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Abstract—This project focuses on developing a prototype
automated Quality Assurance (QA) system for analysing
seed placement in gutters, using image processing and deep
learning techniques to replace the current unquantifiable
manual inspection. This type of practical application has
no comparable research anywhere, and this project re-
searched a unique solution for this problem combining
multiple technologies. The system aims to provide real-time
analysis on metrics like density, detect seed types on noisy
backgrounds, and generate a comprehensive representative
image for evaluation. A key challenge addressed in the
project was the accurate detection of multiple seed types in
varying substrates, focusing on optimising the YOLO-based
object detection model for performance and precision. The
system leverages image stitching to combine multiple images
into a complete image representing the gutters while also
integrating duplicate seed detection to ensure no duplicates
on overlapping areas of the image. The prototype’s ability
to generalise with new substrates was evaluated, showing
promising results with minimal retraining required. The pro-
totype successfully met the requirements, providing valuable
data for seed analysis and showing potential for integration
into the production environment. The results suggest that
the system can be further enhanced with improved valida-
tion metrics, expanded seed datasets, and potentially more
powerful hardware to support faster conveyor speeds. Future
work will likely focus on refining the integration, enhancing
model accuracy, and expanding the system’s ability to handle
diverse substrates and seed types.

Index Terms—Vertical Farming, Seed Localisation, Object
Detection, Neural Networks, Deep Learning, YOLO, Image
Stitching, Practical Application

I. INTRODUCTION

Seed density is an important factor in farming because it
directly influences crop yield and quality [1]. A high density
in seed distribution results in competition between plants for
nutrients and lower yields, while a low seed density also results
in lower yields by having fewer plants growing in the same area.
This problem also applies to vertical farms, where the goal is to
more efficiently grow and harvest crops than traditional farming
methods by using horizontal and vertically stacked layers in
environmentally controlled conditions. To further improve the
efficiency of vertical farms, seed density should be analyzed and
validated to improve crop yield.

The vertical farming company Growy, based in Amsterdam, is
currently trying to complete its automated system from planting
to packaging. Currently, the inspection and verification of the
seed density in the gutters from the seeding machine are still
done manually. Manual quality inspection for density verification
is often slow and subjective and does not produce measurable
metrics for future analysis like seeds/mm?, but only a pass or
fail score.

The popularity of using image processing, computer vision,
and/or neural networks for these types of tasks has inspired
Growy to try taking the same approach to this problem and
design a prototype for automated validation.

The to be designed quality assurance (QA) station has to anal-
yse the seeded gutters from the seeding machine in real-time. It

should be integrated into the seeding machine and output relevant
data points for real-time validation, logging and reporting for
later analysis. A prototype, together with documentation, will
also have to be realised to prove the design.

The prototype will capture the seeded gutters from the seeding
machine using a controlled camera and lighting setup integrated
into the seeding machine. The captured images will represent a
section of the fully seeded gutter and be processed in real-time
in between captures. The images will be analysed using a deep
learning model based on the YOLO (You Only Look Once)[2]
architecture to produce all relative seed positions in the images.
The YOLO architecture is an actively developed object detection
deep learning model that balances accuracy and efficiency to
enable the model in real-time mobile applications. The individual
images and detected seed positions are combined during runtime
to compose the complete image of the seeded gutter and detected
seed positions in it. When the gutter has fully passed through the
QA station, the final data points will be calculated for validation
and logged for reporting and analysis.

While this project does not aim to develop or improve the
technologies of image processing or deep neural networks, it
does combine these technologies for a specific underexplored
application used in vertical farming. By using these technologies
to address the challenges of seed density verification in vertical
farming environments, this project contributes to filling a gap in
practical applications, particularly in scenarios where both speed
and accuracy are critical on embedded systems.

This report will first discuss the deeper background behind
the project to showcase the problem and limitations. Then, it
will analyse related work to research what other solutions have
been used for similar problems. With the gathered information,
the chosen design of the prototype QA station will be explained.
Then, the experiments with their results will be discussed, and a
conclusion will be drawn on how the project went, performed,
and what could be improved.

II. BACKGROUND

Growy is currently in a transition phase where after prototyp-
ing the most important and experimental parts of the complete
system, it is ready to implement all gathered knowledge in a
better scalable design at a new farm location. The improved
system at the new farm, located at CTPark Amsterdam City,
still needs human operators for some semi-automated processes
like packaging and general supervision, but currently, the system
needs a human operator for validating each of the seeding
machines used in the system. This process is not efficient and
reliable, especially when the farm will be scaled up. Using
image processing in combination with deep learning models to
replace human operators should improve reliability, scalability,
and provide additional metrics for data analysis.

A. Seeding machine

The quality assurance (QA) station is part of the seeding
machine, seen in figure[I] This machine is responsible for taking
the gutters, 2.5m long and 10cm wide metal trays with ID tags,
and then laying a thin substrate on the bottom, placing the
specified seeds on the substrate with different densities based
on the seed type and watering the gutter as well. These seeded



Fig. 1: Prototype of seeding machine used at old Keienbergweg
office
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Fig. 2: A photo of 15 different seed species that have large visual
differences on lcm grid paper using a controlled lighting setup

gutters can then be moved into the growing cells where they
are stacked in multiple vertical layers for space efficiency. The
QA station sits on the end of the seeding machine and before the
conveyor that takes the gutters to the growing cells. This way the
quality station can reject gutters that do not fulfil the criteria and
log data for every gutter that passes through on certain metrics.

Current specifications of the QA station have the maximum
speed of the gutters moving through it at 50mm/s with 1-2s
deciding time where the gutter is paused. The QA station has to
operate in real-time because the decision of pass or fail needs
to be almost immediately made after the gutter has completely
gone through the QA station to direct the gutter to the growing
cells or to discard it to not slow down throughput.

The integration of the QA station with the rest of the seeding
line is composed of two parts. The first part is the digital
information of what seed type is being used with additional
information like conveyor speed. This transfer of information will
be done with a CAN bus using CANopen as the communication
protocol[3]], with the QA station being a slave node.

The second IO for the QA station will be 24V signals. One
input announces a gutter coming to the QA station, and separate
output signals for pass or fail conditions to the conveyors at the
end of the QA station.

The seeding machine is capable of planting different seeds
and substrates. For the seeds, Growy uses at least 50 different
species, with a lot of visual differences between some of them.
Most of the seeds resemble a brown ball with diameters of 1-
Smm, but some have different colours or shapes that do not
resemble others. Figure [2] shows 15 of the more extreme seed
differences. The smallest currently known seed is 0.8mm in
diameter. Growy will continue to introduce new seed species
in the future production line and discontinue others.

Different types of substrate can also be used by the seeding
machine. Growy used a biostrate substrate in the past for most of
the plants, and it had a consistent white texture but was switched

Fig. 3: Jute substrate texture with the same arrangement of 15
seed species placed as figure [2] with a controlled lighting setup.
The bottom-right seed especially blends in very well with the
substrate texture.

due to supply issues to a light brown jute substrate that has a
noisy texture with loose fibres. This new substrate will make the
seed detection harder to perform due to the sometimes similar
colour as the seeds and rough texture of the substrate as shown
in figure B] Growy is always looking for better substrates, so the
substrate could likely change again due to new supply issues or
because different substrates are used per seed species to improve
yield. This should be kept in mind to potentially future-proof the
realised system.

