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Abstract—Autonomous sailing is still in its early stage, espe-
cially compared to autonomous driving. This research addresses
the challenge of object detection in maritime environments using
long-wavelength infrared (LWIR) images, a critical task for
autonomous sailing. While significant progress has been made
in object detection for the automotive industry, resulting in
numerous datasets and benchmarks, the maritime domain lacks
similar research and resources. The maritime environment differs
a lot from the automotive environment. Cars have lights to
illuminate the roads in the dark and vessels do not. This makes
object detection in infrared images a crucial task for autonomous
sailing. For detecting objects at large distances (500m +), other
sensors like radar and AIS can be used. This research, however,
focuses on maritime object detection at close range (0 to 500m)
using a low-resolution sensor. The objective is to determine
whether inexpensive sensors that produce low-resolution images,
requiring minimal processing power, are sufficient for effectively
performing this task. To enable this research we created a
low-resolution LWIR maritime dataset in the inland area with
approximately 5900 images, 6700 vessel labels and 320 buoy
labels. Three state-of-the-art object detection models –YOLOv11,
Faster R-CNN, and YOLO-FIRI– are evaluated on this dataset
to check their ability to detect objects in low-resolution infrared
images in maritime environment. Each model is trained on the
raw, the colour inverted and the colour inverted + histogram
equalized dataset. The results show that the best performing
model in terms of recall is Faster R-CNN. The model with the
highest mAP@0.5 is YOLOv11 in combination with inversion.

Index Terms—Autonomous sailing, object detection,
YOLOv11, Faster-RCNN, dataset, long wave infrared, low
resolution

I. INTRODUCTION

The detection of maritime objects plays an important role
in autonomous sailing. While sailing on the wide, obstacle-
free ocean, a ship can sail on autopilot using only GPS.
When a ship enters inland waters or harbors, the amount of
passive and active obstacles becomes a lot higher. In order
to sail autonomously in these conditions, the autopilot needs
to see what is happening around itself, in all weather and
lighting conditions. Furthermore, the background on inland
waters in much more complex, making the object detection
harder. High-resolution visual cameras can be used to detect
objects during daylight and most weather conditions, but in

the dark their performance drops significantly. To see in the
dark, infrared cameras can be used. There are two types of
infrared sensors, active and passive. Active sensors require
an infrared light source and capture the reflection. Passive
infrared sensors rely solely on the infrared radiation emitted
by objects. Infrared sensors capture a certain range of in-
frared wavelengths, Near Infrared (NIR), Short Wavelength In-
frared (SWIR), Medium Wavelength Infrared (MWIR), Long
Wavelength Infrared(LWIR) and Far Infrared (FIR). All these
sensors exist in passive and active variants. Passive MWIR,
LWIR and FIR sensors can capture object in the ambient
temperature range. The ranges of wavelength each sensor
captures, along with the corresponding temperature range, is
shown in Table I. Flooding a river with infrared light for
detection using an active sensor requires significant power,
therefore a passive sensor is desired. The passive IR sensor
with the best sensitivity at ambient temperature range is a
LWIR sensor.

TABLE I: Infrared sensors and their wavelength and temper-
ature ranges

Sensor Wavelength [µm] Temperatures [°C]
NIR 0.75 ∼ 1.4 400 ∼ 2600
SWIR 1.4 ∼ 3 50 ∼ 1600
MWIR 3 ∼ 8 0 ∼ 2500
LWIR 8 ∼ 14 0 ∼ 1000
FIR 14 ∼ 1000 -270 ∼ -80

For autonomous sailing, object detection should take place
around the entire ship. Multiple infrared sensors are needed to
capture a 360° view around the ship. High-resolution infrared
sensors are expensive, especially compared to RGB cameras.
A high quality thermal camera suited for maritime environ-
ment with a resolution of 640x480 costs more than C50.000
whereas a high-resolution, high quality RGB camera costs
less than C1.000. Furthermore, processing the high-resolution
images of multiple sensors is very resource intensive. For
detecting objects at larger distances, other sensors like radar
and AIS can be used. For detecting objects in close proximity
to the ship, low-resolution LWIR sensors could be sufficient.



DRAFT

Large objects like ships will still be visible at a fair distance
because they will take up a large number of pixels. Smaller
object like buoys will only become visible when they are closer
to the vessel. This is fine as a ship can sail closer to small
objects like buoys than to other vessels.

State of the art machine learning models like the single-
stage detector YOLO [1] and two-stage detection algorithm
Faster R-CNN [2] are widely used in automotive for object
detection tasks such as pedestrian detection [3], [4], driver
distraction detection [5] and small object detection [6]. Fur-
thermore, research has been done on maritime object detection
in the visible light spectrum [7], [8], high-resolution infrared
spectrum [9]–[14], and fusion of visible and high-resolution
infrared [15], [16]. Preprocessing steps like inversion and
histogram equalization show performance improvement in
object detection in infrared images [12], [17].

The widespread use of object detection models in the
automotive industry has led to a large number of open source
datasets [18]–[23]. Since object detection is relatively new in
the maritime industry there are not many datasets available.
The datasets that are available contain RGB images and high-
resolution NIR images [24] or high-resolution LWIR images
[25]. There is no publicly available maritime dataset with low-
resolution LWIR images captured on inland waters.

