
Developing a flexible and deployable MPC system used for statistical data analysis

Emiel Rousa

aUniversity of Twente, Enschede, Netherlands

Abstract

As the significance and availability of data continue to grow, ensuring data privacy and security has become paramount. A pos-
sible solution to obtain value from data while maintaining privacy is Multi-Party Computation (MPC); a technology that allows
calculations on private data. MPC is maturing to a point where it may see widespread use in the near future, so the question of
technological acceptance is becoming more relevant. Systems that handle private data require a minimum level of trust of its users,
which may play a role in its acceptance.

This research is motivated by the requirements of Fraunhofer FOKUS, which aims to align security standards across different
partner companies through their Cyrille system. This thesis will focus on (1) developing a flexible MPC system used for data
analysis and (2) investigating the question of trust in the context of MPC. The prototype developed in this thesis can be used to exe-
cute several statistical calculations on private data, includes data persistence, and is able to handle multiple parties asynchronously.
Utilizing the Sharemind framework, it allows filtering data and contains multiple datasets making it flexible and usable in different
contexts.

The second focus of this thesis is on the sociological aspects of trust in new technologies such as MPC. Design choices can be
made to improve user trust. The interface design of the prototype is based on research into these choices to ensure that the final
system elicits the most trust. This thesis demonstrates that MPC systems can be both practical and secure, paving the way for
broader adoption in various domains where data privacy is crucial. It advances the technical implementation of MPC and provides
insights into the increasing trust in emerging MPC technologies.

1. Introduction

As data is becoming more important and widely available,
the question of privacy and security becomes increasingly im-
portant. A lot of value can be obtained from aggregating data,
which is reflected by the size of some of the current big-tech
companies dealing in data. Aggregating data will inherently
expose some information about the data if not done correctly.
The field of multi-party computation (MPC) tries to solve this
crucial issue by creating protocols that maintain data privacy
while still producing results. The main idea is to evaluate a
function on private input data from different parties while not
revealing any information about the data other than the final
result. In other cryptographic problems, the goal is usually to
secure data by encrypting it or to secure the data communica-
tion channels so that only the designated parties can access the
data; the adversary is kept out of the system. In MPC the goal
is to secure the protocol itself so that it is secure despite the
adversary taking part in the protocol. There is no need for a
third party because the entire calculation is done by exchanging
encrypted messages between all parties.

The guarantees of MPC are promising, but currently the re-
sults have mainly been theoretical and the number of accessible
and efficient tools is limited. This is changing rapidly as more
tools are developed, which means that the technology may be
maturing to a point at which it will be ready for real-world ap-
plications. This also means that the question of technological
adoption will become important. Users must be willing to use

the technology on their data, which introduces a question of
trust. The user may only want to upload their data to an MPC
system if they trust that system. Thus, adoption of MPC sys-
tems is not only a technological challenge, but also a socio-
logical one. This thesis will (1) focus on the development of
a flexible MPC system capable of handling different types of
data and be easily accessible to users, as well as (2) investigate
what it means to trust a system, what can be done to influence
trust in a system, and incorporate some of these findings into
the system.

The main stakeholder in this thesis is the Fraunhofer FOKUS
research institute in Berlin. Fraunhofer is developing a sys-
tem called Cyrille, which will help align security requirements
across different partner companies by assessing the security
level of those partners. Each partner company verifies their se-
curity by filling out security questionnaires that will determine
their level of security according to a security standard such as
ISO270011. The data from these questionnaires are numeric,
categorical, and temporal (since the security questionnaire is a
snapshot and subject to change over time), and the goal of the
parties is to be able to generate aggregate statistics of the results
of multiple parties. There may be different assessment require-
ments for each party, so users need to be able to filter data, and
they need a number of statistical functions to select from.

Many MPC solutions focus on single calculations and require
all parties to be online at the same time, but data persistence
or asynchronous calculations are not common. The question-

Preprint submitted to Elsevier November 22, 2024

naire data is time dependent, which introduces specific require-
ments in terms of data storage and asynchronous calculation,
compared to commonly tackled use-cases in MPC. One of the
requirements from Fraunhofer is that companies may want to
update their answers to their security questionnaire, the ques-
tionnaires themselves may be updated, or results need to be re-
calculated. This means the data has timestamps and the system
needs to securely keep track of updates, store or re-request se-
cret values, and be able to recalculate statistics at the users re-
quest. It is also important that the system allows for more than
two parties, because the goal of the system is to compare and
choose parties to collaborate with, so a high number of parties
should be able to upload their data. In summary, the require-
ments we will set for this system are as follows:

1. There needs to be support for statistical calculations, such
as the mean and variance and possibly other descriptive
statistics.

2. The system needs filters and flexibility, so each party has
the freedom to create their own assessment of the other
parties.

3. Input data must be persisted so that input parties are not
required to stay online and so that data can be easily ap-
pended, updated, and so that changes can be tracked.

4. There need to be at least three parties, preferably more.

Currently, there are not many tools that meet all these re-
quirements, and at the time of writing, there are only a few
accessible systems (i.e., readily deployable). Although there
is a lot of existing work on MPC and securely calculating de-
scriptive statistics, there are few tools that also incorporate se-
cure storage. A tool like EMNET (Hailemichael et al., 2015)
meets all requirements, but is restricted to medical data. Tools
such as SEPIA (Burkhart et al., 2010), Carbyne-stack (Becker
et al., 2021), or FRESCO (Alexandra Institute, 2023), meet
most requirements, but none of these meet all requirements.
The only system found that meets all the requirements is Share-
mind (Bogdanov et al., 2008), which will be used in this thesis.
Additional support for this choice and a comparison with the
other frameworks will be given in chapter 2.1.

The goal of this thesis is twofold: implement a system ac-
cording to the requirements and investigate what influences
trust in a new technology such as MPC. In this thesis, the fol-
lowing research questions (RQs) will be answered:

1. RQ1: What is a suitable design for an MPC system in line
with the requirements from Fraunhofer?

2. RQ2: What does a suitable user interface look like for a
flexible MPC system?

3. RQ3: Which challenges does MPC face in terms of gain-
ing user in MPC and what can be done to influence and
increase this trust?

This thesis will take two paths to answer these questions. The
first is the technical implementation and background of MPC to
answer RQ1 and RQ2. This includes related work chapters 2.1
and 2.2, background chapter 3.1, and result chapter 5.1. Chap-
ters 2.3, 3.2, and 5.2 will answer RQ3 about trust in MPC. The
discussion and conclusion will also be split to discuss each of
these topics separately.

Require-
ments

SEPIA Share-
mind

MPyC FRESCO Carbyne
stack

Security
model

S.h.
min.

S.h.
min.

S.h.
min.

D. maj. D. maj.

Number
of par-
ties

∞ In:
∞,
Nodes:
3-5

∞ ∞ ∞

Stat.
calcula-
tions

No Yes Yes Yes No

Persist
data

Yes Yes No No Yes

Table 1: Comparison of requirements across different MPC frameworks (S.m.
min. = semi-honest minority, D.maj. = dishonest majority)

2. Related work

Each of the research questions has related work associated
with them. For RQ1, which is about creating a back-end, sev-
eral technologies will be looked at which are both available and
deployable. By looking at the requirements, one can compare
the available technologies and motivate the choice for Share-
mind. For RQ2, about the front-end, MPC solutions that have
a user interface will be looked at. Then lastly, to investigate
trust in MPC (RQ3), the available work will be investigated and
some related examples in a different field will be used, namely
that of trust in AI.

