
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

Analyzing Victim Process Behaviors
Post Code Injection

Spyridon Mesaretzidis
M.Sc. Thesis

Octomber 2024

Supervisors:
Prof. dr. ir. A. Continella

PhD Candidate J.A.L. Starink

Semantics, Cybersecurity & Services Group
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

Abstract

Amongst other methods, malware uses code injection to propagate itself. Like any
other technology method, new methods frequently arise. These advances lend
themselves to new strains, which are accompanied by a lack of accurate detec-
tion mechanisms as well as a lack of understanding regarding the behavior of the
infected processes that take post code injection. In this research, we examine the
behavior of processes that are targets of code injection malware post-exploitation.
To this end, We utilize the Virus Total dataset. We divide the data set according
to the type of code injection utilized to determine which actions are taken by the
infected processes after code injection. Subsequently, we determine their common
action targets and extract any IP geo-location information from the observed net-
work traffic. We observed heightened counts of behavioral metrics with operations
revolving around the file system exhibiting more distinct behavior. Behavior revolving
around IP and UDP processes did not exhibit any profound findings.

iii

IV ABSTRACT

Contents

Abstract iii

1 Introduction 1

2 Thesis Structure 5

3 Background 7
3.1 Code Injection Use Cases . 7
3.2 Fundamental Concepts . 8

4 Research Methodology 11
4.1 Methodology Overview . 11
4.2 Selection Of Software to Install . 13
4.3 Obtaining the Code Injection Timestamp 14
4.4 Injection Timestamp Utilization . 14
4.5 Obtaining the Target Process Event Stream 15
4.6 Determining Code Injection Targets . 15
4.7 Injection Timestamp Accuracy . 16
4.8 Trimming the Post-Injection Target Process Event Stream 16

4.8.1 Removing Extraneous Artifacts 17
4.9 Determining Target’s Post-Injection Actions 17
4.10 Results Processing . 17
4.11 Experimental Metrics . 19
4.12 IP And Domain Addresses Metrics . 19
4.13 CAPE and Drakvuf Sandboxes . 19

5 Implementation 21
5.1 Selection Of Software to Install . 22
5.2 Process Monitor Action Grouping . 23
5.3 Removing Extraneous Artifacts . 28
5.4 Determining Code Injection Targets . 29
5.5 Sample Behavioral Information . 30

v

VI CONTENTS

5.6 Experimental Metrics . 30
5.6.1 Targeted Processes List . 30
5.6.2 Target Processes per Code Injection Type 31
5.6.3 Target Process Actions per Code Injection Type 32
5.6.4 Sample Targets per Operation Type Code Injection Type 33

5.7 IP And Domain Addresses Metrics . 34

6 Evaluation and Experimental Results 35
6.1 General Dataset Statistics . 35
6.2 Observed Malware Families . 36
6.3 Triggered CAPE Signatures . 37
6.4 Targeted Processes List . 37
6.5 Target Processes per Code Injection Type 38
6.6 Target Process Actions per Code Injection Type 40
6.7 Sample Targets per Operation Type per Code Injection Type 41

6.7.1 File Operations . 42
6.7.2 Process Operations . 45
6.7.3 Query Operations . 47
6.7.4 Registry Operations . 49
6.7.5 Set Information File Operations 51
6.7.6 TCP Operations . 53
6.7.7 UDP Operations . 55

6.8 IP And Domain Addresses Metrics . 57
6.8.1 Metrics per Code Injection Type 58

6.9 Summary and Key Takeaways . 58

7 Results Discussion 61

8 Limitations 65
8.1 CAPE and Drakvuf Sandboxes . 66

8.1.1 Injection Timestamp Accuracy 67
8.1.2 Identified CAPE Sandbox Limitations 67

9 Future Work 73

10 Related Work 75

11 Conclusion 77

References 79

Appendices

CONTENTS VII

12 Tables 85
12.1 General Dataset Statistics . 85
12.2 Malware Family Distribution . 86
12.3 Targeted Processes List . 89
12.4 Target Processes per Code Injection Type 94
12.5 Target Process Actions per Code Injection Type 96
12.6 Sample Targets per Operation Type Code Injection Type 102

12.6.1 File Operations . 102
12.6.2 Process Operations . 105
12.6.3 Query Operations . 107
12.6.4 Registry Operations . 110
12.6.5 Set Information File Operations 112
12.6.6 TCP Operations . 116
12.6.7 UDP Operations . 119

12.7 IP And Domain Addresses Metrics . 121
12.7.1 Metrics per Code Injection Type 123

VIII CONTENTS

Chapter 1

Introduction

Amongst attackers that try to exploit software systems, a noticeable consideration in
the eyes of security professionals is malware strains. The term ”malware strains” is
used to denote software that is malicious and intends to cause harm to a target. This
can be achieved in several ways, either by massively encrypting files and requiring
ransom, causing resource drains on the system, or by simply deleting the contents
of the hard drive. Most often, the driving force behind the creation of malware is the
financial benefit of either the malware developer, the malware distributor, or both [1].

The phenomenon of malware is not novel, and the first sample - the Morris Worm
- appeared in 1988, appropriately named after its creator Robert Morris [2]. Since
this occasion, the number of malicious applications that have seen the light of day
has increased, with their numbers constantly rising every year [3]. As is to be ex-
pected, several organizations formed with the express purpose of developing de-
fensive software solutions, with the explicit aim of detecting infections on the target
machines.

This type of software has led malware authors towards the development of meth-
ods that would allow their creations to infect a target and act virtually undetected
for as long as possible. Among numerous techniques, one that stands out is code
injection.

As denoted by the name of the technique, code injection is the practice of an
application injecting code into another application. The goal is to manipulate the
target application into executing actions that were not originally intended [4], [5].
This in turn shifts the responsibility of portraying malicious behavior to the injected
process, potentially rendering malicious code benign during the scanning process
of defensive software systems.

Infestations of malware have been numerous. In 2022, 5.5 billion malware at-
tacks were detected [6]. Meanwhile, a 2021 study [7] on malware suggested that
more than 11.15% of the examined dataset contained malware samples that used
code injection techniques. A subset of the aforementioned dataset samples utilize

1

2 CHAPTER 1. INTRODUCTION

novel injection mechanisms, for which we currently have no automated detection
methods.

To the best of our knowledge, this is the only known modern academic effect
that focuses on code injection. Previously released frameworks and tools focus
on different aspects and techniques of dynamic analysis. All of these techniques
primarily focus on determining the behavior that a malware sample undertook. For
malware samples that make use of code injection, however, most of this behavior is
missed since a target processes is used in order to perform any target actions. The
aforementioned techniques include Function Call Analysis, Execution Control, Flow
Tracking, Tracing, and Side-Channel Analysis [8].

Function Call Analysis examines the functions that are called by an executable
to determine the specifics of its behavior. This can be achieved by analyzing the
address space utilized by an executable, as it is done with TTAnalyze [9] and Mal-
TRAK [10].

Execution Control regards halting the execution of a malware sample under anal-
ysis to examine its state. A notable tool that utilizes this method is Cobra [11]. Cobra
bases itself on the concept of debugging to offer the analyst the ability to create sets
of entry and exit breakpoints in the sample that is analyzed. The enclosed code is
subsequently analyzed by Cobra offering fine-grained information about its function-
ing.

Flow Tracking regards tracking the flow of information within a malware sample.
Tools utilizing the technique label binary data to indicate their origin. Once a ma-
licious executable makes use of said data, any affected memory regions become
tainted as well. Once a piece of tainted data reaches a specified region of code in
memory, the corresponding data flow is analyzed to expose how a malware sample
interacts with the operating system and the user. Vigilante [12] uses this technique
to detect untrusted code that originated from the network.

Tracing involves the collection of information after the code has been executed.
This can be achieved through Volatile Memory Analysis through the examination of
memory dump files post malware execution or through Network Tracing, where the
connections initiated by malware are analyzed to uncover Command and Control
servers. LiveDM [13] utilizes memory analysis to detect the allocation of new kernel
memory regions and thus track where a malware sample has installed itself. It
subsequently performs an analysis of the sample’s binary code. TrumanBox [14]
on the other hand utilizes network tracing to track outgoing connections initiated by
a malware sample and either emulate a response or simply forward the request.

Side-channel analysis regards the analysis of physical components of devices to
ascertain whether an infection has taken place. Such analyses utilize power con-
sumption, EM emission, and CPU event data to name a few. This method is primarily

3

utilized for malware which target devices like PCI cards, medicals devices, micro-
controllers etc. A notable example would be NumChecker [15]. The tool monitors
hardware registers responsible for monitoring hardware-related activities, pre and
post system call execution. Running on a system without any external connectivity,
allows the tool to create a set of patterns for normal behavior. Once an unknown
binary is executed a different execution pattern would be detected.

Examining these techniques leads to the discovery of flaws. Function Call Anal-
ysis, Execution Control, Flow Tracking, and Tracing would simply indicate that code
injection has taken place while missing any behavior that would be observed post
code injection. Side-channel analysis would only be able to detect that an infection
has taken place without indicating its type (code injection). That is assuming that
the malware has not managed to obfuscate itself.

This, in turn, limits how reliable our current dynamic analysis tools can be con-
sidered since they by default miss any behavior that stems from code injection. This
can be supported by the findings of the aforementioned modern academic efforts
performed by Starink et al. [7]. The author’s study determined that 11.15% of the
analyzed samples performed code injection. In reality however, this number is likely
higher since the study itself focuses on a specific set of code injection techniques
while being unable to detect some of them.

This means that there is behavior that even the most modern of tools are bound
to miss. It is also unclear what kind of behavior is being missed. The results we
obtained serve to support this argument.

Due to this, our research aims to answer several objectives. We first aim to dis-
tinguish whether or not significantly differing levels of activity are exhibited by targets
of code injection pre and post-exploitation. Our aim here would be to determine the
levels of behavior of code injection malware that is currently being missed by the
presently available frameworks that do not monitor target processes of code injec-
tion.

Subsequently, we aim to understand whether code injection malware exhibits
specific types of activity (e.g. network operations) more so than others, what this
activity would be, and its degree.

Having gained a sufficient comprehension of our previous aim, we will exam-
ine whether specific processes are preferred over others regarding code injection
malware. We will also examine whether any actions performed by the infected pro-
cesses feature a preference over a specific set of targets.

We start by examining the behaviors observed by victim processes pre and post
code injection. We categorize these behaviors based on the code injection type of
each sample observed within our dataset, presenting and analyzing the most preva-
lent behaviors. The behaviors we examine include but are not limited to, Registry

4 CHAPTER 1. INTRODUCTION

Operations, File Operations, and Network Operations.
We discuss the deviations observed in the behavior of samples belonging to

different code injection types, while also touching upon the most preferred targets
encountered during the operation of the infected processes. The targets themselves
vary based on the behavior itself.

We focus on the top five operations, determined based on the number of oper-
ations that were observed over the whole dataset. We proceed with examining the
corresponding top 5 targets per code injection type. As a final piece of information,
we examine the network traffic observed by each sample. We collect a list of IP Ad-
dresses and URLs. We process these artifacts obtaining and resolving any aliases
through the use of DNS Records to provide geolocation information regarding the
uniquely observed IPs per code injection type.

Chapter 2

Thesis Structure

The remainder of this paper is organized as follows. We begin by providing relevant
background information, offering definitions of key concepts touched upon through-
out the document, and surveying various use cases of code injection in chapter 3.

In chapter 4 we proceed by outlining our research methodology, offering a high-
level overview of the processes that we followed denoting key information while ar-
guing for our design decisions. Continuing with chapter 5 we discuss in detail how
the experiment was conducted by analyzing the underlying infrastructure and other
key details necessary to reproduce the experiment. We follow with chapter 6 where
the results of our analysis are presented and discussed.

We move forth with discussing the limitations which we experienced in chap-
ter 8 while we provide our conclusions in chapter 11. We close this document by
presenting work undertaken by other researchers in chapter 10.

5

6 CHAPTER 2. THESIS STRUCTURE

Chapter 3

Background

The focus of this research is to determine the behaviors of infected processes post
code injection. To have a deeper understanding of the subject at hand, we need to
initially explore what code injection entails, an outline of the injection techniques un-
der study, as well as provide key information regarding the technologies which made
this effort possible. In this section, we thus briefly outline legitimate and illegitimate
uses for code injection, provide a short description of the techniques we focused on,
as well as a concrete description of the technologies that made our efforts possible.

3.1 Code Injection Use Cases

Code injection is the practice of inserting code into a victim process by manipulating
the memory space of the victim in one way or another [16]. This primarily takes
place by enacting Processes Injection. A technique used by malware to evade de-
fense measures and enact privilege escalation to achieve persistence and stealth of
operations during cyberattacks. This results in a victim process becoming the target
of the malware, aiming to make the target execute code on behalf of the malware,
altering its originally intended functionality.

The practice of injecting code into a target has its own set of fruitful uses [17].
The most notable case would be the process of debugging an application by using
breakpoints. This intends to halt an application’s execution for an interested party
to observe its state. Another well-known use would be the equivalent of method
overloading in C implemented by naming a developer-defined function as a LibC
function, followed by loading the respective code as a library [18].

The goals of malware developers making use of this technique differ. This goal
can range from financial benefit by requiring ransom for encrypted files, cyber-
espionage, and activism [19]. They would aim to manipulate a benign applica-
tion into running arbitrary code for their purposes. Several techniques are currently

7

8 CHAPTER 3. BACKGROUND

known, with them being Classic DLL Injection, AppInit DLL Injection, and Thread
Hijacking, just to name a few. [20]

Taxonomies that classify the currently known methods exist and are based on
whether the sample indiscriminately infects processes, whether the injector process
concurrently executes the malicious code alongside the victim, or whether the victim
process is simply rendered unusable [21]. Code injection attacks are very damag-
ing since they can be performed in a seamless manner, present difficulties during
detection, and act as stepping stones towards other types of cyberattacks. The con-
sequences can thus be severe leading to data breaches, financial losses, denial of
service, botnet creation, etc [22].

3.2 Fundamental Concepts

Several technologies and concepts will be mentioned throughout this document.
These concepts revolve around malware analysis and the process that was followed
to collect all of the necessary experimental data. These technologies and concepts
are worthy of mention and explanation since such an action can assure that the
reader of this work will be able to concretely comprehend the discussed topics.

• Static Analysis: Static analysis refers to a technique that aims to examine the
code and properties of a malicious file foregoing the need to execute it. There
are several methods that fall under this definition, like reverse engineering (ex-
amining a disassembled malware binary), code signatures(byte patterns found
in a malware sample), and AI approaches. AI Approaches mostly attempt to
classify a sample based on previously encountered byte patterns found within
well-researched malware samples. Static analysis is used mainly to classify
malware samples into known families and extrapolate information on potential
behaviors.

• Dynamic Analysis: The action of running a malware sample within an iso-
lated environment determines the actions it performs and collects metrics of
its functioning. These metrics include calls made to the Native OS API, run-
time of the sample, IP/HTTP addresses reached, etc. Other metrics can be
provided (e.g. number of spawned processes) but their availability depends on
the underlying system used. Dynamic Analysis is generally preferred since it
offers insight into a malware sample’s behavior by executing the sample within
a controlled environment.

• Virtual Machine: A simulation of a physical machine, equipped with its virtual
hardware which supports an OS. Utilized for various purposes (e.g. hosting

3.2. FUNDAMENTAL CONCEPTS 9

applications on production environments). For malware analysis, they are used
to monitor the execution of malware samples.

• Hypervisor: A piece of software that is responsible for the creation, control,
observation, and deletion of virtual machines(VMs).

• Sandbox: An isolated system based on a virtual machine can be used to
individually examine the behavior of a malware strain.

• Syscall Monitoring: Monitoring of the system calls that a malicious exe-
cutable under examination makes with the explicit purpose of pinpointing key
characteristics of its behavior. Syscall Monitoring is the primary capability of-
fered by several sandbox solutions like CAPE [23] and Drakvuf [24]. This in-
formation is important to a malware analyst since it offers insight into how a
malware sample operates.

• File Tracing: Tracing of file accesses performed by processes. This infor-
mation is used by malware analysts to obtain insight into malware sample’s
behavior.

• Network Monitoring: Tracing of network connections which may have been
initiated by trojans, malware, or malware-infected processes.

• Obfuscation: The act of making the code of a program hard to understand by
humans as well as computers without changing how the program works. En-
cryption, compression, and encoding are some of the most common obfusca-
tion methods used by malware authors, frequently utilizing a mix of techniques.

• Packing: Used by malware authors to make executables more difficult to de-
tect and analyze. Packed malware samples are a subset of obfuscated mal-
ware samples in which the malware sample is compressed.

• Target Process: A process running within an operating system infected by
malware which is the target of a code injection attack by the aforementioned
malware. The process can either be a service or application that came prein-
stalled with the system or it could have been installed by an administrator or
user.

10 CHAPTER 3. BACKGROUND

Chapter 4

Research Methodology

The overall process that we followed has been diagrammatically depicted in Figure
4.1. This chapter is devoted to describing the research methodology that we followed
during the experiment. The tables referenced throughout this section are placed at
the end. We begin by stressing the need for dynamic analysis. Malware developers
are known for obfuscating and packing their samples to hinder static analysis tech-
niques. This means that to gain a comprehensive insight into the functioning of the
sample contained within our dataset, we need to use dynamic analysis methods.

This dynamic analysis system needs to be able to produce a list of all the system
calls that are performed by an executable under analysis, which we denote as the
event stream. This capability is important to us since it would allow us to accurately
determine a malware sample’s actions. Meanwhile, the process that was the target
of code injection is referred to as target process. In light of this, the event stream
generated by the malware strain under analysis is denoted as the sample event
stream while the event stream generated by the target process is denoted as target
process event stream.

During this experiment, we are not required to examine the totality of the event
streams, as we are only interested in the call which resulted in code injection be-
ing performed as well as the subset of the target process event stream post code
injection. We refer to the time that the code injection took place as the injection
timestamp while the event stream that was generated by the target process before
the code injection is named pre-injection event stream. Subsequently, we denote
the part of the event stream that was generated by the target process post code
injection as the post-injection event stream.

4.1 Methodology Overview

To determine what actions are taken by the samples in our dataset we need to run
each sample through a Dynamic Analysis Sandbox. Within the sandbox, we install

11

12 CHAPTER 4. RESEARCH METHODOLOGY

several applications that are known to be the targets of code injection for the samples
in our dataset. After each successful run, we extract the event streams of the target
applications. In the meantime, we also collect information regarding the behavior of
the sample under analysis, provided by our underlying analysis system. Moreover,
we proceed with saving the corresponding network trace for further analysis.

Having collected the event streams, we need to determine the injection times-
tamp. The injection timestamp is used during processing of the event stream to filter
any actions that took place before code injection. It is also used to determine the
function call that consolidates the code injection process. We perform these steps
to filter the event streams of the target applications since we are only interested
in behavior observed post-code injection while wanting to maintain a good level of
accuracy of our results.

Having obtained the event stream of each sample run alongside the injection
timestamp, we proceed with determining the code injection target per sample. This
task is achieved through the use of two methods. By querying Virus Total API and
by matching the target process PID to the arguments of the call that performed code
injection. Code injection malware uses a process PID to target the process they
wish to infect. Therefore, matching the arguments of the call responsible for code
injection to a PID of an application running within our sandbox is a straightforward
process. We utilized both methods since we do part, some of the Virus Total API
responses do not include information on target applications.

Having obtained the event stream of each target application we extract the unique
actions which all processes performed. We subsequently divide these actions into
groups to increase their granularity which will in turn aid us in statistically processing
our data.

Having grouped the actions we processed them by extracting the corresponding
statistics. Consequently, we examine the target process’s targets to ascertain with
accuracy the actions that a target process performs post code-injection. As a final
step, we process the extracted network traces to obtain IP geolocation information.

There is one important limitation that we need to denote, however. The determi-
nation of the timestamp required the utilization of execution traces obtained using the
Drakvuf sandbox [25]. In the meantime, collecting the event streams of the available
malware samples post-code injection was achieved using the CAPE Sandbox [23].
More information on why this choice was made, alongside any potential impact on
the experimental results can be found in section 4.13.

4.2. SELECTION OF SOFTWARE TO INSTALL 13

Figure 4.1: Methodology

4.2 Selection Of Software to Install

A machine used by an average Windows user is expected to have several appli-
cations installed. These applications can belong to a different type. These types
include Document Processors, Browsers, File Exchange Applications, Instant Mes-

14 CHAPTER 4. RESEARCH METHODOLOGY

saging applications, Email Clients as well as Programming Languages and frame-
works which are frequently required by modern applications. Moreover, code injec-
tion malware will seek to find an application that it can infect. Based on this fact we
install a selection of applications into the sandbox.

4.3 Obtaining the Code Injection Timestamp

Obtaining the code injection timestamp is paramount to this investigation, as it allows
us to determine from which point onward we need to examine the post-injection
event stream. Though code injection is performed using multiple system calls, we
are only interested in the system call which concretely signifies that code injection
has been performed.

The injection timestamp can be determined by obtaining the system call of the
sample that injected the code into the target process. One of the methods which
can be used is reverse engineering. Such an endeavor though would be very time-
consuming and error-prone considering any obfuscation and packing mechanisms
that the malware developer has put in place. In addition, any executable can feature
several system calls which could be utilized to perform code injection thus leaving
too much room for error and speculation. Moreover, malware samples are known
to behave differently based on their environment [26] suggesting that a different set
of calls could be observed based on the environment in which the malware sample
was analyzed. This would in turn introduce further complexities and inaccuracies.

We thus obtained the code injection timestamp through an automated solution
like the one developed by Starink et al. [7] which leverages a sample execution trace.
This solution provided the timestamp of the system call used for code injection. The
timestamp is required to understand from which point onward the Process Monitor
event trace is to be examined. This allows us to remove any extraneous execution
artifacts and thus obtain greater accuracy.

4.4 Injection Timestamp Utilization

A target process that has not yet been injected is expected to behave in a manner
determined by its developers, as well as any possible user actions. A target process
that has undergone code injection, however, will exhibit behaviors that encompass
actions imposed by the injection code. If we were to examine the event stream
of a target process that has not undergone code injection and the event stream
of a target process that has undergone code injection, we would observe notable
differences unless the injected code is stealthy or remains dormant. The injection

4.5. OBTAINING THE TARGET PROCESS EVENT STREAM 15

timestamp is used during our analysis to determine from which point onward we
can start examining the behavior and actions of a process having undergone code
injection. This step is important since it allows us increase the accuracy of our
results.