B. Output Metrics

From discussions with the data team at Growy, a few data
points have been agreed upon to be useful for the validation at
the QA station and later data analysis that can be provided by
the QA station. These metrics/data points are:

o Top-down image showing the complete 2.5m seeded gutter
for later (visual) inspection/referencing

o Used configuration and circumstances of QA station (Im-
age acquisition parameters, seed species, conveyor speed,
timestamp, etc.)

o Basic parameters of seeds (Size, species, other)

« Total number of seeds in the gutter

o Relative coordinates of all seeds in the gutter

o Density map of gutter to determine a good distribution.
(Places with not enough seeds, clumps or more dense spots,
etc.) The minimum and maximum density spots could be
used in validation.

o Visualization of density map in the form of a heatmap

Storing a complete image of the gutters, while not providing any
metrics or data points, is a helpful tool to provide confidence in
the performance of the QA station and give the possibility to
inspect the gutters at a later date for data/metrics not gathered
at that time. The used configuration and circumstances together
with seed parameters are also very important for data analysis
with possible connections from this data, like conveyor speed
and seed size, to crop yield.

The relative coordinates of all the seeds in the gutter are the
main data from the QA station that can determine the quality
of the sown gutters by counting the total amount of seeds and
calculating local densities. This data from the seed positions can
also again be used to link crop yield to the output of the seeding
machine in later analysis.

III. RELATED WORK

The main objective of the project is a form of object
localisation, often also referred to as object detection. From
literary research, there are two main popular methods.[4]]



Fig. 4: An example of traditional logical methods in one study
that apply grayscale (b), gradients (c), binarization (f), and
morphological opening (g) in sequential steps to a RGB image

The first is the traditional object detection methods that use
multiple standard mathematical or algorithm-based steps together
to extract the features of shapes like circles [3]]. Often used
preprocessing steps in these methods are; changing colour space
to grayscale, blurring, calculating gradients, binarization and
morphological functions [4][6][7].

With the image preprocessed, methods like Canny edge detec-
tion, circle fitting, contour finding or segmentation can be used
to find objects and their parameters, like size and position[8]][9].

This approach of using logic and mathematical-based algo-
rithms often results in very fast processing for real-time applica-
tions with also enough accuracy to be an attractive solution [[T1]].
Especially for circular shapes, there is a lot of literature with
slightly differing approaches using these steps [3][12]]. These
approaches do also not care about dataset size and perform the
same on small datasets as on large datasets.

Most of these steps often rely on good differentiation in
one or multiple colour channels between the objects and the
background of the image. Most methods therefore use a solid
colour for the background or have a backlight when capturing
the images[13)[14][13]. Most of these methods also are often
tuned for specific shapes or objects and require manual tuning
of the parameter for most of the methods and filters used to
best fit the to-be-detected shape or object. an example of object
detection using mathematical and algorithm-based steps can be

found in

The second popular object detection method is based on deep
learning with CNNs (Convolutional Neural Networks).

There exist many different forms of deep learning-based
object detection, some examples are Faster R-CNN, YOLO (You
Only Look Once), SSD (Single Shot Detector), and RetinaNet
[T6][T71[18](19]. While we are only interested in the bounding
boxes of the objects in this project and not the classification,
these same object detection CNNs are used for this purpose in
the industry.

The CNNs, or models, use the raw image data, or a grayscale
version, instead of features that are extracted from the image
by other algorithms. This makes the models more flexible with
detecting different shapes and objects since the models can fine-
tune their feature extraction instead of relying on handcrafted
feature extraction that takes time to fine-tune and is often less
effective [20]]. This therefore generally makes the models better
able to handle backgrounds and changing environments than the
traditional methods, provided that the model has a big enough
dataset to train on.

Deep learning models are very complex architectures that can
require more powerful hardware for training and inference com-

Fig. 5: Example of YOLO-based object detection output from
an image of a farmer with cows. The output shows the bounding
boxes of the detected objects, the classification of these objects,
and the confidence for these classifications.

pared to traditional methods. Using these on resource-constrained
devices can be a challenge. The mentioned models are however
the most efficient for object detection compared to other deep
learning methods as they were designed for real-time applications
on mobile devices. [21]]

The biggest downside to using deep learning models compared
to traditional methods is the required training dataset sizes.
Achieving high performance with these models often requires
a large amount of manually labelled training data that might not
be readily available.[22]

A helpful tool with deep learning models to combat this issue
of required training data is transfer learning, where the models
are pre-trained on large general datasets and later re-used for
specific tasks that then require less training data and have
better generalisation compared to when trained on task-specific
data. These pre-trained models are widely available for most
deep-learning models.

From research analysis, it seems that using YOLO (You Only
Look Once) as the base model for deep learning-based object
detection is the best option for this project as it has the best trade-
off for efficiency, performance, and accuracy [23[|[24](23]][26].
An example of output provided by YOLO is seen in figure |§|

There is a lot of literature about using algorithms to detect
positions and/or classify seed species from image data, but they
all differ in important ways from the situation of this project.
The studies either try to classify the complete image with no
object localisation [27], or more commonly, the studies make
ideal situations for the image acquisition by having a controlled
lighting setup and using a solid colour as the background like
white or black [28] or use a backlight [T3]]. This often results in
the studies being able to use traditional methods like binarization
for object localisation to extract bounding boxes of the seeds and
use a deep learning model for the seed species classification of
the cropped images [29][30] (31].

In our application, the seeds cannot be always isolated in the
same way, as the background is a noisy substrate with sometimes
very similar colours and wildly different shapes between seed
species. So while the subject of the studies is the same or similar,
the situation differs greatly from lab conditions to a production
environment. Another difference is that in this project, the
focus is on object localisation and not classification, as the
seeding machine already knows what species is being used. So
while the research part of the research in these papers can be
used, they can’t be used as the complete solution for this project.

As mentioned before, most studies use a controlled
lighting setup where the light comes from single or multiple
predetermined angles with a controllable brightness[32](33].
Most of the setups also remove any ambient lighting to ensure
that the outside environment has no influence on the image



acquisition[24]]. This is done as differences in lighting angles or
brightness can have a very adverse effect on the detection or
classification after image acquisition[34]][33]. While some deep
learning methods can learn to overcome this issue, it is still
preferred to remove this variable and digitally alter the images
before training as a form of data augmentation to generalise the
model if needed [36].

For this project, the to-be-analysed objects are the 2.5m long
gutters. It is unreasonable to assume that the complete image
of these gutters will be gathered in one photo or frame, and
instead, the complete image can be composed of multiple smaller
images and stitched together at the end of the seed localisa-
tion. This stitching method is already widely used for image
processing[37][38] and has also seen some implementation in
deep learning models like with SAHI (Slicing Aided Hyper
Inference)[39]. With a rough estimate of the position difference
between images from the conveyor speed and minimal expected
projective and affine transformations[9]], this should make the
image stitching quite fast and able to be performed in real-time.

IV. DESIGN OF THE QA STATION

The design of the QA station is split into multiple components,
including software and hardware. To understand the overall
design of the QA station, [Figure 6shows how the overall design
works and how these main components work together.

Discussions with Growy have vaguely defined the require-
ments of the prototype QA station, with the intention that it can
prove the technology and design and that later iterations can use
this prototype to better inform them about specific targets for the
requirements.

