
University of Twente

Master Thesis

Report:
Targetless approach for Automated
Calibration of Multi-Sensor Systems

Author:

Rob Binnenmars (S2322285)

Student, Master Robotics
University of Twente

Supervisor:

Dr. Ville Lehtola

Assistant Professor
Faculty of Geo-Information Science and Earth Observation

Advisor:

Muhammad Affan

PhD Candidate
Faculty of Geo-Information Science and Earth Observation

December 16, 2024



Contents

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Thesis Overview/Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Related Work 5
2.1 Intrinsic Camera Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Extrinsic LiDAR-Camera Calibration . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Combined Intrinsic and Extrinsic Calibration . . . . . . . . . . . . . . . . . 6
2.4 Pointcloud and Odometry Generation . . . . . . . . . . . . . . . . . . . . . 6

2.4.1 Fast-LIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4.2 SC-PGO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Methodology 8
3.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2.1 Handheld Combination . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.2 NTU Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.3 KITTI Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Depth Image Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Handheld Combination Checkerboard calibration . . . . . . . . . . . . . . . 11
3.5 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.5.1 Structural Similairity Index Measurement (SSIM) . . . . . . . . . . 13
3.5.2 Extrinsic Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5.3 Intrinsic Camera Calibration . . . . . . . . . . . . . . . . . . . . . . 16
3.5.4 Intrinsic and Extrinsic Calibration Combination . . . . . . . . . . . 18

4 Results 19
4.1 Checkerboard Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.1 Intrinsic Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.2 Initial values for extrinsic calibration . . . . . . . . . . . . . . . . . . 20
4.1.3 Extrinsics Autocalibration . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1.4 Matlab lidarCameraCalibrator . . . . . . . . . . . . . . . . . . . . . 21
4.1.5 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 SSIM feasibility in calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Calibration Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.1 Extrinsic Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.2 Intrinsic Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.3 Combined Extrinsic and Intrinsic Calibration . . . . . . . . . . . . . 33

4.4 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5 Calibration time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Discussion 35
5.1 Results Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1.1 Checkerboard calibration . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1.2 SSIM Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

i



5.1.3 Extrinsic calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.1.4 Intrinsic calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.5 Extrinsic and Intrinsic calibration . . . . . . . . . . . . . . . . . . . 39
5.1.6 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.1.7 calibration time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.1 Error Effect Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3.1 Initial values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3.2 Lack of Precise Ground Truth for Handheld Setup . . . . . . . . . . 43
5.3.3 Time Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3.4 Generalization to Other Scenarios . . . . . . . . . . . . . . . . . . . 44

5.4 Strengths of the Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.5 Current Limitations of the Approach . . . . . . . . . . . . . . . . . . . . . . 44

5.5.1 SSIM Peaks/valleys . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.5.2 LiDAR Data quality & environment size . . . . . . . . . . . . . . . . 45
5.5.3 Image quality and lighting conditions . . . . . . . . . . . . . . . . . 46

5.6 Potential Improvements & future work . . . . . . . . . . . . . . . . . . . . . 46
5.6.1 Parameter changes per environment . . . . . . . . . . . . . . . . . . 47
5.6.2 Possible Neural Network approach . . . . . . . . . . . . . . . . . . . 47

5.7 Comparison to other Approaches . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Conclusion 49

A Dataset Example images 53
A.1 Handheld combination Images . . . . . . . . . . . . . . . . . . . . . . . . . . 53
A.2 NTU eee 01 Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
A.3 NTU sbs 01 Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
A.4 Kitti Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

B SSIM evaluation Result plots 57
B.1 NTU SBS 01 SSIM Eval plots . . . . . . . . . . . . . . . . . . . . . . . . . . 57
B.2 Kitti SSIM Eval plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
B.3 Handheld SSIM Eval plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

ii



Acknowledgements

Before starting the report, I want to thank my supervisor, Dr. Ville Lehtola. He supported
me from all the way in February when deciding to go for this calibration topic, guiding me
through the development and testing phases and giving me useful and needed feedback from
the very beginning till the very end with writing the report. His weekly meetings helped
me to keep on track with the project as much as possible. I’m truly grateful for all his time
and effort.
Another person I want to thank for his support is, Affan, he acted more like an advisor to
me. He helped me with setting up the initial code for the pointcloud generation, further
refinement with the SLAM part of the Fast-LIO-SLAM, and later on with data capture with
the handheld combination. Besides that, he also gave me useful information and papers to
further the development of the project.
Besides Ville and Affan, I want to also thank my family for their support while doing the
development and writing the report.

iii



1 Introduction

1.1 Context

In recent years, there has been a significant increase in sensor systems that include both
LiDARs and cameras. Examples are self-driving cars, drones, and robots, where these
sensors are needed for understanding and interacting with their environment. A camera
captures texture and color information by measuring light in the visible spectrum, while
a LiDAR sensor operates in the (near) infrared spectrum to measure depth. The data
from these sensors on their own are useful, but by combining the data more things can be
retrieved from them. Cameras are used in detecting and classifying objects using color and
texture, but determining the accurate size and distance of objects with one camera can
be a difficult task. A LiDAR provides accurate depth information but struggles to classify
objects where color and texture are necessary. By combining the data from both sensors,
these systems can achieve better object detection, classification, and tracking, which then
can be used for a whole lot of other algorithms or robots to determine the next task or
movement.

In Figure 1, a pair of depth and camera images is shown. In the depth image, the
lighter the color, the farther away the detected point is. Many objects and structures can
be recognized from both images, for example, the trees and their branches and leaf coverage,
the building and its balconies or walkways, and the car entrance of the building. However,
shadows and finer details like color changes or road markings are not visible in the depth
image, whereas they are easily seen in the camera image. The top of the building is also not
visible in the depth image, but in the camera image, there is more detail. Hence, combining
these two modalities makes it possible to better understand the scene, which is crucial for
many applications.
As an example of a multi-sensor system, the Waymo Jaguar I-Pace RoboTaxi uses nine cam-
eras, four LiDARs, and six radars to perceive its environment, detect, classify, and track
objects like pedestrians and vehicles (Vision, 2021). These sensors are initially calibrated
in a lab setting, but slight shifts over time require recalibration to maintain performance.
Similarly, self-driving cars, drones, and other autonomous systems need accurate sensor cal-
ibration to perform tasks effectively. While the ideal solution is to mount the sensors on a
rigid base to prevent any relative movement between them, this may not always be possible
due to physical constraints. Additionally, sensors might become misaligned after collisions
or impacts with other objects. For these reasons, an automatic recalibration approach that
does not require targets is the most effective solution.
While the camera and LiDAR pairs could be recalibrated in a lab, this would mean that
a person would need to manually move the system back to the lab, which takes time and
money. But what if the sensor system is on a robot in an environment that is not reachable
by humans, like the bottom of the ocean or on Mars for example? Then there needs to be
a system to automatically recalibrate the sensors, since it is not possible to get it back to
the lab easily so this automatic calibration also needs to be targetless.
In some applications, such as 3D environment mapping using sensor systems mounted on
backpacks ( for example Lehtola et al. (2017)), the sensors are used only to capture and
record data, without being involved in any actions or interactions with the environment
during the recording process. However, they still require accurate calibration to produce
accurate digital copies of the environment. If LiDAR and camera data are not properly
calibrated, misaligned depth and color information result in incorrect object localization,
misclassified objects, or degraded SLAM and localization performance. Good extrinsic and
intrinsic calibration is crucial for accurate data reconstruction, mapping, navigation, and
object classification.
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Figure 1: Depth image (bottom) and grayscale camera image (top) pair from the NTU eee1
dataset.

1.2 Problem Statement

Traditional techniques to determine the Extrinsic calibration between a LiDAR and a cam-
era is to find corresponding points in both the camera image and the LiDAR frame. This
can be done by manually selecting the points in both modalities that correspond, but this
takes a lot of time and is not accurate. To improve that an automatic approach was devel-
oped to automatically get corresponding points, but to get accurate matching targets were
used that can both be seen in the lidar data and the camera image. These targets are often
reflective with a known dimension. This resulted in a more accurate calibration, but takes
time to set the targets up. An improvement for this was to develop a targetless approach,
these methods find features like straight edges that can be seen in both.
When the points are matched between both data modalities, an optimization algorithm
is used to optimize the translation and rotation that gives the lowest reprojection error.
So the best transformation that gives the lowest error between the matching points when
reprojecting the points with the transform. More points will give a better transformation
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but it can take more time to determine this transformation, depending on how accurate the
feature matching is.
To fuse LiDAR and camera data, both intrinsic and extrinsic calibration are needed. While
this process can be done manually, an automated approach for multiple sensors that can be
done anywhere is an interesting research topic. The ideal automatic method would perform
both intrinsic and extrinsic calibration without the need for targets, making the process
faster.
In this thesis, we investigate the feasibility of an approach that seeks to achieve exactly
that: automatic targetless calibration of both the camera’s intrinsic parameters and the
extrinsic transformation between the LiDAR and the camera. This is done by making an
image from the lidar data and matching it to the camera image. The calibration process
begins with the collection of Camera, LiDAR, and IMU data, with which the latter two
are used to create a pointcloud through FAST-LIO-SLAM(Kim, 2024a), a combination of
Fast-LIO (Zhu et al., 2022a) and SC-PGO(Kim, 2024b). This results in a dense pointcloud
of the environment, IMU to LiDAR transformation, as well as the corresponding poses of
the IMU within that pointcloud.
Next, the IMU poses are interpolated to get the exact IMU pose when each camera image
is taken. A depth image is generated at the same pose as the camera, using an initial
camera-to-IMU transformation, and intrinsic camera parameters. This depth image is then
compared with the camera image using an adapted Structural Similarity Index Measure
(SSIM) (Wang et al., 2004), eliminating the need for feature detection, which is challenging
due to the different modalities of the sensors.
Once the comparison is made using the SSIM function, the camera-to-IMU transformation
is optimized to obtain the new extrinsic calibration parameters. Then the images are com-
pared again to see if the new transform needs to be optimized further or not. With the
extrinsic calibration complete, the intrinsic camera calibration follows. For this, a distorted
camera image and a depth image made with the same intrinsic parameters, but does not
have distortion, are compared in the same way as the extrinsic parameters with the adapted
SSIM function to get the focal length and distortion parameters.
The idea of this methodology is to remove the need for specialized calibration targets, pre-
calibrated cameras, or a lab environment. However if this methodology is feasible in practice
and what its limitations are, is something that needs to be studied.

1.3 Research Questions

To guide this research, the following question is posed:
Main question: Is it feasible to calibrate both the intrinsic camera parameters
and the extrinsic parameters between a camera and LiDAR in a multi-sensor
system using SSIM to determine how well the resulting images are aligned?
This main question aims to determine if calibration can be achieved by comparing depth and
camera images and to identify the challenges that arise from this approach. A sub-research
question that was investigated was:

• What is the margin of error for intrinsic and extrinsic miscalibration? How
accurate are the results from this approach, and are they comparable with traditional
or current methods?

1.4 Scope

This thesis focuses on the extrinsic calibration between the LiDAR and the camera, as well
as the intrinsic camera calibration. The intrinsic calibration of the LiDAR itself is not
covered.
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The research is limited to calibrating sensor setups that have one camera and one LiDAR
pair. In this research setting the calibration is only done for one pair of the Camera and
LiDAR on the multi-sensors system, while it could have more cameras and lidars only one
camera is used and one LiDAR. For this multiple systems are tested, the NTU viral dataset
with a sensor system on a drone, the Kitti dataset with the sensor system on a car, and the
UT-EOS lab’s own handheld system.
For the Intrinsics only the focal length and the first radial distortion parameter are esti-
mated, the principal point is assumed to be the center of the image, it is also assumed there
is no skew between the XY-axis of the image plane, and the other distortion parameters are
set to zero.
It is assumed the initial guess for the extrinsic transform is not too far off from the ground
truth value, the same goes for the rotation and focal length these values are between cer-
tain bounds, and the initial K1-distortion is set to zero. It is also assumed the error due to
motion in the LiDAR depth image is negligible

1.5 Contributions

The primary contribution of this thesis is developing a novel calibration approach that
addresses both intrinsic and extrinsic calibration of camera and LiDAR systems, without
requiring specialized targets. Unlike other approaches, such as CalibRCNN (Shi et al.,
2020) and CalibNet (Iyer et al., 2018), which only determine extrinsic calibration, this
method covers both intrinsic and extrinsic parameters. Additionally, the method can be
used on prerecorded data of any environment, unlike methods such as (Yan et al., 2023)
and (Kümmerle and Kühner, 2020), which require specific setups.
The proposed approach addresses the issue of sensor movement and allows for recalibration
when needed, even after data has been recorded. This capability ensures that even minor
shifts between the sensors do not make the data unusable, fixing several challenges for
existing methods. However, the feasibility of the proposed method needs to be studied, and
it is expected this approach does have its limitations.

1.6 Thesis Overview/Outline

The next section covers related work, discussing current approaches and the state-of-the-
art for LiDAR-camera calibration. Following that, the methodology section explains what
metrics are used, how the LiDAR to IMU transform is determined, and with that transform
the pointcloud and Odometry are retrieved. Additionally, this section covers, how the SSIM
function is evaluated, which systems and datasets are used for calibration and benchmark-
ing, how the data is preprocessed, and how the intrinsic and extrinsic calibration is done.
The results section presents the outcomes of the SSIM evaluation. Then the results of the
extrinsic, intrinsic, and after that a combination of extrinsic and intrinsic calibration are
shown. After that, the results are compared of this approach with other models on the
same dataset. In the discussion section, the findings and challenges are analyzed, followed
by conclusions in the final chapter.
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2 Related Work

Understanding the current state of research is necessary to identify gaps and potential
areas for further exploration. This section reviews several related papers on the topics of
extrinsic calibration between LiDARs and cameras, and intrinsic calibration of cameras,
both target-based and targetless approaches.