4.5 Obtaining the Target Process Event Stream

To be able to determine the action of applications that are the targets of code injec-
tion, we need a sandbox equipped with the capability of extracting the target process
event stream. The event stream would contain a list of actions that the target pro-
cess performed during the duration of our analysis. Each action of said event stream
should also contain the corresponding targets of each action. Obtaining both the list
of actions that the target processes performed as well as their corresponding tar-
gets would allow us to determine with specificity which behaviors are observed by
the target processes post code injection.

4.6 Determining Code Injection Targets

For code injection to take place, a corresponding process should be installed and
running in the sandbox used. However, said processes should initially be deter-
mined. Determining these processes is paramount to our endeavors since it allows
us to pinpoint which target’s post-exploitation event stream we are to examine. Be-
ing aware of the targets of code injection also allows us to obtain concrete results.
Not performing this step would require us to determine the targets by examining all
running processes and subsequently obtaining a list of potential candidates based
on the differences observed in their event streams. This approach is not very trust-
worthy however since we cannot exclude the possibility that a target process may
exhibit behavior during the analysis process which we have not managed to capture
beforehand. This would in turn tag a process running in the sandbox as a target
process, without this being the case.

We applied two methods to determine the target process. The first method would
be to leverage information from the Premium version of the Virus Total API, which
returns a report containing information on the target process that Virus Total man-
aged to uncover. For the samples where such information was not available, we
applied a second method.

We obtained a ProcMon process trace from a sandbox run without any sample
loaded and designated this as the baseline. We continue by obtaining a ProcMon
trace after analyzing a sample. We compare these two traces and pinpoint which

16 CHAPTER 4. RESEARCH METHODOLOGY

process showcased deviations from the baseline, past the known code injection
point. Any further calculations were performed using the data obtained from this
process.

4.7 Injection Timestamp Accuracy

Since we are using timestamps obtained in Drakvuf while studying the behavior of
the target process of code injection, we expect differences in the exact sequence of
system calls performed by the sample under analysis. We do however expect that
the same function call would be used to perform the injection.

In order to account for that effect we pinpoint the exact call and corresponding
arguments that resulted in code injection from the obtained Drakvuf traces. We
locate the timestamp of the same call in the obtained CAPE reports of ten samples.

Per sample we obtain the observed time difference between the Drakvuf system
call trace and the CAPE system call trace. We perform this process manually for
10 samples and obtain their average. We factor in this difference in any subsequent
operations and metrics. Since this fact can be seen as an impacting factor of our
study, we have discussed any further impact in 8.1.1.

4.8 Trimming the Post-Injection Target Process Event
Stream

The behavior of a modern application can differ based on several factors (e.g., hav-
ing automatic updates enabled). This presents challenges regarding accurately de-
termining the actions of the target process post code injection since artifacts from
the target process’ normal execution would be introduced. To our knowledge, there
is currently no literature on how to exclude such artifacts. We have thus resorted to
obtaining the ten execution traces of the processes listed in table 5.1 during various
times to account for this fact, as well as any underlying Windows services.

Having collected these traces we are able to determine artifacts that were part
of the normal execution of applications. This allows us to exclude said artifacts from
our analyses. The rationale that guides our selection of installed applications in our
sandbox that are not native Windows applications or services has been outlined in
section 4.6.

4.9. DETERMINING TARGET’S POST-INJECTION ACTIONS 17

4.8.1 Removing Extraneous Artifacts

Analyzing the totality of our dataset would result in several extraneous artifacts within
the collected event traces. These artifacts would stem from the normal execution of
applications and services that were not affected by code injection malware. Said
artifacts would introduce noise during our analysis and we therefore took steps to
programmatically remove a number of them.

4.9 Determining Target’s Post-Injection Actions

After each successful sandbox run we obtain the event stream of the malware sam-
ple under analysis as well as the Process Monitor trace of the Windows installation
underlying our Sandbox. After pinpointing the target through the process outlined
in the section 4.6 we remove any artifacts that we have identified using the method
outlined in the section 4.8 while also excluding and process actions that take place
before the code injection timestamp obtained through the actions described in sec-
tion 4.3. This results in a Process Monitor trace which lacks any artifacts that would
originate from normal usage of the underlying Windows OS. Having obtained this
cleaned-up trace for each of our samples we extract the actions of the target pro-
cess alongside their targets.

4.10 Results Processing

The data we collected have been processed to extract counts and percentages of
the top 5 most prominent observations without delving deeply into statistical analysis
since such an action would surpass the goals of our research.

We offer Figure 4.2 to showcase the sources of our data as well as the chain of
processing that they underwent. We begin by running the execution traces through
the Code Injection Detector to obtain the code injection type and the corresponding
timestamp. In the meantime, run our dataset samples. For each sample, we ob-
tain the Process Monitor Event Streams and the CAPE report. We use the Event
Streams to determine the behavior of a process post code injection. In the meantime
we use the CAPE reports to process any triggered behavior signatures and obtain
all the observed IP, UDP, TCP and Domain(URL) addresses.

From the event stream, we extract the actions undertaken by the sample post
code-injection alongside the action targets. From the CAPE report, we extract any
triggered signatures while obtaining the corresponding network trace. Having col-
lected this information we determine the behavior of each sample. We subsequently

18 CHAPTER 4. RESEARCH METHODOLOGY

examine its network trace to extract IP geolocation information.

Figure 4.2: Results Processing

4.11. EXPERIMENTAL METRICS 19

4.11 Experimental Metrics

There are several metrics and data that can assist us in examining how much be-
havior is been neglected during dynamic analysis of code injection malware. We
want to initially investigate the list of processes that were the target of code injec-
tion. These processes can either be native Windows applications and services or
software components that were not native to the Windows OS and were installed by
us.

We are similarly interested in the list of target processes per code injection type.
This list can help us understand in greater detail if there are any notable differences
between the targets of code injection malware and whether specific interest should
be paid to a set of applications during analysis.

The actions of the processes that were the targets of code injection are of partic-
ular interest to us. This metric can accurately determine the set of actions that were
observed after code injection has taken place. This set serves as an indicator of the
behavior that is currently missed by dynamic analysis tools and frameworks during
the analysis of code injection malware.

As a supplementary set of information, we are also interested in the targets of
the malware samples we analyzed, per code injection type. These targets exist to
denote the fact that not only should processes fall under the examination of dynamic
analysis tools, but also the various components of the underlying system.

4.12 IP And Domain Addresses Metrics

Malware is known to reach Command and Control servers for several operations.
In light of this, we are interested in understanding if any of the analyzed samples
reached out to any servers. This is accomplished by examining if any of the samples
reached any IP or Domain addresses.

4.13 CAPE and Drakvuf Sandboxes

As mentioned in the beginning of this chapter, the injection timestamp was deter-
mined using traces obtained from the Drakvuf sandbox, while the event streams
that allowed us to examine the behavior of code injection malware were obtained
using the CAPE sandbox. There are several reasons for this action. This section
offers a set of methodological reasons for this alongside any potential impact and
consequences. Any limitations are discussed in section 8.1.

20 CHAPTER 4. RESEARCH METHODOLOGY

Our key research objective is to indicate the level of activity that code injection
malware exhibits post-code injection, and possibly quantify it. A code injection mal-
ware sample however is nothing more than an executable. And just like any exe-
cutable, some behavior is expected before the main functionality is performed. This
behavior can be attributed to several potential actions like process detection (for
code injection) or environment detection (for evasion). Therefore, a means by which
to be able to determine behavior pre-code-injection is required to gain the ability to
quantify any behavior observed post-code injection.

Out of the two sandboxes, only CAPE offers this capability. CAPE uses a large
number of author and community-issued signatures that examine the system calls
performed by the sample under analysis to determine high-level behaviors (e.g. ran-
somware behaviors). These signatures can be used to collect information as to
whether or not there is any noteworthy activity taking part before code injection be-
ing performed Drakvuf on the other hand, offers several plugins that offer insight into
the purely technical execution details for a sample like the system calls it performed.

If we were to accurately determine what kind of actions were performed by each
sample, we would need to map a set of system calls alongside their arguments to a
set of high-level behaviors. Such an action however could have been met with low
accuracy and could constitute a study on its own. Furthermore, utilizing Drakvuf’s
plugins would not allow us to peer into the code injection target’s functioning since
the plugins only target the sample under analysis.

This would lead us to install a different solution to monitor the code injection
target processes’ action. Considering how the Windows OS is supported both by
CAPE as well as Drakvuf, said the solution could have been installed in either OS.
If we were to prefer Drakvuf over CAPE, the only thing we would achieve would be
a minor improvement in the accuracy observed regarding the determination of the
time injection timestamp and potentially less evasive sample behavior. Since this
fact alongside our choice of sandbox can be seen as a limitation we have expanded
upon it in section 8.1 alongside other limiting factors.

Chapter 5

Implementation

This chapter is devoted to the discussion of the experimental setting that was used.
The physical machine utilized was equipped with Ubuntu 22.04 while the machine
was connected to an isolated WiFi network.

We opted for this option since we desired to provide the sandbox with Internet
access to adequately simulate a real machine and collect all of the network artifacts
generated from analyzing our samples for further reanalysis.

We were provided with the capability to directly select which hardware compo-
nents the VM underlying our sandbox would contain, and thus opted-in for com-
ponents that were released during 2017 while providing them with realistic UUID
values to increase the fidelity of our setup in the eyes of our samples. To aid the
reader’s understanding we have provided Figure 5.1 which showcases how the ma-
chine was set up. The figure showcases how we analyzed the VirusTotal Dataset
through CAPE Sandbox. CAPE The Sandbox itself was equipped with Process Mon-
itor, and the CAPE agent - a Python script used to run and monitor the sample under
examination. We performed this action since CAPE is fulfilling the role of the typical
sandbox that uses process-specific monitoring. This means that only the malware
sample was observed by CAPE. On the other hand Process Monitor allows us to
observe all of the running processes, including the target of code injection. As a
final step in the figure we obtain a CAPE report, alongside any triggered CAPE sig-
natures, the Network Trace that was captured during the run, the list of System Calls
the sample performed, as well an event trace generated by the Process Monitor.

The sandbox itself was equipped with Windows 10 21H2 as per the suggestions
of CAPE’s authors to maximize compatibility while disabling any automatic update,
User Account Control, and firewall services since these could interfere with our mea-
surements.

We similarly disable automatic updates of the software detailed in Table 5.1 while
ensuring that processes of the aforementioned applications have spawned and are
running.

21

22 CHAPTER 5. IMPLEMENTATION

Before loading any samples for analysis, we generate several usage artifacts on
the OS as well as the application level. On the OS level, we load the machine with
various images and files having manipulated their creation and modification dates
setting them sometime in the past. We perform this action to make these artifacts
look as realistic as possible. We take the extra step of populating our nonimage
files (e.g..xls files) with data and give them names that are expected to be found
in a real user’s machine (e.g. 2016 Tax Return.xlsx). Furthermore, we utilize a
directory structure that would resemble a real machine, in an attempt to circumvent
any further checks that the malware sample under analysis would perform.

To obtain the actions performed by the target process, we have opted in for a
solution. This solution is Microsoft’s Process Monitor [27] which is part of System
Internals. The application monitors system processes both on the OS and on the
user level, monitoring a variety of information. This information includes Process
IDs, process actions as well as process action targets. The actions of a process
include, but are not limited to, Registry Operations, File System Operations, and
Network Operations.

After we run the data set samples we collect all execution artifacts which include
the Process Monitor traces, the corresponding CAPE reports, as well as the code
injection timestamp from the code injection detector, as also shown in Figure 4.2.
The timestamp is used to ascertain from which point onward we should consider
examining the Process Monitor traces.

Figure 5.1: Experimental Setup

5.1 Selection Of Software to Install

For the remaining software, we utilized the VirusTotal API to gain insight into the
applications that our samples were targeting. The responses we collected from the
API contained the set of software applications into which our dataset was injecting
code. Having obtained the resulting set, we moved forth towards installing the soft-
ware which is listed in Table 5.1. From this table, two entries that stand out are

5.2. PROCESS MONITOR ACTION GROUPING 23

the Python 3.10 programming language as well as the .NET 4.5 Framework. Python
was required to run CAPE’s agent. The .NET 4.5 Framework was required to ensure
that our samples could run within the sandbox.

Installed Software

Firefox
Chrome
Opera

Libre Office
Open Office

Outlook 2010
WinZip 32
Win Rar

QBit Torrent
VS Code

F.lux
Discord

Glary Utilities
Lightshot

Python 3.10
.NET 4.5

Table 5.1: Installed Sandbox Software

5.2 Process Monitor Action Grouping

A Process Monitor event trace contains the process name, along with the process
action, as it is shown in the above subsection. This representation of a process’s
behavior is finer than the portrayal of the system calls that a process performed.
However, it is still coarse enough to not allow fine statistical processing. We have
thus extracted the set of all unique Process Monitor actions we have observed from
all analyses of our dataset, and have aggregated them into groups.

Though the tool’s granularity in terms of process actions is finer than the tradi-
tional system calls, it is still not on a high enough level to allow us to extract and
analyze information. Therefore after collecting all of the ProcMon actions generated
by all of the target processes during our experiments, we have aggregated them
together into groups to better facilitate results processing.

The aggregation process was based on the fact that each observed Process
Monitor action name was prepended by a stem which indicated part of its function-

24 CHAPTER 5. IMPLEMENTATION

ality. For example, the action named RegFlushKey indicates that the action writes
all the attributes of the specified open registry key into the registry. We have thus
grouped actions that begin with a common stem into a group. The only exception
to this rule was the File Operations and Process Operations groups. This occurred
because the actions of these groups were not prepended by a stem but were either
postpended or exhibited names composed of two words. Notable examples are the
CloseFile and the Thread Exit actions.

The groups themselves along with their associated actions have been listed in
Tables 5.3 through 5.9. The unique actions that were observed during our analyses
have been listed under Table 5.2, while we also offer the definitions of these actions
which have been extrapolated from the name of each action as well as it’s observed
targets.

ProcMon Action Definitions

CreateFileMapping
Create an in-memory mapping of

the contents of a file.
FileSystemControl A operation on the file system.

RegFlushKey
Writes all the attributes of the

specified open registry key into the
registry.

RegUnloadKey
Removes a section of the registry
that was loaded using the reg load

operation.

QueryAllInformationFile
Get various kinds of information

about a file object.

QueryAttributeInformationVolume
Retrieve information about the file

system and volume associated
with the specified root directory.

QueryAttributeTagFile Retrieve file attributes and tags.

QueryBasicInformationFile
Get basic kinds of information

about a file object, like it’s name
and size.

QueryDeviceRelations
Retrieve device relation (property
keys) as defined by the Unified

Device Property Model.
QueryDirectory Query for directory information.

QueryEAFile
Query Extended Attributes

Metadata.
Continued on next page

5.2. PROCESS MONITOR ACTION GROUPING 25

Table 5.2 – continued from previous page

QueryFileInternalInformationFile
Query the file that contains

information on the system itself.

QueryFullSizeInformationVolume
Query information about a system

volume.

QueryInformationVolume
Query information about a system

volume.

QueryNameInformationFile
Query the system information file

for a name.

QueryNetworkOpenInformationFile
Query the system information file

for network information.

QueryNormalizedNameInformationFile
Query the system information file

for a normalized name.

QueryObjectIdInformationVolume
Query for the Object ID of a file or

folder.
QueryOpen Query for open files.

QueryPositionInformationFile
Query for the position of the

information file.

QueryRemoteProtocolInformation
Query for information for Remote

Desktop Protocol.
QuerySecurityFile Query for a security file.

QuerySizeInformationVolume
Query size information for a

volume.

QueryStandardInformationFile
Query information for a standard

file.
QueryStreamInformationFile Query information for a stream file.

RegQueryKeySecurity
Query registry key associated with

security.
SetAllocationInformationFile Set the allocation information file.

UnlockFileSingle
Unlock a region in an open file.

Unlocking a region enables other
processes to access the region.

QueryEaInformationFile
Query Extended Attributes

Information File.

QueryDeviceInformationVolume
Query a device information file for
information regarding a volume.

Continued on next page

26 CHAPTER 5. IMPLEMENTATION

Table 5.2 – continued from previous page

QueryNetworkPhysicalNameInformationFile
Query an information file for the

physical name for a network.

Table 5.2: Definitions of the Process Monitor Actions That Were Observed Within All Of The Mal-
ware Sample Execution Traces.

File Operations

CloseFile CreateFile
CreateFileMapping DeviceIoControl
FileSystemControl FlushBuffersFile

LockFile NotifyChangeDirectory
ReadFile UnlockFileSingle

FileSystemControl FlushBuffersFile
WriteFile

Table 5.3: Process Monitor Actions Which Belong to The File Operations Aggre-
gated Actions Group.

Process Operations

Load Image Process Create
Process Exit Process Profiling
Process Start Thread Create

Thread Exit

Table 5.4: Process Monitor Actions Which Belong to The Process Operations Ag-
gregated Actions Group.

5.2. PROCESS MONITOR ACTION GROUPING 27

Query Operations

QueryDeviceInformationVolume QueryNetworkPhysicalNameInformationFile
QueryAllInformationFile QueryAttributeInformationVolume
QueryAttributeTagFile QueryBasicInformationFile

QueryBasicInformationFile QueryDeviceRelations
QueryDirectory QueryEAFile

QueryFileInternalInformationFile QueryFullSizeInformationVolume
QueryInformationVolume QueryNameInformationFile

QueryNetworkOpenInformationFile QueryNormalizedNameInformationFile
QueryObjectIdInformationVolume QueryOpen

QueryPositionInformationFile QueryRemoteProtocolInformation
QuerySecurityFile QuerySizeInformationVolume

QueryStandardInformationFile QueryStreamInformationFile

Table 5.5: Process Monitor Actions Which Belong to The Query Operations Aggre-
gated Actions Group.

Registry Operations

RegFlushKey RegUnloadKey
RegCloseKey RegCreateKey
RegDeleteKey RegDeleteValue
RegEnumKey RegEnumValue
RegLoadKey RegOpenKey
RegQueryKey RegQueryKeySecurity

RegQueryMultipleValueKey RegQueryValue
RegSetInfoKey RegSetKeySecurity

RegSetValue

Table 5.6: Process Monitor Actions Which Belong to The Registry Operations Ag-
gregated Actions Group.

28 CHAPTER 5. IMPLEMENTATION

Set Information File Operations

SetAllocationInformationFile SetBasicInformationFile
SetDispositionInformationFile SetDispositionInformationEx
SetEndOfFileInformationFile SetPositionInformationFile
SetRenameInformationFile SetSecurityFile

SetStorageReservedIdInformation

Table 5.7: Process Monitor Actions Which Belong to The Set Information File Op-
erations Aggregated Actions Group.

TCP Operations

TCP Accept TCP Connect
TCP Disconnect TCP Receive
TCP Reconnect TCP Retransmit

TCP Send TCP TCPCopy

Table 5.8: Process Monitor Actions Which Belong to The TCP Operations Aggre-
gated Actions Group.

UDP Operations

UDP Receive UDP Send

Table 5.9: Process Monitor Actions Which Belong to The UDP Operations Aggre-
gated Actions Group.

5.3 Removing Extraneous Artifacts

From our runs, we obtained several execution traces. These execution traces also
contained several actions that were generated during normal application execution.
We therefore need to take action to reduce the number of these artifacts present
within the execution traces of the malware sample we analyze. We resorted to
obtaining the ten execution traces of the processes listed in Table 5.1 at various
times to account for this fact, as well as any underlying Windows services.

This collection did not take place during random runs of our sandbox while having
its underlying OS boot from the start but after spawning our sandbox from a saved
OS state. This was achieved because our sandbox of choice (CAPE) utilizes KVM
[28] to offer a virtual machine within which to examine our samples while requiring
us to save the machine state once we are done setting it up for it to be reused
for each analysis. This allowed us to spawn instances of our installed applications

5.4. DETERMINING CODE INJECTION TARGETS 29

before saving the snapshot, thus preserving their Process IDs during each sandbox
run alongside the Process IDs of each running Windows service.

Having a fixed set of Process IDs, we were able to obtain a collection of tuples
for each running process and service with each tuple of the form:

(Process Name, Process ID, Process Action, Target)

With Process Action denoting a Process Monitor Action, and Target determining
the Action’s target (e.g a file if a File Operation is performed). An example tuple
follows bellow:

(SV CHost, 1332, RegCloseKey,HKCU)

This process allowed us to remove several extraneous artifacts from our traces.
We are rather confident in the completeness of this method since we have disabled
any form of automated updates on both the OS and the application level.

5.4 Determining Code Injection Targets

In Chapter 4 we identified two methods to recognize the code injection target pro-
cesses. The first method regarded using the Virus Total Academic Dataset to obtain
information on which process was the target. This method produced results only for
a subset of our dataset, leaving us oblivious to the targets of the remaining samples.

We were thus required to obtain information on the targets of the rest of the
samples under examination. For this purpose, the sandbox that we utilized was
equipped with several applications listed in the table 5.1 and collected their Process
IDs through the use of Process Monitor. We have divided the installed software into
categories which are listed in the same table. For the samples that we were unable
to detect which application they targeted after having obtained their injection times-
tamps, we used a different method. We extracted which system call was responsible
for code injection from their corresponding event streams. This call was the one that
matched the timestamp which was provided by the injection detector we utilized.

By performing this action we were able to obtain the set of unique system calls
which were used for code injection. Examining their corresponding documentation
we extrapolated which arguments were used to specify which was the PID of the
target processes. Armed with this knowledge at hand we were able to determine
which process was the target of code injection by cross-referencing their PIDs from a
Process Monitor trace we obtained from the sandbox, while not having any samples
under analysis.

30 CHAPTER 5. IMPLEMENTATION

5.5 Sample Behavioral Information

CAPE offers its users the ability to obtain information on the behavior of a malware
sample based a number of signatures. Said signatures examine information that
was extracted during the analysis of a malware sample. This information includes
but is not limited to the system call trace that the sample generated, any IP ad-
dresses observed, and file system objects accessed. The overwhelming majority of
the signatures has been created by the malware analysis community.

Due to the high number of signatures which accompanied CAPE (more than 400)
we have once aggregated those signatures into groups. Each signature that was
aggregate represented a very specific malware characteristic. A distinct example
would be the signature which was responsible for detecting whether a loaded sample
was a banking Trojan which attempted to steal login credentials. We were therefore
able to aggregate these signatures together into distinct high level groups based on
common characteristics.

5.6 Experimental Metrics

In this section, we describe the processes followed to obtain the various metrics
from our measurements. We provide the reasoning behind our metrics and how
they were obtained while offering code listings and formulas where applicable. We
begin by portraying Listing 5.1. The listing provides an understanding of how we
calculated the percentages which we portray in Results section 6.

def getPercentage (occurancesCount : int , t o t a l : i n t) :
return f l o a t (

” { : . 2 f } ” . format (
(occurancesCount / t o t a l) * 100

)
)

Listing 5.1: Function Used To Obtain Percentages.

