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by Sjoerd van Veen

Synthetic computer voices and social robots are seeing increased use as (vir-
tual) assistants, yet research shows that these technologies reinforce harmful gen-
der stereotypes, prompting new research into the gender perception of technology
to allow its designers to make more informed decisions about its perceived gen-
der. However, this research has mainly focused on computer voices or robots in
isolation, rarely combining the two. As such, it remains unclear how the voice and
embodiment (appearance) of a speaking social robot influence its perceived gender.
This study addresses this gap by investigating the effect of computer voices and
embodiments on the gender perception of speaking social robots, and each other.
Additionally, it investigates different methods for the creation of ambiguously gen-
dered speaking social robots. An online survey was conducted, in which robots and
voices of ambiguous, feminine, and masculine gender were combined into robot-
voice combinations and then tested for their perceived gender. The results indicate
dominance of the voice over the embodiment for the gender perception of speak-
ing social robots, as the voices showed greater effects on the gender scores than
the robots. However, this is partially dependent on the gender of the voice, as am-
biguously gendered stimuli, whether voice or embodiment, are found to have little
impact when combined with a binary gendered stimulus. Combinations of mascu-
line and feminine stimuli are found to score high on ambiguity, similar to combina-
tions consisting solely of ambiguous stimuli. However, remarks from participants
indicate unfavourable attitudes towards such combinations, suggesting additional
research is necessary to determine if combining masculine and feminine stimuli is a
viable method for the creation of gender ambiguous speaking social robots.
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Chapter 1

Introduction

In 2019, UNESCO published ‘I’d blush if I could,’ a report on the gender biases
present in the field of digital technology [1]. The title refers to the response from Siri,
Apple’s (female) voice assistant, to a user saying “hey Siri, you’re a bitch.” Although
this response has been removed, it still serves as an example of what UNESCO refers
to as the ‘obsequiousness’ of Siri and other ‘female’ digital voice assistants, that is,
the servile compliance or prompt obedience as well as the submissiveness in the face
of abuse, portrayed by these voice assistants.

While the boundless subservience of voice assistants seemingly encourages im-
polite and excessively direct speech [2], a more pressing issue is also presented. Both
the representation, and the reinforcement of gender stereotypes through these be-
haviours from voice assistants, have been cause for concern [1], and while not explic-
itly mentioned in the given example, these same concerns apply to (social) robots,
putting them in a similarly precarious position regarding the proliferation of gender
stereotypes (e.g. [3]). To combat the presence of gender biases and stereotypes in
digital technologies like voice assistants and robots, in the face of massively increas-
ing use of both [4][5], UNESCO recommend, among other things, the exploration of
the feasibility of a ‘machine gender’ that is neither obviously male nor female [1].

Whether this recommendation was the catalyst or not, recent years have seen an
abundance of research on gender perception as a whole, as well as ‘gender neutral-
ity’ or ‘ambiguity,’ in computer voices and (social) robots, though this has been quite
fragmented. Research with computer voices (naturally) focuses on the sound of the
voice (e.g. [6]), whereas research with social robots mainly focuses on physical ap-
pearance (e.g. [7]). Little effort has been made to consolidate these fields, despite
many social robots having the ability to speak. Consequently, while it is clear how
different voice parameters may impact the gender perception of a computer voice,
or how different appearance factors may impact the gender perception of a robot,
it remains unclear if and how these may interact, which could prove essential in
understanding the gender perception of a speaking social robot.

Researchers in other fields have previously examined whether human faces or
voices have greater importance in the process of gender perception (e.g. [8]). How-
ever, it is debatable whether such results can be generalised to speaking social robots,
especially considering the difference in visual stimuli (human face vs. robot appear-
ance). Thus, as similar research with robots has barely been conducted, a knowledge
gap persists.

This knowledge gap in the context of speaking social robots is the main focus of
the current research. Specifically, the aim is to find whether the embodiment (the
appearance) or the voice has more influence on the gender perception of a speak-
ing social robot. Additionally, the current research aims to find the most promising
combination of gendered embodiment and voice, for the creation of gender ambigu-
ous speaking social robots. The knowledge acquired here can aid in the creation of
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design guidelines, to ensure proper coordination of voice and embodiment design
with respect to their impact on gender perception, thereby limiting the risk of voice
and embodiment interfering with each other in pursuit of a gendered design goal.
Correspondingly, this knowledge could also facilitate and support further research
on the creation of gender ambiguous social robots.

From this aim emerge the main research questions:

RQ1 What is the influence of a) voice and b) embodiment on the gender perception
of speaking social robots?

This can be split into two sub-questions: (a) how does voice affect the gender per-
ception of the embodiment of a social robot? And (b) how does embodiment affect
the gender perception of a synthetic voice? And:

RQ2 What combination of gendered embodiment and gendered voice yields the
most promising approach for the creation of gender ambiguous speaking so-
cial robots?

This report first covers related works regarding anthropomorphism, gender in
robots, gender in computer voices, and the agency of visual vs. auditory stimuli,
to provide a background for the rest of the research. A pre-test is then conducted
to select proper stimuli for the main experiment aimed at answering the research
questions. Results from the main experiment are presented and discussed, followed
by a conclusion of this report and recommendations for future research.
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Chapter 2

Related Work

2.1 Terminology

To start, some key terminology used in this paper should be discussed and clarified.
These terms may be familiar, but their definition can remain elusive. This section
discusses what these terms will mean in the context of this paper.

2.1.1 ‘Gender’

Gender is defined by the WHO [9] as a social construct, referring to norms, be-
haviours, and roles associated with being a man or woman. It is distinctly different
from sex, which refers to the different biological characteristics of men, women, and
intersex [10]. Gender identity refers to a person’s internal, individual experience of
gender, which may or may not correspond to their sex.

In the context of technology, the term sex is not relevant. Still, people do give
technologies a gender identity through the aforementioned social construct. This
applied gender identity has been denoted as male/female, man/woman, or mas-
culine/feminine in the past. For the remainder of this study, gender identity will
simply be referred to as gender, as this is often already the case [11]. Gender will be
denoted as masculine/feminine, though other terms may be used when referring to
papers that used other terms.

2.1.2 ‘Gender ambiguous’

The term gender ambiguous was first introduced by Sutton [12]. She argues that
voices cannot be genderless or gender neutral, rather they can only be gender am-
biguous (def. (1) doubtful or uncertain, (2) open to more than one interpretation
[13]). Referencing back to Mullennix et al. [14] who did several experiments on per-
ception, she explains that the use of a 6-point scale to rate gender (with male and
female on either end of the spectrum) did not reveal a clear boundary between male
and female, instead displaying a steady transition between them, showing the pres-
ence of gender ambiguity in some voices. But when participants could only answer
‘male’, ‘female’, or ‘other’, barely anyone selected ‘other’, which essentially ques-
tions the existence of a non-binary voice altogether. Furthermore, while genderless
implies gender is not present, and gender neutral implies gender has been removed
or made ineffective in some way, Sutton argues it is highly questionable whether
listeners will actually perceive a ‘genderless’ voice as neither male nor female. This
is due to the predominant conceptualisation of gender being binary. Finally, she also
brings up ethical concerns, stating that (implied) genderlessness of voices sidesteps
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issues of sexism in technology design. Envisioning a scenario where technology de-
signers relinquish culpability for any negative consequences related to gender when
they have selected a ‘genderless’ voice.

Somewhat similarly, questionnaires taken with members of LGBTQ communi-
ties found that non-binary people strongly believe that any voice can be non-binary
[15]. Though, following the reasoning of Sutton [12] and the results from Mullennix
et al. [14], it is highly likely that while any voice can be non-binary, they will not
be initially perceived that way, and more likely be perceived as a binary gender, or
as gender ambiguous, due to the predominant conceptualisation of gender being bi-
nary mentioned earlier. Additionally, as was also noted by the LGBTQ communities
by Danielescu et al. [15], there is an inherent association between non-binary and an-
drogyny, that is, the state of being neither specifically feminine nor masculine, or the
combination of feminine and masculine characteristics [16]. In this sense, androg-
yny is very similar to gender ambiguity. And while non-binary includes much more
than simply androgyny, it is a comparatively easy way of demonstrating non-binary
identity in situations with very little context.

While the term ‘gender ambiguous’ will be mainly used throughout this paper
to refer to anything that may not fit, or be perceived as a binary gender definition,
other terms like genderless, gender neutral, or non-binary may still be used when
referring to papers that used that specific terminology.

2.2 Anthropomorphism

This research largely takes place inside the space of social robotics. Where, despite
growing research into the use of social robots in different contexts like healthcare,
education, work environments, and at home [17], a universally agreed upon defini-
tion for social robots does not (yet) seem to exist [18]. Hegel et al. define a social
robot as a robot plus a social interface, in which “a social interface is a metaphor
which includes all social attributes by which an observer judges the robot as a social
interaction partner” [19, pp. 174]. On the other hand, in their research about social
robots, Leite et al. [17, pp. 291] use the functional definition “robots designed to so-
cially interact with people or to evoke social responses from them.” In early work
by Breazeal [20], social robots are defined as those that people apply a social model
to, in order to understand and interact with them.

Despite the lack of uniformity between these definitions, a clear returning theme
within them is the presence of some form of human-robot interaction (HRI). In the
same paper by Breazeal, four subclasses of social robots are identified: socially
evocative, social interface, socially receptive, and sociable. Which all, to a differ-
ent extent, encourage and partake in interactions with humans (HRI). When suc-
cessively moving through the list, the subclasses describe robots that become in-
creasingly capable of sustaining HRI in increasingly complex environments and sce-
narios, and contain increasingly more human characteristics. To the point where,
eventually, both their ability to interact, and the reason why they interact become
almost indistinguishable from humans. At this stage, these robots will have been fit-
ted with many human-like characteristics to help create meaningful interactions and
relationships with humans [20][21]. To understand why human-like characteristics
embedded in technology have this effect, we must look at anthropomorphism.
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2.2.1 Defining Anthropomorphism

Anthropomorphism is commonly defined as the internal attribution of human char-
acteristics or traits to non-human agents [22], often emphasized within this defini-
tion, is the attribution of human mental capacities (the belief that a non-human agent
is able to think and feel like humans can) [23]. A more simplified term that is fre-
quently used instead of anthropomorphism is ‘seeing human’ [22][24][25], simply
because we perceive an agent as more human when we attribute human character-
istics to them. However, according to Frazer [26], the term anthropomorphism is
also frequently used to refer to the design strategies/features used to encourage the
perception of an agent as human-like (e.g. [27]). Frazer [26] calls these strategies
‘operationalisations of anthropomorphism’. She found eight different operationali-
sation strategies used in research, of which physical appearance was most used (by
far) followed by vocal features. These observable anthropomorphic design strate-
gies and features are conceptualized to induce anthropomorphism of non-human
agents, or in simpler terms, the presence of human-like design features is believed
to lead to the internal attribution of human characteristics and traits to non-human
agents [23][28].

2.2.2 Anthropomorphism & Stereotypes

In the context of social robots, anthropomorphism plays an important role. Research
has found that anthropomorphized technology is generally favoured. It is more
likely to be trusted [29], evaluated more favourably [30], and treated with greater
care [31]. Robots with embedded human-like features are also assumed to allow for
more intuitive interactions, as, following the Computers are Social Actors paradigm
[32], it allows the human interactants to apply social models that are normally used
for interactions with other humans [33][34]. These social models usually allow us
to socially categorise people, to simplify our understanding of them and help us
navigate social interactions efficiently [35]. However, these social categories also in-
clude stereotypes and biases, and as we apply them to social robots, so do we apply
these stereotypes and biases [3][36][37]. Gender may be (one of) the most salient of
these social categories; research shows it is significantly more likely to be ascribed to
robots than other categories like race, religion, or age [25]. And when gender is as-
cribed, gender-specific stereotypes follow. The abundance of gender stereotypes can
be divided into several components: traits, role behaviours, occupation, and phys-
ical appearance [38], several of which have been found to be applied to robots as
well [39], possibly altering reactions towards, and perceptions of those robots (e.g.
[40]–[47]). However, it should be noted that some studies do not find conforming
results and instead suggest that the effect of gender stereotypes may be smaller than
we anticipate [48][49].

Similarly to social robots, anthropomorphism also plays an important role in
the context of computer voices and voice assistants. All voices, whether natural or
synthetic, have vocal characteristics which contain certain features (mostly paralin-
gual) that allow for rapid extraction of socially relevant information [50]. This is
used to quickly form first impressions [51][52]. Following the Computers are So-
cial Actors paradigm [32], similarly to the previous paragraph, this extraction of
information to form an impression is not only applied to human voices but also to
machine/computer voices [53][54]. Consequently, as first impressions are hypoth-
esised to rely partly on over-generalisation [55][56], they also rely on stereotypes.
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Resulting in those same stereotypes being applied to machine and computer voices
by the user [54].

The implementation of gendered features, and thereby gender stereotypes, in
technologies has been found to yield several positive results. It is seen as beneficial
for user acceptance [57], as it ensures the design meets expectations and feels famil-
iar to users [54][58]. Similarly, some argue that stereotypes are essential to efficiently
process social information that enables us to interact with others [59]. Finally, the
presence of stereotypes also suggests the potential for the accompanying stereotypic
expectations to be violated [60], which could cause negative reactions [61], but is
also seen as an opportunity to challenge these very stereotypes [37].

On the contrary, embedding stereotypes in technologies can also reinforce them
[1]. An example of this is the (almost exclusive) use of feminine voices for the major
voice assistants (Siri, Alexa, Cortana, Google Assistant). The commanding nature
around the use of voice assistants reinforces the subservient assistant stereotype to-
wards women, which leads to the reproduction of the commanding tone used for
voice assistants, in interactions with real women [1][62]. One particular paper that
provides significant insights into stereotypes in voice assistants is by Hwang et al.
[58]. They specifically examined responses from several South Korean voice assis-
tants to queries regarding relationships, personality, and appearance among others.
They found the voice assistants typically described themselves as young women,
with a tendency to value their bodily beauty (despite not having actual bodies). The
assistants were intimate with the user, yet remained subordinate, even in the face
of bad treatment and verbal abuse. They also embraced sexualization, even when
the user’s remarks could be construed as sexual harassment. The researchers con-
cluded that the voice assistants represent victimized women who willingly embrace
insults and sexual harassment, and noted the clear presence of a power dynamic be-
tween the user and the female voice assistant. Such behaviour from voice assistants
with feminine voices can have a significant impact on the way actual humans with
feminine voices are seen and treated.

Evidently, there is an inherent link between anthropomorphism and stereotypes,
as anthropomorphism allows stereotypes to be transferred to non-human agents,
and while this may lead to some beneficial outcomes, it could also reinforce poten-
tially harmful stereotypes, and should thus be handled with care.

2.2.3 Anthropomorphism & Gender

Contrary to what was mentioned before, that increasing anthropomorphism seems
to increase the ascription of (binary) gender [7], Martin & Mason [24][25] have re-
cently suggested that gender ascription may not be just a consequence of anthro-
pomorphism, but that it facilitates it. Firstly, they point out that features that en-
hance anthropomorphism are already entangled with gender, e.g. voices and faces
[63]. Then, through a series of experiments, they support the assumption that gen-
der is a defining feature of humanity [25], and show that ascribing gender increases
the humanization of, and attachment to anthropomorphized technology [24]. More
precisely, they found that male and female gendered voice assistants, autonomous
vehicles, and robotic vacuums were ascribed more humanness than any of their
genderless (non-gender-specific) counterparts [24]. Furthermore, they suggest that
gender helps humanize ‘targets’ (anything that may be anthropomorphized/seen
as human), and if these targets are described without gender, they are granted less
humanity [25]. Important to note, the experiments conducted by Martin & Mason
were mostly based on the participants’ imagination, and very rarely included any
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physical products. For example, participants were asked to image aliens [25] and a
voice assistant [24][25] with a certain gender, asked to form a first impression of an
autonomous vehicle based on a short text [24], and asked to form a first impression
of a ‘person’ based on two sentences [25]. Still, while it remains to be seen if the
same results will be found when experiments are conducted with physical targets,
their studies highlight the importance of gender as a social category, in anthropo-
morphism.

2.3 Gendering Social Robots

As described, the ascription of gender to a robot can have many consequences. This
has led some to attempt to create ’gender neutral’ robots, to bypass reinforcement
of, or negative effects from, gender stereotypes (as previously mentioned in Chapter
1). Rather inconveniently, it is hypothesized and suggested by research findings that
robots are perceived as male by default [7][37][64][65]. Similarly, it is suggested that
gender neutrality is related to human-likeness, such that, the more human a robot
looks, the more likely it is to be gendered (i.e. ascribed a binary gender; similar to
what was described in Chapter 2.2) [7]. The ROBO-GAP database1 [7], a database
containing age and gender perception ratings of 251 anthropomorphic robots, which
themselves were taken from the ABOT database2 [66] which holds human-like ap-
pearance values for these robots, demonstrates what differently gendered robots
may look like at many different levels of human-likeness.

The ROBO-GAP database [7] is an interesting database for those who want to
research how the physical appearance of robots can affect their perceived gender,
as well as their perception of traits or suitability for certain tasks. Due to the large
number of robots in the database (251), it may indirectly serve as a conglomeration
of much previous research on the effect of different visual stimuli on gender percep-
tion. Examples of such visual stimuli are hairstyles [3], chest-hip and waist-hip ratio
[67]. Or more abstract stimuli, like curves and round shapes being more feminine,
while sharp edges and straight lines are more masculine [68]–[70]. Also, aspects
like texture [70], and colour (blue vs. pink) [71][72] can provide gender cues. The
creators of the ROBO-GAP database themselves found that the presence of body ma-
nipulators (e.g. arms and legs) was exclusively associated with masculinity, while
the presence of surface looks (e.g. eyelashes, head hair, or eyebrows) was exclusively
associated with femininity [7].

Still, gender cues outside the physical realm are also frequently used. Most
popular to manipulate, are the voice of the robot [40]–[48][73], the robot’s name
[42][43][46][48], or the pronouns used address the robot [37][49]. Research has even
shown that when obvious gender cues are missing (e.g. physical appearance, voice,
name, etc.), robots have been ascribed the gender associated with the task they were
performing, i.e. the same robot would be described as feminine when cleaning, and
masculine when playing computer games [74].