2.1 Intrinsic Camera Calibration

Intrinsic calibration focuses on determining the camera’s internal parameters, commonly
referred to as the K matrix, and correcting lens distortion. Traditional methods often in-
volve using targets, such as checkerboards, to accurately compute these parameters. The
basic principle is to use a known geometric pattern, detect features in the image, and op-
timize the camera parameters to make the observed pattern match the known geometry.
Three well-known early methods that form the basis of modern calibration techniques are
C. Brown’s method from 1971, Brown (1971) Tsai’s method from 1987 (Tsai, 1987), and
Zhang’s paper on checkerboard calibration (Zhang, 2000). These works established the
framework for target-based calibration, which is still widely used today.
In C. Brown’s paper, he introduces a mathematical model to address radial and tangential
distortions in camera calibration. Using a Taylor series expansion, he provided a framework
for quantifying and correcting these distortions. Radial distortion, characterized by effects
like ”barrel” or ”pincushion” distortion, was modeled using coefficients k1, k2, k3, . . ., which
describe incremental deviations from the ideal pinhole projection. Tangential distortion,
resulting from lens misalignment, was addressed with coefficients p1 and p2, which account
for lateral shifts in the image.
Building on concepts like those proposed by Brown, Tsai’s method introduced a systematic
approach to camera calibration, using a simplified pinhole camera model and refining it by
incorporating lens distortion parameters. Zhang’s method further improved this process
by simplifying the setup, allowing calibration to be performed in less controlled environ-
ments while maintaining high accuracy. Both Tsai and Zhang emphasized the importance
of capturing multiple checkerboard views from different angles to enhance the precision of
intrinsic parameter estimation.
However, despite their accuracy, target-based methods such as checkerboards present chal-
lenges. The checkerboards used in calibration are often large and must remain perfectly flat,
making them difficult to transport and set up in various locations. In addition, capturing
enough images with varying orientations requires significant time and effort. Therefore,
targetless methods have emerged as an alternative approach to simplifying intrinsic camera
calibration.
Heikkila and Silven (1997) introduced a calibration method based on planar grids and non-
linear distortion modeling, which helped improve the efficiency and accuracy of calibration.
Later works, such as li et al. (2008), explored vanishing points for intrinsic calibration,
demonstrating that targetless methods could be effective by using specific scene features
rather than physical targets.
Targetless methods do not require physical patterns, offering greater flexibility. However,
they often require specific conditions or features in the environment. For example, Barreto
and Araujo (2005) proposed a method that relies on detecting three or more straight lines
in an image to perform calibration, which limits its applicability to specific scenes. More
recently, deep learning approaches have emerged as a powerful tool for intrinsic calibration.
DeepCalib (Bogdan et al., 2018) uses convolutional neural networks (CNNs) to predict focal
length and distortion parameters from input images, offering greater flexibility but at the
cost of reduced accuracy compared to traditional methods. While these approaches elim-
inate the need for physical targets, they introduce challenges related to data quality and
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network generalization.

2.2 Extrinsic LiDAR-Camera Calibration

Extrinsic calibration defines the geometric relationship between LiDAR and cameras, which
is important for fusing data from these sensors in autonomous systems. Target-based meth-
ods remain a popular and reliable choice for doing this, but they require time-consuming
setups. Reflective targets like checkerboards or cylindrical objects are placed in the environ-
ment, which are visible to both LiDAR and camera sensors. After the calibration process,
these targets must be retrieved, further increasing the calibration time.
Levinson and Thrun (2013) gives an early example of using ground truth reflective targets
for calibration in autonomous vehicles, being the start of more efficient algorithms. In their
approach, highly reflective targets ensured reliable point correspondences between the Li-
DAR and camera, although the manual setup process remained a challenge.
On the other hand, targetless methods aim to automate the calibration process by identify-
ing natural features seen by both LiDAR and camera frames. Ma et al. (2021) introduced
an approach that uses static line features in the environment for calibration, reducing the
need for artificial targets. However, recent advances in deep learning have enabled more
complex targetless methods that use complex features in the scene.
Neural network-based approaches have become increasingly popular for extrinsic calibration
due to their ability to generalize across different environments. CalibNet (Iyer et al., 2018),
for example, is a supervised network that predicts extrinsic parameters by minimizing geo-
metric and photometric inconsistencies between LiDAR and camera data. While promising,
CalibNet requires accurate camera intrinsics as input, adding an additional layer of com-
plexity to the calibration process. Other networks like CalibRCNN (Shi et al., 2020) and
INF (Zhou et al., 2023) have incorporated temporal or density-based features into the cali-
bration process, improving performance, but these methods still have limitations in terms
of available training data and generalizability to other environments.

2.3 Combined Intrinsic and Extrinsic Calibration

Some algorithms address both intrinsic and extrinsic calibrations simultaneously, though
these methods typically rely on targets. For example, Kümmerle and Kühner (2020) uses
a spherical target with ArUco markers to achieve both calibrations and Yan et al. (2023)
employs a checkerboard with additional holes for the same purpose.
Recent advancements have explored neural network-based methods that remove the need
for targets at all. CaLiCa (Rachman et al., 2023) is one of those examples, where a neural
network is trained using LiDAR depth images and corresponding camera images to estimate
both intrinsic and extrinsic parameters. Unlike target-based methods, CaLiCa eliminates
the need for physical objects in the environment, relying instead on image-based features.
However, the key difference of our approach lies in using multiple LiDAR frames to improve
depth image quality so a better comparison between the depth image and camera image can
be done. The code to CaLiCaNet is not open source or available it could not be tested. By
using more dense data from multiple scans, a higher level of precision is aimed to achieve
in both intrinsic and extrinsic calibration compared to single-frame methods.

2.4 Pointcloud and Odometry Generation

To generate depth images from LiDAR frames, a pointcloud must first be created from
the LiDAR data. This step is important for producing accurate depth images that can be
compared to camera images, increasing the overall calibration process. Additionally, the
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pose of the camera relative to the LiDAR must be known, to make the depth images at
or near the camera pose. While the exact LiDAR-camera transform is the primary goal
of the model to determine, the LiDAR-IMU-Init package Zhu et al. (2022a) is used to
estimate the LiDAR-IMU transform. With an initial guess for the IMU-camera transform,
depth images can be generated. The pointcloud and LiDAR odometry are produced using
Fast-LIO-SLAM Kim (2024a), an optimized version of Fast-LIO enhanced with SC-PGO.

2.4.1 Fast-LIO

Fast-LIO Xu and Zhang (2021), or Fast LiDAR Inertial Odometry, is a ROS package that
integrates IMU data and LiDAR messages to determine the odometry. As input, it re-
quires IMU data, LiDAR messages, and the estimated transform between the LiDAR and
IMU. This transformation can be determined using another ROS package, LiDAR IMU init,
which utilizes the motion of both sensors to compute the transformation. Although Fast-
LIO generates a pointcloud and odometry, these outputs may contain errors. These errors
can be reduced through, loop closure and pose-graph optimization with SC-PGO.

2.4.2 SC-PGO

The SC-PGO ROS package Kim (2024b) utilizes the poses and motion-compensated LiDAR
frames generated by Fast-LIO. It uses loop closure and pose-graph optimization to optimize
the poses, resulting in a more accurate fusion of the LiDAR frames and a higher-quality
pointcloud. Loop closure is done by identifying features in LiDAR frames and recogniz-
ing previously visited locations based on these features. The algorithm tries to establish
connections between all frames, and an optimization algorithm is employed to refine the
poses. Each pose generates a local pointcloud, which can be merged into a larger pointcloud
using an additional provided Python script. After analyzing the merged pointcloud, some
erroneous points were identified and filtered out. The filtering process involved examining
the density of points within a sphere of radius 0.5m; points with insufficient neighbors were
removed. Following these steps, a high-quality pointcloud was produced, ready for depth
image generation.
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3 Methodology

In this section, the method to estimate the intrinsic and extrinsic parameters between the
LiDAR and camera pairs is presented. First, the overall approach is outlined, including the
steps required to perform both the extrinsic and intrinsic calibration. Then, the different
datasets used for testing the calibration are described, specifying the sensors involved and
the locations where the data was recorded. Next, the method for creating depth images
is discussed. Following this, the calibration process is detailed, starting with the SSIM
function—how it operates, how it is adapted for this method, and how it is analyzed for
changes in extrinsic and intrinsic values. The SSIM function is then utilized for intrinsic,
extrinsic, and combined calibration of extrinsic and intrinsic parameters.

3.1 Approach

To calibrate the multi-sensor setup several steps are done after each other. But the main
steps to determine the calibration are: gather data, preprocess the data, determine the
extrinsic parameters, and determine the intrinsic parameters. The data used for testing the
calibration are gathered from the internet, the Nanyang Technological University (NTU)
from Singapore has online datasets of drones with multiple lidars and cameras Nguyen
et al. (2022). The Kitti dataset Geiger et al. (2012), is another that can be used, and it
is often used by other papers focused on calibration. But Kitti is made on public streets
with moving objects that can affect the calibration. So the NTU dataset is used to test,
because of minimal moving objects in the data and the ground truth values. Besides the
public dataset, data is also gathered with a handheld sensor setup of the group, and the
data is recorded in the ”Langezijde” building at the university, this is one of the original
sensor setups that this project was aimed at. With this also the checkerboard calibration
can be done and the traditional approach and the approach developed in this thesis can be
compared.
The LiDAR data is used to make a pointcloud and determine the trajectory of the sen-
sor system, with the use of Fast-LIO-SLAM. With the pointcloud and camera images the
extrinsic calibration is done through an iterative approach. With the extrinsic calibration
done the intrinsic calibration can be done, this is done the same way as the extrinsic cali-
bration but only the Focal length and K1 distortion parameter instead of the transform are
optimized. In the traditional approaches first the intrinsics are determined and after that
the extrinsic but for the intrinsic the straight lines, edges, or objects in the depth image
need to be compared to the same lines, edges, and objects in the camera image, for this
first the extrinsic need to be determined and then the intrinsic. While it may be possible to
combine the calibrations into one simultaneous calibration this makes the search space for
the optimizer bigger and possibly too big and together with different step sizes and terminal
tolerances this is not done. This approach is visualized in Figure 2.

Figure 2: Flow chart of the calibration Approach
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3.2 Datasets

To train and evaluate the model several datasets are used, the first dataset is gathered with
our sensor setups, the Handheld combination with one Camera, one IMU, and one LiDAR
mounted on a 3D printed mount. The second dataset is the NTU dataset which has 2
cameras, 2 lidars, an IMU, and some other not-used sensors, these are all mounted on a
Drone, and the footage is taken from an urban environment. The third Dataset is the Kitti
dataset, which is used for benchmarking, the data is gathered with 2 cameras, 1 lidar, and
one IMU all mounted on a car (Volkswagen Passat B6). Each of these datasets differs in
terms of the number and configuration of sensors, are taken in different environments, and
are mounted differently which will result in different movement, stability, and noise. In the
next subsections, the different sensor setups are explained in more detail, including which
sensors are used at which measurement frequency and what kind of environment.

3.2.1 Handheld Combination

The Handheld combinations use a Realsense D435i Intel Realsense (2019) camera which
takes an image at 30Hz, with a resolution of 480x640. The LiDAR is the Hesai pandar XT32
LiDAR Hesai Technology (2021) which takes a scan at 10Hz and as the names suggest has
32 beams. The IMU is the XSensMTI630R IMU XSens (2024) which measures at 400Hz
and measures the xyz-acceleration and rotation around the xyz axis. While the camera
can measure also depth, this is not used since the goal of the model is to compare depth
images made from the lidar not from the camera. The sensors are connected to a 3d
printed handle that is made from plastic, the lidar is on top, the IMU is to one of the sides
of the handle, and the Camera is on the other side of the handle compared to the IMU,
a photo of the combination can be seen in figure 3. The data gathered by this setup is
of the inside of the Langezijde of the University of Twente, the building has 2 levels and
contains areas of vegetation, many offices, hallways, Windows, and a big stairway/seating
area. Example images can be seen in figure 24 in appendix A. There can be seen images
of the staircase/seating area, the shorter hallways with areas of vegetation, and the long
hallway going through the whole building also with areas with vegetation.

Figure 3: Photo of the handheld combination, with the axis for the Hesai Pandar XT-32
LiDAR and Realsense D435i camera.
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3.2.2 NTU Dataset

The NTU VIRAL( A Visual-Inertial-Ranging-Lidar Dataset for Autonomous Aerial Vehi-
cle) dataset, is a dataset made available by the Nanyang Technological University of Singa-
pore. There are twenty datasets, six locations measured three times, and then 2 calibration
datasets. The sensor setup is mounted onto a drone, and the two cameras that are used
are the uEye 1221 LE with a measurement frequency of 10Hz. The LiDARs are two Ouster
OS1-16 gen 1, with 16 beams and a measurement frequency of also 10hz. The IMU is the
VectorNav VN100, which measures 385 times per second, in figure 4 the sensor setup of the
drone is shown. What makes this public dataset useful is that it has well-known extrinsic
and intrinsic parameters between the different sensors, which can be used to determine the
error in the estimation and it has a lot of data for the model to be trained on. In figures 25
and 26 in appendix A, images of the eee 01 and sbs 01 datasets can be seen. In the NTU
eee 01 dataset, the environment has on 3 sides buildings with a repetitive pattern per floor
of the building, and on the 4th side a green space with a tree and some other vegetation. In
the sbs 01 a similar environment is shown but with more glass, less similar buildings, and
more vegetation.