5.6.1 Targeted Processes List

Each Sample Under Examination (SUE) targets an application to perform code in-
jection. Considering the source of our dataset we can safely assume that all if not
the majority of the samples target consumer applications and services found within

5.6. EXPERIMENTAL METRICS 31

Windows systems. From the list of services and applications running in our sand-
box, we can extract a list of the targets that were encountered. We obtain this metric
by associating each running application and service with a PID, and subsequently
querying the cross referencing this list with the known target process of each SUE.
The resulting set contains the unique target processes which were observed.

5.6.2 Target Processes per Code Injection Type

Because each malware sample target has an application as its target we developed
an interest in obtaining the percentage of samples that target each unique code
injection target process per code injection type.

To obtain this metric we determine the code injection target for each sample
per code injection type and obtain the count of samples that targeted each unique
application. We subsequently obtain the sum of all targeted applications and the top
5 targeted applications before generating the percentages per code injection type.
The Listing 5.3 offers sample Python code as to how this has been achieved.

def getTargetPercsPerIn jType (codeIn jec t ionTypes) :
for each in j ec t i onType in codeIn jec t ionTypes :

sumOfTargets = in j ec t i onType . getSumOfTargets ()

Get the top 5 a p p l i c a t i o n t a r g e t s and t h e i r
h i t counts .
top5TargetsD ic t = i n j ec t i onType . getTop5Targets ()

percentagesDic t = {}
for t a r g e t in top5TargetsD ic t :

percentagesDic t [t a r g e t] = \
getPercentage (top5TargetsDic t ,

sumOfTargets)
return sumOfTargets

Listing 5.2: Function Used To Obtain The Target Processes And Their Percent-
ages Per Code Injection Type.

def getTargetPercsPerIn jType (codeIn jec t ionTypes) :
for each in j ec t i onType in codeIn jec t ionTypes :

sumOfTargets = in j ec t i onType . getSumOfTargets ()

Get the top 5 a p p l i c a t i o n t a r g e t s and t h e i r

32 CHAPTER 5. IMPLEMENTATION

h i t counts .
top5TargetsD ic t = i n j ec t i onType . getTop5Targets ()

percentagesDic t = {}
for t a r g e t in top5TargetsD ic t :

percentagesDic t [t a r g e t] = \
getPercentage (top5TargetsDic t ,

sumOfTargets)
return sumOfTargets

Listing 5.3: Function Used To Obtain The Target Processes And Their Percent-
ages Per Code Injection Type.

5.6.3 Target Process Actions per Code Injection Type

To obtain this metric we collect the count of the aggregated actions that each ana-
lyzed sample performed. We proceed with summing each count for each sample,
per code injection injection type. We move forth with calculating the total sum to
obtain the percentages per code injection type as shown in Listing 5.4.

def getTargetAct ionsPercsPer In jType (ac t ionsOfTargets) :
Get a l l observed I n j e c t i o n Type and set them
as keys .
percsDic t = dict . fromKeys (ac t ionsOfTargets . in jTypes)

Get t o t a l o f ac t i ons per i n j e c t i o n type per ac t i on .
sumsDict = ge tTo ta lPer In jType (ac t ionsOfTargets)

for t a r g e t in act ionsOfTargets :
in jType = t a r g e t . i n j ec t i onType
t a r g e t A c t i o n s L s t = t a r g e t . ge tL i s tO fAc t i ons ()

Count o f ac t i ons per i n j e c t i o n type .
act ionCountsDic t = getAct ionCounts (t a r g e t A c t i o n s L s t)

Add to the corresponding d i c t
en t ry the count o f ac t i ons .
getPercsFor In jType (percsDic t , in jType , t a r g e t)

5.6. EXPERIMENTAL METRICS 33

return percsD ic t

Listing 5.4: Function Used To Get The Target Process Actions per Code Injection
Type.

5.6.4 Sample Targets per Operation Type Code Injection Type

To calculate the counts and percentages found within this section we collect the
targets of each operation per malware sample. We divide each target into sets
based on the aggregated action. For example, a Registry Operation which had the
HKCU registry key as its target has been in the Registry Operations set. Whenever
we encounter a target a second time, we simply increment its count by 1. After this
process has been completed we obtain the corresponding percentages and plot our
results. An example of how this processing took place has been provided in Listing
5.5.

def getTargetCountsPercentages (t a r g e t s D i c t , ac t ionGroupsL is t) :
r e s u l t s = dict . fromKeys (ac t ionGroupsL is t)

for t a r g e t in t a r g e t s D i c t . keys () :
Get type of opera t ion . E . g . Reg is t ry
opType = t a r g e t . getOperat ion ()

Get respons ib le sample in jType
i n jType = t a r g e t . getSampleName . get In jType ()

Count the occurances of the t a r g e t .
i f t a r g e t not in r e s u l t s [opType] :

r e s u l t s [opType] [t a r g e t] = 1
else :

r e s u l t s [opType] [t a r g e t] += 1

return r e s u l t s

Listing 5.5: Function Used To Get The Sample Targets per Operation Type Code
Injection Type.

34 CHAPTER 5. IMPLEMENTATION

5.7 IP And Domain Addresses Metrics

After each successful sandbox run, CAPE created a report that contained the list of
IP, TCP, and UDP addresses (henceforth denoted as IP addresses) alongside the
domains that were observed during the analysis. From these lists, we compose a
set of unique IP addresses and a set of unique domains. We use both of these
sets and lists to produce metrics and statistics. Before pursuing this goal, however,
we collect the domains and IP addresses from ten sandbox runs without a sample
loaded for analysis. We collect the set of unique domains and IP addresses and we
exclude their values from subsequent analyses.

For the lists of non-unique domains and IP addresses, we obtain the number of
samples that initiated such communications. We utilize these lists, alongside the
list of successfully processed samples to extract metrics. These metrics include
the total number of reached IP and domain addresses and the average number of
IP/domain addresses per sample alongside others.

For each unique domain, we obtain its corresponding DNS record. From the DNS
queries that returned a response, we extract any aliases that may be associated with
the domain. The unique aliases are added to the domain set. Having obtained this
information we query the DNS records again for any IPs which are associated with
said domains. Not all domains appear to be still active, with many of them having no
IP associated with them.

From the domains that still have an associated IP address, we obtain any unique
values and add them to the existing IP set, avoiding any duplicates. We also per-
formed a reverse DNS search to obtain any URLs from the set of unique IP ad-
dresses. We performed this step to ensure that we have collected a wealth of data.
And results were added to the set of unique domains. From the resulting set, obtain
IP-geolocation information from an online service. The service’s responses provided
for each IP the country as well as the city with which it could be associated.

Chapter 6

Evaluation and Experimental Results

This chapter is devoted to discussing the experimental results which were obtained
during our experiments. We offer several lists and figures that allow us to delve into
the actions observed per code injection type. Our goal would be to understand which
are the most prominent actions observed within the malware samples featuring a
specific code injection type, most used action targets, and differences. The sections
that correspond to the analysis of our results are accompanied by tables. Said tables
have been provided in Appendix 12.

6.1 General Dataset Statistics

Our analysis produced several general statistics. Table 12.1 details the number
of code injection samples that our code injection analyzer was able to detect and
the number of code injection samples that we were able to process. The samples
themselves belong to the 2017 VirusTotal Academic dataset. Examining the table
we observe that the original dataset contained 957 samples. The table also details
that there were 44 unique running processes. These were the processes and ser-
vices which were running within the Windows sandbox. After using the injection
detector [7] we obtain the code injection method which each sample utilized. The
injection detector itself utilized a system call trace, recorded from the DRAKVUF
sandbox. The corresponding traces themselves, were provided by Starink et al. [7].
The number of number of samples performed on each observed injection type are
presented in Table 12.3 alongside their corresponding percentage.

We observe that the samples that utilize the COM Hijack DLL Injection code
injection method, dominate the dataset, representing 57.26% of the total number
of samples. They are followed by the samples which perform Process Hollowing.
These samples however represent only 14.31% of the total dataset samples. The
spread exhibited by the rest of the samples is not as great as the top two entries,

35

36 CHAPTER 6. EVALUATION AND EXPERIMENTAL RESULTS

having AppInit DLL Injection and Image File Execution Options stand at 6.89% of the
total dataset. A notable observation is the fact that our dataset only contains one
Classic DLL Injection sample, representing 0.1% of the total dataset.

These counts and percentages, however, do not represent the number of sam-
ples that we utilized in our experiment. For a sample to be considered viable for
analysis it needs to have undergone a successful analysis (no errors and a suc-
cessfully generated CAPE report). The sample also needs to have resulted in a
Process Monitor event trace, which was not malformed and which we would thus
be able to process. These requirements meant that a subset of our original dataset
was processed during our analysis. We therefore offer Table 12.5 which details the
number of samples belonging to a specific code injection type that were analyzed.

We begin by denoting the difference observed in the total number of samples.
The initial dataset exhibits 957 samples, while the number of samples that were suit-
able for analysis was 778. This difference of 179 samples amounts to a difference of
18.7%. Exploring the differences between the two datasets further, we observe that
the samples that perform COM Hijack Injection remain the most abundant reaching
55.1%. They once again make up the majority of the dataset, exhibiting a minor
reduction of 2.16% regarding the percentage of the dataset they represent.

The same observation can be made for the remaining samples, observing that
the percentile differences from the initial dataset remain minimal. The only notable
case is the one of Classic DLL Injection, where the percentage has remained un-
changed. This would be because there is only one sample in both the initial dataset
and in the dataset which has been used for analysis.

6.2 Observed Malware Families

To gain a firmer grasp of our results, we need to gain a firmer grasp of our dataset.
For this reason, we retrieved information regarding the malware families observed
within our dataset. We have performed this step by making use of the AVClass
project [29].

Observing the distribution of each observed malware family as detailed in table
12.6 reveals two interesting statistics. We first observe that the overwhelming ma-
jority of samples belong to the dinwod and berbew families (155 and 106 samples
respectively). Samples that belong in thecosmu and tinba follow alongside samples
that have been classified as singletons. We observe that those three families feature
minor spreads between the number of samples that can be attributed to them. They
however portray a difference of almost 100 samples in comparison to the first (top)
two families.

6.3. TRIGGERED CAPE SIGNATURES 37

From these top 5 entries, dinwod and berbew can be classified as trojans based
on the work of O’Shaughnessy and Breitinger [30]. Similarly, an export of the known
malware families found within OTX [31] regards strains of the tinbu family as trojans,
while strains of the cosmu family are considered as banking trojans by the malware
analysis community [32]. As for the malware samples that fall under the singleton
family, these are considered singular instances of a malware sample, without any
connections to any other families.

Examining Tables 12.7 through 12.13 reveals that malware samples that utilize
a common injection method appear to belong to a specific set of malware families.
These sets do not intersect between different types of code injection. The only
exception is the singleton family which is encountered in almost all types of code
injection, except that of AppInit DLL Injection and Image File Execution Options.
These results serve to signify the fact that there are unique malware strains, each
utilizing a code injection method that they potentially find more preferable.

In the meantime examining the Tables 12.7 all through 12.13 reveals that mal-
ware samples that belong in the code injection method of ”COM Hijack DLL Injec-
tion” attribute the most to these counts. This phenomenon can be attributed to the
high number of samples contained in our dataset which perform this type of code
injection, numbering four hundred and twenty-six, making up about 55.1 % of the
examined and processed samples.

6.3 Triggered CAPE Signatures

CAPE offers its users the ability to examine any signatures that were triggered during
the analysis of a malware sample. Each signature checks whether the system call
trace of a sample under examination matches several conditions. These conditions
included any files accessed, the sequence of system calls, or their arguments.

We observed that no signatures were triggered by any of the analyzed samples.
We attribute this finding to the fact that each CAPE signature examines the system
call trace generated by a sample under analysis. Therefore, if a sample uses a
target process to perform any malicious actions, then the sample would not trigger
any signatures. We also observed that none of the samples triggered any of the
aggregated signatures that were responsible for detecting code injection.

6.4 Targeted Processes List

This section is devoted to discussing each unique observed targeted process. Our
findings can be found under Tables 12.14 and 12.15. We have denoted processes

38 CHAPTER 6. EVALUATION AND EXPERIMENTAL RESULTS

that were the targets of code injection as targeted processes, while the processes
that were not targets of code injected we name as not targeted processes.

In a similar fashion processes that were native installations of the underlying
Windows 10 OS (that is they came preinstalled) have been denoted are native pro-
cesses. Applications that we installed have been denoted as not native processes
and have been listed in Table 12.14.

Examining the resulting list we observe several processes that we installed were
the targets of code injection and have been listed in the table 12.14. Examining
these two tables, we initially observe that not all non-native applications were the
targets of code injection, but only a subset of them. By cross-referencing their cat-
egory by using Table 5.1 found under chapter 4 we can extract some interesting
statistics.

We observe that 100% of the applications that fall under the Browser category
have been the targets of code injection, followed by 60% of software that falls under
the Utilities category. We similarly examine the native targeted processes, by initially
investigating how they are used by the Windows OS before moving in to categorize
them in table 12.15.

Counting the instances of categories from the aforementioned table we observe
that 10 out of the 31 (≈ 13%) unique native targeted applications belong to the
Process and System Management category. Applications that belong to the System
Security category follow with 19% (6 out of 31) while applications that fall under the
UI Management category make up almost 13% (4 out of 31) of the applications.

This allows us to theorize that code injection malware that falls under the exam-
ined types of code injection have a clear preference for the type of software they aim
to infect. Moreover, even though we examine 700 hundred samples we observe that
there is not a large selection of native targeted processes. This can, in turn, imply the
existence of a specific set of attack vectors, or a collection of post-injection actions
which require privileges attainable only by injecting code into the target process.

6.5 Target Processes per Code Injection Type

Each malware sample targets an application with the explicit purpose of injecting
code. This process can be of interest to us since it can offer information as to the
overall behavior of the malware samples in our dataset. We have collected and
plotted the Top 5 targets alongside the percentage of the Other targets which is the
sum of the remaining targets. The set of Top 5 targets was determined by the total
number of operations that targeted a unique process. To communicate our findings
we have provided Figure 6.1 alongside the corresponding statistics in Table 12.16.

6.5. TARGET PROCESSES PER CODE INJECTION TYPE 39

In the figure, we have denoted one of our findings as firefox.exe/explorer.exe.
This is because these processes featured the same counts and percentages and we
have subsequently chosen to depict them both without skewing the overall format of
the figure.

Pe
rc

en
ta

ge

Figure 6.1: Top 5 Injected Processes Per Code Injection Type(Including ”Other”).

From the graph, we can see that from the Top 5 code injection targets sv-
chost.exe is the primary target of code injection surpassing the second most tar-
geted processes by an average of 17.91%. We identify the notable case of AppInit
DLL Injection where the svchost.exe process surpasses even the percentage of
Other processes.

Consulting with Figure 6.1 and the percentages found in Table 12.16 we con-
clude that all samples exhibit a strong preference towards targeting the svchost.exe
process regardless of the code injection type being utilized. This is an interesting
result, as it indicates a strong preference for a specific native process.

We can offer several hypotheses as to why this preference occurs. This can
happen because the application is bound to be found within a system. Secondly,
it is the target of code injection malware because, as a shared service Windows
process, it is accompanied by a set of permissions that allow code injection malware
to perform operations without hindrance.

Examining the aforementioned figure further, we uncover another trend. We ob-

40 CHAPTER 6. EVALUATION AND EXPERIMENTAL RESULTS

serve that malware samples that utilize a different code injection type seem to prefer
a common set of processes that they infect. We name these preferences as attack
profile while presenting table 12.17.

The table itself features groups of code injection types, their preferred attack
profile, and which processes belong to said profiles. Each attack profile is comprised
of 4 target processes. The number was chosen to limit the number of attack profiles
to a degree that can be easily utilized. Our work presents 3 different attack profiles.
More attack profiles can be created by either reducing or increasing the number of
target processes that are to be included.

Grouping target processes of malware in such a manner can assist in the cate-
gorization of malware samples in large organizations whenever a large number of
machines are being targeted.

6.6 Target Process Actions per Code Injection Type

In this section, we discuss which target process actions are performed by malware
samples belonging to a specific code injection type. The first subsection is devoted
to discussing the details of how we processed the acquired data. After utilizing the
method discussed in the previous subsection, we proceed towards summing the oc-
currences of these actions and pictorially present their corresponding percentages
in Figure 6.3. The numerical figures of each code injection type can be found in
Tables 12.19 through 12.25.

From the aforementioned resulting figure, we observe that the examined injected
target processes perform a disproportionate amount of Registry Operations post
code injection, followed by File, Process, and Query Operations in that order. Exam-
ining Tables 12.19 through 12.25 that the highest percentage of Registry Operations
reached 85.48% and the lowest reaching 60.53%. As for File Operations, the highest
observed percentage was 29.81% and the lowest was 9.14%. Process operations on
the other hand reached 8.66% at its highest and 4.06% at its lowest.

We would subsequently be unable to ascertain whether these metrics them-
selves could be considered as an indicator of malware infection without supple-
mentary material. Thus to circumvent this issue we examine the aggregated actions
observed within the sandbox while having no malware sample loaded for analysis.
We offer a pictorial depiction of our findings in Figure 6.2 and a numerical description
of our findings in Table 12.18.

We observe that the majority of operations belong to the File Operations category
followed by Registry Operations. Query and Process operations feature a small
difference while their spread is quite noticeable from the first two columns in the
figure. The remaining operations (Query, Set Information File, TCP, and UDP) have

6.7. SAMPLE TARGETS PER OPERATION TYPE PER CODE INJECTION TYPE 41

Pe
rc

en
ta

ge

Figure 6.2: Percentages Of Sandbox Aggregated Actions With No Sample
Loaded.

not been pictorially depicted due to their low percentages. Their percentages and
counts are noted in the aforementioned tables.

6.7 Sample Targets per Operation Type per Code In-
jection Type

In this section, we examine the targets (e.g. Registry Keys, files, file system objects)
of the malware sample found in our dataset. We have grouped our findings per oper-
ation. We have subsequently grouped our findings by code injection type. We have
performed the grouping in this manner because it allows us to view the differences
observed between injection types as well as aggregated actions.

Having examined the actions collectively taken by the samples under examina-
tion, and taking into consideration the impact that samples have on actions observed
in our sandbox, the only step remaining in understanding what actions are taken dur-
ing post-infection is to collect information on the targets that are observed post code
injection.

Considering the nature of the results we seek to examine in the section of the
report, we are devoting a subsection to each aggregated Process Monitor Action,
to gain insight into the preferred targets of malware per aggregated action. In each

42 CHAPTER 6. EVALUATION AND EXPERIMENTAL RESULTS

Pe
rc

en
ta

ge

Figure 6.3: Percentages Of Process Actions Per Code Injection Type.

subsection, we offer a corresponding figure alongside a table. The figures diagram-
matically depict the Top 5 most preferred targets of each operation per code injection
type. The corresponding tables offer the percentages and counts of the Top 5 most
preferred action targets per code injection type.

Both the figures as well as the tables provide a target under the name of Other.
In the figures, this target is used to denote the percentage of all the other operation
targets that were encountered. In the corresponding tables, this target is additionally
accompanied by the sum of all encountered targets.

6.7.1 File Operations

By examining Figure 6.4 we observe a trend. The most preferred targets of appli-
cations that have undergone code injection share a common set of most preferred
targets. We subsequently observed that these preferences do not only span across
said targets but also across target percentages. This trend becomes apparent while
we examine Table 12.26. The only observed difference is in the counts of each
target. This is an interesting observation considering that the corresponding per-
centages portray a maximum spread of 7.86% and a minimum spread of 1.94%. It is
interesting to note that all of the targets appear to be Windows files, instead of any

6.7. SAMPLE TARGETS PER OPERATION TYPE PER CODE INJECTION TYPE 43

application file. It is currently unclear whether these targets are accessed during
normal system operation or if this behavior is purely malware-specific.

44 CHAPTER 6. EVALUATION AND EXPERIMENTAL RESULTS

Figure 6.4: File Operations: Percentages of the Top 5 Malware Sample Operation
Targets per Code Injection Type.

6.7. SAMPLE TARGETS PER OPERATION TYPE PER CODE INJECTION TYPE 45

6.7.2 Process Operations

Examining Figure 6.5 and the corresponding Table 12.27 we observe that samples
of our dataset do not feature a heavy preference towards a specific target. We once
more observe that the list of Top 5 targets across code injection types remains the
same. Their percentages however are under 0.5%, with the overwhelming majority
of targets (> 98%) belonging to the Other category. The maximum spread between
percentages of the same that observed was 0.78% and the minimum 0.04%.

This may indicate that each sample target prefers its own set of targets upon
which to operate, without exhibiting a large overlap between samples. In the set
of Top 5 targets, however, we observe two interesting findings. We therefore first
observe that two specific temporary CSV files are preferred by the samples we an-
alyzed. These are the WERD6B0.tmp.csv and the WERAE61.tmp.csv files, which
are part of Windows Error Reporting. The remaining three targets belong to Ap-
pRepository and are used during the installation process of applications.

46 CHAPTER 6. EVALUATION AND EXPERIMENTAL RESULTS

Figure 6.5: Process Operations: Percentages of the Top 5 Malware Sample Oper-
ation Targets per Code Injection Type.

6.7. SAMPLE TARGETS PER OPERATION TYPE PER CODE INJECTION TYPE 47

6.7.3 Query Operations

For Query operations, we observe similarities and differences with the previously
examined operation types as shown in Figure 6.6 and Table 12.28. We therefore
observe that there exists a common set of Top 5 operation targets that span across
the examined code injection types. The percentages of these targets do not fea-
ture major differences between types of code injection, with the greatest observed
spread being 4.86%0 and the smallest 0.68%.

The individual percentage of each operation target remains relatively low, having
Other portray the greatest percentage regardless of code injection type. We once
again observe that the Top 5 targets are Windows file system objects, while the
observed spreads are once again low. These spreads showcase a maximum of
4.86% and a minimum of 0.68%.

48 CHAPTER 6. EVALUATION AND EXPERIMENTAL RESULTS

Figure 6.6: Query Operations: Percentages of the Top 5 Malware Sample Opera-
tion Targets per Code Injection Type.

6.7. SAMPLE TARGETS PER OPERATION TYPE PER CODE INJECTION TYPE 49

6.7.4 Registry Operations

The previously observed trend continues with targets of Registry Operations as
shown in Figure 6.7 and Table 12.29. We once again observe a common set of Top
5 targets, which are shared between the different injection types. There spreads
observed between percentages of the same target of different injection types are
once again small. The maximum observed spread is 3.69% with the smallest being
0.13%. The Other target still holds the majority reaching a maximum of 75.39% and
a minimum of 71.7%.

