduling is to incorporate uncertainty in the surgery schedule by reserving
capacity for future uncertainty. Incorporating uncertainty is essential as uncertainty impacts the
chance of overtime in an operating room. One strategy for incorporating uncertainty is to make a
deterministic plan and only fill a certain percentage of the operating room, often 85 per cent (Kroer
et al., 2018). However, this strategy does not consider whether the size and location of this extra
capacity are appropriate. An alternative is to use a stochastic model instead of a deterministic one.
In a stochastic model, multiple types of uncertainty in surgery scheduling can be considered, such as
surgery duration uncertainty, arrival uncertainty, uncertainty on resources, and uncertainty in care
requirements. However, in recent years, surgery duration uncertainty has received the most attention
(Maleki et al., 2023).

Heuristics

Examples of papers that use heuristics to solve an advance scheduling problem for surgeries are Hans
et al. (2008), Riise and Burke (2011), Marques et al. (2012) and Fei et al. (2009). Hans et al.
(2008) use the portfolio effect in their robust surgery loading method, consisting of a constructive
and improvement heuristic, to optimise the operating room utilisation and minimise the probability of
overtime. Riise and Burke (2011) use simple relocate and two-exchange neighbourhoods, governed by
an iterated local search framework to optimise the surgery admission planning with a meta-heuristic.
Marques et al. (2012) use a custom improvement heuristic to improve a non-optimal integer linear
programming solution. The last example we provide is the research of Fei et al. (2009), who propose
a column-generation-based heuristic procedure to improve the outcome of their mathematical model.
In the heuristic four different criteria are compared with each other to find a solution with the best
performance.

Mathematical Programming

An example of using mathematical programming for advance scheduling is the paper of Meskens et al.
(2013). They create a model to incorporate different modular blocks of constraints which can be easily
turned on or off. They create these modular blocks to cope with the main drawback of mathematical
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programming models, the fact that incorporating more constraints increases the complexity and solving
time of a mathematical programming model. As a result, mathematical programming models require a
limited scope to be feasible (Vanberkel et al., 2011). Therefore, most of the mathematical programming
models described in the literature focus on a “specific” aspect of the problem and make assumptions
to reduce the complexity of the problem (Meskens et al., 2013).

According to Bernardelli et al. (2024), most of the prior studies formulate the advance and/or alloca-
tion scheduling with stochastic or robust optimisation models. While stochastic optimisation is better
to use when the probability distribution used to model the uncertainty is known and reliable, robust
optimisation is suggested when true distributions are not available. Bernadelli et al. (2024) continue
to recommend distributionally robust optimisation when dealing with poor historical data or with
rare surgical procedures. However, they indicate that with the rise of healthcare data accessibility in
the last decade, it is possible to, for example, incorporate surgical time variability into OR scheduling
effectively.

Further interesting examples of mathematical programming models are the papers of Azar et al.
(2022) and Liu et al.(2019). Azar et al. (2022) use the differences in surgery duration and variance
between surgeons in their mathematical programming model to schedule the operating rooms. They
use constraints to control uncertainty in an integer programming model, which has the drawback that
they can not be formulated for a log-normal distribution. Next to the chance constraints, Azar et
al. (2022) also incorporate constraints to control the probability of having overtime, allowing the
OR manager to have a new tuning parameter to balance overtime and utilisation. Liu et al.(2019)
integrate downstream resources into decision-making. They propose a dynamic multi-day scheduling
model that integrates information about capacity usage at two linked stages, particularly the length
of stay of a patient and downstream census in scheduling decisions.

Simulation Methods

Another group of research has conducted simulation studies due to the complexity of the problems
(Liu et al., 2019). An example is the research of Dexter et al. (1999), which uses computer simulation
to select the days on which to schedule elective cases and maximise the use of operating rooms. The
research of Bowers and Mould (2004) uses simulation to explore the balance between maximising the
utilisation of the theatre sessions, avoiding too many overruns and ensuring a reasonable quality of
care.

However, simulation is not always the preferred solution as Law (2014) notes:“If an analytical solution
to a mathematical model is available and is computationally efficient, it is usually desirable to study
the model in this way rather than via a simulation.”

3.2.3 Sequence Surgical Cases

This third step of offline surgery scheduling can also be named “allocation scheduling”(Hulshof et al.,
2017). Cardoen et al. (2010) additionally include the fourth step, the starting time of the surgery,
and the leftover part of the second step, determining the operating room, in this term.

Literature indicates that factors like doctor preference, medical or safety reasons, patient convenience,
and resource restrictions largely determine the sequence of surgeries (Hulshof et al., 2017). Which is
also currently the case at Diakonessenhuis.

For sequencing surgeries, several rules of thumb exist. Based on the number of performed surgeries,
Hulshof et al. (2017) rank the lowest-variance-first rule as best performing, followed by the longest-
processing-time-first and lastly, the traditionally used first-come-first-serve rule as worst. Lebowitz
(2003) notes that scheduling short procedures first can improve on-time performance and decrease
staff member overtime expense without reducing surgical throughput. Aringhieri and Duma (2015)
report a better performance of the Longest Processing Time first rule, over the Shortest Processing
Time first rule for their research. Furthermore, they propose a rule to schedule “important” surgeries,
like surgeries which got cancelled in the days before or with a higher urgency.
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However, next to just the duration and variance of surgery, allocation scheduling can take more
variables into account. Van Croonenburg et al. (2015) provide examples like surgeons operating in
multiple rooms, the capacity-limited post anaesthetic care unit (PACU) or the intensive care unit
(ICU) or (sequence-dependent) setup times between surgeries. An example is the research of Hsu et
al. (2003), who use a heuristic approach to minimise the necessary number of post-anaesthesia care
unit nurses. A tabu search is used to sequence elective surgeries on a particular date. Another example
is a mathematical programming approach proposed by Cardoen et al. (2009), who use a multi-criteria
mixed integer linear model for sequencing elective surgeries.

The examples mentioned in this section are approaches that only consider the sequencing decision.
However, some approaches integrate the sequencing decision when composing the surgery schedule
(Liu et al., 2019).

3.3 Online-Operational Planning

Online-operational surgery planning is about scheduling emergency cases and rescheduling surgeries.
The rescheduling approaches at the online-operational level are aimed at dealing with disruptions,
such as an emergency patient coming in. As a result, decisions need to be made about whether to
delay, cancel or move a patient to another operating room(Hulshof et al., 2017)).

Marcon et al. (2003) aim at reducing the risk of no realisation (RNR) of the tentative plan while
stabilising the operating rooms’ utilisation time. The approach is to calculate this risk of no realisation
and use this in talks between specialists.

More exact approaches are proposed by Adan et al. (2011) and Aringhieri and Duma (2015). Adan
et al. (2011) propose cancellation rules based on the probability of a patient exceeding the available
capacity. Aringhieri and Duma (2015) reschedule patients by minimising the time between the sum
of the expected durations and the available operating time of the specific operating room. If it is
impossible to schedule within a week, the patient is postponed to next week.

The offline scheduling and online rescheduling steps can also be combined. An example is Addis et al.
(2016) who use simultaneous scheduling and rescheduling, limiting the number of cancelled operations
and allowing reanalysis of the cancelled patients. They do this with a robust formulation of integrated
linear programming.

3.4 Conclusion

Scheduling surgeries has already been thoroughly researched. Our research shares similarities with
existing articles but also goes in a new direction.