While several studies have successfully demonstrated the
potential of object detection models on RGB images, high-
resolution infrared images in maritime environments, and
low-resolution infrared images in non-maritime settings, there
remains a gap in applying these models to low-resolution
infrared images in maritime environments. No suitable
datasets are available to test the models in the mentioned
setting and therefore one has to be created. One of the
challenges in creating a low-resolution infrared dataset is
labeling small objects. It is difficult to see by eye where the
outline of the object is, especially when its temperature is
close to ambient temperature.

To fill this gap in research, this study aims to achieve the
following objectives:

Objective 1 Collect and label a low-resolution long wave
infrared dataset in maritime environment.

Objective 2 Analyze the appearance of objects in infrared
imagery, including the effects of environmental factors such
as reflection and temperature on their visual characteristics.

Objective 3 Evaluate the effectiveness of current state-
of-the-art object detection models in detecting vessels and
buoys in low-resolution infrared images within maritime
environments.

Objective 4 Adapt state-of-the-art object detection models
to a different domain to improve object detection performance.

To address these objectives, this research provides the
following key contributions:
A low-resolution (160x120px) long wave infrared dataset with
5931 images of maritime environment was created. To label
these images a labeling tool was developed by calibrating
the low-resolution infrared camera with a high-resolution
RGB camera. This calibration is needed to be able to label
the objects in the low-resolution infrared images using a
high-resolution RGB image of the same scene. The resulting
labeled dataset has 6744 ship labels and 321 buoy labels.
Images of similar objects in different conditions are compared
to see the effect of reflection and temperature on the images.
The dataset was divided into five equally sized parts, with
each part containing nearly the same number of labels, within
a predefined percentage margin of variation. These subsets
were used to create five different training, validation and
testing splits.
Three object detection models were trained and tested on the
five datasets. The models that were evaluated are YOLOv11,
Faster-RCNN and YOLO-FIRI. All models are trained on each
dataset three times, once without preprocessing, once with
inversion, and once with inversion and histogram equalization.

The paper is structured as follows. Section II refers to work
related to this research and is split into Object Detection
Datasets, Sensor Calibration, Object Detection and Domain
Adaptation. Section III explains how the dataset is collected
and shows how the custom labeling tool is designed with the
calibration between the RGB and IR sensor. How the data is
split, preprocessed and trained is explained in section IV. The
results are presented in section V followed by the discussion
and conclusion in section VI and section VII.

II. RELATED WORK

Object Detection Datasets
One of the first widely used benchmarks for object detection

is the PASCAL Visual Object Classes dataset [26]. The first
version was introduced in 2007 and it contains about 2500
RGB images for training and 2500 images for validation and
testing. The dataset is labeled with 20 classes using bounding
boxes. In total more than 12.000 object are labeled. A more
recent object detection dataset is Microsoft COCO: common
objects in context [27]. COCO is a large-scale object detection,
segmentation, and captioning dataset. It has more than 330.000
images and 1.5 million object instances in 80 object categories.
It is used to evaluate state-of-the-art object detection models.

The KITTI Vision Benchmark suite [18] contains multiple
datasets from various sensors, including stereo visual cameras
and Lidar. The 2D object detection benchmark contains 7.481
training and 7.518 test images with a total of 80.256 labeled
objects. The KITTI Vision Benchmark is widely used to eval-
uate object detection models that are used in automotive for
autonomous driving. Another dataset for autonomous driving
is Nuscenes [19]. It contains data from LIDAR, Camera, IMU
and GPS. It contains 1.2 million camera images with several
types of human, object and vehicle labels. To test object
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detection models on infrared images in the automotive indus-
try, FLIR released the Teledyne FLIR ADAS Dataset [20].
It contains 26.442 annotated infrared images with 520.000
bounding boxes across 15 different object categories. The
resolution of the images is 640x512 and they are captured
with a LWIR sensor.

Shao et al. collected a large-scale dataset of ships called
SeaShips [28]. It contains 31.455 high-resolution (1920x1080)
rgb images and has 40.077 labels of six common ship types.
The background of the images is complex as they are recorded
by surveillance cameras in inland and coastal environment.
The MassMind dataset (Massachusetts Marine INfrared
Dataset) [25] contains 2912 RGB and LWIR images in
maritime environment. The resolution of the infrared images
is 640x512. The dataset does not contain bounding boxes for
object detection but each image is segmented with pixel level
instance segmentation. Therefore this dataset is not directly
usable for object detection. The Singapore Maritime Dataset
[24] consists of RGB and NIR labeled images and has 10
classes containing multiple types of ships, buoys, persons
and planes. The images are captured on the open water
around Singapore and have a resolution of 1920x1080. They
are labeled using bounding boxes. Schöller et al. created
a LWIR dataset in maritime environment [9]. The dataset
contains 21.322 images a 640x480 resolution. The images
were recorded from a ferry sailing in open water. The VAIS
dataset [29] and MARVEL dataset [30] both contain high
resolution RGB and IR images, but do not have bounding
box labels needed for object detection, as they are datasets
for object classification.

Since a lot of research has been done on autonomous
driving there are many datasets available for object detection
in automotive. For object detection in maritime environment
the number of available datasets is much smaller. Especially
in inland waters, which have more complex backgrounds,
the choice narrows down even further. In the case of low-
resolution infrared images in this environment, there are no
choices left.