Figure 4: NTU Viral Drone Sensor system

3.2.3 KITTI Dataset

The Kitti Odometry dataset is a dataset made for advancements in autonomous driving
technology, this dataset is used in many other papers to train their neural network. The
Kitti Odometry dataset is measured with Volkswagen Passat B6 in the German city of Karl-
sruhe. The Cameras used are the Point Grey Flea 2 (FL2-14S3C-C), with a measurement
frequency of 10Hz. The images are wide-angle images and produce images with a resolution
of 1242x375, this is much wider than the images from the handheld or the NTU dataset.
The LiDAR that is used in the Velodyne HDL-64E, has 64 beams and also measures at
10Hz. The IMU used is the OXTS RT 3003 which measures at a frequency of 100Hz, which
is lower than all the other IMU but since it is mounted onto a car the possible movements
are more limited than for example a drone, which means a lower frequency may not give a
worse Odometry estimation. How these sensors are mounted can be seen on their website or
in figure 5. This dataset has the same advantage as the NTU VIRAL dataset, a lot of data
and well-known ground truth, but is also used by other papers which means our results can
be used to compare. The NTU dataset was mostly used because of the environment it was
recorded in, which has minimal objects/humans in it that move. In figure 27 in appendix
A, example images of the Kitti dataset can be seen, these images have a different size than
the images of the other datasets, these are wider. In the cars, vegetation can be seen.
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Figure 5: The Kitti sensors setup

3.3 Depth Image Generation

To make the depth image for its associated camera image pair, the pose of the camera image
is needed, as are the intrinsic camera parameters, and the pointcloud of the environment.
A flow chart is shown in figure 6 of how the depth image is made. The Pointcloud and the
Odometry are determined with the Fast-LIO-SLAM with the LiDAR and IMU data. Since
the Odometry is the pose of the body frame (which is where the frame of the IMU), to make
the depth images in the same pose of the camera the transform between the Camera and
IMU is needed, which is optimized for this thesis. Together with the transform between the
LiDAR and the IMU, the LiDAR to Camera transform can be determined.
First, the pose of the IMU is determined at the time when the image was taken, this is
done by making a spline between odometry poses and the time of that pose, then using
the image time to get the Pose. After that, the pose of the camera is determined by the
transform between the IMU and the camera. Then with the pointcloud, pose, and intrinsic
parameters, the depth image is made with the use of open3d. This makes depth images with
the same size and position as the camera image, but the pixel value is the depth instead
of color. For the SSIM comparison, the depth value should be normalized to the same
values as the camera image pixel values, which is between 0 and 255. To determine the
pixel location in the 2D camera image for a given 3D point in the pointcloud, the point’s
coordinates, the transformation matrix T, and the camera intrinsic matrix K are required,
as shown in Equation 1. This equation is used to determine the location of a 3D point (in
the pointcloud) in the 2D depth image. The Lidar on the NTU drone has a maximum range
of 200 meters, the Hesai Pandar XT32 and the Velodyne off the Kitti measure up to 120
meters. To be below 120 meters, the max depth is set at 100 meters, and all values below
that are clipped to this value, these are then converted to values between 0 and 255.

uv
1

 = K ∗ T ∗


x
y
z
1

 (1)

3.4 Handheld Combination Checkerboard calibration

The handheld sensor setup does not have a predefined ground truth, unlike datasets such
as NTU or KITTI, as this is a custom-built sensor configuration provided by the supervi-
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Figure 6: Flowchart og how depth images are made

sor. Consequently, a ground truth must be determined to evaluate the performance of the
automatic targetless calibration approach this project is about. This ground truth calibra-
tion is performed using a checkerboard displayed on a screen or monitor, which serves as a
good alternative when a physical checkerboard is unavailable. Screens are everywhere and
provide the flat surface necessary for calibration.
To do the calibration, data must first be recorded. The screen should be captured from
different angles and positions to ensure accurate calibration. For intrinsic calibration, the
checkerboard pattern is detected in as many images as possible. These detections are then
processed using the OpenCV camera calibration function to calculate the intrinsic matrix
(K-matrix) and distortion coefficients.
Extrinsic calibration is more difficult, as it needs to identify corresponding points in the
camera image and the LiDAR frame. In the camera image, checkerboard corners can be
used as reference points. For the LiDAR frame, the corresponding plane on which the
checkerboard is displayed must be identified, given its dimensions are known. This involves:

• Segmenting the LiDAR frame to identify planes.

• Selecting the plane that matches the screen.

• Determine the sides of the plane.

• Determine the corners, where the sides of the plane intersect.

• Adjusting for the housing around the screen to accurately locate the checkerboard
edges.

Once corresponding corners are identified in both modalities, additional points can be de-
rived. From the four detected corners, a grid of points (with x rows and y columns) is
generated in both the camera image and the LiDAR frame. These points, along with
the previously determined intrinsic parameters and distortion coefficients, are used in the
OpenCV solvePnP function to estimate the rotation and translation (extrinsic).
To enhance the accuracy of both intrinsic and extrinsic calibration, it is essential to detect
the checkerboard and its corresponding plane in as many images and frames as possible.

3.5 Calibration

In this work, an Adapted SSIM function for both intrinsic and extrinsic is used for the
calibration processes. Before detailing the specific calibration techniques, an overview of
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the Adapted SSIM function is provided, explaining its modifications and how it contributes
to the calibration process.

3.5.1 Structural Similairity Index Measurement (SSIM)

Both calibrating the extrinsic and intrinsic parameters is done by comparing depth images
to camera images. This is through SSIM which stands for structural similarity index mea-
surement, which returns a value for how similar two images are. With a value of 1 for
totally similar, 0 for not similar, and a value of -1 for totally anti-similar. SSIM consists
of comparing 3 parts, the luminance, the contrast, and the structure of the image, with a
weighting between the 3 parts. The 3 parts are as follows:

l(x, y) =
2µxµy + c1
µ2
x + µ2

y + c1
(2)

c(x, y) =
2σxσy + c2
σ2
x + σ2

y + c2
(3)

s(x, y) =
σxy + c3
σxσy + c3

(4)

with c3 =
c2
2 .

Where:

• µx is the mean of x,

• µy is the mean of y,

• σ2
x is the variance of x,

• σ2
y is the variance of y,

• σxy is the covariance of x and y,

• c1 = (k1L)
2, c2 = (k2L)

2, and c3 =
c2
2 are constants used to stabilize the division.

The final SSIM index is a weighted combination of these comparisons:

SSIM(x, y) = l(x, y)α · c(x, y)β · s(x, y)γ

If these weights are set to 1, SSIM reduces to the following formula:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(5)

So the luminance compares the mean of the pixel value, the contrast compares the vari-
ance between the pixel values, and the structure uses the covariance between the pixel values
of both images. Since the camera and depth images are made with different modalities, the
luminance value is not applicable here and α is set to zero, which results in l(x, y)α always
being one.

SSIM(x, y) = 1 ∗ c(x, y) ∗ s(x, y) (6)

What do the SSIM value and the individual values for the structure and contrast com-
ponents signify, especially considering that the pixel values in the two images represent
different meanings? In a depth image, the pixel values indicate the distance of a point from
the camera’s pose when the depth image was captured. If the depth is normalized, the
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maximum pixel value (either 255 or 1) represents the maximum depth chosen, while a value
of 0 indicates a distance of zero.
In contrast, the pixel values in a camera image represent intensity as measured by each
color sensor, where a pixel value of 0 corresponds to black and a value of 255 (or 1) cor-
responds to white in a grayscale image. This creates a situation where the interpretations
of black-and-white images are essentially opposite: a point that is far away and the camera
sensors receive little light from that point will have a low pixel value in the camera image
but a high pixel value in the depth image, and vice versa. Therefore, it is expected that a
lower SSIM value indicates a better comparison between the images.
SSIM is calculated for a window of NxN, by default ”skimage” uses a window size of 7. This
window slides over the images and then computes the SSIM for each window, the window
slides by 1 pixel every time, to get the final SSIM value the mean is taken over all the
windows. For our application, bigger window sizes are used to get the matching structure.

SSIM Eval method

We study the feasibility possible to use SSIM to compare the depth images and the cam-
era images, and how precise the extrinsic and intrinsic parameters can be determined, the
SSIM needs to be evaluated. This is done by slightly adjusting one of the parameters from
the Ground truth and then determining the SSIM value. This is done for all 6 degrees of
freedom (X, Y, Z, roll, pitch, yaw) and then also for the intrinsic parameters (Focal length
and K1 distortion parameter) and for different window sizes.

3.5.2 Extrinsic Calibration

Our approach does not work by matching the features, but by comparing the camera image
with the depth image. This is done by changing the Transformation between the IMU and
the Camera and seeing how the SSIM (structural similarity index measurement) changes.
The optimization is done with the optimize-minimize function from ScipyVirtanen et al.
(2020), and several variables can be changed to do the best optimization. This function
needs an objective function to minimize, this function needs to return a single value based
on the input that needs to be optimized. In this approach, this input is the IMU to Camera
transform and the output is the SSIM value. To be less affected by a random bad camera
or depth image, the average SSIM value is taken over several images.
The optimization uses the ”L-BFGS-B” algorithm because it is good for high-dimensional
optimization problems because of its efficient memory use, relying on a limited-memory
version of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. Additionally, with
”L-BFGS-B” constraints on variables can be bounded, allowing for control over parameter
limits, which is useful when optimizing parameters with physical constraints and an ex-
proximate error in the initial guess. Also, as a gradient-based method, it convergence faster
and gives higher precision in smooth optimization landscapes, which is good for minimizing
complex, continuous objective functions.
Now that the solver is chosen, some parameters can be set, for example, how many maxi-
mum iterations or function evaluation, or when is the optimization good enough and how
big should the step size be. Many solvers have their special solver options, sometimes the
default is good bit also often the values need to be determined with trial and error. There-
fore, the optimization process should be designed to stop within a reasonable timeframe,
ensuring it does not run forever while still allowing enough iterations to achieve accurate
calibration. For the function to know when to stop when the optimization is good enough a
parameter can be set called Ftol, when the SSIM value does not improve anymore and it is
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Figure 7: Flowchart of the Extrinsic calibration

below Ftol value it will terminate. Ftol can be determined with the SSIM evaluation plots
and the wanted maximum error, but since the extrinsic calibration won’t be done with 1
parameter but with 6 the precise value is hard to determine. How the optimization works
are shown in figure 7, start with a good initial guess, determine SSIM, and Optimize the
transform till it is well optimized.
After the calibration is done on rectified camera images, the calibration can be tested on
the distorted camera image from the camera. If the extrinsic calibration can be done with
distorted camera images the combination of extrinsic and intrinsic will be easier to do.

3.5.2.1 Loss metric

To see how good the result of the optimization is, the difference between the result and the
ground truth needs to be determined. For the translation, this is the Euclidean distance
between the two poses. For rotations, multiple sets of Roll, Pitch, and Yaw values can
represent the same final rotation, which introduces some complexity in comparisons. Since
rotations are optimized using quaternions, a quaternion distance function is employed to
quantify the difference between rotations.
The quaternion distance function calculates the difference between two rotations in quater-
nions by first normalizing both quaternions, then calculating the absolute dot product and
calculating the arcos or inverse cosine to get the difference in radians. This is then converted
to degrees to get the loss.

3.5.2.2 Calibration Evaluation

To see how well this approach works and which parameters work, some tests need to be
done. To evaluate the extrinsic calibration approach, the ground truth transform is adjusted
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with a random transform between bounds, then the optimizer is run. This needs to be done
several times, at least 10 but more is better. Then the results need to be analyzed to see
what the average error between optimization results and how much it deviates between
runs.
After it works with undistorted images, it can be checked how well the extrinsic calibration
works with distorted images.

3.5.3 Intrinsic Camera Calibration

The pinhole model is foundational in understanding camera internal parameters. Under
this model, the camera’s focal length and principal point are represented as parameters
that define how points in 3D space project onto the camera’s 2D image plane. Specifically,
focal length controls the scaling of the projected image, effectively determining how zoomed
in the image is, while the principal point sets the image center where the camera’s axis in-
tersects the image plane. In equation 7, the K-matrix is stated, containing five variables:
the focal lengths in the X and Y directions, the X and Y components of the principal point,
and the skew term between the X and Y axes of the image plane. However, the skew term
is assumed to be zero due to the quality of modern cameras. The pinhole model assumes
an idealized, distortion-free camera, simplifying the geometry and making it suitable for
calibrating cameras with minor lens distortion. This model allows us to form the intrinsic
camera matrix, which encodes the internal geometry that must be known or estimated ac-
curately for tasks like 3D reconstruction or sensor fusion.

K =

fx S cx
0 fy cy
0 0 1

 (7)

Image distortion describes how certain optical imperfections in the camera lens cause
images to deviate from an ideal, undistorted projection. Two common types of distortion are
barrel and pincushion distortion. Barrel distortion causes the image to appear to ”bulge”
outward at the center, creating a convex effect, while pincushion distortion makes the
image edges appear to pinch inward, producing a concave effect. These distortions can
significantly affect the accuracy of measurements and calibration if uncorrected, as they
alter the geometry of captured images.
In calibration, distortion is modeled using parameters that quantify the deviation from the
ideal pinhole projection model. The radial distortion parameters, typically labeled as k1,k2,
and k3, correct for the bulging or pinching effects by adjusting the radial displacement of
each pixel relative to the image center. These parameters progressively adjust for larger
distortions that occur further from the image center, with k1 often having the greatest
influence, followed by k2 and k3 for finer corrections. Tangential distortion parameters,
labeled p1 and p2, account for asymmetries in the lens alignment, correcting lateral shifts
that cause the image to appear tilted. In equation 8 the way the radial distortion is modeled,
and in equation 9 how the tangential distortion is modded, where r2 = x2u+ y2u. Here xu, yu
are the pixel location of the undistorted image and, xd, yd the pixel location in the distorted
image. Since only the K1 parameter is estimated only the radial distortion is needed and
only the first part of it.

xd = xu
(
1 + k1r

2 + k2r
4 + k3r

6 + . . .
)
,

yd = yu
(
1 + k1r

2 + k2r
4 + k3r

6 + . . .
) (8)

xd = xu +
[
2p1xy + p2(r

2 + 2x2)
]
,

yd = yu +
[
p1(r

2 + 2y2) + 2p2xy
] (9)
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In the calibration workflow, these distortion parameters are optimized to minimize the
error between observed and expected points in the image. Properly determining and cor-
recting these distortions is important to accurately map pixel coordinates to real-world
coordinates, resulting in better precision for tasks such as sensor fusion, 3D reconstruction,
and image rectification.
To calibrate the Intrinsic parameters for the camera, a similar method is used as in ex-
trinsic calibration. But instead of optimizing the transform, the intrinsic parameters are
optimized, these are the Focal length and the K1 distortion parameter. To optimize the
focal length, the camera image stays unchanged, but the depth image is made with different
focal lengths to see which focal length is the best one.
To calibrate the distortion the distortion value can be optimized, then undistort the image
with this value and then use SSIM to compare it to the depth image. The problem may be
to augment the image so that it will have a black border around the image if the distortion
is barrel distortion. Since there is then a black border the SSIM value will be less. In figure
8 the intrinsic calibration flow chart is shown, the image is similar to the extrinsic cali-
bration flowchart, because the calibrations are similar. The depth image is made with the
ground truth extrinsic transform, Odometry, Pointcloud, and the optimized focal length.
The camera image is undistorted with the optimized focal length and optimized distortion
parameter. These are then compared with SSIM and see if the value is good enough or does
not change anymore.

