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1. Report introduction 
Persons with diabetes have a higher chance of hospitalization than persons without 
diabetes. Approximately 25% to 40% of all hospitalized patients su`er from pre-existing 
diabetes (Pérez et al., 2020). In the ZGT, in 2023, persons with diabetes accounted for 
approximately 10% of all admissions. As diabetes rates continue to rise globally, the 
total number of hospital admissions will likewise increase (Standl et al., 2019). Glucose 
regulation in the hospital setting is more challenging than in a domestic environment. 
The context significantly di`ers from that of a domestic environment. New factors 
introduced that a`ect glucose regulation include the level of illness, di`erent nutritional 
patterns and modalities, induction of medication, and reduced monitoring frequency of 
blood glucose (BG) values. As a result of these factors introduced in a hospital setting, 
physicians must take over BG regulation treatment in some cases (Moghissi et al., 2009; 
Pérez et al., 2020). 

BG regulation treatment e`orts pose a high risk of hypoglycemia, an independent risk 
factor for mortality. To prevent hypoglycemia, conservative glucose management is 
often triggered by physicians. This results in more frequently tolerated hyperglycemia 
among hospitalized patients (Moghissi et al., 2009a; Pérez et al., 2020a). Observational 
evidence links hyperglycemia in hospitalized patients to increased mortality, longer 
length of stay (LOS), and slower wound healing (Pérez et al., 2020a). Improved glucose 
control is expected to decrease these negative e`ects. Moreover, the likelihood of 
systemic infection diminishes (Moghissi et al., 2009a).   

Current hospital workflows regarding BG regulation have limitations. Workflow plays an 
important role in managing the risk of hypo- and hyperglycemia. Failure of a physician to 
adjust glycemic therapy according to blood glucose patterns can increase the risk of 
experiencing both hypo- and hyperglycemia(Moghissi et al., 2009b). This can, in part, be 
due to a lack of BG values documented in the electronic health record (EHR) (Rousseau 
et al., 2014). Insulin and nutrition are often hard to find or undocumented in the EHR. As 
diabetes is frequently not the primary reason for admission, there can be poor 
communication in times of transfer. The communication, availability of data, and 
adjusting medication according to that data are requirements to facilitate a workflow 
that ensures tight BG regulation (Moghissi et al., 2009b; Rousseau et al., 2014) 

It becomes clear that there is a need for tight glucose regulation for inpatients while 
reducing the risk of hypoglycemia. The use of technologies like continuous glucose 
monitoring (CGM), continuous subcutaneous insulin infusion (CSII), and/or a 
combination of CGM and CSII: automated insulin delivery (AID) can lead to a decrease 
in episodes of hyper-and hypoglycemia outside of the hospital environment (Umpierrez 
& Klono`, 2018). This e`ect arises from higher BG measurement frequencies, enabling 
more e`ective insulin treatment via CSII, or AID. Nevertheless, glycemic control with 
CGM does not show significant improvement when compared to point-of-care 
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measurements in hospitalized patients (Spanakis et al., 2022). This indicates that 
applying only CGM in a hospital environment is not enough to increase insight into a 
person with diabetes’s data.  

Regular insights into BG data are essential for the e`ective detection of hyper- or 
hypoglycemic events with CGM. For these insights, the nurses can make rounds to 
gather CGM data from the admitted patients, but this is labor-intensive in an already 
tight schedule for nurses. A study has been performed to transfer CGM data 
automatically to a central nursing station to prevent hypoglycemia (Spanakis et al., 
2018). The study reported successful prevention of clinically relevant and severe 
hypoglycemia in all five participants. The telemetry system also has the potential to treat 
hyperglycemia. However, Spinakis et al. only proposed a simplified hypoglycemia 
prevention protocol to combine with their telemetry system. They propose that to 
prevent hyperglycemia, nursing sta` must enhance their understanding of CGM data 
interpretation. To prevent hypo- or hyperglycemia, the success of this system largely 
depends on the correct interpretation of data by nursing sta`.  

Additional challenges arise with the implementation of CGM and AID in the hospital. The 
length of an admission period and the changing routine make it hard for AID algorithms 
to regulate glucose. In another scenario, due to illness and di`erentiating levels of 
consciousness, patients may be deemed incompetent to manage their glucose 
regulation with CGM and AID, so AID is stopped. AID may also be stopped upon 
admission due to diabetic ketoacidosis, before and during extended surgical 
procedures, or if CGM and AID supplies are unavailable in the hospital. Should CGM and 
AID remain in use, physicians and nurses must have the essential skills to manage these 
technologies. However, this expertise is frequently lacking (Umpierrez & Klono`, 2018).  

Frequent monitoring, insight into essential glucose and patient data, and a su`icient 
workflow are needed to satisfy the need for goog glycemic control for inpatients while 
reducing the risk of hypoglycemia. To combine these features, a decision-support 
system is designed. This report focuses on insight into problems with glucose regulation 
in the hospital and the development of a decision-support system tailored towards in-
hospital care. The overall objective of this report is:  

To provide a comprehensive analysis of the challenges related to glucose regulation 
in hospitalized patients and to develop a decision-support system to improve 

clinical management and optimize patient outcomes. 

The report is divided into three chapters to achieve this goal. The main chapter is on the 
development of models for BG prediction inside of a decision-support system for in-
hospital glucose regulation. Two smaller chapters introduce extra features for the 
system and give more context to how this system should be implemented in hospital 
care. At the end of the report, a general conclusion is drawn.   
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2. Chapter 1: Patient-specific prediction models to 
improve inpatient glucose regulation  

2.1 Abstract 
Introduction: BG prediction aids in decision-support for BG regulation. This chapter 
explores patient-specific autoregressive integrated moving average models with 
exogenous variables (ARIMA(X)). Literature reveals that ARIMA(X) models have not been 
evaluated in a hospital context. Besides this, there is limited attention to the clinical 
relevance regarding safety and usability in literature. This study assesses patient-
specific ARIMA(X) models in an adaptive identification framework, utilizing available 
data and considering diabetes's time-variant dynamics. 

Methods: A retrospective cohort study was performed. Quantitative, observational, and 
secondary CGM, insulin, and carbohydrate data were used from the DIABASE database. 
Data was extracted from hospitalized patients, including both data from during and right 
before hospitalization. CGM with >20% missing data was excluded. To impute the left 
over CGM with missing data, seasonal decomposition and interpolation were 
performed. Model identification was conducted to optimize ARIMA(X) parameters. 
Predictions were made for PH = {30 min, 60 min, 120 min}. An adaptive identification 
algorithm was applied for continuously changing model orders. Testing was performed 
using time series cross-validation. Performance metrics were chosen based on clinical 
relevance: MAE, RMSE, MAPE, CEGA, amount of training data needed for (accurate) 
prediction, and computational time.  

Results: This study contained a group of 15 patients (mean age 56.33 years, n = 10 
female), with some patients having multiple admissions. The MAE was, respectively, 
0.65 (±0.21), 1.17 (±0.23), and 1.88 (±0.24) mmol/l for PH = 30 min, 60 min, and 120 min. 
The RMSE was, respectively, 0.87 (±0.27), 1.52 (±0.27), and 2.41 (±0.25) mmol/l for PH = 
30 min, 60 min, and 120 min. The models trained and tested with intra-extended data 
reported totals of 100%, 99.87%, and 99.42% in the A+B zones of the CEG for PH = 30 
min, 60 min, and 120 min. No dataset satisfies the set threshold for all PH when 
compared to the MAPE threshold of 10%. For PH = 30 min., the models trained and 
tested on intra-BG, pre-BG, cross-BG, and intra-extended data complied with the 
threshold. Predictions were computed quickly and accurately with little training data 
available. 

Discussion: Cross-BG data showed the most promising predictions that satisfied the 
di`erent criteria and benchmarks of clinical relevance across various PHs. The 
satisfaction of the criteria and benchmarks for clinical relevance depended heavily on 
the di`erent PHs. The adaptive identification algorithm could be studied more 
elaborately on purposefully collected and simulated patient data. The same study could 
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also analyze the models’ sensitivity to insulin and carbohydrate inputs. For this study to 
have direct implications, a study could be performed on the use of the model as a 
decision-support system either only as a 30-minute-ahead alarm or in combination with 
the bolus algorithm of Pérez et al. under strict expert supervision. 

2.2 Introduction 
Decision-support systems for glucose regulation predict glucose to estimate the 
amount of insulin, either bolus, basal, or both, or the amount of carbohydrates needed 
to keep the BG values of a patient within the desired range. The predictions can help 
induce preventive actions when predicting hyper- or hypoglycemic events (Prendin et al., 
2021). BG prediction models can either be physiological prediction models, data-driven 
models, or a hybrid version of those options (Oviedo et al., 2017). This chapter focuses 
on a data-driven approach, namely, autoregressive integrated moving average models 
with exogenous variables (ARIMA(X)).   

Research indicates that various approaches have been implemented in ARIMA(X) 
models and similar frameworks over time. These models have been utilized with 
datasets from real-life settings. The findings from these diverse studies are compiled in 
Table 1, these results will be used as comparison later in this report. Comparing and 
choosing the best-performing models is challenging due to the distinct data sets utilized 
in these studies. To determine the most suitable model for this study, a thorough 
examination of methodologies presented in the literature is conducted. A 
comprehensive outline of the reviewed studies, including their rationales, methods, and 
results, can be found in the Appendix of this report. Eventually, for this study’s context, 
patient-specific ARIMA(X) models within an adaptive identification framework were 
chosen, leveraging all pertinent data while considering the time-variant dynamics of 
diabetes. This approach parallels the techniques employed by Yang et al. (2019). It is 
anticipated that the adaptability of this method makes the models appropriate for an 
exploration of what works well in the novel context this study introduces.  

Table 1 Summary of results from literature for context and for comparison with this study's method. The lowest RMSE 
for relevant PH is in bold. The highest Clarke error grid analysis (CEGA) is not shown in bold, as only one study 
contained this information. 

Study Model PH 
(minutes) 

RMSE 
(mmol/l) 

MAE 
(mmol/l) 

MAPE(%) 

Phadke et 
al. 2020 

ARIMA(2,1,0) Libre Pro Dataset  
15 0.39 0.28 3.98 
30 0.88 0.64 9.37 
45 1.29 0.97 13.87 
Ohio T1DM 
Dataset 

   

15 0.73 0.44 8.21 
30 1.29 0.84 11.47 
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45 1.79 1.21 16.62 
Predin et 
al. 2021 

 Individual order 
AR 30 1.26  

[1.04-1.64] 
- - 

ARMA 1.25 
[1.12-1.69] 

- - 

ARIMA 1.23  
[1.1-1.60] 

- - 

 Individual order 30-minute specific 
AR 30 1.27 

[1.1-1.6] 
- - 

ARMA 1.27 
[1.14-1.66] 

- - 

ARIMA 1.24 
[1.11-1.63] 

- - 

 Individual order Day and Night 
AR 30 1.35 

[1.15-1.68] 
- - 

ARMA 1.35 
[1.18-1.68] 

- - 

ARIMA 1.28 
[1.14-1.65] 

- - 

 Regularized    
AR 30 1.29  

[1.1-1.72] 
- - 

 RLS    
AR 30 1.52 

[1.37-1.88] 
- - 

Prendin et 
al. 2022 

 Ohio T1DM Dataset 
ARIMA 30 1.09 

[1.02-1.14] 
- - 

45 1.5 
[1.33-1.59] 

- - 

60 1.87 
[1.66-1.95] 

- - 

75 2.17 
[1.8-2.31] 

- - 

ARIMAX 30 1.04 
[0.96-1.11] 

- - 

45 1.47 
[1.28-1.50] 

- - 

60 1.71 
[1.63-1.77] 

- - 

75 1.92 
[1.74-2.17] 

- - 

 CTR3 Dataset 
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ARIMA 30 1.17 
[1.11-1.38] 

- - 

45 1.63 
[1.52-1.85] 

- - 

60 1.97 
[1.92-2.25] 

- - 

75 2.45 
[2.19-2.55] 

- - 

ARIMAX 30 1.16 
[0.99-1.3] 

- - 

45 1.56 
[1.35-1.81] 

- - 

60 1.87 
[1.59-2.25] 

- - 

75 2.22 
[1.74-2.41] 

- - 

Mohebbi 
et al. 2020 

ARIMA  
(With 7 days 
of 
trainingdata) 

15 0.68  
[±0.05] 

0.46 
[±0.03] 

- 

30 1.22 
[±0.08] 

0.86 
[±0.06] 

- 

45 1.70 
[±0.12] 

1.23 
[±0.08] 

- 

60 2.14 
[±0.15] 

1.57 
[±0.11] 

- 

90 2.83 
[±0.21] 

2.12 
[±0.15] 

- 

Sawaryn 
2020 

AR  
(optimal 
training set 
sizes, mean 
9.6 days 
±3.01, and 
parameters, 
mean AR: 12 
± 2 per 
patient) 
 

15 0.33 
[±0.08] 

- - 

30 0.8 
[±0.15] 

- - 

60 1.44 
[±0.2] 

- - 

120 1.95 
[±-.21] 

- - 

180 2.16 
[±0.2] 

- - 

ARMAX 
(optimal 
training set 
sizes, mean 
10.4 days ± 
1.62, and 
parameters, 
mean AR & 
X: 7.6 ± 0.8, 
MA: 8.2 

15 0.32 
[±0.08] 

- - 

30 0.76 
[±0.16} 

- - 

60 1.30 
[±0.21] 

- - 

120 1.64 
[±0.24] 

- - 

180 1.74 
[±0.25] 

- - 
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±0.4, Nk: 1 
per patient) 
 

 

Study Mean values (%) in CEGA zones at PH = 120 min. 
Sawaryn 
2020 

Models A B C D E 
AR 67.9  

[±6.81] 
31.0 
[±7.22] 

0.07 
[±0.13] 

1.04 
[±0.66] 

0.0 
[±0.0] 

ARMAX 74.6 
[±7.58] 

24.8 
[±7.56] 

0.03 
[±0.07] 

1.54 
[±0.54] 

0.0 
[±0.0] 

 

Although based on a limited literature review, this analysis revealed several gaps in 
relation to the objectives of this study. The literature shows the potential of ARIMA(X) or 
models alike to predict BG values in persons with diabetes. However, it lacks evidence 
that this is also possible in a hospital scenario. Besides this, there is limited attention to 
the clinical relevance of model performance in terms of safety and usability. Clinically 
relevant prediction is defined as accurate, safe, and usable in a hospital context. Safety 
and usability in a certain context are lacking in most literature. If a prediction satisfies 
the requirements for those three categories, it can lead to tighter glucose regulation 
while minimizing the risk of hypoglycemia.  

To fill this gap, this research has the following objective:  

This study aims to assess a clinically relevant BG prediction by developing di<erent 
patient-specific ARIMA(X) models in an adaptive identification framework for 

persons with diabetes in non-ICU hospital wards. 

To obtain the research objective, a set of sub-questions needs to be answered:  

1. Which input signals result in the most clinically relevant BG prediction model for 
prediction horizon of 30 min, 60 min, and 120 min? 

2. What amount of training data results in the most clinically relevant BG prediction 
model for prediction horizon of 30 min, 60 min, and 120 min? 

3. What is the added value of a patient-specific adaptive identification time series 
modeling approach for BG prediction? 

To answer these questions, this study evaluates di`erent patient-specific ARIMA(X) 
models in an adaptive identification framework.   