Sensor Calibration
For labeling the low-resolution infrared images a calibration

between the IR and RGB sensor is needed. Quite some
research has been done on multisensor calibration.

Sher et al. [31] calibrated a RGB and infra-red camera
using AprilTags made out of different materials glued onto
backgrounds of other materials. They used the following
combinations of materials: Cardboard-Acrylic, Wood-Vinyl
and Metal-Vinyl. The best results were obtained using vinyl
AprilTags on metal plates. The paper does not mention the
resolution of the sensors but looking at the pictures it is clear
that their resolution is much higher then 160x120 pixels. They
report a pixel error of ±5 pixels in the y deriction and ±2
pixels in the x direction.

Shibata at al. [32] proposed a method for joint geometric
camera calibration of visible and low-resolution far-infrared

cameras. They designed a calibration target which consists of
a low emissivity background and aluminium plates with a high
emissivity and reflectivity. The two materials are separated by
a thermal insulating layer. This increases the contrast in the
thermal images.

Zhang et al. [33] proposed a method to find an extrinsic cal-
ibration between a LiDAR, RGB camera and thermal camera.
The thermal camera has a resolution of 640x512. They use a
heated target which is detected by each sensor automatically.
For the cameras, the 3D position of the board is determined
by decomposing the homograph matrix.

Fu et al. [34] developed an algorithm to calibrate stereo,
thermal and laser sensors without the need of a target. The
thermal sensor used by Fu et al. has a much higher resolution
than the one used in this research.

The available research shows that a calibration between
an infrared sensor and a RGB camera can be done quite
accurately. The sensors used in the discussed research are
different to the ones used in this research. The resolution of
the infrared sensor is lower. With some adaptations to the
methods in the discussed research a calibration between the
low-resolution infrared sensor and the RGB camera can be
made.

Object Detection
A comparative study [9] between Faster R-CNN, YOLOv3

and R-Net on LWIR images of maritime environment with
a resolution of 640x480 pixels showed that Faster R-CNN
achieved the highest average recall (0.9), while YOLOv3 had
the highest precision (0.98). An interesting observation is that
the recall of Faster R-CNN for small buoys was 10% higher
than for YOLOv3. The better performance on detecting small
objects could indicate that Faster R-CNN will perform better
when the resolution of the images is lower. Although R-Net
scored high precision on all classes, its recall was significantly
lower than that of YOLOv3 and Faster-RCNN. The dataset that
was used for the evaluation of the models contains images at
open water, which have a less complex background than when
taken on inland water.

Li et al. [14] proposed YOLO-FIRI, a method for infrared
object detection based on YOLOv5. It is designed to de-
tect small and weak objects quickly in infrared images. Its
performance was tested on the KAIST infrared pedestrian
dataset [23], which has 640x512 resolution infrared images.
Compared to YOLOv4 they report a mAP increase of approx-
imately 37%.

One challenge faced by object detection models is detecting
small objects. Cao et al. [6] propose a method to improve
the accuracy of detecting small objects in RGB images. They
developed a new loss function for the Faster R-CNN network
which improves the models capability in detecting small
objects. This new loss function could be used to improve the
object detection performance in low-resolution infrared images
as well, as the object will also be small (few pixels).
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Wang et al. [12] developed a lightweight ship detection
method that is deployed on an embedded device. While their
model is slightly outperformed by the YOLOv5 (the most
recent YOLO model at the time), in terms of accuracy and
recall, their model processes about 60 frames per second,
compared to 30 frames per second for the YOLO model.

State-of-the-art object detection models like YOLO and
Faster R-CNN show potential in detecting objects in low
resolution infrared images, but very little research has been
done in maritime environment. Especially when it comes to
low-resolution infrared images on inland waters there is a
clear gap in the available research.

Domain Adaptation
Due to the lack of available data for object detection in

thermal imagery the robustness of the models in this domain
is lower than those in the RGB domain. To improve the
performance and robustness of the IR object detection models
the domain could be adapted to become more similar to the
RGB domain.

To improve the performance of object detection in low
resolution infrared images, Wang et al. [35] applied Contrast
Limited Adaptive Histogram Equalization (CLAHE [36]) to
partially augment the training data. The model (based on
YOLOv5) that was trained on this data outperformed the
model that was trained on the non-augmented data.

In an effort to improve accuracy of driver distraction be-
havior, Liu et al. developed CEAM-YOLOv7 [5]. One of
the features of this model is the data preprocessing step.
They use inversion and CLAHE to adapt the infrared images
before training. By only applying this preprocessing step and
ignoring the other improvements in their proposed model, the
mAP@0.5 increased from 0.612 for YOLOv7 to 0.698 for
CEAM-YOLO.

Beyerer et al. [37] propose a strategy to use CNN-based
object detection frameworks, which are pretrained on RGB
images, by transforming IR images as close as possible to
the RGB domain. They evaluate the performance of a person
detection model trained on RGB data in detecting persons in
thermal images, comparing the results across several tested
preprocessing steps. The images processed with inversion and
histogram equalization achieved the best results.