The amount and the diversity of these gender cues highlight the difficulty of cre-
ating the desired ‘gender neutral’ speaking social robot. While gender ambiguous
robot embodiments have been successfully created, as evident in the ROBO-GAP
database, ensuring the addition of voice, name, and pronouns does not affect the
ambiguity of the robot, as well as ensuring the tasks it should perform and the con-
text in which it operates, do not lead to binary gender ascription, seems to be both

1https://robo-gap.unisi.it/
2http://www.abotdatabase.info/
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an arduous task, and limiting to the robot itself. To illustrate, one of the few stud-
ies that combined a gender ambiguous robot (Pepper3) with an ambiguous voice,
found that only 30% of respondents classified it as ’neither male nor female,’ while
64% classified it as male [48].

2.4 Gendering Computer Voices

Gender is one of the most noticeable cues in voices [53], as it is one of the most
dominant sources of variation [75]. Research shows, that any gender revealing cue,
no matter how minor, can cause stereotypical responses [54]. As Lee et al. [53,
pp. 290] mention, “the bizarre pronunciations and cadences of even the best TTS
[text-to-speech] engines remain a constant reminder that a speaking computer is nei-
ther morphologically nor culturally gendered. Nonetheless, (...) individuals seem to
automatically respond to the minimal infestations of gender in TTS as if they were
interacting with a real person...” Note that this study was conducted in 2000, TTS
engines have advanced significantly since then. Still, combined with the fact that
any tiny suggestion of gender can cause stereotypical responses [54], it highlights
the importance of considering voice design when it is implemented in any kind of
computer system.

Possibly the most dominant gender cues in voices are the pitch and formant fre-
quencies. The pitch in this case refers to the main underlying (fundamental) fre-
quency of the voice, this is dependent on the vibrations of the vocal cords, whereas
formant frequencies refer to the resonant frequencies of the vocal tract [76]. Formant
frequencies can also be seen as band-pass filters created by the throat, mouth and
nasal cavity, which means they emphasise some frequencies while suppressing oth-
ers [77]. This allows us to hear different vowels, while also providing paralingual
information. These (especially the pitch) are among the easiest gender cues to (digi-
tally) manipulate, and as a result, much research regarding the gender perception of
(computer) voices uses such manipulations.

While it is common knowledge that masculine voices on average have a lower
pitch than feminine voices, the actual pitch range in terms of specific frequency val-
ues often differs between papers. Re et al. [78] note the pitch of male participants
in their research ranged from 86-152 Hz, and the pitch of female participants ranged
from 143-285 Hz. Biemans [79] noted that the pitch of her participants ranged from
84-157 Hz for men, and from 158-219 Hz for women. Even though differences may
arise between the pitch ranges of participants of different studies, most studies do
arrive at similar mean pitch values. Simpson [80] states the average pitch of English
speakers is between 100-120 Hz for men, and between 200-220 Hz for women, which
seems to correspond to the values presented by the previously mentioned studies.
These frequency values are often used as targets for pitch shifting, when the aim is
to change the gender of the voice. When developing an ambiguous voice, the aim
is often to shift the pitch to a small overlap between the masculine and feminine
pitch ranges. This ’neutral zone’ is claimed to be around 145 - 175 Hz, by the creator
of ‘genderless’ voice ‘Q’ 4 [81], though again specific frequency values may differ
between papers. Formant frequencies are much more difficult to relate to specific
frequency values, as there are multiple levels of formants for every vowel in the
phonetic alphabet. As a result, the manipulation of formant frequencies is mainly
calculated through ratios, instead of specific frequency values.

3https://www.aldebaran.com/en/pepper
4https://www.genderlessvoice.com/
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Similarly to what was discussed with social robots, several factors outside the
vocal characteristics of the voice may also influence gender perception. Like the
robots, this includes the name and the pronouns used to describe the voice, but it
also includes the so-called ‘perceived personality gender’ [82]. This personality gen-
der mainly follows gender stereotypes, such as the conversational style and word
choice of the voice agent [12][15], the context of the task/role of the voice agent
[12][83], and the physical location of the interaction [12]. While these factors may
have no importance when the gender of the voice is clear through the pitch and for-
mant frequencies, they can be very influential when the voice in question is aimed
to be gender ambiguous. Accordingly, creating a true gender ambiguous computer
voice remains very difficult, especially when all contextual factors have to be con-
sidered.

Interestingly, some researchers disapprove completely of the use of human-like,
gendered computer voices. Instead, they advocate for the deliberate design and use
of non-human-like voices [84]–[86]. They argue that the use of human-like voices
creates expectations that the voice agent has human-like intelligence, leading to
overestimations of the agent’s real intelligence, a so-called ‘habitability gap’ [84][85].
As an aside, a similar argument has been made regarding the human-like embod-
iment of social robots as well [87]–[89]. Moore [84][85] argues for ‘vocal appropri-
ateness,’ with which the true capabilities of the system are reflected in the voice (i.e.
giving a robot a more robotic voice). Furthermore, Aylett, Cowan, and Clark [86]
state there is an obsession with naturalness. They raise ethical concerns regarding
the mimicry of human voices, and express that one reason for pursuing mimicry is
ultimately to deceive the listener.

2.5 Auditory vs. Visual Stimuli

While much is known about factors that may influence gender perception of robots
and voices (see Chapters 2.3 and 2.4), very little is known about their relative im-
portance compared to each other. However, the relative importance of auditory and
visual gender cues (also called cross-modal gender cues) has been researched more
thoroughly in the fields of psychology and neuroscience. Here, one clear conclusion
seems to recur in most studies, that is, dominance of visual information over au-
ditory information, when these represent incongruent (mismatching) genders (this
only includes binary genders) [8][90]–[92]. The stimuli in these cases were real hu-
man faces (either an image or a short video) overlapped with real human voices.

One hypothesis given for the dominance of visual stimuli is the information relia-
bility hypothesis [8]. This hypothesis suggests that the dominant modality is the one
that is more appropriate and efficient for the completion of the task at hand [93]. In
the instance of Latinus, VanRullen & Taylor [8], they posit that the visual stimuli are
dominant as human faces provide easily and immediately extractable information
required for gender categorisation, whereas the auditory stimuli are dynamic and
therefore need to be heard several times to allow for gender categorisation. From
this, it can be inferred that the ‘appropriateness’ and ‘efficiency’ as mentioned in the
information reliability hypothesis, relate to how clear, and how easily and quickly
extractable the provided gender information is.

Interestingly, this hypothesis also describes what happens when one of the modal-
ities is gender ambiguous, as shown by Smith, Grabowecky & Suzuki [94]. In their
research, the application of tones with frequencies in the masculine and feminine
frequency ranges (see Chapter 2.4) to androgynous faces, had a significant impact
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on the gender perception of the faces. Correspondingly, while the dominance of au-
ditory stimuli may not match the results from the previously mentioned research,
it does comply with the hypothesis, as ambiguous gender information is expected
to be less easily extractable than binary gender information due to the predominant
conceptualisation of gender as binary (see Chapter 2.1.2). This also corresponds
with research conducted on robots and computer voices, where ambiguous stim-
uli (whether auditory or visual) have been shown to take the gender of the binary
gendered stimulus applied to them, numerous times [12][37][40]–[49][73][95].

Somewhat surprisingly, in one study focusing on the perception of uncanniness
in social robots by children, they seemed to rely more on the presented auditory
cues than the visual cues, to judge the gender of the robot [96]. Following the given
hypothesis, this would suggest that the auditory stimuli provided clearer gender in-
formation. Additionally, a study using animated audio-visual clips found that the
auditory information was relied upon more than the visual information, to deter-
mine the emotional context, when its demonstrated emotion was incongruent with
the visually displayed emotion [97].

Important to note about the research mentioned here, is the absence of measures
regarding gender ambiguity. All barring one, only allowed participants to provide
their gender perception by assigning either ‘male’ or ‘female.’ Only Paetzel et al.
[96] also reported ‘neutrality’.

2.6 Measuring Gender Perception

As mentioned by Sutton [12] (see Chapter 2.1.2), the method used to measure gender
perception, can greatly impact the results. Still, no one method has been consistently
used across different studies. Many of the studies mentioned in this research, across
both voices and robots, have used different methods to measure gender perception.
What follows here, is an overview and brief comparison of the multitude of methods
that have been used in previous work.

2.6.1 Multiple-Choice

The researchers who use this method simply ask participants to tick a box regarding
the perceived gender. Typically, there is a male option, a female option, and a third
option which differs between studies. This third option has been called ‘neutral’
[98], ‘other’ [99], ‘unsure’ [83], and ‘neither male nor female’ [48]. When aiming
for gender ambiguity, a majority of participants choosing the third option would
generally be preferred, though an even split in male and female answers is also seen
as a sign of ambiguity.

However, as an even split in male and female answers only represents gender
ambiguity across a population, but not on an individual level, it could be argued that
it does not illustrate true gender ambiguity. Additionally, as mentioned before (see
Chapter 2.1.2), the third option in these cases is rarely selected [14]. Furthermore,
Mullennix et al. [14] also state that gender perception is not categorical, thus this
measurement method, which is inherently categorical, seems inappropriate for this
context.

2.6.2 Single Scale

Possibly the most used method is a single scale. A scale with the opposite ends
of the binary gender continuum as the extremes. Some researchers use ‘male’ and
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‘female’ as the extremes [6][37][43][100], while others use ‘masculine’ and ‘feminine’
[49][74]. Generally, a 7-point scale is used, though a 5-point scale [6] and a 100-point
scale [37] have also been reported. When using a single scale, the mid-point refers
to gender ambiguity both when looking at single responses, as well as averages of
many different responses.

Using a scale is preferred over multiple-choice, as it allows study participants
to provide more nuance in their responses. Consequently, it has proven to be more
sensitive for picking up gender ambiguity [14]. Interestingly, Danielescu et al. [15]
made much different use of a scale. They asked participants to rate on a 5-point
scale, if a voice sounded non-binary to them, and if they would be comfortable with
that voice representing non-binary individuals. While it is unclear why they chose
exactly these questions to measure perceived gender ambiguity, it should be noted
that this study is the only one to explicitly seek responses from the LGBTQ commu-
nity, possibly prompting the use of different questions.

2.6.3 Multiple Scales

In several studies with robots [41][46], and one with computer voices [53], researchers
used two scales, one scale for masculinity and one scale for femininity. This allows
for even more nuance when compared to responses from a single scale. These were
not used for any kind of gender ambiguity measurement however, instead, they
were mainly used for manipulation checks in studies that only involved binary gen-
ders.

In the recent creation of the ROBO-GAP database (see Section 2.3), a similar
method was used [7]. Perugia et al. [7] refer to Bem’s [101] gender schema the-
ory, she showed that ratings for masculinity and femininity are independent of each
other, and thus should be independently assessed, directly contradicting the use of
a single scale for gender measurements. In accordance, participants were asked to
convey their perception of masculinity, femininity, and gender neutrality in robots
on separate 7-point scales, for the creation of the ROBO-GAP database. Following
Bem’s reasoning, equal endorsement of masculine and feminine attributes repre-
sents androgyny.

The method used by Perugia et al. for the creation of the ROBO-GAP database
has already been found to allow for more nuance in gender perception measure-
ments. When Roesler, Heuring & Onnasch [37] compared their results from a single
gender continuum scale, to the results presented in the ROBO-GAP database, they
found that the single scale may have suppressed ambiguities that were present in
the database.

2.6.4 The Naming Technique

The last method, which is very dissimilar from the previous, asks study participants
to name robots (as in, give robots a name) [37][102]. Participants are completely
free in this process, which also results in the application of names that do not imply
gender. For example, two studies that applied this technique reported most of the
names to be functional, e.g. ‘industrial helper,’ or ‘liftbot’ [37][102]. In total, approx-
imately 3/4 of all applied names were classified as nicknames or functional names,
leaving only 1/4 as masculine or feminine names.

Despite the relatively low amount of gendered data gathered with this technique,
Roesler et al. [37] do report that it revealed results that were not evident from the
responses to a single scale gender continuum. Accordingly, they advocate for the use
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of more ‘subtle’ perceived gender measurement methods, like the naming technique,
though given the fact that only 1/4 of the names were gendered, this should likely
only be used in conjunction with a less subtle method mentioned before.
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Chapter 3

Hypotheses

Based on the previous works discussed, hypotheses can be developed for the re-
search questions at the centre of this study. To recap, this study aims to answer the
following questions:

RQ1 What is the influence of a) voice and b) embodiment on the gender perception
of speaking social robots?

With the sub-questions: (a) how does voice affect the gender perception of the em-
bodiment of a social robot? And (b) how does embodiment affect the gender percep-
tion of a synthetic voice? And:

RQ2 What combination of gendered embodiment and gendered voice yields the
most promising approach for the creation of ambiguous speaking social robots?

Combinations of binary gendered and gender ambiguous stimuli

H1a In any combination of a binary gendered stimulus and a gender ambiguous
stimulus, the ambiguous stimulus is expected to have no effect on the gender
scores of the robot-voice combination.

H1b Any combination of binary gendered and ambiguously gendered stimuli is
expected to be perceived as the gender of the binary gendered stimulus.

These hypotheses follow from the information reliability hypothesis introduced
in Chapter 2.5. This hypothesis states that the modality most appropriate and most
efficient for the completion of the task (gender perception in this case) will be dom-
inant [93]. This is expected to be the binary gendered modality, as the predominant
conceptualisation of gender is binary [12]. Results in accordance with this hypothe-
sis have already been found in research using images of androgynous faces as visual
stimuli [94]. Additionally, previous research involving robots and computer voices
has also shown that any (minor) suggestion of (binary) gender in technology may
trigger stereotypic responses [54], and that ambiguous technology can be “drawn
into” another gender category [12][74].
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Combinations of masculine and feminine stimuli

H2a In any combination where the robot and the voice have incongruent genders,
and neither is gender ambiguous (i.e. combinations consisting of a masculine
and a feminine stimulus), the robot is expected to have a greater effect on the
gender scores of the robot-voice combination than the voice.

H2b In any combination consisting of a masculine and a feminine stimulus, the
robot is expected to have a greater effect on the gender scores of the voice than
vice versa.

This follows from previous research in the fields of psychology and neuroscience,
which consistently found dominance of visual stimuli over auditory stimuli with re-
gards to the gender perception of faces and voices [8][90]–[92]. While some research
involving less human-like stimuli has reported auditory dominance instead [96][97],
only one study specifically addresses gender perception [96], and thus, these results
are disregarded in favour of the larger body of literature reporting visual dominance.

The most ambiguous robot-voice combinations

H3 Robot-voice combinations where both the robot and the voice are gender am-
biguous are expected to score higher on gender ambiguity measures than any
other robot-voice combinations.

This assumption follows from the previous two hypotheses. As per H1, any
combination of which only one of the stimuli is ambiguous will adopt the gender of
the binary gendered stimulus, resulting in lower scores for gender ambiguity mea-
sures. Following H2, any combination of a masculine and a feminine stimulus will
see a greater effect on the gender scores from the robot than the voice, leading to
high scores for masculinity or femininity measures (depending on the gender of the
robot) rather than gender ambiguity measures. On the other hand, any combination
of two stimuli that have the same gender, is expected to stay that gender and score
high in the related gender score (i.e. a combination of a feminine robot and voice
is expected to score high on femininity). As such, robot-voice combinations made
up of two stimuli that individually score high on gender ambiguity (i.e. two gen-
der ambiguous stimuli) are expected to score higher on gender ambiguity measures
than any other robot-voice combinations.
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Chapter 4

Pre-test

A pre-test was conducted in the form of an online survey, to select stimuli for use
in the main experiment. The main goal of the pre-test was to select six robots, with
a balanced distribution of masculine, feminine, and ambiguous, and six computer
voices, also with a balanced distribution of masculine, feminine, and ambiguous,
that clearly present and are clearly perceived as their intended gender, and in the
case of the robots, are controlled for their level of anthropomorphism.

4.1 Methods & Materials

4.1.1 Participants

A total of 20 participants took part in the pre-test. Incomplete responses were dis-
carded. Eight women and twelve men completed the survey, most of which were
Dutch, though two Germans and a Belgian also completed it. Most participants were
23 or 24 years old, while three participants were in or just before their sixties. Mean
age was 29 years old (standard deviation of 13.4), median age was 24. Participants
were found through convenience sampling, mainly at the Creative Technology Bach-
elor’s and Interaction Technology Master’s at the University of Twente. They had to
be 16 years or older, and be able to properly see and hear the stimuli (determining
what constitutes “properly see and hear” was at the participant’s discretion).

4.1.2 Robots

A total of 18 robots (images) were used in the pre-test, with a balanced distribution of
masculine, feminine, and ambiguous robots. These robots were selected through the
ROBO-GAP1 [7] and ABOT databases2 [66], which hold masculinity, femininity and
gender neutrality ratings, and human-likeness ratings respectively, of the same 251
robots. During this selection procedure prior to the pre-test, the goal was to select
the six most masculine, feminine, and gender ambiguous robots, while controlling
for the level of human-likeness as this could impact gender perception (see Chapter
2.2). These were then used during the pre-test. The selection procedure consisted of
several steps.

Step 1: The data from the ROBO-GAP database was downloaded, this includes
masculinity, femininity, and gender neutrality ratings of 251 robots on a scale from 1
to 7.

Step 2: For every robot, the absolute difference between the masculinity and
femininity ratings was calculated (called AbsDiff from hereon). This step follows
from Bem’s original gender schema theory [101] that masculinity, femininity, and

1https://robo-gap.unisi.it/
2http://www.abotdatabase.info/
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gender neutrality are independent of each other, meaning that a high masculinity
rating does not ensure a low femininity rating. Accordingly, the difference between
masculinity and femininity values (the calculated AbsDiff value) can give an insight
into the (non-)ambiguity of a robot’s gender.

Step 3: A list was then compiled of all robots with an AbsDiff smaller than or
equal to 0.3. This list contained a total of 22 robots, which were then classified as
ambiguous. As a side note, the neutrality scores were not used for the selection
of ambiguous robots, as ambiguity merely suggests that the levels of masculinity
and femininity should be equal or similar, which a high neutrality rating does not
inherently indicate (see Step 2 and Chapter 2.1.2). Indeed, there are robots in the
ROBO-GAP database with a high neutrality rating, that still present a large differ-
ence between masculinity and femininity ratings.