The existing literature in di`erent contexts functions as a starting point for this research. 
Based on this literature, it is expected that in that clinically relevant patient-specific 
models can be developed to make predictions for hospitalized patients at the prediction 
horizons (PH) of 30 min, 60 min, and 120 min. Sawaryn et al. showed that predictions 
with AR and ARMAX models can be performed safely and accurately in persons with type 
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2 diabetes (T2D) for PH = 30 min, 60 min, and 120 min, which means that predictions 
almost exclusively fell in zones A & B of the Clarke error grid. Besides this, unlike non-
linear alternatives, Sawaryn et al. and Mohebbi et al. showed that autoregressive 
models need little training data to make predictions, which shows the usability of the 
models in various contexts (Mohebbi et al., 2020; Sawaryn, 2020).  

This report summarizes the process of obtaining the research objective and questions. 
The method section elaborates on data pre-processing, model structure and 
development, and assessment of clinical relevance, after which the results and 
discussion are presented for this chapter.  

2.3 Methods 
To reach the objective of developing and assessing a clinically relevant BG prediction 
model for people with diabetes in non-ICU hospital wards, a retrospective cohort study 
was performed. Three main phases were distinguished in the method. First, data was 
selected and pre-processed. Second models were developed and tested. Lastly, the 
results from the model testing were analyzed. These phases are discussed in more 
detail in this section. Figure 1 is a summary of the complete method section.  

Quantitative, observational, and secondary data were used from the DIABASE database 
(ZGT, Almelo). This database contained CGM, AID, and other relevant medical data from 
persons with  type 1 diabetes (T1D) and T2D with CGM and/or AID. Data was extracted 
from hospitalized patients, including both data during and right before hospitalization. A 
set of inclusion and exclusion criteria was set to obtain e`ective data.  

2.3.1 Inclusion criteria 

- The patient had given informed consent for inclusion into the DIABASE database. 
- The patient was ³ 18 years old. 
- The patient had T1D or T2D. 
- CGM data was consecutively available for ³  24 hours during hospitalization 

2.3.2 Exclusion criteria 

- The patient had retrieved their informed consent for the DIABASE study during this 
research.  

- The patient was hospitalized in an ICU-ward.  

The number of patients with su`icient and suitable data based on the research goal and 
in- and exclusion criteria were selected at the beginning of data collection. The available 
CGM, AID, carbohydrate, time date, patient characteristics, and lab data were extracted 
from the database. Most models from the literature that predict BG showed good results 
using either consecutive BG data, insulin doses, and carbohydrate intake or a 
combination of those variables (Tsichlaki et al., 2022). 
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Figure 1 Flowchart summary of the method section of this study 
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2.3.3 Programming 

The necessary programming for this study was performed with R 4.2 (Rstudio team, 
Boston, MA).   

2.3.4 Input signal selection  

Input signals for the models that were selected directly from the DIABASE dataset were 
CGM values, the amount of basal and bolus insulin, the amount of carbohydrate intake 
with their corresponding time data information.  

CGM data was collected by di`erent subcutaneous sensors, namely the Freestyle Libre 
Link and Medtronic sensor combined with an insulin pump. The Freestyle Libre Link 
collected a BG sample every 15 minutes, while the Medtronic sensor collected a BG 
sample every 5 minutes. To determine whether analysis of the BG prediction models 
should be performed separate for the di`erent CGM sensors, a separate analysis was 
performed on the accuracy of the models using di`erent sensors as input. The mean of 
the accuracy measures for all PH, which will be introduced later in this section, was 
compared between patients with a Freestyle Libre Link and Medtronic sensor. An 
independent t-test was performed on the mean absolute errors (MAE) of the two sensor 
groups. If p < 0.05, the group means were significantly di`erent. If the di`erent sensors 
yielded significantly di`erent results, both sensor groups were split in the rest of the 
phases of development and analysis. 

Insulin & carbohydrate data was retrieved from the Medtronic insulin pump. Insulin data 
contained basal and bolus inputs from the patient or from closed-loop pump settings. 
Carbohydrate data was dependent on patient input in the insulin pump. To answer sub 
question one, various input signal combinations were tested within the ARIMA(X) 
models to determine the most e`ective training method. 

2.3.5 Missing data 

Machine Learning studies lack a clear consensus on the threshold for including samples 
with missing data (Dong & Peng, 2013; Oluwaseye Joel et al., 2022). Consensus is 
lacking, for it is not only the amount of missing data but also the randomness of the 
missing data being important. In CGM, a study by Smith et al. concluded that large 
blocks of CGM were the most common missing data pattern. They argue for a cut-o` of 
30% missing data per day, as this results in a representative time in range (TIR) (Smith et 
al., 2023). In this study, a cut-o` of 20% per day of recorded data was selected as it was 
observed during the setup of the study to yield good results in imputing the CGM.  

Imputation of the missing data was performed by first seasonally decomposing the CGM 
data and applying imputation based on interpolation after. Out of linear-, mean- and 
moving-average imputation, this imputation method visually resembled the original 
signal the best.  
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2.3.6 Training and testing of the models 

As a method for training and testing the models, time series cross-validation (CV) was 
applied. The model was trained and tested for PH = {30 min, 60 min, 120 min} for each 
step in the data samples. An example of how this works can be seen in Figure 2. The blue 
dots visualise the training data and the red dots the testing samples for PH = {30 min, 60 
min, 120 min}. The size of the training set varied from 30 minutes to 17 days of training 
data, depending on available data from individual patients.  

 
Figure 2 A visual representation of time series cross-validation where the blue dots resemble the training data and the 
red dot the test data. Source: https://robjhyndman.com/hyndsight/tscv/ 

2.3.7 ARIMA(X) model 

An ARIMA(X) model was used to model the BG time series. An ARIMA(X) model consists 
of four parts, the AR, I, MA, and X part. A BG time series in a stationary form as input, 
which means a constant mean and variation over time, yields the best results when 
using an ARIMA(X) model. So, the first part of an ARIMAX model is the I term, which 
stands for integration, which helps to ensure this stationary form if a BG time series is 
not stationary on itself. To make the BG time series stationary, di`erencing steps can be 
taken. A di`erencing step replaces a BG value by the di`erence between each value and 
the previous value. Parameter 𝑑 in an ARIMA(X) order representation shows the number 
of di`erencing steps needed to obtain a stationary BG time series.  

 Secondly, there is the AR part that only uses previous BG values to make a prediction. 
The AR part is defined by:  

𝑦′	! = 𝑐 +	(ϕ"𝑦!#" +
$

"

	𝜀!	 (1) 

Where 𝑦!%	denotes the 𝑑 times di`erenced BG time series at time 𝑡,  𝑦!#"  is a BG value at 
time 𝑡 − 𝑖, 𝜙"  is a parameter that describes how a previous BG value depends on the 
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prediction, 𝜀!  is a white noise term which represents prediction error, and 𝑐 is a 
constant. Depending on the amount of previous BG values that aid a BG prediction, 𝑝 is 
a parameter that denotes the amount of previous BG terms incorporated in the AR part 
of the model.  

Thirdly, the model includes an MA component that extends the model to incorporate 
previous prediction errors. Formula 1 extended with the MA part is defined by:  

𝑦!% = 𝑐 +	(ϕ"𝑦!#" +(θ&𝜀!#& +
'

&

$

"

	𝜀! (2) 

where 𝜀!#&  is a prediction error at time 𝑡 − 𝑗, 𝜃&  is a parameter that describes how a 
previous prediction error depends on the prediction. The number of previous prediction 
errors that aid a BG prediction is denoted by parameter 𝑞. Equation 2 represents an 
ARIMA model. The number of previous BG or prediction error values and the number 
di`erencing steps are often denoted as orders for an ARIMA model as (𝑝, 𝑑, 𝑞). 

Lastly, exogenous variables can be added, creating an ARIMAX model. Exogenous 
variables are variables that have a relation to the BG values, thus aiding prediction. 
Adding the X part to Formula 2, the ARIMAX model is defined by:  

𝑦!% = 𝑐 +	(ϕ"𝑦!#" +(θ&𝜀!#& +
'

&

$

"

	𝜀! +(β(𝑋(,!

*

(

(3) 

 

where 𝑋(,!  is the external input at time 𝑡, and 𝛽(is a parameter that relates the exogenous 
variable to the predicted BG value. The number of previous values from the exogenous 
variables that are included is denoted by 𝐾.  

An adaptive identification algorithms for (p,d,q) orders was employed for the ARIMA(X) 
model to account for time-varying data (Yang, 2019). First, an initial set of training data 
was selected. From this selected set the di`erencing step was determined for the CGM 
data by using the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test as a test for 
stationarity. Yang et al. use the augmented Dickey-Fuller (ADF) test. However, the KPSS 
test has a null hypothesis of stationarity. This means the test selected di`erences if 
there was enough evidence to invalidate the stationary assumption(Kwiatkowski et al., 
1992). ADF would select at least one di`erence unless the null hypothesis could be 
invalidated. If the p-value of the KPSS test was less than 0.05 for the original CGM 
series, parameter d is changed to 1. The process is repeated until stationarity for d = 
{0,…,2}. The best model fit on training data across various model orders is evaluated 
using the Aikake information criterion (AIC). The AIC balanced out the goodness of fit 
among the range of set parameters and incorporated a factor to avoid overfitting by also 
favoring a model with the smallest number of parameters. The model with the lowest 
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value for AIC is finally selected as the prediction model. A model is fitted to the data for 
orders p = {0,…,5} and q = {0,…,5}. These values were chosen as the maximum value in 
the analyzed literature for p was 30, and for q, 24. When tested among p = {0,…, 30} and 
q = {0,…,24}, for this dataset, orders did not exceed p = {0,…,5} and q = {0,…,5}, so the 
final order ranges were chosen as previously described. Coe`icients for every set of 
orders were estimated using the conditional sum of squares of residuals to find initial 
values and to refine these initial values; maximum likelihood was applied. After the 
process of fitting the ARIMA model, the exogenous variables were fitted. This model 
fitting process is done with the auto.arima() function in R.  

To evaluate the e`ectiveness of the adaptive algorithm on the dataset used in this study, 
an analysis of the changes in order over time was performed. The average changes in 
order over time for all participants were calculated. In addition, the share of the most 
occurring order was calculated.  

Following the model fitting process, a prediction is made for PH = {30 min, 60 min, 120 
min.} using the forecast() function in R. After this prediction, the training data was 
updated with the first sample of the last testing set, and a new model was fitted until the 
last data sample.  

2.3.7 Input signal naming 

To describe the di`erent input signals for di`erent models used in this study in an 
intuitive way that improves readability, a naming convention was developed. As 
introduced in the input signal section, CGM, insulin, and carbohydrate data from the 
DIABASE dataset were used for training and testing in di`erent combinations. The 
models were trained and tested on data during, before, and combined between before 
and during admission. Prefixes and su`ixes were developed based on the input signal 
and the time period of the data.  

The prefix indicated the time period of data used for training and testing. The prefixes are 
reported in Table 2.  

Table 2 Prefixes to indicate the time period from which the input signals used to make certain models stem 

Prefix  Time period 
Intra Trained and tested with input signals from 

during the admission period 
Pre Trained and tested with input signals from 

before the admission period 
Cross Trained with input signals from before and 

during admission and tested on only on 
data during admission 
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The su`ix indicated the set of input signals used to train the models. The su`ixes are 
reported in Table 3.  

Table 3 SuQixes to indicate the set of input signals used to make certain models  

SuXix Input signals used  
BG Only BG used as input signal into the 

ARIMA models 
Extended BG, insulin, and carbohydrates used as 

input signals into the ARIMAX models 
 

An example of a combination of input signals from a certain time to show how the 
naming convention works is Cross-Extended, which indicates a model being trained on 
BG, insulin, and carbohydrate data from before admission and further trained and tested 
with BG, insulin, and carbohydrate data during admission.  

2.3.8 Prediction horizon 

As mentioned, the PHs are 30 min, 60 min, and 120 min for this study. Literature showed 
that treatment starting 20-30 minutes before hypo or hyperglycemia, is e`ective in 
resolving these episodes. It was shown that a PH = 30 min. is a good trade-o` between 
limiting the error of the prediction outcome and e`ective prediction(Prendin et al., 
2021). A larger prediction horizon leads to a deterioration in the accuracy of the 
prediction (Oviedo et al., 2017). However, PH = 60 min. and 120 min. were tested 
because of their possible impact on a decision-support system. In model predictive 
control for example, the BG PH should have the same length as the active time of a 
possible treatment option, to adjust the treatment accordingly (Crecil Dias et al., 2020).  
Fast-acting insulin has an action time of approximately 120 minutes (Summary of 
Product Characteristics: NovoRapid, n.d.).  Which is why 120 min. was chosen as the 
largest prediction horizon.  

2.3.9 Residuals check 

The residuals of the model were checked on model assumptions. The residuals were 
checked on normal distribution and homoscedasticity. Normality was checked with a 
histogram and Shapiro-Wilk test; residuals were approximately normally distributed if 
p>0.05. Homoscedasticity was checked by plotting the residuals against the fitted 
values and doing a Ljung-box test; residuals were not significantly autocorrelated if p < 
0.05. All diagnostics were performed for the residuals of di`erent PH.  

2.3.10 Stability analysis 

All models were checked for asymptotic stability of the AR part. A stable ARIMA(X) 
model had all its poles and zeros inside of the unit circle. A short analysis was 
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performed on the di`erent ranges of poles and zeros that resulted from the adaptive 
identification algorithm.  

2.3.11 Performance metrics 

Model performance was evaluated on clinical relevance in an inpatient context. That 
meant the model was evaluated based on accuracy, safety, and usability.  

Model performance was compared to existing literature using the MAE and RMSE to 
assess accuracy.  

𝑀𝐴𝐸 =
1
𝑁(

|𝑦(𝑡) − 𝑦C(𝑡|𝑡 − 𝑃𝐻)|
+

!,-

(4) 

 

𝑅𝑀𝑆𝐸 = 	I
1
𝑁(

J𝑦(𝑡) − 𝑦C(𝑡|𝑡 − 𝑃𝐻)K.
+

!,-

(5) 

 

Where PH is the prediction horizon, N is the length of a patient data portion of the test 
set, 𝑦(𝑡)	is the current BG value and 𝑦C(𝑡|𝑡 − 𝑃𝐻)) is its PH-step-ahead prediction. While 
MAE represents a general picture of the accuracy of a model’s predictions, RMSE 
penalizes large errors.  

To assess the MAE and RMSE a literature benchmark was made. This benchmark 
consisted of the lowest and highest MAE and RMSE values from the studies reported in 
Table 1. Each prediction horizon considered in this study had its own benchmark, as can 
be seen in Table 4. An MAE & RMSE value was higher, within, or lower compared to the 
benchmark. In the final assessment, di`erent contexts from the literature were 
considered. 

Table 4 Literature benchmarks to make a comparison between the accuracy of this study's models and those from 
previous research.  

Literature 
benchmark per 
metric 

PH = 30 min.  PH = 60 min.  PH = 120 min.  

MAE 0.64 – 0.86 mmol/l 1.57 mmol/l - 
RMSE 0.76 - 1.52 mmol/l 1.30 – 2.14 mmol/l 1.64 – 1.95 mmol/l 

 

Safety was analyzed in two ways. Firstly, it was analyzed using the mean absolute 
percentage error (MAPE).  
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𝑀𝐴𝑃𝐸 = 	
1
𝑁(M

𝑦(𝑡) − 𝑦C(𝑡|𝑡 − 𝑃𝐻)
𝑦(𝑡) M ∗ 100

+

!,-

	 (6) 

This study considers a MAPE of 10% or lower as a safety criterion. This metric stems 
from CGM-sensor safety assessment1. 