2.1. Related work: back-end

For the implementation of an MPC back-end, there are
several options. There is, for example, an MPC program-
ming language like MPyC (Schoenmakers, 2018), which is a
Python based language using Shamir’s secret sharing scheme.
Then there are protocol suites such as MP-SPDZ (Keller,
2020), which run under the hood of some frameworks, such
as FRESCO (Alexandra Institute, 2023) and Carbyne-stack
(Becker et al., 2021). These have a large set of implemented
functions for statistical calculations as well as many other use-
ful functions for data analysis, but all lack the ability to per-
sist data. Another framework that was looked at was SEPIA
(Burkhart et al., 2010), which is a secret shared system very
similar to Sharemind, but it has no inherent support for statisti-
cal calculations nor has it the ability to persist data.

Although it is not a hard requirement, the security of each of
the frameworks will be taken into account because it is a crucial
part of any MPC protocol. In MPC the distinction is made be-
tween dishonest and semi-honest parties. Dishonest parties are
parties that actively try to manipulate the calculation by spoof-
ing data or not following protocol. Semi-honest parties are fol-
lowing protocol but are listening in and trying to gather as much
information to reconstruct private input data. Then there is the
distinction between a majority and a minority, which refers to

2

Figure 1: Build dataset using queries in Emnet (Hailemichael et al., 2015)

Figure 2: Select statistical function in Emnet (Hailemichael et al., 2015)

the number of semi-honest or dishonest parties that the proto-
col can tolerate while still remaining secure. For an overview of
the MPC tools and their features, please examine table 1. Note
that in chapter 1, Emnet (Hailemichael et al., 2015) was also
mentioned, but because that system is strictly limited to med-
ical data taken from a specialized medical database, it will be
left out of this comparison.

2.2. Related work: front-end

There are some works that implemented a front-end. The one
most closely related to what will be developed in this thesis is
Emnet (Hailemichael et al., 2015). This framework is based
on additive secret sharing and creates computation graphs of
each function before solving it securely. Emnet has a front-
end and can be used to perform statistical functions on medical
data. The user can select a dataset or create one using a special
query language (Figure 1) and subsequently can select parame-
ters (columns) and apply functions to them (Figure 2)

Another work similar to this thesis is Bogdanov et al.
(2012b), which is based on Sharemind and in which the authors
also developed a web front-end. Companies can use it to pro-
vide sensitive financial data and compare themselves with other
companies, without compromising their trade secrets (Figure
3).

Figure 3: Comparing sensitive metrics with other companies using Sharemind
(Bogdanov et al., 2012b)

Web-MPC (Lapets et al., 2018), uses a JavaScript library
called JIFF for the implementation of MPC calculations. The
architecture consists of a single server to which clients connect,
and once they are connected, the calculation can start between
them. JIFF uses additive secret sharing, and the implementation
in JavaScript and an easily accessible library makes it straight-
forward to implement a web-application. An example taken
from the main article can be seen in Figure 4.

2.3. Related work: trust
On the topic of MPC and trust, there appears to be no re-

search as of the time of writing. Some work investigates the
reception of MPC in end users (Bogdanov et al., 2013), but this
focuses on the needs of the user and finding a fitting solution us-
ing MPC. Because of the limited available work, one can look at
a different field, namely that of trust in AI, to gain some insight.
There is much research on explainable AI, trust in AI and per-
ception of AI. Like MPC it is very complicated to understand
the inner workings for a non-expert, so often these technologies
are referred to as being a black box. Because of the similarities,
one can look at some findings in this field and compare it with
MPC. However, there are also many differences, which will be
discussed in the discussion chapter 6.

For the acceptance of a technology, it is important that users
understand the technology (Saariluoma et al., 2019). It seems to
be important for the acceptance of AI that there is trust (Choung
et al., 2023) in addition to perceived usefulness, This could
mean that to trust the technology, it needs to first be accepted
and, to be accepted, it needs to be understood. Findings from
other studies indicate that transparency and reliability are im-
portant antecedents in building trust in AI (Glikson and Wool-
ley, 2020). Some studies also highlight that tangibility and ap-
pearance are important (Omrani et al., 2022).

3

Figure 4: A JIFF based web application (Lapets et al., 2018)

3. Background

For this thesis, the framework that will be used is Sharemind
(Bogdanov et al., 2008). It is very easily deployable, uses a
familiar C-like programming language, and fulfills all the re-
quirements from Fraunhofer. In addition to implementing an
MPC system, it is also important to investigate whether users
will trust the system. To do this, theoretical frameworks of trust
will be employed to argue about the components of trust in an
MPC and to support design choices that may improve the trust
in the system.

This chapter will discuss the workings of Sharemind, includ-
ing its architecture, security guarantees, and some of its proto-
cols. The second part of this chapter will be dedicated to laying
the theoretical foundations for understanding trust in technol-
ogy and the factors that influence that trust.

3.1. Sharemind
The Sharemind framework (Bogdanov et al., 2008) is a secret

shared computation platform. It consists of a (distributed) com-
putation runtime environment, a programming language called
SecreC, and several libraries such as a CSV importer for se-
curely uploading data for calculation and a JavaScript library
for interacting with the back-end. Sharemind is built up of lay-
ers of protocols from low-level (addition, multiplication, bit ex-
traction) to high-level (outlier detection, clustering, statistical
calculations).

SecreC is a programming language developed with the phi-
losophy of making an accessible language that leverages MPC
but can be easily learned by an average programmer. This is
achieved by having a familiar C-like syntax and forcing ex-
plicit public and private types. An inherent downside of MPC

Figure 5: Overview of Sharemind infrastructure (Bogdanov et al., 2008)

programming languages is inefficiency because MPC compu-
tations may require several network communication rounds,
meaning they can take several milliseconds compared to pub-
lic computations, which can take nanoseconds. To combat this
a solution is parallelism, because the computations can be done
in parallel without needing more communication rounds; they
require only more bandwidth. The result of this is that all op-
erations on the matrices are performed in parallel and are com-
paratively efficient. Furthermore, SecreC has many modules for
different types of calculations, such as statistical summaries, re-
gression, and principal component analysis.

3.1.1. Infrastructure
The Sharemind infrastructure can be seen as two separate

parts. The calculation run-time environment and the input par-
ties. The calculation run-time environment consists of three
to five nodes that do the calculation and manage the database.
They are referred to computation or miner nodes. The input par-
ties provide the data to the computation nodes and may also be
interested in the result of the aggregated data. There can be any
number of input parties since they do not take part in the com-
putation protocol. The input parties create and deal the shares,
which means that no one computation node ever sees the com-
plete input data. Each miner has a local database that stores the
incoming shares of the client. How the shares are dealt will be
discussed in section 3.1.5.1 and how the shared are stored will
be discussed in section 3.1.6. An overview of the infrastructure
can be seen in figure 5.

An input party uses a public-key infrastructure to connect to
each miner and deal the shares. Since clients know the pub-
lic keys of each calculation node, data uploading could even
be done offline through the use of a public database, where
the encrypted shares are stored. Each miner can then retrieve
the encrypted share and store the decrypted share in their local
database. Note that what is decrypted by the miners is still a
share and not the secret value itself.

3.1.2. Gateway, JavaScript client and CSV-importer
The Sharemind framework consists of several applications.

There are the calculation modules themselves (the processes
responsible for doing the calculations running on each of the
computation nodes), there is a CSV-importer, a secret shared
version of R called Rmind, a JavaScript client library, and a

4

Figure 6: Schema of the client-server interaction

gateway application. The latter acts as an interface between the
JavaScript client and the calculation modules.

The gateway runs in front of the calculation modules and
handles requests coming from the client. Each calculation mod-
ule has an associated gateway that does not have to be on the
same machine. Each gateway has a key-pair and exchanges
public keys with their respective calculation module instance.
The gateway configuration is done using configuration files and
a JavaScript file. The JavaScript file handles how clients are
added and removed and maintains a list of available SecreC
programs that each client can execute. Once a client has re-
quested to execute a certain program, the gateway starts nego-
tiation with their calculation module, and the program is exe-
cuted.