Step 4: Robots that were not included in the list of ambiguous robots, were
separated into lists for masculine and feminine robots based on their masculinity
and femininity ratings (this was already done in the original ROBO-GAP database).
Here, the AbsDiff was added to their corresponding gender rating (i.e. for masculine
robots, the AbsDiff was added to the masculinity rating), the result of this summa-
tion was called the Final Gender Score (FGS). This calculation was performed as a
high FGS indicates that both the intended gender score had a high rating and the op-
posite gender score had a low rating (i.e. if a masculine robot had a very high FGS, it
meant that both the masculinity rating was very high and the femininity rating was
very low). The higher this score, the more clearly the robot displays its intended
gender.

Step 5: The data from the ABOT database was downloaded, this includes human-
likeness scores of the same 251 robots as the ROBO-GAP database, on a 100-point
scale. This data was then added to the ambiguous, masculine, and feminine lists to
allow for comparisons. Interestingly, the mean human-likeness score of the robots
on the ambiguous list was 15, while the means for robots on the masculine and fem-
inine lists were 44 and 47 respectively. The median score for the ambiguous list was
only 10, while those for the masculine and feminine lists were 43 and 39 respectively.
This seems to concur with previous research on anthropomorphism mentioned in
Chapters 2.2.2 and 2.2.3, which implies that humanization is linked with the clear
presence of gender.

Step 6: To control for the level of human-likeness in the selected robots, a human-
likeness score range was defined. All selected robots must be from within this range.
However, as became evident in the previous step, the human-likeness scores of the
robots on the ambiguous list were very different from those on the masculine or fem-
inine lists. The median human-likeness score of 10 for the ambiguous robots, was
lower than the lowest human-likeness scores for the masculine and feminine robots,
showing that the overlap in human-likeness scores between the ambiguous robots
and the masculine and feminine robots was minimal. Therefore, to find a range
of human-likeness scores that worked for all three gender categories, the six am-
biguous robots (from the list established in Step 3) with the highest human-likeness
scores were selected for the pre-test. The human-likeness scores of these robots were
then used to define the range of human-likeness scores from which the masculine
and feminine robots were selected. This resulted in a human-likeness score range
between 18 and 44.

Step 7: The defined human-likeness score range was applied to the masculine
and feminine lists, where every robot outside this range was disregarded. Within
each respective list, the six robots with the highest FGS (calculated in step 4) were
selected for the pre-test.
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Step 8: A total of three (1 masculine, 2 feminine) out of the 18 selected robots,
included a human face avatar on a screen. These robots were removed from the
selection and replaced by those with the next highest FGS, as the inclusion of such
features was not intended for this research due to the (presumed) impact on gender
perception ratings. The mean human-likeness scores of the 18 selected robots were
30.9 for both the ambiguous and the feminine robots, and 35.2 for the masculine
robots.

This selection procedure led to the selection of the following robots. Meka M1
Mobile Manipulator, Kibo, Topo, Moxi, 3e-a18, and Sanbot Max were the selected
ambiguous robots (for images, see Appendix A). Mobiserv, Aryan, Murata Girl, Aila,
Robina, and Sanbot were the selected feminine robots (for images, see Appendix B).
Lego Mindstorms Nxt 2.0, Hiro, E3, Topio Dio, Rollin Justin, and Aero Drc were the
selected masculine robots (for images, see Appendix C).

The images of the robots used in the pre-test were taken directly from the ROBO-
GAP and ABOT databases (these used the same images). These images have been
standardized by the creators of the ABOT database, to show all robots in front of
a light-coloured (or white) background. Additionally, at the initial creation of the
ABOT database, whenever possible, the chosen images show the robot in a standing,
neutral, forward-facing posture, with a neutral or slightly positive facial expression.
[66]

4.1.3 Computer Voices

Unlike the robots, the computer voices had to be manually generated. Voice clips for
22 different voices were created for use in the pre-test, one clip per voice, guided by
the methodology that was described and validated by Mooshammer & Etzrodt [100].
This methodology uses one computer voice as a root, and shifts the fundamental and
formant frequencies to create other voices (male, female, and neutral).

Mooshammer & Etzrodt [100] used a voice from Google WaveNet, which is per-
ceived as one of the most advanced and natural-sounding text-to-speech systems
[103]. Specifically, they used the highest-pitched German male voice offered to
record one voice clip, and pitch-shifted it to 156 Hz, which they determined to be
the middle point between the average male and female voice pitch [100]. The re-
sulting voice clip then served as the root, through which all other voice clips were
created with fundamental and formant frequency shifts. In total, they created three
male, three female, and nine neutral voices (one of which was the root). The exact
fundamental and formant frequency values used can be found in Appendix D.

For this pre-test, two different root voices were used. The first root voice was
a male voice from Google Studio (en-US-Studio-M), pitch-shifted to 156 Hz which
should be ambiguous (or ‘neutral’) as stated in the previous paragraph. The aim was
to select a voice from Google WaveNet, following the methodology of Moosham-
mer & Etzrodt [100]. However, all the male, American English voices from Google
WaveNet were too high-pitched, as their pitch was already within the pitch range
for the to-be-created neutral voices (see Appendix D). Therefore, other Google voice
types were also considered, leading to the selection of a Google Studio voice with a
lower pitch. Studio is considered a premium Google voice type just like WaveNet,
and is specifically designed for use with long texts, like narration or news reading
[104].

The second root voice was a voice called Sam, a ‘non-binary’ voice created by
CereProc and Accenture Labs [15]. This voice was selected as it is one of the few
commercially available gender ambiguous voices, making it both accessible for use
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in this study, and indicating that it may be used, or already be in use, for consumer
goods. As this voice is already supposed to be gender ambiguous, it was only pitch
and formant shifted to create three male and three female voices (again to the fun-
damental and formant frequency values provided in Appendix D).

Due to the methodology used for the creation of the voice clips, where one voice
clip is recorded for the root voice and is then continuously pitch and formant shifted
to create different sounding voice clips, all voice clips say the same text with the
same accent as the root. To ensure this effect persisted even when using two different
root voice clips, the selected Google Studio voice speaks American English as this is
the only language in which Sam is available. Additionally, both root voice clips (and
thereby all derived voice clips) say the same sentence.

The chosen sentence had to be carefully selected to avoid any gender association,
as the goal for the voices was to be solely gendered based on their sound, not the
content of their speech. This resulted in the selection of the grammatically correct
but semantically nonsensical sentence “colourless green ideas sleep furiously” by
Noam Chomsky [105]. In addition, the use of this single, short sentence limits time
consumption during experiments compared to longer multi-sentence texts, while
still providing enough information to form an impression [51].

Once the sentence was selected, recordings could be made for the root voices.
The Sam root voice was recorded through CerePrompt, the text-to-speech engine
of CereProc. The Google Studio voice was recorded through a Google webpage
featuring a demo space [106], this voice was then pitch-shifted to 156 Hz to create
the root voice. This pitch shift and all other pitch and formant shifts needed to create
the voice clips, as well as early frequency analyses to find a suitable Google WaveNet
or Google Studio voice, were performed through the Praat program, created by Paul
Boersma and David Weenink3 [107].

A total of 22 voice clips were created. Fifteen from the Google Studio root; 9
neutral (including the root), 3 male, and 3 female. Seven from the Sam root; 1 neutral
(the root), 3 male, and 3 female. After completion, one clear difference was noted
between the voices from the different roots, despite them speaking with the same
accent and saying the same sentence. Namely, the monotony of the Sam-derived
voices compared to the Google Studio-derived voices.

4.1.4 Measures

Gender perception questions for all the voices and robots made up the main body
of the survey. Each stimulus was accompanied by three gender perception ques-
tions: “how would you rate the [ masculinity / femininity / gender neutrality ] of the
[ voice in the clip / robot in the image ]?” With a text-based 7-point scale to answer
each question. The scale points were (in order): not at all masculine, slightly mas-
culine, somewhat masculine, masculine, moderately masculine, considerably mas-
culine, and very masculine (see Figure 4.1a). In this 7-point scale, ‘masculine’ was
replaced by ‘feminine’ or ‘gender neutral’ depending on the question the scale re-
lated to, as seen in Figure 4.1b (see Appendix E and F for full excerpts of the survey).
This method for measuring gender perception, using multiple scales, was replicated
from the original study creating the ROBO-GAP database [7] (see Chapter 2.6.3),
though changes were made to the wording of the questions and scales for increased
clarity. For reference, the original wording of the question was: “how would you de-
scribe the robot in the image?” Accompanied by three 7-point scales (called feminine,

3www.praat.org
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masculine, and gender neutral) ranging from (1) completely disagree to (7) completely
agree [7].

(A) Masculine gender perception question for robots

(B) Feminine gender perception question for voices

FIGURE 4.1: Gender perception questions for robots and voices

After the gender perception questions, participants were presented with 13 state-
ments regarding social roles, and asked to convey to what extent they agreed with
these statements on a scale from “0% — strongly disagree” to “100% — strongly agree.”
This was a direct copy of the Social Roles Questionnaire (SRQ) as proposed by Baber
& Tucker [108]. They describe it as a method to capture how people think about gen-
der. Correspondingly, it was included in the research as gender attitudes may have
an impact on the gender perception results. For the same reason, the participants’
gender (using the gender-sensitive method described by Spiel et al. [109]), age, and
nationality were also collected. While these were not considered during the eventual
selection of robots and voices for the main experiment, they may provide valuable
insights nonetheless.

4.1.5 Procedure

The survey was conducted online using Qualtrics. The link to the survey brought
participants to a web page with an information brochure and a consent form, where
participants were fully informed on the contents of the survey, as well as the goal of
the experiment and the research project as a whole. Once consent was established,
they could start. The survey was split into several stages. First, all (22) voices were
presented in randomized order, one voice at a time. The participants could replay
all voice clips as much as they desired, and were asked to provide their perception
of the gender of each voice (see Appendix E). Second, after a short intermission,
the participants were presented with all (18) robots, also in randomized order, one
robot at a time, and asked to provide their perception of the gender of each robot
(see Appendix F). In the final stage, participants were asked to fill in the SRQ, as
described in the previous section, and provide demographic data. Afterwards, the
participants were forwarded to a web page with a small debrief and a final consent
check after which the survey was finished.

In total, the survey was expected to take around 15–20 minutes to complete,
though no time limit was implemented. The mean of the eventual measured time
to completion was 44 minutes, with a median of 24 minutes. It was conducted com-
pletely remotely, participants could take part when and where it was convenient for
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TABLE 4.1: An overview of the robots and their placeholder names.
AR stands for ’ambiguous robot,’ MR stands for ’masculine robot,’

and FR stands for ’feminine robot.’

3e-a18 = AR_1 Aero Drc = MR_1 Aila = FR_1
Kibo = AR_2 E3 = MR_2 Aryan = FR_2
Meka M1 = AR_3 Hiro = MR_3 Mobiserv = FR_3
Moxi = AR_4 Lego Mindstorms = MR_4 Murata Girl = FR_4
Sanbot Max = AR_5 Rollin Justin = MR_5 Robina = FR_5
Topo = AR_6 Topio Dio = MR_6 Sanbot = FR_6

them. They were only asked to ensure they could properly see and hear all the stim-
uli. Participants were not able to go back and change their answers to any previously
answered question.

4.1.6 Analysis

Analysis of the results used similar calculations as the initial robot selection proce-
dure. First, mean masculinity, femininity, and neutrality scores were calculated for
each robot and voice. Then, to select the most gender ambiguous robots and voices,
the AbsDiff of each robot and voice was calculated (see Step 2 of Chapter 4.1.2). For
the selection of the most masculine and feminine robots and voices, the Final Gender
Scores (FGS) were calculated (see Step 4 of Chapter 4.1.2).

4.2 Results

4.2.1 Robots

To increase clarity, the robot names are replaced by placeholders. These placehold-
ers provide immediate information on the intended gender of the robot; the gender
for which the robot was initially selected (see Chapter 4.1.2). See Table 4.1 for an
overview of the robots and their placeholder names (for all robot images, see Ap-
pendix A, B, and C).

As described in the methodology, the mean masculinity (masc), femininity (fem),
and gender neutrality (neut) scores were calculated for every robot, as well as the
AbsDiff and FGSs originally established in Chapter 4.1.2. Figure 4.2 gives an overview
of the masculine and feminine FGSs, as well as the AbsDiffs of all the robots. All ex-
act results can be found in Appendix G.

None of the robots deviated from the gender category for which they were se-
lected. Of the six ambiguous robots, only AR_2 had an AbsDiff greater than 1, at
1.05, while four of the six ambiguous robots had an AbsDiff smaller than 0.5. Of the
non-ambiguous robots, the lowest AbsDiff was 1.9 for FR_2, while the next lowest
was 2.55 for MR_1. The mean neutrality scores of the ambiguous robots were higher
than those of all other robots except one, as the neutrality score of MR_3 was greater
than that of AR_5. The highest masculine FGS was 10.4 for MR_6, while the next
highest was 7.8 for MR_4. Four out of six masculine robots had a masculine FGS
above 7, with MR_3 and MR_1 slightly lower. The mean masculinity scores of all
masculine robots were higher than the masculinity scores of all other robots. FR_1
had the highest feminine FGS at 10.8, with the next highest being 9.65 and 9.55 for
FR_6 and FR_5 respectively. Of the feminine robots, FR_2 had the lowest feminine
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FIGURE 4.2: The masculine and feminine FGSs, and AbsDiffs of all
the robots

FGS at 5.3, almost 2 lower than the next lowest, FR_3. Similar to the mean masculin-
ity score of the masculine robots, the mean femininity scores of the feminine robots
were higher than those of all other robots. FR_1 is the only robot with a gender score
higher than 6, with a mean femininity score of 6.05.

4.2.2 Voices

An overview of the masculine and feminine FGSs, and the AbsDiffs of all the voices
can be found in Figure 4.3. The exact results can be found in Appendix H. Naming
conventions of the voices are copied from the table in Appendix D. The F voices
were intended to be feminine, the M voices were intended to be masculine, and the
N voices were intended to be neutral/ambiguous. The voices starting with ‘sam’
were created from the Sam root voice (sam_n1; which should be ambiguous), all
others were based on the Google Studio root voice.

None of the voices had an AbsDiff lower than 1. The lowest AbsDiff was 1.05
for F1, followed by 1.65 for N8 and N9. All remaining voices had an AbsDiff of 2
or higher, including sam_n1 with an AbsDiff of 2.5. The highest masculine FGS was
11.15 for M2, followed closely by M1 at 10.85. The M voices from the Sam base scored
much lower, between 8.85 and 6.45, which is on par with, or lower than, many of the
N voices created from the Google Studio root which were meant to be ambiguous.
The opposite was the case for the feminine FGSs. The highest feminine FGS was 9.9
for sam_f1, followed by sam_f2 at 9.85, and sam_f3 at 9.05. The F voices based on the
Google Studio root voice had much lower scores ranging from 7.35 to 4.85. Sam_n1,
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FIGURE 4.3: The masculine and feminine FGSs, and AbsDiffs of all
the voices

the original Sam voice created by CereProc and Accenture Labs to be ’non-binary,’
had a feminine FGS of 6.9, higher than two of the three F voices created from the
Google Studio root.

4.3 Discussion

4.3.1 Robots

None of the robots diverged from their perceived gender based on the data in the
ROBO-GAP database, though some differences are present. For example (as shown
in Table 4.2), the feminine FGSs of the feminine robots and the masculine FGSs of the
masculine robots based on the results of this pre-test, were considerably lower than
those based on the data from the ROBO-GAP database. Additionally, more so for the
masculine robots than the feminine robots, the order of the robots from highest to
lowest FGS differs between the pre-test results and the ROBO-GAP database. Most
prominently, of the six masculine robots that were included in the pre-test, MR_4
had the lowest masculine FGS based on the ROBO-GAP database, but ranked sec-
ond highest based on the pre-test results. Though with only a 0.1 difference in FGS
between MR_4 and MR_5, as well as between FR_5 and FR_6, it is unlikely there is
any statistically significant difference between them.

Similar to the pre-selection of the robots from the ROBO-GAP database, the
robots with the highest masculine or feminine FGS are selected for their respective
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gender categories (see Step 7 in Chapter 4.1.2). As the goal of this pre-test is to se-
lect two robots per gender category for the main experiment, the selected masculine
robots are MR_6 and MR_4, while the selected feminine robots are FR_1 and FR_6.

TABLE 4.2: Comparison between pre-test results and ROBO-GAP
database for masculine and feminine robots

(A) Masculine FGS of Masculine Robots

Robot Pre-test ROBO-GAP
MR_6 10.4 11.323
MR_4 7.8 9.223
MR_5 7.7 9.8
MR_2 7.35 9.581
MR_1 6.75 9.742
MR_3 6.65 9.387

(B) Feminine FGS of Feminine Robots

Robot Pre-test ROBO-GAP
FR_1 10.8 11.903
FR_6 9.65 10.233
FR_5 9.55 11.129
FR_4 7.8 9.484
FR_3 7.25 9
FR_2 5.3 8.233

Where the masculine and feminine FGSs were all considerably lower in the pre-
test compared to the ROBO-GAP database, such an effect was not observed in the
AbsDiff nor the neutrality scores of the ambiguous robots (see Table 4.3). A com-
parison between AbsDiff and neutrality scores (as neutrality scores have been more
traditionally used to measure non-binary gender) shows that two robots are in both
the top three lowest AbsDiff scores, and the top three highest neutrality scores (re-
member that for AbsDiff a low score signifies ambiguity, while for neutrality score
a high score signifies ambiguity). These are AR_6 and AR_4. The two robots that
occur in only one of these top threes, AR_5 for lowest AbsDiff (3rd) and AR_1 for
highest neutrality score (2nd), score surprisingly badly in the other category. AR_5
has by far the lowest neutrality score of the six ambiguous robots, with a gap of 1.05
to the next lowest score. While AR_1 has the second highest AbsDiff, only surpassed
by AR_2.

The selection of ambiguous robots for the main experiment is based on the AbsD-
iff, similar to the pre-selection from the ROBO-GAP database (see Step 3 in Chapter
4.1.2). As such, the two robots with the lowest AbsDiffs, AR_6 and AR_4, are se-
lected.