50 CHAPTER 6. EVALUATION AND EXPERIMENTAL RESULTS

Figure 6.7: Registry Operations: Percentages of the Top 5 Malware Sample Oper-
ation Targets per Code Injection Type.

6.7. SAMPLE TARGETS PER OPERATION TYPE PER CODE INJECTION TYPE 51

6.7.5 Set Information File Operations

The targets of this type of operation exhibit an interesting trend shown in Figure
6.8 and Table 12.30. Even though the counts of each target are different their per-
centages remain the same. We attribute this phenomenon to two causes. First,
our processing of the results has rounded minor differences between the percent-
ages of the targets. Secondly, we attribute most of these operations to operations
legitimately performed by the underlying OS, its services, and operations.

This attribution however does not fully account for the differences we observe
in counts of each target per code injection type. We therefore conclude that even
though these figures have been influenced by the native operations of Windows,
these operations still do not account for all of the behavior observed under this op-
eration type.

52 CHAPTER 6. EVALUATION AND EXPERIMENTAL RESULTS

Figure 6.8: Set Information File Operations: Percentages of the Top 5 Malware
Sample Operation Targets per Code Injection Type.

6.7. SAMPLE TARGETS PER OPERATION TYPE PER CODE INJECTION TYPE 53

6.7.6 TCP Operations

The percentages of the targets of TCP operations have been pictorially depicted in
Figure 6.9, while exact figures have been provided in Table 12.31. Within the table,
we observe that the set of targets remains constant across all code injection types,
with small spreads between percentages of different types. The maximum observed
spread is 0.62%, while the minimum is 0.13%.

A combination of trends observed in previous operations. Maximum spread
0.62%, minimum 0.13%.

54 CHAPTER 6. EVALUATION AND EXPERIMENTAL RESULTS

Figure 6.9: TCP Operations: Percentages of the Top 5 Malware Sample Operation
Targets per Code Injection Type.

6.7. SAMPLE TARGETS PER OPERATION TYPE PER CODE INJECTION TYPE 55

6.7.7 UDP Operations

Regarding the targets of UDP Operations, we once again observe small spreads
between the percentages of the Top 5 targets. We denote that the maximum spread
is 8.24% and the minimum 1.65% over a common set of targets of all injection types.
These has been diagrammaticaly depicted in Figure 6.10 and numerically portrayed
in Table 12.32.

Moreover, we observe that the percentages exhibited by the targets themselves
remain common across all injection types with minor deviations found in the Other
targets. These targets were discovered in the samples that performed COM Hijack
DLL Injection, Process Hollowing, Image File Execution Options and Generic Shell
Injection.

We note that even though the obtained percentages are common across the Top
5 targets, their total counts differ. This difference can be attributed to the differing
number of samples per code injection type our dataset contains. We assume how-
ever that the common percentages can be attributed to commonalities observed
between the network operations performed by the samples we analyzed. The oper-
ations could, in turn, be attributed to common frameworks utilized by the samples,
like Gryphon [33]. This could explain our results, considering how all the background
network noise has been removed either by filtering it or by disabling noisy services
based on the suggestions of CAPE’s authors.

56 CHAPTER 6. EVALUATION AND EXPERIMENTAL RESULTS

Figure 6.10: UDP Operations: Percentages of the Top 5 Malware Sample Opera-
tion Targets per Code Injection Type.

6.8. IP AND DOMAIN ADDRESSES METRICS 57

6.8 IP And Domain Addresses Metrics

Malware is also expected to perform network actions. These actions could range
from connecting to a C2 server to attempting to connect to a botnet. From each
CAPE we thus extract any URLs and IP addresses that were observed. We expect
our Windows system to communicate with external services. Whether due to native
Windows services or due to services introduced by installed software. We expect
this behavior to take place even though automatic updates have been disabled and
even though we have followed CAPE’s documentation in disabling noisy Windows
services. Due to this fact, we perform a dry run of the sandbox, analyzing a benign
executable that performs no network operations. All the collected network artifacts
were subsequently removed from our analysis.

We begin by collecting all of the URLs that were observed during the analysis
of our samples. We move forth towards querying DNS information on each URL.
The goal is to obtain CNames, NSNames, and Aliases for each URL to remove any
duplicate entries. As expected, for a large number of URLs we obtain no results,
having the DNS records expired. For the URLs that still show active DNS records,
we collect all unique IP addresses from subsequent DNS queries. We subsequently
move towards combining the resultant list with the list of observed TCP and UDP
addresses to obtain geolocation information, like the corresponding country and city.

Examining Table 12.33 we observe several interesting metrics. We initially ob-
served that the total number of unique IPs was 98, even though the number of
samples that were successfully processed was 778. This large spread indicates
that the servers the samples are reaching are common between a large number of
samples. This is in line with the knowledge that their C2 servers are currently avail-
able as a service [34]. We also observe that though the count of unique IPs is 98
and the count of unique domain addresses is 71, the count of the unique observed
countries is 10, while the count of unique cities is 39. These two metrics indicate
that the servers are hosted in specific locations. Examining Table 12.34 which lists
the unique countries, we discover that the majority of the samples reach servers in
the USA. This indicates that any services which the samples contact may also utilize
legitimate Infrastructure as a Service platforms.

To support our hypothesis, we also examine which cities the unique IPs map
to. We list our findings in Table 12.35. We observe that the city to which most
IPs mapped was the city of Secaucus located in the US. Performing research on
whether or not the town hosts any data centers, reveals that this location alone is
home to 11 data centers.

58 CHAPTER 6. EVALUATION AND EXPERIMENTAL RESULTS

6.8.1 Metrics per Code Injection Type

Within Table 12.36 we can find various metrics per code injection type. These met-
rics include the number of Observed IP Addresses, the number of Observed Domain
Addresses, the sum of both IP and Domain Addresses, the percentage of addresses
which can be attributed to that specific code injection type, as well as the IP and Do-
main addresses per sample. These metrics aim to provide an understanding of the
traffic uncovered for each injection type. These metrics do not give an accurate rep-
resentation of the network behavior of the samples in our dataset but act as a simple
indicator of what has transpired.

Examining each entry in the table, we observe distinct differences between the
samples belonging to each injection type. We observe that even though COM Hi-
jack Injection features the greatest number of samples (426) it does not feature the
greatest number of observed addresses per sample. This type of injection portrays
47, 04 IP addresses and 1.7 Domain addresses per sample. The samples of AppInit
DLL Injection on the other hand showcase 1, 377.3 IP addresses and 128 Domain
Addresses reached per sample, surpassing all the other code injection types. No-
table are the metrics of Classic DLL Injection due to their low counts. This is to
be expected however since there was only one sample in our dataset utilizing this
technique.

6.9 Summary and Key Takeaways

Within this section, we provided several metrics and results obtained from our study.
Their purpose was to help us understand the objectives that were posed in the
Introduction section of this study. We present a list of our key takeaways in Table
6.1.

We began our study by attempting to understand whether or not significantly
differing levels of activity are exhibited by targets of code injection pre and post-
exploitation. By reaching this objective we were also able to determine the levels of
activity missed by currently available frameworks, that do not monitor the targets of
code injection. By examining the aggregated actions per code injection type, we did
indeed observe that there was a spike of activity observed within the sandbox, as
shown in Figure 6.3. It is worth noting, that no CAPE signature was triggered during
our analysis. We attribute this action to the fact that code injection malware does
not perform any malicious activity, other than infecting any target processes.

By again referring to Figure 6.3 we observed that all samples regardless of code
injection type, performed an overwhelming amount of Registry Operations. File Op-
erations were also preferred, albeit featuring a large spread with Registry Oper-

6.9. SUMMARY AND KEY TAKEAWAYS 59

ations. Process Operations showed a small level of activity while the rest of the
operation types showed negligible results.

These results hint at a correlation with the malware families that were observed
within our dataset. The majority of the samples belong to malware families which
have been classified as trojans. This entails that behavior that aims to offer persis-
tence to malicious software can be expected. This may entail a slight skewing of our
results, towards behavioral patterns encountered by trojans.

We moved to examine whether specific processes are preferred over others re-
garding code injection malware. We observed a high preference for the svchost
process and other Windows processes to avoid detection while taking advantage of
the system-level privileges that it provides. As for Firefox and Chrome, we assume
that they were targeted to have user credentials stolen from them. This behavior
has already been noted in the work of Gregio et al. [35].

We finally investigated if any actions performed by the infected processes fea-
ture a preference over a specific set of targets. We observed that there was a
preference for targets located under directories managed by the Windows OS, as
well as for Registry keys. The directories C:\Windows\System32\, C:\ProgramData\
Microsoft\Windows and C:\Windows appeared to be primarily affected. The registry
keys HKLM and HKU were part of the primary targets of the examined samples.
The samples could have attempted to gain persistence, remove evidence of their
activity, or prevent the system from starting in a secure self-repairing mode [35].

Our results call for the creation of new tools that not only monitor the executable
itself but also the file system, the registry, and the processes that are running within.
Such tools could also monitor the system calls made by the sample under analysis.
Once code injection has been recorded, they could start monitoring the aforemen-
tioned resources for any changes.

Key Research Takeaways

Elevated activity observed
post exploitation

Yes

Categories performing the
most actions

Registry and File Operations

Preferred Target
Processes

svchost.exe
chrome.exe

SearchApp.exe
firefox.exe

Preferred Infected Process Targets

C:\Windows\System32\

C:\ProgramData\Microsoft\Windows

Continued on next page

60 CHAPTER 6. EVALUATION AND EXPERIMENTAL RESULTS

Table 6.1 – continued from previous page
C:\Windows

HKLM Registry Key
HKU Registry Key

Table 6.1: Key Research Takeaways

Chapter 7

Results Discussion

Through our research, we aimed to answer several questions. We wanted to de-
termine whether or not there is any level of activity that is being missed by code
injection malware post exploitation. We moved forth to expand this question into
whether or not we can observe a certain set of processes that are the preferred
targets of code injection. The most common targets of these processes were also
of interest since they provide more insight into what kind of activity would We ex-
pand this question into the specific level of activity that may have been exhibited,
alongside the targets of said activity.

We thus started by examining whether or not code injection malware performed
most of its activity post code injection. The activity we focused on and were in-
terested in was any form of behavior that could be considered as malicious pre-
exploitation. Though there are several papers that focus on determining program
behavior [36]–[39], this body of work is not accompanied by practical implementa-
tions and wouldn’t allow us to accurately pinpoint the nature of any malicious activity
pre-exploitation.

We thus used CAPE’s community-developed signatures that were checking whether
or not the system calls performed by the sample under analysis matched any known
signatures. Our results showed that none of the samples performed any malicious
activity pre-exploitation. This however does not entail that no activity was performed
whatsoever. The samples within our dataset could have for example analyzed our
system for any artifacts that would indicate the use of a sandbox. Even though there
were signatures that would be triggered if this were the case, we cannot exclude this
possibility.

Having set a base level of activity (or lack thereof) we moved forth toward obtain-
ing the set of actions performed by the target processes post exploitation. From the
obtained data we learned that the infected processes seemed to perform a high level
of File and Registry operations. Following were Query and Process Operations with
a large spread from the first two. Information File and TCP/UDP operations featured

61

62 CHAPTER 7. RESULTS DISCUSSION

negligible numbers.
We discussed that the high number of File and Registry Operations may have

occurred due to the high number of samples that were labeled as trojans. These
samples could have skewed the results that we received. It would be possible to
accurately determine whether there is a correlation between malware family and
observed behavior. This would however require a large enough dataset containing
a uniform distribution of samples based on type (e.g. trojan).

We moved forth by acquiring the set of processes that were preferred by the
samples in our dataset, as well as the most preferred targets of the aforementioned
operations. This method proved itself very efficient regarding the determination of
the type of behavior target processes exhibit while serving as an entry point and an
incentive to more in-depth research.

Having determined that notable behavior was observed post-exploitation we moved
forth towards investigating whether or not there were target processes that were pre-
ferred over others. From our analysis, we determined that browsers and native Win-
dows processes were the most preferred targets (e.g. svchost). Malware is known
to target Windows processes to cover their tracks and execute code with higher priv-
ileges. On the other hand, browsers can be used to mask network traffic, hide from
firewalls, and steal credentials.

We subsequently obtained the most preferred targets of the target processes.
We observed that a number of file system objects managed by the Windows OS
alongside registry keys were common targets.

Having been armed with this knowledge, we could have taken our study a step
further and extracted these files post analysis from our sandbox. These files could
have been used for obfuscation, holding binary data. Once loaded into memory they
could be run as an application.

As for the registry keys we could have obtained a snapshot of their values before
and after a value is loaded. This would allow us to determine any changes that were
made during the samples’ analysis. We would also be able to gain deeper insight
into the operations that fall under the Set Information File category, which currently
do not feature an in-depth analysis.

In addition to the file system objects, processes appeared to be the targets of
operations of targets of code injection. These actions require further analysis, since
it indicates that malware may aim to propagate the infection into other targets. This
could be for a number of reasons like evasion or further exploitation of the system.
The aim could still however be to achieve an unknown goal. It would be intriguing
to determine the nature of these processes, and from the obtained data attempt to
determine whether or not these targets perform any notable activity.

Having gone through a discussion of our results, we reach a conclusion. The

63

conclusion is that existing research efforts appear to miss considerable amounts
of behavior exhibited by code injection malware. The missed behavior regards file
system and registry objects, alongside other processes. This means that future
research efforts need to focus towards the development of tools and frameworks
that perform a holistic analysis on malware samples. This analysis should take
place within a sandbox that monitors various elements of the virtualized machine.
These elements should include file system objects, registry keys and of course the
various processes running within the system. Further efforts could focus on using
the data obtained from the aforementioned sources to construct high level behavioral
descriptions of the sample under analysis.

64 CHAPTER 7. RESULTS DISCUSSION

Chapter 8

Limitations

In this section, we identify several limitations that we encountered during our exper-
iments. The limitations that we encountered mostly focused on the accuracy and
completeness of the results we were able to obtain. We begin by identifying hard-
ware limitations that were present in our study. Having only one physical machine
available which was not designed for hosting multiple virtual machines in parallel we
could only make one CAPE instance.

This meant that we were unable to examine our dataset under different OS ver-
sions and different machine configurations since this would result in major increases
during the data collection phase. Having only one physical machine available (which
was intended for personal use) also meant that the sandbox that was utilized to ob-
tain the event traces that were used to classify the available malware samples could
not be used.

This is attributed to the fact that Drakvuf is a bare metal hypervisor, having its cur-
rent version does not feature adequate support for dual boot systems. Even though
it utilizes the Linux kernel it only offers an interface intended for running sandbox
samples. This therefore prohibits utilizing the system on a personal physical ma-
chine.

We of course cannot disregard the fact that a large number of URLs for which
we attempted to resolve into IP addresses did not offer any results. We attributed
this phenomenon to dead hosts while supplementing this observation with the pos-
sibility that the examined samples could have altered their behavior due to this fact.
Malware is known to utilize C2 Servers, colloquially known as Command and Con-
trol Servers [40]. Since we can argue that Wireshark could have been utilized to
collect the network trace of the sandbox for further analysis, we designate the lack
of network analysis as a limitation of our study.

These command centers are used to issue commands to malware samples and
collect information. Having insight in mind it is safe to theorize that we were not
able to capture the full range of actions of the malware samples we examined. The

65

66 CHAPTER 8. LIMITATIONS

behavior that the available samples exhibited though can also have been altered by
versions of the target processes available to them.

Malware tends to exploit flaws found within applications. Authors of target pro-
cesses strive to patch their software once such flaws are uncovered and become
known to them. Thus different versions of target processes can expose different at-
tack vectors. Having only limited information as to which application each available
sample targets, while having to uncover the target processes ourselves we cannot
exclude the possibility that a number of the samples which we examined did not have
available the target application version which they intended to infect. This could in
turn have influenced our results.

8.1 CAPE and Drakvuf Sandboxes

A key limitation we must recognize in our study is the use of the Drakvuf syscall
traces for determining the code injection timestamp, and the use of CAPE for deter-
mining the target of code injection and the corresponding actions post-code injec-
tion. This experimental design choice is expected to have an undetermined impact
on the accuracy of the obtained results. This section is devoted to providing an
in-depth understanding of this limitation. Similarly section 4.13 is dedicated to dis-
cussing the topic from a research methodology perspective.

Drakvuf as a sandbox utilizes a bare metal hypervisor making use of hardware
virtualization to provide a sandboxing environment. In turn, this entails that the sand-
boxed OS and any process running within it can detect the underlying hardware used
to host the sandbox itself. It is accompanied by a set of plugins that allow an in-depth
examination of a malware sample. An example of the functionality exposed by the
plugins is the ability to obtain any system calls, object creation and file manipulation
actions performed by a sample. Running as a bare metal hypervisor however allows
Drakvuf to be a stealthy analysis option, since any examined malware sample will
not be able to detect the underlying sandbox. The drawback of this approach is the
fact that this system can only run only Intel CPUs since it requires a specific set of
virtualization features.

CAPE utilizes KVM to achieve virtualization. KVM uses the QEMU Emulator
that supports a range of hardware. This entails that the system can be used under
a large range of configurations, allowing an analyst to examine a sample under a
carefully specified hardware configuration. If the suggestion of Rossow et al. [41]
is to be followed, to uncover the full range of behavior a sample needs to be exe-
cuted on different machines. This is further supported by Avllazagaj et al. [26] which
discovered that a malware sample’s behavior changes based on its execution en-
vironment. The feature of multiple configurations can thus be advantageous to an

8.1. CAPE AND DRAKVUF SANDBOXES 67

analyst if the full range of a malware sample’s behavior is to be examined. Unlike
Drakvuf, CAPE cannot peer into a VM’s functioning. Therefore instead of plugins it
makes use of an agent installed within the analysis machine while offering pattern-
matching signatures and integration with other analysis tools (e.g. Yara).

8.1.1 Injection Timestamp Accuracy

As mentioned in 4.13 utilizing CAPE over Drakvuf will exhibit differences. These
differences are expected to take place since we are running our samples within a
different execution environment. We have obtained the same libraries and SDKs
that were utilized by Starink [42] during his experiments. However, we can still lo-
cate differences in the version of Windows that were used between the two studies.
Further differences can be expected in the underlying hardware that composed each
sandbox host.

All of these facts paint the picture of a different execution environment. This en-
tails that differences are expected to occur in the execution of each sample under
analysis. What we expect is each sample performing the same type of code in-
jection, with differences observed in the sequence of system calls utilized for this
process. Even though these differences were accounted as discussed in 4.7, we
still need to examine any potential impact on the outcome of our research.

The aforementioned section details how we obtained the average time difference
between the system call traces of Drakvuf and CAPE and how we accounted for
this within our measurements. As the section mentions however, we did not account
for every sample’s time difference. This entails that there would be some target
process actions that either escaped examination or were considered part of the
infected process actions. However are not concerned with this. This is because the
average observed difference was just a few microseconds. Factoring in that the bulk
of the behavior observed by the target processes took place post-code injection, and
that our study’s research questions have been adequately answered, we argue that
accuracy was an existing though not a significant limitation.

8.1.2 Identified CAPE Sandbox Limitations

Having provided a basic high-level description of the two analysis systems we can
move forth with discussing any possible limitations that we have identified. We also
examine whether or not these limitations can affect our research and to which de-
gree. These limitations mostly revolve around the possibility of CAPE being detected
by a sample under analysis due to it’s use of kernel-based virtualization The action of
attempting to detect an analysis environment is by itself known as fingerprinting [43].

68 CHAPTER 8. LIMITATIONS

Drakvuf on the other hand which uses bare-metal virtualization which utilizes a bare-
metal hypervisor and does not suffer from these issues. We discuss the solutions
that we ourselves have implemented, and argue as to the degree that our research
may have been affected.

CAPE requires an agent to be installed with the sandboxed OS. The agent itself
is a Python script which spins up a local HTTP server. There are a number of
ways that a sample under analysis can identify the said agent is running. First and
foremost it can check whether or not there is a server listening on the URL where
the agent is expected to be listening in. This face has already been accounted for by
the authors of CAPE. This means that the agent does not respond to any requests
made from the host itself. There are however other ways the agent can be detected.

The Windows OS requires the agent to be placed in a specific directory to run
every time the underlying VM is created. This entails that a sample can check the
contents of the directory for any Python scripts that match certain criteria. The first
and foremost criterion would be to check if a script is named agent.py. As a first
line of defense, we have given the script a random name. Provided that a script
does exist, there are other conditions a sample can test for. It can for example
check whether the hash of the file’s contents match a known hash, whether the file
contains a set of methods expected to be found within the agent, or if there is any
suspicious HTTP traffic that the script performs. Considering this, we have taken
action to safeguard against these checks by changing the name of the methods.
This would change the hash of the contents and fail any checks performed on the
methods existing within the file. We would however be unable to hide any observed
HTTP packets intercepted by the sample under analysis.

The transmitted data however can be obfuscated, thus failing any checks per-
formed by the sample under analysis. A sample however, could decide to cease its
functioning if it detects HTTP traffic. Not having the capability to fully conceal the
agent’s HTTP traffic, a sample may choose to take evasive action. This evasive ac-
tion can take a number of forms, from simply avoiding to infect a target process and
remaining inactive to completely altering the behavior that it intends to exhibit once
it has infected a target. We must however recognize that this method of sandbox
detection is not the most robust. Firstly, as we discussed in the previous paragraph
there are ways to obfuscate the existence of the agent. Secondly, the defensive op-
tion that we listed in the previous paragraph could be in place. Thirdly, provided that
the aforementioned anti-evasion methods are in place, one cannot exclude the pos-
sibility that any observed HTTP traffic can be attributed to the machine interacting
with other services in the same network.

Considering the above, we need to indeed recognize that the existence of the
agent could act as a limitation to our experiments, provided that no defensive mea-

8.1. CAPE AND DRAKVUF SANDBOXES 69

sures where taken. Considering however that defensive measures are in place, we
cannot regard the agent as a limitation. Once could of course argue that the exis-
tence of the agent could be thoroughly hidden by creating a pipe between the sand-
box and the host OS. This action however would introduce new emulated hardware
components. These components could result in the sandbox being detected.

The sandbox could also be detected through the hardware implementation arti-
facts. These artifacts include abnormal values exhibited by the emulated hardware
components like Device IDs or the size of any available storage mediums [44], [45].
Equipping the underlying VM with persistent storage and RAM that feature realistic
storage values is a straightforward task, which only requires a simple mention.