In our case, the surgery planning is already constructed by the decentralised surgery planners, in
contrast to advance scheduling literature which assumes the surgery schedule needs to be constructed.
However, our research can not be identified as merely an allocation scheduling or online-operational
problem. Our research problem is more than just a sequencing or starting time decision, and the
time horizon for rescheduling is way too small for our problem. The models presented for the offline-
operational planning level, aimed at improving an already existing surgery schedule, for example, the
improvement heuristics of Hans et al. (2008) might still be useful to this research. Also, the sequencing
research could prove useful in improving the surgery schedule, to re-sequence it after changes. Lastly,
the online-operational planning level research could prove useful if we want to insert or move a patient
to a different day.

It is to be noted that the time gap between scheduling surgeries and the surgery schedule execution
might not necessarily be a problem in each hospital. Other hospitals might schedule surgeries a shorter
time period in advance, resulting in fewer changes occurring before executing the surgery schedule.
However, changing the way surgeries are scheduled in Diakonessenhuis is undesirable for this research,
as we aim for a minimal impact on the current way of working.
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We conclude that our research is operating in a new area between the conventional offline-operational
advance and allocation surgery scheduling levels, which we call the re-evaluation operational surgery
scheduling level. The surgery schedule changes between the time it is composed and when it is
executed, for example, because of patients cancelling or hospital resource changes. Therefore, the
need can arise to re-evaluate and optimise the surgery schedule again, which, as far as we know, has
not been thoroughly researched.

Additionally, it is in Diakonessenhuis’ interest for this re-evaluation to have a minimal impact on
the present surgery schedule. As it is not to be underestimated that a small change in the surgery
schedule, like changing the surgery date, might have many complexities. For example, the patient who
was moved to another day needs to be called and might or might not be free that day, resulting in
more problems or the need for the schedule to be re-evaluated. As far as we know, there is no research
covering this problem of minimally altering the surgery schedule with maximal impact on improving
it.

Therefore, we conclude that between the advance and allocation offline-operational levels, a gap in the
literature exists when talking about re-evaluating the surgery schedule and minimising the impact on
the constructed surgery planning while improving it. We call this gap the re-evaluation operational
surgery scheduling level. In the remainder of this work, we fill this gap by introducing the mathematical
formulation for the re-evaluating scheduling problem and then propose a solution method using a
sample average approximation approach.
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4 Model Formulation

In this chapter, we answer the sub-question: “How can we optimise the surgery schedule at Di-
akonessenhuis?” In Section 4.1 we describe the mathematical model we aim to solve. In Section 4.2
we provide the stochastic model and in Section 4.3 we use a sample average approximation approach
to approximate the stochastic model.

4.1 Problem Description

We want to minimise overtime by altering an existing surgery schedule while utilising the operating
rooms above a certain threshold. A change is made by moving a patient to another operating room
session. We cannot unschedule patients and want to be able to schedule additional patients. Addition-
ally, we want to be able to restrict the number of patients moved to another operating room session to
prevent the solution from differing too much from the initial surgery schedule. We take into account
the difference in surgery duration between different surgeons for the same procedure. Furthermore,
there should be the option to “fix” procedures to specific operating room sessions to have a usable
model for Diakonessenhuis.

4.2 Stochastic Program

In this section, we provide the stochastic program in Section 4.2.1 and explain points of interest of it
in Section 4.2.2.

4.2.1 Stochastic Program formulation

Indices:

Operating room session k = 1, ..., r.

Patient p = 1, ..., q.

Parameters:

r : Total number operating room sessions opened in the planning horizon.

q : Total number of patients to be planned inside the planning horizon.

dk : Duration of session k.

a : maximum number of allowed changes.

m : Minimum utilisation of each operating room session.

g : Goal utilisation of each operating room session.

sk : Time it takes to switchover patients in operating room session k.

α : Weight of overtime.

β : Weight of the CVaR.

γ : Weight of utilisation.

λ : parameter that indicates how much of the tail risk should be punished extra.

µpk : surgery duration of patient p in operating room session k for scenario n.

cpk : Binary parameter, 1 if patient p was planned in operating room k session before analysis, 0 if
this was not the case.

zpk : Binary parameter, 1 if operating room session k is suitable for patient p, 0 if this is not the case.
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Variables:

T : First stage variable, keeps track of the threshold value to make the tradeoff between higher
variability in overtime and average lower overtime.

H : First stage variable, keeps track of the overtime exceeding the threshold level.

Ypk : First stage binary variable that keeps track of whether any changes are made. 1 if patient p is
planned inoperating room session k, 0 otherwise.

Ok : Second stage variable, indicating the overtime of operating room session k.

Mk : Second stage variable, a slack factor for the utilisation of operating room session k.

Gk : Second stage variable, a slack factor for the utilisationn of operating room session k.

Xpk : First stage binary variable indicating, 1 if patient p is planned in operating room session k, 0
otherwise.

Objective function:

min
X,T

α · E[
∑
k

Ok] + β · (T + 1/(1− λ) · E[H]) + γ · E[
∑
k

(Mk +Gk) · dk] (1)

S.t.
H ≥

∑
k

Ok − T (2)

Ypk ≥ (Xpk − cpk) ∀p∀k (3)

∑
pk

Ypk ≤ a (4)

∑
k

Xpk · zpk = 1 ∀p (5)

((
∑
p

Xpk · (µpk + sk))− sk)/dk +Mk ≥ m ∀k (6)

((
∑
p

Xpk · (µpk + sk))− sk)/dk +Gk ≥ g ∀k (7)

(
∑
p

Xpk · (µpk + sk))− dk − sk ≤ Ok ∀k (8)

Ok,Mk, Gk, H,≥ 0 ∀k (9)

Xpk, Ypk ∈ {0, 1} ∀p, k (10)
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4.2.2 Stochastic Program explanation

We present the objective function of the stochastic programme in Equation 1. The objective is to
minimise expected overtime, utilisation penalties and risk of extreme overtime in the operating rooms.
We normalise the objectives of the multi-objective function in the weight factors α, β and γ, which
consist of a relative weight factor and a reference value. The reference value is the objective value of
the unchanged original solution. Therefore, the result of our model indicates a percentage relative to
the original solution. The difference between our solution value and 100% is the improvement of our
solution compared to the original surgery schedule.

We choose to have risk as a separate factor because low average overtime does not necessarily result
in the best surgery schedule. It might mean that we have incredibly high overtime in some cases, just
with a small probability. Therefore, we want to reduce the risk of very high overtime by including
the Conditional Value at Risk (CVaR) in our objective function. We include the CVaR by using the
method presented in the paper of Sarin et al. (2014). It works on the principle of determining and
“punishing” the 5% most extreme cases, with the effect of minimising these cases. We determine the
threshold and 5% most extreme cases in Constraint 2.

In this stochastic program, a change to the surgery schedule is defined as a patient being planned for
an operating room session different from the original surgery schedule, counted by the Y variable. We
keep track of these changes in Constraint 3. If the procedure was scheduled for this session and is now
scheduled for another session, Y can stay 0 because the change is already counted on the operating
room session where the procedure is moved. We limit the number of possible changes in Constraint 4.
If we want to schedule additional patients to the currently existing surgery schedule, the number of
allowed changes should be increased by the number of additional patients. We make sure patients are
only placed in OR sessions which are suitable to them using the z parameter, in Constraint 5. The z
parameter takes into account speciality, assigned surgeon and day restrictions, when applicable. We
also use z to restrict a patient from being moved by not offering any other operating room sessions as
move opportunities.