TABLE 4.3: Comparison between pre-test results and ROBO-GAP
database for ambiguous robots

(A) AbsDiff of Ambiguous Robots

Robot Pre-test ROBO-GAP
AR_6 0.05 0
AR_4 0.2 0.167
AR_5 0.25 0.3
AR_3 0.4 0.167
AR_1 0.8 0.167
AR_2 1.05 0.3

(B) Neutrality Score of Ambiguous Robots

Robot Pre-test ROBO-GAP
AR_4 5.1 4.933
AR_1 5 5.167
AR_6 4.95 5.333
AR_3 4.4 4.8
AR_2 4.15 3.5
AR_5 3.35 3.567

4.3.2 Voices

The voices diverged considerably from their intended gender, as well as showing
considerable differences between the two root voices (as alluded to in the results; see
Chapter 4.2.2). As shown in Figure 4.3, most of the voices based on the Google Stu-
dio voice scored high on masculinity, including many N voices which were meant
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to be ambiguous. Suggesting that the masculinity of the original recording, from
which the root was created, may still be discernible. Several of these N voices even
had higher masculine FGSs than masculine intended voices based on the Sam voice,
which had relatively low masculine FGSs for voices that are meant to be masculine.
Conversely, the highest feminine FGSs were all for voices based on the Sam voice,
while those of the feminine intended Google Studio-based voices were much lower.
Two of the three feminine intended voices from the Google Studio root even had a
lower feminine FGS than the Sam base voice (sam_n1), which is meant to be am-
biguous. The results highlight a difference between the seemingly more feminine
Sam root voice and the seemingly more masculine Google Studio root voice.

As the voices with the highest masculine or feminine FGS are selected for their
respective gender categories for the main experiment, similarly to the robots, M1
and M2 are selected as masculine voices, while sam_f1 and sam_f2 are selected as
feminine voices.

The relatively high feminine FGS of the Sam root voice also highlights the diffi-
culty of creating an ambiguous voice. While Sam was not explicitly made to be am-
biguous, but rather non-binary to be specific [15], given its intricate and advanced
creation method relative to the ambiguous intended voices of the Google Studio root
used in this research, as well as the producers being big corporations with experi-
ence in creating computer-generated voices, it is surprising that seven other voices
have a lower AbsDiff, and two other voices have higher neutrality scores, includ-
ing masculine intended voices based on the original Sam voice (see Figure 4.3 and
Appendix H).

Just as with the robots, the ambiguous voices are selected based on their AbsDiff.
The first selected voice is F1, as it has the lowest AbsDiff. However, the second
lowest AbsDiff belongs to both N8 and N9, at 1.65. To select a second ambiguous
robot from these two, their neutrality scores are considered. As N8 has a higher
neutrality score than N9, it is selected for the main experiment.

TABLE 4.4: The top 5 lowest AbsDiff and highest neutrality scores of
the voices

(A) Top 5 lowest AbsDiff scores of the voices

Voice AbsDiff
F1 1.05

N8 & N9 1.65
F2 2

sam_m3 2.3
sam_m2 2.35

(B) Top 5 highest neutrality scores of the voices

Voice Neutrality Score
F2 3.7

sam_m3 3.25
sam_n1 3.1

N8 3.05
F1 & N9 3

A comparison to the results from Mooshammer & Etzrodt [100], whose method-
ology was followed as exact as possible for the creation of the voices from the Google
Studio root (see Chapter 4.1.3), suggests that they were more successful in creating
feminine perceived voices. Additionally, their ambiguous intended voices seemed
to lean more towards femininity, while the opposite was true here. This difference
may be attributed to the use of a different voice for the creation of the root, though it
should also be noted that Mooshammer & Etzrodt used a different method to mea-
sure gender perception (a single 7-point scale), hindering a true comparison of the
results.
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4.4 Conclusion

In summary, the following robots were selected for use in the main experiment:
MR_6 (masc), MR_4 (masc), FR_1 (fem), FR_6 (fem), AR_6 (amb), and AR_4 (amb).
The following voices have also been selected: M1 (masc), M2 (masc), sam_f1 (fem),
sam_f2 (fem), F1 (amb), and N8 (amb). It may be argued that the selected robots and
voices cannot be concluded to be the two most masculine, feminine, or ambiguous
due to small differences between selected and non-selected robots and voices. The
goal of this pre-test has still been reached, as the selected robots and voices are found
to clearly present and be clearly perceived as the measured gender category.
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Chapter 5

Main Experiment

Following the main aim of this research project presented in the introduction of this
report (Chapter 1), that is, to find the influence embodiment and voice have on the
gender perception of speaking social robots and each other, and to find the most
promising approach for the creation of gender ambiguous speaking social robots,
a survey is conducted in which the perceived gender of robots and voices is tested
both in isolation and in robot-voice combinations.

5.1 Methods & Materials

5.1.1 Participants

In total 38 participants took part in the main experiment, of which 12 were men, 22
were women, one was non-binary, and three preferred not to say their gender. They
had a mean age of 38 (standard deviation of 17), and a median age of 31. The most
represented nationality was Dutch, with 13 participants coming from the Nether-
lands, while four participants were British, and three were German. The rest came
from a variety of countries throughout Europe, South(-East) Asia, and North Amer-
ica. Participants were partially recruited through communal chat groups related to
the Creative Technology Bachelor’s and Interaction Technology Master’s at the Uni-
versity of Twente. During recruitment, it was stressed to potential participants to not
respond if they had already participated in the pre-test. The remaining participants
were recruited through research platform SurveyCircle.com, where researchers can
share their online surveys and find participants. Equal to the pre-test, participants
had to be 16 years or older, and be able to properly see and hear the stimuli (deter-
mining what constitutes “properly see and hear” was at the participant’s discretion).
Additionally, as mentioned, participants of the pre-test were excluded.

5.1.2 Robots & Voices

The six selected robots and voices were presented to the participants in the same
manner (with the same images and voice clips) as they were in the pre-test. How-
ever, a small addition was made to the robot images, namely an indication of the
height of the robot as the original images might not be able to fully communicate
this (see Appendix I for an example of the height indication).

To recap, the selected robots are MR_4 (masc), MR_6 (masc), FR_1 (fem), FR_6
(fem), AR_4 (amb), and AR_6 (amb). The selected voices are M1 (masc), M2 (masc),
sam_f1 (fem), sam_f2 (fem), F1 (amb), and N8 (amb).
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5.1.3 Robot-Voice Combinations

As this research project specifically concerns speaking social robots, videos had to be
made showing the selected robots speaking with the selected voices. To achieve this,
a strategy used previously in research concerning the relative importance of auditory
and visual stimuli, in the academic fields of psychology and neuroscience, discussed
in Chapter 2.5, was replicated. In this strategy, a static image of the visual stimulus
is presented together with a sound clip of the auditory stimulus [8][94][110]–[112].
To this end, short videos were created presenting the selected robots and voices si-
multaneously, using the same still images and voice clips as in the pre-test (the robot
images used for the videos did contain the height indication added after the pre-
test). All possible robot-voice combinations were created, resulting in a total of 36
(6 x 6) combinations. The duration of the incorporated voice clip determined the
duration of the video, resulting in videos with durations of around three seconds.

5.1.4 Measures

The measures used in the survey were the same as those in the pre-test, described in
Chapter 4.1.4. All robots, voices, and robot-voice combinations were accompanied
by the same three gender perception questions as in the pre-test, regarding masculin-
ity, femininity, and gender neutrality. Figure 5.1 provides an example regarding the
masculinity of a robot-voice combination. The questions regarding femininity and
gender neutrality were the same, apart from ‘feminine’ and ‘gender neutral’ replac-
ing the word ‘masculine’ in the question (full survey excerpts for questions regard-
ing voices, robots, and robot-voice combinations can be found in Appendix E, F,
and J respectively). Participants were, again, also asked to fill in the Social Roles
Questionnaire (SRQ) [108], as well as demographic questions regarding gender, age,
and nationality. During analysis, no correlation was found between participants’ an-
swers to the gender perception questions and their gender, age, nationality, or SRQ
answers.

FIGURE 5.1: Masculine gender perception question for robot-voice
combinations

5.1.5 Procedure

Like the pre-test, this survey was conducted online using Qualtrics. When opening
the link to the survey, participants first saw an information brochure and a consent
form, where they were fully briefed on the contents of the survey and the goal of
the experiment. Once participants had consented, they were ready to begin. The
survey was split into multiple blocks. First, the participants were asked to give their
gender perception of the six voices. Just like in the pre-test, the voice clips were
presented in randomized order, and participants could listen to the voice clips as
many times as they wanted. Second, they were asked to give their gender perception
of the six robots. These were also presented in randomized order. The third stage
made up the main body of the survey. This included all the (36) possible robot-voice
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combinations. Again, these were presented in randomized order. At the end of each
block, participants got the opportunity to provide remarks on the foregone stage. In
the final stage, participants were asked to fill in the SRQ and provide demographic
data, after which they received a small debrief and a final consent check to finalise
the survey.

Another small block was presented between the robot-voice combinations and
the SRQ. This block specifically focused on one robot called Harmony (which was
not in the ROBO-GAP and ABOT databases), as part of a different, separate research
project. Within this block, the robot was presented individually and in combination
with the voices, in the same way as the rest of the survey, with the same gender
perception questions as well as other questions not relevant to this research. The
results from this block are not analysed here. Further information about the robot,
and the survey block dedicated to it, can be found in Appendix K.

The survey was expected to take around 30–35 minutes to complete, though no
time limit was implemented, like the pre-test. The mean measured time to com-
pletion was 69 minutes, with a median of 27 minutes (one participant recorded al-
most 23 hours between starting and finishing the survey, exclusion of this participant
would have given a mean duration of 34 minutes). Also, similar to the pre-test, the
survey was conducted completely remotely, and participants were not able to go
back and change their answers to any previously answered questions.

5.1.6 Analysis

First, to create an overview of the results, gender perception scores for all robots,
voices, and robot-voice combinations were calculated, similar to the pre-test (see
Chapter 4.1.6), based upon which they were subsequently categorised by gender.
These gender categorisations were used to address RQ2, concerning which robot-
voice combinations are the most promising for the creation of gender ambiguous
speaking social robots. Incidentally, they also allowed for a first impression of the
possible effects voice and embodiment have on the gender perception of speaking
social robots, related to RQ1. Though, the main analysis to address RQ1 was per-
formed through the creation of linear mixed models, to analyse the exact effects the
robots and voices had on each other’s gender perception scores.

Additional preprocessing steps were taken to prepare the data for use in the lin-
ear mixed models, including the creation of extra variables regarding the change to
the gender scores of robots and voices once they were combined to make robot-voice
combinations. To find exactly how the perceived gender of a robot changed when a
specific voice was added to it, the difference between the gender ratings of the in-
dividual robot and the robot-voice combination was calculated for all respondents
individually. In this case, the robot was referred to as the base, while the voice was
referred to as the addition. This was done for all three gender ratings, as well as the
AbsDiff, of every robot-voice combination. The same was also done the other way
around, where the difference was calculated between the gender ratings of an indi-
vidual voice and the robot-voice combination, to find how the perceived gender of
a voice changed when a specific robot was added to it. In this case, the voice was
referred to as the base, while the robot was referred to as the addition.

These differences (or deltas as they were called) were then used as dependent
variables to create the linear mixed models. The independent variables were: the
type of the base (robot or voice), the gender of the base (masculine, feminine, or am-
biguous), the type of the addition (robot or voice), and the gender of the addition
(masculine, feminine, or ambiguous). The variable for the base type was discarded
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due to redundancy, as the type of the addition already provides this information (if
the addition is a voice, the base must be a robot, and vice versa). To avoid possi-
ble three-way interactions, and thereby limit the complexity of the models, different
models were created for every base gender (masc, fem, and amb), leaving only the
type of the addition (addtype; robot or voice) and the gender of the addition (ad-
dgen; masculine, feminine, or ambiguous) as independent variables. The random
effects incorporated in the model were the individual participants, the specific robot
or voice that was the base (base_id), and the specific robot or voice that was the
addition (add_id).

A total of 12 models were created (3 different base genders x 4 different gender
scores). The model equations looked like the following (remember that the data used
in the models differed between the different base genders):

{GenderScore}_delta = β0 + β1addtype ∗ β2addgen + bparticipant + bbase_id + badd_id + ϵ

Where:

{GenderScore}_delta = the difference between the gender score of the base and
the robot-voice combination. Where {GenderScore} can be
the masculinity score, femininity score, neutrality score,
or the AbsDiff.

β0 = the fixed intercept
β1addtype = the fixed effect associated with the type of the addition
β2addgen = the fixed effect associated with the gender of the addition
bparticipant = the random effect associated with the individual survey

participants
bbase_id = the random effect associated with the identity of the base

(the specific base used)
badd_id = the random effect associated with the identity of the

addition (the specific addition used)
ϵ = the residual error term

As both independent variables are categorical, dummy variables had to be cre-
ated. This was done automatically by R [113], the software used for this analysis.
When using dummy variables, one of the variable values is omitted and used as
reference, to be incorporated in the fixed intercept of the model. In all models, the
reference value of addtype was Robot. The reference value of addgen differs per base
gender. In the masculine base gender models, the reference value of addgen is mas-
culine. In the feminine base gender models, the reference value is feminine, and in
the ambiguous base gender models, the reference value is ambiguous.

The linear mixed models were created using the lme4 [114] and lmerTest [115]
packages. The r2_nakagawa function from the performance package [116] was used to
calculate the R2 (model fit) of each model. Interaction plots were created with the
cat_plot function from the interactions package [117], in combination with the ggplot2
package [118].

5.2 Results

5.2.1 General Overview

The gender perception results of the robots and voices in isolation (see Figure 5.2),
show that all were perceived as intended following the results and selection from the
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(A) The masculine and feminine FGSs, and AbsD-
iffs of the voices

(B) The masculine and feminine FGSs, and AbsD-
iffs of the robots

FIGURE 5.2: The gender perception results of the voices (A) and
robots (B) when presented in isolation. The letters after the
robot and voice names signify their intended gender (Ambigu-

ous/Masculine/Feminine)

pre-test; all gender scores were similar to those found in the pre-test (a full overview
of the isolated gender perception results of the robots and voices can be found in
Appendix L).

The gender perception results of the robot-voice combinations can be found in
Appendix M. Figures 5.3, 5.4, 5.5, and 5.6 provide an overview of the effect gendered
robot or voice additions had on the gender scores of the bases. The graphs give a
first idea of what effects may be found through the linear mixed models (described
in Chapter 5.1.6), which are presented in Chapters 5.2.3, 5.2.4, and 5.2.5. For instance,
the change of the gender scores seems to be slightly greater for robot bases than for
voice bases. Additionally, little to no change in the gender scores seems to occur
when the base and the addition have the same gender. These results are explored
further in the following sections, through statistical analyses of the linear mixed
models.

Throughout the survey, the participants were also asked to provide any remarks
they had regarding their answers to the gender perception questions. Some remarks
stood out, as they were given multiple times. Several participants indicated feeling
confused, finding it weird, and struggling to rate the gender scores of combinations
with a clear mismatch between voice and robot gender. One participant noted, “[a]
mismatch between voice and appearance left me confused.” Multiple participants
stated they based their gender perception answers more on the voice than on the
robot, while others noted basing it on both.

5.2.2 Gender Categorisation

Gender categorisation of the robot-voice combinations was performed based on their
AbsDiff, and masculine and feminine FGS (see Figure 5.1; the results upon which
this categorisation is based can be found in Appendix M). Here, all combinations
with an AbsDiff (absolute difference between the masculinity and femininity score)
smaller than 1 are classified as ambiguous. All remaining combinations are classified
as either masculine or feminine based on which FGS (Final Gender Score) is higher.
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FIGURE 5.3: Bar plot showing the mean change (with standard devia-
tion) of the masculinity score of a base after a robot or voice addition.
The bases on the x-axis and the additions in the legend starting with
R are robots, those starting with V are voices. The M, F, and A signify

their gender (masculine, feminine, ambiguous).

FIGURE 5.4: Bar plot showing the mean change (with standard devi-
ation) of the femininity score of a base after a robot or voice addition.
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FIGURE 5.5: Bar plot showing the mean change (with standard devi-
ation) of the neutrality score of a base after a robot or voice addition.

FIGURE 5.6: Bar plot showing the mean change (with standard devi-
ation) of the AbsDiff of a base after a robot or voice addition.
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TABLE 5.1: The results from the gender categorisation of the robot-
voice combinations. The table shows the robot and voice that make
up a combination, coloured corresponding to their individual gender.
Followed by the gender of the combination. Blue represents mas-
culinity, pink represents femininity, and green represents ambiguity.

Combo Robot Voice
Combo
Gender

Combo Robot Voice
Combo
Gender

a1 MR_6 M1 Masc d1 MR_6 sam_f2 Amb
a2 MR_4 M1 Masc d2 MR_4 sam_f2 Fem(Amb)
a3 FR_1 M1 Amb d3 FR_1 sam_f2 Fem
a4 FR_6 M1 Masc d4 FR_6 sam_f2 Fem
a5 AR_6 M1 Masc d5 AR_6 sam_f2 Fem
a6 AR_4 M1 Masc d6 AR_4 sam_f2 Fem
b1 MR_6 M2 Masc e1 MR_6 F1 Masc
b2 MR_4 M2 Masc e2 MR_4 F1 Amb
b3 FR_1 M2 Masc(Amb) e3 FR_1 F1 Fem
b4 FR_6 M2 Masc e4 FR_6 F1 Fem
b5 AR_6 M2 Masc e5 AR_6 F1 Amb
b6 AR_4 M2 Masc e6 AR_4 F1 Amb
c1 MR_6 sam_f1 Amb f1 MR_6 N8 Masc
c2 MR_4 sam_f1 Amb f2 MR_4 N8 Masc
c3 FR_1 sam_f1 Fem f3 FR_1 N8 Fem(Amb)
c4 FR_6 sam_f1 Fem f4 FR_6 N8 Amb
c5 AR_6 sam_f1 Fem f5 AR_6 N8 Masc(Amb)
c6 AR_4 sam_f1 Fem f6 AR_4 N8 Masc(Amb)

Combinations with an AbsDiff between 1 and 1.5 are still categorised as either mas-
culine or feminine, but with an added ambiguous tag as the AbsDiff is still relatively
low.

Of the 36 robot-voice combinations, 16 were categorised as masculine (of which
three had an ambiguous tag), 12 were categorised as feminine (of which two had
an ambiguous tag), and eight were categorised as ambiguous. When comparing the
genders of the robot-voice combinations with the genders of the individual robots
and voices, most combinations consisting of a same-gendered robot and voice were
also categorised as that same gender. Only two combinations were not, both of
which consisted of an ambiguous robot and voice but were categorised as mascu-
line with an ambiguous tag (Combo f5 and f6). Of the eight total combinations that
were categorised as ambiguous, four consisted of a masculine and a feminine stim-
ulus, while only two consisted of two ambiguous stimuli, possibly suggesting that
combinations consisting of a masculine and a feminine stimulus may also be a vi-
able approach for the creation of ambiguous speaking social robots. However, the
reported attitudes from several participants towards such combinations, as men-
tioned in the previous section, may preclude this.