A method proposed by Guo et al. [38] uses domain
adaptation to augment the training data for pedestrian
detection models. They do this by adapting the widely
available labeled RGB data to synthetic IR data and
augmenting this new data to the RGB data. A pedestrian
detection model is trained on the combined data. According
to their results their method reduces the log-average miss rate
by 12%.

The discussed research shows that domain adaptation meth-
ods can be used to improve the performance of object detection
models in the IR domain. Several studies report that inversion

and histogram equalization have a positive effect on the
performance of the models.

III. DATASET CREATION

To create a properly labeled, low resolution infrared dataset,
several steps were taken. In Section III-A, the hardware and
data collection is described. The tool that was developed to
annotate the data is described in Section III-B. How the data
was labeled is described in Section III-C

A. Hardware Setup and Data Collection

The data collection system consisted of two sensors, a FLIR
Lepton 3.5 (IR) and a Sony IMX390 (RGB), mounted together
on a stand. Both sensors were connected to a NVidia Jetson
through USB and recorded using a custom ROS2 [39] system.

The FLIR Lepton 3.5 is a passive LWIR sensor which has
a resolution of 160x120 pixels, a horizontal field of view of
57°, pixel size of 12µm and records at 9 frames per second.
It can record in RGB and grayscale. This dataset is recorded
in grayscale. Its spectral range is 8 ∼ 14 µm. The Sony
IMX390 has a resolution of 1920x1080, a horizontal field
of view of 59.8° and records at 60 frames per second. The
IR sensor was put in a waterproof box and the RGB camera
was mounted to this box with a custom 3D print. The sensor
combination was mounted to a stand which can easily be
moved around and secured to a vessel. Both sensors captured
at their maximum frame rate and later, the images were
synchronized by matching the closest microsecond timestamp
of the RGB images to each IR image.

The data acquisition was done over the course of two days.
The first day, data was recorded at several locations from
shore in Dordrecht, Papendrecht and Zwijndrecht. The exact
locations are shown in Fig. 1. The recording locations were
chosen in such a way that many different backgrounds and
lighting conditions were captured. The recordings were made
between 11:00 and 15:00 on the 4th of September 2024. The
air temperature was 21°C and it was cloudy.

Fig. 1: Shore recording locations

The second day, the sensors were mounted on the bow
of a vessel. The vessel sailed the route shown in Fig. 2.
Several harbours were entered to collect data of docked
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vessels. Furthermore, vessels and buoys were recorded while
approaching them from several angles. These recordings were
made between 9:00 and 15:00 on the 18th of September 2024.
During the first half of the recording it was cloudy and misty,
during the second half of the recording it was sunny. The
temperature started at 17 °C and went up to 23 °C at the end
of the recording.

Fig. 2: Sailing route recording vessel

B. Data Annotation Tool

Annotating low resolution infrared images is challenging.
When an object is close to the infrared sensor it can be easily
distinguished, as is shown in Fig. 3a. The ship is clearly visible
and can be labeled easily.

a. Object close to IR sensor b. Object close to RGB sensor

Fig. 3: Example of IR and RGB image with object near sensors

When objects are further away from the sensor, it becomes
very hard to see the object because of the very low resolution
of the infrared sensor. In Fig. 4a an example of a ship further
away from the sensor is shown. As you can see, it is very
hard to detect the ship by only looking at the infrared image.
It makes the labeling of these images impossible.

a. Object far from IR sensor b. Object far from RGB sensor

Fig. 4: Example of IR and RGB image with object far from
sensors

To be able to label the data of all recorded infrared images,
we need to calibrate the RGB camera to the IR camera. When
this is done, we can use the higher resolution RGB image to
determine which pixels in the low resolution IR image belong
to an object that needs to be labeled.

To calibrate the RGB camera to the thermal camera a
calibration target was designed. This target needs to be vis-
ible by both sensors. For it to be visible by the thermal
camera, it needs to be cooled or heated to have a different
temperature than the ambient temperature. Furthermore, the
material should have a low reflectivity so it does not reflect
ambient radiation, and a high emissivity so it is clearly visible
by the sensor. Acrylic plastic has a high emissivity and low
reflectivity when coloured in a matt colour.

A test was conducted to test the visibility of cooled acrylic
plastic. The acrylic was cooled in a pool with a water tem-
perature of 17 °C for five minutes. Then is was suspended
from a rope and infrared images were recorded every minute
for fifteen minutes. The image after 1 minute can be seen in
Fig. 5a and the image after 15 minutes can be seen in Fig. 5b.
The acrylic is still clearly visible after 15 minutes, which is
enough time to collect the data needed for the calibration of
the two sensors.

a. Cooled acrylic after 1 min b. Cooled acrylic after 15 min

Fig. 5: Visibility test of cooled acrylic

The shape of the target had to be chosen in such a way
that its key features could be easily distinguishable with both
sensors. A large diamond shaped board was chosen, each
corner of the board can clearly be seen by both sensors. The
board has four holes in a square pattern. In future work, these
holes can be used to determine the 3D location of the target
by using homograph matrix decomposition, as done by Zhang
et al. [40].

Several recordings of the calibration board in various posi-
tions were captured with both sensors. For each pair of RGB
and IR image the matching features of the calibration target
were selected manually, as can be seen in Fig. 6.

By doing this for all pairs of images we get a list of
matching sets containing RGB points and IR point. The RGB
points are considered as source points eq. (1) that need to
be transformed to the IR points, which we will consider as
destination points eq. (2).