Figure 8: Flowchart of the Intrinsic calibration
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3.5.4 Intrinsic and Extrinsic Calibration Combination

When both intrinsic and extrinsic calibrations perform well separately, they can be com-
bined into a joint optimization process. This approach allows for simultaneous optimization
of both Extrinsic and intrinsic calibration but also increases the search space, making the
process more computationally complex. To reduce this, calibration is conducted in stages:
performing extrinsic calibration first on distorted camera images, followed by intrinsic cal-
ibration. This approach is visualized in the flowchart in figure 2 at the beginning of the
methodology.
The primary goal is to estimate translation, rotation, focal length, and distortion. If certain
parameters are found to be difficult to estimate accurately, calibration can be adjusted to
focus on a subset of the parameters for improved results.
Initial calibration will be conducted using the NTU dataset, while full calibration will be
tested on an additional dataset to assess performance on other datasets. Additionally, re-
sults will be compared to other papers that use the KITTI dataset to evaluate performance
against existing methods.
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4 Results

In this section the results of the feasibility of using SSIM in extrinsic and extrinsic calibra-
tion. First, the SSIM function is evaluated by seeing the effect on the SSIM value when
one degree of freedom is adjusted from the ground truth value. These adjustments will be
for the translation (X, Y, Z), Rotation (Roll, Pitch, Yaw), Focal length, and K1-Distortion
parameter. The calibration tests are done, first for the extrinsic and intrinsic separately
and then in a combined approach. These results will then be discussed in the discussion.

4.1 Checkerboard Calibration

For the Kitti and NTU datasets, the ground truth intrinsic and extrinsic are known but for
the Handheld combination, this is not known and needs to be determined with a different
method. This is done with a checkerboard calibration, where the checkerboard is displayed
on a screen and recorded by the Handheld LiDAR and Camera combination. First, the
intrinsic Camera parameters will be determined, and after that the extrinsic translation
and rotation between the LiDAR and Camera.

Figure 9: Camera image with detected checkerboard

4.1.1 Intrinsic Calibration

To determine the intrinsic calibration parameter values of the camera a checkerboard cal-
ibration method is used. Camera images are recorded of a checkerboard pattern on a
computer monitor. The data recorded consisted of a screen displaying a checkerboard pat-
tern. Images where the checkerboard was successfully detected were identified. Since the
checkerboard was displayed on a screen and with the varying lighting conditions in the
room, the detection was not in every image. However, the checkerboard was detected in
more than 300 images out of the total of 4800 images in the 3 bags. In figure 9 a found
checkerboard is shown. In the checkerboard there is a problem, the algorithm normally
finds the inside corners of the checkerboard with one square border. In the figure it could
be seen there is a double square border, however, in all the images there is a double border
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and the same inner corners are found. The real-size checkerboard, with a one-square border,
could not be found in any of the images.
Three Rosbags were used that contain images from many different angles and positions
with the checkerboard at least once in each corner and in the middle, this is good for deter-
mining the (radial) distortion. After the corners of the checkerboard are found it is given
to the ”calibrateCamera” function of OpenCV together with the physical distance between
points. The results can be seen in equation 10, comparing it to the intrinsic parameters
from what is in the camera info message in equation 11, it can be seen that the values are
not very different from each other. After determining the intrinsics, the reprojection error
was calculated, with a mean value of 0.0769. The reprojection error represents the distance
between the actual image points and the reprojected points, computed using the estimated
intrinsics. On average, the reprojected points were 0.0769 pixels away from their actual
locations. K1 can then be used in equation 8 to rectify the image together with the K
matrix. Here, only the first distortion parameter (K1) is estimated. The other parameters
are not estimated due to the limited number of images and the targetless approach, which
focuses solely on estimating the first distortion parameter.

K =

617.2 0 327.6
0 616.3 238.9
0 0 1

 , Distortion = [0.1179, 0, 0, 0, 0] (10)

K =

611.8 0 326.8
0 611.8 240.6
0 0 1

 , Distortion = [0, 0, 0, 0, 0] (11)

4.1.2 Initial values for extrinsic calibration

Extrinsic calibration can be performed using an automatic approach. However, to assess
the accuracy of the results, the initial extrinsic transforms are manually determined. In
equations 12,13, and 14 the homogenous transforms are stated. Here it was assumed all
the sensors were at right angles from each other and the distances between the sensors were
measured with a ruler.

T LiDAR IMU Derivation =


0 0 1 0
1 0 0 0.08
0 1 0 −0.05
0 0 0 1

 (12)

T IMU Cam Derivation =


0 −1 0 0
−1 0 0 0
0 0 −1 −0.1
0 0 0 1

 (13)

T LiDAR Cam Derivation =


−1 0 0 0
0 0 −1 −0.08
0 −1 0 −0.05
0 0 0 1

 (14)

4.1.3 Extrinsics Autocalibration

The extrinsic calibration between the camera and LiDAR is also done by an automatic
approach. The approach detects the checkerboard in the camera image and then de-
tects the plane of the screen where the checkerboard is shown. From there points are
matched and together with the intrinsic parameters the extrinsic calibration is done using
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the ”cv2.solvePnP” function. The points are matched for as many images as possible to get
an accurate as possible calibration. The resulting transformation can be seen in equation
15, the rotation matrix seems similar to the manually determined approach but the trans-
lation is much bigger. For this, 180 points are matched between the two modalities in a
grid of 20 by 9, for 300 pairs of images and point clouds.

T LiDAR Cam Automatic =


−0.99 0.14 0.02 0.36
−0.02 0.05 −1.00 −0.08
−0.14 −0.99 −0.05 2.86
0.00 0.00 0.00 1.00

 (15)

4.1.4 Matlab lidarCameraCalibrator

The third approach, besides the manual derivation and the Python OpenCV solvep2p
method, was using Matlab Mathworks. Matlab provides a lidarCameraCalibrator app that
loads camera images and LiDAR data to estimate the extrinsic calibration between the
two sensors. This method was explored after the auto-calibration approach was not good
enough, and gave a significant translation error.
In the lidarCameraCalibrator app, several inputs were required, including the size of the
checkerboard, the padding of the housing, intrinsic camera parameters, and an initial extrin-
sic guess. While the calibration process could load the data, it was unable to automatically
detect the checkerboard in the point cloud. Manual annotation was necessary for all 67
checkerboards, which was time-consuming.
Once the annotations were complete, the calibration process provided the results shown in
Equation 16. The rotation estimation was comparable to both the manually derived and
auto-calibration transforms, but the translation was more realistic and aligned better with
the manually derived result. After projecting the LiDAR points onto the camera image and
calculating the reprojection error, an average error of 11.68 pixels was determined.

T LiDAR Cam Matlab =


−0.99 −0.01 0.02 0.0084
−0.02 0.01 −0.99 −0.0277
0.01 −0.99 −0.01 −0.0196
0 0 0 1.0000

 (16)

4.1.5 Comparison

For the handheld combination, three different transforms were determined. To evaluate
which transform is the most accurate, they were used to generate depth images. These
depth images are shown in Figure 10. Upon inspection, the depth image generated using
the automatic transform appears to align with the camera image the least. In contrast, the
images produced using the manually derived transform and the Matlab estimation show
a better alignment with the camera image, but because there is only a small difference
between the two transforms this won’t be visible in the depth images.

4.2 SSIM feasibility in calibration

To evaluate the feasibility of using SSIM to determine the similarity between camera and
depth images, the effect of adjusting one of the calibration parameters on the SSIM output
is determined. The SSIM value was calculated for the six transformation parameters of the
extrinsic parameters, along with the focal length and the K1 distortion coefficient of the
intrinsic parameters. These parameters were varied with predefined ranges, the translation
was adjusted between ±2 meters, the rotation between ±90 degrees, the focal length be-
tween ±50 pixels, and the K1 distortion coefficient between ±1.0. For each parameter, 101
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Figure 10: Camera and Depth images of the handheld combination made with the three
determined transforms.

samples were used within these ranges. The test is done a second time with a tenth of the
first set of ranges, for the same set of images and also for 101 samples to get a finer detail
around an adjustment of 0.
To determine SSIM’s sensitivity to different adjustments, multiple window sizes were used
for SSIM calculation. These window sizes were selected as one less as a power of two,
ranging from 7 to 255, to see which size is the best for which calibration. Furthermore, the
SSIM values were averaged over 50 images from the dataset, providing a reliable estimate
while lowering the impact of possible outliers or random noise in some images.
In figs. 11 to 13 the SSIM evaluations for the translational adjustments along the X, Y,
and Z axes are shown. In these plots, the image coordinate axes of the depth and camera
images are parallel, with only translational adjustments applied along each axis and all
other values are the ground truth value. For each translational direction, there are two
plots: one showing results for large adjustment bounds, and another for smaller bounds, a
tenth of the bigger bounds, centered around an adjustment of zero. The minimum SSIM
values for each window size are highlighted with a dot to highlight the peak value, and to
which the optimizer would optimize. When using large bounds, distinct SSIM peaks can
be seen for larger window sizes. However, these peaks level out as the adjustment bounds
become narrower. The peaks are also not (perfectly) near the zero adjustments.
For the rotational components of the extrinsic transform, shown in figs. 14 to 16, SSIM was
evaluated by rotating the depth image along each of the Roll, Pitch, and Yaw axes while
keeping the image origin fixed. As with translation, two plots were generated per axis,
representing large, and narrow bounds for the rotation adjustment. For the translation,
the peaks leveled out and could not be seen in the right plots, but this was not the case
for the Rotational SSIM evaluation. The rotational adjustments SSIM Evaluation graphs
maintained visible SSIM peaks even for narrower bounds, with these peaks aligning closer
to zero adjustments. Additionally, as with the translation parameters, larger window sizes
resulted in lower SSIM peaks. This indicates an increase in sensitivity for larger window
sizes when dealing with rotational adjustments. However, the biggest window size is not
the best as can be seen in the Pitch adjustment plot (figure 15) the biggest window size has
a lot of peaks and valleys. This means that if the initial guess for the roll axis has a large
error, the optimization may converge to an incorrect minimum SSIM value.
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For focal length adjustments, Figure 17 shows the SSIM evaluation across different window
sizes. In this evaluation, depth images were generated with varying focal lengths, while the
extrinsic pose between the depth and camera images remained at the ground truth value.
In the plot for the focal length, the peaks are not well defined, even when looking at the
left plot with bigger bounds. This highlights a limitation of this methodology
Finally, Figure 18 shows the SSIM evaluation for the K1 distortion parameter across various
window sizes, using raw images from the NTU eee 01 dataset. In this case, only the K1
distortion parameter was adjusted, with each image undistorted according to the adjusted
value before SSIM calculation. As observed with other parameters, larger window sizes
gave lower SSIM values. Here a similar thing for the translation evaluation can be seen, in
the plot with big bounds there is a peak but in the right plot with small bounds, the peak
flattens out. The peak value is also a lot more the the right, with the ground truth value
being -0.30 this will result in the optimizer stopping at around -0.15. While the peak for
the window size of 7 pixels is closer to the ground truth value, the graph is flat for a large
range of values and a small error could set the peak at -0.5.
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Figure 11: SSIM Evaluation X-axis

Figure 12: SSIM Evaluation Y-axis

Figure 13: SSIM Evaluation Z-axis



Figure 14: SSIM Evaluation Roll

Figure 15: SSIM Evaluation Pitch

Figure 16: SSIM Evaluation Yaw



Figure 17: SSIM Evaluation Focal length

Figure 18: SSIM Evaluation Distortion



From these SSIM plots, it can be seen that there are peaks for almost each window size
and axis, these peak values are used to adjust the ground truth values with which the depth
images are made, and the camera images are rectified. All of these tests are also done to
the NTU sbs 01 Kitti and handheld datasets, the plots for these can be seen in appendix
B.
To see the effect of the environment on the SSIM evaluation, the evaluation is also done on
the NTU sbs 01 dataset, since it has the same sensors as the NTU eee 01 dataset, all the
differences come from the environment. In figs. 28 to 30, the SSIM evaluation plots for the
translation can be seen. The graphs look similar to those of the eee 01 dataset, only the
peak values are not as close to the ground truth value, especially for the Y-acis the points
are more off, and for the smaller window sizes. In figs. 31 to 33, the SSIM evaluation for the
rotational axis can be seen. These plots look different than the eee 01 plots for the same
axis, especially for the Roll and Pitch, here the peaks are less defined. The Roll axis has
more noise and for the biggest window size of 255, the peak is at an error of 50 degrees. Also
around the adjustment of zero for the Roll axis, there are 2 peaks with at an adjustment of
zero the SSIM value is higher which is strange. The evaluation for the Yaw-axis is the most
similar to the NTU eee 01 evaluation. In figs. 34 and 35 the Focal length and Distortion
SSIM evaluation is shown, here also can be seen that the Focal length there are no visible
peaks. The Distortion evaluation has now also less defined peaks and for the bigger window
sizes between an adjustment of 0 and positive 0.3 there is a flat spot/peak. In table 9 the
error between the peak value and the ground truth is shown, here can be seen that some
of the errors for the window of sizes 7, 15, and 255 pixels are not good enough to estimate
the rotation and for the smaller two not even for the translation.
The translation SSIM evaluation for the Kitti dataset can be seen in figs. 36 to 38, in these
plots, there is not peak visible even for the left plots with bigger bounds. For the Y-axis
there are some small peaks, but the biggest window size has its peak at 1.25 meters difference
with the ground truth value. This makes it impossible to do the translation calibration for
the Kitti dataset. For the rotational SSIM evaluation, which can be seen in figs. 39 to 41,
the peaks are visible for bigger bounds, but these are less defined in when zooming in on the
0 adjustment. The Yaw rotation has the best defined peaks. For the Intrinsics parameters
SSIM evaluation, which can be seen in figs. 42 and 43, here all the graphs are flat for both
the Focal length and Distortion. The peak value for the Distortion the peaks are at 0 for
the bigger window size, and zooming in per graph a small peak is visible but this peak is
small. This means the SSIM change per value change is small, so the optimizer for the
distortion should have a low-value termination value. So the calibration will not be able to
estimate the translation and the Focal length, the Rotation, and the Distortion parameters
will be difficult but may be possible.
In figs. 45 to 47 the SSIM evaluation for the translational parameters are seen, and in figs. 48
to 50 for the Rotnational parameters. These are more comparable to the NTU dataset, with
some peaks visible for bigger bounds, but when zooming in onto an adjustment of 0 the
peaks flatten out for the translation but for the rotation still visible. For the Intrinsics SSIM
evaluation, in figs. 51 and 52, the graphs look the same as in the Kitti dataset with almost
all graphs flat. This results in the optimizer not being able to determine the translation
and focal length, the distortion will be difficult but the rotation may be possible.
This SSIM evaluation can be considered a calibration process for a single degree of freedom,
where the optimizer seeks the lowest value, corresponding to the peak. Table 1 shows the
error (calculated as the absolute difference between the peak and the ground truth value)
for each of the eight parameters across different window sizes, with the lowest error in
each column highlighted. From this table, it is evident that a window size of 63 results in
the lowest errors for most parameters, and even for those where it is not the lowest, the
difference is minimal. Similar error evaluations were conducted for the Kitti and Handheld
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combination datasets, as shown in Tables 10 and 11. For the Kitti dataset, the optimal
window size varies, with both large and small window sizes yielding the lowest errors for
different parameters. In contrast, for the Handheld dataset, larger window sizes consistently
perform better.