To further test safety, Clarke error grid analysis (CEGA) was used as a second analysis. 
CEGA was originally developed to describe the accuracy of self-monitoring BG systems 
considering clinical relevance (Clarke et al., n.d.) The CEG consists of five regions, each 
having its own meaning: 

- Region A: Predictions within 20% of reference 
- Region B: Will not lead to inappropriate treatment 
- Region C: Leading to unnecessary treatment 
- Region D: Possibly dangerous failure to predict hypoglycemia or hyperglycemia 
- Region E: Confuse treatment of hypoglycemia for hyperglycemia and the other way 

around 

For a model to comply with the CEGA safety criterion, all predictions must fall into 
regions A & B of the CEG. Both the MAPE and CEGA safety criteria were assessed per PH.  

For usability, the amount of input data needed for an accurate prediction, the minimal 
amount of data needed for prediction, and the computational time for a model to train 
and forecast were used as assessment. In an inpatient context, if patients only receive 
CGM during admission, it is important for the model to perform well with little data 
available. To assess this, the average RMSE across all PH of the model was analyzed for 
1 day to 6 days of training data. An amount of training data was su`icient and thus useful 
if the RMSE at least fell within the average of the literature benchmark for RMSE across 
all PHs. Only RMSE was compared to the benchmark, as not enough MAE values from 
the literature were available to create a meaningful average. The averaged RMSE 
benchmark for this comparison was between 1.23 – 1.87 mmol/l. In addition, 
computational time analysis was performed. Computational time was defined as the 
time it took to pre-processing data, train a model, and predict BG values. Computational 

 
1 In research on CGM, mean absolute relative di<erence (MARD) is used to see whether the CGM sensor is 
feasible for insulin treatment decisions.  
 

𝑀𝐴𝑅𝐷 =	
1
𝑁)*

𝐶𝐺𝑀! − 𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛!
𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛!

* ∗ 100	
"

!#$

(7)	

 
A MARD of 10% is said to be the minimal accuracy a sensor should have. Further accuracy improvements 
do not contribute to better glycemic outcomes (Kovatchev et al., 2015). MAPE has the same mathematical 
description as MARD, the only di<erence being that a reference value is tested against a predicted value 
instead of sensor values. In the context of this study, the model had the purpose of leading to feasible 
insulin treatment decisions. Therefore, a MAPE of 10% or lower is considered as a safety criterion in this 
study. 
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time was tracked for di`erent amounts of training data, from a single day to seven days. 
For this analysis, the model was trained on cross-extended data. These models 
contained the most variables and data amounts and are thus assumed to be the most 
complex and require the most computational time. Computational time was assessed 
on expert experience.  

2.3.12 Statistical analysis 

To give an answer to the first sub question, statistical analysis was performed to see 
whether the combination of input signals had a significant e`ect on the accuracy and 
safety metrics for all the PHs. First, a linear mixed e`ects model was made for every 
separate metric and PH. The fixed e`ect in the models was the input signal 
combination, and the individual patient admission was included as a random e`ect to 
take into account the variation between admission periods and overlapping admission 
periods in di`erent input signal combination groups. ANOVA was performed to test the 
variance attributable to the fixed e`ect, input combination. If the input signal 
combination had a significant e`ect on the metric, post hoc tests were performed to see 
which pairwise di`erences were significant. Significance was determined at p < 0.05. 

2.4 Results 
2.4.1 Patient & admission characteristics 

This study contained a group of 15 patients (mean age 56.33 years, n=10  female). 
Characteristics of all patients are reported in Table 5.  

Multiple patients had more than one admission period, which is why admission 
characteristics are reported in a separate table. As models were trained and tested on 
di`erent input signals, BG and extended, from di`erent time periods, intra, pre and 
cross-admission, the amount of admission data that was available di`ered. Baseline 
admission characteristics were split to show characteristics based on data availability. 
Characteristics for BG are reported in Table 6.  Extended characteristics are reported in 
Table 7. 

Table 5 Baseline table for patient characteristics 

Characteristic Cases (n = 15) Missing values 
Female 10 (66.7%) 0 
Age, Years, (mean [SD]) 56.33 [15.9] 0 
Type Diabetes  10 
1 3 (20%)  
2 2 (13.3%)  
Unknown 10 (66.7%)  
Type sensor  0 
Freestyle LibreLink 10 (66.7%)  
Medtronic 5 (33.3)  
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HbA1c, mmol/mol, (mean 
[SD]) 

61.35 [8.95] 3 

BMI, kg/m2, (mean [SD]) 28.58 [6.22] 3 
BSA, m2, (mean [SD]) 1.89 [0.2] 8 

 

Table 6 Baseline table admission characteristics for patients with only CGM data. *One patient can have multiple 
admission periods and therefore multiple diQerent admission specialisms.  

Characteristic Admission 
Cases (n = 19) 

Pre-admission 
Cases (n = 27) 

Data duration, Days, 
(mean[SD]) 

2.5 [2.73] 7 [0] 

Admission specialism (%) *    
Cardiology 1 (5.3%) - 
Surgery 6 (31.6%) - 
Gynaecology 3 (15.8%) - 
Internal Medicine 5 (26.3%) - 
Gastro-intestinal-liver 2 (10.5%) - 
Orthopaedics  1 (5.3%) - 
Urology 1 (5.3%) - 
TIR, %, (mean[SD]) 62 [18] 67 [18] 
TAR, %, (mean[SD]) 34 [19] 30 [18] 
TBR, %, (mean[SD]) 4 [5] 3 [3] 
Missing glucose values, %, 
(mean[SD]) 

  

Total 2.56 [3.56] 5.49 [4.92] 
Between 6:00-11:00 0.73 [2.58] 2.96 [4.22] 
Between 11:00-16:00 1.35 [3.27] 3.20 [4.27] 
Between 16:00-0:00 6.44 [11.44] 7.49 [7.65] 
Between 0:00-6:00 1.03 [1.71] 6.91 [9.81] 

 

Table 7 Baseline table admissions for patients with CGM, insulin, and carbohydrate data.  

Characteristic Admission 
Cases (n = 4) 

Pre-admission 
Cases (n = 5) 

Data duration, Days, 
(mean[SD]) 

1.26 [0.28] 7 [0] 

Admission specialism (%)   
Surgery 1 (25%) - 
Gynaecology 1 (25%) - 
Orthopaedics  1 (25%) - 
Urology 1 (25%) - 
TIR, %, (mean[SD]) 67 [20] 77 [9] 
TAR, %, (mean[SD]) 33 [20] 20 [8] 
TBR, %, (mean[SD]) 1 [1] 3 [3] 
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Mean TDD insulin, unit, 
(mean[SD]) 

79.34 [58.62] 55.60 [28.01] 

Mean basal insulin/day, unit, 
(mean[SD]) 

32.87 [30.02] 16.13 [4.92] 

Mean bolus insulin/day, unit, 
(mean[SD]) 

46.47 [29.35] 39.47 [24.45] 

Mean carbohydrates/day, 
grams, (mean[SD]) 

129.56 [73.71] 163 [86.83] 

Missing glucose values, %, 
(mean[SD]) 

  

Total 0 [0] 3.08 [1.64] 
Between 6:00-11:00 0 [0] 2.72 [3.31] 
Between 11:00-16:00 0 [0] 5.19 [6.05] 
Between 16:00-0:00 0 [0] 4.05 [2.63] 
Between 0:00-6:00 0 [0] 0.32 [0.46] 

 

2.4.2 Data selection 

Results from the same models with di`erent sensors as input were compared during the 
study setup. Both sensors with di`erent sample frequencies show no significantly 
di`erent MAE over all PH (p = 0.22). No resampling was performed on either of these 
CGM signals.  

Data availability was variable between patients in the di`erent groups of input signals. 
For example, in the patient group having intra-BG data, some patients had admission 
periods of 1 day ranging to 11 days. Although di`erent amounts of data available in 
di`erent groups make comparison less fair, it was chosen to include as much data as 
possible due to the small group of patients, especially during admission. Di`erent data 
availability in days is reported in Table 8.  

Table 8 DiQerent data availability in the diQerent input signal groups 

Input 
signals 

Intra-BG Intra-
extended 

Pre-BG Pre-
extended 

Cross-BG Cross-
extended 

Available 
data, 
days 

1-11 1-1.6 6-7 6-7 6-17 6-7.6 

 

2.4.3 Adaptive Identification algorithm 

While some patients had more consistent orders, others had a lot of variation. For the 
models trained on intra-BG data, for example, for all patients, the model order changed 
on average 15.26 (±4.3) times. The most frequently used model order within each 
subject accounted for an average of 41.69% (±13.99) of all instances. The distributions 
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of di`erent p, d, and q orders of all patients in the intra-BG group are visualized in Figure 
3.  

 
 

Distribution of p,d,q orders for all admission trained on BG data during admission 

   
Figure 3 Distribution of p,d,q and q orders to display the variability of the orders and therefore the validation of the 
adaptive identification algorithm 

An example of the results obtained by applying the adaptive identification can be seen in 
Figure 4. Here, results from the best-performing patient admission with the best-
performing input signals, Cross-BG, are visualised. This patient admission is numbered 
patient admission 1.  

2.4.4 Model residuals 

Because of the high number of models and PH combinations, two key examples are 
reported, namely the residual diagnostics for the best and worst-performing patient 
admission-specific model for the input signals with the overall highest accuracy:  Cross-
BG. The best-performing patient admission-specific model for Cross-BG was patient 
admission 1. The worst-performing patient admission is patient admission 2. For the 
best-performing admission period, none of the residuals were approximately normally 
distributed with p <0.05 for all PH. All residuals were not significantly autocorrelated 
with all p < 0.05. Histograms and residual vs. fitted plots for the best-performing 
admission are reported in Figure 5. For the worst-performing admission period, only for 
PH = 60 min. the residuals were approximately normally distributed with p >0.05 for all 
PH. All residuals were not significantly autocorrelated with p-values < 0.05 for all PH. 
Histograms and residual vs. fitted plots for the worst-performing admission are reported 
in Figure 6. 
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Actual vs. Predicted for patient admission 1 

  

 

 

Figure 4 Predictions for a single patient for PH = 30 min, 60 min, and 120 min. The blue line is the reference signal, the 
red line is the predictions at PH = 30 min, the green line is the predictions with PH = 60 min, the purple line is the 
predictions at PH = 120 min, the light blue lines are the 95% confidence intervals, and black dots indicate the 10% 
biggest errors. On the right bottom the pole zero diagram for this patient is visualized with poles (blue cross) and zeros 
(green dots) for all identified models. The unit circle (red dotted line) is also visualized in the pole zero diagram 
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Residual diagnostics plots for patient  admission 1 

  

  

  
Figure 5 Histograms (left columns) and Fitted vs. Residual (right columns) plots for the best perfoming patient for the 
models trained on cross-BG. PH in minutes. 
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Residual diagnostic plots for patient admission 2 

  

  

  
Figure 6 Histograms (left column) and Fitted vs. Residual (right column) plots for the worst performing patient for the 
models trained on BG pre-admission and during admission. PH in minutes. 
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2.4.5 Stability analysis 

The asymptotic stability of the models was again tested for the best and worst-
performing patient admissions with the cross-BG input signals as key examples.  For 
patient admission 1, 139 models were made. This corresponds to the amount of data 
points available during admission. 138 of those models had the same (p,d,q) order, 
namely (2,0,1). The right side of Figure 7 shows that the best-performing admission 
period, patient admission 1, only had real poles and zeros. All poles and zeros from 
these models were analyzed. The number of real poles varied between 0 and 2. The 
maximum real pole value for this admission period was 6.14. The minimum real pole 
value was -0.79. The number of real zeros varied between 0 and 1. The maximum real 
zero value was -1.42. The minimum real zero value was -1.44. Because all models 
contained a pole outside of the unit circle, all models were unstable.  

The left side of Figure 7 shows the worst-performing admission period, patient 
admission 2.  For this admission period, 110 models were created, which correspond to 
the amount of data points available during the admission. (p,d,q) order varied in this 
patient admission, with the most frequent order being (3,1,5), which occurred 94 times. 
These models had real and complex poles and zeros.  The number of real and complex 
poles varied between 0 and 2. The maximum real pole value for this admission period 
was 147.30, and the maximum complex pole magnitude was 1.09. The minimum real 
pole value was -168.28, and the minimum complex pole magnitude was 0.88. The 
number of real zeros varied between 0 and 2, and the number of complex zeros varied 
between 0 and 4. The maximum real zero value was 1.95, and the maximum magnitude 
of the complex zeros was 1.33. The minimum real zero value was -232.34, and the 
minimum complex zero magnitude was 1.02. Although some poles of the worst-
performing admission model were within the unit circle, at least one pole was always 
outside, rendering the model unstable. 
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Poles and Zeros of all models over time 
Patient admission 1 Patient admission 2 

Zoomed out 

  
Normal zoom 

  
Zoomed in on unit circle 

  
Figure 7 Poles and Zeros plot for best performing (left) and worst performing (right) patient admission with models 
trained on cross-BG data. On the top are figures zoomed out to contain all poles and zeros, including some 
unmeaningful outliers. In the middle is a medium zoom containing the largest part of all poles and zeros. On the 
bottom are two zoomed-in figures to see whether poles and zeros fall inside, on, or outside the unit circle. In the 
zoomed-in plots, only one side of the complex poles and zeros are shown as the other side contains complex 
conjugates. 
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2.4.6 Accuracy 

The MAE provided by the adaptive identification algorithm, when trained on cross-BG 
data, showed the best average result of all PH. The MAE were, respectively, 0.65 (±0.21), 
1.17 (±0.23), and 1.88 (±0.24) mmol/l for PH = 30 min, 60 min, and 120 min. For PH = 30 
min., the result fell in the literature benchmark; for PH = 60 min. the result was below the 
literature benchmark, and for MAE, there was no benchmark for PH = 120. These results 
were acquired from seven admission instances. These seven instances resulted from 
the criteria set for data needed before and during admission. These seven admissions 
had at least 6 days of data before admission and at least 1 day during admission. All 
MAE results for all input signal combinations are reported in Table 9.  

The RMSE provided by the adaptive identification algorithm showed the best average 
result of all PH on the cross-BG data. The RMSE was 0.87 (±0.27), 1.52 (±0.27), and 2.41 
(±0.25) mmol/l for PH = 30 min, 60 min, 120 min respectively. For PH = 30 min. and PH = 
60 min., the result fell within the literature benchmark, for PH = 120 min., the results 
were above the literature benchmark. RMSE results for all input signal combinations are 
reported in Table 10.  

Table 9 MAE values from ARIMA(X) with adaptive identification algorithm for all PH, for all input signal combinations. 
The data that resulted in the best average result is highlighted. 