Disregarding the robot-voice combinations where the robot and the voice had the
same gender, ten combinations were categorised as masculine (of which one had an
ambiguous tag), eight combinations were categorised as feminine (of which two had
an ambiguous tag), and six were categorised as ambiguous. Of these combinations,
in fourteen cases the gender was the same as that of the voice (58%), in six cases the
gender of the combination was the same as that of the robot (25%), and in four cases
the gender of the combination was equal to neither that of the voice nor that of the
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robot (17%). The cases where the gender of the combination matched neither the
voice nor the robot always consisted of one masculine and one feminine stimulus
while being categorised as ambiguous; three times this was a feminine voice with a
masculine robot (Combo c1, c2, and d1), and one time it was a masculine voice with
a feminine robot (Combo a3). In the six cases where the gender of the combination
matched the gender of the robot, the voice was always ambiguous while the robot
was either masculine or feminine. Excluding robot-voice combinations where the
robot and the voice had the same gender, only two combinations which contained
an ambiguous stimulus were categorised as ambiguous (Combo e2 and f4). One
of these combinations consisted of an ambiguous voice and a masculine robot, the
other consisted of an ambiguous voice and a feminine robot.

Considering all (8) combinations that consisted of one masculine and one femi-
nine stimulus, three combinations were categorised as masculine (Combo a4, b3, and
b4, of which b4 had an ambiguous tag), these all consisted of a masculine voice and a
feminine robot. One combination was categorised as feminine (with an ambiguous
tag), this combination consisted of a feminine voice and a masculine robot (Combo
d2). Four combinations were categorised as ambiguous, of which three consisted of
a feminine voice and a masculine robot (Combo c1, c2, and d1), and one consisted
of a masculine voice and a feminine robot (Combo a3). Of these eight combinations,
four had the same gender as neither the voice nor the robot (the ambiguously cate-
gorised combinations), the remaining four combinations all had the same gender as
the voice.

5.2.3 Masculine Base Models

The results of the linear mixed models (as explained in Chapter 5.1.6) are presented
per base gender, with a focus on the gender score most related to the base gender,
i.e. for masculine bases the focus is on the model for the masculinity-delta, while for
feminine bases the focus is on the model for the femininity-delta.

When examining the interaction plot for the masculinity-delta of masculine bases
(see Figure 5.7), both feminine and ambiguous gendered additions are found to
lower the masculinity score, feminine additions more so than ambiguous additions.
The interaction plot suggests a greater effect from voice additions than from robot
additions.

However, when considering the results from the linear mixed model (see Table
5.2), voice additions did not show a significant effect in comparison to robot addi-
tions. Though, it should be noted that the significance here is only calculated when
the addition gender is at the reference level (masculine in this case). There was a
significant interaction effect between the addition type and gender, showing a de-
crease of the masculinity-delta when feminine voices (β = -1.39, SE = 0.30, p = 0.004)
or ambiguous voices (β = -1.68, SE = 0.30, p = 0.001) were added. Aside from that,
feminine gendered additions were significant, lowering the masculinity-delta (β =
-1.73, SE = 0.21, p < 0.001), while ambiguous gendered additions, which also low-
ered the masculinity-delta, were only marginally significant (β = -0.50, SE = 0.30, p =
0.06). Finally, the model had a conditional R2 (model fit that takes both random and
fixed effects into account) of 0.464.
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FIGURE 5.7: Interaction plot with 95% confidence intervals of the
masculinity-delta model of the masculine bases, showing the effect

of the addition type and addition gender on the masculinity-delta

TABLE 5.2: The linear mixed model results for the masculinity-delta
of masculine bases

Fixed Effect Estimate Standard Error 95% Confidence Interval p-value
Intercept 0.1382 0.4865 [-0.7344904 , 1.0108100] 0.797384
addtype_V 0.5789 0.6688 [-0.6278076, 1.7857088] 0.466334
addgen_A -0.5 0.2118 [-0.8603859, -0.1396141] 0.056217
addgen_F -1.7303 0.2118 [-2.0906491, -1.3698773] 0.000181
addtype_V:addgen_A -1.6842 0.2995 [-2.1938732, -1.1745479] 0.001352
addtype_V:addgen_F -1.3882 0.2995 [-1.8978206, -0.8784953] 0.00356

Random Effect Standard Deviation
participant 0.7048
base_id 0.6344
add_id 0.1151 Conditional R2 0.464
Residual 1.5499 Marginal R2 0.261

Examining the models and interaction plots of the other gender scores of the
masculine bases (see Appendix N), none of the models recorded a significant ef-
fect of voice additions in comparison to robot additions. All models did record one
significant interaction effect each. In the femininity-delta model, feminine voice ad-
ditions caused an increase of the femininity-delta (β = 0.87, SE = 0.34, p = 0.05),
while ambiguous voice additions also had a marginally significant effect, increasing
the femininity-delta (β = 0.71, SE = 0.34, p = 0.08). In the neutrality-delta model,
ambiguous voice additions showed an increase in the neutrality-delta (β = 1.10, SE
= 0.21, p < 0.001). Lastly, in the AbsDiff-delta model ambiguous voice additions de-
creased the AbsDiff-delta (β = -2.11, SE = 0.28, p < 0.001). Additionally, apart from
ambiguous gendered additions in the model for the femininity-delta, all addition
genders showed significant effects for the remaining models. Feminine additions
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increased the femininity-delta (β = 1.52, SE = 0.24, p < 0.001) and neutrality-delta
(β = 0.79, SE = 0.15, p < 0.001), while decreasing the AbsDiff-delta (β = -2.74, SE =
0.20, p < 0.001). Similarly, ambiguous additions increased the neutrality-delta (β =
0.37, SE = 0.15, p = 0.01) while decreasing the AbsDiff-delta (β = -0.68, SE = 0.20, p <
0.001). Finally, the femininity and AbsDiff-delta models showed the greatest model
fit, with a conditional R2 of 0.503 and 0.505 respectively.

5.2.4 Feminine Base Models

Similarly to the masculine bases, based on the interaction plot (see Figure 5.8), ad-
ditions with an incongruent gender from the base lowered the femininity score of
feminine bases. Here too, a voice addition seemed to have a greater impact than a
robot addition.

The results from the linear mixed model (see Table 5.3) were also similar to those
from the model for the masculinity-delta of masculine bases. Finding a significant
interaction effect, with the addition of masculine voices showing a decrease of the
femininity-delta (β = -0.87, SE = 0.26, p = 0.02). Voice additions did not have a sig-
nificant main effect, while addition genders did, with both masculine gendered ad-
ditions (β = -1.91, SE = 0.19, p < 0.001) and ambiguous gendered additions (β = -1.31,
SE = 0.19, p < 0.001) lowering the femininity-delta. The conditional R2 showed a
model fit of 0.425.

FIGURE 5.8: Interaction plot with 95% confidence intervals of the
femininity-delta model of the feminine bases, showing the effect of

the addition type and addition gender on the femininity-delta
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TABLE 5.3: The linear mixed model results for the femininity-delta of
feminine bases

Fixed Effect Estimate Standard Error 95% Confidence Interval p-value
Intercept 0.1118 0.3241 [-0.4859441, 0.7096294] 0.748229
addtype_V -0.1579 0.4168 [-0.9427645, 0.6269785] 0.733396
addgen_A -1.3092 0.1855 [-1.6685974, -0.9498238] 0.000404
addgen_M -1.9079 0.1855 [-2.2672816, -1.548508] 4.93E-05
addtype_V:addgen_A -0.4079 0.2623 [-0.9161445, 0.1003549] 0.170898
addtype_V:addgen_M -0.8684 0.2623 [-1.3766709, -0.3601714] 0.016183

Random Effect Standard Deviation
participant 0.83175
base_id 0.37323
add_id 0.02703 Conditional R2 0.425
Residual 1.59954 Marginal R2 0.238

Similar to the masculine base models, none of the models for the feminine bases
(see Appendix O) showed a significant effect of voice additions in comparison to
robot additions. The neutrality and AbsDiff-delta models did not record a significant
interaction effect. The masculinity-delta model did, as masculine voice additions in-
creased the masculinity-delta (β = 1.39, SE = 0.34, p = 0.007), while ambiguous voice
additions also saw a marginally significant effect, increasing the masculinity-delta
(β = 0.74, SE = 0.34, p = 0.08). Furthermore, all addition genders were significant ex-
cept for ambiguous additions in the masculinity-delta model. Masculine additions
increased the masculinity-delta (β = 1.49, SE = 0.24, p < 0.001) and neutrality-delta
(β = 0.85, SE = 0.15, p < 0.001), while decreasing the AbsDiff-delta (β = -2.22, SE =
0.24, p < 0.001). Ambiguous additions also increased the neutrality-delta (β = 1.16,
SE = 0.15, p < 0.001) while decreasing the AbsDiff-delta (β = -1.72, SE = 0.21, p <
0.001). The masculinity-delta model saw the greatest conditional R2 of the feminine
base models, at 0.49.

5.2.5 Ambiguous Base Models

While the interaction plots of the neutrality and AbsDiff-delta of ambiguous bases
are complete opposites of each other (see Figure 5.9 and 5.10), high gender ambigu-
ity being represented by high neutrality scores and low AbsDiffs, suggests that the
plots show very similar results. Both showed little change for robot additions, and
much more for voice additions. Additionally, the feminine and ambiguous addition
genders were almost parallel in both interaction plots, while the masculine addition
gender showed a much steeper angle between robot and voice additions. Interest-
ingly, the addition of a voice seemed to always have a negative effect on ambiguity
regardless of how ambiguity is measured, lowering the neutrality score while in-
creasing the AbsDiff.

The linear mixed models for both the neutrality and AbsDiff-delta (see Table 5.4
and 5.5) showed a significant effect of voice additions compared to robot additions,
lowering the neutrality-delta (β = -1.67, SE = 0.26, p < 0.001) while increasing the
AbsDiff-delta (β = 1.03, SE = 0.25, p < 0.001). Both models also recorded a significant
interaction effect when masculine voices were added, amplifying the decrease of the
neutrality-delta (β = -1.11, SE = 0.36, p = 0.02), and the increase of the AbsDiff-delta
(β = 2.11, SE = 0.34, p < 0.001). In the neutrality-delta model, feminine gendered ad-
ditions recorded a significant effect lowering the neutrality-delta (β = -0.69, SE = 0.25,
p = 0.03), while masculine gendered additions only recorded a marginally significant
effect, lowering the neutrality-delta (β = -0.61, SE = 0.25, p = 0.05). Contrarily, the
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AbsDiff-delta model showed no significant effects from the addition genders. The
conditional R2 showed a model fit of 0.438 and 0.34 for the neutrality-delta model
and the AbsDiff-delta model respectively.

FIGURE 5.9: Interaction plot with 95% confidence intervals of the
neutrality-delta model of the ambiguous bases, showing the effect of

the addition type and addition gender on the neutrality-delta

FIGURE 5.10: Interaction plot with 95% confidence intervals of the
AbsDiff-delta model of the ambiguous bases, showing the effect of

the addition type and addition gender on the AbsDiff-delta
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TABLE 5.4: The linear mixed model results for the neutrality-delta of
ambiguous bases

Fixed Effect Estimate Standard Error 95% Confidence Interval p-value
Intercept 0.65789 0.24903 [0.2350550, 1.0807179] 0.017828
addtype_V -1.67105 0.26402 [-2.0651886, -1.2769167] 0.000944
addgen_F -0.69079 0.25273 [-1.0849254, -0.2966535] 0.034034
addgen_M -0.61184 0.25273 [-1.0059781, -0.2177061] 0.051794
addtype_V:addgen_F 0.01974 0.35741 [-0.5376556 , 0.5771293] 0.957754
addtype_V:addgen_M -1.10526 0.35741 [-1.6626556, -0.5478707] 0.021321

Random Effect Standard Deviation
participant 1.01591
base_id 0.07641
add_id 0.15326 Conditional R2 0.438
Residual 1.75189 Marginal R2 0.244

TABLE 5.5: The linear mixed model results for the AbsDiff-delta of
ambiguous bases

Fixed Effect Estimate Standard Error 95% Confidence Interval p-value
Intercept -0.125 0.2135 [-0.50399429, 0.2539943] 0.57135
addtype_V 1.0263 0.2523 [0.59647801, 1.4561536] 0.009433
addgen_F 0.375 0.2379 [-0.05483778, 0.8048378] 0.165993
addgen_M 0.2566 0.2379 [-0.17325883, 0.6864167] 0.322195
addtype_V:addgen_F 0.3158 0.3364 [-0.29209295, 0.9236719] 0.384111
addtype_V:addgen_M 2.1053 0.3364 [1.49738074, 2.7131456] 0.000772

Random Effect Standard Deviation
participant 0.72342
base_id 0.08412
add_id 0.09176 Conditional R2 0.34
Residual 1.91324 Marginal R2 0.243

The results from the masculinity and femininity-delta models were opposites
of each other (see Appendix P). Considering the interaction plots, masculine addi-
tions increased the masculinity score while decreasing the femininity score, while
feminine additions increased the femininity score while decreasing the masculin-
ity score. Interestingly, the decreasing effect masculine and feminine additions had
on the femininity and masculinity scores showed almost no difference between the
robot and voice addition types, while in both cases the increasing effect was much
greater from voice additions than from robot additions. Additionally, masculine
additions caused both greater increases and greater decreases of masculinity and
femininity scores, than feminine additions. Lastly, the addition of ambiguous voices
caused greater change in the masculinity and femininity score than the addition of
ambiguous robots.

Regarding the linear mixed models, voice additions recorded a significant ef-
fect increasing both the masculinity-delta (β = 0.79, SE = 0.29, p = 0.03) and the
femininity-delta (β = 0.84, SE = 0.27, p = 0.04). Both the masculinity and femininity-
delta models also showed a significant interaction effect, as masculine voice addi-
tions amplified the increase in the masculinity-delta (β = 1.68, SE = 0.41, p = 0.006)
and the decrease in the femininity-delta (β = -0.71, SE = 0.27, p = 0.04). Mascu-
line additions were found to be significant in the masculinity-delta model, having a
positive effect (β = 0.75, SE = 0.29, p = 0.04). Feminine additions were found to be
significant in the femininity-delta model, also having a positive effect (β = 1.45, SE =
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0.19, p < 0.001). The masculinity-delta model had the highest conditional R2 of the
ambiguous base model, at 0.491.
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Chapter 6

Discussion

6.1 RQ1 — The influence of embodiment and voice on the
gender perception of speaking social robots, and each
other

RQ1 concerned how robot embodiments and voices would influence each other’s
perceived gender and the perceived gender of a speaking social robot. Two hy-
potheses related to this question were constructed. First, ambiguous stimuli were
expected to have no effect on the gender perception (scores) of robot-voice combina-
tions, if the other stimulus was binary gendered (H1). Second, if the robot and the
voice have incongruent genders and neither is ambiguous, the robot was expected
to have a greater effect on the gender scores of the robot-voice combination, than the
voice. In the same scenario, the robot was expected to have a greater effect on the
gender scores of the voice, than the voice would have on the robot (H2).

When comparing the impact voices and robots had on each other’s gender scores,
whether the gender scores increased or decreased was very much dependent on the
specific gender score measured, the gender of the base, and the gender of the addi-
tion. However, the rate of the increase or decrease seems to be related to the type of
the addition, whether it is a robot or a voice. This follows from the interaction plots
of the linear mixed models, which show that in most cases the change of the gen-
der scores caused by voice additions is further removed from zero than their robot
addition counterparts. Additionally, the results from the gender categorisation of
the robot-voice combinations showed that 58% of combinations (excluding combi-
nations consisting of same-gendered robots and voices) had the same gender as the
voice, while only 25% had the same gender as the robot. When only considering
combinations consisting of one masculine and one feminine stimulus this changed
to 50% for voices and 0% for robots. Thus, pointing towards a greater impact from
voices than from robots, on gender scores.

However, when considering the results of the mixed linear models, voices did
not always have a greater impact on the gender scores, than robots did. Voices on
their own only showed a reliable difference from robots in the models for the am-
biguous bases, though this may have been caused by individual differences in am-
biguity between the ambiguous robots and the ambiguous voices. In the models for
masculine and feminine bases, voices only showed a reliable difference from robots
in combination with a specific gender. Such a reliable difference was, for example,
found when considering combinations consisting of one masculine and one feminine
stimulus. Consequently, hypothesis H2, suggesting dominance of visual stimuli for
the gender perception of combinations consisting of one masculine and one feminine
stimulus, is rejected. Additionally, it should be noted that auditory dominance also
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seems to extend into differently gendered combinations, though this is dependent
on the gender of both the voice and the robot.

As a whole, these results match with those from Paetzel et al. [96], who found
dominance of auditory stimuli over visual stimuli for the gender perception of speak-
ing robots by children. It should be noted that they only used one masculine and one
feminine visual stimulus, created through the projection of a masculine or a feminine
face onto the Furhat robot. The human-likeness of these visual stimuli was not con-
sidered and may therefore differ from the visual stimuli used in the current study.

The rejection of the hypothesis may be related to the difference in stimuli used in
the current study, compared to the studies at the base of the hypothesis, as the stim-
uli used there were human faces and voices instead of robots and computer voices
[8][90]–[92]. This represents a major difference in the anthropomorphism of the used
stimuli, which may have caused the differing results. Considering the information
reliability hypothesis [93], these results suggest that visual stimuli of relatively low
anthropomorphism are less appropriate and efficient than computer voices for gen-
der perception.

Considering the effect of ambiguous stimuli when paired with binary gendered
stimuli. Two out of sixteen combinations of an ambiguous stimulus and a binary
gendered stimulus were categorised as ambiguous. Several models for masculine
and feminine bases, mainly those for the AbsDiff and Neutrality Score, also showed
a reliable effect from ambiguous additions. Three out of four models for the mascu-
line bases also recorded a reliable effect in combination with voice additions. While
these effects are small in comparison to the effects of masculine and feminine stim-
uli, they are significant. Therefore, the findings in this study diverge slightly from
earlier studies, which found or inferred dominance of the binary gendered stimulus
[12][37][40]–[49][73][94][95]. However, it should be noted that the method used for
measuring gender perception in the current study was more nuanced than what was
used previously, possibly allowing for more nuanced analysis which may have led
to differing findings. Based on these results, hypothesis H1, suggesting no impact
from ambiguous stimuli on gender perception results, when combined with binary
gendered stimuli, is rejected.

