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Abstract

DMEK is a treatment option for patients who suffer from Fuchs’ endothelial dystrophy. During the procedure,
a part of the patient’s cornea is removed. The transplant is placed with an air bubble. During the first 24
hours after the surgery, patients are instructed to remain supine. The influence of this instruction on the
risk of graft detachment is researched. This is done with an IMU placed on the forehead of the patient. The
orientations of the head are retrieved from the IMU’s gyroscope and accelerometer data with the help of the
Madgwick filter. After the use of this filter, a gyroscope drift is observable. This drift shows movement while
the sensor is stationary. It was attempted to eliminate the drift using an IMU sensor calibration and a linear
regression algorithm. The calibration has a significant impact on reducing the gyroscope drift. Additionally,
the linear regression slightly reduces the gyroscope drift. Unfortunately, a slight drift was still visible in the
yaw angles. When the linear regression model was applied to the patient data, it did not work. Thus, the
linear regression model cannot be applied to patient data. Another filter which could be applied to eliminate
the yaw drift is the NMNI filter.

Samenvatting

DMEK is een behandeling voor mensen met Fuchs’ endotheel dystrofie. Tijdens de operatie wordt een deel
van het hoornvlies verwijderd. Het donor hoornvlies wordt geplaatst met behulp van een luchtbubbel. De
eerste 24 uur na de operatie worden de patiënten gëınstrueerd om zoveel mogelijk plat te liggen. Er wordt
onderzocht in hoeverre deze instructie invloed heeft op de loslating van het transplantaat. Hiervoor wordt
de eerste 24 uur een IMU die bewegingen van het hoofd meet op het voorhoofd van de patiënt geplaatst.
De oriëntaties van het hoofd worden berekend door het Madgwickfilter aan de hand van de gyroscoop en
accelerometer data van de IMU. In de berekende oriëntaties is nog een afwijking (drift) zichtbaar. Deze drift
zorgt voor een beweging in de data, terwijl de sensor zelf stil ligt. Er is geprobeerd de drift te verwijderen door
sensor kalibratie gecombineerd met een lineair regressie model. De sensor kalibratie heeft de drift significant
verminderd. Het lineaire regressie model vermindert de drift minimaal. Er is echter nog een drift zichtbaar
in de yaw hoeken. Na het toepassen op de patiënt data bleek dat het lineaire regressie model niet werkt op
patiënt data. Een filter wat de resterende drift van de yaw hoeken zou kunnen oplossen is het NMNI filter.

1



Contents

1 Introduction 3

2 Background 4
2.1 Patient procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Inertial measurement unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Orientation frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Madgwick filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Eliminating drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Methods 6
3.1 Sensor calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Linear regression model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Root mean square error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Sector plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Results 10
4.1 Linear regression variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Roll, pitch and yaw angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Sector plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Discussion 14

6 Conclusion 15

A List of symbols 17

2



1 Introduction

Worldwide, 300 million people over the age of 30 suffer from Fuchs’ endothelial corneal dystrophy (FECD).
This number is expected to increase by almost 50% in 2050. [1] FECD affects the corneal endothelium of the
eye. Patients who suffer from FECD experience a progressive degeneration of the corneal endothelium. The
Descemet membrane thickens due to corneal edemas. Additionally, the membrane contains focal endothelial
excrescences, which are called guttae. Patients experience reduced vision and other symptoms which are
associated with glare. The symptoms are experienced more intensely during and shortly after awakening. As
the disease progresses fluid filled sacks or lesions, also called bullae, appear. Rupture of these can result in
pain episodes. In the last stage scar tissue appears on the cornea, which lessens the formation of bullae, but
reduces the vision. [2] Other symptoms patients experience include photophobia and an overflow of tears. [3]

Figure 1: The different layers of the cornea are shown.
The corneal endothelium is located on the left side of
the Descemet’s membrane. [4]

One of the treatment options for FECD is an en-
dothelial keratoplasty. During these procedures (a
part of) the cornea (figure 1) is transplanted. [3] A
specific endothelial keratoplasty technique used for
patients who suffer from FECD is Descemet mem-
brane endothelial keratoplasty (DMEK). The donor
graft used during this procedure consists of the De-
scemet membrane and the corneal endothelium (fig-
ure 1). The graft is placed and positioned with the
help of an air bubble. [5]