MAE, mmol/l, (mean[SD]) 
  

Input data PH=30 
min 

PH=60 
min 

PH=120 
min 

Total n 

Intra-BG 0.67 
[0.19] 

1.21 
[0.31] 

2.10 
[0.56] 

1.26 
[0.31] 

19 

Intra-extended 0.71 
[0.07] 

1.23 
[0.16] 

2.02 
[0.34] 

1.21 
[0.15] 

4 

Pre-BG 0.78 
[0.20] 

1.42 
[0.41] 

2.22 
[0.75] 

1.42 
[0.42] 

27 

Pre-extended 1.13 
[0.52] 

1.65 
[0.62] 

2.32 
[0.83] 

1.61 
[0.59] 

5 

Cross-BG 0.65 
[0.21] 

1.17 
[0.23] 

1.88 
[0.24] 

1.19 
[0.18] 

7 

Cross-extended 1.61 
[0.72] 

1.85 
[0.38] 

2.23 
[0.47] 

1.85 
[0.33] 

3 

 

Table 10 RMSE values from ARIMA(X) with adaptive identification algorithm for all PH, for all input signal combinations. 
The data that resulted in the best average result is highlighted. 

RMSE, mmol/l, (mean[SD]) 
  

Input data PH=30 
min 

PH=60 
min 

PH=120 
min 

Total n 

Intra-BG 0.92 
[0.27] 

1.62 
[0.43] 

2.76 
[0.71] 

1.39 
[0.34] 

19 



 31 

Intra-extended 0.99 
[0.07] 

1.62 
[0.19] 

2.46 
[0.42] 

1.34 
[0.18] 

4 

Pre-BG 1.08 
[0.29] 

1.91 
[0.55] 

2.93 
[0.97] 

1.55 
[0.48] 

27 

Pre-extended 1.63 
[0.74] 

2.23 
[0.79] 

3.12 
[1.00] 

1.69 
[0.59] 

5 

Cross-BG 0.87 
[0.27] 

1.52 
[0.27] 

2.41 
[0.25] 

1.30 
[0.19] 

7 

Cross-extended 1.95 
[0.86] 

2.22 
[0.49] 

2.66 
[0.58] 

1.91 
[0.28] 

3 

 

In almost all PHs, except PH = 120 min. for MAE, the combination of input signals had a 
significant e`ect on MAE and RMSE. Table 11 summarises the outcomes of ANOVA and 
post hoc analysis for MAE and RMSE.  

Table 11 Outcomes of statistical analysis. Per metric, per PH, an F-value and p-value from ANOVA on the fixed eQects 
(input signal combination) are given. Post hoc pairwise analysis is reported where the first reported input combination 
is x lower than the second reported input combination with a corresponding p-value.  

Metric PH 
(min.) 

F-value  p-value 
(p<0.05) 

Significant pairwise comparisons (average 
diXerence in mean metric value, mmol/l, 
corresponding p-value) 

MAE 
 

30 12.47 6.21e-8 Cross-BG vs. Cross-extended (-0.94, p<0.0001) 
Cross-BG vs. Pre-extended (-0.48, p<0.0001) 
Intra-BG vs. Pre-extended (-0.44, p=0.002) 
Intra-extended vs. Pre-extended (-0.43, p=0.04) 
Pre-BG vs. Pre-extended (-0.33, p=0.02) 

60 6.19 0.0002 Cross-BG vs. Cross-extended (-0.61, p=0.003) 
Cross-BG vs. Pre-BG (-0.28, p=0.007) 
Cross-BG vs. Pre-extended (-0.45, p=0.008) 

120 No significant e`ect 
RMSE 30 11.19 3.17e-7 Cross-BG vs. Cross-extended (-1.04, p<0.0001) 

Cross-BG vs. Pre-extended (-0.74, p<0.0001) 
Intra-BG vs. Pre-extended (-0.66, p=0.0002) 
Intra-extended vs. Pre-extended (-0.65, p=0.01) 
Pre-BG vs. Pre-extended (-0.5, p=0.005) 

60 6.17 0.0002 Cross-BG vs. Cross-extended (-0.6, p=0.04) 
Cross-BG vs. Pre-BG (-0.4, p=0.002) 
Cross-BG vs. Pre-extended (-0.66, p=0.002) 
Intra-BG vs. Pre-extended (-0.49, p=0.04) 

120  3.65 0.008 Cross-BG vs. Intra-BG (-0.5, p=0.03) 
Cross-BG vs. Pre-BG (-0.53, p=0.02) 

 

2.4.7 Safety 

Certain combinations between input signals and PH meet the safety criteria. Only the 
intra-extended data almost fulfilled the CEGA criterion for safety set in this study for all 
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PHs. These reported a total of 100%, 99.87%, and 99.42% in the A+B zones of the CEG 
for PH = 30 min, 60 min, 120 min respectively. The remaining predictions were in zone C. 
These results are visualized in Figure 8. All CEGA outcomes for di`erent input signal 
combinations are reported in Table 12. 

No input signal combination satisfies the set threshold for all PH when compared to the 
MAPE threshold of 10%. For PH = 30 min., the models trained and tested on intra-BG, 
pre-BG, cross-BG, and intra-extended data were compliant with the MAPE safety 
criterion. All MAPE values for di`erent input signal combinations are reported in Table 
13.  

 

 

Clarke error grid’s for Intra-extended data 
PH = 30 min. PH = 60 min. PH = 120 min. 

   
Figure 8 Clarke error grid results for intra-extended data for PH = {30 min, 60 min, 120 min}. 

Table 12 CEGA results from ARIMA(X) with adaptive identification algorithm for all PH, for all input signal combinations 

Predictions in CEG zones, %, (mean[SD]) 
Input data PH, min A B C D E 
Intra-BG 30 92.75 

[5.19] 
7.19 [5.15] 0 0.06 

[0.22] 
0 

60 78.45 
[11.11] 

20.56 
[10.6] 

0.43 
[1.11] 

0.54 
[1.16] 

0.02 
[0.07] 

120 56.11 
[12.45] 

40.19 
[11.19] 

2.57 
[2.6] 

0.85 
[1.92] 

0.28 
[0.71] 

Intra-
extended 

30 91.6 [2.93] 8.4 [2.93] 0 0 0 
60 75.62 

[10.28] 
24.27 
[10.22] 

0.11 
[0.22] 

0 0 

120 60.49 
[11.05] 

48.93 
[10.22] 

0.58 
[0.87] 

0 0 

Pre-BG 30 89.34 
[5.42] 

10.41 
[5.16] 

0.03 
[0.08] 

0.21 
[0.45] 

0.01 
[0.03] 

60 71.44 [9.3] 27.37 
[8.45] 

0.57 
[0.78] 

0.58 
[0.95] 

0.03 
[0.09] 
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120 52.52 [9.7] 43.24 
[7.62] 

2.82 
[3.1] 

0.96 
[1.15] 

0.47 
[0.66] 

Pre-extended 30 78.89 
[10.38] 

19.56 
[8.55] 

0.26 
[0.37] 

1.25 
[1.9] 

0.04 
[0.07] 

60 64.81 
[11.21] 

33.19 
[9.06] 

0.89 
[1.22] 

1.09 
[1.63] 

0.03 
[0.07] 

120 51.44 
[11.73] 

43.7 [8.44] 3.63 
[2.64] 

0.85 
[1.25] 

0.38 
[0.54] 

Cross-BG 30 94.01 
[5.18] 

5.74 [4.82] 0.1 [0.5] 0.13 
[0.61] 

0.02 
[0.12] 

60 80.8 
[13.44] 

18.1 [11.9] 0.1 
[0.51] 

0.93 
[3.37] 

0.07 
[0.38] 

120 62.58 
[16.19] 

34.65 
[14.34] 

1.24 
[2.63] 

1.39 
[3.25] 

0.14 
[0.45] 

Cross-
extended 

30 75.38 
[22.11] 

22.72 
[19.68] 

0 1.9 
[4.25] 

0 

60 67.83 
[18.64] 

30.7 
[17.27] 

0 1.47 
[3.29] 

0 

120 56.34 
[16.04] 

42.57 
[15.22] 

0.26 
[0.58] 

0.84 
[1.87] 

0 

 

Table 13 MAPE results from ARIMA(X) with adaptive identification algorithm for all PH, for all input signal 
combinations. The data that resulted in the best average result is highlighted. 

MAPE, %, (mean[SD]) 
 

Input data PH = 30 min  PH = 60 min PH = 120 
min 

Intra-BG 8.18[3.05] 15.08[5.51] 26.17[9.93] 
Intra-extended 8.73[1.56] 15.41[3.11] 25.11[5.16] 
Pre-BG 9.84 [2.82] 17.78 [4.99] 27.17 [7.80] 
Pre-extended 14.57 [5.42] 21.13 [6.31] 29.16 [9.53] 
Cross-BG 7.66 [2.96] 14.03 [5.61] 22.98 [9.53] 
Cross-extended 13.36 [6.48] 18.50 [4.64] 26.26 [9.60] 

 

For percentages in A and B zones in the CEG, the input signal combination had a 
significant e`ect with PH = 30 min. For MAPE, with PH = 30 min. and 60 min., input 
combination has a significant e`ect. Table 14 summarises the outcomes of ANOVA and 
post hoc analysis for MAE and RMSE. 
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Table 14 Outcomes of statistical analysis. Per metric, per PH, an F-value and p-value from ANOVA on the fixed eQects 
(input signal combination) are given. Post hoc pairwise analysis is reported where the first reported input combination 
is x lower than the second reported input combination with a corresponding p-value. 

Metric PH 
(min.) 

F-value  p-value 
(p<0.05) 

Significant pairwise comparisons (average 
diXerence in mean metric value, %, 
corresponding p-value) 

CEGA 
% in 
A+B 
zones 
 

30 3.47 0.007 Cross-extended vs. Intra-BG (-1.96, p=0.02) 
Cross-extended vs. Pre-BG (-1.79 p=0.03) 

60 No significant e`ect 
120 No significant e`ect 

MAPE 30 8.7 3.09e-6 Cross-BG vs. Cross-extended (-5.65, p=0.001) 
Cross-BG vs. Pre-BG (-2.13, p=0.04) 
Cross-BG vs. Pre-extended (-6.51, p=0.001) 
Intra-BG vs. Pre-extended (-6.33, p=0.0001) 
Intra-extended vs. Pre-extended (-6.56, p=0.005) 
Pre-BG vs. Pre-extended (-4.39, p=0.01) 

60 4.89 0.0009 Cross-BG vs. Pre-BG (-3.71, p=0.004) 
Cross-BG vs. Pre-extended (-6.03, p=0.01) 

120  No significant e`ect 
 

2.4.8 Usability 

In terms of usability, the proposed ARIMA(X) model with an adaptive identification 
algorithm fell within the usability benchmark for all amount of training days that were 
analyzed. When applying di`erent amounts of training data, no trend could be observed 
in the accuracy metrics averaged over all PH. Both the mean and standard deviation of 
MAE and RMSE seem to have no trend. The error values are reported in Table 15. 

The ARIMA(X) model, utilizing an adaptive identification algorithm, can make predictions 
for a given PH when the training data length corresponds to the duration of that PH, 
provided that the model is trained solely on BG data. For example, the model only needs 
30 minutes of data when making a first prediction for PH = 30 min.  

The largest computational time was 0.001 seconds for one day of training data on the 
glucose, insulin, and carbohydrate data from pre-admission and admission. The 
computational time was approximately constant with an increasing number of training 
days.  
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Table 15 Accuracy metrics for diQerent amounts of training data for all models trained Cross-BG and Cross-extended 
data. The MAE and RMSE are averaged over all PH to give a representative metric for all PH.  

 
Cross-BG, 
(n=7), mmol/l, 
(mean[SD]) 

Cross-extended, 
(n=3), mmol/l, 
(mean[SD]) 

Amount of training data, 
Days 

MAE RMSE MAE RMSE 

1 1.22[0.55] 1.59[0.66] 1.56[0.57] 1.95[0.61] 
2 1.22[0.54] 1.58[0.66] 1.55 [0.62] 1.99[0.72] 
3 1.21[0.53] 1.56[0.65] 1.62[0.56] 2.05[0.57] 
4 1.21[0.54] 1.57[0.66] 1.53 [0.49] 1.94[0.51] 
5 1.23[0.55] 1.58[0.67] 1.64[0.36] 2.04[0.36] 
6 1.24[0.56] 1.59[0.68] 1.46[0.54] 1.86[0.61] 

2.5 Discussion 
This research was focused on assessing a clinically relevant BG prediction by developing 
di`erent patient-specific ARIMA(X) models in an adaptive identification framework for 
persons with diabetes in non-ICU hospital wards. This was done by assessing the 
performance of the predictions of the developed models on accuracy, safety, and 
usability. Cross-BG data showed the most promising predictions that satisfied the 
di`erent criteria and benchmarks of clinical relevance across various PHs. The 
satisfaction of the criteria and benchmarks for clinical relevance depended heavily on 
the di`erent PHs. The sub-questions of this study are considered to provide detail to 
these results.  

The first sub-question from this study was: which input signals result in the most 
clinically relevant BG prediction model for PH = 30 min, 60 min, and 120 min? Regarding 
MAE and RMSE, the combination of input signals had a significant e`ect in almost all 
PHs, except PH = 120 min. for MAE.  Regarding the percentage in A+B zones in the CEG, 
the input signal combination had a significant e`ect on the outcome with PH = 30 min. 
For MAPE, with PH = 30 min. and 60 min., the input combination has a significant e`ect 
on the outcome. Cross-BG data showed the most promising combination predictions 
that satisfied the di`erent criteria and benchmarks of clinical relevance across various 
PHs, all benchmarks and criteria are summarised in Table 16. Table 17 illustrates the 
compliance of the models trained on cross-BG data. In this table, compliance with the 
criteria and benchmarks is indicated with colors. Green stands for below a criterion or 
benchmark, indicating su`icient performance; orange indicates within the benchmark, 
suggesting comparable performance to existing literature; and red means above the 
criteria or benchmarks, indicating insu`icient performance. 
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Table 16 Summary of literature benchmarks and criteria for clinical relevance assessment 

Literature 
benchmark or 
criterion per 
metric 

PH = 30 min.  PH = 60 min.  PH = 120 min.  

Accuracy MAE 0.64 – 0.86 mmol/l 1.57 mmol/l - 
Accuracy RMSE 0.76 - 1.52 mmol/l 1.30 – 2.14 mmol/l 1.64 – 1.95 mmol/l 
Safety MAPE  <10% <10% <10% 
Safety CEGA A+B zones A+B zones A+B zones 
Usability training Average RMSE across all PH inside: 1.23 – 1.87 mmol/l 
Usability 
computational 

Considered usable based on expert opinion 

 

Table 17 Summary of compliance with set benchmarks or criteria for the models trained on cross-BG data. Green 
stands for below a criterion or benchmark, which indicates suQicient performance; orange indicates within the 
benchmark, suggesting comparable performance to existing literature; and red means above the criteria or 
benchmarks, indicating insuQicient performance. 

