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Abstract

Traditionally, weather forecasting relies on numerical weather prediction (NWP) models. How-
ever, recent advances in the field have demonstrated that deep-learning based weather prediction
(DLWP) models can successfully be trained on historical re-analysis (ERA5, 0.25 degree resolu-
tion) data, to produce accurate global medium-range forecasts. Two DLWP approaches can be
distinguished: Graph Neural Networks (GNNs) and Transformer models. Expanding on these
approaches, the European Centre for Medium-range Weather Forecasts (ECMWF) has devel-
oped a global Graph-Transformer model based on GraphCast from Google DeepMind, called
the Artificial Intelligence Forecasting System (AIFS). This MSc thesis investigates the possi-
bility of extending these new developments to high-resolution modeling on a limited domain,
by adapting AIFS to include a stretched grid (SG-AIFS) using refined hidden grid layers in
the processor step. This research was done in collaboration with MET Norway, whose evalu-
ation on surface observations has outperformed their operational HARMONIE-AROME NWP
model on certain variables, although showing underestimation of extremes [29]. In this research,
the DOWA (Dutch Offshore Wind Atlas) dataset - a reanalysis from the 2.5-km HARMONIE-
AROME NWP model of KNMI - is used to integrate with the lower-resolution ERA5 data
and is subsequently connected to the stretched grid. First, different processor refinements are
assessed by evaluating hidden grid sizes using ERA5 data. We find that although increasing
processor refinements accelerates training time, it results in marginal improvements over longer
lead times. On the other hand, rollout training proved essential in reducing RMSE values across
all lead times. These results are employed to train the model on the DOWA dataset, producing
high-resolution deterministic forecasts whilst minimizing computational resources. The model
provides +6h predictions with some accuracy, although it lacks detailed features and longer lead
times show artefacts resembling the processor hidden grid structure.

Keywords: numerical weather prediction, weather forecasting, ECMWF, ERA5, HRES, deep
learning, machine learning, data-driven forecast, graph neural networks, stretched grid
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Chapter 1

Introduction

From agriculture to the energy transition and from recreational use to the warning for high-
impact weather extremes, the importance of accurate meteorological forecasts is evident in all
aspects of life. Numerical weather prediction (NWP) is the established practice used to cal-
culate the future weather state based on our knowledge of the underlying physical processes.
The Navier–Stokes and mass continuity equations (including the effect of the Earth’s rotation),
together with the first law of thermodynamics and the ideal gas law, describe the governing
processes that determine the state of the atmosphere. The non-linear Navier-Stokes equations
have no analytic solution, hence numerical integration is necessary, starting from the current
weather state and using spatial and temporal discretization.

There are numerous small-scale processes essential for the predictability of the weather, that
remain uncaptured within these discretizations. The parametrization of these unresolved pro-
cesses is a requirement for accurate meteorological predictions. Moreover, due to the chaotic
nature of the atmosphere, forecasts at longer lead times are inherently sensitive to their initial
conditions. The smallest initialization error can lead to large uncertainty at prediction time
[7]. This has elicited the introduction of ensemble forecasting, where the initial conditions of
an NWP model are perturbed, resulting in probabilistic weather forecasts. Deepened under-
standing, increased computational power (which has led to increasing resolution) and improved
model parameterization quality and ensemble forecasting have steadily advanced NWP models
over the past decades and this is also called “The quiet revolution of NWP” [2].

A new development, namely data-driven weather prediction (DLWP), has made a rapid rise
in the last few years, trying to improve on NWP models by learning the underlying processes
implicitly from historical data. Due to the large amount of available data (originating from
observations used in data assimilation), rapid model development, and the optimization of com-
putational resources, deep learning methods have emerged as a promising addition to NWP
models. In particular, from the end of 2022 onward, deep learning models have shown com-
parable skill to NWP models on a limited number of variables [7]. Moreover, DLWP models,
once trained, are able to provide forecasts in minutes, whereas NWP models require hours of
computation time to produce a single forecast. DLWP methods for probabilistic forecasting
have recently been developed, featuring high-quality forecast ensemble members that aim to
represent the forecast uncertainty [33].

Since 2013, KNMI (Royal Netherlands Meteorological Institute) has used a high-resolution
NWP model called HARMONIE-AROME (HA) to make short-range predictions. HARMONIE
is a limited area weather prediction model, which provides an hourly output on a limited domain

3



as can be seen in Figure 4.1. HARMONIE is based on AROME (Application of Research to
Operations at Mesoscale), developed by Météo-France. The increased resolution of 2.5km allows
the model to resolve deep convective processes (associated with showers) that are hard to model
at lower resolutions [4].

