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Summary

Robots operating in dynamic and unstructured environments require highly adaptable
control mechanisms to handle uncertainty and variability. Reinforcement Learning (RL)
carries the potential to realize such mechanisms and has already demonstrated notable
successes in robotics. However, challenges such as data inefficiency, poor generalization,
and limited scalability still hinder its broader adoption.

This work aims to mitigate these challenges by proposing a unified framework that integ-
rates symmetry exploitation with transformer-based decision models. Symmetry exploita-
tion is formalized through the Markov Decision Process homomorphism framework, which
abstracts redundancies arising from symmetries in the state-action space. This abstrac-
tion reduces the solution space and enables RL agents to converge faster, making them
more sample-efficient and generalizable. Meanwhile, transformer architectures, renowned
for their scalability in other domains, can be adapted to mitigate the scalability issues in
RL.

The proposed framework was validated through implementation and evaluation in simu-
lated environments, including discrete and continuous control tasks such as CartPole and
Inverted Pendulum. Results demonstrate that symmetry-aware models not only converge
faster but also generalize higher across equivalent states compared to conventional RL and
standard transformer-based methods.

These findings confirm the hypothesis that exploiting symmetries in RL improves sample
efficiency and model generalization across symmetric states and actions, aiding in putting
a step forward in scalable robotic control.
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CHAPTER 1. INTRODUCTION 1

1 Introduction

1.1 Context
In recent years, there has been a growing demand for robots capable of performing com-
plex tasks in unstructured environments and beyond industrial settings. The tasks include
autonomous navigation through crowded urban spaces [1], object manipulation in cluttered
and dynamic environments [2], or collaborative tasks alongside humans such as home assist-
ance task[3]. Such tasks pose challenges for traditional model-based control in accurately
modeling systems characterized by high uncertainty, variable dynamics, and interactions
with ever-changing and unpredictable surroundings [4].

The rise of RL has introduced a new paradigm for approaching such complex tasks. In RL,
an agent learns to make an optimal decision by continuously interacting with the environ-
ment and refining its decision-making process through a feedback signal [5]. The success
of RL is mainly rooted in integrating deep learning as powerful function approximators,
which then become known as Deep Reinforcement Learning (DRL). Notable achievements
include surpassing human performance on some Atari games [6] and mastering the game
of AlphaGo [7] that combined deep learning and RL techniques to defeat professional Go
players in a game known for its complexity and large search space. In robotics, DRL
enables robots to learn to map sensory input directly into low-level actions (control out-
put) with minimal engineering effort and without the need for explicit dynamical models
[5]. Furthermore, DRL has enabled robots to learn locomotion skills like walking [8] and
dexterous manipulation tasks such as doors opening with robotic multi-fingered arm [9].

Despite these successes, applying RL in robotics has exposed several challenges. These
include data inefficiency, where large quantities of interactions (data) are required for
training, often on the order of millions of interactions [10]. Take for example the popular
spinning-up benchmark by OpenAI for simulated robotic control tasks, where 3 million
interactions are performed to evaluate different state-of-the-art RL algorithms on reward
performance. Another challenge is poor generalization or overfitting, where the RL
algorithm might fail in unseen scenarios or even struggle to produce similar actions (control
output) to similar states [11]. Additionally, lack of interpretability, it is not easy due
to the black-box nature of DRL to understand how and why certain decisions are made by
the trained policy (controller) [12]. Lastly, in DRL, scalability refers to the ability of an
algorithm to handle increasingly complex tasks with large state space. As the tasks become
more complicated, larger neural networks are often utilized for their greater expressiveness
and capacity, which enable them to model and solve these tasks. This approach, which
originated from successes in fields like computer vision and natural language processing,
seems intuitive but does not directly translate to DRL. That is to say, simply increasing
network size does not consistently lead to better performance in DRL. Instead, it often
introduces stability issues, such as divergence, oscillations, or even complete training
collapse [13].

To mitigate challenges such as scalability and interpretability, the recent usage of
transformer architectures (i.e. the backbone of OpenAI ChatGPT) in RL might offer
potential solutions [14], [15]. Transformers have proven successful in natural language
processing (NLP) and computer vision (CV) due to their ability to handle long-range
dependencies within data, allowing them to make sense of sequences, whether they are
sentences, series of images, or even decision-making sequences [16], [17], [18]. Applying
transformer architectures to RL can mitigate issues of scalability by managing complex
tasks and alleviating RL-stability issues when using larger model sizes or larger datasets
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[16]. The self-attention mechanism inherent in transformers enables models to focus on
relevant states and actions, and thus by visualising the attention weights as heatmaps,
it becomes easy to interpret which parts of the environment affect the decision-making
[15]. In Robotics, transformer architectures are proving to be the architecture of choice for
large-capacity models not only for single robotic tasks but also for multi-task and multi-
skill robotic systems. These models can be applied to both high-level task planning and
low-level, end-to-end control [19]. Examples of successful transformer-based models include
RT-1 [20], RT-2 [21], RT-X [22], PACT [23], and SMART [24].

Furthermore, a promising approach to mitigate challenges such as data inefficiency and
poor generalization involves incorporating prior knowledge into the learning process,
rather than relying solely on data. This prior knowledge can take different forms, including
physical laws (e.g., conservation laws), symmetrical properties of systems (e.g., rotational
or translational invariance), or intuitive human understanding of physical interactions (e.g.,
object permanence) [25], [26]. Leveraging such prior knowledge can improve both sample
efficiency and generalization by narrowing the solution search space and allowing learned
policies to be reused across different states, which leads to faster learning and improved
generalization [25], [26].

By integrating prior knowledge with transformer architectures, we can mitigate key chal-
lenges in applying RL to robotics. On the one hand, Transformer architectures offer an
inherent advantage in scalability, which renders it possible to handle increasingly complex
tasks with large state spaces while also providing interpretable decision-making through
their self-attention mechanism. On the other hand, prior knowledge guides the learn-
ing process toward more sample-efficient solutions, which also serve to generalize to new
situations or similar states.

1.2 Motivation
Many control tasks exhibit structural symmetries which can be defined as repeated struc-
tures detected by transformations such as reflection, or rotation that when applied to the
system do not alter its control behavior. Take for example, the pole-balancing problem
[5], also known as the cart-pole or inverted pendulum problem. Here, the controller (or
policy) should keep a pole in an upright position by exerting a force on a movable cart,
either towards the right or left, to prevent it from falling over. In this problem, we can
intuitively identify a reflection symmetry over the vertical axis, as described by [27] and il-
lustrated in Figure 1.1: "Balancing a pole that falls to the right requires an equivalent, but
mirrored, strategy to one that falls to the left". Therefore, when learning control strategy
in RL, a reflection symmetry such as the one in the pole-balancing problem if exploited,
allows the agent to generalize its experience across equivalent states and actions, which in
turn reduces the complexity of the problem, enables sample efficiency, and speeds up the
learning process [27].

In RL, there have been numerous successful attempts to leverage symmetry, starting with
the pioneering work of Balaraman Ravindran and G. Barto in 2001 [28]. Their model
minimization framework used the notion of homomorphism to derive smaller, equivalent
models of problems that exhibit symmetries. Fast-forward to recent years, researchers
have extended this framework by incorporating symmetry into neural networks [29], [27].
The novelty of these works lies in explicitly constraining neural networks to reflect the
symmetries inherent in the environment, which offers a more robust approach compared
to other implicit methods. That is to say, implicit methods such as data augmentation
[30], state space manipulation [31], or using auxiliary loss function [32] encourage a neural
network to respect certain symmetries, but they do not guarantee it.
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Figure 1.1: A reflection symmetry example: the state on the right mirrors the state on the left
over the vertical axis. Consequently, the same control strategy that stabilizes the pole on one left
can be applied to the right. The diagram is adapted from [27]

Furthermore, despite the successes of integrating transformer architecture into the RL
framework, these models still suffer from the sample inefficiency problems, they require
namely vast amounts of data to generalize to unseen scenarios and perform well.

By combining the symmetry exploitation for more efficient learning and generalization,
with the scalability and interpretability of transformer architectures, this work attempts
to create a new synergy in RL to solve robotic tasks. While this work does not attempt to
tackle all of the challenges previously mentioned, it specifically focuses on improving sample
efficiency and generalization in simple, single-task scenarios within simulated environments
that involve both continuous and discrete action spaces. These tasks will utilize direct state
information as input, such as sensor measurements (e.g., positions, velocities, and angles),
commonly found in robotics.

To incorporate symmetry into the transformer architecture, this work will build on the
model minimization framework i.e., Markov Decision Process (MDP) homomorphism pro-
posed by [28]. For the implementation of symmetry constraints, we will draw from the
methodology outlined by [27], which serves as the foundation for incorporating symmetry
into the transformer neural layers.

1.3 Research Statement
The main objective of this thesis is to explore and develop a unified framework that in-
tegrates symmetry, transformer architectures, and RL to mitigate the challenges of sample
efficiency and generalization in control tasks in robotics. The specific components of this
research include:

• Symmetry into RL Algorithms: This component will explore how symmetry
constraints can improve the efficiency and generalization of RL algorithms. The first
step will replicate the work of [27] to verify that incorporating symmetry into the
Proximal Policy Optimization (PPO) [33] algorithm can speed up learning on tasks
with discrete action spaces. Success will be evaluated based on the convergence speed

Robotics and Mechatronics Ammar Alhannafi
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Figure 1.2: The proposed unified framework that combines symmetry, transformer architectures,
and RL

compared to conventional PPO implementations. In the second part, we will extend
the theoretical framework of MDP homomorphism by [28] from discrete to continu-
ous settings and enable symmetry exploitation in Twin Delayed Deep Deterministic
Policy Gradient (TD3) [34] which is a powerful algorithm proved to work effectively
on control tasks with continuous state and action spaces. We hypothesize that con-
tinuous and discrete symmetry exploitation in RL algorithms in general, so not only
for PPO, will converge faster and generalize better in both discrete and continuous
control tasks.

• Symmetry into Transformer-Based RL: This component will focus on estab-
lishing the theoretical foundation to allow transformer-based RL models to become
symmetry-aware, and we will investigate how symmetry constraints can be imple-
mented in Transformer architecture. This component will build upon and extend the
decision transformer framework used in RL [14].

• Evaluation on Benchmark: The framework will be tested on tasks from the
Gym benchmark [35], such as the Cartpole, Inverted Pendulum, and Reacher, which
involve continuous and discrete control tasks. These tasks will use direct sensor
measurements (e.g., positions, velocities, and angles) as inputs. The performance
of the proposed symmetry-aware transformer model will be compared against its
conventional version in terms of sample efficiency, and generalization to new scenarios
or similar states presented in the environment.

Ammar Alhannafi University of Twente
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2 Background

This chapter presents the concepts needed in order to fully comprehend the subjects dis-
cussed in this thesis. We start by reviewing the RL framework and its mathematical
formalization as MDP. Next, we explain transformer architectures as the core element of
the Decision Transformers and Trajectory Transformers. Finally, we discuss how symmet-
ries can enhance RL by improving sample efficiency and generalization. The framework
where we exploit symmetries as a formal tool is also introduced, followed by the methods
of how to enforce symmetries during model training.

2.1 Reinforcement Learning (RL)
Note: The majority of the content in this section is based on the standard textbook of Sutton
and Barto 2018 [5].

RL is a machine learning paradigm that teaches an agent how to make a decision in
a dynamic environment. The teaching process involves learning through environmental
interactions. That is to say, an agent interacts with the environment at each timestep and
receives feedback as a reward. Based on this reward, the agent should alter its behavior and
thus improve its policy in order to maximize the reward summed over all future timesteps
(i.e. cumulative reward). Therefore, the agent is not guided and never told which actions
are correct, but it should discover which sequence of actions yields the best cumulative
rewards.

The inspiration for such a learning approach can be rooted back to animal learning theories,
these theories state that actions followed by rewarding outcomes are more likely to be
repeated as a result of receiving a stimulus (reinforcer). This approach also bears a strong
resemblance to human learning, where the cortico-basal ganglia loops adjust the behavior
by processing both immediate and future rewards, as well as past experiences. These neural
loops, much like RL models, use predictions and feedback to guide decision-making over
time [36].

Terms such as Agent, Reward, and Environments mentioned previously, along with
other related elements, form the key elements of the RL framework. These components are
explained through the lens of the MDP framework in the following section. Additionally,
the main approaches to solving RL problems are also discussed. Finally, the concepts of
Deep Reinforcement Learning (DRL) and Offline Reinforcement, which are extensions of
traditional RL that we build upon in this work, are also explained in sections 2.1.2, and
2.1.3 respectively.

2.1.1 Markov Decision Processes (MDP)

The MDP provides a mathematical formalism to sequential decision-making problems,
and it is deemed an ideal modeling approach for problems involving agent-environment
interactions, as the case with RL, see Figure 2.1. Additionally, the MDP enables us to
formally define the objective of our problem and provides a structured way to achieve it.
Furthermore, the reason behind the name is that the MDP model adheres to the Markov
property, which can be stated as:

Definition 2.1: Markov Property [5]

The future state depends only on the current state and action, not on the sequence
of events that preceded it.

Robotics and Mechatronics Ammar Alhannafi



6 CHAPTER 2. BACKGROUND

Figure 2.1: The agent–environment interaction in reinforcement learning. Diagram is adapted
from [5]

Mathematically speaking, a MDP is defined by the 5-tuple M = (S,A, T , r, γ), where S
is the set of all possible states s ∈ S, which can be continuous or discrete. A is the set
of actions a ∈ A, also either continuous or discrete. T (st+1 | st, at) denotes the transition
probability from state st to st+1, representing the underlying dynamics of the system.
r : S ×A → R is the reward function, and γ ∈ (0, 1] is the discount factor.

Under the MDP framework, a trajectory τ is defined as the sequence of states and actions
of length H:

τ = (s1, a1, s2, a2, . . . , sH , aH), (2.1)

Where H represents the horizon, which is the maximum number of time steps allowed in
each episode. This can either be finite (the finite-horizon case) or infinite (the infinite-
horizon case). The total return for a given trajectory τ is defined as the sum of all
discounted rewards:

R(τ) :=

H∑
t=0

γtrt (2.2)

Here, γ ∈ (0, 1] is the discount factor. When γ = 1, typically used in finite-horizon
problems, future rewards are not discounted and are valued equally to immediate rewards.
On the other hand, when 0 < γ < 1, future rewards are discounted, placing more emphasis
on immediate rewards.

A policy π specifies the action(s) to be taken for each state. A stochastic policy π provides
a probability distribution over actions for each state, denoted as π(a|s). A deterministic
policy, on the other hand, directly assigns a single action to each state, denoted as a = π(s)
1.