Criteria/Benchmark PH = 30 min. PH = 60 min. PH = 120 min.  
Accuracy MAE & 
RMSE 

		MAE: 0.65 mmol/l 
RMSE: 0.87 mmol/l 

MAE: 1.17 mmol/l 
RMSE: 1.52 mmol/l 

MAE: 1.88 mmol/l 
RMSE: 2.41 mmol/l 

Safety CEGA 99.75% in A+B 98.9% in A+B 97.23% in A+B 
Safety MAPE 7.66% 14.03% 22.98% 
Usability training MAE 1.22 mmol/l & RMSE 1.59 mmol/l with 1 day training data 
Usability 
computational 

0.001 seconds of computational time  

  

Models with exclusively BG as an input signal perform better in general than those made 
with extended input signals, although not significant in all pairwise combinations. To 
obtain the input signal for carbohydrates, the insulin pump records carbohydrate intake 
through the manual entry of carbohydrate amounts by the user. It is hypothesized that a 
stressful hospital admission can lead to a more di`icult scenario for the patients to 
handle their insulin pump settings and actively count their carbohydrates (Fortin et al., 
2017; Pérez et al., 2020b). This would reduce the quality of the carbohydrate input 
signals, which could a`ect model performance when this is used as training data. From 
research by Sawaryn, it is known that carbohydrates can have a significant influence on 
BG prediction in patients-specific ARMAX models if perturbations are su`iciently high 
(Sawaryn, 2020). This e`ect is most pronounced in PH = 30 min. and 60 min, and for 
perturbations of 70 and 140 grams of carbohydrates. In addition, analysis of the baseline 
tables revealed that the di`erences in TIR, time above range (TAR), and time below range 
(TBR) metrics between pre-admission and during admission were notably smaller in the 
group with only BG data as opposed to the group with extended input signals. This 
di`erence in BG ranges before and during admission can cause more randomness in BG 
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data patterns for persons with cross-extended data, which can lead to more erroneous 
predictions(Hyndman, 2007).   

For pre-extended, cross-extended, and PH = 60 min. and 120 min. the developed 
models do not predict BG in a clinically relevant way. This is largely due to the constraint 
that the MAPE must be smaller than 10%. From the performed literature research, no 
study was found that had a similar metric. The metric is assumed to be important in this 
research as a MAPE of more than 10% can lead to a significant increase in hyper- and 
hypoglycemic events (Kovatchev et al., 2015). The occurrence of these events is exactly 
what this study tries to prevent in an in-hospital scenario.  

The second sub-question from this study was: what amount of training data results in 
the most clinically relevant BG prediction model for PH = 30 min, 60 min, and 120 min? 
Cross-BG and Cross-extended data showed that the accuracy of the predictions 
averaged across all PHs stays approximately constant with one to six days of training 
data, and the accuracy metrics fell within the literature benchmark. This means that for 
both combinations of input signals, one day of training results in su`icient accuracy. 
Although the averaged accuracy metrics and literature benchmarks provide a 
convenient summary of usability performance across PHs, this approach may obscure 
variations specific to individual PH. The interpretation of these results should account 
for this potential loss of information inherent to averaging these metrics and the 
benchmark. This data is useful to determine the usability of the proposed model. In a 
hospital admission scenario, this means that one day of training data is su`icient to 
start making predictions. This implies that the model can be used for short and long 
admission stays. In addition, if one day of BG data is available before admission and the 
model is trained using that data, the predictions can start right away during admission.  

To reduce the calculation time of each iteration, a sliding training data window can be 
imposed. This sliding window would obviate the need for repetitive model training with 
all available data(Yang, 2019). As MAE and RMSE are constant for one to six training days 
in this study, a window of one day can be imposed. This follows the method for window 
selection from Yang et al. (Yang, 2019). The window of one day approximately 
corresponds with the findings by Yang et al. as they impose a window length of 20 hours.  

The last sub-question focuses on what the added value is of a patient-specific adaptive 
identification approach for BG prediction with ARIMA(X) models. Due to high patient 
inter-variability in BG trends in persons with diabetes, a patient-specific modeling 
approach was chosen in this study (Laguna et al., 2014). Mohebbi et al. used a 
population-based long-short-term network to predict BG with the PH = 30 min. and 60 
min. (Mohebbi et al., 2020). Mohebbi et al. assessed the predictions based on MAE and 
RMSE and compared them to patient-specific ARIMA models. When the population-
based models were tested against patient-specific ARIMA models on the same dataset, 
the population-based model outperformed the patient-specific ARIMA model with 7 
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days of training data. With little training data, the patient-specific ARIMA model 
outperforms the population-based model. The models in this study outperform the 
population-based models from Mohebbi et al. However, the data context is di`erent. In 
this study, the limited data availability makes the patient-specific ARIMA approach 
favorable. One benefit of population-based models is that they do not require training for 
each individual patient. Consequently, models can be used for patients who have not 
previously had a CGM sensor before admission without needing training on their specific 
data.  

In individuals with diabetes, not only is there variation between patients, but also within 
the same patient. To respect the intra-patient variability, resulting in time-varying BG 
dynamics and sometimes non-stationarity, an adaptive identification algorithm to 
adaptively determine (p,d,q) order and parameters of the ARIMA(X) models was 
implemented (Boiroux et al., 2017; Yang, 2019). This method is justified by the order 
(p,d,q), which often changes over time in this study. However, it should be noted that this 
approach can lead to overfitting. This overfitting can lead to unstable models in 
scenarios where sudden large changes happen in the BG signal. If this large change is an 
outlier or noisy data, this can lead to a failure of the model to grasp the real underlying 
dynamics, which in turn leads to inaccurate and possibly unsafe predictions. In this 
study, the best and worst-performing patient admission periods showed only unstable 
models, which could be a sign of this overfitting. To counteract this overfitting, the AIC 
criterion is applied to all newly formed models.  

The instability of the models can influence BG predictions with a larger PH. PH = 30 min. 
outperforms PH = 60 min. and 120 min. in this study. This could be because of the 
recursive nature of forecasting with ARIMA(X) models. Prediction errors are 
compounded by increasing PH, which causes less reliable predictions (Selim et al., 
2020). Instability does not have to be a problem. A BG signal is bounded in a certain 
physiological range due to the treatment of high and low BG values, which decreases the 
exploding e`ect an unstable model can have on the predictions. In addition, the short-
term PH with a new prediction at every new time point in this study ensures that the 
e`ect of error propagation is limited. In a future study, ARIMA(X) models without this 
adaptive algorithm can be compared with this study’s approach to see whether the 
e`ect of possible overfitting and instability has a worse e`ect on clinical relevance in 
prediction than disregarding intra-patient variability. Furthermore, other techniques to 
prevent overfitting in outlier scenarios can be researched.  

The ARIMA(X) models with adaptive identification were developed to have a positive 
implication on tighter glucose regulation for inpatients without increasing hypoglycemia 
risks. PH = 30 min. shows promising results with the currently developed models, which 
can have clinically relevant implications. If a healthcare professional or a patient can be 
alarmed 30 minutes before a hyper- or hypoglycemic event, it enables them to take 
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proactive action to avert critical events (Prendin et al., 2021). This, in combination with 
the small amount of data needed for accurate and safe prediction, makes the proposed 
algorithm with PH = 30 min. useful for implementation in the clinic.  

This study fills a literature gap. The adaptive identification algorithm was tested on 
patient data from a hospital admission environment. Besides this, a broader set of 
performance metrics on accuracy, safety, and usability and a choice of PH until 120 
make this study tailored toward a practical solution to the challenges discussed. MAPE 
as a metric for safety sets this study apart from others as it assesses the error more 
strictly than CEGA. CEGA, however, already compares the possible final application to 
the ISO 15197 standard of >99% of possible measurements in the A+B zones of the CEG 
(Freckmann et al., 2019). As most other literature only discusses accuracy metrics, 
mainly RMSE, this study can be compared in that aspect to the literature. The RMSE of 
this study outperforms all studies except for the study by Sawaryn. Sawaryn also 
outperforms this study on safety metrics as CEGA shows higher percentages in A+B 
zones. However, as Yang et al. showed when comparing their results from T2D to T1D, 
T2D has a lower error in their predictions. In this study, T1D and T2D patients are mixed, 
which could be a reason for this result.  

There are limitations to this study. Only a small sample of admission data was available. 
From the small sample, little was known about the patient characteristics or the course 
of the admission. The medical admission records from persons included in this study 
were examined. There was insu`icient data to draw conclusions about significant 
factors during their admission that might a`ect model behavior. For di`erent sensors, 
BG samples were taken in di`erent frequencies, namely every 5 (Medtronic) or 15 
minutes (FreeStyle Libre Link). Not only does that make the data pattern di`erent, but it 
also implies di`erent treatment. The Medtronic is an AID system, while the FreeStyle 
Libre Link is a standalone CGM system. A quick analysis of accuracy metrics for 
di`erent sensor sample frequencies showed no significant di`erences, which is why it 
was chosen to apply the same method to both sensors and patient groups. However, 
future research could explore resampling the sensor signal measured every 15 minutes 
to match the signal measured every 5 minutes. Di`erent interpolation methods could be 
applied to see if the predictions made with the resampled signal outperform the original 
predictions. During the included admission periods, there was no corticosteroid 
medication or recorded enteral or parenteral nutrition, while these factors influence the 
BG inpatient BG regulation (Pérez et al., 2020b). Before applying the models in 
admission cases involving corticosteroid medication, testing should be conducted first.  

To improve the methods used, a few recommendations are proposed. Beginning with 
data collection, a more comprehensive understanding of the algorithm's clinically 
relevant performance can be achieved as additional data is gathered during admission. 
This way, something can be said about what events or factors influence prediction 
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during admission. It is recommended to track insulin infusion and nutritional intake to 
be certain of the sensitivity of the models for these factors. Another option to gain more 
insight into model behavior could be simulated data. This allows for more elaborate 
testing on what data characteristics benefit the model or impose risks. A more robust 
method for training ARIMA(X) models might be beneficial to prevent overfitting of the 
models. A training method proposed by Sawaryn could be applied in which the training 
set is cut into three with minimum periods of 1 day. For each part, the model with the 
lowest mean AIC was determined, and that model was considered to have the optimal 
combination of parameters. The simplest model remains valid if its AIC is no more than 
two units away from the average AIC. So, the model within that AIC range is chosen with 
the least number of parameters. This method reduces the risk of overfitting and ensures 
less data to fine-tune the model (Sawaryn, 2020). With more robust data acquisition and 
methods, models are hypothesized to become more stable, and therefore, predictions 
for PH = 60 min and 120 min are expected to become more clinically relevant. Even 
though PH = 30 min. already has a promising implication on inpatient care, PH = 60 min 
and 120 min would lead to even more significant advantages. Bolus calculators in AID 
can recommend a bolus amount based on the patient's carbohydrate intake and insulin 
sensitivity (Boiroux et al., 2017). The BG prediction algorithm from this study could be 
used as a state estimator in model predictive control (MPC). This means the model 
should also simulate the sensitivity of insulin and carbohydrates. For this 
implementation, the length of the PH should match the length of the e`ect of these 
e`ector variables, which for fast-acting insulin is at least 120 minutes (Crecil Dias et al., 
2020)(Summary of Product Characteristics: NovoRapid, n.d.). Sawaryn showed that for 
PH = 30 min. and PH = 60 min., carbohydrates can significantly a`ect ARMAX 
predictions (Sawaryn, 2020). For the model's prediction sensitivity to insulin 
perturbations, similar research to Sawaryn can be performed, with extra safety concerns 
or in a retrospective manner. A simpler approach could already be initiated by applying 
the insulin dosing algorithm for inpatients by Pérez et al. with the current ARIMA model 
for PH = 30 min. to give proactive bolus insulin (Pérez et al., 2020b).  

These recommendations pose multiple opportunities for future research. The adaptive 
identification algorithm could be studied more elaborately on purposefully collected 
and simulated patient data. The same study could also analyze the models’ sensitivity to 
insulin and carbohydrate inputs, akin to the analysis performed by Sawaryn (Sawaryn, 
2020). For this study to have direct implications, a study could be performed on the use 
of the model as a decision-support system either only as a 30-minute-ahead alarm or in 
combination with the bolus algorithm of Pérez et al. under strict expert supervision.  
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2.6 Conclusion 
This research was focused on assessing a clinically relevant BG prediction by developing 
di`erent patient-specific ARIMA(X) models in an adaptive identification framework for 
persons with diabetes in non-ICU hospital wards. This was done by assessing the 
performance of the predictions of the developed models on accuracy, safety, and 
usability. Cross-BG data showed the most promising combination predictions that 
satisfied the di`erent criteria and benchmarks of clinical relevance across various PHs. 
The satisfaction of the criteria and benchmarks for clinical relevance depended heavily 
on the di`erent PHs. One day of training results in su`icient accuracy. Due to high intra- 
and inter-patient variability, the patient-specific ARIMA(X) models with adaptive 
identification were justified.  Only PH = 30 min. shows potential with the current 
algorithm, o`ering clinically relevant implications for managing hyper- and 
hypoglycemic events. Recommendations for improving methods are made to enable 
further research and implementation of the decision-support tool in the hospital. A 
decision-support tool could aid in tighter BG control in the hospital.  
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3. Chapter 2: Challenges for doctors in glucose 
regulation in hospitalized patients: a qualitative insight 
from medical doctors working in the department of 
internal medicine 

3.1 Abstract 
Introduction: To create a decision-support system that improves glucose regulation and 
ensures e`ective hospital implementation, understanding end users' perspectives is 
crucial. A small requirement engineering study to explore requirements with doctors in 
Dutch hospitals gathers insights into doctors’ challenges with current BG practices. 

Methods: This qualitative research involved semi-structured interviews with current or 
former internal medicine doctors. The interviews examined obstacles and methods in 
BG regulation. Two researchers analyzed the data: the first used inductive thematic 
analysis to assign descriptive open codes to key text fragments. This was followed by 
axial coding for organization. A second researcher verified the codes, ensuring 
consistency. 

Results: This study contained a group of 7 doctors (42.9 % female) from multiple 
centers. Most of them were junior internists (57.1%). Key obstacles include insu`icient 
patient data, such as nutritional status and home diabetes medication, and lack of 
knowledge among other specialties and care sta`. Add-on insulin schemes delay BG 
regulation. Corticosteroid use complicates BG management. Interviews revealed 
similarities in necessary data for BG regulation policy: current/past BG values, home 
diabetes medication, corticosteroids, nutritional status, and relevant past history. 
Feedback on current practices varied; some found them e`ective, while others faced 
challenges. 

Discussion: Obstacles, current methods, and perceived solutions suggest 
implementing a digital tool for data visualization and decision-support. It’s important to 
consider these expert insights in the tool's development. Additionally, existing literature 
supports the need for such a tool. A strong grasp of the issues perceived by the target 
audience can result in more e`ective tool development and adaptation. 

3.2 Introduction 
To create a decision-support system for improved glucose regulation and e`ectively 
implement it in a hospital setting, understanding end users' perspectives on the current 
challenges is crucial. A literature search showed one article by Rousseau et al., 
performing an interprofessional qualitative study of barriers and potential solutions for 
the safe use of insulin in the hospital setting (Rousseau et al., 2014). The study identified 
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several challenges and potential solutions relevant to assessing requirements for a 
decision-support system in BG regulation among healthcare workers. In the study by 
Rousseau et al., a lack of documented insulin doses in electronic health records (EHR), 
lack of data points in BG measurement, and unavailability of nutritional data in EHR 
were a few of the perceived problems. A possible solution was the availability of insulin 
decision-support systems. This can be seen as a first indication of a likely adaptation of 
the decision-support system outlined in this report for healthcare professionals.  

Since the publication of the study by Rousseau et al., there have been advancements in 
EHR and diabetes technology. Besides this, a single study done in a single center is not 
enough requirement analysis for the start of development and implementation of the 
decision-support tool. To address this gap, a small requirement engineering study to 
explore requirements was conducted with doctors in Dutch hospitals to understand 
their views on current obstacles in BG regulation practices. Exploration of requirements 
is part of requirement engineering, which is the discipline that covers creating and 
reporting requirements. This is essential for the development and implementation of 
software applications (Boulanger, 2017). For the purpose of exploring requirements for 
the decision-support system, this study focuses on the obstacles and current 
methodsin BG regulation to achieve the following objectives:   

Explore the key obstacles faced by doctors and understand their methods of daily 
glucose regulation in inpatients.  