To keep track of the utilisation performance of a surgery schedule, we use two slack factors. These
two slack factors correspond to the two utilisation levels Diakonessenhuis currently upholds: minimum
utilisation and goal utilisation. Constraint 6 and Constraint 7 calculate the slack factors. We weigh
both utilisation levels the same, meaning that if the utilisation is below the minimum level, it is
penalised for both the goal and minimum utilisation slack variables. The overtime of a surgery
schedule is determined in 8. The last constraints of our model are sign constraints, Constraint 9 and
Constraint 10.

The conclusion that we draw from the stochastic program formulation is that it is not solvable by an
MIP, as the uncertain factors in the stochastic program are log-normal. Therefore, we approximate
the model using a sample average approximation approach, which we explain in the next section.

4.3 Sample Average Approximation

In this section, we provide the sample average approximation for our stochastic program. We present
the mathematical formulation in Section 4.3.1, and explain the common parameter values in Section
4.3.2. Furthermore, we explain the output of the model in 4.3.3, in which we also compare our output
to the session duration predictor as validation of the model.

4.3.1 SAA Mathematical Formulation

To prevent too much repetition, we only provide the indices, parameters and variables that are different
from the stochastic problem formulation. Parameters that we do not define in this section are the
same as the parameters of the stochastic programme in Section 4.2.1.
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Indices:

Scenario number n = 1, ..., w

Parameters:

w : Total number of scenarios.

µpkn : surgery duration of patient p in operating room session k for scenario n.

Variables:

Hn : A second stage variable that keeps track of the overtime above the threshold level in scenario n.

Okn : A second stage variable that keeps track of the overtime of operating room session k in scenario
n.

Mkn : A Second stage variable we use as a slack factor for the utilisation of operating room session k
in scenario n.

Gkn : A Second stage variable we use as a slack factor for the utilisation of operating room session k
in scenario n.

Objective function:

min z = α · (
∑
kn

Okn/w) + β · (T + (1/(1− λ) ·
∑
n

(Hn/w)) + γ · (
∑
kn

((Mkn +Gkn) · dkn)/w) (11)

S.t.:
T +Hn ≥

∑
k

Okn · ∀n (12)

∑
k

Xpk · zpk = 1 ∀p (13)

Ypk ≥ (Xpk − cpk) ∀p∀k (14)

∑
pk

Ypk ≤ a (15)

((
∑
p

xpk · (µpkn + sk))− sk)/dk +Mkn ≥ m ∀k, n (16)

((
∑
p

xpk · (µpkn + sk))− sk)/dk +Gkn ≥ g ∀k, n (17)

(
∑
p

xpk · (µpkn + sk))− dk − sk ≤ Okn ∀k, n (18)

Okn,Mkn, Gkn, Hn ≥ 0 ∀k, n (19)

Xpk, Ypk ∈ {0, 1} ∀p, k (20)
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4.3.2 SAA Parameter Settings

Our SAA model has a lot of parameters that we can change. The most important factors for the value
of the model are the number of scenarios and the number of replications. We first provide the general
settings and then, using these settings, determine the number of scenarios and replications.

General settings

We use the following settings to determine the number of scenarios and replications. We minimise a
linear combination of overtime, risk of extreme overtime and utilisation. We value all three objectives
equally, which means we use an α, β and γ which normalise the objectives and divide this weight
equally.

Furthermore, we have a planning horizon of 10 days, with a random Thursday, the 27th of May 2021,
as the start date. As Diakonessenhuis is going to use this model on Wednesday, the whole next week
is included in the analysis. Also, we let the model move ten patients to another OK session. This
number is chosen arbitrarily.

Regarding the moves, we are allowed to move all patients but only move patients to an operating
room session on another date with the same surgeon operating in it. Additionally, we do not move
patients between Utrecht and Zeist. For the utilisation objectives, we use the same goal and minimum
utilisation objectives as Diakonessenhuis, respectively 93% and 85%. Lastly, we regard overtime as
“extreme” in the 5% highest cases. This means that λ is set to 0.95.

Before we determine the number of scenarios and replications of our experiments, we note that we
use multiple replications of the SAA to prevent one outlier instance of the SAA from influencing the
results. However, we have to choose one replication as the result we provide to Diakonessenhuis. To
prevent the choice for an instance of SAA with an unrealistically optimistic or pessimistic estimation
of reality, we choose the replication with an objective value closest to the average objective value of
all replications.

Number of Scenarios

In general, using more scenarios in a SAA results in a more accurate estimation of the objective
value. We determine the number of scenarios by plotting the optimality gap, using the approach
used in Kleywegt et al. (2002). We try different numbers of scenarios and increase them eventually
to 250 scenarios, using 20 replications for each number of scenarios. For every number of scenarios,
we evaluate the optimality gap between the objective value of the SAA (the lower bound) and the
“actual solution” (the upper bound). We provide the sample bias of an experiment by evaluating the
chosen SAA solution for an independent 5.000 scenarios, thus estimating the “true objective value“
of a solution. We assume 5.000 scenarios is a sufficiently high number of scenarios to represent the
upper bound (“true objective value”) of the solution. More scenarios would result in an even more
accurate estimation of the upper bound, but the runtime increases too much for the timespan of this
thesis. When the optimality gap between the lower bound and upper bound becomes low and stable
within reasonable runtime, we take the corresponding number of scenarios as sufficiently accurate. In
the base model, we set the weights for the objectives in the objective function to one-third, making
each objective equally important. We present the results of the experimentation with the number of
scenarios in Figure 7.
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Figure 7: Results of experimentation with the number of scenarios

When we increase the number of scenarios used in the SAA, we see the lower bound approach the
upper bound. We conclude that 100 scenarios in the SAA result in a sufficiently small optimality gap
with a reasonable solution time for an operational model. At 100 scenarios, the model estimates the
utilisation and overtime objective values relatively precisely. However, we observe that the SAA still
tends to underestimate the threshold level of the CVar. We explain this observation by the fact that
with more scenarios, the model can estimate the threshold level more precisely. We still choose 100
scenarios as the number of scenarios for this thesis, as using more scenarios increases the runtime too
much.

Number of Replications

The number of replications is the number of times we solve the SAA. To determine the sufficient
number of iterations for our experiments, we fixed the number of scenarios at 100 and experimented
with different numbers of iterations. If we use more iterations, it improves the estimation of the
“average” solution we use as the actual solution, which might have an impact on the SAA sample
error. For every experiment, we calculate again the optimality gap and thus the sample error. When
the sample error becomes sufficiently low within reasonable runtime, we choose the corresponding
number of iterations. Figure 8 shows the confidence interval half-width for different numbers of runs.
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Figure 8: Gap between objective and actual value (sample error) for different numbers of runs

We observe no clear trade-off between the number of iterations and the accuracy of the model. We do
want to prevent an outlier from influencing our experiments whilst maintaining a manageable runtime.
Therefore, we use fifteen replications for our model in the experimentation phase.