During the past years, DMEK has become a stan-
dard treatment option for FECD. [6] After surgery
patients are instructed to remain in a mostly flat
(supine) position for at least 24 hours after surgery.
It is presumed that this instruction promotes graft
attachment as the air bubble will rise and press the
graft to the recipient’s cornea. [7] However, recent
studies question the need for supine posturing after
a DMEK procedure. These studies show no significant increased risk of graft detachment without supine
posturing after DMEK. [8, 9]

This report is a part of the Eye in the Sky project (EITS). EITS is a collaboration between Deventer Ziekenhuis
and the University of Twente. The project researches the influence of head positions and movements on graft
detachment in the first 24 hours after a DMEK. The movements of patients during the first 24 hours after
a DMEK are tracked using an inertial measurement unit (IMU). This IMU is placed on the forehead of the
patient. It is assumed head orientations are equal to eye orientations. The IMU sensor is placed in the
operating room directly after the DMEK procedure has been performed. The patients wear the IMU for the
first 24 hours post-surgery. During the checkup, 24 hours post-operatively, the sensor is removed from the
patient’s head and the data can be saved and analysed. This report focuses on a part of the data analysis of
the retrieved data.

During previous research, the orientation of the head was retrieved from the IMU data. This was done with
the Madgwick filter. [10] However, after application of the Madgwick filter a drift was present in the calculated
head orientations. This drift causes a show of movement in the orientations, while the sensor is stationary
in real life. The drift is caused by the gyroscopic data of the IMU. This drift is called the gyroscope zero
bias. The name refers to the bias the gyroscope data shows, while the sensor is stationary and the gyroscope
values should be zero. This report focuses on the elimination of the gyroscopic drift to retrieve correct head
positions. This leads to the research question:

To what extent can the gyroscope drift of IMUs be corrected with sensor calibration and a linear regression
model?
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2 Background

2.1 Patient procedure

Figure 2: The differ-
ent steps of a DMEK
procedure are shown.
[5]

In this project the type of endothelial keratoplasty, which is performed on the patients,
is DMEK. During the DMEK procedure, the Descemet membrane of the recipient’s
eye is stripped from the stroma in a circular shape and taken out of the eye. During
donor preparation, the donor membrane is stained to increase its visibility in the
recipient’s eye during the placement of the graft. The donor Descemet membrane
is inserted in the recipient’s eye through an incision. Next, the donor membrane is
unfolded and positioned against the recipient’s stroma. Lastly, the membrane of the
donor is adhered to the corneal stroma of the recipient with the help of an air bubble.
During half an hour the anterior chamber is filled with air. After this half-hour, part
of the air is released from the eye (figure 2). [5] An air bubble is left in the eye to
promote graft attachment.

After the execution of the DMEK procedure, the sensor is attached to the forehead
of the patient with the help of tape. The patient is laid flat (supine) in the bed with
the eyes and head pointed to the ceiling. Patients are instructed to stay in a supine
position until the next checkup, 3 hours after the surgery. The following 21 hours the
patients are requested to be in a supine position to the maximum extent possible. A
supine position is thought to promote graft attachment as the air bubble will push
the graft to the recipient’s cornea during a supine position. 24 hours after the end
of the surgery another checkup with the doctor has been scheduled and the sensor
is removed from the patient’s forehead. The measurement is ended and the data are
saved.

2.2 Inertial measurement unit

The sensors used in this project are IMUs. These sensors contain gyroscopes and
accelerometers to measure the angular velocity and linear acceleration along three
axes (x, y and z) (figure 3a). [11] IMUs may contain magnetometers, these were
however not present in the sensor used for this project. The IMU measures the
sensor’s orientation relative to the starting position of the measurement of the sensor.

IMU sensors are self-contained. [11] This implies that patients who have this sensor
attached to their head can move freely, without being constrained by for example
cables or reception ranges. This causes the behaviour of the patients to be minimally
affected by the sensor.

(a) The different axes of the sensor frame of the IMU
are depicted. Blue: x-axis, red: y-axis, green: z-axis.

(b) The frame of the head is shown. The green dot
refers to the z-axis coming out of the forehead of the
head. The blue and red arrows are the x- and y-axis
respectively.

Figure 3: The two orientation frames that are used in this report are shown; on the left, sensor frame (a) and
on the right, the head frame (b) are depicted.
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2.2.1 Orientation frames

Figure 4: The used rotation angles are
shown. Roll refers to rotations around the
x-axis (blue). Pitch angles refer to rotations
around the y-axis (red). Yaw angles refer to
rotations around the z-axis (green).