These results provide new insights into the interplay between auditory and vi-
sual stimuli regarding the gender perception of speaking social robots. It builds on
the findings of Paetzel et al. [96], concurring that auditory stimuli are more impor-
tant than visual stimuli, while adding that their importance relative to each other is
also, at least partially, related to their individually perceived genders. Additionally,
it adds to current research through the inclusion of ambiguous stimuli, while also
showing that ambiguous stimuli have a measurable effect on the gender scores of
binary gendered stimuli, though this effect is generally smaller compared to that of
masculine and feminine stimuli.

6.2 RQ2 — The most promising robot-voice combination for
the creation of gender ambiguous speaking social robots

RQ2 concerned which kinds of gendered robot-voice combinations would be most
promising for the creation of gender ambiguous speaking social robots. It was ex-
pected that combinations consisting of two ambiguous stimuli would be the best,
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as they would score higher on gender ambiguity measures than other combinations
(H3).

A total of eight out of 36 combinations were categorised as ambiguous. Two of
these consisted of an ambiguous robot and voice, while four were combinations of a
masculine and a feminine stimulus (three of which were a feminine voice combined
with a masculine robot). The last two both had ambiguous voices, one in combina-
tion with a masculine robot, the other with a feminine robot. Based on these results
the most promising combinations to create ambiguous speaking social robots may
be those consisting of a masculine and a feminine stimulus, specifically a feminine
voice and a masculine robot. However, the highest neutrality score and the low-
est AbsDiff are both found on combinations consisting of two ambiguous stimuli,
though not the same combination.

As a result, the hypothesis can be accepted on the basis that the combinations
that scored the highest on gender ambiguity measures consisted of two ambiguous
stimuli. However, seeing as more ambiguous combinations consist of a masculine
and a feminine stimulus, it can be argued that these combinations, especially those
consisting of a feminine voice and a masculine robot, are the most promising for the
creation of gender ambiguous speaking social robots. Still, based on the remarks
from some survey participants, who reported confusion, or finding it weird when
they were presented with combinations of stimuli with clearly mismatched genders,
extra research should be done to study people’s attitudes towards speaking social
robots that present a clear mismatch between embodiment and voice gender.

As an aside, when comparing the results of combinations consisting of a femi-
nine robot and a masculine voice, with combinations consisting of a masculine robot
and a feminine voice. Three out of four of the combinations with a masculine voice
are categorised as masculine, while three out of four of the combinations with a
feminine voice are categorised as ambiguous. This aligns with findings from Paetzel
et al. [96], who found that almost twice as many kids categorised combinations of
a feminine auditory and a masculine visual stimulus as neutral, than the inverse,
while also being rated slightly more difficult to assign a gender. However, it should
be noted that these combinations were only categorised as neutral in less than 40%
of cases. From these results, as Paetzel et al. [96] noted as well, the dominance of
auditory stimuli over visual stimuli seems more apparent in combinations where
the auditory stimulus is masculine. This, in turn, may suggest a greater impact from
masculine stimuli than feminine stimuli, which is somewhat consistent with earlier
research suggesting robots are perceived as masculine by default [7][37][64][65].

These results show that aside from combinations of ambiguous voices and em-
bodiments, combinations of a masculine and a feminine stimulus may also be an
option for the creation of gender ambiguous speaking social robots. However, nei-
ther of these methods is currently fully reliable for the design of gender ambiguous
speaking social robots. While two combinations consisting of ambiguous voices and
embodiments were categorised as ambiguous, two others were categorised as mas-
culine (possibly caused by individual differences between the used voices). High-
lighting the fine line between ambiguity and non-ambiguity, the necessity of using
stimuli that are clearly ambiguous, and the difficulty in creating them. Additionally,
while three out of four combinations of feminine voices and masculine embodiments
were categorised as ambiguous, participants noted feeling confused when presented
with combinations of clearly incongruent genders. As such, it is unclear how peo-
ple would treat and interact with such a speaking social robot. Emphasising the
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necessity for research concerning people’s attitudes towards speaking social robots
consisting of a masculine and a feminine stimulus.

6.3 Limitations

The current study investigated the effects of voice and embodiment on the gender
perception of speaking social robots, and each other, doing so through the presen-
tation of voice clips and robot images individually, and in pairs. As such, the gen-
der perception results are based on the physical appearance of the robots, and the
sound of the voices. While, as noted in Chapter 2.3 and 2.4, other factors such as
the perceived personality of, and the tasks performed by the robot or voice may also
influence the perceived gender, these factors were outside the scope of this study
and therefore neutralised during the experiments (by having the voices say a non-
sensical sentence, and presenting the robots in a neutral position against a white
background). As a result, the findings presented here do not account for these fac-
tors, and thus may not fully capture how people perceive the gender of speaking
social robots in more natural (real world) contexts.

Additionally, the selected robots were controlled for their level of anthropomor-
phism, where robots of comparatively low anthropomorphism were selected to be
used in the experiments. As anthropomorphism and gender seem to be linked (see
Chapter 2.2), the use of robots of a higher level of anthropomorphism may have
effects on the perceived gender that were not captured in the current study.

The reliability and generalisability of the results are also impacted by the rela-
tively small amount of robots and voices used, as only two stimuli were used per
gender per type in the main experiment. While this was done to limit the size of
the survey for the main experiment (as it was deemed preferable to have all partic-
ipants evaluate all robot-voice combinations, instead of splitting up the survey and
only showing each participant a subset), it may have allowed for characteristics of
individual stimuli to influence the results.

Additionally, especially due to the low number of stimuli per condition (2), stim-
uli of the same gender category in the main experiment would have preferably had
similar gender scores, which was not always the case. Differences were present be-
tween the ambiguity of the ambiguous robots and voices, which may have impacted
the results. Though this likely should have been expected due to the known diffi-
culty of creating gender ambiguous voices (see Chapter 2.4). Similarly, the difference
between the masculine FGSs of the two masculine robots used (10.9 vs. 7.2), as well
as between the feminine FGSs of the two feminine robots used (10.8 vs. 8.4), may
have affected the results.

The participant samples used in the pre-test and the main-experiment may not
have been optimally representative of the target population due to the use of con-
venience sampling for both surveys, as this led to a relatively large portion of the
responses coming from students. Similarly, while the use of SurveyCircle to recruit
participants for the main experiment allowed for increased geographical diversity,
many of the respondents were likely academics due to the nature of the website.

The creation of separate models for each base gender may have limited the scope
of the analysis. However, not using separate models and instead adding the base
gender to the model as a third independent variable resulted in errors in both R and
SPSS, which prohibited analysis. As such, making separate models per base gender
was not only done to avoid three-way interactions, but also out of necessity.



6.4. Design Recommendations 47

6.4 Design Recommendations

Based on the auditory dominance (when the voice is binary gendered) and the rel-
atively low impact of ambiguous stimuli on gender perception found in this study,
designers of speaking social robots may consider prioritising the design, develop-
ment, or selection of the voice, in combination with a broader adoption of ambigu-
ously gendered embodiments when pursuing specifically gendered design goals.
Following the presented findings, exclusively using ambiguously gendered embod-
iments while using only the voice to provide the desired gender cues, is sufficient to
reach the desired gender. Simultaneously, this would reduce the complexity of any
coordination between voice and embodiment design concerning the desired gender
outcome, due to the low impact of gender ambiguous embodiments on gender per-
ception. Furthermore, this would increase the adaptability of the social robot, as
simply changing the voice would change the perceived gender of the social robot
in its entirety. Moreover, if these embodiments or their designs are reused, which
may be more likely due to the increased adaptability, it would reduce the necessary
resources for the design of the embodiment, and instead allow for greater focus on
the design of the voice.
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Chapter 7

Conclusion

This research shows that auditory stimuli are leading for the gender perception of
speaking social robots, when the voice and the embodiment have incongruent gen-
ders and the voice is not gender ambiguous. Additionally, it finds that speaking so-
cial robots consisting of one binary gendered and one ambiguously gendered stimu-
lus are generally categorised the same as the binary gendered stimulus. However, it
also shows that ambiguous stimuli do have a measurable effect on the gender scores
of binary gendered stimuli, typically affecting the scores related to gender ambiguity
such that they suggest an increase in ambiguity.

The findings demonstrate the delicate interplay between voice and embodiment
for the gender perception of speaking social robots and highlight the necessity for
careful consideration of both embodiment and voice gender in the design of speak-
ing social robots, especially when gender is one of the design criteria. Furthermore, it
highlights the difficulty of creating an ambiguous speaking social robot, before even
considering the possible impact of additional personality- or task-based gender cues.
However, based on the gender perception results, it does imply that creating robot-
voice combinations of which one stimulus is masculine and the other is feminine,
may be an additional viable method for creating speaking social robots that are per-
ceived as ambiguous, though further research studying people’s attitudes towards
such combinations is required.

In future work, this research could be expanded by conducting experiments that
include real or simulated interactions between a person and a social robot, to in-
vestigate additional factors that may influence the perceived gender, such as the
perceived personality or the job of the social robot. Furthermore, future research is
needed to determine if these results can be generalised to contexts that include robot
embodiments of a higher level of human-likeness. Finally, future studies should
address people’s attitudes towards speaking social robots where the individual gen-
ders of the robot embodiment and the voice are incongruent, to further understand
the possible implications of this research.
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Appendix A

Ambiguous Robot Images

(A) 3e-a18 (AR_1) (B) Kibo (AR_2)
(C) Meka M1 Mobile Manipu-

lator (AR_3)

(D) Moxi (AR_4) (E) Sanbot Max (AR_5) (F) Topo (AR_6)

FIGURE A.1: The ambiguous robots selected for the pre-test
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Appendix B

Feminine Robot Images

(A) Aila (FR_1) (B) Aryan (FR_2) (C) Mobiserv (FR_3)

(D) Murata Girl (FR_4) (E) Robina (FR_5) (F) Sanbot (FR_6)

FIGURE B.1: The feminine robots selected for the pre-test





55

Appendix C

Masculine Robot Images

(A) Aero Drc (MR_1) (B) E3 (MR_2) (C) Hiro (MR_3)

(D) Lego Mindstorms Nxt 2.0
(MR_4) (E) Rollin Justin (MR_5) (F) Topio Dio (MR_6)

FIGURE C.1: The masculine robots selected for the pre-test
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Appendix D

Voice Fundamental & Formant
Frequencies

FIGURE D.1: The fundamental and formant frequency parameters
calculated by Mooshammer & Etzrodt [100]
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Appendix E

Pre-Test Survey: Voice Excerpt

FIGURE E.1: An excerpt from the pre-test survey, showing the media
player with a voice clip at the top accompanied by the three gender

perception questions.
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Appendix F

Pre-Test Survey: Robot Excerpt

FIGURE F.1: An excerpt from the pre-test survey, showing the robot
image at the top accompanied by the three gender perception ques-

tions.
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Appendix G

Pre-Test: Robot Gender Perception
Results

TABLE G.1: The gender perception results of the robots in the pre-test

Final Gender Score
Robot Gender Average SD AbsDiff Masc Fem

Masc 1.65 0.933302
Fem 2.45 1.877148AR_1
Neut 5 1.91943

0.8 2.45 3.25

Masc 3.4 1.500877
Fem 2.35 1.348488AR_2
Neut 4.15 1.7252

1.05 4.45 3.4

Masc 2.55 1.276302
Fem 2.15 1.598519AR_3
Neut 4.4 1.984148

0.4 2.95 2.55

Masc 2.1 1.209611
Fem 2.3 1.592747AR_4
Neut 5.1 1.97084

0.2 2.3 2.5

Masc 3.35 1.631112
Fem 3.1 1.48324AR_5
Neut 3.35 1.424411

0.25 3.6 3.35

Masc 2.35 1.386969
Fem 2.4 1.698296AR_6
Neut 4.95 1.700619

0.05 2.4 2.45

Masc 4.2 1.704483
Fem 1.65 1.03999MR_1
Neut 2.9 1.860956

2.55 6.75 4.2

Masc 4.55 1.700619
Fem 1.75 1.371707MR_2
Neut 2.55 1.637553

2.8 7.35 4.55

Masc 4 1.863782
Fem 1.35 0.587143MR_3
Neut 3.6 1.875044

2.65 6.65 4

Masc 4.6 1.846761
Fem 1.4 0.502625MR_4
Neut 2.9 1.803505

3.2 7.8 4.6

Masc 4.7 1.260743
Fem 1.7 1.128576MR_5
Neut 2.75 1.681947

3 7.7 4.7
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Table G.1 continued from previous page
Final Gender Score

Robot Gender Average SD AbsDiff Masc Fem
Masc 5.95 1.234376
Fem 1.5 1.192079MR_6
Neut 1.65 0.933302

4.45 10.4 5.95

Masc 1.3 0.656947
Fem 6.05 1.050063FR_1
Neut 1.35 0.587143

4.75 6.05 10.8

Masc 1.5 0.888523
Fem 3.4 1.984148FR_2
Neut 2.9 1.68273

1.9 3.4 5.3

Masc 1.65 0.875094
Fem 4.45 1.877148FR_3
Neut 2.85 1.663066

2.8 4.45 7.25

Masc 1.7 0.801315
Fem 4.75 1.371707FR_4
Neut 2.55 1.145931

3.05 4.75 7.8

Masc 1.35 0.812728
Fem 5.45 1.468081FR_5
Neut 1.65 0.74516

4.1 5.45 9.55

Masc 1.45 0.604805
Fem 5.55 1.468081FR_6
Neut 2.1 1.209611

4.1 5.55 9.65
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Appendix H

Pre-Test: Voice Gender Perception
Results

TABLE H.1: The gender perception results of the voices in the pre-test

Final Gender Score
Voice Gender Mean SD AbsDiff Masc Fem

Masc 2.75 1.164158
Fem 3.8 1.823819F1
Neut 3 1.337712

1.05 3.8 4.85

Masc 2.2 1.105013
Fem 4.2 1.43637F2
Neut 3.7 2.226633

2 4.2 6.2

Masc 2.05 1.145931
Fem 4.7 1.525226F3
Neut 2.45 1.503505

2.65 4.7 7.35

Masc 6 1.256562
Fem 1.15 0.48936M1
Neut 1.25 0.786398

4.85 10.85 6

Masc 6.1 1.071153
Fem 1.05 0.223607M2
Neut 1.25 0.638666

5.05 11.15 6.1

Masc 5.85 1.089423
Fem 1.1 0.447214M3
Neut 1.55 1.145931

4.75 10.6 5.85

Masc 5.65 1.03999
Fem 1.25 0.444262N1
Neut 1.55 0.998683

4.4 10.05 5.65

Masc 5.2 1.196486
Fem 1.3 0.571241N2
Neut 1.8 1.105013

3.9 9.1 5.2

Masc 4.45 1.356272
Fem 1.8 0.615587N3
Neut 2.15 1.03999

2.65 7.1 4.45

Masc 5.4 1.095445
Fem 1.3 0.470162N4
Neut 1.6 0.940325

4.1 9.5 5.4

Masc 5.3 0.978721
Fem 1.35 0.48936N5
Neut 1.65 0.875094

3.95 9.25 5.3
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Table H.1 continued from previous page
Final Gender Score

Voice Gender Mean SD AbsDiff Masc Fem
Masc 4.4 1.273206
Fem 1.95 0.759155N6
Neut 2.6 1.313893

2.45 6.85 4.4

Masc 5.05 1.145931
Fem 1.65 0.74516N7
Neut 2.4 1.391705

3.4 8.45 5.05

Masc 4 1.256562
Fem 2.35 1.136708N8
Neut 3.05 1.316894

1.65 5.65 4

Masc 4 1.337712
Fem 2.35 0.812728N9
Neut 3 1.450953

1.65 5.65 4

Masc 1.9 0.718185
Fem 4.4 1.46539sam_n1
Neut 3.1 1.552587

2.5 4.4 6.9

Masc 1.2 0.410391
Fem 5.55 1.276302sam_f1
Neut 2.3 0.864505

4.35 5.55 9.9

Masc 1.25 0.444262
Fem 5.55 1.356272sam_f2
Neut 1.9 1.020836

4.3 5.55 9.85

Masc 1.15 0.366348
Fem 5.1 1.586124sam_f3
Neut 2.05 1.316894

3.95 5.1 9.05

Masc 5.15 1.598519
Fem 1.45 0.825578sam_m1
Neut 2.4 1.46539

3.7 8.85 5.15

Masc 4.15 1.694418
Fem 1.8 1.151658sam_m2
Neut 2.7 1.525226

2.35 6.5 4.15

Masc 4.15 1.598519
Fem 1.85 1.089423sam_m3
Neut 3.25 1.743409

2.3 6.45 4.15
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Appendix I

Robot Height Indication

FIGURE I.1: The image of robot MR_6 (Topio Dio) with the height
indication added for the main experiment. For all other robots used
in the main experiment, a height indication was added in the exact

same manner.
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Appendix J

Main Experiment Survey:
Combination Excerpt

FIGURE J.1: An excerpt from the main experiment survey, showing
the robot-voice combination video at the top accompanied by the

three gender perception questions.
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Appendix K

The Harmony Robot

The Harmony robot (see Figure K.1) was added to the main experiment survey
as part of a different, separate research project. The robot was made to transport
biomedical samples between labs in a hospital environment; survey participants
were constantly reminded of this fact with every question. Participants were asked
for their perception of the gender of the robot and the robot-voice combinations, in
the same manner as for the rest of the survey. Differing from the main survey body,
participants were also asked to rate the compatibility of the Harmony robot and the
voice, on a 7-point scale for every robot-voice combination (see Figure K.2). Further-
more, once all the stimuli had been presented, the participants were also asked to
provide the reasoning behind their answers to the gender perception questions, as
well as to the compatibility question. None of the results from these questions are
analysed here, as they are part of separate research entirely. The gender perception
results are also not included in this research, even though it is formatted in the same
way, as the Harmony robot was not selected from the ROBO-GAP database and
through the pre-test, which means it was not controlled for human-likeness which
the other robots were.