An important next step in the development of DLWP models is to consider the extension
to limited-area modeling similarly to HARMONIE-AROME [31]. In collaboration with MET
Norway [29], a stretched grid approach is investigated in this thesis, where the hidden grid of
a global Graph Neural Network (GNN) is locally refined on the area of interest. The stretched
grid will be implemented by adapting the Artificial Intelligence/Integrated Forecasting System
(AIFS) [24]. AIFS is a global DLWP model, developed by ECMWF, based on the original
Graph Neural Network called GraphCast, developed by Google Deepmind [22]. AIFS is trained
on ERA5 reanalysis data, and combines the flexibility of GNNs with the speed optimization of
Transformer networks.

We are using the DOWA1 (Dutch Offshore Wind Atlas) dataset [39], based on reforecasts
from the high-resolution limited-area HA model, centered on the Netherlands. In this research,
we integrated DOWA with the lower-resolution ERA5 data and connected it to the stretched
grid. By making clever use of the flexibility of the model architecture, we want to improve the
continuity of the information flow and increase the horizontal resolution on a regional domain.

The objective of this MSc thesis is to investigate the effectiveness of the stretched grid
model proposed by [29] on the DOWA domain. Specifically, this investigation seeks to address
the following research questions:

1. What is the influence of increasing resolution in the processor hidden grid of the SG-AIFS
model?

2. How does the performance of the SG-AIFS Transformer model compare to that of the
SG-AIFS GNN model?

3. How does including the rollout step described in [22], [23] and [29] influence the model
performance?

4. What is the impact of directly training on 2.5km resolution on the relevant variables?

5. How effectively does the 2.5km-resolution SG-AIFS model capture extreme events?

6. How does the performance of the 2.5km-resolution SG-AIFS model compare with the
operational HA model?

To address these questions, this MSc thesis begins with a review of the most recent advances
in global deep learning for weather forecasting, with a particular emphasis on GNN models.
The AIFS model and stretched grid adaptation are introduced, and their capabilities are dis-
cussed. The SG-AIFS model is then tuned and validated by training on the lower resolution
ERA5 dataset. This process involves evaluating the impact of model architecture choices, such
as autoregressive rollout fine-tuning, the number of processor refinements and structural mod-
ifications to the processor. Subsequently, a model is trained on the ERA5 reanalysis data at 1
degree latitude/longitude resolution, combined with the DOWA dataset at 2.5km spatial reso-
lution. The performance of this model is assessed through two primary metrics - Root Mean

1https://www.dutchoffshorewindatlas.nl/about-the-atlas/dowadata/data-info.
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Square Error (RMSE) and spectral power analysis - focusing on key variables such as the 2-
meter temperature and the 10-meter winds speed. Finally, a case study is presented in which the
SG-AIFS model’s performance is benchmarked against that of the (previously) operational HA
model during a storm event that occurred on February 22-23, 2017. This comparison aims to
provide insights into the operational viability, weaknesses and strengths of the SG-AIFS model
in capturing extreme weather phenomena.
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Chapter 2

Graph Neural Networks

Graph Neural Networks (GNNs) arise in fields where information is defined according to the
relationships between points of information. They are permutation invariant, meaning their out-
come is not influenced by the ordering of connected nodes. Additionally, GNNs efficiently reuse
functions across the graph domain, making the functions easily transferable between different
graph structures. As a result, they have been successful in a wide range of problems, such as
image classification and machine translation. Furthermore, GNNs have been applied effectively
in the modeling of dynamical systems and hence provide a promising direction for meteorolog-
ical and climatological research. In this chapter, we will introduce the mathematical notion of
neural networks, specifically multi-layer perceptrons and convolutional neural networks. From
these concepts, GNNs are formally introduced, and the relevant DLWP models are explained.

2.1 Mathematical framework

2.1.1 Neural networks

The goal of machine learning is to approximate a function underlying a given dataset, and find
the corresponding parameters such that the resulting prediction will perform well on unseen data
[12]. A neural network is a type of machine learning model inspired by biological neurons to
mimic the structure and functionality of human learning. Vanilla feedforward neural networks,
also referred to as multi-layer perceptrons (MLPs), are often represented as a graph, where the
neurons are called nodes and the connections between neurons called the weights. Deep neural
networks consist of layers of neurons; an input layer, an output layer and L hidden layers in
between. An example of a deep neural network can be found in Figure 2.1a.