The expected return of a policy π is expressed as:

η(π) := Eπ[R(τ)] (2.3)

Here, Eπ indicates that all actions are drawn according to the policy π. The main objective
of reinforcement learning is to determine a policy that maximizes the expected return:

π⋆ = argmax
π∈Π

η(π) (2.4)

Where Π represents a set of candidate policies.
1Deterministic policies can be viewed as a subset of stochastic policies where the probability distribution

is a Dirac delta function focused on one action

Ammar Alhannafi University of Twente
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In addition to the terms introduced previously, we now introduce some quantities of interest
that aid in solving the RL objective in (2.4). These quantities, which are called value
functions, indicate how good and rewarding a particular state or action is and they are
used in almost every RL algorithm.

The state-value function V π(s) represents the expected cumulative reward received by the
agent starting from state s and following a policy π thereafter:

V π(s) := Eπ

[ ∞∑
t=0

γtrt | s0 = s

]
(2.5)

Similarly, the action-value function Qπ(st, at) represents the expected cumulative reward
received by the agent by taking action a in state s and continuing to follow the policy π:

Qπ(s, a) := Eπ

[ ∞∑
t=0

γtrt | s0 = s, a0 = a

]
(2.6)

We can further introduce the advantage function Aπ(s, a), which measures how much
better taking an action a in state s is compared to the average action in that state under
policy π. It is defined as:

Aπ(s, a) = Qπ(s, a)− V π(s) (2.7)

The functions defined in equations (2.6), (2.5) can be redefined in recursive form, known as
the Bellman Expectation Equations, by decomposing the expected return into two parts,
namely; the immediate reward at the current step and the discounted future value function
from the next step.

V π(s) = Es′∼T

[
r(s, a) + γEπ

[ ∞∑
t=1

γt−1r(st, at) | s1 = s′

]]

= Es′∼T

[
r(s, a) + γEπ

[ ∞∑
t=0

γtr(st, at) | s0 = s′

]]
= Es′∼T

[
r(s, a) + γV π(s′)

]
.

(2.8)

This is a recursive form because the state-value function at s depends on the state-value
function of the next state s′. Furthermore, since the state-value function V π (s) is defined
as the expected value of Qπ (s,a):

V π (s) = Ea∼π [Q
π (s,a)] (2.9)

We can combine these equations to obtain the following recursive form of Qπ (s,a):

Qπ(s,a) = r(s,a) + γEs′∼T
[
V π(s′)

]
(2.10)

Finally, the optimal state-value function V ∗(s) is the maximum value function over
all policies. Similarly, the optimal action-value function Q∗(s, a) is the maximum
value-action function over all policies:

V ∗(s) = max
π

V π(s)

Q∗(s, a) = max
π

Qπ(s, a)
(2.11)
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Common Approaches to Solve RL Problems

With the formalization of MDP and the brief introduction of RL elements, several fun-
damental frameworks for learning can be introduced which are commonly used when ap-
proaching RL problems:

Dynamic Programming (DP)

DP assumes complete knowledge of the environment dynamics(i.e., the transition function
T (st+1 | st, at) and reward function r(s, a)) and finds an optimal solution by breaking
down the problems into sub-problems and reusing the optimal solution to sub-problems
in order to find the overall optimal one. This approach allows the optimal solution to be
found iteratively by the subsequent evaluation and improvement of either value function
or policy as noted by the two main DP algorithms: Policy and Value Iteration.

Monte Carlo Methods

Monte Carlo (MC) methods do not require knowledge of the transition dynamics, unlike
the DP methods. Instead, they approximate value functions by averaging the returns
from sampled trajectories (i.e., complete episodes). MC methods perform value function
updates only after an entire trajectory (episode) is completed in the environment. Popular
MC algorithms include Monte Carlo Policy Evaluation with its two versions; First Visit
Monte Carlo and Every Visit Monte Carlo.

Temporal Difference (TD) Learning

Similar to MC methods, TD learning is a model-free approach, meaning it does not require
knowledge of the transition dynamics of the environment. However, unlike MC methods,
they perform value function updates incrementally after each time step in the trajectory.
Two common TD algorithms are: SARSA is an on-policy method that updates the action-
value function based on the current policy. Q-learning is another popular algorithm which
is an off-policy method that directly learns the optimal policy, independent of the current
policy.
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2.1.2 Deep Reinforcement Learning (DRL)

Traditionally, all RL methods introduced in the previous section, like Q-Learning or Monto
Carlo Policy Evaluation, utilize tabular methods in which the state and action spaces are
sufficiently small for the value functions to be exactly represented as a table or array.
However, when the problem involves a large state and action space or it is continuous in
nature, such as the case with the robotic control problems, representing exact value function
becomes intractable. This paves the way to the utilization of approximate methods, where
our goal is not to find an exact solution (i.e. exact optimal policy or optimal value function)
but an approximate one [37]. The approximate solution should be learned from a limited
subset of the state and action spaces and then it should be generalized to unseen states
and actions [37].

Among these approximate methods are those that utilize Neural Networks (NNs) as non-
linear function approximators. NNs are computational models inspired by the human
brain. They consist of layers of interconnected units called neurons (similar to biological
neurons), where each neuron is connected to other neurons via connections called weights
(similar to synapses). These weights, typically symbolized as θ, determine the strength
of the connection between different neurons. Additionally, similar to the action potential
in human brain cells that introduces non-linearity [38], NNs rely on activation functions
such as Rectified Linear Unit (ReLU) as non-linear transformations applied to the output
of each neuron. Furthermore, NNs can learn complex relationships between inputs (e.g.,
the current state of an environment) and outputs (e.g., actions to take) by progressively
updating the weights until the relationship is approximated as closely as possible to the
desired one.

The integration of NNs and RL has a long history, highlighted by several key works.
TD-Gammon [39] paper is one of the earliest works on using NNs for value function ap-
proximation in RL, where an agent is learned to play backgammon at an expert level.
Followed by the significant contribution of [40], which initiates the use of gradient-based
methods (i.e. a method to update the neural network weights) to immediately learn a
representation of a policy without the use of value functions, an algorithm known as RE-
INFORCE. Additionally, the seminal work on the Deep Q-Network (DQN) by [6] enabled
NNs to learn the action-value function Q(s, a) directly from high-dimensional inputs such
as images. DQN allowed an agent to achieve human-level performance in playing Atari
games, where the state space (pixel values from the game screen) was far too large for
traditional methods.

These seminal works, along with others, gave rise to the Deep Reinforcement Learning
(DRL) sub-field. In DRL, the term "deep" refers to the use of many layers in the NNs
with the intuition of composing many nonlinear layers can enable learning very complex
functions [41]. Building on advancements in deep learning, DRL involves the use of differ-
ent deep architectures such as Convolutional Neural Network (CNN), Recurrent Neural
Network (RNN), and Long Short-Term Memory (LSTM), which are tailored to handle
different types of data (e.g. images or raw sensory data).

This combination has introduced many state-of-the-art algorithms. To encapsulate them
in one taxonomy, researchers have introduced a categorization of these methods into three
main approaches [5], [37]:

• Value-Based methods: These methods approximate the state value function Vθ(s) or
the action-state value function Qθ(s, a) using deep neural networks, where θ repres-
ents the parameters (weights) of the network. These methods then derive an implicit
policy that maximizes the estimated value functions. Examples include DQN and its
variants, such as double DQN [42] and Dueling DQN [43].
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• Policy-Based Methods: Instead of learning value functions, policy-based methods
learn directly the policy πθ which maps states to actions, where θ represents the
parameters (weights) of the network. Examples include Deterministic Policy Gradi-
ent (DPG) and REINFORCE; also known as Monte-Carlo policy gradient [5].

• Actor-Critic Methods: These methods combine the merits of the value-based and
policy-based methods. A deep network acts as a critic and estimates the value
function, while a separate deep network acts as an actor and learns the policy in the
direction suggested by the critic. Examples of actor-critic methods include PPO [33],
and TD3 [34].

Finally, we conclude this section by illustrating the key difference between traditional
tabular Q-learning and its neural network-based approximation version in Figure 2.2. As
indicated previously, traditional Q-learning relies on a Q-table to store the value of state-
action pairs, while Deep Q-Network utilizes neural networks for approximating the Q-value
function.

Figure 2.2: Comparison between traditional Q-Learning (tabular) and Deep Q-Learning (utilizing
neural networks). Here, a simple greedy policy is used just for demonstration purposes.

2.1.3 Offline Reinforcement Learning

The learning paradigm in reinforcement learning mainly revolves around continuous inter-
action with the environment in an online fashion, that is to say, an agent initially explores
random actions and improves its behavior upon the reward it receives. At the start of
the learning process, the agent explores highly random action, but as the agent learns, it
starts to exploit its knowledge and eventually reduces its random exploration as it con-
verges towards an optimal policy, if at least one exists [5]. If applied to real-world problems,
the randomness in the actions during exploration might lead to risky events and be pro-
hibitively expensive. This also applies to the later learning stages, as the exploitation of
the agent knowledge may still be sub-optimal [44]. Take for example, the utilization of RL
in real-world robotic manipulators, during the exploration phase the robot might perform
unpredictable and uncontrolled actions that could harm humans standing in the vicinity
of them, and if not it might lead to wear and tear of the robot itself. Additionally, a
robotic manipulator learning a variety of robotic manipulation skills needs a huge number
of interactions to converge to an optimal policy, which also incurs expensive costs.

Therefore, to mitigate the previous challenges, researchers see the potential in utilizing
offline RL, in which an agent learns an optimal policy on previously collected data, without
any further interaction with the environment, as can be seen in Figure 2.3. Thus any
previously collected data for a specific application can be reused to train an agent, similar
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to supervised machine learning. In this work, we train the Transformer-based approaches
in an offline fashion.

Figure 2.3: Illustration of Offline Reinforcement Learning during training and deployment phase.
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2.2 Transformer Architectures
The Transformer entered the world of deep learning as a powerful architecture with the
publication of "Attention Is All You Need" paper by [45]. The term "Attention" in the
title refers to the use of a mechanism called self-attention, which enables the model to cap-
ture long-range relationships within data. This capability has enabled the transformer to
outperform other architectures, such as RNN and LSTM, in sequence-to-sequence machine
translation tasks. Furthermore, due to its highly expressive power and ability to model
large-scale contextual data, this architecture has seen a lot of success in other fields such as
Natural Language Processing (NLP) [46], [47], computer vision (vision transformers) [48],
audio and video processing [49], [50], and reinforcement learning [16], [17], [18]. Moreover,
its large modeling capacity gives birth to new architecture variations that are trained on
internet-scale datasets, two known examples are:

• Generative Pre-trained Transformer (GPT): A unidirectional Transformer variant
used for automatic text generation, such as OpenAI’s GPT-x models (e.g., GPT-2,
GPT-3, and GPT-4) [46], [51],[52].

• Bidirectional Encoder Representations from Transformers (BERT): A bidirectional
Transformer variant used for various NLP tasks, including improving Google’s search
engine capabilities [47].

As demonstrated by models like ChatGPT, one can provide a seed sentence to generate an
article on specific topic, and receive a well-structured, contextually relevant article. This
raises a natural question whether we can apply a similar concept in RL. That is to say, if
we provide trajectories of states, actions, and rewards to train GPT-like models, could the
model then generate an optimal trajectory that maximizes cumulative rewards?

This question was the motivation for two pioneering works i.e. Decision Transformer [14]
and Trajectory Transformer [15]. These works attempt to re-frame the RL as sequence
modeling problem and addressing it conditionally using high-capacity sequence model ar-
chitectures such as GPT. This re-framing differs from traditional RL approaches, which fo-
cuses on finding an optimal value functions or policy. Instead, it obtains an auto-regressive
model which by conditioning on desired rewards, past states, and past actions, it predicts
future actions that maximize rewards. Additionally, both models leverage the concept of
Offline RL, where an agent is trained in a supervised fashion using previously collected
data, adapting to the training method of transformer.

2.2.1 Decision and Trajectory Transformers

Note: The majority of the content in this section is based on two references [14], [15] unless
otherwise cited.

The Decision and Trajectory Transformers, illustrated in Figures 2.4, 2.5, are quite similar
in their working principles when applied in offline RL settings. Starting with the Decision
Transformer, it learns directly a policy by conditioning the next action on the past tra-
jectory and future Return-To-Go (RTG) values. Its focus lies solely on action prediction
without any explicit modeling of state and reward transitions. Decision Transformer rep-
resent a trajectory as sequences of states st, actions at, and RTG values R̂t at different
time steps:

τdt = (R̂1, s1, a1, R̂2, s2, a2, . . . , R̂T , sT , aT )

The RTG is the sum of rewards from the current time step until the end of the episode
R̂t =

∑T
t′=t rt′ , and it is used instead of immediate rewards to guide the model choosing

the actions which maximize the cumulative reward of trajectory. During training, the
Decision Transformer samples trajectories from offline datasets and minimizes the loss
over the predicted action ât, conditioned on the sequence of past states, past actions, and
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Figure 2.4: Decision Transformer architecture, where states, action, and returns are embedded
separately using normal linear layers with a learned positional encoding layer added. The input
propagates through these layers, a GPT architecture, and ends with a linear decoder which decodes
the optimal action, the figure is adapted from [14].

RTG values in an auto-regressive manner:

Ldt =
T∑
t=1

Eτ

[
L
(
at, ât | R̂1:t, s1:t, a1:t−1

)]
Where:

• R̂1:t is the sequence of RTG values from timestep 1 to t,
• s1:t and a1:t−1 are the sequences of past states and actions up to time t− 1,
• L is the loss function (e.g., cross-entropy 2 for discrete actions or mean squared error

for continuous actions).

Once the model is trained, it starts with a target return that guides its actions. After each
action, the target return is updated by subtracting it from the immediate reward received.
This process repeats until the end of the episode.