Other defensive measures however, like setting appropriate Device IDs and com-
ponent Serial Numbers require more attention. We therefore follow the instructions
laid out by one of CAPE’s authors [46]. These instructions provide a set of steps for
configuring QEMU. These steps allowed us to set realistic values for any hardware
components -obtained through a Google search- while hiding any VM Hypervisor
artifacts that could be exposed through the VM. Moreover, following the aforemen-
tioned instructions has allowed us to also hide any abnormal processor flags set
by QEMU, that would betray the existence of CAPE. We cannot however disregard
the chance that any of the obtained samples may have queried for the existence
of more miscellaneous components, like a CPU temperature sensor. CAPE’s un-
derlying hardware emulation provider, QEMU offers the capability to create such
devices, which will be querying values from the actual underlying machine as shown
here [47].

These actions may in the end not be enough to hide the existence of emulated
hardware, since the exposed ACPI tables may contain abnormal values. We do not
concern ourselves however with this possibility. This is because CAPE’s documen-
tation offers instructions on how to export the ACPI tables of the host machine, only
for them to be utilized by QEMU and subsequently by the guest VM.

Based on this information we can argue that even though CAPE is using virtu-
alization, the probability of our sandbox being detected by a sample under analysis
should be low.

It is also possible that the VM’s Hypervisor could be detected based on values
of the Windows Registry [44], [48]. These values could contain key-value pairs
that are either specific to the underlying virtualization technology or outright contain
the name of the underlying virtualization system. Searching through the Windows
Registry of the virtualized machine did not reveal any entries that would expose the
fact that a sample is being analyzed.

One of course cannot disregard the practice of malware attempting to detect the
presence of a debugger [43]. CAPE is accompanied by it’s own debugger, which is

70 CHAPTER 8. LIMITATIONS

designed in a manner which avoids the most commonly known debugger detection
techniques [49]. The tool however exhibits the lack of proper NT API Hooking [45].
This is because CAPE’s debugger incorrectly hooks NT API functions, utilizing an
incorrect number of arguments. A sample checking for any such hooks would be
able to detect the sandbox’s presence. This can lead to a sample altering it’s behav-
ior in order to avoid detection. Not having utilized CAPE’s debugger however, this
limitation is not applicable in our case.

It would be possible for a sample to use Time Based techniques, having a num-
ber of them available. A sample can for example determine the difference between
the time elapsed within a sandbox and the time elapsed between two NTP times-
tamps [50], or determine the system’s uptime. Regarding evasion, malware samples
can delay their execution for a few minutes to avoid being analyzed or base their ac-
tivation on specific events.

Some type of time-based sandbox detection are easy to avoid and have been
avoided in our experiments. Any kind of check that would check whether the uptime
of the system would be longer than a few minutes (to account for the recently started
sandbox) would succeed and trigger the sample’s execution. This is because the
virtual machine that comprises our sandbox is started from a saved machine state.
This restores the machine to a state that it found itself in before it was saved and
subsequently shut down. Techniques like querying an NTP server are not consid-
ered applicable in our case. This however does not entail that the sample cannot
query an online service to the elapsed time, and compare the received response
with the time elapsed within the sandbox. To counter this CAPE speeds up time
within the VM counter any delays induced due to virtualization.

Regarding evasion, a malware sample may attempt to evade analysis by delaying
its execution [44], [51]. The simplest technique that can be utilized to counter this
technique would be for the sandbox to speed up the virtualized machine’s time. Such
an action however would leave the sandbox open to detection. This issue is not only
encountered in CAPE but also Drakvuf. Therefore, the only counteraction would be
to allow a sample to run for long intervals of time. Such a practice, however, presents
itself with several challenges. A sample could for example remain benign until an
unknown condition is being met, like being contacted by a C2 server. Or a sample
may not be triggered at all due to unmet activation conditions.

As we have seen however in the work of Kp̈chler et. al. [52] malware exhibits
most of its behavior within the first 5 minutes of execution. In light of this fact, we
have foregone examining the samples for more than 5 minutes. Considering how
the goal of our research was not to determine as to whether or not time based
evasion was in effect, we cannot consider it’s possibility as a limiting factor. This of
course does not imply that no sample performed this technique, since we could not

8.1. CAPE AND DRAKVUF SANDBOXES 71

determine whether or not our sandbox was detected.
A sample under analysis may also attempt to verify as to whether or not the

machine finds itself in a realistic environment. This fact has been accounted and
countered for by creating user artifacts within the VM. These artifacts include but not
limited to user files with spoofed metadata to indicate that they were created some
time ago, various applications that were utilized before any experiments take place,
and account credentials for social platforms saved in Chrome’s password manager,
accompanied by the corresponding Internet history.

We cannot however fully disregard the fact that different systems were used dur-
ing the process of determining the code injection type, and of obtaining the actions
of the target process of code injection. These different systems are bound to hold
different user artifacts and configurations which may in turn affect the behavior our
samples. Considering how both systems however have been equipped with a wealth
of applications suitable for code injection, the expected change in behavior would
mostly stem from any differences in OS version or available SDKs. We however
have taken action to bridge those differences by installing the same SDKs that were
available on the Drakvuf instance used to determine the code injection type.

Regardless of all the steps taken, we cannot exclude the possibility that any
number of the samples in our dataset may successfully detect and attempt to evade
CAPE’s analysis. We are however not concerned with a sample attempting to ob-
fuscate it’s behavior from CAPE to a large degree. This would be because our work
utilized Process Monitor exclusively. Our literature research did not indicate that
currently available malware samples are verifying the existence of Process Monitor
within the sandbox. This of course does not imply that such detection did not take
place.

To conclude, in this section we discussed several possible limitations regarding
our choice to utilize CAPE over Drakvuf. We examined any stealth considerations
resulting from the different virtualization technologies the sandboxes offer and any
potential accuracy issues that may have arisen. We also touched upon the accuracy
of our results. Out of all the examined limitations, we find NT API Hooking the one
that could not be adequately dealt with. This limitation could lead our samples to
perform actions that deviate from what could be considered their normal operation.
These deviations can take a number of forms, ranging from exiting without taking
any action to attempting to attack the VM itself.

Provided that this is the case, and considering how we equipped CAPE with the
same runtime environment and SDKS as the Drakvuf sandbox that was used to
obtain the injection timestamp we reach a conclusion. Amongst all of the limitations
that we faced, this is the most impacting one. Assuming that our sandbox was
indeed detected by some of the samples, we theorize that this would be the reason

72 CHAPTER 8. LIMITATIONS

for our sandbox failing to analyze several samples from our dataset.

Chapter 9

Future Work

In our future work, we identify several experiments that we can conduct to enhance
our understanding of how what kind of behavior is being missed by current dynamic
analysis systems. We begin by denoting that our experiments could also be con-
ducted by having an Antivirus solution installed in our sandbox. Malware is known
to take evasive action in the presence of AntiVirus programs, often rendering their
use inapplicable as shown by Thamsirarak et al. [53]. We would thus also be in-
terested in examining how this set of operations changes when malware finds itself
under the presence of an AV solution.

We would also be interested in examining the malware under different configu-
rations. These configurations include hardware, OS version, available target appli-
cation versions as well as usage artifacts. The goal would be to determine whether
significant differences can be observed in the execution of samples under examina-
tion. The goal of this would be to understand to what extent the behavior changes
as the configuration changes.

Finally, we would be interested in examining our dataset samples under different
network conditions as well as a different network topology. This would take place
in tandem with performing an analysis of the generated traffic. Different network
conditions can include an isolated network (examining samples with no internet con-
nectivity), a spoofed sandbox IP as well several virtual network hosts. The spoofed
sandbox IP would be utilized to determine whether the sample under examination at-
tempts to reach different network targets based on its geographical location. Having
an additional number of network hosts would serve the purpose of gaining insight
as to whether the target application could be used as an infection vector, targeting
adjacent network hosts.

73

74 CHAPTER 9. FUTURE WORK

Chapter 10

Related Work

The task of examining the behavior of a malicious or infected application is not
novel. Beginning with methods of static analysis we encounter system call and
byte-sequence analysis at the forefront. These methods are currently being used to
extrapolate properties of malware [54] and determine potential malicious intent [55].
These methods however require a corpus of information that needs to be constantly
kept updated and can suffer from false positives.

Considering kernel and system states are behavioral data, non-transient state
changes potentially triggered by malware were studied in [37]. Under the same
concept, K-Tracer was developed which makes use of kernel data in an attempt to
identify unwanted manipulations of sensitive data [36].

One cannot of course neglect mentioning the use of API call sequence informa-
tion. Two methods are primarily used, the N-Gram Approach [56] and the Graph
Approach [57]. The N-gram approach is characterized by two methods, namely Op-
Code n-gram [58] and System Call n-gram [59], both of which extract the so-called
byte sequence n-gram [60], in a similar fashion to how other AI solutions work. Like
any other method, they exhibit drawbacks like poor interpretability, loss of informa-
tion, and the ”curse of dimensionality” which entails that more and more data are
required as the number of dimensions under study increases. Theory suggests that
these drawbacks are present because the API Arguments are not taken into consid-
eration [61].

Graph approaches have their divisions, namely API Call Graph [57] and Op-
Code [62]. Unlike the N-Gram approach, Graph approaches take into consideration
the API arguments to deal with the corresponding drawbacks. These methods place
focus on said arguments since API output arguments can often be utilized as inputs
to other calls, thus allowing one to obtain a more concrete specification of real mal-
ware behavior [61]. The results of this process are either Contract Subgraphs [57]
or Significant Graphs [63], both generated with the explicit purpose of detecting ma-
licious behavioral patterns from malware as well as benign applications.

75

76 CHAPTER 10. RELATED WORK

Chapter 11

Conclusion

Through our measurements we have uncovered that code-injection malware por-
tray variable behavior. This behavior is primarily exhibited after infection of a target
process has taken place. This hinders any current dynamic analysis solutions from
adequately understanding which actions are performed by samples under analysis.
This fact has been supported by our experiments, where CAPE’s behavior signa-
tures were not triggered.

We observed that there was a common set of preferred targeted processes,
across the examined code injection types. This trend was followed by a preferred set
of operation targets. Said targets appeared to be file system objects of the Windows
system.

We also observed that a number of network addresses (IP, UDP, TCP, and Do-
main) were reached by the samples we analyzed. These addresses spanned mul-
tiple countries and appeared to be pointing towards services available to malware
authors.

77

78 CHAPTER 11. CONCLUSION

Bibliography

[1] Abukar, Yahye and Maarof, Mohd and Hassan, Fuad and Mohamed, Abshir,
“Survey of keylogger technologies,” I nternational J ournal of C omputer S
cience and T elecommunications, vol. 5, pp. 25–31, 02 2014.

[2] H. Orman, “The morris worm: a fifteen-year perspective,” IEEE Security Pri-
vacy, vol. 1, no. 5, pp. 35–43, 2003.

[3] AV-Test. Malware. [Online]. Available: https://www.av-test.org/en/statistics/
malware/

[4] T. Barabosch, S. Eschweiler, and E. Gerhards-Padilla, “Bee master: Detect-
ing host-based code injection attacks,” in Detection of Intrusions and Malware,
and Vulnerability Assessment, S. Dietrich, Ed. Cham: Springer International
Publishing, 2014, pp. 235–254.

[5] T. Barabosch and E. Gerhards-Padilla, “Host-based code injection attacks:
A popular technique used by malware,” 2014 9th International Conference
on Malicious and Unwanted Software: The Americas (MALWARE), pp. 8–17,
2014. [Online]. Available: https://api.semanticscholar.org/CorpusID:24022

[6] A. Petrosyan. Malware - statistics facts. [Online]. Available: https:
//www.statista.com/topics/8338/malware/#topicOverview

[7] J. Starink, M. Huisman, A. Peter, and A. Continella, “Understanding and mea-
suring inter-process code injection in windows malware,” in Proceedings of the
International Conference on Security and Privacy in Communication Networks
(SecureComm 2023), Oct. 2023, 19th International Conference on Security
and Privacy in Communication Networks, SecureComm 2023, SecureComm ;
Conference date: 19-10-2023 Through 21-10-2023.

[8] O. Or-Meir, N. Nissim, Y. Elovici, and L. Rokach, “Dynamic malware analysis in
the modern era—a state of the art survey,” ACM Comput. Surv., vol. 52, no. 5,
sep 2019. [Online]. Available: https://doi.org/10.1145/3329786

79

https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
https://api.semanticscholar.org/CorpusID:24022
https://www.statista.com/topics/8338/malware/#topicOverview
https://www.statista.com/topics/8338/malware/#topicOverview
https://doi.org/10.1145/3329786

80 BIBLIOGRAPHY

[9] U. Bayer, A. Moser, C. Kruegel, and E. Kirda, “Dynamic analysis of malicious
code,” Journal in Computer Virology, vol. 2, no. 1, pp. 67–77, Aug 2006.
[Online]. Available: https://doi.org/10.1007/s11416-006-0012-2

[10] A. Vasudevan, “Maltrak: Tracking and eliminating unknown malware,” 12 2008,
pp. 311–321.

[11] A. Vasudevan and R. Yerraballi, “Cobra: Fine-grained malware analysis using
stealth localized-executions,” vol. 2006, 06 2006, pp. 15 pp.–.

[12] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, Z. Lintao, and
P. Barham, “Vigilante: End-to-end containment of internet worm epidemics,”
ACM Trans. Comput. Syst., vol. 26, 12 2008.

[13] J. Rhee, R. Riley, D. Xu, and X. Jiang, “Kernel malware analysis with un-
tampered and temporal views of dynamic kernel memory,” in Recent Advances
in Intrusion Detection, S. Jha, R. Sommer, and C. Kreibich, Eds. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2010, pp. 178–197.

[14] C. Gorecki, F. Freiling, M. Kührer, and T. Holz, “Trumanbox: Improving dynamic
malware analysis by emulating the internet,” vol. 6976, 10 2011, pp. 208–222.

[15] X. Wang and R. Karri, “Numchecker: Detecting kernel control-flow modifying
rootkits by using hardware performance counters,” in Proceedings of the 50th
Annual Design Automation Conference, DAC 2013, ser. Proceedings - Design
Automation Conference, 2013, 50th Annual Design Automation Conference,
DAC 2013 ; Conference date: 29-05-2013 Through 07-06-2013.

[16] D. Ray and J. Ligatti, “Defining code-injection attacks,” SIGPLAN Not.,
vol. 47, no. 1, p. 179–190, jan 2012. [Online]. Available: https:
//doi.org/10.1145/2103621.2103678

[17] J. A. Morales, E. Kartaltepe, S. Xu, and R. Sandhu, “Symptoms-based detec-
tion of bot processes,” in Computer Network Security, I. Kotenko and V. Sko-
rmin, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 229–241.

[18] R. Cieślak. (2023) Dynamic linker tricks: Using
ldpreloadtocheat, injectfeaturesandinvestigateprograms.https :

//rafalcieslak.wordpress.com/2013/04/02/dynamic− linker− tricks−using−
ldpreload− to− cheat− inject− features− and− investigate− programs/.

[19] J. Andress and S. Winterfeld, “Chapter 12 - non-state actors in computer network
operations,” in Cyber Warfare (Second Edition), second edition ed., J. Andress and

https://doi.org/10.1007/s11416-006-0012-2
https://doi.org/10.1145/2103621.2103678
https://doi.org/10.1145/2103621.2103678

BIBLIOGRAPHY 81

S. Winterfeld, Eds. Boston: Syngress, 2014, pp. 207–219. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/B978012416672100012X

[20] C. Ravi and R. Manoharan, “Article: Malware detection using windows api sequence
and machine learning,” International Journal of Computer Applications, vol. 43,
no. 17, pp. 12–16, April 2012, full text available.

[21] T. Barabosch and E. Gerhards-Padilla, “Host-based code injection attacks: A popu-
lar technique used by malware,” in 2014 9th International Conference on Malicious
and Unwanted Software: The Americas (MALWARE), 2014, pp. 8–17.

[22] H. A. Noman and O. M. F. Abu-Sharkh, “Code injection attacks in wireless-based
internet of things (iot): A comprehensive review and practical implementations,”
Sensors, vol. 23, no. 13, 2023. [Online]. Available: https://www.mdpi.com/
1424-8220/23/13/6067

[23] C. Sandbox. (2023) Cape sandbox. https://capesandbox.com/.

[24] T. K. Lengyel. (2017, June) Syscalls plugin documentation.
https://github.com/tklengyel/drakvuf/wiki/DRAKVUF-Plugin-Documentationsyscalls.

[25] T. K. Lengyel, S. Maresca, B. D. Payne, G. D. Webster, S. Vogl, and A. Kiayias,
“Scalability, fidelity and stealth in the drakvuf dynamic malware analysis system,” in
Proceedings of the 30th Annual Computer Security Applications Conference, ser.
ACSAC ’14. New York, NY, USA: Association for Computing Machinery, 2014, p.
386–395. [Online]. Available: https://doi.org/10.1145/2664243.2664252

[26] E. Avllazagaj, Z. Zhu, L. Bilge, D. Balzarotti, and T. Dumitras, “When
malware changed its mind: An empirical study of variable program behaviors
in the real world,” in 30th USENIX Security Symposium (USENIX Security
21). USENIX Association, Aug. 2021, pp. 3487–3504. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity21/presentation/avllazagaj

[27] Microsoft. (2023, September) Process monitor v3.96. https://learn.microsoft.com/nl-
nl/sysinternals/downloads/procmon.

[28] Linux-KVM. (2023) Kvm. https://linux-kvm.org/page/MainPage.

[29] s. p. malicialab, rscampos. (2024) Avclass. https://github.com/malicialab/avclass/tree/master.

[30] S. O’Shaughnessy and F. Breitinger, “Malware family classification via efficient
huffman features,” Forensic Science International: Digital Investigation, vol. 37,
p. 301192, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S2666281721001001

https://www.sciencedirect.com/science/article/pii/B978012416672100012X
https://www.mdpi.com/1424-8220/23/13/6067
https://www.mdpi.com/1424-8220/23/13/6067
https://doi.org/10.1145/2664243.2664252
https://www.usenix.org/conference/usenixsecurity21/presentation/avllazagaj
https://www.sciencedirect.com/science/article/pii/S2666281721001001
https://www.sciencedirect.com/science/article/pii/S2666281721001001

82 BIBLIOGRAPHY

[31] C. Doman. Malware families in otx. [Online]. Available: https://gist.github.com/
chrisdoman/299961ba9c590c1f6b39487594e7f2a7

[32] M. Bazaar. Malware bazaar - cosmu. [Online]. Available: https://gist.github.com/
chrisdoman/299961ba9c590c1f6b39487594e7f2a7

[33] whiterabb17. Gryphon. [Online]. Available: https://github.com/whiterabb17/gryphon

[34] C. Talos. Attackers leveraging dark utilities ”c2aas” platform in malware campaigns.
https://pentestlab.blog/2020/05/20/persistence-com-hijacking/.

[35] A. R. A. Grégio, V. M. Afonso, D. S. F. Filho, P. L. d. Geus, and M. Jino, “Toward
a Taxonomy of Malware Behaviors,” The Computer Journal, vol. 58, no. 10, pp.
2758–2777, 07 2015. [Online]. Available: https://doi.org/10.1093/comjnl/bxv047

[36] A. Lanzi, M. I. Sharif, and W. Lee, “K-tracer: A system for extracting kernel malware
behavior,” in Proceedings of the Network and Distributed System Security Sympo-
sium, NDSS 2009, San Diego, California, USA, 8th February - 11th February 2009.
The Internet Society, 2009. [Online]. Available: https://www.ndss-symposium.org/
ndss2009/k-tracer-system-extracting-kernel-malware-behavior/

[37] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, and J. Nazario, “Au-
tomated classification and analysis of internet malware,” in Recent Advances in In-
trusion Detection, C. Kruegel, R. Lippmann, and A. Clark, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 178–197.

[38] A. Moser, C. Kruegel, and E. Kirda, “Exploring multiple execution paths for malware
analysis,” in 2007 IEEE Symposium on Security and Privacy (SP ’07), 2007, pp.
231–245.

[39] Y. Fratantonio, A. Bianchi, W. K. Robertson, E. Kirda, C. Krügel, and G. Vigna,
“Triggerscope: Towards detecting logic bombs in android applications,” 2016 IEEE
Symposium on Security and Privacy (SP), pp. 377–396, 2016. [Online]. Available:
https://api.semanticscholar.org/CorpusID:2858111

[40] J. Gardiner, M. Cova, and S. Nagaraja, “Command control: Understanding, denying
and detecting - a review of malware c2 techniques, detection and defences,” 2015.

[41] C. Rossow, C. J. Dietrich, C. Grier, C. Kreibich, V. Paxson, N. Pohlmann, H. Bos,
and M. v. Steen, “Prudent practices for designing malware experiments: Status quo
and outlook,” in 2012 IEEE Symposium on Security and Privacy, 2012, pp. 65–79.

[42] J. Starink, “Analysis and automated detection of host-based code injection
techniques in malware,” September 2021. [Online]. Available: http://essay.utwente.
nl/88617/

https://gist.github.com/chrisdoman/299961ba9c590c1f6b39487594e7f2a7
https://gist.github.com/chrisdoman/299961ba9c590c1f6b39487594e7f2a7
https://gist.github.com/chrisdoman/299961ba9c590c1f6b39487594e7f2a7
https://gist.github.com/chrisdoman/299961ba9c590c1f6b39487594e7f2a7
https://github.com/whiterabb17/gryphon
https://doi.org/10.1093/comjnl/bxv047
https://www.ndss-symposium.org/ndss2009/k-tracer-system-extracting-kernel-malware-behavior/
https://www.ndss-symposium.org/ndss2009/k-tracer-system-extracting-kernel-malware-behavior/
https://api.semanticscholar.org/CorpusID:2858111
http://essay.utwente.nl/88617/
http://essay.utwente.nl/88617/

BIBLIOGRAPHY 83

[43] A. Afianian, S. Niksefat, B. Sadeghiyan, and D. Baptiste, “Malware dynamic analysis
evasion techniques: A survey,” ACM Comput. Surv., vol. 52, no. 6, Nov. 2019.
[Online]. Available: https://doi.org/10.1145/3365001

[44] V. Ray. Malware sandbox evasion techniques: All you need to know. [Online].
Available: https://www.vmray.com/sandbox-evasion-techniques/

[45] ——. Invisible sandbox evasion. [Online]. Available: https://research.checkpoint.
com/2022/invisible-cuckoo-cape-sandbox-evasion/

[46] D00m3dr4v3n. Modifying kvm (qemu-kvm) settings for malware anal-
ysis. [Online]. Available: https://www.doomedraven.com/2016/05/kvm.html#
modifying-kvm-qemu-kvm-settings-for-malware-analysis

[47] jonte. Emulating a tmp105 temperature sensor using qemu and linux. [Online].
Available: https://gist.github.com/jonte/b4bd83a5f2e8330418b1f3322bff74f2

[48] MITRE. Query registry. [Online]. Available: https://attack.mitre.org/techniques/
T1012/

[49] CAPEv2. Modifying kvm (qemu-kvm) settings for malware analysis. [Online].
Available: https://capev2.readthedocs.io/en/latest/usage/monitor.html

[50] UnProtect.it. Virtualization/sandbox evasion: Time based
evasion. [Online]. Available: https://unprotect.it/technique/
virtualizationsandbox-evasion-time-based-evasion/

[51] MITRE. Virtualization/sandbox evasion: Time based evasion. [Online]. Available:
https://attack.mitre.org/techniques/T1497/003/

[52] A. Küchler, A. Mantovani, Y. Han, L. Bilge, and D. Balzarotti, “Does every second
count? time-based evolution of malware behavior in sandboxes,” 01 2021.