A deep neural network can mathematically be defined as a function fθ : X −→ Y, where X
is the input space, Y the output space and the parameters θ ∈ Rn the weights of the network.
The output of the lth layer of the network is denoted by yl. Each layer processes the output of
its preceding layer by a linear transform, followed by an activation function:

yl+1 = σ(θl+1yl + bl+1) l ∈ {1, ..., L− 1},

fθ = Y L

where θl and bl are called the weights and biases of layer l ∈ {1, ..., L} and σ is the activation
function, e.g., sigmoid, ReLU or Tanh.

The weights and biases of the network are initialized randomly. The network learns parame-
ters that can be used to optimally carry out a task by training on the data. The desired output
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(a) An example of a deep neural network. The
function takes m inputs and passes it through a
number of hidden layers which perform a linear
transformation and a non-linear activation to
produce n outputs. Image adapted from [16].

(b) An example of a convolutional operation.
A dot product operation between the kernel and
the input image is performed to obtain the final
value in the output array. In a CNN, the kernel
values will be the weights of the network. Image
adapted from [19].

Figure 2.1: An example of a deep neural network (left) and a convolutional operation (right).

of the network, given a specific input, is provided by the ground truth data. During training,
the discrepancy between the output of the network and the desired output is measured by a loss
function. The loss function is then minimized using the gradient descent method, proceeding
backward through the network and adjusting the values of the parameters in each step in the
direction of the gradient. This process is called backpropagation and the size of the gradient
descent step is called the learning rate. After training, the parameters are fixed and the model
is expected to generalize to data it has not seen during training.

Convolutional neural networks (CNNs) are developed for structures with a grid-like topology,
such as images. A CNN is a neural network that takes an image as input, and processes local
image information using convolutional operations. Convolutional operations pass a symmetrical
kernel over each position of the image, performing a dot product operation for all overlapping
voxels. An example of a convolutional operation can be seen in Figure 2.1b. The kernel’s middle
value will be replaced with the calculated value in the image. Similar to regular neural networks,
the values of the kernel are trained by the CNN. Placing several convolution layers subsequently
allows for a growing receptive field and enables the network to extract distinctive features from
the image, that can be used for classification, segmentation or regression [18].

2.1.2 Graph Neural Networks

GNNs were introduced in 2009 by [35], extending on CNNs for domains consisting of patterns
and relationships. Generally, GNNs consist of a cascade of Graph Network (GN) blocks. The
message passing steps inside the GN blocks can intuitively be seen as performing a convolutional
step on an irregular grid. Instead of inferring information from a specific rectangular filter, the
number of neighbour nodes is not restricted to a grid. The passing of information is generalized
to a non-euclidean domain, but still retains the idea of sparsifying the network by aggregating
information based on proximity [28].

A graph is defined as G = (u, V,E) where V represent the n vertices of the graph, with each
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Figure 2.2: Updates in a GN block. Blue indicates the element that is being updated, and
black indicates other elements which are involved in the update (note that the pre-update value
of the blue element is also used in the update). The notation in the figure differs from the
notation used in equation (2.1) - (2.6). Figure taken from [1].

vi in V , i ∈ [n] being a vector with the node attributes. E denotes the edge set, with attribute
vector ei,j in E if and only if there is a bidirectional edge between node vi and node vj . Finally, u
contains the global attributes of the graph, which refer to properties of the graph as a whole. A
Graph Network (GN) block consists of three update functions ϕ, and three aggregation functions
ρ, for updating the edges, nodes and global attributes, respectively. Usually, the ϕ functions
are multi-layer perceptrons (MLPs), learning the mappings between the individual components.
The ρ functions aggregate the attributes by using a permutation invariant function, usually the
sum function, to map the attributes to a single value. Due to the property of graphs to label
nodes arbitrarily, it is crucial that the ρ functions are permutation invariant. Note that these
functions are all shared across the domain, thus remaining effectively independent of the hidden
graph structure. We describe the updates of the ρ and ϕ functions for the edges, nodes and
global attributes in order, as shown in Figure 2.2.

In the first step, the edge attributes for all edges are updated, using the attributes from the
neighbouring nodes (Figure 2.2a). Applying the edge update function ϕe and the aggregation
function ρe→v gives the following edge update steps:

e′i,j = ϕe(ei,j , vi, vj , u) ∀e′i,j ∈ E (2.1)

ē′k = ρe→v(E′
k) ∀vk ∈ V, (2.2)

where e′i,j are the updated edges (computed using ϕe), going from node vi to node vj , u are the
global attributes and ē′k is the aggregation (computed using ρe→v) of these updated edges.