On the other hand, The Trajectory Transformer models entire trajectories, including states
st, actions at, rewards rt, and RTG values R̂t as sequences. Its focus lies solely on learning
the dynamics of the environment and thus can act as predictive a model that can be used
for planning. The trajectory for the Trajectory Transformer is represented as:

τtt = (s1, a1, r1, R̂1, s2, a2, r2, R̂1, . . . , sT , aT , rT , R̂T )

where each dimension in the trajectory either in the state, action, rewards, or RTG values
are discretized independently. During training, the Trajectory Transformer tries to min-
imize the cross-entropy loss of the sequence of states, actions, rewards, and RTG values in
an auto-regressive manner:

Ltt =
T∑
t=1

Eτ

[
L
(
st, at, rt, R̂t | s1:t−1, a1:t−1, r1:t−1, R̂1:t−1

)]
Where:

2Cross-entropy loss, is a measure used in machine learning to quantify the difference between two
probability distributions i.e. the true distribution (the actual action) and the predicted distribution (the
predicated action by the model)[53]

Robotics and Mechatronics Ammar Alhannafi



14 CHAPTER 2. BACKGROUND

Figure 2.5: Architecture of the Trajectory Transformer. States, actions, rewards, and RTG
are discretized and embedded. The GPT-based architecture processes this, and a linear decoder
predicts the next output in the sequence. These sequences are then evaluated by the Beam Search
based on RTG values, which outputs the most promising trajectories that have yielded the highest
cumulative rewards. The Figure is adapted from [15].

• st, at, rt, and R̂t represent the state, action, reward, and RTG at time step t,
• s1:t−1, a1:t−1, r1:t−1, and R̂1:t−1 are the sequences of past states, actions, rewards,

and RTG values,
• L is the combined cross-entropy loss function that includes appropriate sub-losses for

each component 3.

After training, the Trajectory Transformer is used to sample trajectory candidates and then
it selects the reward-maximizing trajectory using the Beam Search algorithm. Generally,
Beam Search is a heuristic search algorithm to keep track of the top k most likely candidate
guided by a scoring function or likelihood. In our case, the beam search is guided by the
RTG values which helps the search to keep track of the k best trajectories that are reward-
maximizing.

2.2.2 GPT Architecture

As shown in Figures 2.4, 2.5, the GPT4 serves as the core architecture for both Trans-
formers, namely Decision Transformer and Trajectory Transformer. GPT is a unidirec-
tional variant of the original transformer architecture introduced in [45]. It consists of mul-
tiple stacked blocks, each containing a causal self-attention layer, multi-layer perceptrons,
and normalization layer [51].

Before the input data flows through these stacked blocks, it first passes through an em-
bedding layer, which transforms the input sequence (e.g., states, actions, and RTG’s) into
higher dimensional vectors that enable capturing the semantic relationship between ele-
ments in the input sequence [17].

3For ease of exposition, we combine the individual losses into a single loss function L. For instance, one
single loss term for the state could be represented as Lstate = L(st, ŝt | s1:t−1, a1:t−1, r1:t−1, R̂1:t−1).

4Please note that the GPT architecture we mean here is GPT version 2 by [51]
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It is worth noting that the GPT architecture typically uses a learned positional encoding
layer next to the embedding layer to inject positional information about each element
in the sequence. This approach is also used in Decision Transformers and Trajectory
Transformers. However, since we chose not to use positional encoding in our work, it will
not be discussed or included in our description. This decision aligns with works such as
[54], [55] suggesting that the causal attention mechanism, which limits attention to one
direction in the sequence, may provide the model with sufficient positional information.

After the input passes through the embedding layer, it propagates through the stacked
blocks. In order to describe the layers composing one block, we consider an input matrix
X (i.e. embedding output) propagating through these layers as shown in Figure 2.6. A
column in matrix X represents the embedding of RTG value or single dimension 5 in the
state or action spaces. Furthermore, the following explains the information added by each
layer of the stacked blocked on this matrix until the output is reached:

1. Causal Self-Attention Layer (Single Head6): This layer enables each standardized
column in X to attend to all previous columns by computing attention (inter-
correlation) scores between them. It does so by first projecting the input X into
three different matrices: Query Q = X ·Wq, Key K = X ·Wk, and Value V = X ·Wv.
Second, it computes the attention scores by performing a dot product between the Q
and KT (i.e. every column of Q gets multiplied by every column of K). The attention
scores are then normalized row-wise to be a probability distribution between 0 and
1 by a softmax operation. The normalized attentions are finally multiplied with the
V = X ·Wv to produce the final output of the self-attention layer. The operations
of this layer are illustrated in Figure 2.6. Mathematically, the causal self-attention
can represented as follows:

Causal Attention(Q,K, V ) = softmax
(
QKT

√
dk

+M

)
V (2.12)

Where:
• M is a mask matrix, where the upper triangular entries are set to −∞ to prevent

attending to future positions(i.e. columns should look only to previous columns
and not future ones), the −∞ added will ensure that the softmax gives a zero
probability, as can be seen in Figure 2.6.

• dk is the dimensionality of the embedding vector that is the same size for the
query Q and Key K, which is used as a scaling factor to stabilize the gradient
during training.

2. Normalization Layer 1: This layer normalizes the input matrix formed by the sum of
the skip connection and the output of the attention layer (i.e., the weighted sum of
values V after applying attention scores). This normalization step ensures to have a
mean of 0 and a standard deviation which aids in training stability.

3. Position-wise Multi-Layer Perceptrons (MLP)s: This layer aids in further feature
extraction and introduces nonlinear transformation using activation functions like
ReLU on each column (i.e.hence the name position-wise) in the output of the Nor-
malization Layer 1.

4. Normalization Layer 2: A second normalization step is applied after the MLP layer
to ensure that the sum of the Normalization Layer 1’s output and the MLP’s output

5A single dimension refers to one specific element among the multiple elements that make up the state
space (e.g., position, velocity, angle, or angular velocity).

6We focus on single-head attention in this description for the sake of exposition. If multi-head attention
were used, multiple sets of Q, K, and V matrices would be created, each computing attention scores
independently. The outputs would be concatenated and processed through a linear layer. The multi-
head attention enables the model to capture diverse relationships by attending to different subspaces
simultaneously.
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maintains a mean of 0 and a standard deviation of 1. This further stabilizes the
training process similar to Normalization Layer 1.

5. Residual Connections: These skip connections are added around the self-attention
and Position-wise MLP as can be noted by the description of the normalization
layers. These connections allow the original input to be combined with the output
of each block, in order to prevent information loss and stabilize gradient flow during
back-propagation.

Finally, the output of the stacked blocks is fed into a linear decoder, which generates the
predicted next element in the input sequence, such as the next action in the case of the
Decision Transformer.

(a) (b)

Figure 2.6: (a) Causal self-attention mechanism for an input sequence of size 4 with an embedding
dimension of 5. The (·) denotes a matrix multiplication operation (b) Single block structure of the
GPT model. These figures are adapted from [17].
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2.3 Symmetry in Reinforcement Learning for control
Symmetry in a system-theoretic sense refers to transformations such as rotations, reflec-
tions, or translations that when applied to a system, leave its dynamics unchanged. Such
transformations result in an equivalent system response that requires an equivalent control
strategy as before the transformation. Formally, the symmetry such as the one described in
the example given in Figure 1.1, if exploited, will aid in deriving an equivalent smaller ver-
sion of the original MDP by clustering equivalent state-action pairs and abstracting away
any redundancy originating by symmetries. In the literature, this approach is tackled
and formalized by the MDP Minimization Frameworks. One of the formalization is bi-
simulation by [56] which exploits equivalent states in the MDP model, while the work in
[28] extends the bi-simulation by exploiting the equivalence of joint state-action in MDP
and based their minimization framework upon the notion of MDP homomorphisms. The
MDP homomorphisms can be defined as a structure-preserving map between an MDP and
its reduced abstracted version such that no important information is lost.

In order to describe the MDP homomorphisms framework and how the minimization pro-
cess is undertaken, we use a simpler grid-world example from [28], shown in Figure 2.7.
The grid world on the left side is the original MDP, where each cell corresponds to a
state. An agent has four deterministic actions: North (N), South (S), East (E), and West
(W), and it starts from A or B trying to reach the goal state G. One can see that there
is a symmetry over the counter diagonal (i.e. bottom-left to top-right axis) in the joint
state-action space. That is to say, taking action E in state A is equivalent to taking action
N in state B, because both actions lead to states that are one step closer to the goal G.
Additionally, if the agent started from A and reached goal G, then its policy can be reused
by swap of actions and reflection of states over the counter diagonal. Thus the original
MDP model can be reduced as can seen on the right side of Figure 2.7.

Figure 2.7: A grid world example of MDP model minimization for symmetrical state-action pairs.
On the left is the original MDP, while on the right is the reduced version over the counter diagonal
axis. The diagram is adapted from [28]

In our work, we utilize the notion of MDP homomorphism as our formal tool to formalize
and leverage symmetries in state-action space of finite and continuous MDPs, which we
explain in detail in the following section.
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2.3.1 MDP Homomorphism Framework

Note: The content in this section is based on [28], [57], [58] unless otherwise cited

Preliminary Notions

Before introducing the concept of finite MDP homomorphisms, we first outline preliminary
notions that are needed for understanding MDP homomorphisms.

• Group: A group is an algebraic structure that consists of a set G with a binary
operator ∗ : G × G → G satisfying:
(i) Closure: h ∗ g ∈ G for all h, g ∈ G.
(ii) Identity: ∃e ∈ G such that g ∗ e = e ∗ g = g for all g ∈ G.
(iii) Inverse: ∀g ∈ G,∃g−1 ∈ G such that g ∗ g−1 = g−1 ∗ g = e.
(iv) Associativity: (g ∗ h) ∗ i = g ∗ (h ∗ i) for all g, h, i ∈ G.

• Group Action: A group action of a group G on a set X is a function · : G×X → X
such that for all g, h ∈ G and x ∈ X, the identity element e ∈ G satisfies e · x = x,
and the action is compatible with the group operation, i.e., g · (h · x) = (g · h) · x.

• Equivalence Relation Induced by a Group: Given a group G acting on a set
X, we define an equivalence relation ≡G on X as follows: for x, x′ ∈ X, x ≡G x′ if
there exists a h ∈ G such that h · x = x′.

• Surjection (Onto Function): A function f : X → Y is called a surjection if for
every y ∈ Y , there exists at least one x ∈ X such that f(x) = y. This means that f
maps X onto Y , covering all elements of Y .

• Bijection (One-to-One Correspondence): A surjective function f : X → Y
is called a bijection if for every y ∈ Y , there exists exactly one x ∈ X such that
f(x) = y, and each x ∈ X maps to a unique y ∈ Y . A bijection establishes a
one-to-one correspondence between the sets X and Y .

The surjection and bijection properties are illustrated in Figure 2.8

Figure 2.8: Illustration of bijective and surjective properties
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Finite MDP Homomorphism

In the example given in Figure 2.7, we consider state A and B equivalent in the sense
that taking action E in A and N in B makes them one step closer to the goal G. This
equivalence between state-action pairs allows us to define homomorphism from the original
MDPM to its reduced abstract version M̄ by grouping these equivalent state-action pairs
in M and mapping them into single state-action pair in M̄, as can be seen in Figure 2.9.
This grouping in M̄ preserves both the transition structure and rewards since it exhibits
similar behavior to the originalM.

Figure 2.9: Illustration a homomorphism in the grid world example, the homomorphism is a
surjection from the original M to its abstract version M̄. Equivalent state-action pairs in M are
grouped into a block, which is then mapped by h to a single state-action pair in M̄. This process
preserves the transition structure and rewards between M̄ and M.

Formally, this can be now defined as:

Definition 2.2: Finite MDP Homomorphism [28]

An MDP homomorphism h from an MDP M = (S,A, T , r, γ) to another MDP
M̄ = (S̄, Ā, T̄ , r̄, γ) is a surjection h from S × A to S̄ × Ā, defined by a tuple of
surjections ⟨f, {gs | s ∈ S}⟩, with:

h((s, a)) = (f(s), gs(a)),

where f :→S̄ and gs : A∫ → Āf(s) for s ∈ S, such that ∀s, s′ ∈ S, a ∈ As:

T̄ (f(s′) | f(s), gs(a)) =
∑

s′′∈f−1(s̄′)

T (s′′ | s, a), (2.13)

r̄(f(s), gs(a)) = r(s, a). (2.14)

Here, we call M̄ the homomorphic image of M under the homomorphism h. The double
parentheses in h((s, a)) = (f(s), gs(a)) emphasize that h operates on (s, a) as a combined
input, and As represents the set of actions admissible in state s: As = {a | (s, a) ∈ S×A}.
The conditions in (2.13) and (2.14) indicate the following:

• Condition (2.13) indicates that the transition probability of M̄ is the sum of prob-
abilities in M transitioning from state s to all state s′′ that map to s̄′ under the
function f . For an MDP with deterministic system dynamics that defines a unique
next state s′, (2.13) simplifies to a commutativity condition as follows [58]:
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T̄ (f(s), gs(a)) = f(T (s, a)), where T (s, a) = s′ (2.15)

• Condition (2.14) ensures that any state-action pairs mapped to the same pair in M̄
have identical expected rewards.

Optimal Value Equivalence and Lifted Policies

The optimal value equivalence theorem states that the equivalent state-action pairs under
h have the same optimal values, this is a significant result since an optimal value function
found in the reduced abstract MDP can be reused as optimal value function in the original
MDP.

Theorem 2.1: Optimal Value Equivalence [28]

Let M̄ = (S̄, Ā, T̄ , r̄, γ) be the homomorphic image of the MDPM = (S,A, T , r, γ)
under the MDP homomorphism h = ⟨f, {gs | s ∈ S}⟩.
For any (s, a) ∈ S ×A,

Q∗(s, a) = Q̄∗(f(s), gs(a)).

And for all s ∈ S,
V ∗(s) = V̄ ∗(f(s)).

With this property, we can optimize stochastic policies in the reduced MDP and then
transfer its optimal policy π̄ back to the original MDP through a process called lifting.

Definition 2.3: Policy Lifting [28]

Let π̄ be a stochastic policy in M̄. Then π̄ lifted to M is the policy π↑ such that
for any a ∈ g−1

s (ā),

π↑(a|s) = π̄(ā|f(s))
|g−1

s (ā)|
,

where |g−1
s (ā)| denotes the cardinality (i.e., the number of elements) of the set

g−1
s (ā), which is the set of actions in M that map to the same action ā ∈ Āf(s)

under gs. For this definition to hold, it is sufficient that∑
a∈g−1

s (ā)

π↑(a|s) = π̄(ā|f(s)),

but to ensure uniqueness, [28] distributes the probability of taking action ā given
state f(s) in M̄ evenly across all a ∈ g−1

s (ā) inM.

To conclude this section, Figure 2.10 provides an illustration of the MDP homomorph-
ism, where the relationship is demonstrated between the original MDP and its abstracted
version.