The client interface is a Node.js module which is used to
communicate with the gateway applications. It is responsible
for setting up a connection to each of the gateways whenever a
new program needs to be executed. The client library also takes
care of secret sharing the values. An overview of the interaction
between these applications can be seen in Figure 6.

The CSV-importer is used to upload data to the database. It
supports automatic mapping of categorical variables to numer-
ical values and can create a new database or append to an exist-
ing database. The configuration of how data must be imported,
including data types, public-private distinction of columns, col-
umn names, and database name, is done using an .xml file. The
CSV-importer uses the public keys of each of the calculation
modules to upload the data which can be done from any ma-
chine.

3.1.3. Overview of program execution
To better illustrate how the whole system operates, including

which library is responsible for what, a typical program execu-
tion flow will be analyzed. Figure 7 can be used as a reference.
The numbered circles indicate actions of the program. The fol-
lowing actions are taken when a user requests to run a program:

1. The Sharemind-web-client.js library is used to secret share
any secret variables that must be sent to the server and sub-

Figure 7: Overview of program execution flow (note that in a production en-
vironment each gateway and associated server instance would be hosted by
different parties)

sequently starts a TCP connection with each of the gate-
way instances on the servers. Note that the gateways as
well as the computation modules can be on separate ma-
chines/locations).

2. The gateways check the client-id of the incoming client
request and check if the client is authorized to execute the
requested program

3. The gateways start negotiation with their respective com-
putation module to execute the requested program. Any
variables sent from the client are passed to the computa-
tion module.

4. Each computation module runs the SecreC program and
interacts with their (secret-shared) database.

5. The result is declassified and sent back to the gateways
6. The client receives the declassified values and displays

them in the front-end

3.1.4. Security
The common implementation of Sharemind uses three cal-

culation nodes. These nodes are separated from each other and
should be managed by (physically) different parties. This is
because the security of the system is guaranteed in the semi-
honest minority setting, meaning that in the case of three min-
ers, security is ensured if no two parties collaborate. Even
though there exist protocols which allow for a dishonest ma-
jority, these have the drawback of being very computationally
intensive as well as often requiring the input parties to be on-
line during computation. The authors of Sharemind argue that
it is not hard to find three parties which do not want to col-
laborate, or which can be restricted from collaboration through
inter-organization contracts and software-auditing. Examples
are governments or hospitals, which have a strong incentive to
guarantee privacy and not collaborate with other parties.

Each node in the system is also part of a public-key infras-
tructure. As mentioned before, the input parties are able to
encrypt data for each miner node individually using their re-
spective public key. Each miner node is connected to the other
miner nodes using symmetric encryption and message authen-
tication. The channels used for secure communication are over

5

UDP and provided by the RakNet1 library. Message authen-
tication is done with MAC keys using the HMAC-MD5 algo-
rithm. The input parties follow an access structure to ensure
that resources are protected. This includes write access to cer-
tain databases and access to results.

Because all high-level protocols are built from low-level pro-
tocols, proving the security of them can be done through the
universal composability framework (Canetti, 2001). In short,
if protocol A can be replaced by another protocol B, which
is perfectly secure, and an outside observer cannot distinguish
the protocols, then protocol A is also perfectly secure. If you
prove that the low-level protocols are universally composable,
then the security of the high-level protocols can be inferred be-
cause combining universally composable protocols will result
in a universally composable protocol. The proof of the secu-
rity of the low-level protocols can be found in Bogdanov et al.
(2008) and Bogdanov et al. (2012a).

3.1.5. Secret sharing and low level protocols
This chapter delves into the foundational aspects of Share-

mind’s secure computation. It will discuss the secret sharing
scheme, but also discuss some important low-level protocols
which are crucial for constructing more complex high-level pro-
tocols.

3.1.5.1. Secret sharing. When a value u is shared, it is divided
into different parts u1, u2, ..., un where each part i is held by
party Pi. The vector that describes the shares is denoted as
[u] = (u1, u2, ..., un). Sharemind uses a simple additive secret
sharing scheme, meaning that u = u1+u2+ ...+un. The scheme
works as follows. A secret value x is shared by generating uni-
form random values r1, ..., rn and adding them to x:

s = x + r1 + ... + rn (1)

Each miner node M1, ...Mn receives a share of the secret s. In
the case n = 3 each miner has the following shares:

M1 : x1 =s − r1 (2)
M2 : x2 = − r2 (3)
M3 : x3 = − r3 (4)

To reconstruct the secret value, the miners simply sum their
shares:

x1 + x2 + x3 (5)
= s − r1−r2 − r3 (6)

= x (7)

3.1.5.2. Addition and multiplication by scalar. Using this se-
cret sharing scheme there are several fundamental protocols
which form the foundation of the higher-level protocols. The
first two are rather straight forward: addition and multiplica-
tion by a public scalar. Both of these can be done locally. For

1http://www.jenkinssoftware.com/

addition of secret values u and v every party will simply add the
shares of both together and summing all the shares will result
in the sum of u and v.

u + v = (u1 + v1) + (u2 + v2) + (u3 + v3) (8)

The same goes for multiplication by a public scalar: every
party simply multiplies its share with the scalar.

uc = (u1c) + (u2c) + (u3c) (9)

3.1.5.3. Resharing protocol. To ensure universal composabil-
ity, it is important that the input is independent from the output
(Canetti, 2001). The resharing protocol obfuscates a secret with
a random value so that the output is independent of the input.
By applying this protocol on the input or output shares, many
of the protocols are made universally composable. The proof of
this can be found in (Bogdanov et al., 2012a). The resharing of
secret [u] is done in the following way.

1. Each party (P1, P2, P3) generates one random value from
a uniform distribution (r1, r2, r3 respectively)

2. Then each party sends their r to one other party in the fol-
lowing way: P2 receives r1, P3 receives r2 and P1 receives
r3

3. Each party computes: wi = ui − ri − r∗ (where r∗ is the
secret received)

Now the secret value v is independent of the output w

w = w1+w2 + w3 (10)
= (u1 + r1 − r3) + (u2 + r2 − r1) + (u3 + r3 − r2) (11)

= u1 + u2 + u3 = u (12)

3.1.5.4. Multiplication protocol. The addition and multiplica-
tion by a scalar protocols are rather trivial, but multiplication of
two secrets is more difficult. The multiplication algorithm from
Bogdanov et al. (2012a) that is used in the Sharemind frame-
work will be examined. Multiplying two secrets u and v, which
are shared additively between three parties, results in the sum
uv =

∑3
i=0
∑3

j=0 uiv j. Each party can locally compute uiv j for
(i = j) but when (i , j) the parties need to exchange their
share, which they do in a very similar way to sharing the ran-
dom value in the resharing protocol. Each party only sends out
one share of both u and v to one other party. Each party can then
use their own shares in addition to the received shares to calcu-
late uiv j locally. Because having two secret shares may reveal
too much about the secret value, each secret is reshared before
calculation. To demonstrate this, the protocol is as follows:

1. The parties reshare [u] and [v]:
Reshare([u]) = [u′], Reshare([v]) = [v′]

2. Each party sends out their share of [u′] and [v′] to one
other party, similar to the resharing protocol: P2 receives
u′1 and v′1, P3 receives u′2 and v′2 and P1 receives u3 and v3

3. The parties calculate their respective shares: wi = u′iv
′
i +

u′iv
′
∗ + u′∗v

′
i (where u′∗ and v′∗ are the received values)

6

This protocol is correct:

w = w1 + w2 + w3 (13)
= u1

′v′1 + u′1v′3 + u′3v′1 + u′2v′2 + u′2v′1+ (14)
u1
′v′2 + u′3v′3 + u′3v′2 + u′2v′3 (15)

= (u1
′ + u′2 + u′3)(v′1 + v′2 + v′3) (16)

= (u1 + u2 + u3)(v1 + v2 + v3) = uv (17)

These were only a few of the low-level algorithms. Another
important algorithm to mention is the protocol for share con-
version. This protocol is used to convert, for example, Boolean
values to bit values of length 32. This serves two purposes.
The first is that algorithms are more easily implemented on ho-
mogeneous data types. The second is that it creates a form
of input validation because only valid inputs will have a bit-
length which is set by the share conversion algorithm. Ad-
ditionally, being able to set the bit length of variables means
you can choose bit lengths which are easy for most hardware
to handle such as 32 or 64 bit. Since its creation, Sharemind
has been constantly improved and amended with new proto-
cols. These include protocols for bit-wise operations such as
conjunction and bit extraction, but also protocols for equality
testing and protocols for public and private division (Bogdanov
et al., 2012a).