4.3.3 Output of Model

The output of the SAA model of this thesis is a list of moves to perform. The moves on this list are
optimal, which means they are the best ten moves possible with the parameters and freedom to move
patients provided to the model. We provide an example of ten such moves with the corresponding
impact on their operating room sessions in Table 1. The impact of all moves is visualised in Figures
9 and 10.

Patient OR Session Origin
Chance of Overtime

OR Session Destination
Chance of Overtime

Before After Before After

76 22 100.00% 75.75% 2 12.22% 40.43%

430 118 100.00% 75.15% 18 16.22% 66.33%

89 26 80.31% 4.97% 19 0.00% 0.00%

6 2 12.14% 40.67% 20 0.03% 0.04%

51 13 99.33% 41.72% 26 79.97% 4.72%

0 0 29.31% 0.00% 28 3.38% 46.81%

55 13 99.45% 42.48% 64 1.04% 8.91%

429 110 100.00% 75.25% 77 0.00% 44.58%

314 83 46.36% 20.92% 98 6.38% 14.79%

90 26 79.97% 4.62% 109 0.00% 0.01%

Table 1: Moves provided by the model. With the impact on overtime for the impacted OR sessions.

We calculate the impact the moves have on the operating room sessions in the same way as the session
duration predictor. This means these values are separate from the SAA we use to determine the moves.
Therefore, we also use these results to validate that our model does actually perform correctly. When
analysing the moves in Table 1, all moves between operating room sessions are logical. Every move is
from an OR with a high chance of overtime, to an OR with a relatively low chance of overtime.

We note that these moves are not ranked in any way, as it is complicated to determine which moves
are better than others. Especially as sometimes the model adds and subtracts patients from the same
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OR session. An example is OR session 26. We provide more in-depth information about OR session
26 in Table 2.

26 Session
Time

Exp.
Duration

% overtime early 30 early 60 OT 30 OT 60

Before 540 596.06 80.31% 15% 4% 24% 24%

After 540 485.104 4.97% 11% 22% 4% 1%

Table 2: Impact of moves on OR session 26.

We only know what impact all three moves have on OR session 26, therefore it is impossible to calculate
the exact value of any single move. Next to OR session 26, also the move of patient 0 from OR session
0 to OR session 28 is interesting, as it leaves OR session 0 empty. This means this session is not
necessary and could be given away to another speciality or cancelled altogether. For Diakonessenhuis,
the most important thing to take away is to watch out for moves that depend on each other. Moving
a patient to another session might mean another patient also needs to be moved for the schedule
actually to improve.

Figure 9: Chance of overtime in the operating
room sessions before and after our model.

Figure 10: Utilisation in the operating room ses-
sions before and after our model.
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5 Experiments

In this chapter, we provide experiments to show the impact of specific parameters on the model and
clarify the usability of the model presented in Chapter 4. We answer the research question: “How
does our re-evaluation model perform?”.

To evaluate and experiment with our model, we use the number of scenarios and replications as
determined in Section 4.3.2. We choose the replication with the objective value closest to the average
objective value of all replications. We analyse the chosen replication for an independent 2000 scenarios,
which is lower than in Section 4.3.2 due to the time constraints of this thesis. For all experiments,
we use the same general setup unless we experiment with a specific setting or mention it in the
paragraph. We provide this setup in Table 3 and we provide a more detailed explanation for the
choice of parameter values in Section 4.3.2.

Within an experiment, we use the same random numbers for each parameter we try. In this way, we
aim to reduce the impact of outliers on the results of our experiments. Furthermore, we evaluate each
experiment at three points in time to check for the robustness of our experiments. The data points
are on Thursdays, as Diakonessenhuis will use our model on Wednesdays. Separated four months
apart, our data points are: the 28th of January 2021, the 27th of May 2021 and the 30th of September
2021. We choose these dates as random dates and assume they do not represent any specific trend or
seasonality.

Parameter Value

α 1/3

β 1/3

γ 1/3

λ 0.95

# of allowed changes 10

Planning Horizon 10

Fixed Patients 0%

Minimum Utilisation 85%

Goal Utilisation 93%

Degree of freedom Another day, same surgeon

Added patients No patients added

Table 3: Basis parameters for experiments

In the remainder of this chapter, we experiment with our model to show trade-offs and determine
which configuration of parameters is most interesting for the surgery department at Diakonessenhuis.
We evaluate the model quality in Section 5.1. We evaluate the configuration of parameters in Section
5.1.1 by experimenting with different objective weights, in Section 5.1.2 with the number of allowed
moves, in Section 5.1.3 with the percentage of fixed patients and in Section 5.1.4 with the number
of opportunities for moving surgeries. Lastly, we finish this chapter with a summary and conclusion
about the experiments in Section 5.1.5.

5.1 Model Quality

In this thesis, we treat surgery duration as stochastic, while most research on this topic uses a deter-
ministic approach. Having a stochastic approach requires additional effort, which means the value of a
stochastic solution is essential to know. We assess this value by calculating the value of the stochastic
solution (VSS) and the expected value of perfect information (EVPI) in this section. We leave out
the risk of extreme overtime objective as it is unsuitable for optimising on only one sample, which is
part of determining the EVPI. Therefore, the β is set to zero. We present the parameters in Table 11
and Table 12.
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The Value of Stochastic Solution (VSS) indicates the benefit of using distributions for the surgery
duration instead of using the average. The expected value of perfect information (EVPI) indicates
the value of knowing the exact duration of surgeries beforehand. We provide VSS and EVPI values
for the three different dates in Figure 11 and Figure 12. We have a minimisation objective function,
which means the formulas for the VSS and EVPI are:

VSS = long run average value under average policy - long run average value under uncertainty

EVPI = long run average value under uncertainty - long run average value under perfect information

Figure 11: Results VSS experiments Figure 12: Results EVPI Experiments

From the results, we conclude that our model performs only slightly better than using averages, as the
VSS is small. However, the VSS depends on the date. Furthermore, the VSS will probably increase if
we use an increased number of scenarios for our SAA.

There is a lot of potential value in improving the quality of the surgery duration estimation, as the
EVPI is relatively high. Tt is impossible to reduce the average overtime to zero or have zero utilisation
penalties with the parameters we use in this model, even in the scenario of perfect information. A lot
more improvement is possible for the overtime objective than for the utilisation objective. We assume
this is because of the limited influence we have on the utilisation, as we are not able to add or reduce
workload.

5.1.1 Objective Weights

We have three different parts in the objective function of our model, which we explain in Section 4.2.
However, it is yet unclear what values should be assigned to the weight parameters. To gain more
insight into these questions, we execute experiments to research the trade-offs between the different
objectives. We provide the relative weights of each experiment in Table 4.

Experiment# α β γ

1 1/3 1/3 1/3

2 1 0 0

3 0 1 0

4 0 0 1

5 3/5 1/5 1/5

6 1/5 3/5 1/5

7 1/5 1/5 3/5

Table 4: Weights for weight experi-
ments Figure 13: Results weight experiments 28-01-2021
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Figure 14: Results weight experiments 27-05-2021 Figure 15: Results weight experiments 30-09-2021

When we solve the model as a single objective (Experiments 2, 3 and 4), one of the three objectives
worsens relative to the original situation. In experiment 2, the risk and utilisation increase. In exper-
iment 3, the utilisation increases and in experiment 4, the risk increases. Therefore, it is undesirable
to solve the problem as a single objective if the hospital values all three objectives.