Symmetries of MDPs

MDP homomorphism generalizes the idea of minimizing MDPs by finding state-action
equivalences and mapping them to a reduced abstract MDP. When these equivalences
stem from inherent symmetries within MDP, the homomorphism maps symmetric state-
action pairs inM to the same state-action pairs in M̄. This means that the MDPsM and
M̄ are structurally identical and h is no longer called a homomorphism, but isomorphism.
Formally, this can be defined as follows:
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Figure 2.10: Illustration of the MDP homomorphism where we display the relation between the
original MDP and its reduced abstract version. The diagram is adapted from [59]

Definition 2.4: MDP Isomorphism [28]

An MDP homomorphism h = ⟨f, {gs|s ∈ S}⟩ from an MDP M = (S,A, T , r, γ) to
another MDP M̄ = (S̄, Ā, T̄ , r̄, γ) is called an MDP isomorphism if both mappings
f and gs for each s ∈ S are bijective.

Furthermore, if an MDP M is isomorphic to itself, this self-isomorphism is known as an
automorphism ofM. Formally:

Definition 2.5: MDP Automorphism [28]

An MDP isomorphism from an MDPM = (S,A, T , r, γ) to itself is an automorph-
ism ofM.

Automorphism can capture the inherent symmetries of an MDP, and help in eliminating
any redundancies in its structure for model simplification. For instance, in the grid world
example in Figure 2.7, reflecting the states along the NE-SW diagonal and swapping the
actions (like North-East and South-West) is an example of a single automorphism. Using
such automorphism, the original MDP can be partitioned into a quotient MDP by aggreg-
ating symmetric state-action pairs. Thus we can transfer policies learned for a quotient
MDP to the original MDP by simple transformations, where this transformation preserves
the transition and reward functions.

When considering all possible automorphisms of an MDPM, denoted as Aut(M), we can
combine them in a group, which is formed under the composition of homomorphisms. This
group is known as the symmetry group ofM.

Definition 2.6: Automorphism Group of an MDP M
The set of all automorphisms of an MDPM forms a group, called the automorphism
group, denoted as Aut(M), which is the symmetry group ofM.
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Identifying all symmetries in MDP can be sometimes impractical, so we use the notion
of a subgroup G ⊆ Aut(M) that represents either the entire set or a relevant subset of
automorphisms. This subgroup G induces an equivalence relation ≡G on the set of state-
action pairs S × A, defined as: (s1, a1) ≡G (s2, a2) if and only if there exists h = ⟨f, {gs |
s ∈ S}⟩ in G such that f(s1) = s2 and gs1(a1) = a2.

Now that we have defined symmetries in MDPs using isomorphisms and automorphisms,
and encapsulated all relevant automorphisms in a subgroup, we can formally define MDPs
with symmetry as follows:

Definition 2.7: MDP with Symmetry Group

Let G be a subgroup of Aut(M) such that G ⊆ Aut(M). Each automorphism
h ∈ G is an MDP homomorphism h = ⟨f, {gs|s ∈ S}⟩ where f and gs are bijective,
satisfying:

h((s, a)) = (f(s), gs(a)),

where f : S → S and gs : As → Af(s) for s ∈ S, such that ∀s, s′ ∈ S, a ∈ As:

T (f(s′)|f(s), gs(a)) = T (s′|s, a), (2.16)

r(f(s), gs(a)) = r(s, a). (2.17)

Definition 2.7 states that an MDP with symmetries includes an automorphism h that
applies a transformation to the state-action pairs S ×A, leaving the reward and transition
functions invariant. That is to say, the invariance of the transition function, as seen in
condition (2.16), means that the probability of transitioning from s to s′ under action a is
the same when applying the transformation h. Similarly, condition (2.17) shows that the
reward function remains the same under this transformation.

Theorem 2.1 can be extended naturally to MDPs with symmetries, as the transition and
reward functions are preserved under these symmetries. Consequently, the optimal action-
value functions Q∗ and Q̄∗ remain equivalent when mapped via an automorphism h ∈ G.
However, the policy lifting described in Definition 2.3 can be more specialized and sim-
plified, as we now have a mapping between the original MDP and the quotient MDP.
The quotient MDP can defined as the results of partitioning the original MDP’s state-
action space using the equivalence relation induced by a subgroup of automorphisms (the
symmetry group). Thus, the lifting operation simplifies to a direct remapping using the
automorphisms, which is defined as follows:

Definition 2.8: Policy Lifting for MDPs with Automorphisms6

Let π be a policy in the quotient MDP, and let h = ⟨f, {gs | s ∈ S}⟩ ∈ G be an
automorphism ofM. The lifted policy π↑ in the original MDPM is defined as:

π↑(a | s) = π(gs(a) | f(s)) (2.18)

for any (s, a) ∈ S × A, where f : S → S and gs : As → Af(s) are bijections that
preserve the transition dynamics and reward functions under the automorphism h.

Applying the automorphism h once more to equation (2.18) , we have:

π↑(gs(a) | f(s)) = π(gs(gs(a)) | f(f(s))).
6These definitions are not explicitly stated in [28], but are derived from the information provided in

that paper.
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Given that f(f(s)) = s and gs(gs(a)) = a, substituting these properties into the equation
yields:

π↑(gs(a) | f(s)) = π(a | s).

This demonstrates that the lifted policy π↑ can operate in the quotient M by remapping
under the automorphism h. Therefore, the following relation holds:

π↑(gs(a) | f(s)) = π↑(a | s).

This relation shows that the lifted policy π↑ is equivariant under the automorphism h.
This equivariance relationship between the quotient MDP and the original MDP can be
further simplified and formalized as follows:

Definition 2.9: Equivariance of Stochastic and Deterministic Policies

A policy π is said to be equivariant under an automorphism h if the probability
of selecting a transformed action gs(a) given a transformed state f(s) matches the
probability of selecting the original action a given the original state s. Formally, for
an equivariant policy π,

π(gs(a) | f(s)) = π(a | s)

In the case of a deterministic policy, this equivariance simplifies to:

π(f(s)) = g(π(s))

where applying the transformation f to the state s results in the policy generating
an action at f(s) that is equal to the transformed action gs(π(s)) generated by π(s)

Furthermore, we take this opportunity to define the invariance property as well, which is a
specific case of equivariance. This property is useful when indicating value functions (i.e.
Q and V ), are invariant with respect to the automorphism h. Formally, the invariance
property can be defined as follows:

Definition 2.10: Invariance of Value Functions
The value functions are said to be invariant under an automorphism h if applying
h to its inputs does not change its output. For the value functions V and Q, this
means:

V ∗(f(s)) = V ∗(s) and Q∗(f(s), gs(a)) = Q∗(s, a)
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2.3.2 Enforcing Symmetry in DRL

A natural question that arises at this stage is how to utilize MDP homomorphism to exploit
or enforce symmetry in DRL for control tasks to improve sample efficiency and achieve
better generalization. Several works have addressed this question, and their methods can
be categorized into three main approaches: 1) using auxiliary loss functions [32], 2) employ-
ing data augmentation [30], and 3) architecture-based methods [27], [60], [59], [29], [32].
While data augmentation and auxiliary loss functions can encourage symmetry, they do
not guarantee symmetry exploitation. Moreover, data augmentation, in particular, often
requires generating a large number of symmetrical samples, which is not sample-efficient.

In contrast, architecture-based methods directly encode symmetry within the neural net-
work layers, ensuring that the symmetry present in the environment is fully exploited.
The works of [27] and [29] establish a connection between MDP homomorphisms and the
concept of equivariance, leveraging group-equivariant neural networks that are equivariant
to the actions of a group G on their input space. This means, as described in 2.9, that
if the input is transformed by a certain symmetry defined by the group G, the network’s
output will transform correspondingly.

The work of [29] focuses on reinforcement learning problems where the input is repres-
ented as images and the neural architecture is CNN, while [27] introduces an automated
algorithm that constrains the symmetry within the neural network and can be applied to
reinforcement learning problems with either sensory input or images.

In our work, we focus on architecture-based methods and utilize the automated algorithm
proposed by [27] to encode symmetry within the neural network for reinforcement learning
problems with sensory input, such as the cartpole problem in the Gymnasium Benchmark
[35]. It is also noteworthy to mention that in our work the connection between MDP
homomorphisms and equivariance has been drawn differently than in [27]. Namely, their
approach considers a symmetry group whose elements, acting on state-action pairs, result
in the homomorphism behaving as an identity map. On the other hand, our connection
leverages the concept of automorphisms inspired by [28], as discussed in Section 2.3 and
formally defined in Definition 2.7.
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3 Methodology

In this chapter, we present our methodology that extends existing frameworks to address
the sample efficiency and generalization problems in RL and Transformer-based RL. The
methodology is divided into three main parts explained in detail below:

1. Replication and Verification of MDP Homomorphic Networks 1: First, we
replicate and verify the MDP homomorphic networks presented by [27], as detailed
in Section 3.1. The work in [27] revisits the concept of MDP homomorphism in
finite settings, i.e. finite state and action spaces, which is based on the framework
introduced by [28]. Additionally, [27] propose a numerical algorithm to automate
the construction of equivariant layers which collectively form a MDP homomorphic
network that respects the state-action symmetry in the environment. We adopt
their equivariant building method because it is automated, unlike other approaches
that require manual network design based on the symmetry group. Their method
is inherently suited for problems with finite state and action spaces (e.g., grid-based
problems), but it can be extended to continuous settings with minimal modifications
as we will see in later sections.

2. Extending to Continuous MDP Homomorphisms: The second part of our
methodology, detailed in Section 3.2, involves extending the MDP homomorphism
formulation from finite to continuous settings to address control problems with con-
tinuous state and action spaces, as well as both discrete and continuous symmetries.
We provide a continuous MDP homomorphism formulation, drawing insights from
[61]. Once this formulation is established, we show that with minor modifications
we can extend the automated algorithm of [27] for constructing equivariant layers to
handle the continuous settings.

3. Extending to Decision Transformer: Finally, as outlined in Section 3.3, after
verifying that MDP homomorphic networks result in sample-efficient and generaliz-
able models, we extend the concept to sequential modeling. This involves formalizing
and implementing MDP homomorphism within the Decision Transformer [14], thus
integrating MDP homomorphism with transformer-based decision-making models.

3.1 Finite MDP Homomorphic Networks
The background necessary for understanding the finite MDP homomorphism framework
is provided in detail in Section 2.3.1. In this section, we introduce PPO, an actor-critic
algorithm with a stochastic policy. Then, we explain how to adapt this algorithm to
respect symmetries by constraining its actor and critic networks to obey the automorphism
presented in the MDP. Finally, we outline the construction of a single equivariant layer,
where stacking these layers results in a fully MDP homomorphic network.

3.1.1 MDP Homomorphic PPO

PPO is driven by the question of how to make the largest improvement step to a policy
without stepping too far, leading to a performance collapse; a common challenge in DRL.
PPO is an actor-critic algorithm, which involves two main components: a critic network,
which estimates the value function Vϕ(s), and an actor network, which is based on the
direction suggested by Vϕ(s) approximates the stochastic policy πθ(a|s). There are multiple
variants of PPO, we utilize PPO-Clip which has been used in [27]. PPO-Clip, as the name
suggests, relies on a clipped objective function to limit updating the new policy far from

1MDP Homomorphic Networks we use this term to indicate neural networks that satisfy the
equivariant property with respect to the automorphism presented in the MDP
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the old one, where the "new" and "old" terms represent the policy before and after an
update, respectively. The objective function is defined as:

L(s, a, θk, θ) = min

(
πθ(a|s)
πθk(a|s)

Aπθk (s, a), g(ϵ, Aπθk (s, a))

)
, (3.1)

where g(ϵ, A) is expressed as:

g(ϵ, A) =

{
(1 + ϵ)A, if A ≥ 0

(1− ϵ)A, if A < 0
. (3.2)

This formulation constrains policy updates by clipping the probability ratio πθ(a|s)
πθk

(a|s) within a
range defined by ϵ. When the advantage Aπθk (s, a) is positive, the policy update increases
the probability of the action, but only up to the limit (1 + ϵ). Conversely, when the
advantage is negative, the update reduces the probability of the action, bounded by (1−ϵ).
Furthermore, the algorithmic steps for PPO-Clip are given as pseudo-code in Algorithm
1.

Algorithm 1: PPO-Clip [62]
[1]:input:initial policy parameters θ0, initial value function parameters ϕ0

[2]:for k = 0, 1, 2, . . . do
[3]: Collect a set of trajectories Dk = {τi} by running policy πθk(.|.) in the environment
[4]: Compute rewards-to-go R̂t

[5]: Estimate advantages Ât using a chosen method based on the current value function
Vϕk

the policy by maximizing the PPO-Clip objective:

θk+1 = argmax
θ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

min

(
πθ(at|st)
πθk(at|st)

Aπθk (st, at), g(ϵ, A
πθk (st, at))

)
,

typically using stochastic gradient ascent with the Adam optimizer
[6]: Update the value function by minimizing the mean-squared error:

ϕk+1 = argmin
ϕ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

(
Vϕ(st)− R̂t

)2
,

using gradient descent
end

In order to obtain a PPO agent that respects the symmetry group represented by a set of
automorphisms h in group G ⊆ Aut(M), we need to design the policy and value networks
in a way that they obey the MDP automorphism. That is to say, the policy network πθ
must satisfy the equivariant property with respect to the automorphisms in the group G, as
stated in Definition 2.9. Similarly, the value network Vϕ must satisfy the invariant property
under h, as stated in Definition 2.10.

Going back to the pole balancing example given in Figure 1.1, which has a continuous
state space and finite state space with two actions i.e. moving the cart to the left and
right. Let he be the identity automorphism on its state-action space S × A, and let h1

be an automorphism on M defined as the vertical reflection f on the state space and the
action swap gs on the action space (i.e. right becomes left and the other way around).
Thus, the set of all automorphisms is given by two elements Aut(M) = {he, h1}, and
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Figure 3.1: Illustration of the equivariance and invariance properties of the policy and value
functions under the automorphisms he and h1 in the pole balancing problem. The diagram is
adapted from [27]

together with the composition operator, they form the symmetry group G of the MDP
underlying the pole balancing problem. Then the policy and value functions should satisfy
the equivariance and invariance properties as illustrated in Figure 3.1.

3.1.2 Constructing Equivariant Layers

As proposed by [27], we outline the method for constructing equivariant neural network
layers. A neural network composed entirely of such equivariant layers and point-wise
nonlinearities (e.g. ReLU) remains equivariant as a whole [63]. Therefore, the main
goal is to construct layers that respect input and output transformations defined by any
h = ⟨f, {gs | s ∈ S}⟩ ∈ G, where f represents the input transformation and gs the state-
dependent output transformation. By stacking these layers, we achieve a network that
exhibits equivariance under these transformations, which in turn align with MDP homo-
morphism properties.