Table 1: Error value for one degree of freedom SSIM-calibration for the NTU eee 01 dataset

Window Size [pixel] x [m] y [m] z [m] Roll [°] Pitch [°] Yaw [°] Focal [pixel] Distortion

7 0.68 0.24 1.44 77.40 1.62 0.54 49.00 0.04

15 0.40 0.24 1.44 0.72 1.62 0.90 30.00 0.12

31 0.40 0.04 1.28 0.36 1.44 0.54 29.00 0.12

63 0.40 0.04 0.05 0.36 1.44 0.72 2.00 0.14

127 0.36 0.10 0.20 0.54 1.26 0.72 22.00 0.16

255 0.44 0.11 0.88 0.72 1.08 0.72 50.00 0.14

In the table 1 the adjustment values of the peaks are shown, with the adjustments for
a window size of 63 a depth and camera image are made which can be seen in figure 19.
The left depth image is made with the ground truth and the right depth image is made
with the optimal values, there is a difference that the optimal depth image is made a bit to
the right but no further difference can be made. There are three camera images, the raw
camera images, the camera image rectified with the ground truth values, and the rectified
with the optimal values. In the raw camera images, there is distortion, which can be seen
that the building is curved which should not be. In the peak value camera image, there is
still some curvature to the building and some parts of the towers on the side are visible,
which is not there in the ground truth camera images and the towers are not visible.

Figure 19: NTU eee01 ground truth and peak depth and camera images, for a window size
of 63
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4.3 Calibration Results

To see if it is feasible to do the combined extrinsic and intrinsic calibration with the use of
SSIM, first, the extrinsic calibration is done separately. The calibration for the individual
parameters is done mostly with the NTU eee 01 dataset, but later on, the other datasets
are also used to compare the results and see the generalization of the approach to different
environments.

4.3.1 Extrinsic Calibration

The extrinsic calibration is performed by varying the initial transform within specific
bounds. When the translation is adjusted, all three axes are modified simultaneously, and
the same applies to the rotation. This ensures that changes occur in 3 degrees of freedom
(3DOF, 6DOF) rather than any other number of DOFs. The augmentation bounds are set
to a maximum deviation of 20 cm for each of the translation axes and 10 degrees for each
axis of rotation. Table 2 presents the average errors in translation (Euclidean distance,
in meters) and rotation (quaternion distance, in degrees), along with their corresponding
standard deviations. Additionally, the mean error for individual axes and the time required
per image pair are added. The table includes four rows, corresponding to four optimiza-
tion types: translation and rotation (6-DOF) or only rotation(3-DOF), each calibration is
done with either distorted or rectified images. When only rotation is optimized, translation
remains unchanged and it is at the ground truth value and is therefore omitted. The dis-
torted images refer to the raw camera images from the dataset, while the rectified images
in the first two calibration types are undistorted using ground truth intrinsic parameters
and distortion coefficients.
The data in the table 2 indicates that the error in translation remains Big. After examin-
ing the initial and optimized values, it was noted that the translation parameters are not
optimized and remain close to their initial values. This is further corroborated by the error
observed for each axis, which consistently hovers around 10 cm. When adjustment values
are randomly sampled within specified bounds using a uniform distribution, the mean abso-
lute error is expected to be approximately half the bound. For instance, with bounds set at
±20cm, the resulting initial error is approximately 10 cm per axis, leading to an Euclidean
distance error of around 17 cm. Given this context, it is clear that the translation values
are not being optimized during the calibration process.
The Rotation does get optimized more than the translation, and the optimized value is for
most tests not around the initial value. The error is better, but it is still not good. From
the error per axis, it can be seen that the pitch has always the biggest error, while the
Roll has the lowest. These calibrations also take some time to do, with the lowest being 54
seconds per image pair, with 50 images this takes a lot of time to do. With more degrees of
freedom, so more search space, the time it takes to find the optimal values is also higher.
Similar results are seen for the sbs 01 dataset, for which the results can seen in table 3.
The translation is still not optimized and has similar values as for the eee 01 dataset, the
rotation is here slightly higher by around 1 degree per test.
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Table 2: Extrinsic calibration results, max augmentation ±20cm and ±10° for the NTU
eee 01 dataset. Euclidean distance for translation and Quaternion distance for rotation,
and also the error per axis for the calibration.

Calibration Type
Translation error [m] Rotation error [°]

Time [s]
X Y Z Roll Pitch Yaw

Translation & Rotation
Rectified

0.21±0.05 0.11 0.08 0.12 7.0±3.4 2.8 4.1 3.4 111

Rotation Only
Rectified

- - - - 6.6±3.6 2.8 4.2 3.2 65

Translation & Rotation
Distorted

0.17±0.05 0.09 0.07 0.10 7.6±3.9 3.1 4.0 3.8 76

Rotation Only
Distorted

- - - - 7.5±4.3 2.8 4.4 4.0 54

Table 3: Extrinsic calibration results, max augmentation ±20cm and ±10° for the NTU
sbs 01 dataset. Euclidean distance for translation and Quaternion distance for rotation,
and also the error per axis for the calibration.

Calibration Type
Translation error [m] Rotation error [°]

Time [s]
X Y Z Roll Pitch Yaw

Translation & Rotation
Rectified

0.20±0.04 0.13 0.08 0.10 8.0±2.4 3.4 5.4 3.9 85

Rotation Only
Rectified

- - - - 7.6±2.7 3.6 3.9 4.1 51

Translation & Rotation
Distorted

0.18±0.07 0.13 0.07 0.08 8.9±2.4 3.3 4.6 6.0 85

Rotation Only
Distorted

- - - - 8.6±3.3 3.2 4.1 5.5 46
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4.3.2 Intrinsic Calibration

From the SSIM evaluation it could be seen that for the focal length, at least on its own, it
would be impossible to do the calibration. For this reason, only the distortion calibration is
tested, and later a combination of focal length and distortion to see if the combination has
a possible effect. In table 4 the intrinsic calibration results can be seen, At least 10 different
tests are done, and the mean and standard deviation from these tests. The distortion is
calibrated for, with the focal length set to the ground truth values, only the K1-distortion
parameter is optimized for, the initial value is now set at 0. The results can be seen in table
4, and the initial and resulting distortion values can be seen in figure 20. The distortion
has an average error of 0.2 with a small variance and it takes an average of 18 seconds per
image pair to do the calibration which is the lowest of all the calibration types. In the
figure, the resulting distortion values all go the the ground truth value but do not reach the
value and stop halfway. Then 10 tests are done where both the Focal length is augmented
and the K1-distortion value is set to zero. The average results can be seen in the last row
of table 4. The error in the distortion is smaller but took a bit longer to optimize, the focal
length error is not added since it just depended on the initial value and is not optimized as
expected. The Initial and resulting focal length and distortion value for each test can be
seen in figure 21, the resulting focal length does change a little more compared to when only
the focal length is optimized but all go down and do not seem to converge to the ground
truth or any other value.

Table 4: Intrinsic calibration results

Calibration Type
Augmentation

[Focal length,K1]
Distortion

mean Time
per image pair [s]

Distortion Only [-, K1=0] 0.2± 0.055 18

Focal & Distortion [±10 K1=0 0.190± 0.027 38

Figure 20: plot of the initial(Cirlce) and resulting(Star) Distortion for different augmenta-
tion bounds
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Figure 21: plot of the initial(Cirlce) and resulting(Star) Focal length and Distortion, (Keep
in mind similar resulting distortion could have different resulting focal length)
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4.3.3 Combined Extrinsic and Intrinsic Calibration

The extrinsic and intrinsic calibration are combined, with the extrinsic calibration on dis-
torted images first and with the wrong initial focal length. After the extrinsic calibration
is done the intrinsic calibration is done with the optimized transform. From the previous
results, it was seen that translation values remained largely unchanged during optimiza-
tion, and the estimated focal length has the same issue. Because of this also the combined
calibration is only done for the rotation and distortion, with GT translation and GT focal
length. These calibrations are done on the four different datasets. The result is the error in
the transform between the imu and the camera and the intrinsic, to get the error between
the LiDAR and Camera, the error between the LiDAR and IMU will need to be added.
But since to know how well this calibration works, and not be affected by error from other
algorithms this is not done.
The results of the calibrations can be seen in table 5 for all the Extrinsic and Intrinsic
parameters. It can be seen that the translation and the focal length do not get optimized
much, since the error is still as big as in their calibration, and does not differ much be-
tween datasets. The Rotation is better optimized for the NTU datasets but this is around
3 degrees difference, but when only the rotation is optimized the values are closer but still
the NTU has a lower average error. The distortion is better estimated when also the focal
length is optimized, especially for the Kitti dataset. The time it takes to do the calibration
is longer when all parameters are optimized than when only the rotation and distortion are
optimized, is around 3 times longer.
In table 6 the results for only the rotation and distortion are shown, the time it takes to
calibrate only these 4 parameters (3 rotation and distortion) is a lot less even less than
half the time. The Rotation results are better but still not good and almost equal for all
datasets but the distortion is worse, especially for the Kitti dataset.

Table 5: Extrinsic & Intrinsic calibration results, euclidean distance for the translation,
Quaternion distance for the Rotation error, and absolute difference for the Focal length and
distortion.

Dataset
Translation

error
[meter]

Rotation
error [°]

Focal Length
error [pixel]

Distortion error
mean Time

per image pair [s]

NTU eee 01 0.19± 0.05 9.1± 4.4 6.1± 3.3 0.262± 0.055 100

NTU sbs 01 0.19± 0.05 8.5± 2.5 5.0± 3.2 0.219± 0.078 87

Handheld 0.21± 0.08 12.0± 3.0 4.3± 3.0 0.146± 0.102 162

Kitti 0.20± 0.05 11.2± 3.3 5.2± 3.5 0.346± 0.060 123

Table 6: Rotation & Distortion calibration results, Quaternion distance for the Rotation
error and absolute difference for the distortion.

Dataset Rotation error [°] Distortion error
mean Time

per image pair [s]

NTU eee 01 8.3± 2.9 0.462± 0.379 53

NTU sbs 01 8.3± 4.4 0.223± 0.088 33

Handheld 9.6± 3.0 0.328± 0.451 50

Kitti 8.6± 1.6 1.690± 0.787 47
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4.4 Benchmark

In table 7, the results of other approaches, these approaches use the Kitti dataset to train
their models. In the table, our results of the kitti dataset calibrations are added. It can
be seen that their results are much better and get better accuracy for the rotation and
distortion for the CaLiCaNet, and all also estimate the translation, which our approach
does not do at all.

Table 7: Benchmark result for our model compared to other approaches

Translation
loss[m]

Rotation
loss [°]

Focal Length
Loss [pixel]

Distortion Loss
code

open source

Ours - 8.6 - 1.690 Yes

CaLiCaNet 0.059 0.154 11.02 0.067 No

Calibnet 0.0434 0.41 - - Yes

CalibRCNN 0.093 0.805 - - Yes

joint-lidar-
camera-calib

Li et al. (2023)
00.0383 0.13 - - Yes

4.5 Calibration time

To determine how many image pairs are required for calibration, it is needed to evaluate the
calibration performance as a function of the number of image pairs and the time taken for
the calibration process. Table 8 shows the results. The average rotation loss decreases as the
number of image pairs increases. The mean time per image pair remains relatively stable,
except when 100 image pairs are used, where the time per image pair is significantly lower,
resulting in a shorter overall calibration time compared to larger sets. For all the previous
tests, 50 images are used, because it gives the best results together with 100 images, but is
less resource intensive.

Table 8: Calibration result and time for a different number of image pair used

Num Images
per Test

Num Test Rotation error [°] Mean Time
per image pair [s]

Mean Time
per Test [s]

1 13 9.5 ± 3.3 47.8 48

5 13 9.7 ± 4.0 61.7 309

10 15 9.6 ± 3.4 58.2 582

25 16 8.7 ± 4.9 41.0 1024

50 33 7.1 ± 4.0 59.0 2952

100 16 7.1 ± 5.4 21.6 2159
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5 Discussion

This section begins by analyzing the results presented in the Results section, following
the same order. Both the positive and the negative outcomes are addressed, along with
potential reasons for any observed errors. Following this, broader aspects of the project
are examined, including error analysis, challenges encountered, limitations of the approach,
and potential areas for improvement. Finally, ideas for future work and extensions of the
methodology are explored.