3.1.6. Database
An important feature of the Sharemind framework is the

database. It allows for asynchronous calculation where the in-
put parties do not need to be online. It also allows the com-
puting parties to use and reuse data when it is needed. There
are two types of databases in Sharemind: relational databases
and key-value databases. A relational database consists of tu-
ples of equal length where each value represents an attribute.
It is rather straightforward to convert a relational database into
a secret database by secret sharing each value of each tuple.
In practice, however, a database almost never consists of only
secret values, and therefore Sharemind uses hybrid databases:
the tuples consist of public and private values. For key-value
databases, one can simply store the share instead of the value.

3.1.6.1. Inputting data. The input parties can write directly to
the database of each miner. They will first create the shares be-
fore sending them to each computing party for storage. The ac-
cess structure defines which data providers can upload to which
database and can execute which functions. Figure 8 shows
how a secret value is distributed to the computation nodes’
databases.

3.1.6.2. Manipulating secret shared data. Running a query on
a secret shared database is somewhat different than running a
query on a normal database. Conventional filtering methods
may reveal individual records by publishing their location in
memory. Therefore, in Sharemind, filtering is done on individ-
ual columns or rows. Using the name or index, a column can be
loaded into a vector. By using row indexes individual rows can
be addressed, and by combining the column and row selection
individual cells can be targeted. Note that the rows, columns,

Figure 8: Example of distributing secret shares to the databases

and cells addressed are still secrets and stored in a vector, so
they reveal no information about the actual value or about the
location in the database. Furthermore, because the databases
are hybrid, a column of the database can contain public values
which can be used to identify the rows.

For simple calculations, load a column into a vector and ap-
ply a function, such as the mean, on that column. To filter the
data first before doing calculations, first extract the column that
will be used for filtering. Then we create a Boolean mask vec-
tor that contains a 1 for each row that satisfies the filter. When
we multiply the column we are interested in by the mask vector
elementwise, we get a vector which contains the filtered values,
which we can use for calculations. Take an example where we
want to take the average income of people with an age over 30.
Assume that there is a database with a secret age and income
column. The steps are the following:

1. Load the secret age column into a vector ā
2. Create a mask vector which identifies the relevant rows:

m̄i =

1, if ai ≥ 30
0, otherwise

(18)

(note that the predicate is tested on a secret value using the
inequality algorithm from (Bogdanov et al., 2012a))

3. Load the secret income column into a vector b̄ and multi-
ply elementwise by mask vector m̄:

f̄ = ām̄ =

bi, if mi = 1
0, otherwise

(19)

4. Now we can use the share multiplication and division al-
gorithms to calculate the average income:

avg(income) =
∑n

i=0 fi∑n
i=0 mi

(20)

7

5. Publish the result of this query, revealing no information
about the underlying data.

This is how nearly all calculations are done in Sharemind.
First, the columns are extracted from the database, after which
they are used for calculation. There are many functions that can
be applied on a secret vector that will return a secret value, and
only when the value (or vector) is explicitly ‘declassified’ (or
published) will the actual value be shown.

3.2. Designing for trust

For the acceptance of MPC it is important to explore the per-
ception of the technology by end-users. They will be the ones
uploading the data, so they must put trust in a system that they
are likely not familiar with. Compared to traditional data col-
laboration techniques, MPC reduces the need for trust in other
parties, decreases perceived risk, and increases the feeling of
control over the data (Agahari et al., 2022). However, this re-
sult assumes that users know and trust that the technology itself
works. By assuming that the claims of MPC - like complete
data privacy and mathematically provable security – are true,
users may perceive less risk compared to other data collabora-
tion techniques, but this is a relative assessment. What we are
interested in is the trust in MPC for a system like Sharemind.
We would like to identify the important factors in gaining trust
of a new user when presented with this technology system.

When talking about trust between parties, there is a trustor,
who is the one who will give their trust, and a trustee, who
wants to be trusted by the trustor. The goal of the trustee is to
get the trustor to trust them enough so that they will act. The
goal of the trustor is to gauge the level of trustworthiness of
the trustee by determining whether the trustee will uphold the
promises they made and fulfill the request of the trustor. In
the framework of Riegelsberger et al. (2005) the authors dif-
ferentiate between contextual and intrinsic properties. For con-
textual properties, they identify a temporal, institutional and
social context. Temporal context identifies whether the interac-
tion between both parties may occur again. If so, it would be in
the trustee’s best interest to fulfill the request of the trustor (the
user). Social context can be seen as reputation; if a trustee has
a good reputation, they are more trustworthy, because they may
incur a loss of reputation in the case of non-fulfillment. The
last context is institutional, which looks at whether the trustee
is part of a larger collective or needs to adhere to certain rules
and regulations. For example, someone may trust a shop owner
more than a street salesman, because they know that shops may
be audited, must adhere to safety regulations, etc.

The second set of properties are intrinsic properties. The
first is ability, which could be the professionalism a company
projects and by that it signals that it is likely to fulfill a request
based on merit. The second is internalized norms which are
the inherent principles a company or person adheres to, which
could, for example, be a mission statement on a company web-
site. The last is benevolence, meaning the willingness off the
trustee to act in the best interest of the trustor; parties may be
more trustworthy if they show signs of selflessness. When we
look at what determines trust in a technology itself, there are

different approaches. Some authors argue that trust in technol-
ogy is based on the individual assessment of the technology,
which leads to expert-users being more inclined to trust a sys-
tem (Kivijarvi et al., 2013). Then there is also evidence suggest-
ing that trust in a system by non-expert users is not dependent
on the system at all, but more on the organizational context or
on the evaluation of near-peers (Rogers, 1986) (Misiolek et al.,
2002).

There are many contextual factors that influence trust, but for
this thesis, it is more important to loot at the factors that can be
influenced. We will therefore look at the paper from Mcknight
et al. (2011). In this work, the authors define the parallels be-
tween trust in people and trust in technology and they define
benevolence, integrity, and perceived competence as important
factors in developing trust in humans that in the context of tech-
nology are respectively: helpfulness, reliability, and functional-
ity. They argue that the system needs to help the user reach their
goal, for example, by having a help function, which is the help-
fulness (benevolence) of the system. Then there is reliability
(integrity), which is the measure to which the system fulfills
the user’s request reliably and without failures. Lastly, there
is functionality (perceived competence) which is the extent to
which the system can do what is expected of it.

In summary, we will use two frameworks to assess what in-
fluences trust in the system and what we can do to improve the
trust of new users. We will use the framework of Riegelsberger
et al. (2005) to argue about how the context of the MPC sys-
tem will influence trust, for example, by looking at the different
parties and their temporal, institutional or social context. The
framework of Mcknight et al. (2011) will be used to analyze
the system itself, looking at the functionality, reliability, and
helpfulness.

4. Methodology

There are many methods for designing and implementing a
software system. For example, an iterative approach like Agile
(Beck et al., 2001) or a linear approach such as the waterfall
approach (Royce, 1987). Most approaches separate the devel-
opment into different stages that together form the software life
cycle. Agile is a spiral approach, where - after the requirements
are gathered - there is a cycle of: design, develop, test, deploy,
and review. The waterfall approach also separates development
into stages, but there is not necessarily a cycle; it is a water-
fall. It is possible to revisit different stages in this approach
when necessary, but the overall direction is linear. The actual
implementation of this prototype will not require many itera-
tions, since the complexity of the software itself is relatively
low and the only requirements from Fraunhofer were a few sys-
tem requirements, so the approach used in this thesis will be the
waterfall approach.