Starting from a basic linear layer in element-wise form:

yj =

Din∑
i=1

wjixi + bj , for j = 1, 2, . . . , Dout, (3.3)

where x ∈ RDin is the input vector, W ∈ RDout×Din is the weight matrix, b ∈ RDout is the
bias vector, and y ∈ RDout is the output vector.

Equation 3.3 can be represented in matrix form as:

y = W · z,

where the weight matrix W is augmented with the bias b: W =
[
W b

]
∈ RDout×(Din+1),

and the input vector x is extended with an additional component set to 1: z =
[
x 1

]T ∈
R(Din+1).

As proposed by [27], if the transformations for any h = ⟨f, {gs | s ∈ S}⟩ ∈ G are linear and
can be represented in matrix form as:

f(s) = F · s, gs(a) = Gs · a,

Then, in order to construct equivariant layers that satisfy the constraints imposed by these
linear input and output transformations, the weight matrix W must satisfy the following
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condition:
GsWz = WFz.

Since this condition holds for all z, it simplifies to: GsW = WF. The space of equivariant
weights W can thus be defined as:

W = {W ∈ Wtotal | GsW = WF, for all h = ⟨f, {gs | s ∈ S}⟩ ∈ G},

where Wtotal is the space of augmented weights.

To construct W that meets the above constraints, [27] uses a symmetrization approach
and introduces the symmetrizer S(W ) that ensures that W lies in the space of matrices
satisfying the equivariance property:

S(W ) =
1

|G|
∑
h∈G

G−1
s WF, (3.4)

where |G| is the number of elements in the symmetry group G. This symmetrizer will
project any initial random weight matrix W into the subspace that meets the equivariance
constraint.

Since W is a linear subspace, any weight matrix W ∈ W can be expressed as a linear
combination of basis matrices {Vi}ri=1, where r is the rank of the subspace. Thus, W can
be parameterized as W =

∑r
i=1 ciVi, with ci being learnable coefficients. Therefore, to

identify the basis {Vi}, [27] uses the Gram-Schmidt orthogonalization approach that is
applied through singular value decomposition (SVD). Algorithm 2 outlines this procedure,
demonstrating how sampled weights are symmetrized and orthogonalized to construct an
equivariant layer.

Algorithm 2: Equivariant Layer Construction
[1]:input: Number of samples N , dimension of total weight space dim(Wtotal)
[2]:for i = 1, . . . , N do

Sample weight matrix Wi ∼ N (0, I)
Symmetrize Wi as Wi ← S(Wi)

end
[3]:Stack vectorized samples W = [vec(W1), vec(W2), . . . , vec(WN )]

[4]:Perform SVD on W to obtain W̃ = UΣV⊤

[5]:Keep the first r = rank(W̃) right-singular vectors (columns of V)
[6]:Unvectorize the right-singular vectors to form the basis {Vi}ri=1

[7]:output: {Vi}ri=1 and r;

Please note that the basis matrices {Vi} are fixed once they are computed at the start
of the training process. Only the coefficients ci are updated during optimization, which
allows the network to adapt the weight matrix by adjusting the linear combination of these
fixed bases. Additionally, when we need to build value networks Vϕ that are invariant with
regard to the transformation on the input space, then the transformation on the output
represented in the method above as Gs needs to be the identity.

Ammar Alhannafi University of Twente



CHAPTER 3. METHODOLOGY 29

3.2 Continuous MDP Homomorphic Networks
In this section, we extend the formulation of finite MDP to continuous MDP based upon
insights from [61]. The main reason for such an extension is that most control problems
involve continuous state and action spaces, with some exhibiting continuous symmetries.
Subsequently, we will introduce the TD3 algorithm briefly [34], an actor-critic algorithm
well-suited for continuous control. We then conclude this section by detailing how minor
modifications are made to the construction of the equivariant layer method introduced in
section 3.1.2 and to the MDP homomorphic networks to function in continuous settings.

3.2.1 Continuous MDP Homomorphism

In continuous MDPs, we assume that the state and action spaces are not countable but
instead form continuous ranges. Additionally, the state and action spaces are assumed to
be compact, measurable subsets of Rn [61]. Compactness ensures the existence of optimal
solutions and the boundedness of the reward function, while measurability allows for the
proper application of probability and integration when defining the transition function, as
we will see in the following definition.

Moreover, symmetries in continuous MDPs can be divided into two types: discrete sym-
metry and continuous symmetry. Discrete symmetry involves a finite number of equi-
valent (symmetric) state-action pairs present in the MDP. An example of this is the
pole-balancing problem shown in Figure 1.1. On the other hand, continuous symmetry
involves infinite equivalent (symmetric) state-action pairs.

An example of continuous symmetry can be found in the Gym Reacher environment [35],
shown in Figure 3.2, where a two-joint robotic arm must move its end-effector (fingertip)
close to a target. Here, we assume that the target is positioned on a circle with a fixed
radius and that the initial position of the end-effector is on this circle. If the target and the
first link are rotated by the same angle θ while the second link remains fixed, the fingertip
traces a circular path. The sequence of actions leading the fingertip to the target under
these conditions would be equivalent and exhibit continuous rotational symmetry in the
state-action pairs.

To capture both types of symmetries in a continuous MDP homomorphism, we must ac-
count not only for discrete symmetries where a finite number of symmetric state-action
pairs in the original MDP map to a single point in the reduced abstract MDP but also for
continuous symmetries where an infinite number of symmetric state-action pairs map to a
single point. This can be achieved by considering continuous mappings between two closed
topological sets, where an infinite number of points in the pre-image can form closed sets
[61].

Definition 3.1: Continuous MDP Homomorphism

An continuous MDP homomorphism h from a continuous MDPM = (S,A, T , r, γ)
to another continuous MDP M̄ = (S̄, Ā, T̄ , r̄, γ) is a continuous surjection h from
S ×A to S̄ × Ā, defined by a tuple of continuous surjections ⟨f, {gs | s ∈ S}⟩, with:

h((s, a)) = (f(s), gs(a)),

where f : S → S̄ and gs : As → Āf(s) for s ∈ S, such that ∀s, s′ ∈ S, a ∈ As:

T̄ (f(s′) | f(s), gs(a)) =
∫
s′′∈f−1(s̄′)

T (s′′ | s, a) ds′′, (3.5)

r̄(f(s), gs(a)) = r(s, a). (3.6)
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Figure 3.2: Illustration of continuous rotational symmetry in the Gym Reacher environment,
where equivalent action sequences can result from rotating the target and the first link by the
same angle.

Here, we call M̄ the homomorphic image ofM under the homomorphism h. The s̄′ is the
image of s′ under f in M̄. The continuity condition in the surjections ensures that f−1(s̄′)
is a well-defined, measurable set, thus enabling us to evaluate the integral of all transitions
[61]. Furthermore, to account for discrete symmetries characterized by finite equivalent
state-action pairs, we can replace the integral by a summation in Condition (3.5).

Before introducing how a policy of the continuous abstract M̄ can be lifted to the actual
M, we need to extend Theorem 2.1 on optimal value equivalence to the continuous case,
which is successfully proved with insights from the proof of finite case [28]. The proof is
listed in Appendix A. Now we can define the policy lifting as follows:

Definition 3.2: Continuous Policy Lifting

Let π̄ be a stochastic policy in the abstract continuous MDP M̄. Then π̄ lifted to
M is the policy π↑ is defined as:

π↑(a|s) = π̄(ā|f(s))∫
a′∈g−1

s (ā) da
′ δ(gs(a′)− gs(a))

,

where g−1
s (ā) represents the set of actions a′ ∈ A such that gs(a′) = ā, and δ(gs(a

′)−
gs(a)) is the Dirac delta function, which ensures that the integral only considers
actions that map to the same image as a under gs.

Note that the integral in the denominator evaluates to the total count of the values of a′.
Thus, the Dirac delta function in the integrand acts as a filter that only contributes when
gs(a

′) = gs(a).

Finally, the results on MDPs with symmetries and equivariance discussed in Section 2.3.1
are applicable and can be naturally extended to the continuous case without modification.
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3.2.2 MDP Homomorphic TD3

TD3 is an advanced algorithm in RL particularly designed for environments with con-
tinuous state and action spaces. It is an improvement on the Deep Deterministic Policy
Gradient (DDPG) through several key modifications. First, TD3 concurrently trains two
Q-functions, Qϕ1 and Qϕ2 , hence the term "twin", and uses the minimum of the two outputs
to calculate the target as can be seen in (3.7). This mitigates the issue of overestimating
Q-values, which is a common problem in DDPG.

y(r, s′, d) = r + γ(1− d) min
i=1,2

Qϕtarg,i(s
′, a′(s′)) (3.7)

Next, TD3 incorporates target policy smoothing to avoid sharp spikes in the learned Q-
function. The target action a′(s′) is computed using the target policy πθtarg with added
noise that is clipped to keep the action within a valid range. This approach smooths out
the Q-function over similar actions and prevents the policy from exploiting any peak in the
Q-values. The smoothing operation is shown in (3.8) which is performed on the parameters
of the networks.

ϕtarg,i ← ρϕtarg,i + (1− ρ)ϕi, for i = 1, 2

θtarg ← ρθtarg + (1− ρ)θ
(3.8)

Furthermore, the policy is updated by maximizing Qϕ1 to find the optimal action. However,
to maintain stability and reduce volatility, the policy is updated less frequently, typically
once for every two updates of the Q-functions. This delayed policy update ensures that
the policy does not shift too rapidly. Furthermore, in the interest of space, the algorithmic
steps for TD3 are given as pseudo-code in Appendix C.

To design a TD3 agent that respects a symmetry group G ⊆ Aut(M), similar to the
approach used with PPO, the Q-functions and policy network must obey to the MDP
homomorphism. Specifically, the Q-functions Qϕ1 and Qϕ2 must satisfy the invariant
property under automorphisms h = ⟨f, {gs | s ∈ S}⟩ ∈ G, as outlined in Theorem 2.1.
This ensures that:

Qϕi
(f(s), gs(a)) = Qϕi

(s, a), i = 1, 2.

Similarly, the policy network πθ must be equivariant with respect to the automorphisms in
G, following Definition 2.8. Given that the policy in TD3 is deterministic2, it must satisfy:

πθ(f(s)) = gs(πθ(s)).

As an example, we utilize the pole-balancing problem, as previously shown in Figure 3.1.
This time, we assume a continuous state and action space, where the action space requires
a continuous magnitude of force and a direction applied to the cart. Since TD3 produces
a deterministic policy, it is well-suited for handling such problems that require continuous
action values. The policy and Q-value function then must satisfy the equivariance and
invariance properties, as depicted in Figure 3.3.

3.2.3 Extending Homomorphic Networks to Continuous Settings

To extend the use of homomorphic networks to continuous settings, i.e., continuous state
and action spaces, and to exploit both discrete and continuous symmetries, we utilize the
symmetrization-based approach introduced by [64] for constructing invariant and equivari-
ant approximations using neural networks. The method for constructing equivariant layers
discussed in Section 3.1.2 is actually based on this approach, but it is not yet applicable

2Most references use the symbol µ to indicate a deterministic policy, but to avoid confusion in this
work, we use π to denote deterministic policy π(s) and π(a|s) for stochastic policies.
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Figure 3.3: Illustration of the equivariance and invariance properties of the policy and Q-value
function under automorphisms in the pole-balancing problem, where the state and action spaces
are continuous.

for continuous settings and for both continuous and discrete symmetries. The author in
[64] provided two key propositions for constructing invariant and equivariant maps that
are universal and applicable to both kinds of symmetries. For brevity, detailed descriptions
of these propositions are provided in Appendix B. Here, we summarize the modifications
required to enable MDP homomorphic networks to operate in continuous settings.

• Smooth Activation Functions: The first modification involves using smooth con-
tinuous activation functions as point-wise nonlinearities, such as the "tanh" function.
Through trial and error with different activation functions, such as ReLU and its vari-
ants, it is observed that these functions can break the equivariance properties when
the automorphisms are continuous.

• Integration for Continuous Symmetries: The second modification addresses
continuous symmetries, where the automorphism group is infinite. Logically, we
could integrate over the symmetry group G, and the symmetrization formula given
in (3.4) would then be expressed using an integral over the group:

S(W ) =
1

|G|

∫
G
G−1

s WF dµ(h),

where dµ(h) is the Haar measure on G to ensure proper integration over the group,
and |G| represents the measure of the entire group for normalization. While this
approach accounts for continuous symmetries by integrating over all possible trans-
formations in G, it is impractical and computationally expensive. Therefore, sampling
from the symmetry group, such as using equidistant angle sampling, is necessary to
achieve a practical solution. This introduces approximation errors, which require an
equivariance error metric to quantify such deviations. The definition of this error
metric will be introduced in the sequel.
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3.3 MDP Homomorphic Decision Transformer
In this section, we formally define MDP homomorphism within the context of the Decision
Transformer. We then explain how to adapt the Decision Transformer to be homomorphic
by ensuring it adheres to the MDP homomorphism. In this work, we focus on Decision
Transformer, as any success can be naturally extended to trajectory transformers due to
the minimal differences between the two architectures, as outlined in Section 2.2.

3.3.1 MDP Homomorphism in Decision Transformer

Since sequential models, such as the Decision Transformer, operate on sequences of past
states, actions, and RTG values to predict the next action, applying MDP homomorphism
requires preserving sequence-level properties. Thus, instead of focusing solely on indi-
vidual state-action pairs, as in the finite or continuous MDP homomorphism cases, the
homomorphism must be defined over entire sequences. This involves identifying equivalent
trajectories in the original MDPM and mapping them to a single trajectory in the reduced
abstract MDP M̄. This mapping to M̄ preserves both the transition and rewards of the
original MDPM.

An illustrative example is provided in Figure 3.4 for a grid-world problem, building upon
the example in Figure 2.7. In this case, the dotted cells represent barriers, thus the agent
can not reach those cells. Two equivalent trajectories, τ and τ ′, are shown, which are
mapped under the homomorphism to a single trajectory τ̄ in the reduced abstract MDP
M̄.

Figure 3.4: Illustrative example of trajectory mapping under homomorphism in a grid-world
problem, where the dotted cells are barriers.

Formally, a trajectory in an MDP, as previously defined in equation (3.9), is represented
as a sequence of state-action pairs of length H:

τ = {(s0, a0), (s1, a1), . . . , (sH , aH)},

where s ∈ S and a ∈ As for t = 0, 1, . . . ,H.