Source points: (xi, yi) for i = 1, 2, . . . , n (1)

Destination points: (x′
j , y

′
j) for j = 1, 2, . . . , n (2)
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Fig. 6: Point Matching Example

The goal is to find the affine transformation matrix M
eq. (3).

M =

[
m00 m01 m02

m10 m11 m12

]
(3)

When the affine transformation is applied to point (xi, yi)
we get the transformed point (x′

i, y
′
i) by using eq. (4).[

x′
i

y′i

]
=

[
m00 m01

m10 m11

] [
xi

yi

]
+

[
m02

m12

]
(4)

This tranformation matrix M is estimated by using the
estimateAffine2D function of OpenCV [41]. This function
finds the matrix by minimizing the sum of square differences
between source and destination points. The function is shown
in eq. (5).

E =

n∑
i=1

(x′
i − (m00 · xi +m01 · yi +m02))

2

+ (y′i − (m10 · xi +m11 · yi +m12))
2

(5)

C. Labeling

The transformed RGB images can now be used to label
the low-resolution infrared images. A custom labeling tool
was developed to make the task as efficient as possible. The
labeling tool is based on work done by Cartucho et al. [42].
When a bounding box is drawn around an object in the
transformed RGB image, the bounding box is copied to the IR
image and vice versa. This way, the tool could also be used
to label RGB images in low lighting conditions. The images
are labeled with two classes: ship and buoy. All motorized
vessels are labeled as ship. Small boats like rowing boats are
not labeled. Many different types of buoys exist, in this dataset
they are all labeled equally.

IV. OBJECT DETECTION

This section describes how the object detection models
are evaluated. In Section IV-A the splitting of the data is
described. Section IV-C describes the used models in more
detail. Section IV-D explains how the models were trained
and evaluated.

A. Data Splitting

To assure reliable, generalizable and bias-free performance
of the models, the dataset needs to be split correctly. This
means that the class distribution should be consistent across
the train, validation and test sets. Unfair splits may result in
meaningless performance metrics or overfitting. To get a better
sense of the true performance of the model, we want to do
cross-validation. To achieve this, the dataset was divided into
five equally sized parts with each part containing about the
same number of labels within a predefined percentage margin
of variation. This way we can train and test the models on 5
different combinations of the subsets.

The data was randomly split into 5 subsets until the
amount of images, vessel and buoy-labels were within a
certain percentage among all subsets. The amount of images
in each subset lie within 10% difference of each other. For
the vessel labels the percentage is 20% and for the the buoys
the percentage is 40%.

B. Preprocessing

We apply two preprocessing steps that have shown
performance improvement in object detection models on
infrared datasets in previous research [5], [35].

The first preprocessing step is inversion which inverts
greyscale of the IR image. The dark parts of the image
become bright and vice versa. This results in an image that
looks more similar to a greyscale visual image.

The second preprocessing step is the adaptive histogram
equalization, more specifically, Contrast Limited Adaptive
Histogram Equalization (CLAHE) [43]. Histogram
equalization is a contrast enhancement method which
helps making objects and features more distinguishable from
the background. Infrared images can suffer from low contrast
due to the limited intensity variations. This happens when
objects have a similar temperature as their background.
Histogram equalization redistributes the intensity values
which makes subtle differences more visible. Traditional
histogram equalization enhances the entire image uniformly.
This can result in unwanted effects like noise amplification.
To prevent this, CLAHE is used. This method has a contrast
limited feature which prevents over-enhancement in areas
with relatively uniform intensity.

C. Models

Three models are trained and tested: the newest YOLO
(v11), Faster-RCNN and YOLO-FIRI. The first two have
been selected because they show great results on the MS
COCO dataset [27] and previous research on infrared object
detection, and because they are different network types.
YOLO is a one-stage detector, while Faster-RCNN is a
more classical two-stage detector, which usually gives better
accuracy and recall, but is a bit slower in performing the
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detection. However, as long as the model can process 9
frames per second it is good enough. Previous research
has shown that Faster R-CNN is capable of processing 2
frames (640x480 pixels) per second on an outdated machine.
Much higher processing speeds are expected with the lower
resolution on newer machines. YOLO-FIRI was selected
because it is customized specifically for infrared images.
Each model is described in more detail later.

The models are evaluated on Precision (P), Recall (R), mean
Average Precision at an IoU threshold of 0.5 (mAP@0.5),
Average Precision for vessels (AP Vessel) and Average Pre-
cision for buoys (AP Buoy). For autonomous sailing a high
recall is more important than high precision because it is more
important to detect all objects than it is to correctly classify the
objects. The Precision and Recall are calculated using the True
Positives (TP), False Positives (FP) and False Negatives (FN).
A prediction is classified as True positive when at least 50% of
the bounding box overlaps with the annotation. If a prediction
is made when no object is present it will be classified as False
Positive. When a object is present and it is not predicted it is
a False Negative. The Precision and Recall are calculated as
follows:

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

For each class we can calculate the Average Precision (AP),
which is the area under the Precision-Recall (PR) curve. The
Precision and Recall are computed at multiple confidence
thresholds and this results in the PR-curve. For each class
the AP is calculated with the formula shown in eq. (8).