In this project two orientation frames are present; the sensor
frame and the head frame. The sensor’s frame consists of the
coordinate system (x-, y- and z-axis) of the sensor itself (figure
3a). The head frame is the x-, y- and z-axis coordinate system
on the forehead of the patient. Here the z-axis comes straight
out of the forehead of the subject, the x-axis goes through the
ears and the y-axis comes out of the top of the head (figure 3b).
To transform the orientations in the sensor frame to the head
frame, a rotation matrix is needed. This rotation matrix was
determined with the help of a bed calibration performed right
after placing the sensor on the patient’s head.

In this project, the rotation angles around a specific axis are
used as a parameter to express the head orientation and rota-
tion. These angles are called, the roll, pitch and yaw angles
(figure 4). The roll angles correspond to the rotations around
the x-axis. When applying this to the head orientations, the ro-
tations are similar to nodding yes. The pitch angles correspond
to the rotations around the y-axis. These rotations are similar
to shaking no in the head frame. The yaw angles correspond
to the rotations around the z-axis. In the head frame, these
rotations are caused by movements similar to moving the ears
to the shoulder.

2.3 Madgwick filter

During previous research, the data of the IMUs was processed with the help of a Madgwick filter. This filter
is applicable for relatively low sampling frequencies and has a lower computational load than similar filters
(e.g. Kalman). The filter calculates the estimated quaternion orientation from the data of the accelerometers
and gyroscopes. [12] From this filter the roll, pitch and yaw angles are retrieved. [10] When using this filter a
gyroscope drift is observed. This drift results in a show of movement, while the sensor is stationary. [10, 12]
This drift can be observed clearly in the yaw angles of figure 5. These yaw angles are the angles of a stationary
sensor in a known position. At the start of the measurement, a deviation can be seen in all three angles by
the slopes present. Furthermore, the roll angles show a significant rise to 180◦, while the sensor is stationary.
Lastly, the yaw angles show a mostly constant linear decrease. This report focuses on eliminating this drift.

Figure 5: The angles of a sensor which has been stationary for one hour are shown. From top to bottom; the
roll, pitch and yaw angles are depicted.
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2.4 Eliminating drift

As explained in section 2.3 a drift occurs in the calculation of the orientation. Two ways of eliminating this
drift are the no motion no integration (NMNI) algorithm and a linear regression model. These models have
already been applied to IMU sensors without magnetometers. [13,14] The NMNI algorithm has already been
used in combination with the Madgwickfilter. This combination shows promising results for elimination in
the drift of the yaw angles. The NMNI filter uses a constant gyroscope zero bias, which is updated during
stationary periods to predict the bias in moving periods. [13] The linear regression algorithm, proposed by
O-larnnithipong et al. is used to eliminate the drift in a hand tracking device. This model, like the NMNI
filter, predicts the bias during stationary periods. However, the predicted bias is dependent on the time in
the linear regression model. Additionally, this model focuses on all three (roll, pitch and yaw) angles. [14] In
this project, the linear regression algorithm will be implemented, as this algorithm changes the bias over time
and shows promising results for the tracking of body parts.

3 Methods

In this project, sensor calibration is applied to the accelerometer and gyroscopic data from the IMU. Then, a
linear regression model is applied to the gyroscopic data to eliminate gyroscopic drift. Lastly, the Madgwick
filter is applied to obtain orientations (figure 6). The results of the sensor calibration and linear regression
model are validated by calculating the root mean square error (RMSE) of the different orientations from the
Madgwickfilter. Finally, sector plots of the patients’ data are determined.

Figure 6: Overview of the calibrations and filters applied to the data.