We can extend the continuous and finite MDP homomorphism framework introduced
earlier by defining Trajectory Equivalence under the MDP homomorphism as follows:
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Definition 3.3: Trajectory Equivalence under MDP Homomorphism

Let h = (f, {gs | s ∈ S}) be a homomorphism mapping fromM to its homomorphic
image M̄, where f : S → S̄ and gs : As → Āf(s). Two trajectories τ and τ ′ are said
to be equivalent under h if their corresponding state-action pairs map to the same
trajectory in M̄:

h(τ) = h(τ ′) =⇒ τ̄ = τ̄ ′.

The mapped trajectory τ̄ in M̄ is defined as:

τ̄ = {(f(s0), gs0(a0)), (f(s1), gs1(a1)), . . . , (f(sH), gsH (aH))}.

The result in Definition 3.3 applies to all homomorphisms, including special cases such
as automorphisms. Now to ensure that the Decision Transformer respects the symmetry
group represented by a set of automorphisms h in a group G ⊆ Aut(M), it is necessary
that Decision Transformer should produce policy π that satisfy the following properties:

π(h[τ ]) = h[π(τ)], ∀h ∈ G, (3.9)

where h[.] represents the corresponding transformation in the action and state spaces in-
duced by h. It is worth mentioning that the Decision Transformer augments its trajectory
with RTG values, as explained in Section 2.2. These values, as the case with rewards, are
also invariant under homomorphism according to Definitions 2.2 and 3.2.

3.3.2 Constructing MDP Homomorphic Decision Transformer

In this section, we aim to construct an MDP Homomorphic Decision Transformer by util-
izing the equivariant layers introduced in Section 3.1.2. Our goal, as defined in 3.9, is
to ensure that if two symmetric trajectories are fed through the Decision Transformer,
their predicted action sequences should be equal, i.e., the equivariance property holds.
This property is preserved when using equivariant layers even without any training, as
explained in Section 3.1.2, because the basis of the equivariant subspace {Vi} is fixed, and
the coefficients ci do not violate equivariance. Any linear combination of symmetric basis
matrices produces a symmetric weight matrix, therefore we can utilize an equivariance
error metric as a sanity check to test whether the equivariance holds. This metric will be
introduced later in the sequel.

Furthermore, we follow a mechanistic approach inspired by [65], starting from the embed-
ding layer, incrementally adding Decision Transformer components (explained in detail in
Section 2.2.2), and analyzing their impact on the equivariance property. This approach
is possible due to the use of residual connections in the Transformer architecture, which
forms a residual stream acting as a communication channel. The residual stream itself
does not perform any processing; instead, all layers communicate through it, where each
layer reads information from the residual stream, applies a transformation, and writes the
result back into the residual stream [65].

It is worth reiterating that we do not use positional encoding in our work for two main
reasons. First, because works such as [54] and [55] suggest that the causal attention
mechanism, which limits attention to one direction in the sequence, provides the model
with sufficient positional information, so there is actually no need for positional encoding.
Second, positional encoding breaks the equivariance property.

After performing this mechanistic approach, we found that the most important compon-
ents that need to satisfy the equivariance property are the embedding layers, linear decoder
layers, and the attention mechanism. Point-wise MLPs do not break the equivariance prop-
erties since they are performed independently at each position in the sequence, meaning
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there is no communication occurring between different positions in the sequence. Addi-
tionally, normalization layers and dropout layers do not break the equivariance property.

We illustrate the mechanistic approach in Figure 3.5, which is composed of three main
steps. In each step, a new component is added to the residual stream, and we test whether
the equivariance property still holds. The equations on the right are given in tensor repres-
entation for clarity. The weights symbolized as W in embedding layers and the attention
mechanism, are replaced by their equivariant versions for MDP Homomorphic Decision
Transformer.

We conclude this section with high-level algorithmic steps for the Decision Transformer
given in Algorithm 3.

Algorithm 3: Decision Transformer
[1]:input: Decision Transformer θ0, dataset of trajectories D = {τi}
[2]:for k = 0, 1, 2, . . . do
[3]: Sample a batch of trajectories Bk = {τi} from D, where each trajectory τi consists of

states st, actions at, and return-to-go (RTG) values RTGt

[4]: Embed the input sequence I = {(st, at,RTGt)}Tt=1 using the embedding layer to
produce token embeddings

[5]: Pass embeddings through the transformer block and then use linear decoder layer to
predict the next actions ât

[6]: Compute the loss function:

L(θ) = 1

|Bk|T
∑
τ∈Bk

T∑
t=1

∥ât − at∥2 ,

where ât is the predicted action and at is the ground-truth action from the dataset
[7]: Update transformer parameters θ by minimizing L(θ) using stochastic gradient

descent with the Adam optimizer
end
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Figure 3.5: Illustration of the mechanistic approach, showing the incremental addition of com-
ponents to the residual stream. The equations on the right represent the transformations applied
in each step starting from input sequence X until output Y .
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4 Experiments

Following the methodology outlined in Chapter 3, which comprises three main parts, we
now present the experimental results for each part. The primary objective of these ex-
periments is to demonstrate that exploiting the symmetries present in the environments
improves sample efficiency and enables the learning of highly generalizable policies. To
reiterate, generalization here refers to an agent’s ability to transfer learned behaviors from
one symmetric sample to others. This chapter is organized as follows: we first introduce
the simulation environments used in the experiments, then describe the implementation
details and fine-tuning procedure. Finally, we present and analyze the results for the
different algorithms.

4.1 Environments
We evaluated our methodology on three RL control tasks that exhibit discrete symmetry:
CartPole and Inverted Pendulum, all part of the Gymnasium benchmark suite [35]. The
CartPole environment is used to evaluate the MDP homomorphic PPO algorithm, while
the Inverted Pendulum, with its continuous state and action spaces, is utilized to evaluate
the MDP homomorphic TD3 and MDP homomorphic Decision Transformer.

CartPole and Inverted Pendulum Environments

The CartPole and Inverted Pendulum are variants of the classic pole-balancing problem
defined in [5]. They differ in two main aspects:

• Action Space: The CartPole environment uses a discrete action space, where the
agent exerts a fixed force either left or right. In contrast, the Inverted Pendulum
has a continuous action space, requiring the agent to output precise force values to
balance the pole.

• Physics Model: CartPole employs a basic physics model, which uses simplified
assumptions such as linear dynamics and uniform conditions without advanced in-
teractions like friction or contact forces. In comparison, the Inverted Pendulum relies
on an advanced simulator (e.g., MuJoCo), which incorporates nonlinear dynamics,
complex interactions, and features like variable gravity.

A detailed comparison of these environments is provided in Table 4.1.

4.1.1 Symmetry in CartPole and Inverted Pendulum

Both the CartPole and Inverted Pendulum environments exhibit reflection symmetry over
the vertical axis. The symmetry group for these environments, denoted as G, consists
of two elements: the identity automorphism he on the state-action space S × A, and
an automorphism h1 representing the vertical reflection f on the state space S. In the
CartPole environment, this reflection results in a swap in the action space A, where a left
action becomes right and vice versa. For the Inverted Pendulum, the reflection changes
the direction of the force applied to the base.

As outlined in Section 3.1.2, the transformations required for constructing equivariant lay-
ers must be linear and represented as matrices. Table 4.2 shows how these automorphisms
are represented as matrices. Additionally, for value networks, the automorphisms need to
obey the invariance relation as explicitly stated in Definition 2.10, therefore the output
transformation needs to be always the identity, which ensures that the network outputs
the same value for symmetric states or action-dependent states.
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Environment CartPole Inverted Pendulum

Simulation
Frame

State Space

The state space is a 4-dimensional vector:

Xstate =
(
x θ ẋ θ̇

)
x: Position of the cart (slider).
θ: Vertical angle of the pole.
ẋ: Rate of change of the cart (slider) position.
θ̇: Rate of change of the pole’s angle.

Action Space

Binary action values {0,1} indic-
ating the direction of the fixed
force F applied on the cart:

action ∈ {Fleft, Fright}

Continuous force F applied to
the base, determining force dir-
ection and magnitude.

action ∈ [−Fmax,Fmax]

Objective The goal is to keep the inverted pendulum or pole standing up-
right (within a certain angle limit) for as long as possible.

Table 4.1: Comparison of CartPole and Inverted Pendulum Environments

Automorphism CartPole Inverted Pendulum

he = (fe, ges) F e =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Ge

s =

(
1 0
0 1

)
F e =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Ge

s =
(
1
)

h1 = (f1, g1s) F 1 =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


G1

s =

(
0 1
1 0

)
F 1 =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


G1

s =
(
−1
)

Table 4.2: Automorphisms and their matrix representation for CartPole and Inverted Pendulum
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4.2 Metrics
A key metric used throughout all experiments is the episodic return, which represents the
total reward collected by an agent per episode. Formally, the episodic return for the ith
episode, denoted as Ri, is defined as:

Metric 4.1: Episodic Return

Ri =

Ti∑
t=0

Rt,

where:
• Ti is the final time step of the ith episode,
• Rt is the reward received at time step t.

Episodic returns indicate the performance or success of an agent in completing a task
within a single episode. By comparing the growth rate of episodic returns between different
policies, we can assess their relative sample efficiencies. An agent whose episodic returns
improve more quickly with the same number of training episodes is considered more sample-
efficient.

The episodic return indicates how an agent performs per episode and not during the course
of training. Thus, a numerical indicator is necessary to compare between policies, especially
when fine-tuning, where a quantitative measure of overall performance (i.e. over the entire
course of training) is needed. Therefore, we use the cumulative average return metric,
inspired by [6]. This metric provides the average total return obtained per episode across
all completed episodes up to a given point. An agent with higher cumulative average
returns is more sample-efficient than one with lower cumulative average returns, as it
consistently achieves higher rewards per episode on average. Formally:

Metric 4.2: Cumulative Average Return

The cumulative average return R̄(n) after n completed episodes is given by:

R̄(n) =
1

n

n∑
i=1

Ri, (4.1)

where:
• n is the number of completed episodes,
• Ri is the total reward obtained in the ith episode.

Intuitively, as also noted by [29], leveraging symmetries present in the environment can
accelerate learning. That is to say, if the agent exploits one symmetry, it can learn approx-
imately twice as fast, and if the agent exploits two symmetries, learning can be up to four
times faster. This efficiency can be rooted in the agent’s ability to generalize its learned
behavior from one symmetric state to others.

To evaluate the agent generalization across symmetric states, we use the equivariance error
metric applied to the policy, formally defined as follows:
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Metric 4.3: Equivariance Mean Absolute Error for Policy

Let hi = (f i, gis) denote an automorphism in the symmetry group G. The equivari-
ance error for the policy πθ is defined as:

Eequiv,π =
1

|G|

|G|∑
i=1

∣∣πθ(f i(s))− gis(πθ(s))
∣∣ ,

where:
• |G| is the number of automorphisms in the symmetry group G,
• f i represents the transformation of the state s under the ith automorphism,
• gis is the corresponding transformation applied to the policy’s output πθ(s)

under the ith automorphism.

Similarly, we use the invariance error metric to measure whether the value network outputs
consistent values for symmetric states.

Metric 4.4: Invariance Mean Absolute Error for Value Functions

Let hi = (f i, gis) denote an automorphism in the symmetry group G. The invariance
error for a state-value network Vϕ or action-value network Qϕ is defined as follows:
For the V -network:

Einvar,V =
1

|G|

|G|∑
i=1

∣∣Vϕ(f
i(s))− Vϕ(s)

∣∣ ,
For the Q-network:

Einvar,Q =
1

|G|

|G|∑
i=1

∣∣Qϕ(f
i(s), gis(a))−Qϕ(s,a)

∣∣ ,
where:

• |G| is the number of automorphisms in the symmetry group G,
• f i represents the ith transformation applied to the input state s,
• gis represents the ith transformation applied to the action a (relevant only for

the Q-network).

These metrics evaluate whether policy or value networks output consistent actions across
all symmetric states. Ideally, the result should be zero for a policy or a value network
that perfectly respects the symmetry. While this is achievable for finite action spaces, in
continuous action spaces, the policy may produce an action that is as close as possible to
the action produced for a symmetric state but not exactly the same, so the error will not
be zero. Therefore, either equivariance or invariance metrics serve as sanity checks and
also evaluate approximation errors.

It is worth mentioning that in the case of continuous action spaces, performing feature
permutation on the intermediate layers 1, which theoretically should not impact equivari-
ance according to [27] and [63], can result in hard constraints on the network turning into
soft ones. These constraints then act as regularizers, meaning they encourage the policy
or value network to be equivariant or invariant.

1For value networks, since the output transformation is the identity, symmetrization can lead to all
weights being zeroed when the symmetry is a reflection, as in the case of the Inverted Pendulum. To avoid
this, feature permutation should be applied to the intermediate layers.
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4.3 Implementation and Fine-tuning Procedure
The implementations of the TD3 and PPO algorithms are based on the CleanRL frame-
work [66], which offers high-quality, single-file implementations for most DRL algorithms.
Additionally, we utilized the symmetrizer package [27] to construct equivariant layers and
build MDP homomorphic networks. These networks serve as either policy and value net-
works in PPO and TD3. For the decision transformer implementation, we used the official
code base provided by the authors [14] to develop a single-file implementation that in-
cludes both the standard decision transformer and its MDP homomorphic version using
the symmetrizer package [27].

Furthermore, since the Decision Transformer is trained in an offline fashion, as explained in
Section 2.1.3, we needed to collect trajectories and form a dataset. We followed an approach
similar to the D4RL dataset [67], where we collected a dataset containing both optimal and
suboptimal trajectories. The optimal trajectories (expert) were collected using a trained
TD3 policy, as the Decision Transformer was evaluated only on the inverted pendulum
environment. The suboptimal trajectories (medium) were collected by training a TD3
policy and performing early stopping after 20,000 interactions. Note that the TD3 policy
used here was the conventional version and not the MDP homomorphic variant.

For experiment tracking and visualization, we integrated Weights and Biases (W&B), which
enables us to log hyperparameters, monitor performance metrics, and compare different
training runs. Hyperparameter fine-tuning was also automated using W&B Sweeps.

We employed a Bayesian optimization approach for hyperparameter search. The hyper-
parameter space was defined around the default values provided for each algorithm, with
the mean centered on the defaults and a standard deviation selected to cover a logical
range for each parameter. The primary metric for fine-tuning was the cumulative average
return, as defined in 4.2, which favors hyperparameters leading to faster convergence (i.e.
higher sample efficiency). Each environment was run in parallel with two instances, each
using a different seed.

It was observed that all algorithms tended to converge to their default hyperparameters as
trials progressed, except for the learning rate. The MDP homomorphic networks required
higher learning rates, which we attribute to smoother loss landscapes for both the actor
and value networks compared to conventional networks of each algorithm. This observation
aligns with [27], which also used higher learning rates for MDP homomorphic networks.