3.3 Methods 
To achieve the objective, qualitative research was conducted through semi-structured 
interviews. This structure was selected to identify genuine pain points in current 
practices and to gain a deeper understanding of these pain points and practices. 

The study participants were medical doctors currently or previously employed in the 
internal medicine department, thus responsible for overseeing BG regulation in the 
hospital. The study was performed in the context of a study program in business 
validation. This program lasted for a short period of time, and several topics needed to 
be covered. The number of participants depended on how many volunteers could be 
found in a period of three days. This resulted in a total of 7 participants from the 
researchers’ own network. The research subjects' composition was chosen to have a 
mix of people currently responsible for the BG regulation and those who supervise them. 
Senior medical interns, doctors not in training, junior doctors, and internists were 
interviewed.   

The interviews took place from the 19th of July 2024 until the 21st of July 2024, either in an 
online meeting or by telephone. Prior to participation, participants received short 
information on the rationale behind the study but not on the concrete idea of the 
decision-support tool in order not to bias them. Answers were recorded by means of a 
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single researcher typing out the answers while simultaneously conducting the 
interviews. A single interview took about 30 minutes. Following the interview, 
participants were given the option to stay informed about the decision-support tool's 
development.  

The interview consisted of questions on the main theme: obstacles and methods in BG 
regulation. At the start of each interview, each participant was introduced to the theme 
and context of the interview. This was followed by a very broad question about perceived 
obstacles. These questions were usually followed by some follow-up questions or 
repetition of the same question until a participant said to have named all perceived 
obstacles. This question was followed by two questions about the current methods of 
working on BG regulation in the participants' hospitals. The last topic concerned the 
possible hospitals’ future goals for BG regulation. The interview ended with a question 
regarding any overlooked themes or further questions and comments from the 
participant, ending with a note of appreciation for their time. The full interview questions 
are reported in the Appendix.  

Two researchers analyzed the interview data. The first researcher analyzed the interview 
using inductive thematic analysis using Microsoft Word and the comment function. Text 
fragments providing key insights on the research objective were assigned descriptive, 
open codes. These open codes underwent analysis and organization through axial 
coding, which involved comparing and merging them into broader codes that serve as 
themes and sub-themes. A second researcher revised the assigned codes, and no 
discrepancies were found.  

3.4 Results 
This study contained a group of 7 doctors (42.9 % female). Most of them were junior 
internists (57.1%). Hospitals of employment were diverse and can be seen along the rest 
of the characteristics in Table 18.  

Table 18 Baseline table for participant characteristics 

Characteristic Cases (n = 7) 
Female 3 (42.9%) 
Role  
Internist – Endocrinologist  1 (14.3%) 
Junior internists 4 (57.1%) 
Doctor not in training internal medicine 1 (14.3%) 
Semi-arts Internal medicine 1 (14.3%) 
Hospital  
CWZ, Nijmegen 1 (14.3%) 
Erasmus MC, Rotterdam 1 (14.3%) 
Maxima MC, Veldhoven 1 (14.3%) 
MST, Enschede 1 (14.3%) 
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Reinier de Graaf gasthuis, Delft 1 (14.3%) 
ZGT Almelo 2 (28.6%) 

 

3.4.1 Obstacles 

The perceived obstacles were addressed. All participants agreed on factors causing 
deregulation in hospitals, especially on corticosteroid medication. All participants also 
noted the missing of specific data crucial for obtaining a clear view of the patient. Data 
on nutritional status and medication at home were most often missed. There was a lot of 
variety when it came to the perception of how di`icult it was to handle deregulated 
patients. Di`erent perceptions were as follows: “This problem is very serious. It is 
always turned into our departments’ problem. I seriously doubted whether I wanted to 
stay at internal medicine due to all the hassle around people with diabetes.” [Participant 
3]. On the other hand, a participant stated: “It does not result in any problem around 
workload, but extra digitalization of data would be nice.” [Participant 2]. The identified 
themes and sub-themes, with corresponding definitions and summarized results, are 
reported in Table 19. 

Table 19 Themes and sub-themes with their definition and results from interviews for the topic of obstacles in BG 
regulation. 

Themes and sub-themes Definition and/or result 
Causes of deregulation  
General causes High BG at start of admission 

Nerves 
Di`erent nutritional patterns 

Medication Especially corticosteroid medication 
(examples given were especially 
Prednisone and Dexamethasone) 

Less chance of deregulation Only oral medication (specifically 
Metformin) 

Problems  
Time management The impact of handling glucose regulation 

on time management in general.  
 
Most often glucose regulation was 
indicated as a frustrating problem due to 
the number of people with diabetes, the 
irregularity in planning visits for BG 
regulation, lack of knowledge in other 
specialists and care sta`, and lack of 
sta`.  

Knowledge The lack of knowledge when seeing a 
patient on the context of that specific 
patient. 
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The lack of knowledge of other specialism 
on glucose regulation 

Data The problems that data can cause when 
regulating BG. This often comes down to a 
lack of data or di`iculties finding the right 
data.  
 
Specific examples were the lack of data 
on nutritional patterns and modalities 
and (home) medication. On the 
di`iculties finding data, one hospital in 
specific talked about data on paper 
leading to faulty regulation and the fact 
that data was inconveniently transferred 
from acute wards to long-term wards. 

Hospital and EHR policy Conservativeness in hospital and EHR 
policies make it hard to improve BG 
regulation. 

Insulin treatment An add-on insulin scheme2 was indicated 
as falling behind instead of pro-active 
treatment leading to insu`icient BG 
regulation.  

Results of current glucose regulation algorithms 
Results Perceptions on success rate of current 

algorithm on keeping patients within set 
BG ranges.  
 
Although perception was divided on this 
topic, the general perceptions was that on 
the department of internal medicine, 
current algorithms worked quite well. On 
other departments however this was not 
the case.  

Patient groups  
Patient groups Groups of patients susceptible of 

deregulated BG 
 
Patient with enteral/parenteral nutrition, 
corticosteroid medication, ketoacidosis, 
and therapy infidelity were seen as 
susceptible.  

 
2 An add-on insulin scheme is a sliding scale to determine the amount of insulin that can be added on to 
the regular diabetes medication at any moment when BG is measured. A common add-on insulin scheme 
is the 2-4-6 scheme. If this scheme applies, at the moment of BG measurement, and the BG values is 
>10mmol/l a patient gets 2 extra units of insulin, >15 mmol/l a patient gets 4 units of insulin, and >20 
mmol/l a patient gets 6 units of insulin. The amount of insulin can be determined by estimated insulin 
sensitivity of a patient.  
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Patients with AID or during pregnancy 
were identified as least susceptible. 

Reliability literature  
Reliability literature Perceived reliability of observational 

study results relating hyperglycemia 
during admission to adverse events for 
admitted patients.  
 
Everybody perceived these study results 
the same, as a chicken-and-egg-story. 
They cannot say for sure whether high BG 
led to adverse events or vice-versa. This 
had the implication that participants were 
not convinced to change their current 
methods because of the adverse events 
described by literature. 

Relevance of the problem  
Relevance of the problem The relevance of the problem was tested 

by participants perception on how much 
the BG regulation concerns them.  
 
No unambiguous perception was given. 
While some found it extremely 
concerning, others did not seem to 
perceive any problem with BG regulation 
as currently performed.  

 

3.4.2 Methods of working 

This section of the findings examines the existing working methods of the participants. 
The identified themes, with corresponding definitions and summarized results, are 
reported in Table 20. 

Table 20 Themes and their definition and results from interviews on the topic of methods of working. 

Themes Definition and result 
General  General comment on methods of 

working. 
 
Participants made mentions of protocols 
being used: perioperative, pregnancy, IV 
insulin pump, diabetes in hospital 
 
Add-on insulin schemes were mentioned 
often to regulate patients and to deduct 
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the amount of long-acting insulin if 
needed.  

Target value glucose The di`erent perceived BG target values 
for di`erent hospitals. 
 
There were discrepancies between the 
di`erent hospitals when it came to BG 
target values. Most of the hospitals had a 
range between 4-10 mmol/l, others 
between 4-12 mmol/l, and for some made 
a discrepancy between adult patient and 
elderly patients where elderly patients 
were kept between 4-15 mmol/l. 

Responsible doctors Responsible doctors for BG regulation in 
the hospitals. 
 
All participants mentioned the junior 
doctors or doctors-not-in-training under 
supervision of internists as responsible.  

Measurement methods Methods of BG measurements in 
hospital.  
 
All hospitals used either finger stick 
measurements or subcutaneous glucose 
sensors. Finger stick measurements were 
seen as old-fashioned and straining. 

Necessary data Data necessary to make policy decisions 
on hospitalized patients.  
 
The corresponding data named by all 
participants were: Current and past 
glucose values, (home) diabetes 
medication, corticosteroid medication, 
nutritional status, and admission reason.  
 
Other data named was: HbA1c lab value, 
can the patient self-regulate, medical 
past history, insulin-carbohydrate ratio.  
 
As to the questions whether participants 
preferred either CGM or finger stick BG 
results, everybody agreed that finger stick 
4 times a day was enough data, however 
CGM is preferred when available.  
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3.4.3 Future goals 

The final part of the results addressed future goals for BG regulation in the hospital. All 
solutions were proposed spontaneously by participants when talking about future goals. 
The identified themes, with corresponding definitions and summarized results, are 
reported in Table 21. 

 

Table 21 Themes and their definition and results from interviews on the topic of future goals regarding BG regulation. 

Themes Definition and result 
Solutions Possible solutions for the perceived 

problems with BG regulations in the 
hospital. 
 
Most proposed solutions pointed in the 
direction of a digital overview of data 
needed for policy decisions. Other 
directions were detecting patients with 
high risk of deregulation in time and 
anticipate on this instead of add-on 
insulin schemes. Single suggestions were 
made to give diabetes nurses a bigger role 
in BG regulation in hospitalized patients, 
improve knowledge in care sta`, and to 
have less invasive BG sensing 
incorporated.  

Methods of working Preferred extra methods of working not in 
the current methods. 
 
A comment was made on after-care for 
patients leaving the hospital.  

 

3.5 Discussion 
This study qualitatively explored the key obstacles faced by doctors and in addition, 
focused on understanding their current methods for achieving tight glucose regulation in 
inpatients.  

Interviews reveal several key obstacles. All 7 participants mentioned one or more key 
obstacles. More obstacles were mentioned, particularly by those responsible for 
managing diabetes inpatients directly, that is, not as supervisors.  The initial major 
challenge is the insu`icient data to understand the patients' context, which was 
mentioned 9 times by 5 participants. Specifically, missing information includes their 
nutritional status and (home) diabetes medication, which were both mentioned by 5 
participants. Additionally, a lack of knowledge and initiative to regulate BG among other 
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specialties and care sta` has been highlighted as a significant barrier, mentioned by 3 
participants. Furthermore, add-on insulin schemes are seen as important challenges 
since they lead to delays in BG regulation, which was mentioned by 2 participants. 
Finally, corticosteroid medication has been identified as a critical obstacle to managing 
BG levels, as mentioned by 5 participants.  

Interviews provided extensive insights into the hospital's current methods for regulating 
BG. The necessary data for determining BG policy show quite a few similarities. Current 
and past BG values (home) diabetes medication were mentioned most often by 6 
participants. Corticosteroid medication and nutritional status followed as the second 
most mentioned by 3 participants. Two participants identified past history and 
admission reasons as key data. Participants provided diverse feedback regarding the 
e`ectiveness of their current practices. Although two participants saw no issues, five 
found the existing BG regulation practices quite challenging or ine`ective.  

The varied responses to perceptions of the e`ectiveness of current practice could be 
explained by participants’ roles. Supervisors or experienced doctors perceived fewer 
problems, while less experienced doctors perceived more problems. Even though 
essential information for policy development largely matched, it's challenging to 
determine if participants provided a comprehensive perspective. It is notable that 
participants did not see CGM as essential for e`ective BG regulation in the hospital. 
CGM is expected to improve glucose regulation in the hospital in the future (Zelada et 
al., 2023). The availability of CGM data was viewed as a superfluous luxury, as opposed 
to only four available finger stick BG measurements per day.  To perfect the BG 
regulation, participants indicated that CGM data comes in handy when looking at home 
regulation and comparing it to in-hospital regulation or using it to estimate insulin 
sensitivity. Some participants questioned the non-proactive nature of add-on insulin 
schemes. However, they do not see a way to get rid of them as they are used as a 
titration tool for insulin amounts in their current practices.  

A key perceived challenge is the insu`icient data to make inpatient policies, particularly 
regarding nutritional information and home insulin protocols. This, combined with the 
obstacle of lack of knowledge in other specialties and among care personnel, highlights 
the absence of streamlined multidisciplinary protocols and centralized data, as the 
literature also points out this obstacle (Rousseau et al., 2014). Additionally, the frequent 
issue of corticosteroid medication causing deregulation in patients highlights the need 
for improved decision-support for doctors treating these patients. This is important to 
consider when developing a decision-support tool.  

Since most perceived solution directions suggest implementing a digital tool for data 
visualization and decision-support, it’s important to consider these expert insights in the 
tool's development. Additionally, existing literature supports the need for such a tool. A 
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strong grasp of the issues perceived by the target audience can result in more e`ective 
tool development and adaptation. 

This short study has both strengths and limitations. Due to the limited time for data 
collection, only a few participants have been interviewed, and data saturation was not 
yet reached. However, this is no problem due to the explorative nature of this study. To 
further explore the findings from this study, more interviews can be held to reach data 
saturation. Three extra interviews will be conducted. If data saturation is not yet reached 
after this, another three interviews will be conducted, and so on (Francis et al., 2010; 
Malterud et al., 2016). The interview questions stem from a course in problem validation 
rather than from research literature. The answers to the questions were recorded solely 
through note-taking and were not transcribed from audio files. Despite a limited number 
of participants, a key strength of this study was the diversity of participants’ hospitals.  

The limitations highlight the potential for improvement in future research. A larger-scale 
study could incorporate additional, literature-supported questions to provide a broader 
understanding of perceived obstacles. Furthermore, the results from this study can 
guide the early development of a decision-support tool designed to assist doctors in 
e`ectively managing tight BG regulation for inpatients. The emphasis should be on 
integrating all required data, enhancing the multidisciplinary approach to BG regulation, 
and aiding doctors in preventing adverse events among complex patients.  

3.6 Conclusion 
This study identifies obstacles and insights into BG regulation practices. A major 
challenge is insu`icient patient context data, specifically on nutritional status and 
diabetes medications. Additionally, a lack of awareness among specialties is a 
significant barrier, as are add-on insulin schemes causing delays in BG regulation. 
Corticosteroid medication also critically hinders BG management. Necessary data for 
BG policy reveal similarities, including current and past BG values, medications, 
nutritional status, and admission reasons. Participants provided varied feedback on the 
e`ectiveness of BG regulation practices; some saw no issues, while others faced 
significant challenges. Early results can inform the development of a decision-support 
tool to help doctors manage tight blood glucose levels for inpatients by integrating all 
necessary data and enhancing multidisciplinary approaches to prevent adverse events 
in complex patients.  
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4. Chapter 3: The patient’s story: two patient personas  

4.1 Abstract 
Introduction: Patient stories and perspectives can help to understand this 
stakeholders' characteristics better, accommodate a system to di`erent patient needs, 
increase empathy among users, and make the results of this report reality-centered and 
tangible. Personas can be utilized to obtain the patient’s perspective. 