AP =

∫ 1

0

Precision(Recall) dRecall (8)

Since we only have two classes we can easily calculate the
mean Average Precision (mAP@0.5) with te equacation shown
in eq. (9). The performance of the model is better when the
mAP is higher.

mAP =
APvessel +APbuoy

2
(9)

YOLOv11 [44]
The first object detection model that is evaluated is the
latest YOLO model. A mentioned before, YOLO is a
one-stage detector, which means that every input image is
passed through the network a single time. Version 11 is
Ultralitics latest iteration of real-time object detectors. They
claim that their newest iteration achieves a higher mAP
on the COCO dataset while using fewer parameters than
YOLOv8. Several model variant with different sizes are
available: nano, small, medium, large and extra large. For
this research, the large pre-trained model is chosen. It was
trained on the COCO dataset which includes 80 pre-trained

classes, including ”boat” which is also a class in this research.

Faster R-CNN
The second model that is tested is the two stage detector
Faster R-CNN. Previous research has shown that it usually
has a higher recall than other models. To train this model,
detectron2 [45] is used. Similar to YOLO, for Faster R-CNN
there are several different pre-trained models available to
choose from. These models are also trained on the COCO
dataset. There are three backbone combinations to choose
from, FPN, C4 and DC5. FPN stands for Feature Pyramid
Network and it is a feature extractor which allows the model
to detect objects of various sizes more effectively. This is very
helpful for this research since the dataset contains ships of all
sizes. The FPN backbone combinations are recommended by
Detectron2 because they it obtains the best speed/accuracy
trade-off. For the training the R101-FPN is chosen. This
model has 101 layers and should give the highest performance
out of all models pre-trained on the COCO dataset.

YOLO-FIRI [14]
The last model that is evaluated is YOLO-FIRI, a model that
is based on YOLOv5 and developed by Li et al. to perform
better on infrared images. They expanded and iterated the
cross-stage-partial connections module in the early layers
to maximize the use of shallow features. Furthermore, they
introduced an attention module that focuses on the objects
and suppresses the background. The model was tested on the
KAIST dataset and compared to YOLOv4. They report an
increase in mAP from 81% to 98.3%.

D. Hardware and Training

These three object detection models are evaluated on the
newly created dataset and the preprocessing variations. The
models are trained on a laptop with a intel i7-12850HX
processor, 32.0 GB Ram and NVIDIA RTX A4500 16 GB
GPU.

V. EXPERIMENTS & RESULTS

A. Dataset Creation

In total, about 35.000 IR and 175.000 RGB images were
collected during the two days of recording in about 250
individual recordings. Each recording has a different scenario
which can be an empty river, a single ship or buoy, or a
combination of buoys and ships. Out of each recording 25
random IR images were selected. For each IR image the RGB
image with the timestamp closest to the timestamp of the IR
image was selected. The matching images were passed to the
labeling tool for annotation.

In order to use the labeling tool the IR and RGB camera
are calibrated. To calibrate the two cameras 15 images of the
calibration target are collected. Between each recording the
calibration board was moved to a different position. For each
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matching pair of images the four corners of the target are
manually selected. This results is two sets of pixel coordinates,
each containing 60 coordinates.

IR points: {(29, 59), (64, 20), (103, 56), ...} (10)

RGB points: {(340, 542), (760, 66), (1242, 512), ...} (11)

By using the OpenCV function EstimateAffine2D we find
the transformation matrix between the IR points and RGB
points. The resulting transformation matrix between the IR
and RGB sensor is shown in eq. (12).

M =

[
0.989 0.004 4.009
−0.010 0.742 58.449

]
(12)

To check if the transformation matrix is accurate, a RGB
image was transformed and laid over the corresponding IR
image. The RGB images was transformed using the OpenCV
function WarpAffine. The result can be found in Fig. 7.

Fig. 7: Blended IR and transformed RGB image

The target in the transformed RGB image matches the
target in the infrared image. This means that if the target
would be labeled in the transformed RGB image, the same
label could be used for the target in the infrared image. This
is what is done in the Dual Labeling Tool. A screenshot of
the tool is shown in Fig. 8. The red bounding box was drawn
around the ship visible in the transformed RGB image and
automatically copied to the IR image.

Fig. 8: Dual Labeling Tool

The tool is used to label a random selection from the
recorded dataset. The resulting dataset has the following
properties:

• Amount of images: 5931
• Amount of ship labels: 6744
• Amount of buoy labels: 321

B. Object Appearance in Different Conditions

To see the effects of the ambient temperature and lighting
on the visibility of object an experiment was conducted. Two
docked ships were captured with the infrared camera in two
different conditions. The first image was captured about an
hour after sunrise on a cold, calm, misty morning. The ambient
temperature was about 17 °C. The second image was captured
in the afternoon while it was sunny and more windy than
in the morning. The ambient temperature was about 23 °C.
The recorded images can be seen in Fig. 9a and Fig. 9b,
their corresponding rgb images can be found in Fig. 10a and
Fig. 10b. The difference in environment conditions can clearly
be seen in the rgb images. While the ambient temperature
between the two images only differs 6 °C they look very
different. The ships are more easily distinguishable in Fig. 9b
because of the higher contrast created by the bigger differences
in temperature between the water and ships, and the sky and
the ships. Furthermore, some features of the ships are more
visible. One of the negative effects visible on the sunny image
is the reflection of the ships on the water created by the sun. It
is difficult to see where the waterline of the ship is. In Fig. 9a
you can clearly see this waterline.