After completing hyper-parameter tuning, we ran each algorithm to on randomly selected
5 seeds for both the MDP homomorphic and conventional versions of each algorithm.
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4.4 Results
This section presents the experimental results for MDP homomorphic and conventional
versions of PPO, TD3, and Decision Transformer. The focus is on determining whether
symmetry exploitation in the environment impacts sample efficiency and generalization.
Each subsection compares the performance of the conventional algorithm with its MDP
homomorphic version.

4.4.1 MDP Homomorphic PPO

The primary objective of this experiment is to replicate the results of [27] and establish
that exploiting symmetry in the CartPole environment by encoding it as constraints on the
parameter space of the policy and value neural networks is effective. The success of these
experiments motivated our further extensions into continuous settings using alternative
algorithms such as TD3, and higher-capacity models like the Decision Transformer.

We present training curves of episodic returns and cumulative average returns, aggregated
across five random seeds for both standard PPO and MDP homomorphic PPO. The curves
represent the mean performance, while the shaded regions indicate the range (minimum to
maximum) of the five seeds. As shown in Figures 4.1 and 4.2, MDP Homomorphic PPO
outperforms the standard PPO in terms of convergence speed and thus sample efficiency.

Figure 4.1: Training curves for episodic returns on CartPole environment. The orange curve
represents the standard PPO, while the blue curve represents the MDP homomorphic PPO. The
MDP homomorphic PPO converges faster to the maximum episodic return of 500, which indicates
greater sample efficiency.

Ammar Alhannafi University of Twente



CHAPTER 4. EXPERIMENTS 43

Figure 4.2: Training curves for cumulative average returns CartPole environment. The orange
curve represents the standard PPO, while the blue curve represents the MDP homomorphic PPO.
The MDP homomorphic PPO accumulates higher returns more quickly, which also indicates greater
sample efficiency.

4.4.2 MDP Homomorphic TD3

The primary objective of this experiment is to demonstrate that MDP homomorphisms
can be extended to continuous control tasks by firstly obeying the conditions defined in
3.2, such as the continuity of the homomorphism maps, and secondly, by applying the
minor modifications discussed in Section 3.2.3. These results are obtained for the Inverted
Pendulum environment.

As in the previous subsection, we present training curves of episodic returns and cumulative
average returns, aggregated across five random seeds for both standard TD3 and MDP
homomorphic TD3. The curves represent the mean performance, while the shaded regions
indicate the range (minimum to maximum) of the five seeds. As shown in Figures 4.3
and 4.4, MDP Homomorphic TD3 outperforms the standard TD3 in terms of convergence
speed. However, the rate of convergence is slower compared to MDP homomorphic PPO
on the CartPole experiments. This can be attributed to several factors: the approximation
error inherent in continuous value and policy networks, as well as the increased complexity
of the Inverted Pendulum environment.

In order to measure generalization across symmetric states, we utilize the equivariance and
invariance error metrics defined in 4.3 and 4.4. Ideally, in MDP homomorphic networks,
these errors should be zero, indicating that the policy or value network produces consistent
behavior across symmetric states.

As shown in Figure 4.5, the equivariance error for the policy network of MDP-homomorphic
TD3 remains near zero throughout training. However, for the Q-Network, this is not
the case. This discrepancy can be attributed to the fact that the output transformation
is the identity, and when input transformations such as reflections are applied during
the symmetrization step (explained in Section 3.1.2), the sampled weights cancel each
other, resulting in zero weights. To address this, we applied feature permutations to
the intermediate layers to prevent weight cancelations. However, it was observed that
feature permutations soften the symmetry constraints, making these constraints act as
regularizers. As shown in Figure 4.6, the invariance error for the Q-Network is high at the
start of training but decreases progressively as training continues.
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Figure 4.3: Training curves for episodic returns on the Inverted Pendulum environment. The
orange curve represents the standard TD3, while the blue curve represents the MDP homomorphic
TD3. The MDP homomorphic TD3 converges faster, which indicates greater sample efficiency also
in continuous settings.

Figure 4.4: Training curves for cumulative average returns on the Inverted Pendulum environ-
ment. The orange curve represents the standard TD3, while the blue curve represents the MDP
homomorphic TD3. The MDP homomorphic TD3 accumulates higher returns more quickly, which
indicates greater sample efficiency in continuous settings.
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Figure 4.5: Comparison between the equivariance errors for the policy network of MDP homo-
morphic TD3 and their standard versions. The equivariance error for the policy of MDP homo-
morphic TD3 remains near zero throughout training, which indicates higher generalization across
symmetric states.

Figure 4.6: Comparison between invariance errors for the Q-value network of MDP homomorphic
TD3 and their standard versions. The invariance error in the Q-Network of MDP homomorphic
TD3 starts high but decreases steadily during training, which reflects improved generalization over
time as symmetry constraints are acting here as regularizers.
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4.4.3 MDP Homomorphic Decision Transformer

The objective of this section is to evaluate the extent to which symmetry exploitation in
state-action sequences ( as explained in Section 3.3 ) improves the sample efficiency of the
Decision Transformer. To this end, we trained both the standard Decision Transformer and
its MDP homomorphic variant on a dataset containing optimal and suboptimal trajectories,
as mentioned previously.

We present the learning curves of episodic returns, using five random seeds for both the
standard Decision Transformer and its MDP homomorphic variant. And as shown in Figure
4.7, some improvement in convergence speed is observed. Regarding the equivariance error,
measured using the metric described in 4.3, we observe that symmetry constraints on the
embedding layers and attention mechanism act as a regularizer due to the permutation of
features performed for the RTG values. As shown in Figure 4.8, the equivariance error is
initially high at the start of training but progressively decreases as training continues.

Figure 4.7: Learning curves of episodic returns for standard Decision Transformer and MDP
Homomorphic variant.

Figure 4.8: Equivariance error during training for the MDP Homomorphic Decision Transformer
and MDP Homomorphic variant.
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5 Conclusion and Recommendations

5.1 Conclusion
This thesis explored improving sample efficiency and generalization in transformer-based
reinforcement learning by leveraging structural symmetries in control tasks. Large-capacity
models like Decision Transformer have shown promise in continuous control tasks but suffer
from data inefficiency, meaning they require large amounts of data to perform and gener-
alize effectively. Therefore, our primary motivation is to mitigate sample inefficiency and
increase generalization in transformer-based reinforcement learning by leveraging struc-
tural symmetry at the control behavior level.

We utilized MDP Homomorphism, a framework designed to simplify MDPs by identifying
structurally similar states and actions, thereby creating abstract, reduced versions of the
original MDPs. Inspired by [28], we established a connection between MDP homomorph-
isms and equivariant neural networks via the notion of automorphisms. This enabled us
to constrain neural networks to respect the symmetries inherent in the environment.

Traditionally, the MDP homomorphism framework has been limited to discrete control
problems with finite state and action spaces and lacked provisions for handling continuous
symmetries. To address this, we first validated the framework by replicating results from
prior work [27], which employed group-equivariant learning to enforce MDP homomorph-
ism in environments with discrete action spaces. Our replication results in Section 4.4.1
confirmed that leveraging symmetry improves sample efficiency.

Subsequently, we extend the MDP homomorphism formulation from finite to continuous
settings to address control problems with continuous state and action spaces, as well as
the exploitation of both discrete and continuous symmetries. Building on the successful
replication results, we show that with minor modifications we can extend the automated
algorithm for constructing equivariant layers from [27] to handle the continuous settings.
Our results in Section 4.4.2 demonstrate that the TD3 algorithm becomes more sample-
efficient and highly generalizable to unseen states.

Having generalized MDP homomorphisms to continuous domains, we applied the concept
to sequence models, specifically Decision Transformers. This involved introducing the
notion of trajectory equivalence under MDP homomorphism and integrating equivariant
neural networks from [27] into the transformer architecture. The results in Section 4.4.3
indicate some improvement in sample efficiency.

Therefore, our findings confirm the hypothesis:

Proven Hypothesis 1

Exploitation of symmetries in RL improves sample efficiency and model generaliza-
tion across symmetric states and actions.

5.2 Recommendations
The findings of this thesis demonstrate the potential of leveraging structural symmetries
to improve sample efficiency and generalization in reinforcement learning and transformer-
based reinforcement learning. We highlight several areas for improvement and future ex-
ploration:

1. Due to time constraints, we were unable to fully implement and evaluate our meth-
odology on the Reacher environment, which exhibits continuous symmetries. Future
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work can focus on evaluating the MDP homomorphism framework by testing whether
it can exploit continuous symmetry to improve sample efficiency and investigating
whether the MDP Homomorphic Network, constrained by elements representing con-
tinuous symmetries, introduces excessive constraints that limit the expressivity of the
network. Since we have already analyzed and studied the Reacher environment the-
oretically, details regarding its setup and proofs related to MDP homomorphism are
provided in Appendix D.

2. While the equivariant layer construction by [27] proved effective, it introduces com-
putational overhead during training. For example, a standard RL algorithm such
as PPO or TD3 requires only one-third of the training time compared to the same
algorithm integrated with an MDP homomorphic network. Similarly, in the case of
the MDP homomorphic Decision Transformer architecture, training time increased
from 1.5 hours with the conventional architecture to 6 hours with the equivariant
layers.
Thus, further investigation is required to either optimize the current method or ex-
plore alternative methodologies based on the symmetrization approach by [64] for
building equivariant networks. Additionally, current research on equivariant MLP
construction is limited, as most studies focus on CNNs with imagery data as input.
One notable exception is the work by [68], which introduces methods for construct-
ing equivariant MLPs for both discrete and continuous symmetries. This approach
could serve as a promising candidate for use as an equivariant layer in MDP homo-
morphic networks. However, further analysis is needed to establish its efficiency and
practicality.

3. For the Decision Transformer architecture, where only future actions are predicted
based on past sequences of actions, states, and RTG, it would be worth exploring
MDP Homomorphic Decision Transformers in a setup where predictions include not
only actions but also states and reward values, as in the Trajectory Transformer. A
trained agent in this setting could be utilized as a predictive model that is equivariant
with respect to the environment’s symmetry. This direction presents an interesting
avenue for future work.
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A Continuous Optimal Value Equivalence

In this section, we prove the continuous optimal value equivalence based on the m-step
optimal discounted action-value function. The proof is inspired by the finite case presented
in [28].

Theorem A.1: Continuous Optimal Value Equivalence

Let M = (S,A, T , r, γ) be a continuous MDP, and let M̄ = (S̄, Ā, T̄ , r̄, γ) be its
homomorphic image under the continuous MDP homomorphism h = ⟨f, {gs | s ∈
S}⟩, where:

h((s, a)) = (f(s), gs(a)).

Then, for any (s, a) ∈ S ×A:

Q∗(s, a) = Q̄∗(f(s), gs(a)).

Proof. We prove this by induction on the non-negative integer m, where Qm(s, a) represents
the m-step optimal discounted action-value function, as a specialized form of (2.10):

Qm(s, a) = r(s, a) + γ

∫
s′∈S
T (s′ | s, a)Vm−1(s

′) ds′, (A.1)

where
Vm−1(s

′) = max
a′∈As′

Qm−1(s
′, a′). (A.2)

Base Case (m = 0) For m = 0, the action-value function is defined as:

Q0(s, a) = r(s, a).

Given the reward preservation property from Definition 3.2:

r̄(f(s), gs(a)) = r(s, a),

we have:
Q0(s, a) = Q̄0(f(s), gs(a)).

This establishes the base case.

Inductive Step (m ≥ 1) Assume that for some m ≥ 1, the equivalence holds for all
steps up to m− 1:

Qm−1(s, a) = Q̄m−1(f(s), gs(a)) for all (s, a) ∈ S ×A.

We now show that:

Qm(s, a) = Q̄m(f(s), gs(a)) for all (s, a) ∈ S ×A.

Starting from equation (A.1), we apply the induction hypothesis:

Qm−1(s
′, a′) = Q̄m−1(f(s

′), gs′(a
′)) for all (s′, a′) ∈ S ×A.

Thus:

Vm−1(s
′) = max

a′∈As′
Qm−1(s

′, a′) = max
a′∈As′

Q̄m−1(f(s
′), gs′(a

′)) = V̄m−1(f(s
′)).
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Substitute the continuous homomorphism properties from Definition 3.2 into equation
(A.1):

r̄(f(s), gs(a)) = r(s, a),

T̄ (f(s′) | f(s), gs(a)) =
∫
s′′∈f−1(s̄′)

T (s′′ | s, a) ds′′,

we get:

Qm(s, a) = r̄(f(s), gs(a)) + γ

∫
s̄′∈S̄

(∫
s′′∈f−1(s̄′)

T (s′′ | s, a) ds′′
)
V̄m−1(s̄

′) ds̄′. (A.3)

The corresponding m-step action-value function in M̄ is:

Q̄m(f(s), gs(a)) = r̄(f(s), gs(a)) + γ

∫
s̄′∈S̄
T̄ (s̄′ | f(s), gs(a))V̄m−1(s̄

′) ds̄′. (A.4)

Since equations (A.3) and (A.4) are identical, we have:

Qm(s, a) = Q̄m(f(s), gs(a)) for all (s, a) ∈ S ×A.

Conclusion

Since lim
m→∞

Qm(s, a) = Q∗(s, a), it follows that Q∗(s, a) = Q̄∗(f(s), gs(a)).

This completes the proof.
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B Universal Approximations of Equivariant Maps
by Neural Networks

The author in [64] utilizes the Universal Approximation Theorem [69] as a foundational
framework for proposing methods to approximate equivariant and invariant continuous
maps. This theorem establishes that neural networks with non-polynomial continuous
activation functions are capable of approximating any continuous function defined on finite-
dimensional spaces.

Theorem B.1: Universal Approximation Theorem [69]

Let σ : R → R be a continuous activation function that is not a polynomial. Let
V = Rd be a real finite-dimensional vector space. Then any continuous map f :
V → R can be approximated, in the sense of uniform convergence on compact sets,
by maps f̂ : V → R of the form:

f̂(x) =
N∑

n=1

cnσ

(
d∑

k=1

wnkxk + hn

)
,

with some coefficients cn ∈ R, wnk ∈ R, and hn ∈ R.