3.1 Sensor calibration

The model of the IMU sensors used is Axivity AX6. The IMU measurements were performed and saved
using OmGui software. During the measurements a sampling frequency of 200 Hz and a range of ±8 g and
± 1000 deg/s for the accelerometers and gyroscopes respectively were used. In the EITS project, multiple
sensors are used for the retrieval of patient data. Per patient, only one sensor was used. For these sensors,
the calibration values were determined. For each sensor, the sensor was attached to a hollow cube-like object
with the help of tape (figure 7). The cube was placed in the starting position, which was marked with tape
to ensure the sensor’s position at the beginning and end of the measurement were identical. The rotations
were performed manually. During the measurement, the sensor was twisted around the z-axis for 360◦ (green
arrow) and returned to the starting position. After a stationary period of a couple of seconds, the sensor was
tilted with 90◦ around the y-axis (red arrow). Then the sensor was tilted back to the starting position. Lastly,
the sensor was tilted 90◦ and back around the x-axis (blue arrow). The movements during the measurements
were identical for all the sensors used in the project.
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Figure 7: This cube and its marked starting position were used for the sensor calibration measurements.
The location of the sensor is indicated by the yellow arrow. Additionally, the sensor’s frame is shown. The
coloured arcs are the rotations around the corresponding axes (90◦, 90◦ and 360◦ for the x-, y- and z-axis
respectively).

The bias and gain of both the accelerometers and gyroscopes were needed to calibrate the sensor. The bias is
the fixed error which is subtracted from the sensor’s output signal. The gain describes the factor with which
the sensor output of the rotation is multiplied to deliver the actual rotation after the bias of the sensor has
been compensated. The bias of the gyroscope and the bias and gain of the accelerometers were known. The
gain of the gyroscope was calculated according to equation (1). Here, ϕsensor is the angle which is obtained
from integrating the gyroscope data after the gyroscope bias has been subtracted from the data. Thus, this
angle has been obtained by the measurement. Consequently, ϕactual is the actual angle the sensor has made,
which was measured manually during the measurement. [15]

gain =
ϕsensor

ϕactual
(1)

To apply the sensor calibration to the data, first, the bias of both the accelerometers and the gyroscopes
was subtracted from the data. Next, the data was multiplied by the corresponding gains. Thus, the sensor
calibration has been completed.

3.2 Linear regression model

The linear regression model was used to determine the gyroscope zero bias. It is important to note that this
bias is different from the sensor’s bias, which is described above in section 3.1. The gyroscope zero bias occurs
when the sensor is stationary, but the gyroscope values are not zero. Thus the data shows movement, while
the sensor is stationary. The linear regression model aims to predict the gyroscope zero bias with the help
of stationary periods. During these stationary periods, the gyroscope zero bias is known, as the measured
gyroscopic values are the bias. Equation (2) shows the mathematics of the linear regression model. The
gyroscope zero bias b was calculated with coefficients α and β over time t. The coefficients, α and β, can
be calculated using equations (3) and (4) respectively. In these equations, bi and ti resemble the measured
gyroscope bias and time, respectively. Additionally, b̄ and t̄ correspond to the mean bias and mean time of
one stationary period. [14] The coefficients α and β and the corresponding biases are determined for every
stationary period.

b = α+ βt (2)

α = b̄− βt̄ (3)

β =

∑n
i=1(ti − t̄)(bi − b̄)∑n

i=1(ti − t̄)2
(4)

Per stationary period, the bias was subtracted from the gyroscopic data. The application of the bias during
non-stationary periods is explained through figure 8. This figure shows a schematic example of gyroscopic

7



data. The bias for the stationary parts (indicated with the orange arrows) was calculated as described above
(equation 2). For the non-stationary parts of the data (indicated with the blue arrow), the mean of the bias
of both stationary periods was calculated, in this case, parts 1 and 2. Then this mean was subtracted from
the gyroscopic values of the data. This has been done for the whole data set.

Figure 8: Schematic view of a part of the gyroscopic data.

The data used to evaluate the linear regression model was obtained with the same type of sensors and settings
as described in section 3.1. The measurements were 7 and 8 hours long. Every hour, the sensor was stationary
for 5 minutes in the known starting position. As explained above, stationary periods are needed to determine
the gyroscope zero bias. To determine the stationary periods in the data, the unfiltered and uncalibrated
gyroscopic data was plotted. Next, the stationary periods are selected manually. These periods are then
saved and used later on to apply the linear regression model.

3.3 Root mean square error

The root mean square error (RMSE) was used to evaluate the influence of the sensor calibration and the
linear regression model on the gyroscopic drift of the unfiltered data. The RMSE can be calculated using the
following equation: [16]

RMSE =

√∑n
i=1(yi − ŷi)

n
(5)

Here, yi represents the yaw, roll or pitch angle obtained by the Madgwick filter. Consequently, ŷi represents
the actual (known) angle of the sensor. In this application, the RMSE was calculated during stationary
periods. It was known that the angles of the stationary periods were 0◦, as the stationary position was equal
to the starting position. Hence, the RMSE equation was simplified (equation (6)).