The stages of the waterfall approach are:

1. Gathering system and software requirements
2. Analysis
3. Program design
4. Coding

8

5. Testing
6. Deployment and operations

In the first stage, the requirements for the system and the soft-
ware are gathered. These requirements will be gathered through
several meetings with some of the stakeholders at Fraunhofer.
In addition to that, some ideas for the system will be developed,
and in a short feedback cycle with the stakeholders, one will
be selected. The next stage is analysis, which involves gather-
ing the necessary information to then design the program. In
the case of this thesis, analysis will involve learning SecreC
(including writing small scripts to help with the understanding
of the language) and developing a thorough understanding of
the Sharemind architecture. Additionally, this phase is used to
choose the other tools that will be used in the final system, such
as the front-end framework or the tool to use for data uploading.
The program design phase is used to create software diagrams,
user interface designs, and architecture designs. The coding
and testing stages will be used to implement both the front- and
the back-end of the system and will consist of short cycles of
coding and testing. The final step (deployment and operations)
is not as relevant for this thesis, since the prototype serves only
an exemplary purpose and will not be deployed.

5. Implementation and results

5.1. Results: Prototype
The implementation of this project depends on several of the

applications mentioned in chapter 3.1.2. For data importing, the
CSV-importer is used and for the front-end the Sharemind.js li-
brary is used. The bridge between the calculation module and
the front-end module is the gateway application. In this project,
all processes and applications run in the same virtual environ-
ment, but in real-world applications these would be managed
by separate parties. These applications and other resources are
available at an APT repository for major Debian and Ubuntu
distributions. There is also a preinstalled virtual machine that
runs Debian 12 and has all Sharemind applications installed and
configured. For this thesis, a pre-installed virtual machine is
used.

5.1.1. Datasets
The system is implemented in such a way that it can be easily

extended to include more datasets. To illustrate this, the proto-
type comes with three datasets taken from Kaggle 2. They were
chosen based on their prospective usefulness in their field of
origin and to demonstrate the flexibility of the system. The first
dataset contains simple questionnaire data from an airline satis-
faction survey. Data analysis of questionnaires is an often used
problem addressed by MPC, and the idea of Sharemind was ini-
tially developed on this problem statement (Bogdanov, 2007).
The airline satisfaction survey data contain personal traits, such
as age and gender, as well as making the distinction between
business and leisure travelers. The satisfaction metrics range

2www.kaggle.com

from cleanliness to ease of online booking to gate location.
These metrics are measured in a Likert scale from 1-5.

The second dataset is a supply-chain dataset with categorical
variables and floating point values. There are, among others,
columns with product type, number of products sold, and stock
levels. This data is usually highly sensitive because it is directly
related to the competitive advantage of a company, but collab-
oration in this field usually has many benefits. When suppliers
and buyers collaborate on things like stock levels, it leads to
better decision making, inventory management, and order ful-
fillment (Tai et al., 2022). Therefore, this dataset is used to
illustrate the flexibility of the system.

The third dataset contains e-commerce transactions which
can be used to detect fraud. The dataset has, among others, a
column for the transaction date, columns for amount, type and
quantity, and customer age. Finding fraudulent transactions is
something well suited for MPC, since it may involve the col-
laboration of different financial institutions to identify fraud.

5.1.2. Back-end implementation
The system’s back-end contains three important SecreC pro-

grams. These are: get-database-name, get-column-names and
run-query. The first two are self-explanatory as they simply re-
turn the names of the columns and databases as a list. The lat-
ter contains all the functionality to make the program work. To
highlight how the program is set up, take a look at the high-level
pseudocode in algorithm 1. The actual implementation of some
of the functions is left out, since they should be self-evident.

Lines 1-5 of the program are used to read the data coming
in. The function argument reads data received from a client
and in this case, these are all public values. The arguments
stat f unction and column indicate which column should be se-
lected and which function should be used on that column. Then
there are three arrays. The first variable (f ilter columns) con-
tains the columns that are used for filtering, the second variable
(f ilter operators) describes the operators for each column, and
the last one contains the values (f ilter values). If there are mul-
tiple filters the arrays could look something like this:

filter columns =

 age
income
gender

 (21)

filter operators =

 >≤
=

 (22)

filter values =

 30
41500
female

 (23)

On line 8 a mask is created with only true values with a size
equal to the total number of rows. For each filter, another mask
is created (line:13) and the resulting mask is updated with the
filter mask using an AND operation (line:15). This is exactly
as how filtering is described in section 3.1.6.2. After all fil-
ters are combined, the column of interest is read (line:20). The
resulting mask is multiplied with this column (line:22) which

9

Algorithm 1 Pseudocode main program
1: int stat function = argument("stat function")

2: int column = argument("column")

3: int[] filter cols = argument("f columns")

4: int[] filter oprs = argument("f operators")

5: int[] filter vals = argument("f values")

6:
7: int nrOfRows = size(database.column)

8: private bool[] resulting mask[nrOfRows]=true

9: for int i = 0 to size(filter cols) do
10: int f col = filter cols[i]

11: int f opr = filter oprs[i]

12: int f val = filter vals[i]

13: private int[] mask =

14: getMask(f col, f opr, f val)

15: resulting mask = mask & resulting mask

16: if size(resulting mask) < data guard then
17: return Error:not enough data

18: end if
19: end for
20: private any[] column to read =

21: database.readColumn(column)

22: private any[] filtered data =

23: resulting mask * column to read

24: private any priv result =

25: applyFunction(stat function,

26: filtered data)

27: public any pub result =

28: declassify(priv result)

29: publish(pub result)

leaves only the values of interest (note that SecreC is paral-
lelized so multiplying matrices will be done elementwise). On
the resulting filtered column the stat f unction is applied, and
the result is declassified and published (i.e. sent back to the
gateway which sends it to the client application) (lines:24-29).

For security reasons, it is important to maintain a minimum
number of records that can be extracted from the private col-
umn. Therefore, on lines 16-18, there is an if statement that
checks if the mask (or rather the true values of the mask) is
smaller than a specified data guard number and throws an er-
ror when this is not the case. The data guard number can be
any integer, but higher integers will be safer by definition, as
this results in applying the statistical function on more data. A
data guard is also needed to prevent users from applying filters
in such a way that they can single out records from the database.

The functions implemented so far are mean, minimum, max-
imum, five-number-summary, standard deviation and variance.
The system is built with scalability in mind, and Sharemind
offers a large set of functions in their auxiliary libraries, so ap-
pending new ones requires minimum effort. To implement a
new function, one can add it to the apply f unction method,
which can be seen in algorithm 2. To append new functions,
one can simply add the function to the if-else statement and re-
turn the result.

Algorithm 2 Pseudocode for apply function
1: function apply function(int stat function, private any[] fil-

tered column)
2: if stat f unction == 0 then
3: return mean(filtered column)

4: else if stat f unction == 1 then
5: return minimum(filtered column)

6: else
7: ▷ Add other statistical functions as needed
8: end if
9: end function

Figure 9: Web-page layout

5.1.3. Front-end implementation
Because the goal of this project is to create a modern, pro-

fessional looking system, modern and state-of-the-art web de-
velopment tools are used. The front-end runs on Node.js and
uses React in combination with ant-design as a front-end frame-
work. React is developed by Facebook and is the most popular
UI framework for web development (Krotoff, 2023). ant-design
is a popular React component library. An overview of the web-
page can be seen in Figure 9.