Building on theorem B.1, the study considers functions that remain unchanged under the
action of a group Γ. These are known as invariant functions. The space V is assumed to
carry a representation R of the group Γ, mapping group elements to linear transformations
of V . A map f : V → U is Γ-equivariant if

f(Rγx) = Rγf(x)

for all γ ∈ Γ and x ∈ V . The key result for invariant functions is:

Proposition B.1: Invariant Approximation [64]

Let Γ be a compact group, and V a finite-dimensional Γ-module with a repres-
entation R : Γ → GL(V ). Any continuous Γ-invariant map f : V → R can be
approximated by Γ-invariant maps f̂ : V → R of the form:

f̂(x) =

∫
Γ

N∑
n=1

cnσ (ln(Rγx) + hn) dγ,

where:
• cn ∈ R are weights assigned to each term in the summation,
• hn ∈ R are bias terms for the activation function,
• ln ∈ V ∗ are linear functionals acting on V ,
• σ : R→ R is a continuous non-polynomial activation function,
• dγ is the normalized Haar measure on Γ, ensuring proper integration over the

group.

Next, the study extends to equivariant functions, which transform in a consistent manner
under group actions. Specifically, for two Γ-modules V and U , a map f : V → U is
Γ-equivariant if f(Rγx) = Rγf(x) for all γ ∈ Γ. The result for equivariant functions is:
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NEURAL NETWORKS

Proposition B.2: Equivariant Approximation [64]

Let Γ be a compact group, and V and U be finite-dimensional Γ-modules with
respective representations R : Γ → GL(V ) and R : Γ → GL(U). Any continuous
Γ-equivariant map f : V → U (including the invariant case when U = R) can be
approximated by Γ-equivariant maps f̂ : V → U of the form:

f̂(x) =

∫
Γ

N∑
n=1

R−1
γ ynσ (ln(Rγx) + hn) dγ,

where:
• yn ∈ U are output vectors (scalars in the invariant case),
• R−1

γ is the inverse of the group representation on U ,
• ln ∈ V ∗ are linear functionals extracting components of the input,
• hn ∈ R are biases for the activation function,
• σ : R→ R is a fixed continuous non-polynomial activation function,
• dγ is the normalized Haar measure on Γ.
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C TD3 Algorithm

Algorithm 4: TD3 [62]
[1]:input: initial policy parameters θ, Q-function parameters ϕ1, ϕ2, empty replay buffer D
[2]:Set target parameters equal to main parameters: θtarg ← θ, ϕtarg,1 ← ϕ1, ϕtarg,2 ← ϕ2

[3]:repeat
[4]: Observe state s and select action a = clip(πθ(s) + ϵ, aLow, aHigh), where ϵ ∼ N
[5]: Execute action a in the environment
[6]: Observe next state s′, reward r, and done signal d indicating if s′ is terminal
[7]: Store (s, a, r, s′, d) in replay buffer D
[8]: if s′ is terminal then

Reset the environment state
end

[9]: if it’s time to update then
[10]: for j in range (however many updates) do
[11]: Randomly sample a batch of transitions, B = {(s, a, r, s′, d)} from D
[12]: Compute target actions:

a′(s′) = clip(πθtarg(s
′) + clip(ϵ,−c, c), aLow, aHigh), ϵ ∼ N (0, σ)

[13]: Compute targets:

y(r, s′, d) = r + γ(1− d) min
i=1,2

Qϕtarg,i(s
′, a′(s′))

[14]: Update Q-functions by one step of gradient descent using:

∇ϕi

1

|B|
∑

(s,a,r,s′,d)∈B

(Qϕi
(s, a)− y(r, s′, d))

2
, for i = 1, 2

[15]: if j mod policy_delay = 0 then
Update policy by one step of gradient ascent using:

∇θ
1

|B|
∑
s∈B

Qϕ1(s, πθ(s))

[16]: Update target networks with:

ϕtarg,i ← ρϕtarg,i + (1− ρ)ϕi, for i = 1, 2

θtarg ← ρθtarg + (1− ρ)θ

end
end

end
until convergence
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D Reacher Environment

The reacher environment is a two-joint robotic arm that must move its end-effector (finger-
tip) close to a target, which spawned at random position. The Reacher exhibits continuous
symmetry, which can be explained as follows: imagine the target is positioned on a circle
with a fixed radius and that the initial position of the end-effector is on this circle. Then, if
the target and the first link are rotated by the same angle θ while the second link remains
fixed, the fingertip traces a circular path. The sequence of actions leading the fingertip to
the target under these conditions would be equivalent and exhibit continuous rotational
symmetry in the state-action pairs. This continuous symmetry is characterized by the
SO(2), which represents the group of all rotations by any angle around a central point in
a 2D plane. It is continuous, implying an infinite set of possible rotational symmetries.

We can also exploit discrete symmetry in the Reacher, which would be subsets of SO(2),
such as C4 and C8. These groups denoted as Cn represents the cyclic group of order n,
corresponding to rotations by discrete angles, specifically multiples of 2π

n radians. For C4,
this means rotations by increments of π

2 radians. An example of π
2 rotation is given in

Figure D.1.

Figure D.1: 90-degree rotation is applied to the first joint and the target, where it can be
intuitively interpreted as two equivalent state-action pair
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Mathematically, for the Reacher environment, a state s ∈ S is represented as 1:

s =



cos(θ1)
sin(θ1)
cos(θ2)
sin(θ2)

xt
yt
θ̇1
θ̇2

xf − xt
yf − yt


(D.1)

where:

• θ1 and θ2 are the angles of the first and second joints, respectively.
– θ1 is the absolute angle between the first link and the x-axis.
– θ2 is the relative angle between the first(i.e. when extended) and second links.

• θ̇1 and θ̇2 are the rate of change of the first and second joints, respectively.
• xt and yt are the coordinates of the target position.
• xf and yf are the coordinates of the fingertip(endeffector).

The action space for the Reacher environment is represented as:

a = (τ1, τ2)

where:

• τ1 is the torque applied to the first joint.
• τ2 is the torque applied to the second joint.

When applying the transformation g ∈ SO(2), which is a rotation by an angle θ, the state
and action transformation representing the automorphism h are represented as matrices
as follows:

F =



R(θ) 0 0 0 0 0
0 I 0 0 0 0
0 0 R(θ) 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 R(θ)

 (D.2)

where R is the 2-dimensional rotation matrix applied on all state elements except at the
rate of change terms which will be invariant in this case and thus multiplied by the identity
matrix I.

R(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
(D.3)

And the state-dependent action transformeration is just the identity since the sequence of
applied torques leading to the target does not change when applying rotation:

Gs =

[
1 0
0 1

]
(D.4)

1The state representation is given based on the Gymnasium API with a slight difference that we have
swapped the second element with third to be able to apply rotation on the angles i.e. θ1 and θ2
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Transition Invariance Proof

Generally speaking, we presume either no or partial knowledge about the dynamics of
the environment when trying to solve a problem within RL. However, since the two-link
manipulator is easy to model, we can derive the equations of motion using the Lagrangian
and prove that if the dynamics are invariant to any rotation occurring at the first link,
then the transition invariance condition does hold.

The following are some definitions for the two-link manipulator and the coordinate system
used when deriving the equation of motions. These definitions are deduced from the XML
file used to model the environment in MuJoCo.

• Two links of lengths l1 and l2.
• Two joints with angles θ1 and θ2:

– θ1 is the absolute angle between the first link and the x-axis.
– θ2 is the relative angle between the first(i.e. when extended) and second links.

• Masses:
– m1: Mass of the first link(uniform).
– m2: Mass of the second link(uniform).

• Inertia:
– I1: Moment of inertia of the first link.
– I2: Moment of inertia of the second link.

• Coordinates:
– (x1, y1): Position of the center of mass of the first link.
– (x2, y2): Position of the center of mass of the second link.

Kinematics

The positions of the centers of mass are given by:

x1 =
l1
2
cos(θ1)

y1 =
l1
2
sin(θ1)

x2 = l1 cos(θ1) +
l2
2
cos(θ1 + θ2)

y2 = l1 sin(θ1) +
l2
2
sin(θ1 + θ2)

Kinetic Energy

The kinetic energy T of the system includes translational and rotational kinetic energy:

T =
1

2
m1(ẋ

2
1 + ẏ21) +

1

2
I1θ̇

2
1 +

1

2
m2(ẋ

2
2 + ẏ22) +

1

2
I2(θ̇1 + θ̇2)

2

First, we need to compute the velocities:

ẋ1 = −
l1
2
sin(θ1)θ̇1

ẏ1 =
l1
2
cos(θ1)θ̇1

ẋ2 = −l1 sin(θ1)θ̇1 −
l2
2
sin(θ1 + θ2)(θ̇1 + θ̇2)

ẏ2 = l1 cos(θ1)θ̇1 +
l2
2
cos(θ1 + θ2)(θ̇1 + θ̇2)
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Now, substitute these into the kinetic energy expression:

T =
1

2
m1

[(
− l1

2
sin(θ1)θ̇1

)2

+

(
l1
2
cos(θ1)θ̇1

)2
]
+

1

2
I1θ̇

2
1

+
1

2
m2

[(
− l1 sin(θ1)θ̇1 −

l2
2
sin(θ1 + θ2)(θ̇1 + θ̇2)

)2
+
(
l1 cos(θ1)θ̇1 +

l2
2
cos(θ1 + θ2)(θ̇1 + θ̇2)

)2]
+

1

2
I2(θ̇1 + θ̇2)

2

By simplifying we obtain:

T =

(
1

8
m1l

2
1 +

1

2
m2l

2
1 +

1

2
I1

)
θ̇21 +

(
1

2
m2

l22
4
+

1

2
I2

)
(θ̇1 + θ̇2)

2 +m2l1l2 cos(θ2)θ̇1(θ̇1 + θ̇2)

Potential Energy

Given that the Reacher environment operates in the xy-plane and z = 0, the potential
energy component due to gravity can be ignored.

Lagrangian

The Lagrangian L is the difference between the kinetic and potential energy:

L = T − V = T

Euler-Lagrange Equations

The Euler-Lagrange equations for each generalized coordinate qi are:

d

dt

(
∂L
∂q̇i

)
− ∂L

∂qi
= 0

Apply this to the generalized coordinates θ1 and θ2. And putting it all together, the
equations of motion (EOM) can be written in the matrix form:

M(q)q̈ + C(q, q̇) = 0

Where q =

[
θ1
θ2

]
, and:

M(q) =

[
1
4m1l

2
1 +

1
2m2l

2
1 + I1 +

1
8m2l

2
2

1
8m2l

2
2 +

1
2m2l1l2 cos(θ2)

1
8m2l

2
2 +

1
2m2l1l2 cos(θ2)

1
8m2l

2
2 + I2

]

C(q, q̇) =

[
−m2l1l2 sin(θ2)θ̇2 −m2l1l2 sin(θ2)(θ̇1 + θ̇2)

m2l1l2 sin(θ2)θ̇1 0

]
Since the inertia matrix and Coriolis matrix do not depend on θ1. Then any change to
this angle will render the transition dynamics invariant. This is due to the fact of the
selected relative coordinate system, where there is no dependence between θ1 and θ2 i.e.
changing the angle of the first link does not lead to a change in the angle of the second.
However, even if another selection of coordinates is made where there is no dependence,
we can apply this rotation not only to the first link but also to the second one, which can
still lead to transition invariance.
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Reward Invariance Proof
In the Reacher environment, the reward is typically defined as:

R(s, a) = R((xf , yf , xt, yt), (τ1, τ2)) = −
√
(xf − xt)2 + (yf − yt)2 − λ(τ21 + τ22 )

where:

• (xf , yf ) are the coordinates of the fingertip (end-effector).
• λ is a regularization parameter to penalize large torques.

Since the group SO(2) (rotations in the plane) is distance-preserving, the distance between
the end-effector and the target will not change under such rotations. Therefore, rotating
the first link and the target will render the reward invariant. To prove this mathematically,
we need to show that the reward function remains unchanged under the transformations
R(s, a) = R(F [s], Gs[a]).

When applying the rotation transformation F , both the end-effector position (xf , yf ) and
the target position (xt, yt) will be rotated by the same angle θ. Under rotation g ∈ SO(2),
the coordinates transform as:

(x′t, y
′
t) = (xt cos(θ)− yt sin(θ), xt sin(θ) + yt cos(θ))

(x′f , y
′
f ) = (xf cos(θ)− yf sin(θ), xf sin(θ) + yf cos(θ))

The distance between the transformed end-effector and the transformed target after trans-
formation is calculated as follows:

d′ =
√
(x′f − x′t)

2 + (y′f − y′t)
2

=

√(
(xf cos(θ)− yf sin(θ))− (xt cos(θ)− yt sin(θ))

)2
+
(
(xf sin(θ) + yf cos(θ))− (xt sin(θ) + yt cos(θ))

)2
We further define intermediate variables:

A = xe cos(θ)− xt cos(θ),

B = yt sin(θ)− ye sin(θ),

C = xe sin(θ)− xt sin(θ),

D = ye cos(θ)− yt cos(θ).

Substituting back the expressions for A, B, C, and D:

A2 = (xe cos(θ)− xt cos(θ))
2 = cos2(θ)(xe − xt)

2,

B2 = (yt sin(θ)− ye sin(θ))
2 = sin2(θ)(yt − ye)

2,

C2 = (xe sin(θ)− xt sin(θ))
2 = sin2(θ)(xe − xt)

2,

D2 = (ye cos(θ)− yt cos(θ))
2 = cos2(θ)(ye − yt)

2.

The cross terms 2AB and 2CD are:

2AB = 2(xe cos(θ)− xt cos(θ))(yt sin(θ)− ye sin(θ)),

2CD = 2(xe sin(θ)− xt sin(θ))(ye cos(θ)− yt cos(θ)).

Since 2AB and 2CD cancel each other out entirely:

2AB + 2CD = 0.
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Combining the terms:

d′ =

√
cos2(θ)(xe − xt)2 + sin2(θ)(yt − ye)2 + sin2(θ)(xe − xt)2 + cos2(θ)(ye − yt)2

Factor out common terms and use the Pythagorean identity cos2(θ) + sin2(θ) = 1:

d′ =

√
(cos2(θ) + sin2(θ))(xe − xt)2 + (cos2(θ) + sin2(θ))(ye − yt)2

=
√
(xe − xt)2 + (ye − yt)2

Therefore, we obtain:
d′ =

√
(xe − xt)2 + (ye − yt)2 = d

Furthermore, the second term of the reward function involves the penalization of the action
magnitudes:

−λ(τ21 + τ22 )

Since the actions τ1 and τ2 are transformed by the identify(i.e., Gs[a] = a), this term
remains unchanged.

Combining both results, we have:

R(F (s), Gs(a)) = −
√
(x′f − x′t)

2 + (y′f − y′t)
2 − λ(τ21 + τ22 )

= −
√
(xf − xt)2 + (yf − yt)2 − λ(τ21 + τ22 )

= R(s, a)

Therefore, we have shown that:

R(s, a) = R(F [s], Gs[a])
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