The requirements for the QA station are as follows:

o Design for a prototype QA station and its realisation and
documentation.

o Analyse the seeded gutters from the seeding machine in
real time. (Max. 2s execution time between images)

« Integrated into the seeding machine. (The seeding machine
can provide data about current production, and QA can give
pass/fail signals to external machines)

o Works with multiple seed and substrate combinations

o Provide relevant data points

— Complete top-down image of 2.5m seeded gutter for
later (visual) inspection/referencing. (The image repre-
sents the actual used gutter well with no distortions or
artefacts as if one image was taken with an isometric
camera)

— Used configuration and circumstances of QA station.
(All metadata of the lighting, camera, and seeding
machine settings)

— Total number of seeds in the gutter. (Both recall and
precision for the detected seeds should be equal or
greater than 0.95)

— Relative coordinates of all seeds in the gutter. (Position
relative to the gutter and size for every seed detected)

— Density map of gutter to determine a good distribution.
(Minimum and maximum local density metrics)

— Visualization of density map in the form of a
colourmap.

o Use the data points after the gutter has passed through the
QA station to validate the seeded gutter
o Log all gathered data for later reporting and analysis

Every component will be discussed in its subsection and will
include the design choices for that component.

A. Hardware setup

shows a photo of the testing setup, with the sub-
components processing unit, lighting setup and camera module

further explained.
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Fig. 6: Overview of the design flow of the QA station prototype

Fig. 7: Hardware setup of the prototype

1) Processing unit: For the initial prototype of the system,
a Raspberry Pi 5 (8GB RAM) has been chosen as the main
processing unit, as it is expected to have enough performance to
run the YOLO models in real time[40] with additional software.
This also comes with the benefits of being cost-effective, easy to
use, and lots of online documentation. Training of the YOLO
model will likely take place on another machine with more
performance and dedicated hardware like a PC with an NVIDIA
GTX 1070, or one of the servers from the University of Twente.
The Raspberry Pi will be supplied power by a PoE HAT since
Growy has spares and their infrastructure is built for PoE.

2) Controlled lighting setup: From some initial tests and
literature research, the lighting environment can majorly impact
the performance of certain methods like object detection or
similar image processing methods. To avoid this problem and
to try and improve performance, a basic controlled lighting
setup will be built as part of the QA station. This will give
the possibility to control brightness and colour during testing to
try and find the best parameters for image quality overall, and
possibly per seed species if time permits.

The lighting setup will have to be built in a ’closed’ box to
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Fig. 8: Schematic of lighting and camera hardware

remove lighting from the outside environment. The seeding ma-
chine already has multiple of these closed boxes on its production
line for watering the gutters to contain the sprayed water. These
boxes can be easily opened at the top for maintenance. One of
these old boxes will be repurposed for the needed housing of the
camera and lighting setup.

To provide the lighting inside the QA station, regular 24V
RGBW LED strips will be used. The seeding machine already
provides 24V to every module, so using this voltage will be
power efficient and simple with no need for a power converter.
The reason for RGBW LED strips is so that the RGB LEDs
can be used for testing with coloured lighting and to give
better colour contrast for some combinations of seed type and
substrate, and the white LEDs for simple white lighting with
greater efficiency and brightness. The controlled lighting of the
QA station is implemented by using four 200mm strips of 24V
RGBW LEDs with 12 LED chips each. The Strips are placed
with 51mm space in between so that the chips are spread over
a 165x183mm area. This is done so that every position of the
100x100mm area captured by the camera has a light source
coming from every angle and should therefore have no obvious
shadows or dark areas caused by using a single light source for
example. The schematic for the LED placement can be found in
IFigure 8

The brightness of the LEDs is controlled by MOSFETsS driven
by PWM signals as this was cheaper and easier to do than
finding and buying a commercial 24v RGBW LED controller
with a communication interface for a Raspberry Pi. Originally,
the Pi was meant to directly switch the MOSFETs with its PWM
outputs, but it was later discovered that the Raspberry Pi 5 only
has 2 separate PWM channels, and therefore, an Arduino nano is
used as a PWM extension board. The PI sends 4 bytes, one byte
per colour channel brightness, to the Arduino using I12C, and the
Arduino then uses the received values for the PWM duty cycles.
The 24V supply for the lighting in the prototype is a spare DIN-
rail PSU that Growy had left over. Later production versions can
use the 24V used by the seeding machine.

The addition of UV (blacklight) or IR lighting for testing could
also be implemented, but some initial experiments concluded
that UV light does not show any distinguishing information like
fluorescence between the substrate and tested seeds, and the
expectations for IR lighting are the same. So it is a possible area
for further research with for example a multispectral camera.

3) Camera module: To successfully capture the features
of the seeds, 10 pixels per mm (100px/mm?) is assumed to
be enough detail since the smallest currently known seeds are
0.8mm in diameter. If a section of the gutter is captured with the
full width visible, which is on average 105mm, this would result
in a minimal image size of 1050px. For the camera module used
in the prototype QA station, a Raspberry Pi Camera Module V3
has been chosen. This camera supports 4608 x 2592px resolution

photos, 1080p50, 720p100, and 480p120 video output, and handy
features like focus control [41]. The reason this camera module
has been chosen for the prototype is the fact that it is widely used
in the industry, including at Growy, because it is relatively cheap,
and also has lots of support documentation online. The camera,
most importantly, can also capture images and video with high
enough resolution for our assumptions, with resolution to spare in
case the assumptions were on the low side. The Camera Module
V3 is also able to dynamically change its configuration during
runtime with commands from the Raspberry Pi to, for example,
adjust white balancing or focus distance. After the prototype has
been made, later versions can choose a more specific camera to
cut costs or improve performance if needed.

The Camera Module V3 needs to cover the complete width
of the gutter and to leave some additional headroom for imper-
fections with the placement of the camera module, like being
slightly rotated, the camera is placed about 140mm above the
centre of the gutter looking directly down. This results in the
smallest coverage dimension of 125mm with the 41degree lens
of the camera V3, with a maximum of 25mm of it overlapping
between images. The placement of the camera module can also
be seen in

Once the controlled lighting and camera setup is built, some
calibration experiments will be performed to test out different
parameters for the lighting and camera settings like ISO, white
balancing, and focus to find the best image quality with the setup.

B. Image acquisition

The camera captures images at a calculated interval derived
from the conveyor speed of the seeding line so that it captures
a frame for every 100mm that the gutter travels through the QA
station. For a speed of 50mm/s for example, which is the default
speed of the seeding line, this interval would be 2s. The image
is retrieved at full resolution so that the later preprocessing steps
can make full use of the raw data instead of transforming an
already resized image. The metadata is also retrieved from the
camera together with the image. This metadata includes some
very useful data like the exact timestamp of the capture in
nanoseconds or other information for later analysis like the used
configuration, white/colour balancing and sensor temperature.

C. Image processing

Before the captured image is used for seed detection, it
needs to be prepared. For a deep learning model application,
preprocessing is not that extensive and often just comes down
to cropping, resizing, and normalising the images. This is also
the case for this project, as YOLO does not need a lot of
preprocessing and is often pre-trained on the RGB colour space.

Besides the preparation for the YOLO network, the separate
images of a single gutter that are gathered by the camera
setup need to be combined to make a fully complete image,
as determined by the discussed requirements of the QA station.
To accomplish this, the images will need to be stitched together
between taken images or during the pause between gutters. The
relative positions of every frame compared to the complete gutter
are needed to convert the positions of the detected seeds to their
absolute positions in the gutter. Additionally, the beginning and
end of the gutter will be detected in the first and last captured
images of the gutter, respectively, to crop out the unnecessary
pixels that just show the background of the QA station and to
always set the horizontal origin of the seed coordinates on the
gutter edge. This gutter detection can also be used to detect if
there is a gutter present in the captured image at all and to discard
it if not.