[53] N. Thamsirarak, T. Seethongchuen, and P. Ratanaworabhan, “A case for malware
that make antivirus irrelevant,” in 2015 12th International Conference on Electrical
Engineering/Electronics, Computer, Telecommunications and Information Technol-
ogy (ECTI-CON), 2015, pp. 1–6.

[54] D. Vidyarthi, C. R. S. Kumar, S. Rakshit, and S. Chansarkar, “Static
malware analysis to identify ransomware properties,” 2019. [Online]. Available:
https://api.semanticscholar.org/CorpusID:250557385

[55] K. Baker. (2023) Malware analysis. https://www.crowdstrike.com/cybersecurity-
101/malware/malware-analysis/.

https://doi.org/10.1145/3365001
https://www.vmray.com/sandbox-evasion-techniques/
https://research.checkpoint.com/2022/invisible-cuckoo-cape-sandbox-evasion/
https://research.checkpoint.com/2022/invisible-cuckoo-cape-sandbox-evasion/
https://www.doomedraven.com/2016/05/kvm.html#modifying-kvm-qemu-kvm-settings-for-malware-analysis
https://www.doomedraven.com/2016/05/kvm.html#modifying-kvm-qemu-kvm-settings-for-malware-analysis
https://gist.github.com/jonte/b4bd83a5f2e8330418b1f3322bff74f2
https://attack.mitre.org/techniques/T1012/
https://attack.mitre.org/techniques/T1012/
https://capev2.readthedocs.io/en/latest/usage/monitor.html
https://unprotect.it/technique/virtualizationsandbox-evasion-time-based-evasion/
https://unprotect.it/technique/virtualizationsandbox-evasion-time-based-evasion/
https://attack.mitre.org/techniques/T1497/003/
https://api.semanticscholar.org/CorpusID:250557385

84 BIBLIOGRAPHY

[56] A. Shabtai, R. Moskovitch, Y. Elovici, and C. Glezer, “Detection of malicious
code by applying machine learning classifiers on static features: A state-of-the-art
survey,” Information Security Technical Report, vol. 14, no. 1, pp. 16–29,
2009, malware. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S1363412709000041

[57] M. Christodorescu and S. Jha, “Static analysis of executables to detect malicious
patterns,” SSYM’03, p. 12, 2003.

[58] I. Santos, “Using opcode sequences in single-class learning to detect unknown
malware,” IET Information Security, vol. 5, pp. 220–227(7), December 2011.
[Online]. Available: https://digital-library.theiet.org/content/journals/10.1049/iet-ifs.
2010.0180

[59] C. Ravi and R. Manoharan, “Article: Malware detection using windows api sequence
and machine learning,” International Journal of Computer Applications, vol. 43,
no. 17, pp. 12–16, April 2012, full text available.

[60] D. K. S. Reddy, S. K. Dash, and A. K. Pujari, “New malicious code detection using
variable length n-grams,” in Information Systems Security, A. Bagchi and V. Atluri,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 276–288.

[61] Y. Cao, Q. Miao, J. Liu, and L. Gao, “Abstracting minimal security-relevant
behaviors for malware analysis,” Journal of Computer Virology and Hacking
Techniques, vol. 9, no. 4, pp. 193–204, Nov 2013. [Online]. Available:
https://doi.org/10.1007/s11416-013-0186-3

[62] B. Anderson, D. Quist, J. Neil, C. Storlie, and T. Lane, “Graph-based malware
detection using dynamic analysis,” Journal in Computer Virology, vol. 7, no. 4, pp.
247–258, Nov 2011. [Online]. Available: https://doi.org/10.1007/s11416-011-0152-x

[63] M. Fredrikson, S. Jha, M. Christodorescu, R. Sailer, and X. Yan, “Synthesizing near-
optimal malware specifications from suspicious behaviors,” in Proceedings of the
2010 IEEE Symposium on Security and Privacy, ser. SP ’10. USA: IEEE Computer
Society, 2010, p. 45–60. [Online]. Available: https://doi.org/10.1109/SP.2010.11

https://www.sciencedirect.com/science/article/pii/S1363412709000041
https://www.sciencedirect.com/science/article/pii/S1363412709000041
https://digital-library.theiet.org/content/journals/10.1049/iet-ifs.2010.0180
https://digital-library.theiet.org/content/journals/10.1049/iet-ifs.2010.0180
https://doi.org/10.1007/s11416-013-0186-3
https://doi.org/10.1007/s11416-011-0152-x
https://doi.org/10.1109/SP.2010.11

Chapter 12

Tables

This appendix contains all of the tables that correspond to Chapter 6. It includes
sections that have been organized based on the structure of the aforementioned
Chapter.

12.1 General Dataset Statistics

General Statistics

Number of Detected Code Injection Samples 957

Number of Processed Samples 778

Number of Unique Running Sandbox Processes 44

Table 12.1: General Statistics

Metrics of Detected Code Injection Samples Before Analysis

Injection Type Count Percentage
AppInit DLL Injection 66 6.89%

Classic DLL injection 1 0.1%

COM Hijack DLL Injection 548 57.26%

Process Hollowing 137 14.31%

Thread Execution Hijacking 49 5.12%

Image File Execution Options 66 6.89%

Generic Shell Injection 90 9.40%

Total: 957

Table 12.3: Metrics of Detected Code Injection Samples Before Analysis

85

86 CHAPTER 12. TABLES

Successfully Processed Samples Per Code Injection Type

Injection Type Count Percentage
AppInit DLL Injection 49 6.3%

Classic DLL injection 1 0.1%

COM Hijack DLL Injection 426 55.1%

Process Hollowing 110 14%

Thread Execution Hijacking 43 5.5%

Image File Execution Options 64 8.2%

Generic Shell Injection 85 10.9%

Total: 778

Table 12.5: Counts and Percentages of Samples which resulted in a successful
CAPE run, and a successfully processed Process Monitor trace.

12.2 Malware Family Distribution

Counts of Samples per Family

singleton: 65 berbew: 106 dinwod: 155 cosmu: 56
unruy: 8 expiro: 1 simda: 3 wabot: 31
tinba: 45 gepys: 14 rebhip: 1 extcrome: 1
powp: 12 shiz: 17 uniblue: 2 ngrbot: 6

hupigon: 9 virlock: 6 virut: 10 vobfus: 11
silcon: 3 shipup: 31 gamarue: 13 allaple: 3

qqpass: 1 catalina: 4 sfone: 6 zeroaccess: 1
vtflooder: 4 zbot: 9 qbot: 1 upatre: 2
ekstak: 1 darkkomet: 4 rozena: 1 blackshades: 4
poison: 4 installcore: 7 asparnet: 1 scarsi: 1
dealply: 1 fareit: 9 scudy: 2 pajetbin: 2
sality: 7 deshacop: 1 cozyduke: 1 starter: 1

neutrinopos: 2 reconyc: 1 mailru: 1 sivis: 1
cobaltstrike: 1 jawego: 3 rack: 2 golroted: 1
hpwortrik: 2 ubibila: 1 ursu: 1 spyeye: 7

speedingupmypc: 1 wapomi: 4 parite: 2 brontok: 2
houndhack: 1 torrentlocker: 1 zegost: 1 eyestye: 6

cerber: 2 naprat: 4 rnkbend: 1 frethog: 1
msilperseus: 2 nanocore: 2 locky: 2 perflogger: 1

cutwail: 1 llac: 3 asfortal: 1 icloader: 1

12.2. MALWARE FAMILY DISTRIBUTION 87

hoetou: 1 disfa: 1 zboter: 1 zepfod: 1
bunitu: 1 ctblocker: 2 neurevt: 1 floder: 1
ruskill: 1 petya: 1 gator: 2 lovgate: 1
kovter: 1 cozybear: 1 regrun: 1 generictka: 1

vbkryjetor: 1 globeimposter: 1 salgorea: 1 netwiredrc: 1
palevo: 1 rbot: 1 chir: 1 regsup: 1
vawtrak: 1 mintluks: 1 neshta: 1 nemim: 1

satan: 1 fraudrop: 1

Table 12.6: Counts of Samples per Family

AppInit DLL Injection Family Counts

gepys: 14 shipup: 31 zbot: 3 speedingupmypc: 1
Total: 49

Table 12.7: AppInit DLL Injection Family Counts

Classic DLL injection Family Counts

singleton: 1

Table 12.8: Classic DLL injection Family Counts

COM Hijack DLL Injection Family Counts

singleton: 22 berbew: 106 dinwod: 155 cosmu: 1
unruy: 8 expiro: 1 wabot: 11 tinba: 2

extcrome: 1 shiz: 2 uniblue: 2 virlock: 6
virut: 3 vobfus: 10 gamarue: 1 allaple: 3

catalina: 4 sfone: 6 vtflooder: 4 zbot: 2
upatre: 2 rozena: 1 poison: 1 installcore: 7

asparnet: 1 dealply: 1 scudy: 2 pajetbin: 2
deshacop: 1 cozyduke: 1 starter: 1 mailru: 1

sivis: 1 cobaltstrike: 1 jawego: 3 wapomi: 4
parite: 2 brontok: 2 houndhack: 1 zegost: 1
cerber: 1 frethog: 1 msilperseus: 1 locky: 1

perflogger: 1 icloader: 1 disfa: 1 zepfod: 1
bunitu: 1 petya: 1 gator: 1 cozybear: 1
regrun: 1 generictka: 1 salgorea: 1 rbot: 1

vawtrak: 1 mintluks: 1 neshta: 1

88 CHAPTER 12. TABLES

Total: 405

Table 12.9: COM Hijack DLL Injection Family Counts

Process Hollowing Family Counts

singleton: 17 tinba: 13 powp: 12 ngrbot: 6
vobfus: 1 gamarue: 7 zbot: 4 darkkomet: 2

blackshades: 4 poison: 1 fareit: 8 reconyc: 1
golroted: 1 hpwortrik: 2 ursu: 1 spyeye: 7

torrentlocker: 1 eyestye: 6 naprat: 4 rnkbend: 1
llac: 1 zboter: 1 ctblocker: 2 floder: 1

ruskill: 1 kovter: 1 vbkryjetor: 1 nemim: 1
satan: 1

Total: 109

Table 12.10: Process Hollowing Family Counts

Image File Execution Options Family Counts

cosmu: 55 virut: 7 qqpass: 1 neurevt: 1

Table 12.11: Image File Execution Options Family Counts

Generic Shell Injection Family Counts

singleton: 5 simda: 3 tinba: 30 rebhip: 1
shiz: 15 hupigon: 9 silcon: 3 zeroaccess: 1
qbot: 1 darkkomet: 2 sality: 7 cerber: 1
locky: 1 cutwail: 1 llac: 2 lovgate: 1

chir: 1 regsup: 1
Total: 85

Table 12.12: Generic Shell Injection Family Counts

Thread Execution Hijacking Family Counts

singleton: 20 gamarue: 5 poison:2 scarsi: 1
fareit: 1 neutrinopos: 2 rack: 2 ubibila: 1

msilperseus: 1 nanocore: 2 asfortal: 1 hoetou: 1
globeimposter: 1 netwiredrc: 1 palevo: 1 fraudrop: 1

Total: 43

12.3. TARGETED PROCESSES LIST 89

Table 12.13: Thread Execution Hijacking Family Counts

12.3 Targeted Processes List

Non-Native Targeted Applications

Application Name Executable Name

Lightshot
C:\ProgramFiles(x86)\Skillbrains\

lightshot\5.5.0.7\Lightshot.exe

Flux
C:\Users\John\AppData\Local\

FluxSoftware\Flux\flux.exe

Python 3.10 C:\Windows\pyw.exe

Opera C:\ProgramFiles(x86)\Opera\opera.exe

Chrome
C:\ProgramFiles\Google\Chrome\

Application\chrome.exe

Firefox
C:\ProgramFiles(x86)\MozillaFirefox\

firefox.exe

AllThreadsView
C:\Users\John\Downloads\

AllThreadsView.exe

Count: 7

Table 12.14: Targeted Not Native Installed Software

Native Application Categories and Description

Application Category Description

WmiPrvSE.exe Information Broker
WMI Provider Host. Provides
information about the system
to applications.

SearchProtocolHost.exe Indexing

Accesses files and data
sources requiring indexing
to enable efficiently portray-
ing search results.

MicrosoftEdge_X64_120.

0.2210.144_120.0.2210.

91.exe

System Browser Microsoft Edge Executable.

Continued on next page

90 CHAPTER 12. TABLES

Table 12.15 – continued from previous page
Native Applications Categories and Description

Application Category Description

lsass.exe System Security

Local Security Authority Sub-
system Service. Enforces
system security policy. Veri-
fies users, handles password
changes, creates access to-
kens, writes to Windows Se-
curity Log.

SearchFilterHost.exe Indexing
Microsoft Windows Search
Filter Host. Used for indexing
and caching files.

dwm.exe UI Management

Desktop Window Manager.
Compositing window man-
ager enabling hardware ac-
celeration to render the Win-
dows GUI.

MicrosoftEdgeUpdate.exe System Update
Microsoft Edge Update ser-
vice.

C:\Windows\SystemApps\

Microsoft.Windows.

StartMenuExperienceHost\

_cw5n1h2txyewy\

StartMenuExperienceHost.

exe

UI Management Managing the Start menu.

Memory Compression
Memory Manage-
ment

Service that dynamically re-
duces the size of data before
writing it to RAM.

SgrmBroker.exe System Security

System Guard Runtime Mon-
itor Broker Service. Respon-
sible for monitoring and at-
testing to the integrity of the
OS.

spoolsv.exe
Memory Manage-
ment

Spooler Service. Caches
into memory data ready for
printing.

Continued on next page

12.3. TARGETED PROCESSES LIST 91

Table 12.15 – continued from previous page
Native Applications Categories and Description

Application Category Description

MoUsoCoreWorker.exe System Update
Part of the Windows Update
process.

TiWorker.exe System Update

Executes background tasks.
Associated with the Windows
Update service. Installs and
manages system updates.

services.exe
Process and Sys-
tem Management

Services Control Manager.
Responsible for running,
ending, and interacting with
system services.

C:\Windows\System32\

taskhostw.exe

Process and Sys-
tem Management

Part of Windows’ task man-
agement system. Manages
Windows Task Scheduler
tasks such as running back-
ground processes and han-
dling system functions.

csrss.exe
Process and Sys-
tem Management

Client/Server Runtime Sub-
system. Provides the user
mode side of the Win32 sub-
system.

C:\Windows\System32\

smartscreen.exe
System Security

Microsoft Defender
SmartScreen.

C:\Windows\System32\

sihost.exe

Process and Sys-
tem Management

Shell Infrastructure Host file.
Executes various system
processes.

SearchIndexer.exe Indexing

Provides content indexing,
property caching, and search
results for files, e-mail, and
other content.

Continued on next page

92 CHAPTER 12. TABLES

Table 12.15 – continued from previous page
Native Applications Categories and Description

Application Category Description

C:\Windows\System32\

ctfmon.exe

Process and Sys-
tem Management

Collaborative Translation
Framework. Used by Mi-
crosoft Office to control the
Alternative User Input Text
Input Processor and the Mi-
crosoft Office Language Bar.

fontdrvhost.exe UI Management
Responsible for managing
fonts on Windows.

winlogon.exe System Security

Responsible for handling Se-
cure Attention Sequence,
loading the user profile on
logon, creates the desktops
for the window station, and
optionally locks the computer
when a screensaver is run-
ning.

C:\Windows\explorer.exe UI Management

Executable module in Win-
dows that contains the Start
menu, Taskbar, desktop and
file manager.

C:\Windows\System32\

dllhost.exe

Process and Sys-
tem Management

Serves as a host for DLL
(Dynamic Link Library) files.
Allows shared DLLs to be
executed and accessed by
applications running on the
Windows.

setup.exe Software Installation Software Installer.
C:\Windows\SystemApps\

Microsoft.Windows.

Search_cw5n1h2txyewy\

SearchApp.exe

Indexing

Ensures the search bar on
the taskbar works and pro-
vides accurate search results
for all user queries.

Continued on next page

12.3. TARGETED PROCESSES LIST 93

Table 12.15 – continued from previous page
Native Applications Categories and Description

Application Category Description

C:\Windows\System32\

svchost.exe

Process and Sys-
tem Manage- ment

Service Host. Shared-
service process Windows
uses to load DLL files. Helps
host the different files and
processes that Windows
needs to run efficiently.

nfsclnt.exe
Process and Sys-
tem Management

System process that is re-
sponsible for managing the
Network File System (NFS)
client service. Handles client
requests/responses.

C:\Windows\System32\

RuntimeBroker.exe
System Security

Task Manager process that
helps manage permissions
on apps obtained from the
Microsoft Store.

svchost.exe
Process and Sys-
tem Management

Service Host. Shared-
service process Windows
uses to load DLL files. Helps
host the different files and
processes that Windows
needs to run efficiently.

TrustedInstaller.exe System Security

Windows Module Installer
service, part of Windows
Resource Protection(WRP).
WRP is a technology that re-
stricts access to certain core
system files, folders, and reg-
istry keys that are part of the
Windows installation.

Continued on next page

94 CHAPTER 12. TABLES

Table 12.15 – continued from previous page
Native Applications Categories and Description

Application Category Description

smss.exe
Process and Sys-
tem Management

Session Manager Subsys-
tem. First user-mode pro-
cess started by the kernel.
Creates additional paging
files with configuration data
from the registry.

Count: 32

Table 12.15: Native Applications Categories and Description

12.4 Target Processes per Code Injection Type

Metrics of Top 5 Injected Processes Per Code Injection Type

AppInit DLL Injection

Target Process Counts of
Processes

Percentage of
Samples

svchost.exe 50 44.64

SearchApp.exe 11 9.82

chrome.exe 9 8.04

explorer.exe 6 5.36

StartMenuExperienceHost.exe 5 4.46

Other 31 27.68

COM Hijack DLL Injection

Target Process Counts of
Processes

Percentage of
Samples

svchost.exe 429 32.33

chrome.exe 128 9.65

SearchApp.exe 107 8.06

explorer.exe 78 5.88

firefox.exe 45 3.39

Other 540 40.69

Continued on next page

12.4. TARGET PROCESSES PER CODE INJECTION TYPE 95

Table 12.16 – continued from previous page

Process Hollowing

Target Process Counts of
Processes

Percentage of
Samples

svchost.exe 119 23.56

chrome.exe 62 12.28

explorer.exe 33 6.53

SearchApp.exe 26 5.15

firefox.exe 24 4.75

Other 241 47.72

Image File Execution Options

Target Process Counts of
Processes

Percentage of
Samples

svchost.exe 69 23.55

chrome.exe 37 12.63

firefox.exe 20 6.83

SearchApp.exe 18 6.14

explorer.exe 17 5.8

Other 132 45.05

Generic Shell Injection

Target Process Counts of
Processes

Percentage of
Samples

svchost.exe 133 19.05

chrome.exe 69 9.89

SearchApp.exe 60 8.6

explorer.exe - Memory
Compression

50 7.16

Services.exe 44 6.3

Other 342 49.0

Thread Execution Hijacking

Target Process Counts of
Processes

Percentage of
Samples

Continued on next page

96 CHAPTER 12. TABLES

Table 12.16 – continued from previous page

svchost.exe 52 30.23

chrome.exe 20 11.63

SearchApp.exe 15 8.72

firefox.exe/explorer.exe 8 4.65

Opera.exe 7 4.07

Other 70 40.7

Classic DLL injection

Target Process Counts of
Processes

Percentage of
Samples

svchost.exe 1 100.0

Other 0 0.0

Table 12.16: Metrics of Top 5 Injected Processes Per Code Injection Type

Attack Profiles Specification

Profile
Comprising
Processes

Code Injection Types

Profile 1

svchost.exe AppInitDLL Injection
SearchAp.exe COM Hijack DLL Injection
chrome.exe Process Hollowing
explorer.exe Image File Execution Options

Profile 2

chrome.exe COM Hijack DLL Injection
SearchApp.exe Process Hollowing

explorer.exe Image File Execution Options
firefox.exe

Profile 3

svchost.exe COM Hijack DLL Injection
explorer.exe Process Hollowing

SearchApp.exe Image File Execution Options
firefox.exe

Table 12.17: Attack Profiles and Comprising Processes

12.5 Target Process Actions per Code Injection Type

Percentages Of Sandbox Aggregated Actions With Samples Loaded

12.5. TARGET PROCESS ACTIONS PER CODE INJECTION TYPE 97

Aggregated
Action

Count of
Hits

Percentage
Average

Actions per
App

Average
Percentage Per

Sample
File

Operations
78, 598 40.08 % 1, 786.31 ≈ 0.05%

Process
Operations

27, 181 13.86 % 617.75 ≈ 0.16%

Query
Operations

29, 418 15.0 % 668.59 ≈ 0.14%

Registry
Operations

60, 694 30.95 % 1, 379.4 ≈ 0.07%

Set
Information

File
Operations

106 0.05 % 2.4 ≈ 41 %

TCP
Operations

66 0.03 % 1.5 ≈ 66 %

UDP
Operations

48 0.02 % 1.09 ≈ 91 %

Table 12.18: Percentages Of Sandbox Aggregated Actions With Samples Loaded.