Methods: Data was collected between the 8th of January and the 9th of December 2024 
during clinical rounds for patients who needed extra consultation regarding their BG 
regulation during admission to the ZGT Almelo. Admission had to be relevant to the topic 
of the decision-support system and last more than 2 days to be included in the 
personas. Conversations with patients were held, and EHR was checked to obtain data. 
Data was gathered on the reason for admission, admission department, relevant past 
history, medication, current history information, policy information, and re-admission. 
From this data, fictional personas were developed by a single researcher to guarantee 
anonymity. 

Results: Two personas were created to help understand patient characteristics and 
create empathy for patients’ situations. From these personas, challenges were 
highlighted in which the decision support system could aid their glucose regulation 
during admission.  

Discussion: The personas illustrate that it is di`icult to maintain the appropriate BG 
values recommended for inpatients between 3.9-10 mmol/l. Both personas experienced 
adverse events during their admission, which is not uncommon for inpatients. This 
shows the potential for a decision-support system to aid BG regulation. The personas 
also introduce new features for the decision-support system and show how the system 
can aid the current workflow for internists. A key strength of this study is that the 
personas have been created based on real patient stories. A key limitation is that the 
personas were created by one single researcher instead of a group of researchers. A 
recommendation is to have a validation meeting where multiple internists can help 
validate the personas to make them more robust. It is recommended that the final 
features of the decision-support system are mirrored against these personas to 
determine if and where the tool can have a positive impact. 

4.2 Introduction 
In previous chapters, it was made clear that there is a challenge in BG regulation in 
hospitals on a population level. Besides this, numerous obstacles that hinder doctors 
from e`ectively addressing these challenges today were introduced. Another important 
stakeholder in this process is the patient. Although the tool is primarily designed for 
internists, it is also important to include the patient in the requirement analysis. 
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Including patient stories and perspectives can help to understand stakeholders' 
characteristics better, accommodate the system to di`erent patient needs, increase 
empathy among users, and make the results of this report reality-centered and tangible 
(Karolita et al., 2023). Future challenges on how decision-support will relate to a 
patient’s care need can be tackled in this way.  

Personas are a tool that can be utilized to obtain the patient’s perspective. Personas 
serve as fictional representations of patient groups that can serve as a primary source of 
information when developing the decision-support system (Karolita et al., 2023). In the 
context of this study, personas are modeled by their characteristics, behavior, and ways 
of thinking. If a patient group has similar characteristics, behavior, and ways of thinking, 
they can be modeled into a single persona. This leads to the following objective for this 
chapter:  

Provide a reality-centered exploration of BG regulation in-hospital from a patient 
perspective using patient personas 

These personas will be developed through patient case studies. Case studies provide an 
in-depth exploration of an issue in a real-life setting (Crowe et al., 2011). The case 
studies will be formed into fictional patient personas, which are thus not traceable to 
the actual patients on which the personas are based.  

To make the connection with a potential decision support system, the possible 
implementation of this system in the current workflow is highlighted in the persona 
stories. In this report, no extensive design is made for this tool. For now, the decision 
support system is described as a dashboard in which consulting internists can see the 
data needed for policy making, as described in Chapter 2. Besides this, the decision 
support system contains CGM data with predictions, as introduced in Chapter 1.  

4.3 Methods 
To gain a clearer understanding of the context and processes from a new perspective 
compared to earlier sections in this report, two personas are modeled. The number of 
personas two, was chosen in order to model two important groups of patients for the 
hospital context. These two important groups were patients who could self-regulate and 
require little to no help in BG regulation and patients who could not self-regulate and 
therefore did need a lot of help with BG regulation. No other important patient group was 
identified for this research. Data was collected during clinical rounds for patients who 
needed extra consultation regarding their BG regulation during admission. Patients from 
the ZGT hospital in Almelo were included in the personas. Furthermore, for inclusion, 
their admission had to last more than 2 days, and the case had to be identified as 
interesting by the researcher to o`er deeper insights into the context of the decision-
support tool. Data was collected between the 8th of January 2024 and the 9th of 
December 2024. The researcher had conversations with the patients to gather data on 
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persona characteristics, behavior, and ways of thinking. Besides this, the patient's EHR 
was checked for data reported by other medical sta`. Access to a patient’s EHR was 
granted because the researcher was also involved in their BG regulation in the hospital. 
The data collected from each patient is presented in Table 22.   

Table 22 Collected data and definition during admission case studies. 

Data collected  Discription 
Reason of admission - 
Admission department - 
Relevant medical past history Relevant to diabetes. This includes type 

of diabetes, micro- and macrovascular 
complications of diabetes, and 
cardiovascular disease 

Medication for diabetes - 
Corticosteroid medication - 
General current history information 
provided by their primary doctor 

Physical and emotional state of the 
patient, nutritional status, relevant 
conversation. Access to this data relied 
on the availability within the EHR. 

General policy information provided by 
their primary doctor 

Treatment information that is relevant to 
the case study. This means for example 
changes in relevant medication or 
nutritional status. Access to this data 
relied on the availability within the EHR. 

BG regulation current history information Status of the patient regarding BG 
regulation. This information was collected 
by the consulting doctors.  

BG regulation policy information Changes to diabetes medication made by 
the consulting doctors in order to regulate 
BG.  

Re-admission instances Including reasons of re-admission  
 

From this data, personas were developed by a single researcher. To make the persona 
tangible, the developed personas include a short description of their characteristics, 
behavior, and admission situation.  All patient information is anonymized, and traceable 
patient characteristics are changed. As a result of the anonymization process, the 
patients were not asked for informed consent to participate in this study.  

4.4 Results 
4.4.1 Persona 1: Scannie Sweet 

Scannie is a 45-year-old female with long-existing T2D with microvascular 
complications. For her T2D, she used a basal-bolus regimen along with one oral 
medication to better control her BG levels. She is very able to check and control her BG 
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with her CGM sensor. She is aware of moments when she needs to prevent 
hypoglycemia. For safety, she always keeps her own BG values in a range between 6 and 
15 at home.   

Scannie was admitted to the surgery department. She was admitted for deterioration of 
ulcers on the right foot. She was in great pain due to this deterioration, for which she 
received heavy pain-relieving medication throughout her admission. The surgery 
department issued a visit by the internist, which is standard procedure when a person 
with diabetes is admitted to the hospital. The internist made a visit to talk with Scannie 
about her BG regulation during admission.  

Even though her ulcers, the hospital context, and her pain made BG regulation more 
complicated, Scannie indicated that she would like to continue regulating her own BG. 
She was deemed competent by the internist because she was able to indicate her BG 
targets, between 6 and 15, like at home, she is aware when a hypoglycemia episode is 
coming, and she was able to explain how to change her insulin regimen according to 
higher or lower values. She could maintain her usual meal pattern for nutrition, 
simplifying her regulation process. Besides this, she had a CGM sensor with which she 
could get insight into her own BG data whenever she desired.  

In the current workflow, it was indicated to Scannie that it was fine for her to self-
regulate by the consulting internist; it remains her choice. However, it was discussed 
that BG targets during admission should be between 3.9-10.0 mmol/l and what the 
impact of higher and lower BG values can be. To make sure BG values did not rise above 
her target, the internist decided to check her reported BG values daily. The internist also 
o`ered help in a scenario in which Scannie did not know how to get to those target 
values. She could indicate to the nursing sta` or her chief practitioner that she wants 
help.  

In a workflow in which the decision-support system can be integrated, the tool with 
predictive features could be implemented for this patient as she has CGM data 
available. Personalized supervision would be issued for Scannie as the consulting 
internist can be alerted by the decision-support system if she would receive di`erent 
nutrition and corticosteroid medication. This would mean less need for daily 
supervision. In addition, if Scannie decides to ask for help, the tool will aid with swift 
advice from the internist because accessing the right data and predictions would be 
easier.  

The admission period was extensive. The pain and wound in the foot were reduced 
slowly. The discomfort experienced by Scannie made her nutritional intake level slightly 
lower than normal. This meant that her BG values were between 8-14 mmol/l during the 
rest of her admission. After 8 days, she was discharged from the hospital and could 
continue the last bit of wound care at home.   
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This persona illustrates how tolerated hyperglycemia, although it was self-regulated, can 
lead to slower wound healing and, therefore, extended length of stay. The persona also 
shows that even though a person can self-regulate, it does not mean that no supervision 
is needed. It still requires time and e`ort from internists. The decision-support system 
could reduce this time and e`ort by, for example, setting the right alarms for when high-
risk situations occur or even for when certain targets are exceeded for a longer amount 
of time.  

4.4.2 Persona 2: Robin Suline 

Robin is a 71-year-old male with T2D and cardiovascular disease. In daily life, Robin 
treated his diabetes as a side issue, which led to overall high blood sugar levels. To 
counteract this, he has multiple BG-lowering oral medications combined with a basal-
bolus regime at home. As a result of his attitude towards T2D, Robin did not measure his 
BG often at home, even though he had a CGM sensor. When he measured, he saw very 
high BG values, far exceeding the threshold of hyperglycemia. This had a demotivational 
e`ect on him.  

One day, Robin was admitted for acute abdominal pain. A strand ileus was diagnosed. 
To remove this, a conventional adhesiolysis procedure was carried out successfully on 
the first day of his admission. Robin’s BG-lowering medication was stopped for the 
procedure as he needed to be sober. After the procedure, Robin’s state was variable, 
with good moments and moments of great pain. His BG-lowering medication was slowly 
re-introduced based on his nutritional status.  

Nutrition was complicated for Robin, as his oral intake was significantly reduced in the 
days after the procedure due to nausea and vomiting. He received a nasogastric tube. 
Some intake was transferred through the nasogastric tube, although frequent vomiting 
prevented most of it. This caused BG values to stay between 5 and 15. Robin was feeling 
very sick and was unable to self-regulate. BG regulation was taken over by the internists 
because of this. Because of the vomiting and low intake via the nasogastric tube, BG 
levels were between 5 and 11. In the current workflow, the internist will from now on 
check the patient’s status and make BG regulation policy once a day. 

The next day, he also got severe diarrhea. Nutrition was changed from nasogastric tube 
to total parenteral nutrition with a central venous catheter.  This prevented the BG levels 
from falling below 18 mmol/l. Unfortunately, due to sta` shortage, no internist was 
available to help Robin with his BG regulation. The BG values decreased only after the 
diarrhea lessened after two days and oral nutrition began to improve. When total 
parenteral nutrition ceased, blood glucose levels sharply decreased to between 3.7 and 
10. mmol/l. After a few days with BG values like this, Robin started to feel better, and his 
abdominal situation improved. This meant he could be discharged.  
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This persona illustrates how the hospital environment can a`ect persons with diabetes 
who cannot self-regulate. Varying situations in sickness, nutrition, and procedures result 
in di`icult and high-risk situations. A decision-support system could aid in tracking 
these di`erent situations and indicate when a situation causes a higher risk for either 
hypo- or hyperglycemia. In case of a procedure, the patient would have to be enrolled in 
the system by the chief practitioner before the procedure to be able to give an alarm to 
stop BG-lowering medication. Moreover, the shortage of sta` during a critical period of 
potential deregulation, particularly with intravenous nutrition, highlighted the need for a 
decision-support system to assist the consulting internists in making swift decisions or 
alerting them of high-risk situations like Robin’s. In that case, when sta` shortage is a 
problem, quick decisions can still be made that would have benefitted Robin.  

4.5 Discussion 
To gain deeper insights into a key stakeholder, the patient, personas were created during 
the development of a decision-support system. The study shows the potential of 
creating personas to give context to the developers and care sta` to develop and 
implement the decision-support system. The insight into the patient’s situation can 
create empathy when clinicians interact with the patient and help identify potential 
user-system interactions in the current workflow.  

The personas illustrate that it is di`icult to maintain the appropriate BG values between 
3.9-10 mmol/l recommended for inpatients (Pérez et al., 2020b). They also illustrate how 
hard it can sometimes be for clinicians to assist with BG regulation due to sta` 
shortages. Both personas experienced adverse events during their admission, which is 
not uncommon for inpatients with diabetes (Moghissi et al., 2009b; Pérez et al., 2020b). 
This shows the potential for a decision-support system to aid BG regulation.  

The two personas show the di`erence between a person with diabetes who can self-
regulate and a person who, due to his circumstances, is not able to self-regulate. What 
stands out is that although a person can self-regulate, internists often still must spend 
time supervising the patient. This is often active supervision where, every day, a person’s 
situation needs to be checked. In this case, a decision-support system could reduce 
time spent and personalize care, aiding in more passive supervision because alarms can 
be set to alert the internist when a situation becomes risky. Another key insight is that 
self-regulation is not necessarily better regulation. That depends on the patient’s own 
BG targets. A person with diabetes can tolerate hyperglycemia themselves.  

Something to highlight is the implementation of the decision-support system in the 
current workflow. These personas and their story include a representation of the current 
workflow of BG regulation by internists in the hospital. This representation shows that 
the decision-support system can make the workflow less time-consuming, easier, and 
more personalized. Due to the role of the system in identifying high-risk situations, the 
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system makes BG regulation care more personalized as the patients with high needs can 
be helped first, and patients who do not need much help can be given more freedom. 
The overview of data and the predictive feature that the system gives can save time and 
make policy-making simpler, which also aids in situations of sta` shortages. These 
features can be implemented in the workflow at the same time that policy-making 
happens in the current workflow.   

A key strength of this study is that the personas have been created based on real patient 
stories. Although these personal insights can be valuable, there are some limitations to 
consider. The personas were created by one single researcher instead of a group of 
researchers, which is more common in this type of research (Karolina et al., 2023). A 
recommendation is to have a validation meeting in which multiple internists and 
patients can help validate the personas to make them more robust. If this validation 
study indicates that the two personas presented do not adequately represent all of this 
stakeholder’s types, it’s advisable to conduct a workshop to generate additional 
personas. It is recommended that the final features of the decision-support tool are 
mirrored to these personas to determine if and where the tool can create a positive 
impact.  

4.6 Conclusion 
The personas from this study help understand patient characteristics better, 
accommodate the system to di`erent patient needs, increase user empathy, and make 
the report's results reality-centered and tangible. The personas show that it is di`icult to 
maintain appropriate BG values during admission, which can lead to adverse events. 
Besides this, the added insights and alarms can help internists prioritize patient needs 
in sta` shortage situations, making the current workflow more e`ective. To be able to 
use these personas optimally, they should be validated by multiple researchers. If the 
personas accurately reflect di`erent patient types, they can have a positive impact on 
the further development and implementation of the decision-support system.  
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5. Final report conclusions & a proposal for a simple 
decision-support system 

5.1 Conclusions 
The report as a whole aims to provide a comprehensive analysis of the challenges 
related to BG regulation in hospitalized persons with diabetes and to develop a decision-
support system to improve clinical management and optimize patient outcomes. The 
three chapters leading up to this conclusion treated di`erent aspects of obtaining this 
objective. The first chapter explored patient-specific ARIMA(X) models in an adaptive 
identification framework to predict BG values with short-term PHs in admitted persons 
with diabetes. The second chapter explored key obstacles faced by doctors when trying 
to achieve tight glucose regulation in admitted patients using qualitative data. Besides 
this, the doctor’s methods for achieving this tight regulation were analyzed. The third 
chapter provided a reality-centered exploration of BG regulation for admitted patients 
with diabetes through patient personas. In this final conclusion, the aspects that can aid 
the development of a decision-support system right now are listed and combined into a 
simple decision-support system proposal.  