The overtime objective improves in all experiments, which means that both the utilisation and risk
objectives positively influence to the overtime objective. However, the overtime objective does not
impact the other objectives positively. When we have overtime as a single objective in experiment 2,
the risk and utilisation penalties become very high. As a result, the optimal utilisation and optimal
risk objective require decreasing overtime, but lowering the overtime even further means a trade-off is
necessary between overtime and the other objectives.

Regarding the risk of overtime, the risk objective improves more in experiment 1 than in experiment 3,
where the risk is the single objective in the objective function. This means that the model is overfitting
in experiment 3 and adding more weight to the risk objective does not always have the desired effect
of reducing the risk of overtime of the surgery schedule. The reason for this phenomenon is the sample
bias, which we already remarked in Section 4.3.2 when choosing the number of scenarios. Using more
scenarios might improve the estimation of the risk objective, but using 100 scenarios, as we chose in
this thesis, still shows a significant sample bias regarding the risk objective.

Also, there is a lot of variation between dates in the improvements possible. This indicates that the
currently existing schedule has a lot of impact on the value of making changes to our model. We
cannot add or subtract patients from the surgery schedule at will, which means we are restricted in
what the model can achieve for Diakonessenhuis.

Lastly, when examining experiments 1, 5, 6 and 7, we conclude that minor changes in the combinations
of weights do not massively impact the solution. Most of the time, these small adjustments in weight
only result in minor changes to the objective value and solution. We believe that using only one
objective does not result in a desirable solution and recommend using a combination of weights. With
minor adjustments to the combination of weights, the user can tweak the model to have the model
perform to their needs.

We assume experiment 1 to be the best solution as it equally divides importance to all three objec-
tives and provides an improvement to all objectives. We use this configuration for the rest of our
experiments.

5.1.2 Number of Moves

In this section, we experiment with the number of moves we allow the model to make. We start at only
two allowed moves and increase this number gradually. Due to runtime constraints, we only experiment
with up to 20 moves per analysed surgery schedule. We provide the results of the experiments with
lower numbers of moves in Figure 16.
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Figure 16: Experiments with the number of allowed moves

When analysing the results of the experimentation with the number of allowed moves, we notice a
clear difference in objective value per date and improvement per date for the same number of allowed
moves. Again, the current surgery schedule has a significant impact on the value of our model. The
reasons are the size of the model, which determines the relative improvement, and the quality of the
model, which determines the possible improvement left. For the 28th of January, the model needs fewer
moves to reach the same relative level of improvement as for the other surgery schedule. Furthermore,
the improvement per move seems to reduce when we increase the number of allowed moves. For the
17th of May, 20 moves even provide a lower improvement of the objective value than 15 moves. This
phenomenon is probably due to randomness. However, it does indicate that the model is not able to
improve endlessly, and there is a finite number of moves that improve the schedule.

As we mentioned before in this section, we are not able to experiment with even more moves due to the
duration of the experiments. The duration of the experiments varies a lot between dates. However,
for each date, we see the runtime growing exponentially when the number of allowed moves increases
during these experiments. We show the duration of these experiments in Figure 17.

Figure 17: Experiment duration of allowed moves experiments
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The results indicate that the model is only useful for a smaller number of moves and unsuitable for
more moves than around 15, as the runtime increases too much. For Diakonessenhuis, these results
indicate that performing a low number of moves already results in a good improvement. However,
the value of the model and the runtime differ a lot depending on the situation, meaning that in some
scenarios, the moves might not be worth the effort. The decrease in usability with high numbers of
moves is not a problem for Diakonessenhuis as the surgical planning department. They indicated that
moving a lot of patients is undesirable the week before the date of surgery, but a few moves resulting
in an improvement might be possible.

5.1.3 Percentage Fixed Patients

An experiment requested by Diakonessenhuis is to analyse what happens if a certain percentage of
patients are not able to be moved. We call this the percentage of fixed patients. In practice, the
planning department has rules and preferences which prohibit or prevent certain patient types from
being movable to another operating room session. Therefore, experimentation with the number of
patients who are movable could provide insights into the impact of fixing specific percentages of
patients to the surgery schedule. We experiment by altering the parameter: “percentage of fixed
patients”. We reduce this percentage in steps and are mainly interested in the small and higher
percentages. As a result, we take smaller steps in the tails.

Which patients are “fixed” to the schedule matters to the improvement value of the model. If a
surgery schedule does not have a lot of different ways to improve the schedule, the situation might
end up very constricted, with only a few fixed patients. Therefore, different selections of the same
percentage of patients might provide very different results. In our experiments, we randomly fix a
specific percentage of patients per experiment to the surgery schedule. Still, within each experiment,
we do not change which patients are fixed. Therefore, it might be we have a very “lucky” or “unlucky”
portion of patients we fit into the schedule. As a result, there is no continuous decrease in objective
value improvement, as an experiment with a higher percentage of patients can have a better objective
function than a lower percentage of fixed patients. For this reason, we must analyse the trend of
the objective function instead of looking at individual experiments. Overall, the objective value and
robustness of the solution change a lot per starting date. We provide the results of our experiment in
Figure 18.

Figure 18: Experiments with the percentage of fixed patients

When analysing the results of the experiments, we see a clear correlation between the number of
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fixed patients and an increased objective value. Furthermore, we see some outliers in the results,
with different percentages of fixed patients performing better or worse than their trend. We find
especially the 10% experiment for the 27th of May interesting, which performs even better than the
experiment with no patients fixed. This experiment underlines again the randomness of our SAA
model. Furthermore, it is clear that when it becomes impossible to move about 80 to 90% of patients,
the model becomes less valuable. However, a portion of about 20% to 25% seems to have, on average,
less impact on the value of the model. Being able to fix 20% to 25% of patients is an exciting result
for Diakonessenhuis to keep in mind, with the connotation that there is still a possibility you fix the
critical patients and the objective value is less. Furthermore, with the percentage of fixed patients
increasing, the possibility of not all possible moves being used increases. We see this trend mainly in
the highest percentages, where not all moves are used.

5.1.4 Freedom of Moving Patients

The model has a limited amount of operating room sessions to move a patient towards. In reality,
this situation is also quite constricted, with only a bit of freedom to move patients around. Most of
the time this division is based upon surgery speciality or surgeon preferences. Therefore, we use a
situation throughout this thesis where we only move patients to operating room sessions on another
day in which the same surgeon operates. Loosening this restriction might provide better results. In
this section, we research the impact of this restriction and evaluate three situations which we list
below.

• We have to plan surgerie in an operating room session in which their surgeon operates, different
to the OR day they are currently planned on. (This is the situation we use throughout this
thesis.)

• We have to plan surgeries on their assigned day of the base solution within the operating room
sessions assigned to their speciality.

• We have to plan surgeries on the OR days assigned to their speciality, except for the day they
are currently planned on.

For each of these situations, we optimise the surgery schedule on three dates in history. We show the
result of this experimentation in Figures 19, 20 and 21.