FIGURE K.1: The Harmony robot as presented in the survey
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FIGURE K.2: The questions asked below a video of a Harmony robot-
voice combination
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Appendix L

Main Experiment: Isolated Gender
Perception Results

TABLE L.1: The isolated gender perception results of the voices in the
main-experiment

Final Gender Score
Voice Gender Mean SD AbsDiff Masc Fem

F1 (A)
Masc 2.736842 1.329178

0.631579 3.368421 4Fem 3.368421 1.53202
Neut 3.184211 1.690278

N8 (A)
Masc 3.368421 1.364037

0.921053 4.289474 3.368421Fem 2.447368 1.288145
Neut 2.789474 1.358813

M1 (M)
Masc 5.789474 1.211608

4.710526 10.5 5.789474Fem 1.078947 0.358795
Neut 1.315789 0.739074

M2 (M)
Masc 5.736842 1.031509

4.605263 10.34211 5.736842Fem 1.131579 0.34257
Neut 1.342105 0.708112

sam_f1 (F)
Masc 1.184211 0.4565

4.078947 5.263158 9.342105Fem 5.263158 1.308686
Neut 1.736842 1.031509

sam_f2 (F)
Masc 1.315789 0.873182

4 5.315789 9.315789Fem 5.315789 1.453891
Neut 1.631579 0.997864
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TABLE L.2: The isolated gender perception results of the robots in the
main-experiment

Final Gender Score
Robot Gender Mean SD AbsDiff Masc Fem

AR_4 (A)
Masc 2.184211 1.159106

0.1316 2.3158 2.1842Fem 2.052632 1.29338
Neut 4.763158 1.69951

AR_6 (A)
Masc 2.342105 1.457067

0.2632 2.6053 2.3421Fem 2.078947 1.421487
Neut 4.552632 2.036125

MR_4 (M)
Masc 4.289474 1.784436

2.9737 7.2632 4.2895Fem 1.315789 0.619732
Neut 2.842105 1.636184

MR_6 (M)
Masc 6.078947 1.075063

4.8947 10.974 6.0789Fem 1.184211 0.4565
Neut 1.5 1.006734

FR_1 (F)
Masc 1.263158 0.554306

4.7895 6.0526 10.842Fem 6.052632 1.272312
Neut 1.421053 0.792927

FR_6 (F)
Masc 1.263158 0.50319

3.5789 4.8421 8.4211Fem 4.842105 1.619581
Neut 2.157895 1.197437



75

Appendix M

Main Experiment: Combination
Gender Perception Results

TABLE M.1: The gender perception results of the robot-voice com-
binations. The colours of the robots and the voices represent their
individually perceived gender. The colours in the last column rep-
resent the perceived gender of the robot-voice combinations. Blue
represents masculinity, pink represents femininity, green represents

ambiguity.

Final Gender
Score

Combo Robot Voice Gender Average SD AbsDiff Masc Fem Gender
Category

Masc 6.052632 1.161252
Fem 1.105263 0.388307a1 MR_6 M1
Neut 1.394737 0.789782

4.9474 11 6.0526 Masc

Masc 5.868421 1.277054
Fem 1.052632 0.226294a2 MR_4 M1
Neut 1.552632 1.107648

4.8158 10.684 5.8684 Masc

Masc 3.789474 1.613422
Fem 3.105263 1.942268a3 FR_1 M1
Neut 2.421053 1.445058

0.6842 4.4737 3.7895 Amb

Masc 4.552632 1.639007
Fem 2.342105 1.236305a4 FR_6 M1
Neut 2.342105 1.438398

2.2105 6.7632 4.5526 Masc

Masc 5.421053 1.286764
Fem 1.184211 0.392859a5 AR_6 M1
Neut 1.763158 1.195356

4.2368 9.6579 5.4211 Masc

Masc 5.368421 1.383709
Fem 1.289474 0.515065a6 AR_4 M1
Neut 2.184211 1.522005

4.0789 9.4474 5.3684 Masc

Masc 5.973684 1.077706
Fem 1.184211 0.4565b1 MR_6 M2
Neut 1.631579 1.30324

4.7895 10.763 5.9737 Masc

Masc 5.710526 1.206019
Fem 1.078947 0.273276b2 MR_4 M2
Neut 1.657895 1.168883

4.6316 10.342 5.7105 Masc

Masc 4.026316 1.635532
Fem 2.815789 1.768421b3 FR_1 M2
Neut 2.263158 1.464613

1.2105 5.2368 4.0263 Masc(Amb)

Masc 4.315789 1.23256
Fem 2.236842 1.050977b4 FR_6 M2
Neut 2.368421 1.422238

2.0789 6.3947 4.3158 Masc

Masc 5.552632 1.26699
Fem 1.342105 0.627148b5 AR_6 M2
Neut 1.894737 1.203362

4.2105 9.7632 5.5526 Masc
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Table M.1 continued from previous page
Final Gender

Score

Combo Robot Voice Gender Average SD AbsDiff Masc Fem Gender
Category

Masc 5.263158 1.464613
Fem 1.315789 0.574469b6 AR_4 M2
Neut 1.868421 1.234001

3.9474 9.2105 5.2632 Masc

Masc 3.026316 1.762781
Fem 3.394737 1.263617c1 MR_6 sam_f1
Neut 2.421053 1.407155

0.3684 3.3947 3.7632 Amb

Masc 2.5 1.502251
Fem 3.394737 1.284828c2 MR_4 sam_f1
Neut 3.078947 1.666548

0.8947 3.3947 4.2895 Amb

Masc 1.210526 0.474079
Fem 5.473684 1.428226c3 FR_1 sam_f1
Neut 1.815789 1.204839

4.2632 5.4737 9.7368 Fem

Masc 1.421053 0.948158
Fem 5.131579 1.509807c4 FR_6 sam_f1
Neut 1.842105 1.000711

3.7105 5.1316 8.8421 Fem

Masc 1.815789 0.925765
Fem 4.236842 1.364298c5 AR_6 sam_f1
Neut 2.763158 1.69951

2.4211 4.2368 6.6579 Fem

Masc 1.789474 0.963044
Fem 3.947368 1.659491c6 AR_4 sam_f1
Neut 3.157895 1.938602

2.1579 3.9474 6.1053 Fem

Masc 3.105263 1.885786
Fem 3.631579 1.459749d1 MR_6 sam_f2
Neut 2.605263 1.498458

0.5263 3.6316 4.1579 Amb

Masc 2.5 1.502251
Fem 3.552632 1.349622d2 MR_4 sam_f2
Neut 2.526316 1.428226

1.0526 3.5526 4.6053 Fem(Amb)

Masc 1.289474 0.767865
Fem 5.552632 1.408418d3 FR_1 sam_f2
Neut 1.789474 1.37856

4.2632 5.5526 9.8158 Fem

Masc 1.236842 0.489578
Fem 5.447368 1.408418d4 FR_6 sam_f2
Neut 1.789474 1.069425

4.2105 5.4474 9.6579 Fem

Masc 1.684211 0.77478
Fem 4.026316 1.497509d5 AR_6 sam_f2
Neut 3.052632 1.52364

2.3421 4.0263 6.3684 Fem

Masc 1.447368 0.724004
Fem 4.157895 1.405132d6 AR_4 sam_f2
Neut 2.921053 1.791596

2.7105 4.1579 6.8684 Fem

Masc 3.789474 1.742286
Fem 2.105263 1.007793e1 MR_6 F1
Neut 2.710526 1.505089

1.6842 5.4737 3.7895 Masc

Masc 3.236842 1.683532
Fem 2.342105 1.27928e2 MR_4 F1
Neut 3.368421 1.822102

0.8947 4.1316 3.2368 Amb

Masc 2.105263 1.157571
Fem 4.184211 1.783638e3 FR_1 F1
Neut 2.710526 1.468735

2.0789 4.1842 6.2632 Fem

Masc 2.131579 1.255712
Fem 3.710526 1.69112e4 FR_6 F1
Neut 3.131579 1.509807

1.5789 3.7105 5.2895 Fem

Masc 2.789474 1.473329
Fem 2.368421 1.566905e5 AR_6 F1
Neut 3.921053 1.745753

0.4211 3.2105 2.7895 Amb

Masc 2.578947 1.65434
Fem 2.552632 1.605689e6 AR_4 F1
Neut 3.789474 1.862255

0.0263 2.6053 2.5789 Amb
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Table M.1 continued from previous page
Final Gender

Score

Combo Robot Voice Gender Average SD AbsDiff Masc Fem Gender
Category

Masc 4.368421 1.667188
Fem 1.710526 0.9273f1 MR_6 N8
Neut 2.657895 1.529464

2.6579 7.0263 4.3684 Masc

Masc 3.473684 1.447026
Fem 1.815789 0.865409f2 MR_4 N8
Neut 3.394737 1.603029

1.6579 5.1316 3.4737 Masc

Masc 2.552632 1.201291
Fem 3.605263 1.808979f3 FR_1 N8
Neut 2.921053 1.583386

1.0526 3.6053 4.6579 Fem(Amb)

Masc 2.894737 1.390887
Fem 3.236842 1.618044f4 FR_6 N8
Neut 3.052632 1.558713

0.3421 3.2368 3.5789 Amb

Masc 3.394737 1.534107
Fem 1.973684 1.262491f5 AR_6 N8
Neut 3.236842 1.851723

1.4211 4.8158 3.3947 Masc(Amb)

Masc 3.105263 1.590334
Fem 2.052632 1.393952f6 AR_4 N8
Neut 3.631579 1.86607

1.0526 4.1579 3.1053 Masc(Amb)
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Appendix N

Main Experiment: Masculine Base
Results

FIGURE N.1: Interaction plot with 95% confidence intervals of the
femininity-delta model of the masculine bases, showing the effect of

the addition type and addition gender on the femininity-delta

TABLE N.1: The linear mixed model results for the femininity-delta
of masculine bases

Fixed Effect Estimate Standard Error 95% Confidence Interval p-value
Intercept 2.40E-15 0.183 [-0.2876987, 0.2876992] 1
addtype_V -0.1447 0.2444 [-0.5212654, 0.2317924] 0.575429
addgen_A 0.1776 0.2436 [-0.1987583, 0.5540216] 0.493292
addgen_F 1.52 0.2436 [1.1433470, 1.8961269] 0.000785
addtype_V:addgen_A 0.7105 0.3445 [0.1782307, 1.2428222] 0.084729
addtype_V:addgen_F 0.8684 0.3445 [0.3361254, 1.4007170] 0.045214

Random Effect Standard Deviation
participant 0.36983
base_id 0.02051
add_id 0.21712 Conditional R2 0.503
Residual 0.9622 Marginal R2 0.404
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FIGURE N.2: Interaction plot with 95% confidence intervals of the
neutrality-delta model of the masculine bases, showing the effect of

the addition type and addition gender on the neutrality-delta

TABLE N.2: The linear mixed model results for the neutrality-delta of
masculine bases

Fixed Effect Estimate Standard Error 95% Confidence Interval p-value
Intercept 0.2303 0.3741 [-0.45398556, 0.91451369] 0.5864
addtype_V -0.8421 0.5065 [-1.77818481, 0.09397714] 0.2239
addgen_A 0.3684 0.1504 [0.07389233, 0.66294978] 0.0145
addgen_F 0.7895 0.1504 [0.49494496, 1.08400241] 1.94E-07
addtype_V:addgen_A 1.1053 0.2128 [0.68873664, 1.52178967] 1.94E-07
addtype_V:addgen_F 0.3092 0.2128 [-0.10731599, 0.72573704] 0.1465

Random Effect Standard Deviation
participant 0.6656
base_id 0.4836
add_id - Conditional R2 0.358
Residual 1.3116 Marginal R2 0.105
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FIGURE N.3: Interaction plot with 95% confidence intervals of the
AbsDiff-delta model of the masculine bases, showing the effect of the

addition type and addition gender on the AbsDiff-delta

TABLE N.3: The linear mixed model results for the AbsDiff-delta of
masculine bases

Fixed Effect Estimate Standard Error 95% Confidence Interval p-value
Intercept 0.1118 0.5753 [-0.9378506 , 1.1615379] 0.860593
addtype_V 0.75 0.7864 [-0.6967098, 2.1967143] 0.433845
addgen_A -0.6776 0.1956 [-1.0605227, -0.2947405] 0.000557
addgen_F -2.7368 0.1956 [-3.1197332, -2.353951] < 2E-16
addtype_V:addgen_A -2.1053 0.2766 [-2.6467529, -1.5637734] 7.08E-14
addtype_V:addgen_F -0.1118 0.2766 [-0.6533319, 0.4296477] 0.68606

Random Effect Standard Deviation
participant 0.9083
base_id 0.7617
add_id - Conditional R2 0.505
Residual 1.7051 Marginal R2 0.266
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Appendix O

Main Experiment: Feminine Base
Results

FIGURE O.1: Interaction plot with 95% confidence intervals of the
masculinity-delta model of the feminine bases, showing the effect of

the addition type and addition gender on the masculinity-delta

TABLE O.1: The linear mixed model results for the masculinity-delta
of feminine bases

Fixed Effect Estimate Standard Error 95% Confidence Interval p-value
Intercept 0.03947 0.21209 [-0.30273007, 0.3816789] 0.856968
addtype_V -0.0132 0.28748 [-0.47203186, 0.4457173] 0.964809
addgen_A 0.39474 0.24371 [0.00533412, 0.7841396] 0.156428
addgen_M 1.49342 0.24371 [1.10401833, 1.8828238] 0.000863
addtype_V:addgen_A 0.73684 0.34466 [0.18614349, 1.2875407] 0.076375
addtype_V:addgen_M 1.38816 0.34466 [0.83745928, 1.9388565] 0.006899

Random Effect Standard Deviation
participant 0.3731
base_id 0.1525
add_id 0.2063 Conditional R2 0.49
Residual 1.1316 Marginal R2 0.408
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FIGURE O.2: Interaction plot with 95% confidence intervals of the
neutrality-delta model of the feminine bases, showing the effect of

the addition type and addition gender on the neutrality-delta

TABLE O.2: The linear mixed model results for the neutrality-delta of
feminine bases

Fixed Effect Estimate Standard Error 95% Confidence Interval p-value
Intercept 0.125 0.26446 [-0.3631092, 0.6131097] 0.662
addtype_V -0.1053 0.34154 [-0.7484091, 0.5378846] 0.781
addgen_A 1.16447 0.15073 [0.8693949, 1.4595524] 3.07E-14
addgen_M 0.84868 0.15073 [0.5536055, 1.1437630] 2.43E-08
addtype_V:addgen_A -0.0197 0.21316 [0.4370412, 0.3975675] 0.926
addtype_V:addgen_M -0.3092 0.21316 [-0.7265149, 0.1080938] 0.147

Random Effect Standard Deviation
participant 0.6643
base_id 0.3065
add_id - Conditional R2 0.31
Residual 1.314 Marginal R2 0.097
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FIGURE O.3: Interaction plot with 95% confidence intervals of the
AbsDiff-delta model of the feminine bases, showing the effect of the

addition type and addition gender on the AbsDiff-delta

TABLE O.3: The linear mixed model results for the AbsDiff-delta of
feminine bases

Fixed Effect Estimate Standard Error 95% Confidence Interval p-value
Intercept -0.0066 0.441693 [-0.8171712, 0.8040150] 0.989
addtype_V -0.0132 0.588831 [-1.1085310, 1.0822184] 0.984
addgen_A -1.7171 0.214718 [-2.1374551, -1.2967554] 4.06E-15
addgen_M -2.2171 0.214718 [-2.6374551, -1.7967554] < 2E-16
addtype_V:addgen_A -0.3158 0.303657 [-0.9102539 , 0.2786750] 0.299
addtype_V:addgen_M 0.11184 0.303657 [-0.4826224 , 0.7063066] 0.713

Random Effect Standard Deviation
participant 0.9087
base_id 0.5483
add_id - Conditional R2 0.37
Residual 1.8719 Marginal R2 0.167
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Appendix P

Main Experiment: Ambiguous
Base Results

FIGURE P.1: Interaction plot with 95% confidence intervals of the
masculinity-delta model of the ambiguous bases, showing the effect

of the addition type and addition gender on the masculinity-delta

TABLE P.1: The linear mixed model results for the masculinity-delta
of ambiguous bases

Fixed Effect Estimate Standard Error 95% Confidence Interval p-value
Intercept -0.0855 0.23043 [-0.4599738, 0.28892119] 0.71855
addtype_V 0.78947 0.28817 [0.3398508, 1.23909665] 0.03376
addgen_F -0.5461 0.28817 [-0.9956755, -0.09642966] 0.10693
addgen_M 0.75 0.28817 [0.3003771, 1.19962297] 0.04052
addtype_V:addgen_F -0.7368 0.40754 [-1.3727049, -0.10097921] 0.12061
addtype_V:addgen_M 1.68421 0.40754 [1.0483477, 2.32007342] 0.00613

Random Effect Standard Deviation
participant 0.6633
base_id -
add_id 0.2324 Conditional R2 0.491
Residual 1.486 Marginal R2 0.377
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FIGURE P.2: Interaction plot with 95% confidence intervals of the
femininity-delta model of the ambiguous bases, showing the effect

of the addition type and addition gender on the femininity-delta

TABLE P.2: The linear mixed model results for the femininity-delta of
ambiguous bases

Fixed Effect Estimate Standard Error 95% Confidence Interval p-value
Intercept -0.6711 0.2289 [-1.0877361, -0.2543711] 0.020802
addtype_V 0.8421 0.2743 [0.33435400, 1.3498580] 0.038887
addgen_F 1.4474 0.1898 [1.09652847 , 1.7982084] 0.000266
addgen_M -0.2434 0.1898 [-0.59426101, 0.1074189] 0.247063
addtype_V:addgen_F 0.4079 0.2685 [-0.08826789, 0.9040574] 0.17949
addtype_V:addgen_M -0.7105 0.2685 [-1.20668895, -0.2143637] 0.038208

Random Effect Standard Deviation
participant 0.74938
base_id 0.19803
add_id 0.06361 Conditional R2 0.412
Residual 1.55925 Marginal R2 0.265



89

Bibliography

[1] M. West, R. Kraut, and H. E. Chew, “I’d blush if I could: Closing gender
divides in digital skills through education,” Tech. Rep., Jan. 2019. DOI: 10.
54675/rapc9356.

[2] H. Walk, Amazon Echo is magical. it’s also turning my kid into an asshole. Apr.
2016. [Online]. Available: https://www.linkedin.com/pulse/amazon-echo-
magical-its-also-turning-my-kid-asshole-hunter-walk.