The application consists of a single web page, which has the
following functionalities (these correspond to the numbers in
Figure 9):

1. Select a database to be analyzed
2. Create as many filters as needed on any column in the

database
3. Select a function and a target column to execute the func-

tion on
4. Display the result

5.2. Results: Trust
Within the Sharemind deployment, one can identify three

components that each add to the trust in the whole system.
These are: trust in the technology itself, trust in the developer of
the code, and trust in the miner-parties. Trust in the technology
itself means trust in the cryptographic primitives, the protocols,
the security assumptions, and the understanding of these con-
cepts. Trust in the developer means trusting that the program

10

written by the developer will not reveal sensitive information,
either on purpose or by accident. Trust in the miner-parties
means trusting two parties will not collaborate to reveal sensi-
tive information. These are three variables that all play a role in
the amount of trust the user may put in the system.

Which parties will eventually host the calculation nodes is
hard to determine without having the complete context of how
the system will be deployed up-front. The parties are likely to
play an enormous role in the assessment of trust in the whole
system, since the context of a software system is potentially
more important than the system itself (Davis, 1989)(Misiolek
et al., 2002). This is an important thing to mention, but the
question of which parties will host a production environment is
not the focus of this thesis, so the focus will be on factors that
can be influenced by the design. The factors that can be influ-
enced are the trust in the developer and the trust in the technol-
ogy, which will be discussed in more detail.

Using the framework of Riegelsberger et al. (2005) one can
argue about what increases trust in the developer. Since this is
a master thesis written by a student, one can argue that there
is a strong institutional context that increases trust. The work
that is done will be checked and graded, a student must adhere
to ethical guidelines of the university, and the end goal is not
profit or valuable data, but increasing the knowledge in this field
(and a good grade). Although the institutional context is worth
mentioning, it is something that is implied and cannot be influ-
enced by the choices in the design of the system. The other two
contextual properties (social and temporal) do not influence the
assessment of trust in this case, because there is no direct in-
centive to create other systems in this setting, nor is there a rep-
utation to uphold. However, the creator of Sharemind may have
a reputation to maintain, so knowing that the tool used is from
an established company that has reputable partners may help
in increasing the trust through the social context. The intrin-
sic properties benevolence and internalized norms do not play a
role for the student writing this thesis but may, in a similar line
of reasoning as before, be relevant to the creator of Sharemind.

Ability is therefore the only property that can be influenced
through the choices that will add to the trust assessment of the
system. By designing a system that shows a high ability, it will
positively influence the trust of the user. Research on design-
ing for trust can help to establish which factors influence this.
In Karimov and Brengman (2011) the authors identified two di-
mension of design: graphics and structure. An important factor
for graphical design is good style (Everard and Galletta, 2005),
where good style refers to the visual design, layout, typography,
and overall aesthetic appeal of the website. Moreover, studies
have shown that the perceived credibility of a website is sig-
nificantly influenced by its aesthetic quality, confirming good
style a key factor in interface design Fogg et al. (2003). Color
could also be a factor, as a study between blue and green found
that blue induces more trust (Lee and Rao, 2010). A study be-
tween blue and red found no correlation (Hawlitschek et al.,
2016), so blue and red are equally trustworthy, or color does
not have a significant influence compared to other factors such
as context. The other dimension mentioned by Karimov and
Brengman (2011) is the structure of the website. Complete-

ness of information is an example of a website structure and
refers to the ability of a user to learn the important information
needed to complete a transaction (Everard and Galletta, 2005).
Navigation which leads to a positive user experience makes an
interface more trustworthy, as well as clarity and a clear visual
hierarchy to guide users smoothly through the content (Nielsen
and Loranger, 2006).

To improve trust in the technology it is important to create a
system that is reliable, functional, and helpful Mcknight et al.
(2011). This means that the system will need to be tested for
reliability, needs the functionality to be able to execute the re-
quests a user may have, and needs to have a help function or
some other tool to inform the user about the functionality and
help them troubleshoot. Looking at the two factors of web-
site design that were discussed earlier (structure and graphics)
one can see that there is some overlap with the helpfulness and
functionality of the framework by Mcknight et al. (2011). The
graphics dimension (aesthetic appeal, color, typography and
layout) are all factors that play into the functionality of the sys-
tem, which correlates to perceived competence in human terms,
and the structure dimensions (complete information, naviga-
tion, clarity and visual hierarchy) can be seen as increasing the
helpfulness for the user.

To conclude, to make the system itself as trustworthy as pos-
sible the system needs to be reliable, functional, and helpful.
Helpfulness can be achieved by designing a good structure of
the website to improve completeness of information, naviga-
tion, clarity and visual hierarchy. To improve the perceived
functionality of the system, as well as the perceived ability of
the developer, the website needs to have a good style, for which
layout, typography and aesthetic appeal are important. Relia-
bility can be improved by limiting the number of bugs in the
system and performing many test runs, but since this is only a
prototype, the true reliability can only be tested in a fully de-
ployed system.

5.2.1. Implementation in prototype
In the previous section two main dimensions have been iden-

tified in website design: graphics and structure, which have
overlap withhelpfulness and functionality respectively. For
graphics, good style and aesthetic appeal is important, which
was considered in the design of the web interface, for example,
by the choice of a modern component library. This thesis is
not a design project, so good style was not tested by classical
means, such as user interviews or surveys. Instead, by choos-
ing modern frameworks, which have a high popularity, one can
try to argue about the shared appeal they possess. A frame-
work like ant-design follows certain design principles outlined
by some scientific research in the field of human-computer in-
teraction. These include visual consistency across all elements
(Shneiderman and Plaisant, 2010) and having predictable and
understandable interfaces 3 (Norman Donald, 2013). By using
the out-of-the-box components one can somewhat assume that
they could be aesthetically appealing. Typography is another

3https://ant.design/docs/spec/values

11

Factor Fulfillment

St
yl

e

Color Blue

Aesthetic appeal Modern framework

Typography Commonly used fonts

Layout Commonly used layout (sidebar,
top-bar)

St
ru

ct
ur

e

Completeness of
information

Graying components, loading
symbol

Navigation Revealing components when
needed

Clarity Error messages, color scheme

Visual hierarchy Top down, left to right

Table 2: Design factors and their fulfillment in the prototype

factor, and the default typography components of ant-design
use modern popular fonts such as Roboto and Segoe UI, which
are widely used throughout the web. For layout, the choice was
to use a sidebar and a header, both components that are present
in many websites and thus familiar to most users. The color
blue was chosen as the main theme because it may influence
trust. With these design choices, a web interface has been cre-
ated which can be assumed to have good style.

The website structure is about the user navigation, provid-
ing complete information, clarity and visual hierarchy. In the
design of the website special care has been put into display-
ing informational messages, graying out unused components,
and visually guiding the user towards which steps need to be
taken by ordering elements from left to right and from top to
bottom. This ties together with clarity and visual hierarchy re-
spectively, which are important to improve helpfulness. Each
component and each message are colored according to sever-
ity or use (gray is used to display additional information about
what the user should do and red is used for error messages), and
there are features such as loading symbols and grayed-out load-
ing components that help the user obtain complete information,
leading to a more positive user experience. For an overview of
the design choices in relation to the factors that influence trust,
consult table 2.

Reliability was tested through many end-to-end tests once the
system was finished. This helped reduce the number of bugs in
the front and back-end code. However, all of the deployment
and development have been done on one machine, and in real-
world applications there are delays, unforeseen timeouts, and
probably other unforeseen problems.

6. Discussion

The goals of this were to develop a prototype of a flexible
MPC system and to tackle the question of trust in MPC. How-
ever, there are some shortcomings and recommendations that
will be discussed in this chapter. The first part of this chap-
ter is about the development of the system, and the second part

addresses trust and some of the assumptions made in the argu-
ments from previous chapters.