5.1 Results Discussion

5.1.1 Checkerboard calibration

The ground truth for the Handheld needed to be determined, this was done by recording
data from a checkerboard that is on a computer screen. This was done because initially
there was no physical checkerboard nearby and since a monitor is flat it could be a good
way to determine the intrinsics since screens are everywhere.
The intrinsic calibration resulted in a low reprojection error, and comparing it to the man-
ufacturer values, the result seems to be good, and no issue there. It has an error that not
the correct size checkerboard can be found in any of the images, but only a pattern with a
border of two squares around it. While it is not known why this error happens, it is most
likely the issue of the black border around the checkerboard from the screen and not a white
border.
The Automatic approach for the extrinsic calibration is done by matching the camera points
with points in the LiDAR data, these are matched by finding the checkerboard corners in
the camera image. Then the pointcloud data is processed by first finding the plane, de-
termining the sides of the plane, getting the intersections of the side to get the corners,
adjusting for the housing to get the 4 corners of the checkerboard, and then getting the
same corner pattern as in the camera image. This is a 20 by 9 grid, the same grid as the
checkerboard corners in the image. With these matching points and the SolvePNP func-
tion, the extrinsic calibration was determined. From the results, it could be seen that the
rotation is almost the same as the transform determined by hand with right angles between
the sensors. The translation is not well calibrated with this method, the distances are not
realistic except for the Y translation of 8cm. The reason for this is that the corners of the
plane found in the lidar data are not good enough and this results in all other points being
off. The reason the sides are not detected well is because sometimes a corner is missing or
a scan lines line up so that it misses the edge of the screen. This was tried to reduce to
first expand the corners to the size of the screen, then remove the padding of the housing
but this did not help. Also for good calibration, the points should be matched in as many
poses as possible, but when the sensor setup was rotated around the camera’s Z-axis then
or the checkerboard is not detected in the image, or the plane is not fully recorded. When
one or the other happens the data is rejected and in total there were only one or two data
samples with a rotation around the camera’s Z-axis.
Since the approach in Python did not work, an existing method in Matlab was used. Here
the resulting transform is much better and is much more comparable to the initial derived
transform, but there is still a small error in the translation. For the Hesai Pandar XT-32,
the LiDAR sensor is 46mm above the base, with this translation it does not even get out
of the LIDAR. The reason for this is that when inspecting the reprojected points, several
points are outside the screen, but this can also be because of wrong point selection.
Checkerboard calibration approaches normally work well, however, using a checkerboard
displayed on a screen instead of a physical plane introduced several challenges, which were
not expected. When viewed at an angle, the screen’s edges become visible, making the
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detected plane larger. This caused errors in the data, as it became unclear where the
screen’s sides ended and its front began. Additionally, a speaker located below the screen
occasionally interfered with size detection, being sometimes included in the found plane
and other times not. This would then increase the size and the found points would not be
the correct corners that match with the chekerboard grid. Also, other approaches use the
difference in intensity of returned points when it hits a black or a white square, but with
the screen, there is no visible difference and only some artifacts from the lights in the room.
Furthermore, the screen’s partial transparency sometimes allowed points to go through the
first layer and reflect from a layer behind it rather than from the screen itself. These factors
made it difficult to accurately determine the correct 3D points required for matching with
the camera image and resulted in the bad checkerboard calibration.

5.1.2 SSIM Evaluation

The SSIM evaluation for one degree of freedom at a time for the translational adjustments
can be seen in figs. 11 to 13. In the left plot with the large bounds of ±2meter, there is a
minimum, or at least for the higher window sizes of 63 and above, but these peaks flatten
out when the bounds get smaller. The peaks, highlighted with the dot, are for the adjust-
ment along the X-axis not near the adjustment of zero or the ground truth but more around
an adjustment of plus half a meter. The error for the Z-axis is for small window sizes more
then a meter in the positive direction, then at a window size of 63 almost at zero, and then
for bigger window sizes towards an error of a meter in the negative direction. This is strange
and looking at the image no good explanation was found. With table 1, it can also be seen
that the window size of 63 is the best window size for most of the parameters, a window
size of 31 is also possible since the difference is minimal between the two sizes. This was
for the NTU dataset, but for the Kitti smaller window size would be better to use, which
can be seen from table 10. This is most likely because the depth environment is bigger and
a small window will still contain a lot of data. For the Handheld combination, it is the
other way around, the larger window size is better, this is because the depth environment
is smaller compared to the other datasets, but still here 31-63 is a good window size, since
too big may take too much of a mean value that all the small details are reduced.
The evaluation was done multiple times, and every time similar results were retrieved. The
peaks not being at the ground truth may be because of possible errors in the Odometry,
possible errors in the pointcloud and so in the depth image, or too similar environment that
small adjustments together with other errors set the peak not at an adjustment of zero.
The SSIM value also does not change much for small translational adjustments, which can
be seen in the right plots, this is because the depth image will change a really small bit,
especially when the images are taken in an open environment with objects far away. Then
the image will still look the same and the optimizer will not be able to optimize the trans-
lation. So to possibly better get the translation in an environment with objects closer to
the camera and the LiDAR is needed.
The peaks in the SSIM evaluation for the rotational components of the transform are more
defined, these plots can be seen in figs. 14 to 16. In the evaluation, peaks are visible, even
for the small bounds, especially for bigger window sizes. These peaks are also at or near
an adjustment of 0. The reason the peaks are now more defined than in the translational
SSIM evaluation is that a small adjustment in the rotation gives a bigger difference in the
field of view. The peaks for the roll and pitch are not perfect at 0 adjustments, this may
be of the same errors as with the translational evaluation or slightly wrong ground truth
rotation. Since the peaks for the rotation are more defined and closer to an adjustment of
zero than for the translation, the calibration will also be tested with only the rotational
components.
The SSIM evaluation plot shown in figure 17 should reveal a pattern similar to that of the
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translational adjustment along the y-axis, since, as the focal length determines the distance
between the image plane and the camera sensor, impacting the apparent scale and align-
ment of the image features. Similarly, translation along the y-axis changes the effective
positioning relative to the image plane, comparably influencing the creation of the depth
image. Therefore, adjustments to focal length and y-axis translation both have overlapping
effects. But this is not the case, when looking at the plot it seems that for the bigger
window sizes the peak is well below the ground truth, for the smaller window sizes there is
no defined peak. The best window size for the focal length is also 63, but there is no good
gradient here, and will be impossible to optimize the focal length this way. For this reason,
the focal length was not optimized for on its own.
The Distortion SSIM evaluation, in figure 18, has similar aspects as the other plots with
the biggest window size having the lowest SSIM value. The peaks are not at an adjustment
of zero, the graph of the window size of 63 has its lowest peak close to zero adjustment
while still having somewhat of a peak, but the graph is not as smooth and the peak is
not much different from the other values on the graph. This evaluation is only done with
the NTU dataset images, the K1-Distortion coefficient of the camera is around -0.3, so the
images have barrel distortion. To make the evaluation better, more images from different
distortions and distortion types should be used. Since the scope only uses the K1-distortion
coefficient, and not more the image is not fully undistorted, which can be seen in the corners
of figure 22. Under the subplot title is the SSIM value of that image with the depth image.
The values of undistorted images are almost the same but both a much different than the
raw image ssim value. The optimization will not fully find the undistorted image, but if the
optimization finds the correct value for K1 then the undistorted image will be better than
the raw image.

Figure 22: Image undistortion with all (5) or 1 distortion coefficients

All of these evaluations were also done for the NTU sbs 01, Kitti, and handheld datasets,
which can be seen in section B in the appendix. All of these are made in different environ-
ments and with different sensor systems, except for the NTU datasets which are made with
the same dataset but in different environments. For the evaluation along the translational
axis, there are some slight changes between the datasets but for all the main result is that
some peaks are visible when looking over a large range of adjustments, but when zoomed
in to around the adjustment of zero the gradient of the graph is almost zero. So for all
the datasets, it is impossible to accurately calibrate for the translation with this approach,
it will still be calibrated to see the effect with both a translation and rotation of the cal-
ibration. For the Rotation SSIM evaluation, the graphs for the Handheld evaluation give
similar results as those for the eee 01 dataset, here the peaks are at or close to the ground
truth values and the peaks are still (slightly) visible for the narrow bounds. For the sbs and
the Kitti, the results of the evaluation are worse, here there is more noise in the graphs, the
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peak values have a bigger error or the peaks are less defined even for the bigger bounds.
The focal length has the same results for all the datasets, it does not have a peak and it is
impossible to do the calibration for the focal length on its own. The Distortion evaluation
also looks the same for the different datasets, with a high SSIM value for the big positive
adjustments, for smaller adjustments or negative adjustments the graph is almost flat for
the Kitti and the handheld datasets, for the NTU dataset there is a small dip but the peak
value has some error in it. From all of these results, it can be concluded that the calibra-
tion will be impossible for the translation and the focal length parameters, but it may be
possible to do the calibration for the rotation and the distortion. Per the dataset is that
the calibration will be the best for the NTU eee 01 dataset since it has the lowest error for
the individual DOF for the rotation and also the distortion (with a window size of 63), then
the error for the NTU sbs 01 dataset will be higher, and for the distortion, a bigger window
size should be used. For the Kitti dataset, a smaller window size of 31 should be used for
the rotation, but for the distortion, a bigger window size of 31, the reason is that the Kitti
dataset depth environment is bigger and a small window size will have enough information
but not too much, the distortion window size should be bigger since the distortion is all of
the image and not just a small part of the image. For the Handheld dataset, a window size
of 63 should be used for the rotation and distortion, while a window size of 127 is also not
bad for the rotation. These are calibrations of a single degree of freedom at a time, but
calibration is done for more DOFs.

5.1.3 Extrinsic calibration

The extrinsic calibration was conducted using the NTU datasets, with two approaches: op-
timizing both translation and rotation and optimizing only the rotation. Each approach
was done with both distorted (raw) and rectified camera images. The results can be seen
in Table 2 for the NTU eee 01 dataset and Table 3 for the NTU sbs 01 dataset. The results
show that translation estimation yielded an average error between 17 and 21 centimeters
for the Euclidean distance, and around 10cm error per axis. These values are the average
initial error since the transform is augmented with ±20cm with a uniform distribution, this
results in an average error of 10cm per axis, and with 3 axes the Euclidean distance of
around 17cm. All of this is to say that the translation does not get optimized. The rotation
does get optimized better, the average initial error would be around 5 degrees for each axis
and 8.5 degrees for the combined axis, but the resulting error is between 2.8 and 4.4 for the
NTU eee 01 dataset. This indicates that the rotation does get optimized. From the table,
it can be seen that the pitch is optimized the least, for both the NTU eee 01, the reason
for this is that the pitch seems to have the lowest gradient of the three rotations. It was
attempted to visualize the error and see if the optimizer was stuck in a local minima, but
with the multiple DOFs that are changed, it was not able to be done in a way good way.
For the NTU sbs 01 dataset, the error in the rotation is bigger, especially for the Yaw axis
with distorted images, the mean error is even bigger than the average initial error. This
indicates that the optimizer has more difficulty doing the calibration for the sbs 01. Overall
the optimizer can not optimize the translation, can optimize the rotation a bit better but
the resulting error is still too big. A possible reason for this is that the gradient in the
SSIM graph is much smaller for the translational components compared to the Rotational
components, which makes the optimizer focus on optimizing the rotation more than the
translation.
The calibration process takes a lot of time to do, with many runs exceeding 20 minutes.
This is largely due to the computational demands of repeatedly generating depth images
with updated transforms during optimization. Depth image generation is performed using
Open3D, which does not have full GPU support for the required functions, resulting in
slower performance. Accelerating this process would likely require an alternative method
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for generating depth images from point clouds, but time constraints prevented exploration
of this avenue. Despite the lengthy process, the approach does achieve relatively better
rotation estimation compared to translation.

5.1.4 Intrinsic calibration

The intrinsic calibration was done using the NTU eee 01 dataset, calibrating the distortion
parameter, and later a combination of the focal length and distortion. The focal length was
not done separately because in the figure 17 of the SSIM evaluation for the focal length it
could be seen that it would be impossible to get the correct value for the focal length. Since
to undistort the image uses the focal length, maybe with a combined calibration with the
distortion, it could be possible to do the calibration.
For distortion, Figure 20 shows that all initial K1 distortion values, which were initialized
at zero, optimized towards the ground truth but all stopped halfway. This comes from that
the peak value of the distortion is also not at the ground truth value but at a more positive
value. So the optimizer found the minimum value, but this is the wrong value.
In Table 4 the long time required for intrinsic calibration when both focal length and dis-
tortion were calibrated together can also be seen. While the combined calibration resulted
in slightly lower errors and reduced variance for both focal length and distortion, these
improvements are small and likely because of lower initial errors rather than better opti-
mization.
In Figure 21, the initial and resulting values for both focal length and distortion are visual-
ized. The focal length and distortion are optimized at the same time, but due to differences
in their required step sizes and termination thresholds (Ftol) a problem was found. For
the focal length, a step size of 1 to 5 was found to be suitable, but this step size was
too large for the distortion. Similarly, the Ftol value for focal length optimization was
set to 10−4, while distortion required a much smaller value of 10−25, determined through
trial and error. To balance these differences during combined optimization, a scale factor
of 20 was applied to the distortion updates, which yielded reasonable results. The focal
length changes slightly more when combined with distortion calibration, but the values go
downward instead of converging toward the ground truth. Even with combined with the
distortion the focal length can not be optimized, and another way should be determined to
get a good estimation of the focal length.

5.1.5 Extrinsic and Intrinsic calibration

For the combined Extrinsic and intrinsic calibration two types were done, one with all the
parameters to see how the calibration is affected and then also done by optimizing the
rotation and the distortion only. From individual extrinsic and intrinsic calibration was
seen that the translation and focal length could not be optimized which was also seen in
the SSIM evaluation plots, the gradient was low or did not exist. This was also the result
of the combined optimization.
The results of the calibration where all the parameters are optimized can be seen in table
5, the translation and the focal length do not get optimized, as was expected from their
SSIM evaluations. The error in the rotation is now bigger than when only the rotation is
optimized, it looks like for most of the dataset the optimizer makes the error bigger. The
mean initial value would be on average around 8.5 degrees but these are much higher. The
reason for this can be that the translation and the wrong focal length have a big influence
on the rotation optimization. Or that the combination of all of these parameters changes
the gradients of the graphs for the individual axis so much that it adds new local peaks.
The error in the Distortion is now slightly higher, but the extrinsic calibration is not good
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and this will result in the distortion also being less good. These optimizations were time-
consuming. On average, the calibration process with 50 image pairs took approximately
72 minutes for the SBS dataset and over 2 hours for the Handheld dataset. This duration
was impractical, limiting the number of tests that could be conducted. Table 6 shows the
calibration results when only rotation and distortion parameters are optimized sequentially.
The rotation values across different datasets are relatively similar, and the distortion values
are similar except for the KITTI dataset, which has significantly higher distortion and
variance. This increased variance indicates that the results are not skewed by a single
outlier but are more broadly distributed.
Based on the SSIM evaluation for each dataset, it was anticipated that the NTU me and
Handheld datasets would have the lowest rotation error, followed by the sbs dataset with a
slightly higher error, and the KITTI dataset with the highest error. However, the results do
not show these expectations. Surprisingly, the Handheld dataset shows the largest rotation
error, despite its SSIM evaluation revealing distinct peaks. This discrepancy is likely due
to the optimizer struggling to locate the minimum SSIM value when combining different
rotations, making the optimization process more challenging.
The average rotation error for the two NTU datasets is identical, but the SBS dataset has
a higher standard deviation. This could be because of the less defined peaks in the SSIM
evaluation, which make precise optimization more difficult. Although the KITTI dataset
has the largest overall rotation errors in the SSIM evaluation, its error decreases when
all three rotations are optimized simultaneously. This could be a coincidence, where the
combined optimization brings the peak closer to the ground truth. However, the KITTI
dataset also exhibits the highest distortion error—over one unit higher than other datasets.
This could result from rotation errors influencing the intrinsic calibration.
In conclusion, while this optimization approach shows some potential, it currently has
significant challenges. The calibration results are inconsistent, and the method does not yet
produce reliable outcomes.