RMSE =

√∑n
i (yi)

n
(6)

Using equation (6) the RMSE for the roll, pitch and yaw angles was calculated. To get an overview of the
general result of the influence of the sensor calibration and the linear regression on the drift, the RMSE values
of the roll, pitch and yaw angles were summed.
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3.4 Sector plots

For the sector plots, patient data was used, compared to the data used in sections 3.1 and 3.2. To evaluate
the orientations of the head of the patient during 24 hours sector plots were used. These plots display the
amount of time spent in a specific orientation sector relative to the starting position with the help of a colour
scale (figure 9). [10] The outer ring of the sector plot shows a rotation of more than 90◦ to any side, the
second outer ring a rotation between 60◦ and 90◦, the second inner ring between 30◦ and 60◦ and the inner
ring a rotation of less than 30◦. The labels ’X-axis’ and ’Y-axis’ refer to the rotational axis. Thus, a pure
rotation of 90◦ around the y-axis would show activity in the most left or the most right part of the sector
plot depending on the direction of rotation.

Figure 9: An example of a sector plot is shown.

The sector plot shows the xy-plane. For this plot, the z-axis from the head orientation is projected on the
xy-plane. This was done using equation 7. This vector is then expressed in polar coordinates. The angle θ is
expressed relative to the x-axis. Using these coordinates the vector can be assigned to a sector. The amount
of projected z-vectors per sector is counted. The counts per sector are then normalized relative to the sector
with the most counts and plotted.

vp = v − v · n
||n||2

· n (7)
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4 Results

The linear regression coefficients α and β of 2 different measurements performed with the same sensor are
shown and compared. Furthermore, the influence of the sensor calibration and linear regression model on the
gyroscopic drift is discussed. Roll, pitch and yaw angles and their RMSE values are shown and evaluated.
Lastly, the sensor calibration and linear regression are evaluated with the help of patient data depicted in
sector plots.

4.1 Linear regression variables

In this section, two data sets (7-hour and 8-hour) are used to compare the variables (α and β) from the linear
regression model. These datasets are retrieved by the same sensor and the α and β values are calculated at
the same time in the measurement. For example, the second αx value from the 7-hour dataset corresponds
with the second αx value from the 8-hour dataset. The procedure for these measurements is described in
section 3.2. In table 1 it can be seen that corresponding α values show some similarities. However, some
corresponding values differ slightly.

Table 1: The values of α are shown for every axis of the gyroscope. Both the values of 7-hour data and 8-hour
data are shown.

7-hour 8-hour
αx αy αz αx αy αz

0.0237 -0.0501 -0.0225 0.0238 0.0534 -0.0299
-0.2709 -0.0453 0.0121 -0.2009 0.0057 0.0557
-0.3016 -0.2164 0.0736 -0.3625 -0.2187 0.1050
-0.3510 -0.3491 -0.0134 -0.3824 0.4297 -0.4334
0.2233 -0.0116 -0.1732 0.3627 0.5548 -0.1247
0.6896 -0.3107 -0.6959 0.4570 5.5032e-5 -0.3450
-0.6606 0.8591 -1.4947 0.1380 -0.6263 -0.0687
0.4772 -0.1766 -0.9448 0.6133 1.1673 -0.5709
n.a. n.a. n.a. -0.5499 -1.2417 -0.4239

In table 2 it can be seen that the corresponding β values significantly differ. However, it should be taken
into account that the values are very small (10−5). Consequently, the influence of the β values on the bias
determined by the linear regression model is minimal.

Table 2: The values of β are shown for every axis of the gyroscope. The values for the 7- and 8-hour data are
shown.