The most relevant insight for current use from chapter one is that the models developed 
can predict BG values with a PH of 30 minutes in a clinically relevant way based on only 
CGM data during admission. Preferably, data pre-admission is also available so that the 
model can be trained on that data and can be used immediately. Although PH=30 for the 
intra- and cross-BG data does not satisfy the CEGA threshold of 100% in this study, it 
can still be seen as clinically relevant as the ISO standard is 99% in A+B zones. Both 
input data combinations do satisfy that threshold. This possible predictive feature 
enables medical sta` to take proactive action based on a 30-minute-ahead warning that 
a hypo- or hyperglycemic event is coming up. Both BG-lowering and rising actions, like 
fast-acting insulin or carbohydrates, can avert adverse events in such a scenario 
(Prendin et al., 2021)(Spanakis et al., 2018).  

This proactive action can counteract one of the challenges perceived by doctors in 
chapter two. Doctors perceive add-on insulin schemes as causing delays in BG 
regulation as they must act on BG values from the past. The decision-support system 
with 30-minute-ahead warnings could replace add-on insulin schemes in an ideal 
scenario. Chapter two reveals another relevant challenge that should be addressed by 
the decision-support system. When trying to get a complete view of an admitted patient, 
doctors perceive a challenge because they do not have all the relevant data available in 
a simple yet comprehensive way. This is especially the case for nutritional status and 
home diabetes medication. The integration of this data with other relevant data for 
policy determination was proposed as a solution by the doctors interviewed.  
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In case of sta` shortages, this data should especially be available for patients with high 
risk, for example, patients with enteral or parenteral nutrition and/or corticosteroid 
medication as identified by chapter 2, 3 and Moghissi et al. (Moghissi et al., 2009b). The 
extra insight into high-risk situations, as well as into upcoming hypo- or hyperglycemic 
events, could then, in turn, help doctors give patients extra insights into their 
regulations.  

To summarize, with the results from this report, a decision-support system that could 
currently be implemented for testing should contain an overview of data perceived as 
essential, which is sometimes hard to get by. It should contain CGM data with a 30-
minute-ahead warning for hypo- or hyperglycemia as a predictive feature. It should also 
contain a way to identify high-risk patients based on nutritional and/or medication data.  

5.2 Proposal for a simple decision-support system 
This report aimed to develop a decision-support system to improve clinical 
management of BG regulation and clinical outcomes. It is important to realize that the 
outcomes of this report, combined with the literature, can only lead to a simple 
proposal, which needs to be tested in a hospital setting and undergo a lot of 
development. However, development can be started soon for a simple but scientifically 
based decision-support system for the ZGT hospital in Almelo.  

The simple overview of essential data is the first step in this system. This could be 
implemented in the form of a dashboard. Essential data contained in this dashboard 
should be current and past BG values, home & admission diabetes medication, 
corticosteroid medication, nutritional status, and admission reason. Additional 
information could be a recent HbA1c lab value, self-regulation ability, medical past 
history, and insulin-carbohydrate ratio. All this information, except for self-regulation 
and insulin-carbohydrate ratio, is contained in the EHR of the ZGT. To make sure this 
information is retrieved from EHR and put into a comprehensive overview, the ZGT 
database can be used. The ZGT data department makes emergency copies from the EHR 
every ten minutes. An emergency copy contains all patient information needed in a 10-
minute delayed version. From this copy, the essential information can be copied into a 
dashboard that is made using the R shiny package in R. This dashboard could be used 
internally in the ZGT to supply the internists with a comprehensive overview of people 
with diabetes. A notification can be integrated into this dashboard if enteral or 
parenteral nutrition or corticosteroid medication is detected to notify doctors of high-
risk scenarios. A limitation of this system is that it would not contain information on self-
regulation or insulin-carbohydrate ratio, as that information is contained in either 
conversation or insulin pumps that cannot be connected as easily to this dashboard.  

A slightly more complicated step is to integrate real-time CGM with a 30-minute-ahead 
warning into the dashboard and system. The BG values described in the previous 
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paragraph are measured by finger stick or CGM measurement and put into the EHR 
approximately four times per day. Real-time CGM values from sensors are, 
unfortunately, not connected to the EHR. Retrieving real-time CGM data is not an easy 
task. For now, the most viable option is to use the SATO BANI, a device developed by 
researchers in the ZGT to transfer real-time CGM values to the ZGT database (Reference 
not available yet). A large limitation is that this device is not yet ready for 
implementation. A new researcher with the right expertise needs to be found to finish 
the device.  

Provided that real-time CGM data can be retrieved from these sensors, the proposed 
ARIMA(X) with adaptive identification framework can be applied to this data and can be 
run on the ZGT research servers in real-time. This model can be used to set alarms when 
the model’s prediction indicates that BG values exceed either hypo- or hyperglycemia 
thresholds. The upper limit for BG values is defined as 10 mmol/l and the lower limit as 
5.6 mmol/l to minimize the risk of hypoglycemia (Moghissi et al., 2009b; Pérez et al., 
2020b). If upcoming hyperglycemia is detected, proactive action is initiated, according 
to the study by Perez et al. (Pérez et al., 2020b). Perez et al. developed an algorithm for 
the initiation of insulin in noncritically ill hyperglycemic patients in a hospital. The 
patients that can be treated by this algorithm are both T1D and T2D with a basal-bolus 
regimen. The algorithm can recommend a correctional insulin bolus based on the total 
daily dose (TDD) of insulin or weight. In the study by Perez et al., bolus doses are 
recommended based on premeal glucose. The decision support system should use 
these doses for predicted BG values instead of premeal BG. All recommended insulin 
bolus amounts, as reported by Perez et al. for di`erent premeal BG values, are reported 
in Table 23. In this table, however, premeal BG is swapped for predicted BG. If a 
hypoglycemic alarm is raised, Urbanova et al. recommend that a 15-gram dose of oral 
glucose (in the desired form) be given (Urbanová et al., 2022). Fifteen minutes after this 
dose, CGM values should be checked again. If BG values are still insu`icient, 15 grams 
of oral glucose should be repeated. It should be noted that this glucose amount is from 
a review on the e`ectiveness of carbohydrate treatment in nonsevere hypoglycemia in 
adults with insulin-treated diabetes, so this was not tested in a hospital environment. 
The advice for these di`erent doses based on predicted BG values will be incorporated 
inside the dashboard as a separate section to keep a comprehensive overview.  

Table 23 correctional insulin boluses for predicted BG values. These values are predicted by the ARIMA(X) with an 
adaptive identification algorithm. The doses are based on TDD or weight. *If scheduled premeal bolus (Pérez et al., 
2020b) 

Predicted BG 
values (mmol/l) 

<60 units of 
insulin/day or <60 
kg 

40-80 units of 
insulin/day or 60-
90 kg 

>80 units of insulin 
or >90 kg 

< 4.4 -1* -1* -2* 
4.5-7.8 0 0 0 
7.9-11.1 +1 +1 +2 



 62 

11.2-13.9 +2 +3 +4 
14.0-16.7 +3 +5 +7 
>16.8 +4 +7 +10 

 

Future recommendations for the decision-support system can be found in the di`erent 
chapters, and more research is needed before implementation.  
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Appendix:  

Literature ARIMA(X) modelling for BG prediction 
Phadke et al. evaluated the performance of an ARIMA model on two datasets, the Libre 
Pro CGM sensor dataset and the Ohio T1DM dataset(Phadke et al., 2020). The Libre Pro 
CGM dataset contained data from 10 type 1 diabetes patients measured with Abbott’s 
Flash Glucose Monitoring system, which measures glucose every 15 minutes for 14 
days. The Ohio T1DM dataset contained glucose data of 6 patients with type 1 diabetes 
measured with a Minimed Enlite glucose sensor, which measures every 5 minutes. 
Measurements were collected over an eight-week period. As pre-processing, missing 
data was interpolated. An overlapping forward window method is used for training and 
testing with a window of 12 hours. An ARIMA(2,1,0) was applied without specification on 
the rationale behind this choice of model. The performance metrics for this study can be 
seen in Table 1.  

Prendin et al. did two studies(Prendin et al., 2021, 2022). The first study compares linear 
and non-linear data-driven algorithms based on only CGM data in type 1 diabetes 
patients (Prendin et al., 2021). All algorithms were tested on the same dataset of 124 
CGM traces selected from 141 patients. The traces contained data from patients who 
wore the Dexcom G6 sensor for 10 consecutive days. The sensor had a sampling time of 
5 minutes. 5.4% of the total samples were below 3.9 mmol/l. For the purpose of this 
report, this section will focus on the testing of the individualized linear black-box 
models, which were AR, ARMA, and ARIMA models. It is worth noting that according to 
this study, non-linear models do not significantly outperform linear models and that 
individualized models outperform population ones. Model parameters for the linear 
models were based on BIC criteria. The identification happens among AR values = 
{1,…,30}, MA = {1,…,15}. Parameter estimation was done by either the prediction error 
method or recursive least-squares. Recursive linear least squares fall into a fixed 
structure but time-varying parameters approach. Only stable models were identified. 
Predictions with a 30-minute PH using a Kalman filter framework. Root mean square 
error (RMSE) was utilized as a measure for accuracy.  

The second study by Prendin et al. assessed a newly proposed method of seasonal 
stochastic local models for glucose prediction against other linear and nonlinear 
models under free-living conditions (Prendin et al., 2022). All the models from this study 
were trained and tested based on the Ohio T1DM dataset and the CTR3 dataset. The 
Ohio T1D dataset is previously described. The CTR3 dataset contains data from 14 
individuals with type 1 diabetes with hybrid closed-loop insulin systems. Glucose was 
monitored with a Dexcom G4 sensor, and meals and insulin doses were recorded.  6-to 7 
weeks of data were used for training, and 10 days were reserved for testing. The models 
were all trained on individual patient data, and parameters were identified using the 
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Bayesian information criterion (BIC). The identification happens among AR values = 
{1,…,20}, MA = {1,…,20}, I = {0,1} and X = {1,…20}. These models were evaluated on 
accuracy using RMSE for PH of 30, 45, 60, and 75 minutes. As before, this section will 
focus on ARIMA and ARIMAX models used as a comparison in this study. The newly 
proposed method clusters PP periods and applies a seasonal form of ARIMA (SARIMA). 
Notably, this method only outperformed ARIMA and ARIMAX for post-prandial periods 
and higher PH of 60 and 75 minutes.  

A study by Mohebbi et al. studies recurrent neural networks based on population and 
individual patient data (Mohebbi et al., 2020). It uses ARIMA models on the same data as 
a comparison. CGM data was acquired from 50 patients for 14 consecutive days with a 
monitoring frequency of 5 minutes. Only CGM days and periods with more than 70% 
available readings are included. Missing data is further interpolated linearly. No 
information exists about the type of diabetes or treatment regimens. Fifteen patients are 
used for the development of the patient-specific models. The data of these patients is 
divided into seven days of training data and seven days of testing data. The training data 
is further partitioned into 1, 3, and 7 days to examine whether increasingly added CGM 
data will have an impact on model performance. As preprocessing steps, data has been 
normalized to have zero mean and a variance of one. The identification of parameters 
happens among AR values = {1,…,24}, MA = {1,…,24}, I = {0,5}  based on the AIC 
criterium. PH of 15 30, 45, 60, and 90 minutes are tested. Performance is tested with 
MAE and RMSE. The study concludes that LTSM is the best-performing model with seven 
days of training data, however, with little training data, the LTSM does not perform well, 
while the performance of the ARIMA model decreases less. 

Ben Saweryn wrote a master’s thesis on modeling fluctuations of blood glucose levels 
based on food intake and physical activity in patients with diabetes mellitus type 2 
(Sawaryn, 2020). Patients-specific AR and ARMAX models to analyze the e`ect of 
lifestyle interventions. The study included five patients in semi free-living conditions. A 
food protocol managed their intake for the duration of the study. BG values were 
measured with a Freestyle Libre glucose sensor that takes a sample every 15 minutes. 
Besides this, food intake in carbohydrates and fats (g) and steps per minute were 
measured by other means. Missing data was linearly interpolated, and the full data array 
was resampled to 15 minutes for uniformity. The identification of parameters happens 
among AR values = {1,…,10}, and for the ARMAX model MA = {1,…,10} and X = {1,…,10} 
based on the AIC criterium. For simplicity, all parameters were set to the same amount. 
Moreover, the training set was divided into three parts; models with multiple parameters 
were developed for each part, and the AIC values were averaged between them. The 
models that showed the minimum mean AIC were considered to have the optimal 
combination of parameters. Furthermore, for X, a delay term was included, Nk = {0,…,2}, 
to model the delay of the e`ects for each exogenous input. The final model was trained 
on the complete training set. The training set varied between 4 to 12 days in increments 
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of one day, with a test set also varying in length with the variation of training data. 
Performance of the model was measured using RMSE for PH 15, 20, 60, 120, and 180 
minutes ahead. Due to the objective of this study, the models with the lowest RMSE at a 
PH of 120 minutes with a set training size were analyzed further with Clarke’s error grid 
analysis (CEGA). For each subject, the RMSE with optimal training set sizes and optimal 
model parameters are displayed in this study. For the purpose of comparison, all RMSEs 
were averaged in Table 1. The mean CEGA values for all patients with optimal training set 
size are displayed in Table 1. This research shows the need for patient-specific models 
as the number of parameters and optimal training set size varies among patients.  

Yang et al. conducted research with the objective of showing the added value of an 
ARIMA model with adaptive orders(Yang, 2019). CGM is measured by a Glutalor CGM 
DS-02 sensor, which measures a BG value every 3 minutes. Training is done using a 
database of 5 T1D and 5 T2D patients in free living conditions. Before applying the 
model, the supply evidence that stationarity of CGM data changes over time with 
augmented Dickey-Fuller tests (ADF) and analysis of variance (ANOVA). CGM data gets 
stationary over time. To make the model, a window of length Nw of 400 samples is 
chosen and determined by ADF tests. The identification of parameters happens among 
AR values = {1,…,7}, MA = {1,…,3}, based on the AIC criterium. Parameter values are 
estimated using least squares estimation. Predictions are made with PH = 30. After a 
prediction step, the process is started again from the AIC criteria to determine new 
parameters. Model performance is assessed using relative absolute deviation, the sum 
of squares of prediction error, and the average normalized temporal gain. They show that 
this model outperforms an ARIMA model with comparable parameters but without the 
dynamic element.  
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Interview questions  

Introduction:  

• Context: product development program in Porto 

• Context: research on challenges in BG regulation in the hospital for admitted 
people with diabetes. 

Questions:  
1. What are your biggest challenges in regulating BG values for admitted people 

with diabetes? 
 

2. How are decisions about BG regulation made at the moment, and which tools or 
systems do you use for that? 

3. Do you currently use continuous glucose monitors or other technologies to 
monitor BG values? How do they integrate with the rest of your hospitals 
systems?  

4. What are long term goals for your hospital concerning BG management and/or 
the application of technology in this field? 
 

5. Did I miss something crucial or is there something you want to add concerning 
this topic? 

 