a. Ships in Misty Morning IR b. Ships in Sunny Afternoon IR

Fig. 9: Visibility Ships in Different Temperatures IR

a. Ships in Misty Morning RGB
b. Ships in Sunny Afternoon
RGB

Fig. 10: Visibility Ships in Different Temperatures RGB

C. Object Detection

1) Data Splitting: The data is split into 5 random but
comparable combinations. This is done by randomly splitting
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the 250 recordings into five sets and counting the amount
of images, vessels and buoys in each set. If the amount of
images in each set is with 10% difference of the other sets it
is considered evenly split. The same check is done with the
amount of vessel labels (20%) and buoy labels (40%). These
five sets are combined in five different configuration where
one set is reserved for validation, one for testing and the rest
for training. The content of each resulting dataset split can
be found in table II. Each set has similar amounts of images,
vessels and buoys in their train, validation and test subset.

TABLE II: Specifications of Five Dataset Splits

Dataset Nr. of Images Nr. of Vessels Nr. of Buoys
Train Val Test Train Val Test Train Val Test

Split 1 2707 885 891 3089 1079 950 153 58 44
Split 2 2687 911 885 3004 1035 1079 141 56 58
Split 3 2657 915 911 3034 1049 1035 144 55 56
Split 4 2687 881 915 3064 1005 1049 158 52 55
Split 5 2711 891 881 3163 950 1005 169 44 42

2) Preprocessing: The images in all resulting datasets
are preprocessed using two methods. Firstly, the images are
inverted by using the OpenCV function bitwise not. After that,
contrast limited adaptive histogram equalization is applied by
using OpenCV function createCLAHE.

In Fig. 11 an image with each preprocessing step is shown.
Fig. 11a shows the image captured by the infrared sensors,
Fig. 11b shows the inverted image and Fig. 11c shows the
image that is inverted and has histogram equalization applied
to it (HE). All splits were preprocessed which results in three
sets for each split. In total there are 15 sets that each model
is trained and evaluated on.

a. Raw image b. Inverted image c. Inverted & HE

Fig. 11: Same image with each preprocessing step

3) Trained Models Performance: Each model is trained
on the 15 sets. Since the YOLO-FIRI model is based on
YOLOv5 it has similar parameters as the YOLOv11. The
parameters are set equally to get a comparable result. The
YOLOv11 and YOLO-FIRI models are trained starting with a
pretrained model. For YOLOv11 the yolov11l.pt file is used as
starting weights and for YOLO-FIRI yolov5l.pt is used. These
files are chosen because they offer a good balance between
performance and training time. The YOLO models are trained
for 1500 epochs with a patience of 150 epochs. This means
that the model will stop the training early if it does not notice
any improvement for the last 150 epochs. The Faster R-CNN
model is trained using Detectron2. When training the Faster
R-CNN model you cannot specify the amount of epoch but

you need to specify the amount of iterations. For this model
10000 iterations are chosen.

After training the models they are tested on the part of
the dataset reserved for testing. Fig. 12 shows examples of
the detection results from all models and in combination
with the preprocessing steps. The first row of images are the
raw images captured by the IR sensor. The images in the
middle row are inverted. The images in the last row have
been inverted and CLAHE has been applied. All models
were able to detect the ship. Faster R-CNN has predicted a
false positive in the raw image. YOLO-FIRI has predicted
more false positives. On the image that is inverted and has
histogram equalization applied, YOLOv11 has predicted the
vessel with a bounding box that is too large.

In table III we find the results of the trained models.
The first column states the model, the second column states
the preprocessing step that is applied to the the data, no
preprocessing (-), inversion (I) or inversion and histogram
equalization (I+HE). For each model the following evaluation
metrics are shown: Precision (P), Recall (R), mean Average
Precision at an IoU threshold of 0.5 (mAP@0.5), Average
Precision for vessels (AP Vessel) and Average Precision for
buoys (AP Buoy). Each model is trained on the five different
splits. The average score for each metric is calculated, along
with the standard deviation. The highest score for each metric
is written in bold.

There are a couple of observations in this table that stand
out. Firstly, all models struggle in getting high scores. The best
performing model when it comes to mAP@0.5 is YOLOv11
in combination with inversion and it only scores 32.8%. It also
has the highest Average Precision on both vessels and buoys
over a range of confidence scores. When it comes to recall,
which is a very important metric in autonomous sailing, Faster
R-CNN comes out on top. This is in line with the results found
in the research discussed in the related work (section II). The
standard deviation across the different splits is lower for the
Faster R-CNN model than for the YOLO models, especially
when looking at the precision. Faster R-CNN clearly struggles
in detecting the buoys which leads to the low precision. As
mentioned in the related work (section II), previous work
showed that Faster R-CNN outperformed YOLOv3 in detect-
ing small buoys. This is clearly not the case in this research.

Inverting the infrared images has positive effect on the
average precision for the YOLO models. It has a negative
effect on the Faster R-CNN model. Inversion + Histogram
Equalization has a negative effect on the performance of all
models.