1) Undistortion and transformation: The image prepro-
cessing consists of two steps. The first is removing the camera
lens distortion from the images. This lens distortion is minimal
but can be seen at the edges of images when overlapped together
for the total image of the gutter. The second step is applying
a transformation matrix to correct any perspective warping or
rotation introduced by the imperfect camera placement. This



(a) Original calibration image

|
(b) Calibrated image

Fig. 9: Comparison between original captured and transformed
images used by YOLO model. (Not to scale)

transformation matrix also scales the image to the final resolution
used by the YOLO model, which was made dynamic in the
preprocessing. A grid with 10mm spacing is placed in a gutter
under the camera at the same distance as seeds on a substrate,
and some images are captured and saved. These images are
then loaded into MATLAB, and by specifying the 4 corner
points of a 100x100mm square in the calibration images and
using the undistortImage and estgeot form2d functions,
the camera intrinsics and transformation matrix were extracted.
The images cover an approximated 110x110mm area after the
transformation to leave some overlap between images of the
gutter. The resulting calibration is shown in

2) Gutter detection: An additional task the image process-
ing performs as mentioned before is checking the transformed
images for any activity, meaning if there is a gutter present in
the image. Without activity, the software pipeline can discard
the image and wait until the next capture interval. If a gutter is
detected, the horizontal point where the gutter starts can be used
as part of the origin for the seed locations, and the start of the
combined image of the gutter. Once the whole gutter has passed
through the QA station, no activity will once again be detected
and this signifies the end of the gutter to the pipeline. Again,
the point where the gutter ends is saved to end the combined
image. This detection is achieved by two physical black stripes
in the background of the camera inside the enclosure. Once the
gutter passes over these black bars, the software detects a change
in brightness in these parts of the image. Checking where this
change in brightness begins or ends results in the horizontal
points.

3) Image stitching: With the transformed images, a com-
bined image showing the whole gutter can be made and saved
for later reporting and analysis. To construct the combined
image, the latest transformed image is appended to the combined
previous images of the same gutter during runtime. Since the
only difference between the images after transformation is the
horizontal position, there is no need for algorithms like SIFT.
The horizontal difference can be approximated by calculating
the time interval between images using the timestamp metadata
and the conveyor speed.

With this approximation, the final horizontal movement can
be fine-tuned by offsetting the approximation and calculating the
difference of the overlapped areas for multiple offsets. The offset
with the smallest difference is then used for the final horizontal
movement. The latest image is then appended onto the gutter
image using horizontal movement and linear fading on the over-
lapping area. The fine-tuning is needed because it was observed
during the project that the speed of the gutter is not perfectly
constant. The horizontal movement between images is also saved
in the output metadata for that image for later reference and used
for calculating the absolute position of predicted seed positions
later in the software pipeline. Pseudocode for the image stitching
can be found in Appendix [B] (Algorithm [T).

D. Seed localisation

The YOLO deep learning model has been chosen for the
seed localisation method. This decision is mainly based on
generalisation and flexibility.

Unfortunately, the main problem for localising the seeds on
the substrate is the substrate itself. Because the QA station cannot
change the seed positions, it cannot easily isolate the seeds
from the substrate in any images it captures by using a solid
colour background. This problem is also aggravated by the many
different seed species that have different colours and shapes.
Traditional methods would find it hard to successfully detect
the different species of seeds on the substrate without changing
multiple steps in the method between seed species. In contrast,
a deep learning model can learn to generalise the problem with
enough training data. With the throughput of a single seeding
machine in operation aiming to process 400+ gutters per day,
resulting in a rough estimate of 10,000 images with a total
of 2,000,000 seed instances per day, training data should not
be a problem. The initial labelling of the data will be very
time-consuming, but eventually, the labelling could transition to
inference-assisted labelling and only modify wrong predictions.

The second main reason is the flexibility. For traditional meth-
ods, most filters and algorithms have parameters that would have
to be manually configured, like kernel sizes, thresholds, etc...
In the case that a new seed species is added to the production
line, the QA station would need a lot of manual configuration
to support the new seed species. The YOLO algorithm would,
however, only need a few gutters of training data to improve the
detection accuracy of the new species by utilising the already
learned features of previous species as the basic foundation. The
hope is that the model generalises so much that new seed species
will automatically be detected without the need for any new
training data, but this seems unlikely.

For this project, the YOLOv8 models by Ultralitics will be
used [2]. They have different size models (3.2M to 68.2M
parameters) pre-trained on the COCO dataset [42] with 80 trained
classes.

Multiple seeded gutters of different seed species will be
manually labelled. The dataset will be split into a 7:2:1 ratio
between training, validation and test data. With this dataset, the
model will be specifically trained for seed detection.

The detection and localisation of the seeds is implemented in
two main steps. First, the YOLO model predicts seed locations
relative to the given image, and the next step converts the relative
locations to the corresponding absolute position in the gutter
while removing duplicates due to overlap between images.

1) YOLO configuration: YOLOVS provides 5 different pre-
trained models (nano, small, medium, large, extra large) with
parameters counting from 3.2M to 68.2M, and every model
has the option of using any square input resolution while it
is a multiple of 32. Ultralitics also support exporting to many
formats of YOLOVS like PyTorch, TorchScript, ONNX, NCNN,
and more. For this project, a Raspberry Pi 5 is used, so the
format NCNN was chosen as this is a format highly optimised
for embedded platforms and recommended by Ultralytics for
the Raspberry Pi[40]. The use of the NCNN format was also
validated through testing.

The main choices for the YOLO configuration were what
model size and image resolution to use within the limits of the
project while giving the best results. Choosing what model size
and resolution to use for the inferences during runtime is very
important, as this directly impacts accuracy and inference time.
A test to compare the different models and image sizes which
can be found in

The choice made from this test was to use model size nano
with 1280px as the image size. The results and reasoning for
this decision can be found in [section VI and [section VIII From
the validation metrics of the chosen configuration, the best
confidence and IoU (Intersect over Union) thresholds can be
found and then later used for inference in the actual software
pipeline.

Another choice made for the YOLO implementation was the
fusing of seed classes. This means that instead of labelling all
seed types as different classes, the seeds are all labelled as a
single class, and therefore, classification is not performed. The
result is that the YOLO model will only perform object detection.
At the beginning of the project, the assumption was made that




fusing the seed classes would improve the generalisation of the
trained YOLO models. Later on, this decision was validated
through tests and experiments, as shown in

In the software pipeline, the model is loaded during initialisa-
tion, and one inference is immediately performed to ensure the
model is fully loaded and later inference times are as expected.
When a prediction is made for a given transformed image,
the relative bounding boxes are retrieved and passed on to be
localised in the gutter.

2) Relative positions to absolute coordinates: The rela-
tive seed positions from the YOLO predictions are transformed
using the horizontal positions gathered from the image stitching
to the absolute coordinates in the gutter. Because there is some
overlap between subsequent images, some seeds may be detected
twice by the YOLO predictions. These duplicates need to be
removed to not influence the seed density metrics used to validate
the gutters. This is accomplished by checking the IoU (Intersect
over Union)[43] for all seeds in the overlapping areas, and if
this exceeds a threshold, the average position for the two seeds
is used and the duplicate is removed. This software to detect and
remove duplicate seeds has been tested, and the results can be
found in q The pseudocode for this software can be
found in Appendix [B] (Algorithm [2).

Once the gutter has fully passed through the QA station,
one last check is performed to ensure that all seed positions
are within the gutter. Some false positives can occur on images
captured when the gutter is only partly visible and detected in
the background.

E. Data logging and reporting

The gathered data from the seed localisation will need to be
stored and used to calculate the other relevant metrics for the
validation. The metrics that need to be calculated from the seed
positions are a seed count, average density, density map, and the
maximum and minimum of this density map.