Figure 19: Experiment results from allowable moves 28-01
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Figure 20: Experiment results from allowable
moves 27-05

Figure 21: Experiment results from allowable
moves 30-09

We note that for the second and third experiments, the utilisation factor is above 1, which means the
utilisation part of the objective has worsened instead of improved. Meanwhile, the other objectives,
in general, improved way more than in the first situation. We showed in Section 5.1.1 the utilisation
objective has limited improvement potential, whereas the overtime and risk objectives have much
more improvement potential, especially in the second and third experiments. This means that the
improvement in the Overtime and Risk objectives outweighs the utilisation objective. We could
prevent this effect by giving more weight to the utilisation objective or by normalising with an upper
and lower bound instead of a reference value. The latter requires more time for the model to be set
up. The experiments do show that when we provide the model with more possibilities to improve, in
experiments two and three, the model value significantly improves.

5.1.5 Conclusion

In general, our model improves when we provide it with more options in our experiments. We create
more options by increasing the number of moves, keeping the percentage of fixed patients low or
restricting the move opportunities as little as possible. The relative improvement varies a lot depending
on the date, as not every dataset has the same size and opportunity for improvement in switches as
the others. With the weights, the type of improvement can be tweaked. However, it is clear that in
all cases, the overtime will improve when following the moves provided by our model. A second result
of more opportunity for improvement is that the model takes a longer time to solve. This increase in
runtime seems to increase exponentially with the number of opportunities or size of the instance.
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6 Conclusions and Recommendations

In this chapter, we answer the research question “What conclusions and recommendations can we
make for our re-evaluation model at Diakonessenhuis?”. We summarise our conclusions in Section 6.1
and our limitations in Section 6.2. After that, we provide recommendations for further research in
Section 6.3 and recommendations for Diakonessenhuis in Section 6.4.

6.1 Conclusions

We conclude that we have filled the literature gap we identified in Section 3.4, as our proposed model
is on a re-evaluation operational surgery scheduling level. The model improves the surgery schedule
by performing a limited number of changes to the schedule whilst allowing additional patients to be
scheduled.

We conclude that the CVaR, which has not frequently been used in literature, is a valuable and helpful
risk objective for our SAA model. With the settings we used for the model objectives, we were able to
estimate the overtime and utilisation objectives accurately. However, we still underestimate the risk
objective in our SAA. Therefore, a sample bias is present for the risk objective, which means more
scenarios are necessary to estimate the risk objective in the SAA correctly. We argue that even with a
sample bias, the CVaR is valuable. In practice, the exact “risk” of high overtime is not that important
for a hospital anyway and including the CVaR in the objective function still has value, as it makes
sure we do not accept huge risks as a trade-off for a slight increase in overtime or utilisation.

We note that the runtime of our model exponentially increases when we increase the number of
scenarios or the number of options for the model. When we increase parameters like the instance
size, planning horizon, or the number of allowed changes, it results in an exponential increase in
runtime. Due to this exponential trend, we conclude the model is non-polynomial and should only
be used for the intended small instances with a constricted planning horizon and only a few changes.
For Diakonessenhuis, this is not a problem, as the possibilities for moving are few and the instances
constrained.

The last conclusion we make based on this thesis is about the value of the stochastic solution (VSS)
of this model. This value is relatively low, which indicates that an MIP with average values does
not perform much worse. However, the VSS is determined based on a multi-objective function that
excludes the risk part of the objective. The risk part is an added benefit of still using our SAA
approach. Furthermore, we have a lot of room for improvement in regard to the surgery duration
estimation, which the relatively large EVPI values show. Also, we took the average value for surgery
durations with limited historical data, which might partly explain the small VSS. Combining all these
aspects, we conclude that our stochastic model has a limited value of stochastic solution when we
exclude the risk from our objective function. Therefore, it might be interesting, especially considering
the fast runtime, to determine whether an approach using the averages is sufficient.

6.2 Limitations

In general, we limited ourselves and made assumptions about the actual situation to make our research
manageable within our time frame. One of the main limitations of our research was that we did not
look into surgeon or resource constraints present in a hospital, and we did not look at the impact of
OR sessions on each other. A session in the afternoon might have to start later if the session in the
morning has a lot of overtime. Also, our model lacked a system point of view, which is currently a
topic on which a lot of research is conducted. Mainly due to time constraints, we only looked at the
performance of the operating room department, not taking into account the recovery ward or general
wards of Diakonessenhuis. Another limitation is that we only considered the uncertainty of the surgery
duration. In reality, more uncertainties exist, such as the random arrival of patients, which impacts
the time surgeries can start.

The limited time of this thesis also impacted the experimentation phase. More time would have allowed
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us to run the model for more extended periods, which would have made conclusions about the “actual”
objective value more accurate. It would also have allowed us to use more than 100 scenarios in our
SAA during the experimentation phase. Regarding the value of our model, the main limitation is that
we used the session duration predictor to estimate the surgery durations. Analysing and improving
this predictor further might have allowed us to improve the surgery duration predictions we used,
which, in cases of limited historical data, could have prevented an average from being used. Also,
experts and literature indicate that including more factors in the surgery duration estimation would
improve the estimation, which we were not able to research for Diakonessenhuis.

6.3 Recommendations Further Research

Interesting directions for further research can be linked to the limitations we named in the previous
section. For example, we recommend incorporating the surgery schedule’s impact on other hospital
departments in our model. This topic receives a lot of attention, and a model that includes this topic
is an interesting next step. An option would be to look at partially incorporating the research of
VanBerkel et al. (2011) by including the recovering patient workload in the master surgery sched-
ule. Another potential improvement to our model might be to include surgeon and other resource
constraints, as we now assume these are always available. In reality, this is not the case and might
even be a constricting factor for planning surgeries on a specific spot in the surgery schedule. Another
important next step is to analyse the value of our re-evaluation model on a surgery schedule composed
using operations research methods. In our case, the original surgery schedule was not constructed
using operations research methods, and the construction from the ground up was out of scope.

Adding to the model and introducing extra constraints adds more complexity, meaning the runtime
increases exponentially when the model becomes more complex. Research can be done to improve the
runtime or split up the model into parts, like solving the model one speciality at a time. Regarding the
model’s value, improving the surgery duration estimation adds a lot of value, as our model’s expected
value of perfect information indicates. So, further research into this topic is valuable.

A last exciting topic we would like to mention is having designated “overtime” operating rooms in the
model, which actually exist in Diakonessenhuis. It is a designated operating room for overtime where
employees know beforehand they are likely to have to work overtime. As far as we know, it is still
unclear how to handle this operating room in a model and whether having a designated “overtime
OR” is a good idea at all.

6.4 Recommendations Diakonessenhuis

We recommend Diakonessenhuis to use our model in the Wednesday meeting once a week to analyse
the potential improvement to the surgery schedule by switching patients in the next week. In this way,
Diakonessenhuis needs to invest relatively little time into running the model, as Diakonessenhuis only
needs to set it up once per week. Additionally, Diakonessenhuis chooses whether the improvement
in the surgery schedule is worth the effort of moving patients around. Furthermore, we recommend
rescheduling future patients by using our model during the Wednesday meeting, as the model can find
or create a good spot for the patient to be rescheduled into the schedule with a low impact on the
surgery schedule performance. In the long run, a conversation needs to be had in the hospital about
which patients to “fixate” to the schedule and which are able to be moved.

Also, it would be beneficial to try to improve the initial surgery schedule, as the current method is
far from perfect. Additionally, Diakonessenhuis could look at creating flexibility in the schedule, for
example, by giving patients two days in the week on which they might get surgery. Having the model
decide one week in advance could benefit the chance of overtime and the utilisation of the operating
room sessions.