[3] F. Eyssel and F. Hegel, “(S)he’s got the look: Gender stereotyping of robots,”
Journal of Applied Social Psychology, vol. 42, no. 9, pp. 2213–2230, 2012.

[4] F. Laricchia, Number of voice assistants in use worldwide 2019-2024, Apr. 2020.
[Online]. Available: https : / / www . statista . com / statistics / 973815 /
worldwide-digital-voice-assistant-in-use/.

[5] Mordor Intelligence, Social robots market size & share analysis. [Online]. Avail-
able: https://www.mordorintelligence.com/industry-reports/social-
robots-market.

[6] K. Markopoulos, G. Maniati, G. Vamvoukakis, et al., “Generating gender-
ambiguous text-to-speech voices,” arXiv preprint arXiv:2211.00375, 2022.

[7] G. Perugia, S. Guidi, M. Bicchi, and O. Parlangeli, “The shape of our bias:
Perceived age and gender in the humanoid robots of the abot database,”
in 2022 17th ACM/IEEE International Conference on Human-Robot Interaction
(HRI), IEEE, 2022, pp. 110–119.

[8] M. Latinus, R. VanRullen, and M. J. Taylor, “Top-down and bottom-up mod-
ulation in processing bimodal face/voice stimuli,” BMC neuroscience, vol. 11,
no. 1, pp. 1–13, 2010.

[9] World Health Organization. [Online]. Available: https://www.who.int/
health-topics/gender#tab=tab_1.

[10] Merriam-Webster. [Online]. Available: https://www.merriam-webster.com/
grammar/sex-vs-gender-how-they2019re-different.

[11] A. Cuncic, What is gender identity? Jul. 2021. [Online]. Available: https://
www.verywellmind.com/what-is-gender-identity-5187156.

[12] S. J. Sutton, “Gender ambiguous, not genderless: Designing gender in voice
user interfaces (VUIs) with sensitivity,” in Proceedings of the 2nd conference on
conversational user interfaces, 2020, pp. 1–8.

[13] Merriam-Webster. [Online]. Available: https://www.merriam-webster.com/
dictionary/ambiguous.

[14] J. W. Mullennix, K. A. Johnson, M. Topcu-Durgun, and L. M. Farnsworth,
“The perceptual representation of voice gender,” The Journal of the Acoustical
Society of America, vol. 98, no. 6, pp. 3080–3095, 1995.

https://doi.org/10.54675/rapc9356
https://doi.org/10.54675/rapc9356
https://www.linkedin.com/pulse/amazon-echo-magical-its-also-turning-my-kid-asshole-hunter-walk
https://www.linkedin.com/pulse/amazon-echo-magical-its-also-turning-my-kid-asshole-hunter-walk
https://www.statista.com/statistics/973815/worldwide-digital-voice-assistant-in-use/
https://www.statista.com/statistics/973815/worldwide-digital-voice-assistant-in-use/
https://www.mordorintelligence.com/industry-reports/social-robots-market
https://www.mordorintelligence.com/industry-reports/social-robots-market
https://www.who.int/health-topics/gender#tab=tab_1
https://www.who.int/health-topics/gender#tab=tab_1
https://www.merriam-webster.com/grammar/sex-vs-gender-how-they2019re-different
https://www.merriam-webster.com/grammar/sex-vs-gender-how-they2019re-different
https://www.verywellmind.com/what-is-gender-identity-5187156
https://www.verywellmind.com/what-is-gender-identity-5187156
https://www.merriam-webster.com/dictionary/ambiguous
https://www.merriam-webster.com/dictionary/ambiguous


90 Bibliography

[15] A. Danielescu, S. A. Horowit-Hendler, A. Pabst, K. M. Stewart, E. M. Gallo,
and M. P. Aylett, “Creating inclusive voices for the 21st century: A non-binary
text-to-speech for conversational assistants,” in Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems, 2023, pp. 1–17.

[16] Merriam-Webster. [Online]. Available: https://www.merriam-webster.com/
dictionary/androgyny.

[17] I. Leite, C. Martinho, and A. Paiva, “Social robots for long-term interaction:
A survey,” International Journal of Social Robotics, vol. 5, pp. 291–308, 2013.

[18] A. Henschel, G. Laban, and E. S. Cross, “What makes a robot social? a review
of social robots from science fiction to a home or hospital near you,” Current
Robotics Reports, vol. 2, pp. 9–19, 2021.

[19] F. Hegel, C. Muhl, B. Wrede, M. Hielscher-Fastabend, and G. Sagerer, “Un-
derstanding social robots,” in 2009 Second International Conferences on Ad-
vances in Computer-Human Interactions, IEEE, 2009, pp. 169–174.

[20] C. Breazeal, “Toward sociable robots,” Robotics and autonomous systems, vol. 42,
no. 3-4, pp. 167–175, 2003.

[21] T. Fong, I. Nourbakhsh, and K. Dautenhahn, “A survey of socially interactive
robots,” Robotics and autonomous systems, vol. 42, no. 3-4, pp. 143–166, 2003.

[22] N. Epley, A. Waytz, and J. T. Cacioppo, “On seeing human: A three-factor
theory of anthropomorphism.,” Psychological review, vol. 114, no. 4, p. 864,
2007.

[23] R. Kühne and J. Peter, “Anthropomorphism in human–robot interactions: A
multidimensional conceptualization,” Communication Theory, vol. 33, no. 1,
pp. 42–52, 2023.

[24] A. E. Martin and M. F. Mason, “Hey Siri, I love you: People feel more attached
to gendered technology,” Journal of Experimental Social Psychology, vol. 104,
p. 104 402, 2023.

[25] A. E. Martin and M. F. Mason, “What does it mean to be (seen as) human?
The importance of gender in humanization.,” Journal of Personality and Social
Psychology, 2022.

[26] R. Frazer, “Experimental operationalizations of anthropomorphism in HCI
contexts: A scoping review,” Communication Reports, vol. 35, no. 3, pp. 173–
189, 2022.

[27] T. Zhang, D. B. Kaber, B. Zhu, M. Swangnetr, P. Mosaly, and L. Hodge, “Ser-
vice robot feature design effects on user perceptions and emotional responses,”
Intelligent service robotics, vol. 3, pp. 73–88, 2010.

[28] K. L. Nowak and J. Fox, “Avatars and computer-mediated communication: A
review of the definitions, uses, and effects of digital representations,” Review
of Communication Research, vol. 6, pp. 30–53, 2018.

[29] A. Waytz, J. Heafner, and N. Epley, “The mind in the machine: Anthropomor-
phism increases trust in an autonomous vehicle,” Journal of experimental social
psychology, vol. 52, pp. 113–117, 2014.

[30] P. Aggarwal and A. L. McGill, “Is that car smiling at me? Schema congruity
as a basis for evaluating anthropomorphized products,” Journal of consumer
research, vol. 34, no. 4, pp. 468–479, 2007.

https://www.merriam-webster.com/dictionary/androgyny
https://www.merriam-webster.com/dictionary/androgyny


Bibliography 91

[31] K.-P. Tam, S.-L. Lee, and M. M. Chao, “Saving Mr. Nature: Anthropomor-
phism enhances connectedness to and protectiveness toward nature,” Journal
of Experimental Social Psychology, vol. 49, no. 3, pp. 514–521, 2013.

[32] C. Nass, J. Steuer, and E. R. Tauber, “Computers are social actors,” in Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems, ser. CHI
’94, Boston, Massachusetts, USA: Association for Computing Machinery, 1994,
pp. 72–78, ISBN: 0897916506. DOI: 10.1145/191666.191703.

[33] A. Clodic, E. Pacherie, R. Alami, and R. Chatila, “Key elements for human-
robot joint action,” in Robophilosophy, 2014, pp. 159–177.

[34] B. R. Duffy, “Anthropomorphism and the social robot,” Robotics and autonomous
systems, vol. 42, no. 3-4, pp. 177–190, 2003.

[35] C. McGarty, “Social categorization,” Oxford Research Encyclopedia of Psychol-
ogy, Mar. 2018. DOI: 10.1093/acrefore/9780190236557.013.308. [Online].
Available: https://doi.org/10.1093/acrefore/9780190236557.013.308.

[36] F. Eyssel and D. Kuchenbrandt, “Social categorization of social robots: An-
thropomorphism as a function of robot group membership,” British Journal of
Social Psychology, vol. 51, no. 4, pp. 724–731, 2012.

[37] E. Roesler, M. Heuring, and L. Onnasch, “(Hu)man-like robots: The impact of
anthropomorphism and language on perceived robot gender,” International
Journal of Social Robotics, pp. 1–12, 2023.

[38] E. L. Haines, K. Deaux, and N. Lofaro, “The times they are a-changing. . . or
are they not? A comparison of gender stereotypes, 1983–2014,” Psychology of
Women Quarterly, vol. 40, no. 3, pp. 353–363, 2016.

[39] S. Guidi, L. Boor, L. van der Bij, R. Foppen, O. Rikmenspoel, and G. Peru-
gia, “Ambivalent stereotypes towards gendered robots: The (im)mutability
of bias towards female and neutral robots,” in International Conference on So-
cial Robotics, Springer, 2022, pp. 615–626.

[40] S. I. Behrens, A. K. K. Egsvang, M. Hansen, and A. M. Møllegård-Schroll,
“Gendered robot voices and their influence on trust,” in Companion of the 2018
ACM/IEEE international conference on human-robot interaction, 2018, pp. 63–64.

[41] A. Galatolo, G. I. Melsión, I. Leite, and K. Winkle, “The right (wo)man for the
job? Exploring the role of gender when challenging gender stereotypes with
a social robot,” International Journal of Social Robotics, pp. 1–15, 2022.

[42] T. Law, M. Chita-Tegmark, and M. Scheutz, “The interplay between emo-
tional intelligence, trust, and gender in human–robot interaction: A vignette-
based study,” International Journal of Social Robotics, vol. 13, no. 2, pp. 297–309,
2021.

[43] N. Reich-Stiebert and F. Eyssel, “(Ir)relevance of gender? On the influence
of gender stereotypes on learning with a robot,” in Proceedings of the 2017
ACM/IEEE international conference on human-robot interaction, 2017, pp. 166–
176.

[44] M. Siegel, C. Breazeal, and M. I. Norton, “Persuasive robotics: The influence
of robot gender on human behavior,” in 2009 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, IEEE, 2009, pp. 2563–2568.

https://doi.org/10.1145/191666.191703
https://doi.org/10.1093/acrefore/9780190236557.013.308
https://doi.org/10.1093/acrefore/9780190236557.013.308


92 Bibliography

[45] S. Song, J. Baba, J. Nakanishi, Y. Yoshikawa, and H. Ishiguro, “Mind the
voice!: Effect of robot voice pitch, robot voice gender, and user gender on
user perception of teleoperated robots,” in Extended Abstracts of the 2020 CHI
Conference on Human Factors in Computing Systems, 2020, pp. 1–8.

[46] B. Tay, Y. Jung, and T. Park, “When stereotypes meet robots: The double-
edge sword of robot gender and personality in human–robot interaction,”
Computers in Human Behavior, vol. 38, pp. 75–84, 2014.

[47] A. Wong, A. Xu, and G. Dudek, “Investigating trust factors in human-robot
shared control: Implicit gender bias around robot voice,” in 2019 16th Confer-
ence on Computer and Robot Vision (CRV), IEEE, 2019, pp. 195–200.

[48] D. Bryant, J. Borenstein, and A. Howard, “Why should we gender? The effect
of robot gendering and occupational stereotypes on human trust and per-
ceived competency,” in Proceedings of the 2020 ACM/IEEE international confer-
ence on human-robot interaction, 2020, pp. 13–21.

[49] D. J. Rea, Y. Wang, and J. E. Young, “Check your stereotypes at the door:
An analysis of gender typecasts in social human-robot interaction,” in Social
Robotics: 7th International Conference, ICSR 2015, Paris, France, October 26-30,
2015, Proceedings 7, Springer, 2015, pp. 554–563.

[50] P. Belin, P. E. G. Bestelmeyer, M. Latinus, and R. Watson, “Understanding
voice perception,” British Journal of Psychology, vol. 102, no. 4, pp. 711–725,
Jun. 2011. DOI: 10.1111/j.2044-8295.2011.02041.x.

[51] P. McAleer, A. Todorov, and P. Belin, “How do you say ‘hello’? Personality
impressions from brief novel voices,” PloS one, vol. 9, no. 3, e90779, 2014.

[52] M. S. Tsantani, P. Belin, H. M. Paterson, and P. McAleer, “Low vocal pitch
preference drives first impressions irrespective of context in male voices but
not in female voices,” Perception, vol. 45, no. 8, pp. 946–963, 2016.

[53] E. J. Lee, C. Nass, and S. Brave, “Can computer-generated speech have gen-
der? An experimental test of gender stereotype,” in CHI’00 extended abstracts
on Human factors in computing systems, 2000, pp. 289–290.

[54] C. Nass, Y. Moon, and N. Green, “Are machines gender neutral? Gender-
stereotypic responses to computers with voices,” Journal of applied social psy-
chology, vol. 27, no. 10, pp. 864–876, 1997.

[55] L. Z. McArthur and R. M. Baron, “Toward an ecological theory of social per-
ception.,” Psychological Review, vol. 90, no. 3, pp. 215–238, Jul. 1983. DOI: 10.
1037/0033-295x.90.3.215.

[56] L. A. Zebrowitz and M. A. Collins, “Accurate social perception at zero ac-
quaintance: The affordances of a gibsonian approach,” Personality and So-
cial Psychology Review, vol. 1, no. 3, pp. 204–223, Aug. 1997. DOI: 10.1207/
s15327957pspr0103_2.

[57] J. Rhim, Y. Kim, M.-S. Kim, and D. Y. Yim, “The effect of gender cue alter-
ations of robot to match task attributes on user’s acceptance perception,”
HCIK ’15, pp. 51–57, 2014.

[58] G. Hwang, J. Lee, C. Y. Oh, and J. Lee, “It sounds like a woman: Exploring
gender stereotypes in South Korean voice assistants,” in Extended Abstracts of
the 2019 CHI Conference on Human Factors in Computing Systems, 2019, pp. 1–6.

[59] J. A. Bargh, “The case against the controllability of automatic stereotype ef-
fects,” Dual-process theories in social psychology, p. 361, 1999.

https://doi.org/10.1111/j.2044-8295.2011.02041.x
https://doi.org/10.1037/0033-295x.90.3.215
https://doi.org/10.1037/0033-295x.90.3.215
https://doi.org/10.1207/s15327957pspr0103_2
https://doi.org/10.1207/s15327957pspr0103_2


Bibliography 93

[60] J. Fink, “Anthropomorphism and human likeness in the design of robots
and human-robot interaction,” in Social Robotics, Springer Berlin Heidelberg,
2012, pp. 199–208. DOI: 10.1007/978-3-642-34103-8_20.

[61] W. B. Mendes, J. Blascovich, S. B. Hunter, B. Lickel, and J. T. Jost, “Threat-
ened by the unexpected: Physiological responses during social interactions
with expectancy-violating partners.,” Journal of personality and social psychol-
ogy, vol. 92, no. 4, p. 698, 2007.

[62] E. Gustavsson, “Virtual servants: Stereotyping female front-office employees
on the internet,” Gender, Work and Organization, vol. 12, no. 5, pp. 400–419,
Sep. 2005. DOI: 10.1111/j.1468-0432.2005.00281.x.

[63] A. E. Martin and M. L. Slepian, “The primacy of gender: Gendered cognition
underlies the big two dimensions of social cognition,” Perspectives on Psycho-
logical Science, vol. 16, no. 6, pp. 1143–1158, 2021.

[64] O. Parlangeli, P. Palmitesta, M. Bracci, E. Marchigiani, and S. Guidi, “Gen-
der role stereotypes at work in humanoid robots,” Behaviour & Information
Technology, pp. 1–12, 2022.

[65] M. L. Walters, D. S. Syrdal, K. L. Koay, K. Dautenhahn, and R. Te Boekhorst,
“Human approach distances to a mechanical-looking robot with different
robot voice styles,” in RO-MAN 2008-The 17th IEEE international symposium
on robot and human interactive communication, IEEE, 2008, pp. 707–712.

[66] E. Phillips, X. Zhao, D. Ullman, and B. F. Malle, “What is human-like? De-
composing robots’ human-like appearance using the anthropomorphic robot
(ABOT) database,” in Proceedings of the 2018 ACM/IEEE international confer-
ence on human-robot interaction, 2018, pp. 105–113.

[67] G. Trovato, C. Lucho, and R. Paredes, “She’s electric—the influence of body
proportions on perceived gender of robots across cultures,” Robotics, vol. 7,
no. 3, p. 50, 2018.

[68] B. I. Fagot, M. D. Leinbach, B. E. Hort, and J. Strayer, “Qualities underlying
the definitions of gender,” Sex Roles, vol. 37, pp. 1–18, 1997.

[69] T. Lieven, B. Grohmann, A. Herrmann, J. R. Landwehr, and M. Van Tilburg,
“The effect of brand design on brand gender perceptions and brand prefer-
ence,” European Journal of Marketing, vol. 49, no. 1/2, pp. 146–169, 2015.

[70] M. van Tilburg, T. Lieven, A. Herrmann, and C. Townsend, “Beyond “pink it
and shrink it” perceived product gender, aesthetics, and product evaluation,”
Psychology & Marketing, vol. 32, no. 4, pp. 422–437, 2015.

[71] S. J. Cunningham and C. N. Macrae, “The colour of gender stereotyping,”
British Journal of Psychology, vol. 102, no. 3, pp. 598–614, 2011.

[72] A. C. Hess and V. Melnyk, “Pink or blue? The impact of gender cues on brand
perceptions,” European Journal of Marketing, vol. 50, no. 9/10, pp. 1550–1574,
2016.

[73] S. C. Steinhaeusser, P. Schaper, O. Bediako Akuffo, P. Friedrich, J. Ön, and
B. Lugrin, “Anthropomorphize me! Effects of robot gender on listeners’ per-
ception of the social robot NAO in a storytelling use case,” in Companion of
the 2021 ACM/IEEE International Conference on Human-Robot Interaction, 2021,
pp. 529–534.

https://doi.org/10.1007/978-3-642-34103-8_20
https://doi.org/10.1111/j.1468-0432.2005.00281.x


94 Bibliography
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