6.1. Prototype

The prototype was deployed on a single system, which means
that the actual production deployment may look very different
in terms of security and efficiency. For example, there is no ac-
cess structure in place in the front-end. This means that anyone
can access the website and potentially run any kind of query. In
a real-world deployment, an access structure would be in place
and it would be linked to the gateways, ensuring only autho-
rized accounts are able to execute certain functions. The way
the system is set up now is very open and allows anyone with
access to run the run-query file, giving them unlimited access to
all functions. Ideally, there would be account access for specific
datasets, functions, and filter options. When looking at real-life
deployment, other factors like securing the connections and se-
cure user systems also need to be considered.

Another drawback, which results from the flexibility of the
system, is that running statistical functions on subsets of the
data, even with minimum data guard in place, may result in the
reconstruction of some of the data or at least some of its pat-
terns. To ensure flexibility does not come at the cost of privacy,
it is recommended to mathematically prove the security of the
statistical function so that they cannot be used to reconstruct
data and to determine the best minimum data guard for each
of them. Additionally, automatic filtering and automatic run-
ning of the queries may result in data collection at such a scale
that data patterns of the data itself could potentially be recon-
structed. To limit the potential for this, an option would be to
limit the number of queries a user can make. The recommen-
dation is to mathematically determine the number of queries a
user can make in a given time-frame so that it becomes impos-
sible to reconstruct the patterns.

The choice of dataset may also influence the security require-
ments of the system. Certain data may be more sensitive than
others, so the security requirements may be higher. In addition
to this, a dataset that has many labels for one of its categorical
columns is able to segregate the data quite well and could, in
combination with other filters, reveal some sensitive informa-
tion even with the data guards in place. This would also require
a mathematical approach to ensure that this cannot happen.

Lastly, the system requires three parties to host the environ-
ment, making this potentially a major point of failure in real-life
deployment. As mentioned in the background chapter 3.1, the
system is secure against a dishonest minority, so ensuring that
no two parties will collaborate is vital, which could, for exam-
ple, be done through contractual agreements.

6.2. Trust

Different factors and components related to trust have been
identified. In this case, the only components that could be in-
fluenced were trust in the developer and trust in technology by
creating an interface that follows the guidelines for a trustwor-
thy system. However, in the context of the whole system, this
trust is likely only a small part of the whole equation. The hosts

12

of the calculation nodes are likely the most important factor that
influences trust. The recommendation is therefore to choose
hosting parties carefully and to determine their trustworthiness
based on their temporal-, social- or institutional-contexts.

The factors a developer can influence are only the way the
system looks, which can affect someone without much tech-
nological knowledge. However, they may not understand the
effect of the developer, and therefore do not even realize that
the developer is a part of the chain that affects the security of
the system. As mentioned in Section 5.1, ensuring that hosting
parties do not collaborate is vital to maintain data privacy, but
communicating the choices for these parties to the user may be
important in gaining their trust. The user needs to be able to
trust the hosting parties and trust that they do not collaborate.

Next, the arguments made for gaining trust in the developer
of the interface hinges on the assumption that the interface fol-
lows design principles which are related to trust but which were
not tested in a controlled environment. There is, for example,
the assumption that the interface has some aesthetic appeal,
which would increase trust in some systems, but perhaps the
interface is not aesthetically appealing to everyone, or perhaps
the users of MPC may not be influenced in the same manner
as, for example, the average e-Commerce user. To verify the
undoubted influence of design and structure on the trust people
are willing to put into MPC, specific studies would have to be
conducted with controllable variables. In addition to that, re-
search on the different components of an MPC system and their
relative weight in the trust equation needs to be investigated. If
it turns out that effect of the interface design on trust is almost
negligible compared to the knowledge and trust of the hosting
parties, it does not make sense to spend significant effort on de-
sign and it would be more logical to look at how to choose the
hosting parties.

There is not much work on trust in MPC, so a comparison
with AI was made to give some indication of what might be-
come important when investigating trust in MPC. However, this
is merely what it is: an indication. There are some similarities
between MPC and AI, but also many differences. For example,
what are the components that a user needs to trust and what ex-
actly does trust in AI mean? Does it mean that the user trusts
that the AI will reach the right solution, or does it mean that
the user trusts that no one can learn their private data? The
research analyzed in this thesis did not always make this dis-
tinction clear. What component of the system is trusted is an
important question because MPC is concerned with privacy and
AI not necessarily so. There are situations when AI deals with
private data and safeguards need to be in place to prevent re-
constructing or obtaining private data, but in a lot of use-cases
of AI privacy does not seem a problem.

Lastly, for trust, it is important that the system is reliable, but
this was only tested in a sandbox environment. When deploying
the system on a larger scale, there are many new factors which
may influence the reliability, such as message delays or loss of
connection. To ensure that the system can be trusted as a whole,
the reliability of the deployed system needs to be tested.

7. Conclusion

7.1. RQ1 and RQ2: Prototype

The first goal of this thesis was to develop an MPC system
that is flexible enough to be used on different datasets by users
with different questions for those datasets. The first two re-
search questions were about creating a back-end (RQ1) and
creating a front-end (RQ2). Both of these had to fulfill the re-
quirements posed by Fraunhofer. To reiterate, these were:

1. There needs to be support for statistical calculations, such
as the mean and variance and possibly other descriptive
statistics.

2. The system needs filters and flexibility, so each party has
the freedom to create their own assessment of the other
parties.

3. Input data needs to be persisted so that input parties are
not required to stay online and so that data can easily be
appended, updated so that changes can be tracked.

4. There need to be at least three parties, preferably more.

To prove that these requirements were met, the system was
tested with three different datasets. These included different
types of data, such as categorical, numeric, and temporal data.
Each of these datasets could easily be uploaded, the filters are
flexible and use the columns of the selected dataset and switch-
ing between the datasets is done with one drop down menu.

In summary, this thesis contributes to the field of MPC by
showing that a framework like Sharemind can be used to de-
velop modern and deployable software that leverages the secu-
rity guarantees of the field in addition to being flexible enough
to handle different data types and allow the user to develop their
own queries. The system is implemented in such a way that it
can serve as a starting point for a more complex system by eas-
ily allowing the addition of more statistical functions and data
sets.

7.2. RQ3: trust

The second question of this thesis was about trust in a (new)
technology like MPC. There are different factors which influ-
ence trust in humans, institutions, and systems. In the case of
this MPC system, different components were identified, each
of which have a different trust equation. These are: trust in
the technology, trust in the developer, and trust in the hosting
parties. The component which could not be influenced in this
thesis are the hosts of the production environment.

Trust in the technology is increased by making a system that
is reliable, functional and helpful. Reliability can be achieved
by testing the system and reducing the number of bugs and
downtime. Functionality can be improved by creating a system
that can fulfill the request of users. Helpfulness is improved by
guiding the user through the product and making it clear what
the user has to do.

The trust in the last component, the designer, can be influ-
enced through interface design. Following certain principles on
structure and graphics the interface can communicate a strong
ability of the designer, thus increasing the trust the user will

13

have in the system. For structure important factors are com-
pleteness of information, navigation, clarity and visual hierar-
chy. For graphics important factors are layout, typography and
aesthetic appeal

By following proper design guidelines, the trust in the de-
veloper is increased, but there is also some overlap between
these guidelines and the factors that influence the functionality
and helpfulness. The graphics of an interface influence trust
by increasing the functionality (i.e. perceived competence) of a
system. The structure helps increase helpfulness of the system
by guiding the user toward their goal.

In short, this thesis contributes by showing that there are sev-
eral factors that influence trust in a software system. By high-
lighting the different components in a framework such as Share-
mind, it was shown that each of these may be important in in-
creasing trust. There are factors in interface design which can
increase trust and developing a system following these guide-
lines will result in an overall more trustworthy system.

References

Agahari, W., Ofe, H., de Reuver, M., 2022. It is not (only) about privacy: How
multi-party computation redefines control, trust, and risk in data sharing.
Electronic markets 32, 1577–1602.