Once a gutter has fully passed through the QA station, the
relevant data metrics are calculated and compiled together with
all gathered metadata like the camera configuration. Simple
metrics like seed count and average density are easily calcu-
lated. For the density map and derived minimum and maximum
densities, convolution is used on a black image with white pixels
representing the seeds. A custom kernel is made with a distance
function based on a given radius. The kernel values are divided
by its ’volume’ within the image to compensate for different
radii and image boundaries. From this density map, the minimum
and maximum are gathered and a colormap is made for easy
visualisation. An example of a generated colour map can be
seen in All the calculated metrics can then be used
for validation using a target value and an acceptable deviation.
The metadata with metrics, the total image of the gutter, and
optionally the individual captured images for later training are
then uploaded to cloud storage for later reporting or analysis.

FE Integration

While the QA station mostly operates independently, some
integration with the seeding line is necessary. Eventually, the QA
station needs to communicate with the seeding line to request
both the conveyor speed to determine the image capture interval
and the sown seed type to potentially change the lighting and
camera configurations to optimise the captured images. Growy
communicates with the different modules of the seeding line with
CANopen, a communication protocol designed for embedded
systems used in automation based on CAN. During the project,
there was no time to integrate the QA station with the CANopen
communication of the seeding line, but the preparations have
been made by using a virtual CAN channel. This way, the
integration requirement of reading from the seeding machine
can theoretically be fulfilled. The QA station hosts its own
CANopen[3] node using Lely CANopen[44], with registers for
the conveyor speed and seed type on a virtual CAN channel so
that the software pipeline can access these values during runtime

Fig. 10: Example of a partial colour map to visualise the seed
density of the gutter. The markers are individual seeds, with black
lines dividing the acceptable regions (green) from the rest. A full
example can be seen in Appendix E

with the CANopen for Python library[43]]. The master node of the
seeding line can then be emulated by manually writing the values
to the registers. Once it’s time to integrate the QA station with
the seeding line, the virtual CAN channel can then be replaced
with a physical CAN channel of a CAN HAT for the Raspberry
Pi 5 and Growy would need to add the integration to the master
node of the seeding machine for providing the specified values
to the slave node registers.

Using the seed type information from the (emulated) seeding
line, the software will look up the corresponding configuration
for the camera and lighting setup, as well as the target metrics for
validation in a JSON config file. This configuration information
can then be used to capture the best data from the seeded gutter
and to pass or fail the gutter based on the calculated metrics.

The QA station will also need to signal the conveyor after
the QA station or the seeding machine itself whether the seeded
gutter passes the QA tests. The current prototype of the QA sta-
tion is not capable of sending signals to the seeding machine and,
therefore, fails the initial requirement for using the gathered data
for validation. Because time was limited and other components
of the QA station required more time and effort, the relatively
simple hardware to output 24V signals based on the validation
metrics was not included in the prototype. Growy also has no
current use for the validation output signals as the QA station
prototype was not intended to immediately replace the current
human operators.

V. TESTS AND EXPERIMENTS

This section explains the testing setup for the validation tests
in this report. Every test will explain why the test was performed
and how. The results of the tests can be found in [section VI

A. Image processing

To test and validate the image processing of the project, a
test will take two images captured in a sequence of the same
gutter and combine them after the pre-processing steps using
the implemented image stitching. The conveyor speed during the
image acquisition is also given in this test for the approximation
of the horizontal movement. This will show if the software can
fulfil the requirement of generating a complete representative
image of the gutters. The images include the timestamp metadata
of the captured images and can be seen in

The test results will show the approximated offset between
features in both images and how well they overlap. The same
will be done but with the fine-tuned offset. Afterwards, the two
images will be stitched together and shown as the resulting
image. The test will be successful if there are little to no
imperfections in the image stitching or the overlapping features
using the fine-tuned offset.



Image Nr. 9
Capture time: 12,987,224ps

Image Nr. 10
Capture time: 14,728,976ps

Fig. 11: Two images captured of the same gutter with the
sequence numbers of the images and the capture time in mi-
croseconds

B. YOLO model configuration

This test aims to find the best combination of YOLOv8 model
size and image resolution for this project. The main metrics
used to find the ’best’ configuration were the inference time and
detection accuracy (mAP50 score) of different seeds. This test
will also determine if the QA station’s real-time requirement is
feasible.

Every model size is trained with 3 different image sizes,
640, 960 and 1280px, to find the best accuracy within the
inference time limitation. 640px is the default size for YOLOVS,
and 1280px is double this while also approximating the before-
mentioned assumption of 10px/mm being good enough. 960px
was also included to better understand the scaling and impact of
accuracy and inference time with different image sizes. Once the
models were trained, they were transferred to the Raspberry Pi
5 and exported to the NCNN format to better represent the final
model used.

The maximum theoretical limit of the inference time is 2s
with the standard conveyor speed being S0mm/s and the images
representing 100mm of the gutter, but to accommodate the
runtime of the other software and leave some headroom, an
inference time of 1s will be chosen as the upper limit. Therefore,
any configuration that exceeds this limit will not be considered.
The first inference time will be excluded, as the model is fully
loaded here, which increases inference time, and this will also be
done in the prototype software. While the model size has little
to no impact on the performance of other software components,
image size does have a relevant impact, especially in image
preprocessing. This impact will also be considered when deciding
what configuration to use.

For these tests, a dataset was composed of 131 total images
with 15,094 labelled seeds and 4 different situations (’Bright
and Spicy’ seeds on biostrate, Amaranth’ seeds on biostrate
and 'Mirco Thyme’ seeds on both biostrate and jute). The
val function of the YOLO Ultralytics library was used for the
accuracy metrics.

The models were trained on the University of Twente’s
EEMCS-HPC cluster with a maximum of 1000 epochs. For
every configuration, a combination of the base model and image
size, the average and standard deviation inference time for 100
inferences is saved in ms for a single image of the specified
image size on the Raspberry Pi 5 using the NCNN format for
the model. The mAP50 scores give the mean Average Precision
for the detections made by the trained models using the specified
configurations with at least 50% overlap using IoU. The mAP50
is given per seed type used for training to give better insight into
how different configurations impact specific types. The average
for these mAPS50 scores is also given to give an overall indication
of the precision of the whole model. The reason this was chosen
over the total mAPS0 score is that the seed types do not have
the same data size in the dataset, so using an average is more
representative of the model precision.

C. YOLO model format

To validate the choice of using the NCNN format for seed
detection and the real-time requirement feasibility, a small test
was performed to compare performance and accuracy between
the native format PyTorch and the exported NCNN format.
Because the models are trained in the PyTorch format, the trained
model with the chosen configuration ("nano’ base model and
1280px image size) was transferred to the Raspberry Pi 5 and
locally exported to the NCNN format. Both models were then
tested with the same methods as for the model configuration,
running 100 times to gather the inference time metrics and
separate accuracy tests for every seed type used in the dataset
and combined for the average mAP50 score.

D. Single or multi-class model

Another assumption made during this project is that using a
single classification for all seed types instead of having separate
classes for every different type would help the generalisation of
the models. To validate this assumption, a test was performed
between two trained models using the chosen model configura-
tion to compare accuracy and inference times between separate
classifications between seed types and a single class. The datasets
used are the same as the model configuration test, with all
situations classified as different classes. One model was trained
using the single cls option from the Ultralytics library enabled,
which fused the classes into one, and another with this option
disabled. The models were then again transferred to the Pi and
exported to the NCNN format. The same tests as the YOLO
model configuration and format were run.