AppInit DLL Injection

Aggregated
Action

Count of
Hits

Percentage
Average

Actions per
Sample

Average
Percentage per

Sample
File

Operations
2, 098, 075 10.36 % 31, 789.02 ≈ 0.21%

Process
Operations

845, 683 4.18 % 12, 813.38 ≈ 0.53%

Query
Operations

245, 477 1.21 % 3, 719.35 ≈ 2.01%

Registry
Operations

17, 043, 084 84.17 % 258, 228.55 ≈ 0.02%

Set
Information

File
Operations

4, 718 0.02 % 71.48 ≈ 94%

98 CHAPTER 12. TABLES

TCP
Operations

6, 335 0.03 % 95.98 ≈ 69%

UDP
Operations

5, 305 0.03 % 80.38 ≈ 82%

Table 12.19: Metrics of Aggregated Actions for AppInit DLL Injection

Classic DLL Injection

Aggregated
Action

Count of
Hits

Percentage
Average

Actions per
Sample

Average
Percentage per

Sample
File

Operations
39, 368 9.17% 39, 368.0 ≈ 25.4%

Process
Operations

17, 406 4.06% 17, 406.0 ≈ 57.4%

Query
Operations

5, 179 1.21% 5, 179.0 ≈ 19%

Registry
Operations

36, 6817 85.48% 366, 817 ≈ 27.2%

Set
Information

File
Operations

100 0.02% 100 ≈ 79.8%

TCP
Operations

134 0.03% 134 ≈ 74%

UDP
Operations

113 0.03% 113 ≈ 88%

Table 12.20: Metrics of Aggregated Actions for Classic DLL Injection

COM Hijack DLL Injection

Aggregated
Action

Count of
Hits

Percentage
Average

Actions per
Sample

Average
Percentage per

Sample
File

Operations
15, 847, 625 9.63% 28, 919.02 ≈ 1.9%

Process
Operations

7, 357, 633 4.47% 13, 426.34 ≈ 4.09%

12.5. TARGET PROCESS ACTIONS PER CODE INJECTION TYPE 99

Query
Operations

2, 006, 632 1.22% 3, 661.74 ≈ 15.18%

Registry
Operations

139, 256, 706 84.6% 254, 118.08 ≈ 0.21 · 1010−2%

Set
Information

File
Operations

37, 627 0.02% 68.66 ≈ 79.8%

TCP
Operations

50, 595 0.03% 92.33 ≈ 59.4%

UDP
Operations

42, 918 0.03% 78.32 ≈ 69.9%

Table 12.21: Metrics of Aggregated Actions for COM Hijack DLL Injection

Process Hollowing

Aggregated
Action

Count of
Hits

Percentage
Average

Actions per
Sample

Average
Percentage per

Sample
File

Operations
4, 621, 164 11.48% 33, 731.12 ≈ 0.41 · 10−2%

Process
Operations

1, 898, 555 4.72% 13, 858.07 ≈ 1 · 10−2%

Query
Operations

483, 109 1.2% 3, 526.34 ≈ 4.13%

Registry
Operations

33, 225, 026 82.53% 242, 518.44 ≈ 0.05%

Set
Information

File
Operations

8, 800 0.02% 64.23 ≈ 21.3%

TCP
Operations

11, 834 0.03% 86.38 ≈ 15.8%

UDP
Operations

10, 424 0.03% 76.09 ≈ 18%

Table 12.22: Metrics of Aggregated Actions for Process Hollowing

100 CHAPTER 12. TABLES

Thread Execution Hijacking

Aggregated
Action

Count of
Hits

Percentage
Average

Actions per
Sample

Average
Percentage per

Sample
File

Operations
1, 707, 810 9.14% 34, 853.27 ≈ 0.14%

Process
Operations

767, 194 4.11% 15, 657.02 ≈ 0.32%

Query
Operations

231, 056 1.24% 4, 715.43 ≈ 1.19%

Registry
Operations

15, 966, 437 85.44% 325, 845.65 ≈ 0.01%

Set
Information

File
Operations

4, 300 0.02% 87.76 ≈ 0.57%

TCP
Operations

5, 790 0.03% 118.16 ≈ 41%

UDP
Operations

4, 859 0.03 99.16 ≈ 49%

Table 12.23: Metrics of Aggregated Actions for Thread Execution Hijacking

Image File Execution Options

Aggregated
Action

Count of
Hits

Percentage
Average

Actions per
Sample

Average
Percentage per

Sample
File

Operations
3, 102, 369 29.81% 47, 005.59 ≈ 0.14%

Process
Operations

901, 156 8.66% 13, 653.88 ≈ 0.49%

Query
Operations

98, 261 0.94% 1, 488.8 ≈ 6.32%

Registry
Operations

6, 298, 689 60.53% 95, 434.68 ≈ 0.06%

12.5. TARGET PROCESS ACTIONS PER CODE INJECTION TYPE 101

Set
Information

File
Operations

1, 400 0.01% 21.21 ≈ 33.63%

TCP
Operations

1, 883 0.02 % 28.53 ≈ 23.97%

UDP
Operations

2, 638 0.03 % 39.97 ≈ 16.81%

Table 12.24: Metrics of Aggregated Actions for Image File Execution Options

Generic Shell Injection

Aggregated
Action

Count of
Hits

Percentage
Average

Actions per
Sample

Average
Percentage per

Sample
File

Operations
4, 544, 027 20.19% 50, 489.19 ≈ 0.18%

Process
Operations

1, 439, 452 6.4% 15, 993.91 ≈ 0.57%

Query
Operations

285, 339 1.27% 3, 170.43 ≈ 3.16%

Registry
Operations

16, 223, 982 72.08% 180, 266.47 ≈ 0.05%

Set
Information

File
Operations

3, 800 0.02% 42.22 ≈ 21.92%

TCP
Operations

5, 148 0.02% 57.2 ≈ 15.93%

UDP
Operations

5, 494 0.02% 61.04 ≈ 14.87%

Table 12.25: Metrics of Aggregated Actions for Generic Shell Injection

102 CHAPTER 12. TABLES

12.6 Sample Targets per Operation Type Code Injec-
tion Type

12.6.1 File Operations

File Operations

AppInit DLL Injection

Target Count of Hits Percentage
C:\ProgramData\Microsoft\Windows\

AppRepository\StateRepository-Deployment.

srd

393, 792 20.8%

C:\ProgramData\Microsoft\Windows\

AppRepository\StateRepository-Machine.srd
276, 960 14.63%

C:\ProgramData\Microsoft\Windows\WER\

Temp\WERD6B0.tmp.csv
214, 656 11.34%

C:\ProgramData\Microsoft\Windows\WER\

Temp\WERAE61.tmp.csv
196, 512 10.38%

C:\ProgramData\Microsoft\Windows\

AppRepository\StateRepository-Machine.

srd-shm

102, 768 5.43%

Other 708, 559 37.43%

COM Hijack DLL Injection

Target Count of Hits Percentage
C:\ProgramData\Microsoft\Windows\

AppRepository\StateRepository-Deployment.

srd

3, 109, 316 20.65%

C:\ProgramData\Microsoft\Windows\

AppRepository\StateRepository-Machine.srd
2, 186, 847 14.52%

C:\ProgramData\Microsoft\Windows\WER\

Temp\WERD6B0.tmp.csv
1, 694, 888 11.26%

C:\ProgramData\Microsoft\Windows\WER\

Temp\WERAE61.tmp.csv
1, 551, 626 10.3%

C:\ProgramData\Microsoft\Windows\

AppRepository\StateRepository-Machine.

srd-shm

821, 775 5.46%

Continued on next page

12.6. SAMPLE TARGETS PER OPERATION TYPE CODE INJECTION TYPE 103

Table 12.26 – continued from previous page
Other 5, 692, 796 37.81%

Process Hollowing

Target Count of Hits Percentage
C:\ProgramData\Microsoft\Windows\

AppRepository\StateRepository-Deployment.

srd

721, 952 20.33%

C:\ProgramData\Microsoft\Windows\

AppRepository\StateRepository-Machine.srd
507, 780 14.3%

C:\ProgramData\Microsoft\Windows\WER\

Temp\WERD6B0.tmp.csv
393, 536 11.08%

C:\ProgramData\Microsoft\Windows\WER\

Temp\WERAE61.tmp.csv
360, 272 10.15%

C:\ProgramData\Microsoft\Windows\

AppRepository\StateRepository-Machine.

srd-shm

200, 568 5.65%

Other 1, 366, 959 38.49%

Image File Execution Options

Target Count of Hits Percentage
C:\ProgramData\Microsoft\Windows\

AppRepository\StateRepository-Deployment.

srd

114, 856 16.91%

C:\ProgramData\Microsoft\Windows\

AppRepository\StateRepository-Machine.srd
80, 824 11.9%

C:\ProgramData\Microsoft\Windows\WER\

Temp\WERD6B0.tmp.csv
62, 608 9.22%

C:\ProgramData\Microsoft\Windows\WER\

Temp\WERAE61.tmp.csv
57, 316 8.44%

C:\ProgramData\Microsoft\Windows\

AppRepository\StateRepository-Machine.

srd-shm

56, 726 8.35%

Other 306, 714 45.17%

Generic Shell Injection

Target Count of Hits Percentage
Continued on next page

104 CHAPTER 12. TABLES

Table 12.26 – continued from previous page
C:\ProgramData\Microsoft\Windows\

AppRepository\StateRepository-Deployment.

srd

311, 752 17.91%

C:\ProgramData\Microsoft\Windows\

AppRepository\StateRepository-Machine.srd
219, 310 12.6%

C:\ProgramData\Microsoft\Windows\WER\

Temp\WERD6B0.tmp.csv
169, 936 9.76%

C:\ProgramData\Microsoft\Windows\WER\

Temp\WERAE61.tmp.csv
155, 572 8.94%

C:\ProgramData\Microsoft\Windows\

AppRepository\StateRepository-Machine.

srd-shm

111, 758 6.42%

Other 772, 775 44.38%

Thread Execution Hijacking

Target Count of Hits Percentage
C:\ProgramData\Microsoft\Windows\

AppRepository\StateRepository-Deployment.

srd

352, 772 20.66%

C:\ProgramData\Microsoft\Windows\

AppRepository\StateRepository-Machine.srd
248, 110 14.53%

C:\ProgramData\Microsoft\Windows\WER\

Temp\WERD6B0.tmp.csv
192, 296 11.26%

C:\ProgramData\Microsoft\Windows\WER\

Temp\WERAE61.tmp.csv
176, 042 10.31%

C:\ProgramData\Microsoft\Windows\

AppRepository\StateRepository-Machine.

srd-shm

92, 063 5.39%

Other 646, 527 37.86%

Classic DLL Injection

Target Count of Hits Percentage
C:\ProgramData\Microsoft\Windows\

AppRepository\StateRepository-Deployment.

srd

8, 204 20.84%

Continued on next page

12.6. SAMPLE TARGETS PER OPERATION TYPE CODE INJECTION TYPE 105

Table 12.26 – continued from previous page
C:\ProgramData\Microsoft\Windows\

AppRepository\StateRepository-Machine.srd
5, 770 14.66%

C:\ProgramData\Microsoft\Windows\WER\

Temp\WERD6B0.tmp.csv
4, 472 11.36%

C:\ProgramData\Microsoft\Windows\WER\

Temp\WERAE61.tmp.csv
4, 094 10.4%

C:\ProgramData\Microsoft\Windows\

AppRepository\StateRepository-Machine.

srd-shm

2, 141 5.44%

Other 14, 687 37.31%

Table 12.26: File Operations: Sample Targets per Operation Type Code Injection Type.

12.6.2 Process Operations

Process Operations

AppInit DLL Injection

Target Hits Count Percentage
C:\Windows\System32\policymanager.dll 3, 648 0.44%

C:\Windows\System32\msvcp110_win.dll 3, 648 0.44%

C:\Windows\System32\

OnDemandConnRouteHelper.dll
1, 152 0.14%

C:\Windows\System32\ntdll.dll 627 0.07%

C:\Windows\System32\svchost.exe 624 0.07%

Other 828, 820 98.84%

COM Hijack DLL Injection

Target Hits Count Percentage
C:\Windows\System32\policymanager.dll 28, 804 0.42%

C:\Windows\System32\msvcp110_win.dll 28, 804 0.42%

C:\Windows\System32\

OnDemandConnRouteHelper.dll
9, 249 0.13%

C:\Windows\System32\svchost.exe 5, 019 0.07%

C:\Windows\System32\ntdll.dll 4, 995 0.07%

Other 6, 832, 739 98.89%

Continued on next page

106 CHAPTER 12. TABLES

Table 12.27 – continued from previous page
Process Hollowing

Target Hits Count Percentage
C:\Windows\System32\policymanager.dll 6, 688 0.36%

C:\Windows\System32\msvcp110_win.dll 6, 688 0.36%

C:\Windows\System32\

OnDemandConnRouteHelper.dll
2, 292 0.12%

C:\Windows\System32\svchost.exe 1, 199 0.07%

C:\Windows\System32\ntdll.dll 1, 182 0.06%

Other 1, 824, 837 99.02%

Image File Execution Options

Target Hits Count Percentage
C:\Windows\System32\policymanager.dll 1, 064 0.12%

C:\Windows\System32\msvcp110_win.dll 1, 064 0.12%

C:\Windows\System32\

OnDemandConnRouteHelper.dll
732 0.08%

C:\Windows\System32\ntdll.dll 229 0.03%

C:\Windows\System32\svchost.exe 226 0.03%

Other 880, 050 99.62%

Generic Shell Injection

Target Hits Count Percentage
C:\Windows\System32\policymanager.dll 2, 888 0.2%

C:\Windows\System32\msvcp110_win.dll 2, 888 0.2%

C:\Windows\System32\

OnDemandConnRouteHelper.dll
1, 362 0.09%

C:\Windows\System32\svchost.exe 584 0.04%

C:\Windows\System32\ntdll.dll 568 0.04%

Other 1, 431, 162 99.42%

Thread Execution Hijacking

Target Hits Count Percentage
C:\Windows\System32\policymanager.dll 3, 268 0.43%

C:\Windows\System32\msvcp110_win.dll 3, 268 0.43%

Continued on next page

12.6. SAMPLE TARGETS PER OPERATION TYPE CODE INJECTION TYPE 107

Table 12.27 – continued from previous page
C:\Windows\System32\

OnDemandConnRouteHelper.dll
1, 032 0.14%

C:\Windows\System32\ntdll.dll 571 0.08%

C:\Windows\System32\svchost.exe 564 0.07%

Other 747, 772 98.85%

Classic DLL Injection

Target Hits Count Percentage
C:\Windows\System32\policymanager.dll 76 0.44%

C:\Windows\System32\msvcp110_win.dll 76 0.44%

C:\Windows\System32\

OnDemandConnRouteHelper.dll
24 0.14%

C:\Windows\System32\svchost.exe 13 0.07%

C:\Windows\System32\ntdll.dll 13 0.07%

Other 17, 204 98.84%

Table 12.27: Process Operations: Sample Targets per Operation Type Code Injection Type.

12.6.3 Query Operations

Query Operations

AppInit DLL Injection

Target Hits Count Percentage
C:\ProgramData\Microsoft\Windows\

AppRepository\Packages\Microsoft.Windows.

ContentDeliveryManager_10.0.19041.1023_

neutral_neutral_cw5n1h2txyewy\

ActivationStore.dat

13, 968 5.59%

C:\Windows\System32\policymanager.dll 11, 040 4.42%

C:\ProgramData\Microsoft\Windows\WER 8, 736 3.5%

C:\ProgramData\Microsoft\Windows\WER\Temp 8, 736 3.5%

C:\Windows\Temp 8, 260 3.31%

Other 199, 114 79.69%

COM Hijack DLL Injection

Target Hits Count Percentage
Continued on next page

108 CHAPTER 12. TABLES

Table 12.28 – continued from previous page
C:\ProgramData\Microsoft\Windows\

AppRepository\Packages\Microsoft.Windows.

ContentDeliveryManager_10.0.19041.1023_

neutral_neutral_cw5n1h2txyewy\

ActivationStore.dat

110, 289 5.46%

C:\Windows\System32\policymanager.dll 87, 170 4.31%

C:\ProgramData\Microsoft\Windows\WER 68, 978 3.41%

C:\ProgramData\Microsoft\Windows\WER\Temp 68, 978 3.41%

C:\Windows\Temp 67, 264 3.33%

Other 1, 618, 793 80.08%

Process Hollowing

Target Hits Count Percentage
C:\ProgramData\Microsoft\Windows\

AppRepository\Packages\Microsoft.Windows.

ContentDeliveryManager_10.0.19041.1023_

neutral_neutral_cw5n1h2txyewy\

ActivationStore.dat

25, 608 5.3%

C:\Windows\System32\policymanager.dll 20, 240 4.19%

C:\Windows\Temp 16, 964 3.51%

C:\ProgramData\Microsoft\Windows\WER 16, 016 3.32%

C:\ProgramData\Microsoft\Windows\WER\Temp 16, 016 3.32%

Other 388, 265 80.37%

Image File Execution Options

Target Hits Count Percentage
C:\Windows\Temp 5, 604 5.7%

C:\Windows\ServiceProfiles\

NetworkService\AppData\Local\Temp
4, 288 4.36%

C:\ProgramData\Microsoft\Windows\

AppRepository\Packages\Microsoft.Windows.

ContentDeliveryManager_10.0.19041.1023_

neutral_neutral_cw5n1h2txyewy\

ActivationStore.dat

4, 074 4.15%

C:\Windows\System32\policymanager.dll 3, 220 3.28%

C:\ProgramData\Microsoft\Windows\WER 2, 548 2.59%

Continued on next page

12.6. SAMPLE TARGETS PER OPERATION TYPE CODE INJECTION TYPE 109

Table 12.28 – continued from previous page
Other 78, 527 79.92%

Generic Shell Injection

Target Hits Count Percentage
C:\ProgramData\Microsoft\Windows\

AppRepository\Packages\Microsoft.Windows.

ContentDeliveryManager_10.0.19041.1023_

neutral_neutral_cw5n1h2txyewy\

ActivationStore.dat

11, 058 3.88%

C:\Windows\Temp 10, 728 3.76%

C:\Windows\System32\policymanager.dll 8, 740 3.06%

C:\ProgramData\Microsoft\Windows\WER 6, 916 2.42%

C:\ProgramData\Microsoft\Windows\WER\Temp 6, 916 2.42%

Other 240, 981 84.45%

Thread Execution Hijacking

Target Hits Count Percentage
C:\ProgramData\Microsoft\Windows\

AppRepository\Packages\Microsoft.Windows.

ContentDeliveryManager_10.0.19041.1023_

neutral_neutral_cw5n1h2txyewy\

ActivationStore.dat

12, 513 5.42%

C:\Windows\System32\policymanager.dll 9, 890 4.28%

C:\ProgramData\Microsoft\Windows\WER 7, 826 3.39%

C:\ProgramData\Microsoft\Windows\WER\Temp 7, 826 3.39%

C:\Windows\Temp 7, 464 3.23%

Other 185, 537 80.3%

Classic DLL Injection

Target Hits Count Percentage
C:\ProgramData\Microsoft\Windows\

AppRepository\Packages\Microsoft.Windows.

ContentDeliveryManager_10.0.19041.1023_

neutral_neutral_cw5n1h2txyewy\

ActivationStore.dat

291 5.62%

C:\Windows\System32\policymanager.dll 230 4.44%

Continued on next page

110 CHAPTER 12. TABLES

Table 12.28 – continued from previous page
C:\ProgramData\Microsoft\Windows\WER 182 3.51%

C:\ProgramData\Microsoft\Windows\WER\Temp 182 3.51%

C:\Windows\Temp 172 3.32%

Other 4, 122 79.59%

Table 12.28: Query Operations: Sample Targets per Operation Type Code Injection Type.

12.6.4 Registry Operations

Registry Operations

AppInit DLL Injection

Target Hits Count Percentage
HKLM 1, 177, 429 19.92%

HKU 77, 832 1.32%

HKLM\System\CurrentControlSet\Control\

SessionManager\Environment
70, 211 1.19%

HKU\.DEFAULT 69, 315 1.17%

HKCR\LocalSettings\Software\Microsoft\

Windows\CurrentVersion\AppModel\

PackageRepository\Packages

59, 328 1.0%

Other 4, 455, 675 75.39%

COM Hijack DLL Injection

Target Hits Count Percentage
HKLM 9, 417, 237 19.93%

HKU 621, 781 1.32%

HKLM\System\CurrentControlSet\Control\

SessionManager\Environment
571, 761 1.21%

HKU\.DEFAULT 554, 111 1.17%

HKCR\LocalSettings\Software\Microsoft\

Windows\CurrentVersion\AppModel\

PackageRepository\Packages

468, 444 0.99%

Other 35, 608, 249 75.37%

Process Hollowing

Target Hits Count Percentage
Continued on next page

12.6. SAMPLE TARGETS PER OPERATION TYPE CODE INJECTION TYPE 111

Table 12.29 – continued from previous page
HKLM 2, 277, 481 20.17%

HKU 148, 631 1.32%

HKLM\System\CurrentControlSet\Control\

SessionManager\Environment
144, 200 1.28%

HKU\.DEFAULT 130, 316 1.15%

HKCR\LocalSettings\Software\Microsoft\

Windows\CurrentVersion\AppModel\

PackageRepository\Packages

108, 768 0.96%

Other 8, 483, 152 75.12%

Image File Execution Options

Target Hits Count Percentage
HKLM 579, 159 23.33%

HKLM\System\CurrentControlSet\Control\

SessionManager\Environment
47, 635 1.92%

HKU 32, 444 1.31%

HKU\.DEFAULT 22, 392 0.9%

HKLM\SYSTEM\Setup 20, 799 0.84%

Other 1, 779, 677 71.7%

Generic Shell Injection

Target Hits Count Percentage
HKLM 1, 221, 590 21.02%

HKLM\System\CurrentControlSet\Control\

SessionManager\Environment
91, 196 1.57%

HKU 75, 181 1.29%

HKU\.DEFAULT 67, 245 1.16%

HKCR\LocalSettings\Software\Microsoft\

Windows\CurrentVersion\AppModel\

PackageRepository\Packages

46, 968 0.81%

Other 4, 308, 981 74.15%

Thread Execution Hijacking

Target Hits Count Percentage
HKLM 1, 062, 942 19.88%

HKU 70, 736 1.32%

Continued on next page

112 CHAPTER 12. TABLES

Table 12.29 – continued from previous page
HKLM\System\CurrentControlSet\Control\

SessionManager\Environment
63, 448 1.19%

HKU\.DEFAULT 63, 112 1.18%

HKCR\LocalSettings\Software\Microsoft\

Windows\CurrentVersion\AppModel\

PackageRepository\Packages

53, 148 0.99%

Other 4, 032, 890 75.43%

Classic DLL Injection

Target Hits Count Percentage
HKLM 24, 482 19.93%

HKU 1, 615 1.31%

HKLM\System\CurrentControlSet\Control\

SessionManager\Environment
1, 462 1.19%

HKU\.DEFAULT 1, 439 1.17%

HKCR\LocalSettings\Software\Microsoft\

Windows\CurrentVersion\AppModel\

PackageRepository\Packages

1, 236 1.01%

Other 92, 619 75.39%

Table 12.29: Registry Operations: Sample Targets per Operation Type Code Injection Type.