5.1.6 Benchmark

This approach is compared to other state-of-the-art methods and this can be seen in table
7, the result for when only rotation distortion is calibrated for is compared to the other
approaches. Here it is assumed there is no error in the LiDAR to IMU calibration, this is
because wanted to compare the result of this calibration and this approach is not dependent
on the Lidar IMU init since it can be done by other methods which may work better for
certain scenarios. It can be seen that our approaches are really bad compared to all other
approaches shown in the table, the translation and the focal length are not stated in this
table because they do not get optimized and only depend on how good the initial guess
would be.
Overall this approach is not good, and can not calibrate to the accuracy that is needed to
be used for other applications. This approach may be a better use to get a general initial
calibration, with which other applications can be used to get the finner calibration. This
is if something is not changed with this approach to make it more accurate, like a better
optimization or a different comparison function than SSIM.

5.1.7 calibration time

The Calibration error and the time it took were tested, to see which number of images was
the best to use in terms of time, accuracy, and resource use. For this test, the Rotation
calibration was chosen because this gave the best calibration results. From table 8, it can
be seen that the accuracy gets better with the number of images used, but also the overall
mean time it takes to do increases. But the time per image does not get lower or much
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higher than with more images, except for 100 images, and there is no clear trend in the
timings. The reason for this is that it just takes a certain amount of time to make the depth
image and then compare it, with some overhead time added. The reason for the lower time
for when 100 images may be the low sample size, together with possibly running on a better
server with better hardware. Most of the tests are run on all of the servers so this should
remove the effect of this on the calibration time or reduce it. But to not use too many
resources, 50 images are used for the other tests because it gave a lower variance, the same
error, and uses fewer resources.

5.2 Error Analysis

To assess the accuracy and reliability of the calibration results, a good error analysis is
needed. Given the complexity of intrinsic and extrinsic calibration processes, multiple
error sources must be examined throughout the calibration pipeline, beginning with data
measurement.

• LiDAR Measurement Noise: LiDAR measurements are influenced by environ-
mental conditions (for example, rain, fog, or dust) and hardware limitations, such as
range and resolution. Additionally, LiDAR beams may pass through transparent sur-
faces (for example, windows) or reflect off mirrors, creating wrong points in the point
cloud. Filtering can reduce but not eliminate these residual errors. The Hesai Pandar
XT32 LiDAR reports an accuracy of ±2 cm Hesai Technology (2021), assumed as
random, rather than a fixed offset for each point. Point cloud refinement minimizes
the cumulative effect of this error.

• Camera Measurement Noise: Camera measurements are influenced by resolution,
lighting conditions, and sensor sensitivity. Low resolution or poor lighting reduces the
accuracy of extracted features, impacting calibration quality. The error varies with
environmental factors and is challenging to quantify directly.

• IMU Measurement Noise: IMU data, impacted by drift and noise, contributes
directly to pose estimation and point cloud generation. Since IMU errors accumulate
over time, they can propagate into calibration errors. The Xsens MTI-630R IMU
introduces rotational and positional errors: 0.2◦ for roll and pitch, and 1◦ for yaw
XSens (2024). However, since we rely on LiDAR-based odometry rather than dead
reckoning alone, the IMU error’s effect on final calibration is minimal.

• Timing Errors: Synchronization of each sensor’s internal clock is crucial for accu-
rate calibration. Although sensors are synchronized to minimize timing discrepancies,
residual timing errors may still impact calibration. For instance, if the LiDAR clock
(used for timestamps in odometry) is out of sync with the camera clock, this mis-
alignment could introduce pose errors in depth image generation. Here, sensors are
assumed to be correctly synchronized.

• LiDAR to IMU Transform Error: Since the odometry is referenced in the IMU
frame, accurate estimation of the LiDAR-IMU transform is critical. This transform is
obtained using the LiDAR IMU Init package, which introduces rotational and trans-
lational errors of 0.7244◦±0.5076◦ and 0.0133±0.0102 meters, respectively Zhu et al.
(2022b).

• Fast-LIO-SLAM Errors: Fast-LIO-SLAM introduces its uncertainties in odome-
try and point cloud generation. Minor errors arise from sensor variations and the
SLAM algorithm’s limitations. SC-PGO mitigates some of this drift, though specific
improvements are undocumented. Fast-LIO-SLAM’s reported drift is approximately
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7 cm over 140 meters (or 0.05%) Kim (2024a). For a handheld distance of 110 meters
and NTU eee 01 at 237 meters, the final drift is around 5.5 cm and 12 cm, respectively.
SLAM post-processing reduces this drift further.

• Motion-Induced Error: Data acquired during motion may suffer from artifacts
like motion blur in camera images and discrepancies in LiDAR scan alignment. Fast-
LIO’s IMU-based compensation addresses this, but any inaccuracies in IMU data
could introduce residual errors.

• SSIM Evaluation Error: During calibration, SSIM optimization may not consis-
tently yield ground-truth values, causing the optimizer to converge on suboptimal
parameters. This is due to SSIM local minima within the parameter space, which
might mislead the optimization, especially when adjusting one axis at a time. How-
ever, these values will be different for different datasets.

• Odometry Error: Depth image generation used spline interpolation to align the
camera pose with LiDAR data capture. Fast-LIO-SLAM publishes poses at 10 Hz,
with drone speeds averaging 0.70 m/s and peaking at 2.9 m/s, for the handheld
combination it is a similar average speed with 0.89m/s and a max of 1.6 m/s. This
results in an average distance between measurements begin 7 centimeters, or at most
30 centimeters, or 9 centimeters, and 16 centimeters for the Handheld combination.
However, it is assumed the splines estimate the pose well and the difference between
the actual pose and the pose resulting from the splines is small and negligible at these
small distances.

5.2.1 Error Effect Analysis

There is an error and most likely this will always happen, but the effect of the error in the
translation, rotation, Focal length, and Distortion needs to be determined. From equation
1 can be seen how the errors in the translation, rotation, and Focal length affect the making
of the depth image and the place of the pixels. With equation 8 the effect of an error in the
K1- distortion coefficient can be seen.
To further analyze the effects of these errors in the pointcloud, translation, rotation, focal
length, and distortion coefficients mathematically, the equations are modified to include
small errors in the respective parameters. These errors are denoted as ∆ for each parameter.
The intrinsic matrixK and the transformation matrix T are affected by errors in focal length
(∆f) and extrinsics (∆R, ∆t). The modified equation becomes:

uv
1
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For radial distortion, an error in the distortion coefficient k1 is expressed as k1 +∆k1.
The equations then become:

xd = xu
(
1 + (k1 +∆k1)r

2
)
, (19)

yd = yu
(
1 + (k1 +∆k1)r

2
)
, (20)

All of these equations can be combined further but this gives a complex long equation
that is too hard to read and understand and will not be useful for this reason this is not
done any further. But the effects of errors are as follows:

• Pointcloud errors(∆Px,∆Py,∆Pz): are the errors in the points due to errors in the
sensor data, or due to the pointcloud generation.

• Translation errors (∆tx,∆ty,∆tz) and Rotation errors (∆R): Affects the match-
ing of the location of the 3d point in the 2d image, leading to changes in u and v.

• Focal length errors (∆f): Introduce scaling effects, altering the pixel positions
proportionally.

• Distortion errors (∆k1): Affect the radial warping of the image, introducing non-
linear pixel displacements.

5.3 Challenges

Throughout the project, there were several challenges, many coming from tasks taking
longer than anticipated in the exploration and planning phases, but also from things just
not working out as expected and needing to find a possible alternative.

5.3.1 Initial values

This method has as input a camera image, a pointcloud, odometry, and an initial set of
values for the extrinsic and intrinsic parameters. From the results, it could be seen that
the translation and the focal length could not accurately be calibrated, this resulted in
only calibrating for the rotation and translation. This means the initial values for the
translation and focal length won’t be updated and need to be set as best as possible. For
the Translation, this can be done by just measuring it with a ruler or a measuring tape, but
for the focal length, this is more difficult. The best approach for this is to use the default
parameters of the camera’s datasheet if it is available.

5.3.2 Lack of Precise Ground Truth for Handheld Setup

The handheld configuration does not have precise ground truth data, making it challenging
to determine the quality of the calibration. The checkerboard calibration was done, here
the intrinsic parameters were determined well, but the extrinsic contained some errors,
especially in the translation. This makes it difficult to determine how big the error in
the extrinsic calibration for the handheld combination is. The other datasets were chosen
because they have good ground truth values with which the error in the calibration can be
determined.

5.3.3 Time Management

The initial plan was to perform both intrinsic and extrinsic calibration with a neural net-
work, needing depth images derived from point clouds. Developing the code to make these
images took longer than expected, in addition to unforeseen bugs. Additionally, switching
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from the initial sensors setup to a handheld setup introduced further complexities, as the
new LiDAR model required adjustments in the point cloud generation software due to the
initial setup’s different LiDAR. This recalibration method ultimately shifted toward using a
Scipy optimizer with a structural similarity index (SSIM)-based loss function. Though depth
image generation is still necessary, this process—originally planned as part of preprocessing
alone—lacks GPU acceleration, slowing calibration due to the computational demands of
CPU-only depth image processing. The initial neural network approach is further detailed
in section 5.6.2 below.

5.3.4 Generalization to Other Scenarios

This method gave similar results to all the datasets used, this can be seen from table 5 and
table 6. While the results are the same, the evaluation between the datasets is different,
especially for the Kitti dataset. But these are just a small set of all possible environments.
From earlier testing with an older version of the handheld combination worse pointcloud
and images were recorded, this resulted in a bad calibration, so this approach does need to
be tested more to see how it reacts to different environments. For a better understanding
or validation if this approach works for other situations would be to do the calibration
for the same sensor setup for different environments. This is done with the NTU sensor
system where 2 datasets are used, While the calibration results are similar, the graph of
the SSIM evaluation for one DOF is different, especially for the rotation. Where in the sbs
Roll there are multiple peaks instead of one peak as in the eee dataset. This indicates that
the SSIM function needs to use different parameters for the calibration like window size
and possibly the weight between the SSIM terms. Another test that should be done is to
do the calibration for the same environment, but different sensor systems to see the effect
of different sensors, and placements on the approach. While all of these are good, first the
accuracy of the approach should be done to be able to analyze the effect of the environment
and sensors.

5.4 Strengths of the Approach

This calibration approach, if it works as expected, removes the need for a lab environment
with predefined calibration targets or several static features, which are typically required
for reliable results. Instead, it is doable in diverse environments, allowing calibration with
arbitrary numbers of cameras and LiDARs, making it robust for various configurations
without extensive environmental setup.
Another strength of this approach would be its ability to also estimate intrinsic parameters,
which sets it apart from many other automatic calibration methods. Most existing methods
still rely on a controlled lab environment with specialized equipment to determine these
parameters, such as the focal length, principal point, and distortion, which can be both
time-consuming and resource-intensive. However, this method removes the need for such
constraints, giving a more flexible and practical alternative.
But with the current accuracy of this approach, it to be used for an initial estimation of the
parameters, which then can be used by other approaches for a more accurate calibration.

5.5 Current Limitations of the Approach

The approach’s accuracy relies on having the same structures and changes in both the
images of the different modalities. Certain image features, such as shadows, wall textures,
and road markings, which are visible only to camera sensors, can reduce calibration accuracy
because these are not seen in the depth image. This method also relies on IMU data to
generate odometry and point clouds, which, while useful, could introduce errors if the IMU
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is removed or reduces alignment, affecting both odometry and point cloud quality and
reducing the calibration accuracy.
Another limitation of this approach is the significant time required to perform the calibration
process. As can be seen in the results section, calibrating a single image pair can take over
50 seconds. This means for a dataset of 50 images, the total calibration time exceeds 40
minutes, which is a lot of time. With a GPU this would be able to be done instantly.
This long processing time makes the approach impractical for real-time applications, where
calibration would need to occur multiple times per second or at least once every second to
keep up with dynamic environments or changing conditions.
Further limitations are that the SSIM function does not have its peaks at the ground truth
values, the quality of the LiDAR data and the effect of the environment, the quality of the
images, and the effect of the lighting and how that results.

5.5.1 SSIM Peaks/valleys

The valleys or peaks for the minimizer are not (always) at an adjustment of 0, but at a value
slightly to one of the sides, these peaks are also not all at the same adjustment value for the
different window sizes. Some of the possible reasons for this are that the ground truth value
is not perfect and the found adjustments are the ground truth, but looking at the depth
images made with peak values these seem not correct. The input data, the camera image,
or the lidar data with imu, contain noise or errors that result in the peak adjustment giving
a lower SSIM value. The possible LiDAR/IMU error is then a more likely reason, these
are used in other processes, that can add errors, to make the pointcloud and the odometry
and this results in a wrong depth image. Another possibility is multiple similar features
in the depth and/or camera image that are ”matched” wrongly, the environment the NTU
dataset is recorded in, and the building is very similar when a small change in translation is
done the building still looks the same. These peak values are used to make a depth image
and rectify the camera image, these can be seen in figures 19, 44, and 53. Inspecting these
images, camera and depth images made with the ground truth values match the best, this
means the error is not in the ground truth values. All of these other possibilities together
with issues specific to each dataset, environment, effects of different window sizes, and noise
have combined that the peak values are slightly off and not at an adjustment of zero.