E. Generalisation Test

In an ideal situation, the trained model can accurately detect
any seed type on any substrate used by Growy. Realistically,
this is hard to achieve, but the goal should be that the model is
generalised enough that a minimal amount of training data has
to be prepared and further trained on to have accurate results.
Since, during the project, the seeding line only used a few seeds
with different characteristics, an experiment was performed with
the new jute substrate to find out how quickly the model could
accurately predict seeds on this untrained substrate. Another
reason for testing generalisation for a change in substrate is that
this would affect all seeds used in production if the accuracy
lowers for the new substrate instead of a single new seed type.

For this experiment, a model was trained on the dataset
without any images of jute substrate as a baseline, and then
the model was trained further from this baseline with different
amounts of jute substrate images (1-4) to show how much the
data size of a new substrate influences the accuracy of the
models. The test results can then inform how much initial training
data should be further trained on when a new substrate or seed
is used.

F. Seed duplicate detection

To validate the software component responsible for the de-
tection and merging of duplicate seeds, a test was performed
with two sequential images with a large overlap. For this test,
the saved metadata of the predicted seed positions per image
was extracted and again run through the software to find any
problems. To find potential problems, the seed positions are
annotated onto the image with red circles for seeds detected in
the first image, and blue crosses for detections in the second
image.

Once the software has merged the two lists of seeds, the
merged seeds are annotated with black squares on the image, with
unmerged seeds that have no corresponding duplicate between
images marked the same way as before. Looking at the resulting
annotated image can then reveal any potential problems with the
detection and merging of duplicate seeds.



G. Accuracy of system

The previous tests validated separate components of the soft-
ware and prototype, so one system test will also be performed
to validate the whole system.

To prepare for the test, the QA station prototype is mounted on
the seeding machine and calibrated with the methods described
in section IV: The seed type and conveyor
speed variables are manually changed by the emulated CANopen
seeding machine master node. The software is then run until
a fully seeded gutter has passed through the QA station. The
resulting uploaded metadata JSON file, total image, and density
colourmap of the seeded gutter are then retrieved from the cloud
server.

The combined total image is then checked for any abnormali-
ties or artefacts from the image stitching. For the data points used
for validation, the given seed detections are first compared to the
’true’ detections that have been manually performed. This will
give the total amount of missed seeds (false negatives) and false
detections (false positives) together with the precision, recall
and F1 score for the prototype. The other metrics, like the seed
densities, are calculated by hand or using part of the software
with the manually reviewed seed position list. This will give
error differences to see how well the prototype calculates the
validation metrics.

VI. RESULTS

All the test and experiment results from this report will be
explained here with some observations. Discussions about the

results can be found in [section VIl

A. Image processing

The image stitching software tested with two images captured
in a sequence of the same gutter and can be seen in
The image includes the timestamps of the captured images and
results in an interval of 1.741752s. This test used a conveyor
speed of 58.82mm/s as the default speed, resulting in an ap-
proximated offset of 1188 pixels between images. Using the
fine-tuning software, which looks at the difference between the
overlapping areas between images, the resulting offsets becomes
1203px. Looking at you can see that the fine-tuned
horizontal offset is better overlaid than the approximated offset.
The blended overlapping areas also do not show ’ghosts’ in
|Figure 12| and [Figure 13|

Image 9 Feature

Image 10 Feature
Approximated Offset
1188px

Image 10 Feature
Fine Tuned Offset
1203px

Linear blend applied
on overlapping area

Fig. 12: Cropped feature of images with comparison between
approximated and fine-tuned offsets, and final overlaid result

B. YOLO model configuration

The results of the 15 different model configuration tests can be
seen in [Table 1| per base model and image size combination. The
finally chosen configuration is in bold, and inference times that
go over 1s are in italics. As the average inference times increase
with the larger models and image sizes, the standard deviation
also increases for more unpredictable inference times.

Fig. 13: Two sequential images of stitched together

Testing the average execution time of the additional software
(all software without the YOLO inference) with different image
sizes has the following results: 1280px takes 706.1ms (464.8ms
of which is image processing), 960px takes 574.2ms, and 640px
takes 342.9ms.

C. YOLO model format

Both the PyTorch (default) and NCNN (exported) formats
have been tested on the Raspberry Pi 5 to validate the assumption
that performance improves with NCNN and does not significantly
alter precision. The metrics are the same as in the model training
test. shows the result of the comparison. The NCNN
format outperforms the PyTorch format with an ~22.6% average
inference time. The accuracy scores are lower than the PyTorch
alternative in most categories, but with the biggest and smallest
differences only being -0.011 and 0.007, with a difference of
-0.007 on average.

TABLE II: Comparison between YOLO model formats on the
Raspberry Pi 5

Model Format PyTorch NCNN
Inference Average 2040.8 461.9
Time (ms) SD 35.83 9.28

Average 0.977 0.974
Bright & Spicy 0.993 0.990
mAP50 Amaranth 0.962 0.959
Micro Thyme
(Biostrate) 0.982 0.971
Micro Thyme 0.970 0.977
(Jute)

D. Single or multi-class model

The results of the comparison tests can be found in
The inference times are relatively the same, with an average
difference of only 29.2ms. The accuracy scores are mostly better
or equal for the single-class model, with only one situation
performing better for the multi-class model. The best-performing
values are in bold.

TABLE III: Comparison between single class detection and
multi-class classification on the Raspberry Pi 5

Classification Type Single class  All classes
Inference A 461.9 4327
Time (ms) verage . .

SD 9.28 12.01

Average 0.974 0.973

Bright & Spicy 0.990 0.990

mAP50 Amaranth 0.959 0.947
Micro Thyme

(Biostrate) 0.971 0.991
Micro Thyme

(Jute) 0.977 0.965
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TABLE I: Inference time (ms) and mAP50 score of models for different training configurations

Inference

Base model II:i;ie time (ms) mAPS0

Bright Micro Thyme  Micro Thyme

Average SD Average & Spicy Amaranth (Biostrate) (Jute)

640 113.8 29.16 0.911 0.994 0.967 0.852 0.832

Nano 960 251.0 5.97 0.968 0.991 0.953 0.968 0.961

1280 461.9 9.28 0.974 0.990 0.959 0.971 0.977

640 222.3 11.67 0.901 0.994 0.967 0.853 0.790

Small 960 523.5 8.49 0.963 0.990 0.953 0.953 0.956

1280 968.9 16.46 0.978 0.990 0.965 0.982 0.976

640 472.6 33.65 0.905 0.994 0.971 0.841 0.812

Medium 960 1182.4 84.37 0.949 0.989 0.95 0.938 0.918

1280 1968.7  42.07 0.964 0.992 0.959 0.969 0.936

640 830.5 12.93 0.907 0.993 0.967 0.871 0.798

Large 960 2216.4 23.84 0.967 0.992 0.967 0.962 0.945

1280 3970.2 40.20 0.966 0.991 0.958 0.971 0.942

640 1317.9 20.21 0.917 0.994 0.969 0.857 0.846

X-Large 960 3186.2 30.34 0.963 0.992 0.968 0.955 0.936

1280 5390.3 77.92 0.967 0.989 0.968 0.977 0.935

E. Generalisation Test

shows the results of the generalisation test, where
a model is trained without jute data and trained further with
different amounts of jute data.

The inference times between the different models are rela-
tively the same, with the standard deviation increasing slightly
for additional data. The accuracy scores differ only slightly for
the Bright & Spicy seeds and Amaranth seeds, but both the
Micro Thyme seed situations see a major difference between
the introduced data compared to the base model. With the
biostrate, the accuracy lowers at first with a small amount of
data introduced but eventually returns to a similar score with
4 jute substrate images. For the Micro Thyme seeds on a jute
substrate, the score sharply increases for the first introduced data,
and afterwards only increases to its best score with the addition
of 4 jute substrate images. The average mAP50 score is the best
at 4 images due to the large improvement for images with Micro
Thyme seeds on a jute substrate.