Alexandra Institute, 2023. FRESCO - A Framework for Efficient Secure Com-
putation. https://github.com/aicis/fresco.

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W.,
Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., et al., 2001.
Manifesto for agile software development .

Becker, S., Duplys, P., Graf, J., Graffi, K., Grassi, A., Greven, D., Grewe,
J., Jain, S., Klenk, T., Matyunin, N., Modica, H., Raskin, V., Scherer, P.,
Suschke, V., Trieflinger, S., Vlasakiev, V., Weinfurtner, J., 2021. Carbyne
Stack. doi:10.5281/zenodo.8192460.

Bogdanov, D., 2007. How to securely perform computations on secret-shared
data. Mater’s Thesis Publisher: Citeseer.

Bogdanov, D., Kamm, L., Laur, S., Pruulmann-Vengerfeldt, P., 2013. Secure
multi-party data analysis: end user validation and practical experiments.
Publication info: Preprint. MINOR revision.

Bogdanov, D., Laur, S., Willemson, J., 2008. Sharemind: A Framework for Fast
Privacy-Preserving Computations, in: Jajodia, S., Lopez, J. (Eds.), Com-
puter Security - ESORICS 2008. Springer Berlin Heidelberg, Berlin, Hei-
delberg. volume 5283, pp. 192–206. doi:10.1007/978-3-540-88313-5 13.

Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J., 2012a. High-performance
secure multi-party computation for data mining applications. International
Journal of Information Security 11, 403–418. doi:10.1007/s10207-012-
0177-2.

Bogdanov, D., Talviste, R., Willemson, J., 2012b. Deploying Secure Multi-
Party Computation for Financial Data Analysis: (Short Paper), in: Financial
Cryptography and Data Security. Springer Berlin Heidelberg. volume 7397,
pp. 57–64. doi:10.1007/978-3-642-32946-3 5.

Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X., 2010. Sepia: Privacy-
preserving aggregation of multi-domain network events and statistics, in:
19th USENIX Security Symposium (USENIX Security 10).

Canetti, R., 2001. Universally composable security: a new paradigm for crypto-
graphic protocols, in: Proceedings 42nd IEEE Symposium on Foundations
of Computer Science, pp. 136–145. doi:10.1109/SFCS.2001.959888.

Choung, H., David, P., Ross, A., 2023. Trust in AI and its role in the acceptance
of AI technologies. International Journal of Human–Computer Interaction
39, 1727–1739. Publisher: Taylor & Francis.

Davis, F.D., 1989. Perceived Usefulness, Perceived Ease of Use, and User
Acceptance of Information Technology. MIS Quarterly 13, 319–340.
doi:10.2307/249008. publisher: Management Information Systems Re-
search Center, University of Minnesota.

Everard, A., Galletta, D.F., 2005. How presentation flaws affect perceived site
quality, trust, and intention to purchase from an online store. Journal of
management information systems 22, 56–95. Publisher: Taylor & Francis.

Fogg, B.J., Soohoo, C., Danielson, D.R., Marable, L., Stanford, J., Tauber,
E.R., 2003. How do users evaluate the credibility of web sites? a study
with over 2,500 participants, in: Proceedings of the 2003 conference on
Designing for user experiences, pp. 1–15.

Glikson, E., Woolley, A.W., 2020. Human Trust in Artificial Intelligence: Re-
view of Empirical Research. Academy of Management Annals 14, 627–660.
doi:10.5465/annals.2018.0057.

Hailemichael, M.A., Yigzaw, K.Y., Bellika, J.G., 2015. Emnet: a system for
privacy-preserving statistical computing on distributed health data .

Hawlitschek, F., Jansen, L.E., Lux, E., Teubner, T., Weinhardt, C.,
2016. Colors and Trust: The Influence of User Interface Design on
Trust and Reciprocity, in: 2016 49th Hawaii International Conference
on System Sciences (HICSS), IEEE, Koloa, HI, USA. pp. 590–599.
doi:10.1109/HICSS.2016.80.

Karimov, F.P., Brengman, M., 2011. The effect of website design dimensions
on initial trust: A synthesis of the empirical literature 12.

Keller, M., 2020. MP-SPDZ: A Versatile Framework for Multi-Party Compu-
tation, in: Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, ACM, Virtual Event USA. pp. 1575–1590.
doi:10.1145/3372297.3417872.

Kivijarvi, H., Leppanen, A., Hallikainen, P., 2013. Technology Trust: From
Antecedents to Perceived Performance Effects, in: 2013 46th Hawaii In-
ternational Conference on System Sciences, IEEE, Wailea, HI, USA. pp.
4586–4595. doi:10.1109/HICSS.2013.510.

Krotoff, T., 2023. Front-end frameworks popularity (React, Vue, Angular and
Svelte).

Lapets, A., Jansen, F., Albab, K.D., Issa, R., Qin, L., Varia, M., Bestavros,
A., 2018. Accessible Privacy-Preserving Web-Based Data Analysis for As-
sessing and Addressing Economic Inequalities, in: Proceedings of the 1st
ACM SIGCAS Conference on Computing and Sustainable Societies, ACM,
Menlo Park and San Jose CA USA. pp. 1–5. doi:10.1145/3209811.3212701.

Lee, S., Rao, V.S., 2010. Color and store choice in electronic commerce: the
explanatory role of trust. Journal of Electronic Commerce Research 11.

Mcknight, D.H., Carter, M., Thatcher, J.B., Clay, P.F., 2011. Trust in
a specific technology: An investigation of its components and mea-
sures. ACM Transactions on Management Information Systems 2, 1–25.
doi:10.1145/1985347.1985353.

Misiolek, N.I., Zakaria, N., Zhang, P., 2002. Trust in Organizational Accep-
tance of Information Technology- A Conceptual Model and Preliminary Ev-
idence. rd Annual Meeting .

Nielsen, J., Loranger, H., 2006. Prioritizing web usability. Pearson Education.
Norman Donald, A., 2013. The design of everyday things. MIT Press.
Omrani, N., Rivieccio, G., Fiore, U., Schiavone, F., Agreda, S.G., 2022. To trust

or not to trust? An assessment of trust in AI-based systems: Concerns, ethics
and contexts. Technological Forecasting and Social Change 181, 121763.
Publisher: Elsevier.

Riegelsberger, J., Sasse, M.A., McCarthy, J.D., 2005. The mechanics of trust:
A framework for research and design. International Journal of Human-
Computer Studies 62, 381–422. doi:10.1016/j.ijhcs.2005.01.001.

Rogers, E.M., 1986. Communication technology. Simon and Schuster.
Royce, W.W., 1987. Managing the development of large software systems:

concepts and techniques, in: Proceedings of the 9th international conference
on Software Engineering, pp. 328–338.

Saariluoma, P., Karvonen, H., Rousi, R., 2019. Techno-Trust and Rational Trust
in Technology – A Conceptual Investigation, in: Barricelli, B.R., Roto, V.,
Clemmensen, T., Campos, P., Lopes, A., Gonçalves, F., Abdelnour-Nocera,
J. (Eds.), Human Work Interaction Design. Designing Engaging Automa-
tion. Springer International Publishing, Cham. volume 544, pp. 283–293.
doi:10.1007/978-3-030-05297-3 19.

Schoenmakers, B., 2018. MPyC—Python package for secure multiparty com-
putation, in: Workshop on the Theory and Practice of MPC. https://github.
com/lschoe/mpyc.

Shneiderman, B., Plaisant, C., 2010. Designing the user interface: strategies
for effective human-computer interaction. Pearson Education India.

Tai, P.D., Anderson, M.R., Hien Duc, T.T., Thai, T.Q., Yuan, X.M., 2022.
Strategic information sharing in supply chain with value-perceived con-
sumers. Industrial management & data systems 122, 841–863. Publisher:
Emerald Publishing Limited.

14