Furthermore, the main takeaways for Diakonessenhuis are the trade-offs we show in Chapter 5. To
get more value out of the model, Diakonessenhuis can create more flexibility for the model by having
more opportunities for improvement and fewer restrictions, for example, by allowing a switch to an OR
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session with another surgeon. It might be beneficial to choose a more efficient surgeon for a specific
procedure than another, keeping, of course, the quality of care in mind. Lastly, Diakonessenhuis should
keep in mind that moves might depend on each other in some cases. This means that Diakonessenhuis
should check whether there is a depending move and if it is executable before moving a patient.
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Addis, B., Carello, G., Grosso, A., & Tànfani, E. (2016). Operating room scheduling and rescheduling:
a rolling horizon approach. Flexible Services and Manufacturing Journal, 28 (1-2), 206–232.
https://doi.org/10.1007/s10696-015-9213-7

American Society of Anesthesiologists. (2020, December). Statement on ASA Physical Status Classi-
fication System.

Aringhieri, R., & Duma, D. (2015). The Optimization of a Surgical Clinical Pathway. https://doi.
org/10.1007/978-3-319-26470-7{\ }16

Azar, M., Carrasco, R. A., & Mondschein, S. (2022). Dealing with uncertain surgery times in operating
room scheduling. European Journal of Operational Research, 299 (1), 377–394. https://doi.org/
10.1016/j.ejor.2021.09.010

Beaulieu, N. C., Abu-Dayya, A. A., & McLane, P. J. (1993). On approximating the distribution of
a sum of independent lognormal random variables. IEEE WESCANEX 93 Communications,
Computers and Power in the Modern Environment - Conference Proceedings, 72–79. https:
//api.semanticscholar.org/CorpusID:121932940

Bernardelli, A. M., Bonasera, L., Duma, D., & Vercesi, E. (2024). Multi-objective stochastic scheduling
of inpatient and outpatient surgeries. Flexible Services and Manufacturing Journal. https :
//doi.org/10.1007/s10696-024-09542-0

Bowers, J., & Mould, G. (2004). Managing uncertainty in orthopaedic trauma theatres. European
Journal of Operational Research, 154 (3), 599–608. https://doi.org/https://doi.org/10.1016/
S0377-2217(02)00816-0

Cardoen, B., Demeulemeester, E., & Beliën, J. (2009). Optimizing a multiple objective surgical case
sequencing problem. International Journal of Production Economics, 119 (2), 354–366. https:
//doi.org/10.1016/J.IJPE.2009.03.009

Cardoen, B., Demeulemeester, E., Beliën, J., Cardoen, B., Demeulemeester, E., & Beliën, J. (2010).
Operating room planning and scheduling: A literature review DEPARTMENT OF DECISION
SCIENCES AND INFORMATION MANAGEMENT (KBI) Operating room planning and
scheduling: A literature review (tech. rep.).

Dexter, F., Dexter, E., Masursky, D., & Nussmeier, N. (2008). Systematic review of general tho-
racic surgery articles to identify predictors of operating room case durations. Anesthesia and
Analgesia, 106 (4), 1232–1241. https://doi.org/10.1213/ane.0b013e318164f0d5

Dexter, F., Macario, A., Traub, R. D., Hopwood, M., & Lubarsky, D. A. (1999). An Operating Room
Scheduling Strategy to Maximize the Use of Operating Room Block Time. Anesthesia & Anal-
gesia, 89 (1), 7–20. https://doi.org/10.1097/00000539-199907000-00003

Diakonessenhuis. (2024a). De Drie Locaties. https://www.diakonessenhuis.nl/uw-bezoek/adres-route-
contact/drie-locaties

Diakonessenhuis. (2024b). Diak Clinic. https://www.diakclinic.nl/over-de-diak-clinic
Diakonessenhuis. (2024c). Diakonessenhuis, Over Ons. https://www.diakonessenhuis.nl/over-ons
Fairley, M., Scheinker, D., & Brandeau, M. L. (2019). Improving the efficiency of the operating room

environment with an optimization and machine learning model. Health Care Management
Science, 22 (4), 756–767. https://doi.org/10.1007/s10729-018-9457-3

Fei, H., Chu, C., &Meskens, N. (2009). Solving a tactical operating room planning problem by a column-
generation-based heuristic procedure with four criteria. Annals of Operations Research, 166 (1),
91–108. https://doi.org/10.1007/s10479-008-0413-3

Gomes, C., Almada-Lobo, B., Borges, J., & Soares, C. (2012). Integrating Data Mining and Optimiza-
tion Techniques on Surgery Scheduling. https://doi.org/10.1007/978-3-642-35527-1{\ }49

35

https://doi.org/10.1016/j.ejor.2011.02.025
https://doi.org/10.1016/j.ejor.2011.02.025
https://doi.org/10.1007/s10696-015-9213-7
https://doi.org/10.1007/978-3-319-26470-7{\_}16
https://doi.org/10.1007/978-3-319-26470-7{\_}16
https://doi.org/10.1016/j.ejor.2021.09.010
https://doi.org/10.1016/j.ejor.2021.09.010
https://api.semanticscholar.org/CorpusID:121932940
https://api.semanticscholar.org/CorpusID:121932940
https://doi.org/10.1007/s10696-024-09542-0
https://doi.org/10.1007/s10696-024-09542-0
https://doi.org/https://doi.org/10.1016/S0377-2217(02)00816-0
https://doi.org/https://doi.org/10.1016/S0377-2217(02)00816-0
https://doi.org/10.1016/J.IJPE.2009.03.009
https://doi.org/10.1016/J.IJPE.2009.03.009
https://doi.org/10.1213/ane.0b013e318164f0d5
https://doi.org/10.1097/00000539-199907000-00003
https://www.diakonessenhuis.nl/uw-bezoek/adres-route-contact/drie-locaties
https://www.diakonessenhuis.nl/uw-bezoek/adres-route-contact/drie-locaties
https://www.diakclinic.nl/over-de-diak-clinic
https://www.diakonessenhuis.nl/over-ons
https://doi.org/10.1007/s10729-018-9457-3
https://doi.org/10.1007/s10479-008-0413-3
https://doi.org/10.1007/978-3-642-35527-1{\_}49


REFERENCES

Hans, E., Wullink, G., van Houdenhoven, M., & Kazemier, G. (2008). Robust surgery loading. European
Journal of Operational Research, 185 (3), 1038–1050. https://doi.org/10.1016/j.ejor.2006.08.
022

Hans, E. W., Van Houdenhoven, M., & Hulshof, P. E. J. H. (2011). A Framework for Health Care
Planning and Control (tech. rep.).

Heerkens, H., & van Winden, A. (2017). Solving Managerial Problems Systematically (1st ed.). No-
ordhoff Uitgevers.