7-hour 8-hour
βx βy βz βx βy βz

1.8239e-5 -4.1874e-5 -2.3899e-5 -1.3491e-5 -9.8929e-5 4.4417e-5
7.8139e-5 1.8730e-5 -9.0911e-6 5.7478e-5 4.0479e-6 -1.9981e-5
4.2285e-5 3.2165e-5 -1.2726e-5 4.3800e-5 3.0382e-5 -1.7374e-5
3.3184e-5 3.3650e-5 -8.2319e-7 3.5425e-5 -3.7748e-5 3.6801e-5
-1.4037e-5 2.4829e-5 1.0417e-5 -2.3597e-5 -3.6715e-5 6.5174e-6
-3.6938e-5 1.8454e-5 3.6860e-5 -2.4467e-5 1.3873e-6 1.7350e-5
3.1036e-5 -3.8172e-5 6.7266e-5 -5.5297e-6 2.9617e-5 1.8842e-6
-1.7975e-5 7.9144e-6 3.6093e-5 -2.3238e-5 -4.4620e-5 2.1254e-5
n.a. n.a. n.a. 1.2959e-5 4.3598e-5 1.3711e-5
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4.2 Roll, pitch and yaw angles

The sensor calibration and linear regression model are evaluated using the roll, pitch and yaw angles from
different data. Furthermore, the RMSE is used to further evaluate the sensor calibration and the linear
regression model.

Figure 10: The roll, pitch and yaw angles of unfiltered data are shown. The saw tooth pattern of the yaw
angles shows a drift with a steep slope.

In the figures 10, 11 and 12 the roll and pitch angles do not show any drift as there are no significant slopes
distinguishable when compared to the yaw angles. The vertical lines from -180◦ to 180◦ are caused by a
’jump’ from -180◦ to 180◦. Figure 10 shows unfiltered data. Here, the drift in the yaw angles is visible in the
form of the saw tooth pattern. This pattern is caused due to a steep slope and the ’jumps’ from -180◦to 180◦.

Figure 11: The roll, pitch and yaw angles of sensor-calibrated data are shown. A drift is visible in the yaw
angles. This is shown by the slope of the angles.

Figure 11 shows the angles of the sensor calibrated data. Compared to figure 10 the drift has decreased, as
no saw-tooth pattern is present. However, a drift is still present, due to the slope of the angles.
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Figure 12: The roll, pitch and yaw angles of data that is sensor calibrated and filtered by the linear regression
model are shown. A drift is visible in the yaw angles. This drift is shown by the slope of the angles.

Figure 12 shows the data that has been sensor calibrated and filtered with the linear regression model. With
close inspection of figures 11 and 12, it can be observed the drift has been slightly minimized. This is visible
by a slight decrease in the slope of the angles.

(a) The RMSE of the unfiltered (blue), sensor cali-
brated (red) and sensor calibrated and filtered (green)
7-hour data are shown.

(b) The RMSE of the unfiltered (blue), sensor cali-
brated (red) and sensor calibrated and filtered (green)
8-hour data are shown.

Figure 13: The RMSE according to the duration of the measurement are shown for the 7-hour data (a) and
8-hour data (b).

When inspecting the RMSE of the 2 different data sets (figure 13), it can be seen that the sensor calibration
of the data significantly decreased the RMSE of the stationary periods of the data. Furthermore, a slight
decrease in the RMSE of both data sets can be identified after applying the linear regression model to the
sensor-calibrated data.
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4.3 Sector plots

Sector plots made using patient data are shown. The same patient data was used for every sector plot. The
influence of sensor calibration and linear regression model on the data is evaluated.

Figure 14: The sector plot of unfiltered patient data of the first three hours after the surgery is shown. It can
be seen that the patient was in a supine position.

In figures 14, 15 and 16 the first 3 hours of the patient data are shown in a sector plot. As described in section
2.1, the patient was still in the hospital and mostly in a supine posture. This is visible in figures 14 and 15
as most of the activity in the plot is shown in the lower half of the 0 - 30◦ ring.

Figure 15: The sector plot of sensor-calibrated patient data of the first three hours after surgery is shown. It
can be seen that the patient was in a supine position.

When comparing figures 14 and 15 with figure 16 it can be seen that the activity in the last sector plot differs
significantly from the first two sector plots. This shows the linear regression algorithm does not work as
effectively as with the data used in figure 13.
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Figure 16: The sector plot of the patient data of the first three hours after surgery, which was sensor calibrated
and filtered with the linear regression model, is shown. It can be seen that the patient was not in supine
position all of the time.

5 Discussion

The findings of section 4 are discussed. Conclusions will be presented and evaluated. Additionally, potential
imperfections in the implementation process are identified and reviewed. Lastly, possible improvements to
the linear regression model are presented.