12.6.5 Set Information File Operations

Set Information File Operations

AppInit DLL Injection

Target Hits Count Percentage
C:\ProgramData\Microsoft\Windows\WER\Temp 912 19.0%

C:\Users\John\AppData\LocalLow\Microsoft\

CryptnetUrlCache\MetaData\

77EC63BDA74BD0D0E0426DC8F8008506

288 6.0%

C:\Users\John\AppData\LocalLow\Microsoft\

CryptnetUrlCache\MetaData\

FB0D848F74F70BB2EAA93746D24D9749

288 6.0%

Continued on next page

12.6. SAMPLE TARGETS PER OPERATION TYPE CODE INJECTION TYPE 113

Table 12.30 – continued from previous page
C:\Windows\System32\config\systemprofile\

AppData\LocalLow\Microsoft\

CryptnetUrlCache\MetaData\

7423F88C7F265F0DEFC08EA88C3BDE45_

AA1E8580D4EBC816148CE81268683776

288 6.0%

C:\Windows\SystemApps\MicrosoftWindows.

Client.CBS_cw5n1h2txyewy\microsoft.

system.package.metadata\Autogen\

JSByteCodeCache_64

240 5.0%

Other 2, 784 58.0%

COM Hijack DLL Injection

Target Hits Count Percentage
C:\ProgramData\Microsoft\Windows\WER\Temp 7, 201 19.0%

C:\Users\John\AppData\LocalLow\Microsoft\

CryptnetUrlCache\MetaData\

77EC63BDA74BD0D0E0426DC8F8008506

2, 274 6.0%

C:\Users\John\AppData\LocalLow\Microsoft\

CryptnetUrlCache\MetaData\

FB0D848F74F70BB2EAA93746D24D9749

2, 274 6.0%

C:\Windows\System32\config\systemprofile\

AppData\LocalLow\Microsoft\

CryptnetUrlCache\MetaData\

7423F88C7F265F0DEFC08EA88C3BDE45_

AA1E8580D4EBC816148CE81268683776

2, 274 6.0%

C:\Windows\SystemApps\MicrosoftWindows.

Client.CBS_cw5n1h2txyewy\microsoft.

system.package.metadata\Autogen\

JSByteCodeCache_64

1, 895 5.0%

Other 21, 982 58.0%

Process Hollowing

Target Hits Count Percentage
C:\ProgramData\Microsoft\Windows\WER\Temp 1, 672 19.0%

Continued on next page

114 CHAPTER 12. TABLES

Table 12.30 – continued from previous page
C:\Users\John\AppData\LocalLow\Microsoft\

CryptnetUrlCache\MetaData\

77EC63BDA74BD0D0E0426DC8F8008506

528 6.0%

C:\Users\John\AppData\LocalLow\Microsoft\

CryptnetUrlCache\MetaData\

FB0D848F74F70BB2EAA93746D24D9749

528 6.0%

C:\Windows\System32\config\systemprofile\

AppData\LocalLow\Microsoft\

CryptnetUrlCache\MetaData\

7423F88C7F265F0DEFC08EA88C3BDE45_

AA1E8580D4EBC816148CE81268683776

528 6.0%

C:\Windows\SystemApps\MicrosoftWindows.

Client.CBS_cw5n1h2txyewy\microsoft.

system.package.metadata\Autogen\

JSByteCodeCache_64

440 5.0%

Other 5, 104 58.0%

Image File Execution Options

Target Hits Count Percentage
C:\ProgramData\Microsoft\Windows\WER\Temp 266 19.0%

C:\Users\John\AppData\LocalLow\Microsoft\

CryptnetUrlCache\MetaData\

77EC63BDA74BD0D0E0426DC8F8008506

84 6.0%

C:\Users\John\AppData\LocalLow\Microsoft\

CryptnetUrlCache\MetaData\

FB0D848F74F70BB2EAA93746D24D9749

84 6.0%

C:\Windows\System32\config\systemprofile\

AppData\LocalLow\Microsoft\

CryptnetUrlCache\MetaData\

7423F88C7F265F0DEFC08EA88C3BDE45_

AA1E8580D4EBC816148CE81268683776

84 6.0%

C:\Windows\SystemApps\MicrosoftWindows.

Client.CBS_cw5n1h2txyewy\microsoft.

system.package.metadata\Autogen\

JSByteCodeCache_64

70 5.0%

Other 812 58.0%

Continued on next page

12.6. SAMPLE TARGETS PER OPERATION TYPE CODE INJECTION TYPE 115

Table 12.30 – continued from previous page

Generic Shell Injection

Target Hits Count Percentage
C:\ProgramData\Microsoft\Windows\WER\Temp 722 19.0%

C:\Users\John\AppData\LocalLow\Microsoft\

CryptnetUrlCache\MetaData\

77EC63BDA74BD0D0E0426DC8F8008506

228 6.0%

C:\Users\John\AppData\LocalLow\Microsoft\

CryptnetUrlCache\MetaData\

FB0D848F74F70BB2EAA93746D24D9749

228 6.0%

C:\Windows\System32\config\systemprofile\

AppData\LocalLow\Microsoft\

CryptnetUrlCache\MetaData\

7423F88C7F265F0DEFC08EA88C3BDE45_

AA1E8580D4EBC816148CE81268683776

228 6.0%

C:\Windows\SystemApps\MicrosoftWindows.

Client.CBS_cw5n1h2txyewy\microsoft.

system.package.metadata\Autogen\

JSByteCodeCache_64

190 5.0%

Other 2, 204 58.0%

Thread Execution Hijacking

Target Hits Count Percentage
C:\ProgramData\Microsoft\Windows\WER\Temp 817 19.0%

C:\Users\John\AppData\LocalLow\Microsoft\

CryptnetUrlCache\MetaData\

77EC63BDA74BD0D0E0426DC8F8008506

258 6.0%

C:\Users\John\AppData\LocalLow\Microsoft\

CryptnetUrlCache\MetaData\

FB0D848F74F70BB2EAA93746D24D9749

258 6.0%

C:\Windows\System32\config\systemprofile\

AppData\LocalLow\Microsoft\

CryptnetUrlCache\MetaData\

7423F88C7F265F0DEFC08EA88C3BDE45_

AA1E8580D4EBC816148CE81268683776

258 6.0%

Continued on next page

116 CHAPTER 12. TABLES

Table 12.30 – continued from previous page
C:\Windows\SystemApps\MicrosoftWindows.

Client.CBS_cw5n1h2txyewy\microsoft.

system.package.metadata\Autogen\

JSByteCodeCache_64

215 5.0%

Other 2, 494 58.0%

Classic DLL Injection

Target Hits Count Percentage
C:\ProgramData\Microsoft\Windows\WER\Temp 19 19.0%

C:\Users\John\AppData\LocalLow\Microsoft\

CryptnetUrlCache\MetaData\

77EC63BDA74BD0D0E0426DC8F8008506

6 6.0%

C:\Users\John\AppData\LocalLow\Microsoft\

CryptnetUrlCache\MetaData\

FB0D848F74F70BB2EAA93746D24D9749

6 6.0%

C:\Windows\System32\config\systemprofile\

AppData\LocalLow\Microsoft\

CryptnetUrlCache\MetaData\

7423F88C7F265F0DEFC08EA88C3BDE45_

AA1E8580D4EBC816148CE81268683776

6 6.0%

C:\Windows\SystemApps\MicrosoftWindows.

Client.CBS_cw5n1h2txyewy\microsoft.

system.package.metadata\Autogen\

JSByteCodeCache_64

5 5.0%

Other 58 58.0%

Table 12.30: Set Information File Operations: Sample Targets per Operation Type Code Injection
Type.

12.6.6 TCP Operations

TCP Operations

AppInit DLL Injection

Target Hits Count Percentage
DESKTOP-VQUTB06:51100->51.132.193.105:

https
768 11.93%

Continued on next page

12.6. SAMPLE TARGETS PER OPERATION TYPE CODE INJECTION TYPE 117

Table 12.31 – continued from previous page
DESKTOP-VQUTB06:51102->51.132.193.105:

https
768 11.93%

DESKTOP-VQUTB06:51109->20.50.201.195:

https
768 11.93%

DESKTOP-VQUTB06:51097->20.190.181.1:https 720 11.18%

DESKTOP-VQUTB06:51079->20.190.181.1:https 672 10.44%

Other 2, 743 42.6%

COM Hijack DLL Injection

Target Hits Count Percentage
DESKTOP-VQUTB06:51100->51.132.193.105:

https
6, 064 11.91%

DESKTOP-VQUTB06:51102->51.132.193.105:

https
6, 064 11.91%

DESKTOP-VQUTB06:51109->20.50.201.195:

https
6, 064 11.91%

DESKTOP-VQUTB06:51097->20.190.181.1:https 5, 685 11.17%

DESKTOP-VQUTB06:51079->20.190.181.1:https 5, 306 10.42%

Other 21, 722 42.67%

Process Hollowing

Target Hits Count Percentage
DESKTOP-VQUTB06:51100->51.132.193.105:

https
1, 408 11.9%

DESKTOP-VQUTB06:51102->51.132.193.105:

https
1, 408 11.9%

DESKTOP-VQUTB06:51109->20.50.201.195:

https
1, 408 11.9%

DESKTOP-VQUTB06:51097->20.190.181.1:https 1, 320 11.15%

DESKTOP-VQUTB06:51079->20.190.181.1:https 1, 232 10.41%

Other 5, 058 42.74%

Image File Execution Options

Target Hits Count Percentage
DESKTOP-VQUTB06:51100->51.132.193.105:

https
224 11.9%

Continued on next page

118 CHAPTER 12. TABLES

Table 12.31 – continued from previous page
DESKTOP-VQUTB06:51102->51.132.193.105:

https
224 11.9%

DESKTOP-VQUTB06:51109->20.50.201.195:

https
224 11.9%

DESKTOP-VQUTB06:51097->20.190.181.1:https 210 11.15%

DESKTOP-VQUTB06:51079->20.190.181.1:https 196 10.41%

Other 805 42.75%

Generic Shell Injection

Target Hits Count Percentage
DESKTOP-VQUTB06:51100->51.132.193.105:

https
608 11.81%

DESKTOP-VQUTB06:51102->51.132.193.105:

https
608 11.81%

DESKTOP-VQUTB06:51109->20.50.201.195:

https
608 11.81%

DESKTOP-VQUTB06:51097->20.190.181.1:https 570 11.07%

DESKTOP-VQUTB06:51079->20.190.181.1:https 532 10.33%

Other 2, 222 43.16%

Thread Execution Hijacking

Target Hits Count Percentage
DESKTOP-VQUTB06:51100->51.132.193.105:

https
688 11.88%

DESKTOP-VQUTB06:51102->51.132.193.105:

https
688 11.88%

DESKTOP-VQUTB06:51109->20.50.201.195:

https
688 11.88%

DESKTOP-VQUTB06:51097->20.190.181.1:https 645 11.14%

DESKTOP-VQUTB06:51079->20.190.181.1:https 602 10.4%

Other 2, 479 42.82%

Classic DLL Injection

Target Hits Count Percentage
DESKTOP-VQUTB06:51100->51.132.193.105:

https
16 11.94%

Continued on next page

12.6. SAMPLE TARGETS PER OPERATION TYPE CODE INJECTION TYPE 119

Table 12.31 – continued from previous page
DESKTOP-VQUTB06:51102->51.132.193.105:

https
16 11.94%

DESKTOP-VQUTB06:51109->20.50.201.195:

https
16 11.94%

DESKTOP-VQUTB06:51097->20.190.181.1:https 15 11.19%

DESKTOP-VQUTB06:51079->20.190.181.1:https 14 10.45%

Other 57 42.54%

Table 12.31: TCP Operations: Sample Targets per Operation Type Code Injection Type.

12.6.7 UDP Operations

UDP Operations

AppInit DLL Injection

Target Hits Count Percentage
DESKTOP-VQUTB06:56722->thinkPad:domain 96 1.77%

DESKTOP-VQUTB06:58558->ff02::1:3:llmnr 96 1.77%

DESKTOP-VQUTB06:58558->224.0.0.252:llmnr 96 1.77%

DESKTOP-VQUTB06:53962->thinkPad:domain 96 1.77%

DESKTOP-VQUTB06:56820->thinkPad:domain 96 1.77%

Other 4, 944 91.15%

COM Hijack DLL Injection

Target Hits Count Percentage
DESKTOP-VQUTB06:56722->thinkPad:domain 758 1.75%

DESKTOP-VQUTB06:58558->ff02::1:3:llmnr 758 1.75%

DESKTOP-VQUTB06:58558->224.0.0.252:llmnr 758 1.75%

DESKTOP-VQUTB06:53962->thinkPad:domain 758 1.75%

DESKTOP-VQUTB06:56820->thinkPad:domain 758 1.75%

Other 39, 445 91.23%

Process Hollowing

Target Hits Count Percentage
DESKTOP-VQUTB06:56722->thinkPad:domain 176 1.69%

DESKTOP-VQUTB06:58558->ff02::1:3:llmnr 176 1.69%

Continued on next page

120 CHAPTER 12. TABLES

Table 12.32 – continued from previous page
DESKTOP-VQUTB06:58558->224.0.0.252:llmnr 176 1.69%

DESKTOP-VQUTB06:53962->thinkPad:domain 176 1.69%

DESKTOP-VQUTB06:56820->thinkPad:domain 176 1.69%

Other 9, 544 91.56%

Image File Execution Options

Target Hits Count Percentage
DESKTOP-VQUTB06:60261->192.168.125.1:

domain
88 3.34%

DESKTOP-VQUTB06:64909->192.168.125.1:

domain
88 3.34%

DESKTOP-VQUTB06:49668->192.168.125.1:

domain
88 3.34%

DESKTOP-VQUTB06:62593->192.168.125.1:

domain
88 3.34%

DESKTOP-VQUTB06:51179->ff02::1:3:llmnr 88 3.34%

Other 2, 198 83.32%

Generic Shell Injection

Target Hits Count Percentage
DESKTOP-VQUTB06:60261->192.168.125.1:

domain
100 1.82%

DESKTOP-VQUTB06:64909->192.168.125.1:

domain
100 1.82%

DESKTOP-VQUTB06:49668->192.168.125.1:

domain
100 1.82%

DESKTOP-VQUTB06:62593->192.168.125.1:

domain
100 1.82%

DESKTOP-VQUTB06:51179->ff02::1:3:llmnr 100 1.82%

Other 4, 994 90.9%

Thread Execution Hijacking

Target Hits Count Percentage
DESKTOP-VQUTB06:56722->thinkPad:domain 86 1.77%

DESKTOP-VQUTB06:58558->ff02::1:3:llmnr 86 1.77%

DESKTOP-VQUTB06:58558->224.0.0.252:llmnr 86 1.77%

Continued on next page

12.7. IP AND DOMAIN ADDRESSES METRICS 121

Table 12.32 – continued from previous page
DESKTOP-VQUTB06:53962->thinkPad:domain 86 1.77%

DESKTOP-VQUTB06:56820->thinkPad:domain 86 1.77%

Other 4, 429 91.15%

Classic DLL Injection

Target Hits Count Percentage
DESKTOP-VQUTB06:56722->thinkPad:domain 2 1.77%

DESKTOP-VQUTB06:58558->ff02::1:3:llmnr 2 1.77%

DESKTOP-VQUTB06:58558->224.0.0.252:llmnr 2 1.77%

DESKTOP-VQUTB06:53962->thinkPad:domain 2 1.77%

DESKTOP-VQUTB06:56820->thinkPad:domain 2 1.77%

Other 103 91.15%

Table 12.32: UDP Operations: Sample Targets per Operation Type Code Injection Type.

12.7 IP And Domain Addresses Metrics

General Dataset Metrics

Metric Count

Unique IP Addresses Count 98
Unique Domain Addresses Count 71

Unique countries Count 10
Unique Cities Count 39

Observed IP Addresses (Incl. Duplicates) 91,251
Observed Domain Addresses Count (Incl. Duplicates) 4,426

Observed IP and Domain Address Count (Incl. Duplicates) 95,677
Samples Reaching an IP Address 778

Samples Reaching a Domain Address 196
Samples Reaching an IP and Domain Address 196

Percentage of Samples Connecting to an Address 100

Table 12.33: Counts of various general IP and Domain metrics.

122 CHAPTER 12. TABLES

List of Unique Countries

Country Count of IPs

United States 60
Canada 8

The Netherlands 7
Russia 6

Singapore 5
China 5
France 2

British Virgin Islands 2
Germany 2
Ireland 1

Table 12.34: List of unique countries that IP addresses matched to.

List of Unique Cities

City Count of IPs

Secaucus 8
Toronto 6
Seattle 6

Mountain View 6
Moscow 6

Singapore 5
Hangzhou 5
Ashburn 5
Menifee 4

New York 4
Council Bluffs 3
Amsterdam 3

Glenside 3
Dallas 3
Dublin 3

Montreal 2
Paris 2

Road Town 2
Chicago 2

Continued on next page

12.7. IP AND DOMAIN ADDRESSES METRICS 123

Table 12.35 – continued from previous page
Haarlem 1
Clifton 1

Mahwah 1
Brooklyn 1

Franklin Square 1
Los Angeles 1

Phoenix 1
Cumming 1

San Francisco 1
Flushing 1
Fremont 1
Edison 1

Minneapolis 1
Frankfurt am Main 1

Kansas City 1
North Charleston 1

Lansing 1
Capelle aan den IJssel 1

Cologne 1
Amsterdam 1

Table 12.35: List of unique cities that IP addresses matched to.

12.7.1 Metrics per Code Injection Type

Address Metrics per Code Injection Type

AppInit DLL Injection

City Metric
Observed IP Addresses

(Incl. Duplicates)
12, 396

Observed Domain
Addresses

1, 152

Observed Addresses Sum 13, 548

Observed Addresses
Percentage

14, 16%

Continued on next page

124 CHAPTER 12. TABLES

Table 12.36 – continued from previous page
Observed IP Addresses

per Sample
1, 377.3

Observed Domain
Addresses per Sample

128

COM Hijack DLL Injection

City Metric
Observed IP Addresses

(Incl. Duplicates)
22, 863

Observed Domain
Addresses

725

Observed Addresses Sum 23, 588

Observed Addresses
Percentage

24.65%

Observed IP Addresses
per Sample

47, 04

Observed Domain
Addresses per Sample

1, 70

Process Hollowing

City Metric
Observed IP Addresses

(Incl. Duplicates)
14, 285

Observed Domain
Addresses

896

Observed Addresses Sum 15, 181

Observed Addresses
Percentage

15.86%

Observed IP Addresses
per Sample

129.86

Observed Domain
Addresses per Sample

8.14

Image File Execution Options

City Metric
Observed IP Addresses

(Incl. Duplicates)
22, 585

Continued on next page

12.7. IP AND DOMAIN ADDRESSES METRICS 125

Table 12.36 – continued from previous page
Observed Domain

Addresses
593

Observed Addresses Sum 23, 178

Observed Addresses
Percentage

24.22%

Observed IP Addresses
per Sample

352.89

Observed Domain
Addresses per Sample

9.26

Generic Shell Injection

City Metric
Observed IP Addresses

(Incl. Duplicates)
18, 296

Observed Domain
Addresses

528

Observed Addresses Sum 18, 824

Observed Addresses
Percentage

19.12%

Observed IP Addresses
per Sample

215.24

Observed Domain
Addresses per Sample

6.21

Thread Execution Hijacking

City Metric
Observed IP Addresses

(Incl. Duplicates)
794

Observed Domain
Addresses

514

Observed Addresses Sum 1, 308

Observed Addresses
Percentage

1.36%

Observed IP Addresses
per Sample

18.46

Observed Domain
Addresses per Sample

11.95

Continued on next page

126 CHAPTER 12. TABLES

Table 12.36 – continued from previous page

Classic DLL Injection

City Metric
Observed IP Addresses

(Incl. Duplicates)
32

Observed Domain
Addresses

18

Observed Addresses Sum 50

Observed Addresses
Percentage

0.05%

Observed IP Addresses
per Sample

32

Observed Domain
Addresses per Sample

18

Table 12.36: Counts of Domain and IP Addresses Per Injection Type.

	Abstract
	Introduction
	Thesis Structure
	Background
	Code Injection Use Cases
	Fundamental Concepts

	Research Methodology
	Methodology Overview
	Selection Of Software to Install
	Obtaining the Code Injection Timestamp
	Injection Timestamp Utilization
	Obtaining the Target Process Event Stream
	Determining Code Injection Targets
	Injection Timestamp Accuracy
	Trimming the Post-Injection Target Process Event Stream
	Removing Extraneous Artifacts

	Determining Target's Post-Injection Actions
	Results Processing
	Experimental Metrics
	IP And Domain Addresses Metrics
	CAPE and Drakvuf Sandboxes

	Implementation
	Selection Of Software to Install
	Process Monitor Action Grouping
	Removing Extraneous Artifacts
	Determining Code Injection Targets
	Sample Behavioral Information
	Experimental Metrics
	Targeted Processes List
	Target Processes per Code Injection Type
	Target Process Actions per Code Injection Type
	Sample Targets per Operation Type Code Injection Type

	IP And Domain Addresses Metrics

	Evaluation and Experimental Results
	General Dataset Statistics
	Observed Malware Families
	Triggered CAPE Signatures
	Targeted Processes List
	Target Processes per Code Injection Type
	Target Process Actions per Code Injection Type
	Sample Targets per Operation Type per Code Injection Type
	File Operations
	Process Operations
	Query Operations
	Registry Operations
	Set Information File Operations
	TCP Operations
	UDP Operations

	IP And Domain Addresses Metrics
	Metrics per Code Injection Type

	Summary and Key Takeaways

	Results Discussion
	Limitations
	CAPE and Drakvuf Sandboxes
	Injection Timestamp Accuracy
	Identified CAPE Sandbox Limitations

	Future Work
	Related Work
	Conclusion
	References
	Tables
	General Dataset Statistics
	Malware Family Distribution
	Targeted Processes List
	Target Processes per Code Injection Type
	Target Process Actions per Code Injection Type
	Sample Targets per Operation Type Code Injection Type
	File Operations
	Process Operations
	Query Operations
	Registry Operations
	Set Information File Operations
	TCP Operations
	UDP Operations

	IP And Domain Addresses Metrics
	Metrics per Code Injection Type