Hsu, V. N., de Matta, R., & Lee, C.-Y. (2003). Scheduling patients in an ambulatory surgical center.
Naval Research Logistics (NRL), 50 (3), 218–238. https://doi.org/10.1002/nav.10060

Hulshof, P. J., Kortbeek, N., Boucherie, R. J., Hans, E. W., & Bakker, P. J. (2017, December).
Taxonomic classification of planning decisions in health care: a structured review of the state
of the art in OR/MS. https://doi.org/10.1057/hs.2012.18

Kleywegt, A. J., Shapiro, A., & Homem-de-Mello, T. (2002). The Sample Average Approximation
Method for Stochastic Discrete Optimization. SIAM Journal on Optimization, 12 (2), 479–
502. https://doi.org/10.1137/S1052623499363220

Kroer, L. R., Foverskov, K., Vilhelmsen, C., Hansen, A. S., & Larsen, J. (2018). Planning and schedul-
ing operating rooms for elective and emergency surgeries with uncertain duration. Operations
Research for Health Care, 19, 107–119. https://doi.org/10.1016/J.ORHC.2018.03.006

Law, A. M. (2014). Simulation modeling and analysis (5th edition). McGraw-Hill.
Lebowitz, P. (2003). Schedule the Short Procedure First to Improve OR Efficiency. AORN Journal,

78 (4), 651–659. https://doi.org/10.1016/S0001-2092(06)60671-6
Liu, N., Truong, V.-A., Wang, X., & Anderson, B. R. (2019). Integrated Scheduling and Capacity

Planning with Considerations for Patients’ Length-of-Stays. Production and Operations Man-
agement, 28 (7), 1735–1756. https://doi.org/10.1111/poms.13012

Maleki, A., Hosseininesaz, H., & Jasemi, M. (2023). A comparative analysis of the efficient operat-
ing room scheduling models using robust optimization and upper partial moment. Healthcare
Analytics, 3, 100144. https://doi.org/10.1016/J.HEALTH.2023.100144

Marcon, E., Kharraja, S., & Simonnet, G. (2003). The operating theatre planning by the follow-up
of the risk of no realization. International Journal of Production Economics, 85 (1), 83–90.
https://doi.org/10.1016/S0925-5273(03)00088-4

Marlow, N. A. (1967). A Normal Limit Theorem for Power Sums of Independent Random Variables.
Bell System Technical Journal, 46 (9), 2081–2089. https://doi.org/10.1002/j.1538-7305.1967.
tb04244.x

Marques, I., Captivo, M. E., & Vaz Pato, M. (2012). An integer programming approach to elective
surgery scheduling. OR Spectrum, 34 (2), 407–427. https://doi.org/10.1007/s00291-011-0279-7

Meskens, N., Duvivier, D., & Hanset, A. (2013). Multi-objective operating room scheduling considering
desiderata of the surgical team. Decision Support Systems, 55 (2), 650–659. https://doi.org/
10.1016/j.dss.2012.10.019

Pham, D. N., & Klinkert, A. (2008). Surgical case scheduling as a generalized job shop scheduling
problem. European Journal of Operational Research, 185 (3), 1011–1025. https://doi.org/10.
1016/j.ejor.2006.03.059

Riise, A., & Burke, E. K. (2011). Local search for the surgery admission planning problem. Journal
of Heuristics, 17 (4), 389–414. https://doi.org/10.1007/s10732-010-9139-x

Saklad, M. (1941). GRADING OF PATIENTS FOR SURGICAL PROCEDURES. Anesthesiology,
2 (3), 281–284. https://doi.org/10.1097/00000542-194105000-00004

Samudra, M., Van Riet, C., Demeulemeester, E., Cardoen, B., Vansteenkiste, N., & Rademakers,
F. E. (2016). Scheduling operating rooms: achievements, challenges and pitfalls. Journal of
Scheduling, 19 (5), 493–525. https://doi.org/10.1007/s10951-016-0489-6

Sarin, S. C., Sherali, H. D., & Liao, L. (2014). Minimizing conditional-value-at-risk for stochastic
scheduling problems. Journal of Scheduling, 17 (1), 5–15. https://doi.org/10.1007/s10951-013-
0349-6

36

https://doi.org/10.1016/j.ejor.2006.08.022
https://doi.org/10.1016/j.ejor.2006.08.022
https://doi.org/10.1002/nav.10060
https://doi.org/10.1057/hs.2012.18
https://doi.org/10.1137/S1052623499363220
https://doi.org/10.1016/J.ORHC.2018.03.006
https://doi.org/10.1016/S0001-2092(06)60671-6
https://doi.org/10.1111/poms.13012
https://doi.org/10.1016/J.HEALTH.2023.100144
https://doi.org/10.1016/S0925-5273(03)00088-4
https://doi.org/10.1002/j.1538-7305.1967.tb04244.x
https://doi.org/10.1002/j.1538-7305.1967.tb04244.x
https://doi.org/10.1007/s00291-011-0279-7
https://doi.org/10.1016/j.dss.2012.10.019
https://doi.org/10.1016/j.dss.2012.10.019
https://doi.org/10.1016/j.ejor.2006.03.059
https://doi.org/10.1016/j.ejor.2006.03.059
https://doi.org/10.1007/s10732-010-9139-x
https://doi.org/10.1097/00000542-194105000-00004
https://doi.org/10.1007/s10951-016-0489-6
https://doi.org/10.1007/s10951-013-0349-6
https://doi.org/10.1007/s10951-013-0349-6


REFERENCES

Strum, D. P., May, J. H., & Vargas, L. G. (2000). Modeling the uncertainty of surgical procedure
times: Comparison of log- normal and normal models. Anesthesiology, 92 (4), 1160–1167. https:
//doi.org/10.1097/00000542-200004000-00035

Vanberkel, P. T., Boucherie, R. J., Hans, E. W., Hurink, J. L., van Lent, W. A. M., & van Harten,
W. H. (2011). An exact approach for relating recovering surgical patient workload to the
master surgical schedule. Journal of the Operational Research Society, 62 (10), 1851–1860.
https://doi.org/10.1057/jors.2010.141

Vancroonenburg, W., Smet, P., & Vanden Berghe, G. (2015). A two-phase heuristic approach to multi-
day surgical case scheduling considering generalized resource constraints. Operations Research
for Health Care, 7, 27–39. https://doi.org/10.1016/j.orhc.2015.09.010

van Oostrum, J. M., Bredenhoff, E., & Hans, E. W. (2010). Suitability and managerial implications
of a Master Surgical Scheduling approach. Annals of Operations Research, 178 (1), 91–104.
https://doi.org/10.1007/s10479-009-0619-z

37

https://doi.org/10.1097/00000542-200004000-00035
https://doi.org/10.1097/00000542-200004000-00035
https://doi.org/10.1057/jors.2010.141
https://doi.org/10.1016/j.orhc.2015.09.010
https://doi.org/10.1007/s10479-009-0619-z

	Introduction
	Diakonessenhuis 
	Research Motivation
	The Research Problem
	Action Problem
	Problem Identification
	Core Problem and Motivation

	Research Design
	Research Questions
	Scope


	Context Analysis
	Current Planning System
	Current Rescheduling System
	The Session Duration Predictor

	Literature Analysis
	Position in Literature
	Offline-Operational Planning
	Length of Surgical Case
	Assign Date and Operating Room
	Sequence Surgical Cases

	Online-Operational Planning
	Conclusion

	Model Formulation
	Problem Description
	Stochastic Program
	Stochastic Program formulation
	Stochastic Program explanation

	Sample Average Approximation
	SAA Mathematical Formulation
	SAA Parameter Settings
	Output of Model


	Experiments
	Model Quality
	Objective Weights
	Number of Moves
	Percentage Fixed Patients
	Freedom of Moving Patients
	Conclusion


	Conclusions and Recommendations
	Conclusions
	Limitations
	Recommendations Further Research
	Recommendations Diakonessenhuis

	References