F. Seed duplicate detection
The annotated images can be found in In the

overlapping regions of the images, there are 28 seeds fully visible
with 7 partially obscured. As seen in only one fully
visible seed is not detected in both images, and two fully visible
seeds are only detected in one image. The rest of the fully visible
seeds have detections in both images and are correctly merged
into one seed with the average position and size. The partially
visible seeds mostly have only one detection, and therefore are
not merged with other seeds.

G. Accuracy of system
A portion of the combined gutter image and the corresponding

density map visualisation (colourmap) are displayed in F
and [T8] respectively. The full images are in Appendix [A] The
saved metadata JSON file has all data points present together
with all configuration and metadata, but since the metadata
generated by the current prototype software is 35,989 lines long,
this report will not include the entire file. Instead, only the
validation metrics derived from the metadata are presented: Seed
Count is 2790, Average Density is 0.01116, Minimum Local
Density is —1.99 x 1076, and Maximum Local Density is
0.0278. All densities are in seeds/mm?. The average execution
time between images is 1238.8ms.

After manually correcting the seed detections for the *ground
truth’, the following data was calculated: The analysed gutter
had 2811 total seeds, with the prototype QA station having

94 false positives and 115 false negatives. This means the QA
station prototype’s recall and precision are 0.9591 and 0.9663,
respectively, with an F1 score of 0.9627. The ’ground truth’
average density is 0.011244, the minimum local density is 0.0,
and the maximum local density is 0.01477.

The combined image of the gutter in Appendix [&] also shows
artefacts/’ghosts’ in the blended regions where two images are
stitched together.

Fig. 15: First 300mm of the combined image of the seeded gutter
validated in the system test from stitched-together images. Full
figure in Appendix [A]

Fig. 16: First 300mm of the density colourmap of the seeded
gutter validated in the system test. Full figure in Appendix E

VII. DISCUSSION

A. Image processing

Looking at[Figure 12] a glance can tell that the approximated
offset of 1188px for image 10 does not align very well with the

same feature in image 9. With the fine-tuned offset, however,
little improvement can be gained. If done manually, the offset
might differ a few pixels in either direction, but the fine-
tuned offset takes the whole image into account and not just
the focussed feature. The blended feature from both images in
|[Figure 12|and [Figure 13[also shows no ’ghosting’ or issues with
the overlapping of the images.

The image processing, therefore, performs its goal of combin-
ing and finding the offset between captured images.
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TABLE IV: Inference time (ms) and mAP50 score for different amounts of training data of jute substrates

Nr. of jute {nference mAP50
images A o Bright Micro Thyme  Micro Thyme

Average SD Average & Spicy Amaranth (Biostrate) (Jute)
0 433.7 8.57 0.769 0.993 0.959 0.992 0.132
1 469.2 10.04 0.977 0.993 0.962 0.982 0.972
2 437.5 10.49 0.975 0.993 0.956 0.981 0.970
3 432.0 13.48 0.974 0.993 0.959 0.982 0.963
4 4449 13.31 0.980 0.993 0.956 0.99 0.981

(a) Image 1 detections

(b) Image 2 detections

(c¢) Linear blended images (d) Merged seeds

Fig. 14: Visualisation of seed detections from two images captured in sequence (14al and [14b), and the merged result . Red
circles show detections only in[T4a] blue crosses are detections only in[T4b} and black squared are detections from both images that
have merged into one. For clarity, a cropped overlapping section of the images is used instead of the whole image.

B. YOLO model configuration

Using the gathered information, some observations can be
made. First, the base model size has little effect on the resulting
precision while dramatically increasing the inference time. This
is assumed to be because the objects in this project are limited
to very basic shapes and do not need complex models with
many high-level features to detect them. Increasing the image
size has a positive effect on precision, with 1280px reaching
the best average scores for all base models, but it non-linearly
increases the inference time and execution time. The small seed
(Micro Thyme) situations mostly contribute to the increase in
precision for bigger image sizes; as presumably mentioned in
related works, the objects are too small for consistent detection.

For this reason, the 1280px image size was chosen for the final
configuration, and this just leaves the choice of the base model.
Since the base model size almost has no impact on the precision,
the choice was made to use the nano base model for this project
as it is below the inference limit with a relatively consistent
inference time and gives the most performance headroom for
the rest of the software execution time. The average combined
execution time for the software at 1280px with a nano base model
is 1168ms. This means that the total execution time headroom
is 832ms from these tests and can potentially be used with the
QA station for a faster conveyor speed than 50mm/s.

C. YOLO model format

While the NCNN format drastically lowers the inference
time of the model, the precision is slightly lower. This change,
however, is insignificant enough to keep using the NCNN format
for the project, as the largest difference is -0.011 mAP50 for
small seeds on biostrate, with the difference only being -0.003
for the average mAP50 score (-0.3%), which was expected from
initial tests. This difference in accuracy is likely because of
rounding errors after each layer and variable types used in the
model calculations.

Because the software needs to run in real-time, the assumption
and use of the NCNN format have been validated.

D. Single or multi-class model

The model is more generic with fused classes, with multi-class
comparatively having significantly better and worse classes while
the average precision is almost the same. It is also clear that the
multi-class model has even or higher scores in the ’easy’ types,
with the dark seeds on a white background types in this case and
the light seeds on a white background or small dark seeds on
a noisy jute substrate being worse. Surprisingly, the multi-class
one has better inference time, but no clear reasoning can be given
as to why, except for the possibilities that the implementation by
Ultralytics is better suited for multi-class models or that there
was a slight inconsistency in the Raspberry Pi’s background CPU
usage during testing.

Since the project’s goal is to make a very generic model that
can easily detect seeds in new situations with later possible fine-
tuning, the single-class method is indeed the best choice. The
performance difference is also not big enough to impact this
decision, as using the smallest model size has given enough
performance headroom.

E. Generalisation Test

With no jute data, the model is, as expected, not accurate for
any images with jute as the substrate. Training the model further
with only one image for training and one for validation, the
accuracy of jute substrates immediately comes close to the other
situations in the dataset with a 0.972 mAP50 score. Introducing
more jute data into the dataset does raise the accuracy of the
model further, to an average of 0.980 mAP50 with four jute
images in the training dataset. From these results, it looks like
manually labelling two images of a new substrate, one for
training and one for validation, is enough to get initial accurate
predictions for further assisted labelling for the new substrate.
This additional data gathered with assisted labelling can then be
used for further improvements in accuracy.

While these test results show that the model is not general
enough to immediately work with a new background/substrate,



they do prove that little work is needed to get better results. The
hope is that with more different seeds and substrates, the model
will become much more generic.

F. Seed duplicate detection

From the results in |[Figure 14] it appears that the detection
and merging of duplicate seeds perform as expected while also
validating the conversion of relative seed coordinates to absolute
coordinates in the seeded gutter. No duplicate seeds can be found
in the software’s output, and while some seeds only have one
detection and one is not detected at all, this is not an issue with
this software component. If anything, it proves that the software
does not interfere with seeds with a single detection or introduces
additional detections.

G. Accuracy of system

When looking at the full image of the seeded gutter in
Appendix [A] stitching artefacts can be seen in the blended
regions where two images are stitched together. These issues are
caused by two main factors: vibrations in the seeding machine
and poor calibration during preparation. For this project, the
vibrations of the seeding machine are an external problem that
Growy will address later but will stay present for the duration
of the project. The vibrations are caused by pumps placed on
the seeding machine that regularly switch on to regulate the
water pressure. They shake the camera during image acquisition,
distorting the images. The poor calibration was, unfortunately,
caused by hasty preparation and a sub-optimal calibration grid.