VI. DISCUSSION

Although the dataset collected over the course of two days
contains a lot of different kind of ships, it only contains a
handful of buoys. It is clear that the object detection models
struggle with detecting buoys. There are several possible ex-
planations for this poor performance. Firstly, the most obvious
reason, is that there is much less data available for the models
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a. Labeled Image b. YOLOv11 c. Faster R-CNN d. YOLO-FIRI

e. Labeled Image (I) f. YOLOv11 (I) g. Faster R-CNN (I) h. YOLO-FIRI (I)

i. Labeled Image (I+HE) j. YOLOv11 (I+HE) k. Faster R-CNN (I+HE) l. YOLO-FIRI (I+HE)

Fig. 12: Vessel detection by YOLOv11, Faster R-CNN and YOLO-FIRI on image with different preprocessing steps

TABLE III: Performance of YOLOv11, Faster R-CNN and YOLO-FIRI on Custom Low Resolution Maritime Infrared Dataset
with 3 Preprocessing Variations

Model Preprocessing P R mAP@0.5 (%) AP Vessel (%) AP Buoy (%)
YOLOv11 - 0.610±0.230 0.270±0.083 0.301±0.088 0.396±0.045 0.206±0.172
YOLOv11 I 0.520±0.135 0.292±0.064 0.328±0.063 0.429±0.019 0.229±0.134
YOLOv11 I + HE 0.581±0.242 0.251±0.079 0.270±0.067 0.397±0.046 0.143±0.159

Faster R-CNN - 0.364±0.049 0.386±0.021 0.275±0.089 0.430±0.031 0.120±0.079
Faster R-CNN I 0.362±0.038 0.383±0.032 0.236±0.035 0.404±0.034 0.068±0.038
Faster R-CNN I + HE 0.381±0.035 0.367±0.016 0.244±0.042 0.409±0.034 0.078±0.041
YOLO-FIRI - 0.314±0.099 0.329±0.093 0.229±0.040 0.396±0.011 0.063±0.088
YOLO-FIRI I 0.363±0.202 0.330±0.049 0.268±0.091 0.403±0.031 0.132±0.191
YOLO-FIRI I + HE 0.395±0.082 0.314±0.097 0.260±0.054 0.406±0.023 0.113±0.129

to learn from. A simple, cheap method to resolve this problem
is to copy the data containing buoys several times such that the
amount of buoy labels comes closer to the amount of vessel
labels. However, this is not a great solution as the models will
not get new data to learn from and the risk of overfitting might
increase.
A second explanation for the poor performance of buoy
detection is that buoys are much smaller than vessels. With
the low resolution IR sensor it becomes very difficult to detect
small objects. When a buoy is far away from the sensor it
only takes up a couple of pixels in the image. To see if this
hypothesis is correct a test could be performed where bounding

boxes with an area below a certain threshold are discarded.
This will remove mostly buoys labels, but it will probably
have less trouble detecting the remaining buoys.
A third explanation is that buoys are passive objects which do
not generate heat. Moving vessels with their engine running
generate heat are more easily visible by the thermal camera.

Since the dataset was captured on only two different days
it does not contain a lot of different weather and lighting
conditions. To improve the performance of the models it
is best to extend the dataset with images captured during
different moments in the year for all weather conditions, and
on different moments during the day and night to get more
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lighting conditions and thermal variations.
Previous work showed that Faster R-CNN outperformed

YOLO (version 3) in detecting small objects. This is not what
is observed in this research. The resolution of the images in
this research is much smaller, which can be an explanation. A
more logical explanation is that YOLO was developed further
up to version 11 and it might now simply be better at detecting
small objects than Faster R-CNN.

The preprocessing steps taken in an effort to improve the
performance of the models did not have the expected effect. In
previous work inversion and histogram equalization improved
the performance of the model, but here we see another result.
For YOLOv11 the inversion improved the performance by
about 10% when it comes to Average Precision at a IoU of
0.5. For YOLO-FIRI the performance improves by about 15%.
In this research the models were exclusively trained on one of
the preprocessing steps. Training the models on a combination
of all three datasets might improve the performance of the
models.

VII. CONCLUSION

In this paper the performance of three state-of-the-art object
detection models are evaluated on their ability to detect vessels
and buoys on low-resolution long wavelength infrared images
in maritime environment. To achieve this goal four objectives
were established. Firstly a method to collect and label a low-
resolution LWIR dataset in maritime environment is proposed.
To evaluate the models a dataset was collected and labeled
with the help of a custom labeling tool which relies on
a calibration between a RGB and IR sensor. The resulting
dataset contains 5900 images, 6700 vessel labels and 320
buoy labels. The effect of ambient temperature, lighting and
reflection on the appearance of objects was observed in the
collected data. Objects that look similar in the visual domain
can look vastly different in the infrared domain when the
temperature and water state differs. Three state of the art object
detection models, YOLOv11, Faster R-CNN and YOLO-FIRI,
are evaluated on the dataset with different preprocessing steps
(raw, inverted and inverted + histogram equalization). Faster
R-CNN achieved the highest recall (0.386), which is the
most important performance metric in autonomous sailing.
YOLOv11 has the highest mAP@0.50 when combined with
inversion. Inversion has a positive effect on the performance
of the YOLO models but a negative effect on Faster R-CNN.
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