The results of the sector plots will be discussed. As presented in section 4.3 the linear regression model sig-
nificantly increases the deviation from ’real life’. This means that the linear regression model as implemented
in this research cannot be used for patient data. The implementation of the linear regression algorithm could
be improved by the determination of the stationary periods. In this report, the results of the linear regression
model are dependent on the stationary periods that were manually determined. This causes some inconsisten-
cies when performing the calibration and linear regression process multiple times, as the stationary periods
were reselected every time the script was rerun. Consequently, the α and β values of the liner regression
model will differ slightly. This means that the model is not the same, every time the same data is rerun.
Additionally, the number of stationary periods selected influences the result of the linear regression model.
This is caused by the fact that the coefficients of the linear regression model, α and β, are redefined during
every stationary period. When such a period is not selected, the values will not be updated. Lastly, stationary
periods which are too small to detect or select manually, are neglected and therefore will not contribute to the
bias estimation. To improve this, future research could be done to provide an algorithm, which automatically
recognizes stationary periods in the gyroscopic data. In this way, the stationary periods will be the same if the
process is repeated and smaller stationary periods will also be included in the gyroscope zero bias estimation.
This will improve the model, as the α and β values will be calculated more accurately every stationary period
will be taken into account. Furthermore, the α and β values will be updated more frequently, as no stationary
periods are neglected. Algorithms for this already exist and can easily be implemented in the model used in
this report. [13, 14]

As mentioned in section 4 a drift is still visible in the yaw angles after sensor calibration and application of the
linear regression model. As described by Hoang et al. these angles could be optimized and the drift could be
further eliminated by a no motion no integration (NMNI) filter. This filter uses stationary periods to predict
the gyroscope zero bias, like the linear regression model. An algorithm can be implemented to determine the
stationary periods automatically. During these stationary periods, the values of the angular velocities are set
to zero and the bias is estimated. However, this bias is implemented as a constant value instead of a bias
dependent on the time. [13] This filter in combination with the Madgwickfilter, which was used to obtain
the orientations from the IMU data, shows a significant decrease in the drift of yaw angles. [13, 17, 18] As
discussed in section 4.2 the drift is only present in the yaw angles, after application of the linear regression
model. In future research, the NMNI filter could be implemented to eliminate the drift, which is present in
the yaw angles.
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As explained in section 4.2 the sensor calibration significantly reduces the drift of the yaw angles. Therefore,
this calibration can be applied to ameliorate the approximation of the yaw angles and the sector plots of
the patient data. The measurements which were used during the sensor calibration (see 3.1) used 2 different
angles for different axes, i.e. 360◦ for the z-axis and 90◦ for both the x- and y-axis. This means that the
calculation for the calibration values slightly differs per axis. This difference could result in slightly different
calibration values and may have caused a slight drift in the yaw angles. In the future, the calibration values
should be determined with the same angles used for every axis. This ensures that the values can be used
together as calibration values and no distortions appear because of the calibration values.

Lastly, a recommendation for future research is to pay attention to the duration of the script. The duration
of the script for the Madgwick filter of 7 hour data was an hour and a half. The sensor calibration and the
linear regression model did not elongate the running time significantly. The long duration of the running of
the script delays the retrieval of results significantly and this should be taken into account.

6 Conclusion

In section 1 the following research question was proposed:

To what extent can the gyroscope drift of IMUs be corrected with sensor calibration and a linear regression
model?

The answer to the research question is; the gyroscope drift can be significantly reduced with a sensor cali-
bration. However, a drift is still visible in the yaw angles. It was tried to further eliminate this drift with a
linear regression model. This model showed promising results in the evaluation of the model with simulation
data. Unfortunately, when evaluating the model with patient data, it was shown the model did not work
as effectively and could not be used with the patient data. The linear regression model can be improved by
implementing an algorithm which automatically detects stationary periods. Another way to eliminate the
drift in the yaw angles after the sensor calibration is an implementation of the NMNI filter, as this filter in
combination with the Madgwickfilter has shown promising results in optimizing the yaw angles of gyroscopic
data.
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A List of symbols

In this appendix, a list of all the used symbols and their meaning is presented.

Symbol Meaning
DMEK Descemet membrane endothelial keratoplasty; the surgical procedure to transplant a part of the cornea.
EITS Eye in the sky project; the main project this report is a part of.
FECD Fuchs’ endothelial corneal dystrophy; a condition which causes the cornea to become cloudy.
IMU Inertial measurement unit; the sensor that is used to track head movements
RMSE Root mean square error; a measure to evaluate the obtained results.

Table 3: List of symbols
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