5.5.2 LiDAR Data quality & environment size

The accuracy of the calibration process is significantly affected by the quality of the data
and the depth field of the environment in the images, as both impact the resolution and
comparability of LiDAR and camera data. For LiDAR, the use of all available data to
create a dense point cloud reduces the part of the issues. However, this approach cannot
be applied to camera images, where pixel size plays a critical role.
Each camera and depth image pixel corresponds to a specific area in the environment. When
the environment is far from the sensors, each pixel represents a larger area, making finer
details harder to resolve or not visible. Conversely, in closer or smaller environments, pixels
represent smaller areas, allowing for greater detail. This relationship means that translation
changes result in larger pixel shifts in smaller environments than in larger ones. Similarly,
small rotations cause more noticeable changes in smaller environments compared to larger
ones.
The same principle applies to intrinsic parameters such as distortion and focal length. When
changes in these parameters result in changes smaller than the pixel size, the calibration
process struggles to optimize them effectively. This limitation can be seen in datasets like
NTU and KITTI, which are captured in large outdoor environments. The handheld dataset,
while taken indoors, also partly has the same issue, the long hallways of the building do
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affect it together with the lower pointcloud and image quality. The coarse granularity of
pixel correspondence in such environments may contribute to lower calibration accuracy
compared to other methods.
Overall, the accuracy of this calibration approach depends on the ability to capture the
environment at a high resolution, where each pixel corresponds to a small area. Improved
image and data quality are essential for achieving better calibration results.

5.5.3 Image quality and lighting conditions

In addition to LiDAR data quality, the accuracy of calibration depends heavily on image
quality and the lighting conditions in the environment. As discussed in Section 3.5.1, it is
expected that pixel intensity decreases with increasing distance due to reduced light reaching
the camera sensor. However, this assumption does not always hold, especially in scenarios
with significant external light sources, such as sunlight or artificial lighting. Reflections
from bright surfaces, such as white walls or garage doors (common in the KITTI dataset),
further complicate this relationship.
The approach was tested and maybe optimized for the NTU dataset which was recorded in
an area, where at the time of recording, there was less sunlight or reflecting surfaces that
affected the accuracy. This is one of the reasons the accuracy is better on the NTU dataset
than on the Kitti or the Handheld one.
Lighting challenges also affected the ground truth calibration for the handheld dataset.
Of the 4800 images captured, only in 300 images the checkerboard pattern was detected,
despite the checkerboard being present in most of the images. Issues like image blur and
poor corner detection caused by lighting variations significantly reduced the usable data.
These issues negatively impacted calibration accuracy. Future efforts could be improved
by preprocessing camera images to minimize these lighting effects. Techniques such as
denoising, histogram equalization, or adaptive thresholding could enhance image quality and
improve the robustness of calibration under varying lighting conditions. This preprocessing
step would be particularly valuable in scenarios with reflections and inconsistent lighting,
ultimately leading to better calibration accuracy.

5.6 Potential Improvements & future work

Future improvements are to make the approach work, this can be done by using different
optimizers, using different parameters in the SSIM function that give a better gradient, or
maybe even using a different function to compare the images to SSIM. One of these other
functions is to use a neural network to determine the similarities between the two images,
but for this, a whole neural network needs to be trained and tested for different environ-
ments. But then the better option is to remove the optimizer and make the neural network
also do that if it is possible. Another future work is to make the depth image generation
faster and work with the GPU, to reduce the load on the CPU and instantly make the
depth images. With a faster calibration, more things could be tested, and even make the
model work in a real-time application if the calibration accuracy also improves.
Another improvement is to slowly increase the number of degrees of freedom for the opti-
mizer, with one degree of freedom it can be optimized with a small error which could be
seen from the SSIM evaluation. Then increase from one DOF to two DOF, for example
only x and y translation, or only yaw and either the roll or the pitch, and see how that
affects the calibration. From there on a DOF can be added to see if it still works. While
this may still not work, this could identify the current problem with the calibration better.
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5.6.1 Parameter changes per environment

Currently, the same parameters are used for all environments, but the approach could be
refined by using specific parameters for specific environmental conditions. For instance,
the optimal window size in the SSIM function might vary depending on the relationship
between pixel size and the size of features in the environment.
In environments where each pixel corresponds to a small area, but the features within that
area are relatively large, a larger window size would be better to capture enough infor-
mation. On the other hand, in environments with smaller features, a smaller window size
might be more effective to ensure finer details are preserved.
Another parameter worth adjusting is the weighting between the components of the SSIM
function. Currently, the luminance term is set to 0, with both contrast and structure terms
weighted equally at 1. Exploring different weightings for these components could reveal
combinations better suited for specific environments or camera resolutions. For example, in
high-resolution setups, emphasizing structure might yield better results, whereas environ-
ments with challenging lighting conditions could benefit from incorporating the luminance
term to some extent.
Changing these parameters based on environmental characteristics and sensor resolution
could significantly improve the accuracy and robustness of the calibration process.

5.6.2 Possible Neural Network approach

A potential improvement in the calibration process could involve using a neural network
for both the extrinsic and intrinsic calibration. In Figure 23 a possible model structure is
shown, where the inputs would be the camera images and their corresponding depth im-
ages. The training process could include augmenting the camera images with distortion and
generating depth images with variations in rotation, translation, and focal length. These
images could then pass through a ResNet model separately to extract features, with the
outputs pooled and concatenated before being processed through dense layers to regress
calibration parameters. Adding time-distributed layers might help the model use sequential
images for more accurate calibration estimates.
An alternative approach might combine iterative optimization for the initial parameters and
the neural model for the finer detail, given the difficulty of accurately estimating the pa-
rameters. This method could compare depth images with camera images using metrics such
as SSIM, which could be integrated into the neural network’s loss function. By using the
camera images based on the network’s estimated focal length and distortion values, the net-
work could aim to minimize the difference with the depth images. For future development,
the neural network approach would require substantial training data and an exploration
of different network architectures to prevent overfitting. Additional modifications, such as
improved loss functions or advanced feature extraction techniques, could make this method
more viable.

5.7 Comparison to other Approaches

In the literature, several approaches exist for calibration, ranging from traditional methods
to neural network-based techniques. Some differ significantly in their approach, while others
only vary in aspects such as loss functions or the architecture of neural networks.
This approach shares similarities with CaLiCaNet (Rachman et al., 2023), as both use depth
images generated from LiDAR data and corresponding camera images to estimate intrinsic
and extrinsic calibration parameters. However, a key difference lies in the methodology:
while CaLiCaNet uses a neural network to estimate these parameters, this approach uses
a structural similarity index SSIM-based optimization. Furthermore, unlike CaLiCaNet,
which generates depth images from a single LiDAR frame, this approach combines multiple
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Figure 23: Neural Network model structure

LiDAR frames into a dense pointcloud, resulting in a higher-quality depth image. This
change could improve the data quality and potentially improve calibration robustness if
there is minimal or no error in the generation.
In contrast, INF (Zhou et al., 2023) uses a fundamentally different strategy by constructing
neural density fields for LiDAR data and neural color fields for camera images and then
comparing these 3D representations. Essentially, INF emphasizes creating 3D models of
the environment based on sensor data and aligning these models. This contrasts sharply
with the 2D approach taken in this approach, where depth images and camera images are
compared directly in the image plane. By focusing on 2D comparisons, this approach sim-
plifies the computational requirements while maintaining flexibility in adapting to diverse
environments.
Overall, this approach diverges from others by emphasizing dense pointcloud generation
and 2D image comparisons, offering a simpler yet effective alternative to 3D model-based
or neural network-heavy methods. While accuracy comparisons are outside the scope of
this discussion, the methodological differences highlight the potential of this approach to
provide a balance between complexity and calibration performance.
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6 Conclusion

In this thesis, we study the feasibility of using SSIM for a targetless auto-calibration of
a Camera intrinsic and extrinsic of any number of LiDAR and camera combinations. By
removing the need for targets, this approach would be able to be done anywhere and on
already recorded data. The approach uses the LiDAR scans and combines them to make a
Pointcloud and Odometry with the use of the IMU. From this pointcloud Odometry depth
images can be made to be compared to the camera images, to optimize the extrinsic and
intrinsic parameters to find the depth image that has the best comparison. The comparison
is done by using an adapted Structural Similarity Index Measure that compares the contrast
and structure of the two images in a specific window, the Luminance term is not used here
because of the different image modalities.
The results show that while the targetless approach can work with some adjustments, the
accuracy of the approach is not good, and is not able to calibrate the translation with small
miss calibrations. The results are not comparable to the state-of-the-art methods that can
calibrate not only the rotation but also the translation, or even Intrinsic parameters, and
both with better accuracy. The SSIM evaluation shows that, at least for the NTU eee data,
small rotational adjustments change the SSIM value much more than small translation ad-
justments, and the intrinsic calibrations are harder to optimize. The SSIM evaluation on the
NTU and other datasets seems to indicate that the calibration is possible for the rotation,
but for all dataset it indicates it is not possible to do the calibration for the translation and
focal length.
The approach developed in this thesis was benchmarked to other methods, CaLiCaNet, Cal-
ibNet, and CalibRCNN. These methods outperformed our approach but a large amount,
our approach is better for an initial estimate which then can be used for one of the state-of-
the-art approaches. The result highlighted that the SSIM function needs some adjustments
to get better calibration or a combination of both SSIM and a neural network where SSIM
is used in the loss function may help the training and get better accuracy.
Future work should focus on improving the accuracy of the calibration for the rotation and
distortion and adding the translation and focal length in the calibration. Possibly with a
combined optimization rather than multiple separate optimizations, possibly with bounds
to make the search space smaller. A neural network approach for the smaller adjustments
and letting SSIM do the initial calibration. Anohter posibility is combining multiple SSIM
window sizes for bigger and finer adjustments. Future work also needs to change the method
used to make the depth images, since the current method uses functions that do not sup-
port GPU acceleration, and depth image generation now takes too long. With this speed,
a possible online approach is not possible since the result will be way too late.
In conclusion, our approach shows a potential method to automatically calibrate the ex-
trinsic and intrinsic parameters between a LiDAR and Camera pair, without the use of
targets that at this time does not work. There is a lot of room for improvement but a good
foundation is set and further development for better accuracy, precision, fast calibration,
and more parameters.
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A Dataset Example images

A.1 Handheld combination Images

Figure 24: Example camera and depth images of the Handheld combination bag 3
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A.2 NTU eee 01 Images

Figure 25: Example camera and depth images of the NTU eee 01
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A.3 NTU sbs 01 Images

Figure 26: Example camera and depth images of the NTU sbs 01
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A.4 Kitti Images

Figure 27: Example camera and depth images of the Kitti 2011 09 26 drive 0022
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B SSIM evaluation Result plots

B.1 NTU SBS 01 SSIM Eval plots

Figure 28: NTU SBS 01 SSIM Evaluation X-axis

Figure 29: NTU SBS 01 SSIM Evaluation Y-axis

Figure 30: NTU SBS 01 SSIM Evaluation Z-axis
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Figure 31: NTU SBS 01 SSIM Evaluation Roll

Figure 32: NTU SBS 01 SSIM Evaluation Pitch

Figure 33: NTU SBS 01 SSIM Evaluation Yaw
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Figure 34: NTU SBS 01 dataset SSIM Evaluation Focal length

Figure 35: NTU SBS 01 dataset SSIM Evaluation Distortion
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Table 9: Error value for one degree of freedom SSIM-calibration for the NTU SBS 01
combination dataset, the error here is the absolute difference between the peak value and
ground truth value.

Window Size [pixel] x [m] y [m] z [m] Roll [°] Pitch [°] Yaw [°] Focal [pixel] Distortion

7 2.00 2.00 1.92 79.20 25.20 90.00 50.00 0.80

15 2.00 1.64 1.92 73.80 25.20 90.00 50.00 0.62

31 0.36 0.64 1.12 2.16 21.60 3.60 50.00 0.20

63 0.36 0.72 0.72 2.16 3.42 3.96 50.00 0.32

127 0.40 0.10 2.00 2.16 3.78 3.60 50.00 0.02

255 0.44 0.10 1.96 57.60 55.80 2.88 50.00 0.02
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B.2 Kitti SSIM Eval plots

Figure 36: Kitti SSIM Evaluation X-axis

Figure 37: Kitti dataset SSIM Evaluation Y-axis

Figure 38: Kitti dataset SSIM Evaluation Z-axis
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Figure 39: Kitti dataset SSIM Evaluation Roll

Figure 40: Kitti dataset SSIM Evaluation Pitch

Figure 41: Kitti dataset SSIM Evaluation Yaw
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Figure 42: Kitti dataset SSIM Evaluation Focal length

Figure 43: Kitti dataset SSIM Evaluation Distortion
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Figure 44: Kitti ground truth and optimal depth and camera images.

Table 10: Error value for one degree of freedom SSIM-calibration for the Kitti dataset, the
errors here is the absolute difference between peak value and ground truth value.

Window Size [pixel] x [m] y [m] z [m] Roll [°] Pitch [°] Yaw [°] Focal [pixel] Distortion

7 0.40 0.76 0.11 14.40 70.20 0.90 48.00 0.94

15 0.12 0.28 0.10 16.20 70.20 0.90 49.00 0.94

31 0.11 0.28 1.96 0.72 0.54 1.08 47.00 0.70

63 0.12 0.28 0.40 0.54 10.80 0.72 47.00 0.70

127 1.96 0.32 0.40 0.90 19.80 0.72 41.00 0.34

255 2.00 1.28 1.20 5.58 25.20 1.98 28.00 0.42
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B.3 Handheld SSIM Eval plots

Figure 45: Handheld SSIM Evaluation X-axis

Figure 46: Handheld SSIM Evaluation Y-axis

Figure 47: Handheld SSIM Evaluation Z-axis
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Figure 48: Handheld SSIM Evaluation Roll

Figure 49: Handheld SSIM Evaluation Pitch

Figure 50: Handheld SSIM Evaluation Yaw
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Figure 51: Handheld dataset SSIM Evaluation Focal length

Figure 52: Handheld dataset SSIM Evaluation Distortion
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Figure 53: Handheld ground truth and optimal depth and camera images

Table 11: Error value for one degree of freedom SSIM-calibration for the Handheld com-
bination dataset, the errors here is the absolute difference between peak value and ground
truth value.

Window Size [pixel] x [m] y [m] z [m] Roll [°] Pitch [°] Yaw [°] Focal [pixel] Distortion

7 0.12 0.09 0.88 0.54 2.16 1.80 37.00 0.46

15 0.10 0.09 0.76 0.54 0.36 1.98 36.00 0.44

31 0.03 0.06 0.40 0.18 0.18 1.98 36.00 0.18

63 0.06 0.06 0.40 0.18 0.54 1.62 12.00 0.16

127 0.08 0.06 0.40 0.00 0.72 1.98 13.00 0.96

255 0.18 0.06 0.16 0.18 2.88 1.80 13.00 0.16
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