These two factors caused two sequential images to not line up
perfectly during the image stitching steps and, therefore, caused
the seed duplication detection not to remove all duplicate seeds.
This improper image stitching caused multiple false positives
regarding system performance. Analysing the results, 93 of the
94 false positives occur at the image seams.
and show that the individual software responsible for the
transformation and removal of duplicates works when calibrated
correctly, so for this discussion, the recall, precision and F1
scores are also calculated when ignoring the 93 duplicates from
the vibrations and calibration issues. This results in improved
precision and F1 scores of 0.9996 and 0.9789, respectively. These
scores show that the current prototype system has a much higher
hypothetical performance if the vibration issue is eventually
resolved and better calibration is done.

The results of this test also fulfil the requirements regarding
data logging, config metadata, minimum recall and precision
scores, seed positions, density metrics, and a density colourmap.
The execution is also far below the limit of 2s (1238.8ms), with
enough headroom for future iterations.

VIII. CONCLUSION

With the project concluded, a conclusion can be made on
the project’s success as a whole. The objective of the QA
station prototype is to show a viable design for automating the
validation and inspection currently done by human operators
while providing data points for reporting and analysis. The
requirements in were made to prove and validate this
design.

They mention that the QA station should be capable of real-
time analysis of 2.5m seeded gutters, ensuring compatibility
with various seed and substrate combinations. The prototype
was required to integrate with the seeding machine for data
exchange and provide detailed outputs for validation of the
gutters and logging, including stitched images, seed counts,
positions, density metrics, and metadata.

The QA system prototype achieves most of these objectives
as demonstrated by the system tests in[section VI It successfully
analyses the seeded gutters in real-time, maintaining execution
times far below the 2-second threshold because of the relatively
small YOLO base model. It operates effectively across various
seed and substrate combinations using a deep-learning model to
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generalise seed detection. It generates data points with a com-
plete high-resolution image representing the gutter by stitching
multiple smaller images together. The data points include detailed
seed counts and positions, density metrics with visualisation, and
system configuration data. This information is accurately logged
for reporting and analysis by saving a JSON file with all data
points to an online database. Additionally, the system achieves
seed detection recall and precision scores exceeding the 0.95
requirement by using the YOLO object detection.

The part of this project and prototype that fails to meet the
requirements is the integration. This stems from the issue that
the QA station has not had the chance to be integrated with the
seeding line during the project and could, therefore, not be used
yet in actual production to try out the designed integration for
validation in production, if only as a tool for a human operator.
While the prototype has not been integrated, preparations have
been made by emulation, and it is expected that the integration
will not cause any issues and can be done with relatively little
time and effort.

While the calculated data points like the density map provide
valuable information and fulfil the requirements, the extracted
minimum and maximum densities from the density map, for
example, are still potentially lacking in being fully used as
validation metrics. These metrics do not, for example, consider
how much area is over the threshold, and the minimum density
in testing always lies close to the border of the gutters instead
of giving important information on the seeds in the rest of the
gutter. This uncertainty of how useful the chosen data points are
comes from the fact that Growy has not yet used automation to
validate the seeding machine and does not know yet what data
points they will eventually use. It is assumed that the current
data points are sufficient to prove the viability of automating the
validation, but later versions will likely use more sophisticated
data points.

Using a Raspberry Pi 5 as the platform for this project did not
hinder the performance or accuracy of the prototype in hindsight
and should suffice in future iterations. Growy might want to
switch to another platform for external reasons or because of a
change in requirements for the QA station. One future limitation
of the Raspberry Pi 5 could be that Growy will eventually
want to increase the conveyor speed of the seeding line, making
the interval between image captures shorter than the current
execution time, demanding higher-performing hardware.

One factor that hindered this project, if only slightly, was that
the seeding line was a constantly used production machine, so
modifications to the prototype hardware could not be instantly
made. Also, the seeding line did not use the jute substrate until
late in the project, which made the earlier choices somewhat
uncertain. Fortunately, it was possible to work around these
issues by planning accordingly.

Since no literature studies were done on using image process-
ing or neural networks to detect different seed types on noisy
backgrounds without the need for classifying them and combin-
ing multiple smaller images to combine the results, this project
and the prototype showed that this method works. Especially
compared to a human operator, the prototype gives valuable data
for evaluated gutters that can be used to validate the gutters better
and analyse the results for potential increased yield.

IX. FUTURE IMPROVEMENTS AND RESEARCH

Some additional improvements or research could be made to
improve future iterations of the automated QA station.

The most obvious one is to integrate the QA station with the
seeding line to see how it performs in the intended environment
with the seeding line. This way, more performance data can be
gathered, and unknown issues or obstacles can be found.

Improving the density metrics used for validation should also
require additional research to provide more useful and reliable
metrics to validate the seeded gutters. This would have to be
done with the data team at Growy to discuss how a gutter would
be validated. One idea is to use local minima instead of the
global minimum of the density map as a validation metric, as



this could better represent seed distribution by focusing on local
minima away from the edges of the map.

Testing the QA station with more seed types with more
extreme sizes, shapes, or colours could also give more insight
into how well the seed detection generalises the seed types
and performs with new extreme seed types. Using more data
for the already used seed types could also potentially increase
performance, so increasing the dataset with existing and new
seed types is an interesting opportunity to try and improve the
current prototype.

During this project, Ultralytics published their new models,
YOLO11[46], that have the potential to increase accuracy and
precision while having the same performance for inference.
Using these new models could be interesting for additional
improvements to the QA station in terms of accuracy and
precision of seed detection.
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APPENDIX A
FULL COMBINED IMAGE AND COLOURMAP OF SYSTEM TEST

Fig. 17: The combined image of the seeded gutter validated Fig. 18: The density colourmap of the seeded gutter validated
in the system test from stitched-together images in the system test



APPENDIX B
PSUEDOCODE

Algorithm 1 Image Stitching Pseudocode

approxOffset = conveyorSpeed * capturelnterval

bestOffset = approxOffset
leastDifference = 1.0
for offset from approxOffset-range to approxOffset+range do
difference = Sum(Abs(imgl[offset:] - img2[:imgSize-offset]))
if difference > leastDifference then
leastDifference = difference
bestOffset = offset
end if
end for
absoluteOffset = RelativeOffsetToAbsolute(bestOffset)

overlapSize = gutterWidth - absoluteOffset
gutterMask = LinearGadientMask(overlapSize, ’leftToRight’)
frameMask = LinearGadientMask(overlapSize, 'rightToLeft’)

originalGutter = gutterImg[:absoluteOffset]
blendedOverlap = gutterImg[absoluteOffset:]*gutterMask + newImg[:overlapSize]*frameMask
leftoverlmage = newlmg[overlapSize:]

gutterlmg = Concatenate(originalGutter, blendedOverlap, leftoverImage)

Algorithm 2 Absolute seed position Pseudocode

imageSeeds = AddHorizontal(imageSeeds, horizontalOffset)
overlapStart = horizontal Offset
overlapStop = gutterLength

for gSeed in gutterSeeds do
for iSeed in imageSeeds do
if (gSeed.x or iSeed.x < overlapStart) or (gSeed.x or iSeed.x > overlapStop) then
continue
if IntersectionOverUnion(gSeed, iSeed) < IouThreshold then
continue

gSeed = MergeSeeds(gSeed, iSeed)
imageSeeds.remove(iSeed)
end for
end for
gutterSeeds += imageSeeds
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