Secondly, each node is updated by using the edge information from the neighbouring edges
(Figure 2.2b). Let v′k be the updated nodes, then the corresponding node update function ϕv is
defined as follows (Node update):

v′i = ϕv(ē′k, vk, u). (2.3)

Finally, we update the global attributes using the aggregated information from the updated
nodes and edges (Figure 2.2c). Let ē′ be the globally aggregated edge updates, let v̄′ be the
globally aggregated node updates and let u′ be the updated global attributes. Then the edge
aggregation function ρe→u, the node aggregation function ρv→u and the global update function
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ϕu are given as follows (Global update):

ē′ = ρe→u(E′) (2.4)

v̄′ = ρv→u(V ′) (2.5)

u′ = ϕu(ē′, v̄′, u). (2.6)

Note that these updates do not necessarily have to be in this order. This framework has been
shown to excel at the representation of relationships between nodes and learn the generalization
of these relationships across the network [1].

2.2 GraphCast

All GNN models discussed subsequently are based on GraphCast, introduced by Google Deep-
Mind [22]. These specific GNNs consist of GN blocks in an encoder-processor-decoder architec-
ture with a so-called ‘hidden grid’ (see Figure 2.3g). The input graph (in our case, the ERA5
reanalysis latitude/longitude grid) is transformed into a latent representation (the hidden grid)
by a GN encoder. A number of graph message passing steps are performed on this latent space
graph, after which it is transformed back to the original grid by a final GN decoder. Since
network representations have shown to be efficient and accurate in learning complex physical
dynamics (e.g. fluids), [22] argue that they should be suitable for predicting future weather
states from physics-based training data, especially considering their ability to effectively spar-
sify the number of interactions. By learning the elements of the latent representation that
interact with each other, GNNs transfer information over a long range. This is particularly
useful for longer forecast lead times, where the state of the atmosphere has a larger range of
influence. Transformers also allow these long-range connections, however they often have to
be spatially reduced due to their computational complexity [22]. The authors of GraphCast
implement faster long-range connections by utilizing a ‘multi-mesh’, as depicted in Figure 2.3.
This latent-representation consists of an iteratively refined icosahedron, projected on the unit
sphere. These refinements are then combined into a multi-mesh and allow for different scales of
information transferability.

2.2.1 Network structure

The node attributes of GraphCast contain the weather state information for each input grid
point, as well as constants for the hidden grid (such as the sine/cosine of the longitude and
latitude). The edge features consist of four attributes calculated from the position on the unit
sphere of the connecting nodes. There are no global attributes, so the updates as described in
equations (2.4) - (2.6) are not considered. Furthermore, to reduce the dimensionality of the at-
tributes, GraphCast encodes the features described above into a latent space of fixed dimension
using five multi-layer perceptrons (MLPs).

The grid input data is connected to the multi-mesh based on proximity. Each hidden grid
point is connected to all data points within a range of 0.6 times the length of an edge of the
hidden graph layer. The graph connecting the data and the hidden grid is called the encoder
graph. Every mesh point corresponds to about 25 grid points on average. Note that since this
graph is directed, the order of the edges matters (ei,j ̸= ej,i). All edges are directed towards
the hidden grid. During the encoding step, the information about the state of the atmosphere
is transferred by performing a single message-passing step over this encoder graph. During
this message passing step, all edges and nodes are updated, but only the hidden grid nodes
are aggregated with the information from the edges. This encoding is the first layer of the
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Figure 2.3: Graphcast model schematic. (a) The input weather state(s) are defined on
a 0.25° latitude-longitude grid comprising a total of 721 × 1440 = 1, 038, 240 points. Yellow
layers in the closeup pop-out window represent the 5 surface variables, and blue layers represent
the 6 atmospheric variables that are repeated at 37 pressure levels (5 + 6 × 37 = 227 variables
per point in total), resulting in a state representation of 235, 680, 480 values. (b) GraphCast
predicts the next state of the weather on the grid. (c) A forecast is made by iteratively applying
GraphCast to each previous predicted state, to produce a sequence of states which represent the
weather at successive lead times. (d) The Encoder component of the GraphCast architecture
maps local regions of the input (green boxes) into nodes of the multi-mesh graph representation
(green, upward arrows which terminate in the green-blue node). (e) The Processor component
updates each multi-mesh node using learned message-passing (heavy blue arrows that terminate
at a node). (f) The Decoder component maps the processed multi-mesh features (purple nodes)
back onto the grid representation (red, downward arrows which terminate at a red box). (g)
The multi-mesh is derived from icosahedral meshes of increasing resolution, from the base mesh
(M0, 12 nodes) to the finest resolution (M6, 40, 962 nodes), which has uniform resolution across
the globe. It contains the set of nodes from M6, and all the edges from M0 to M6. The learned
message-passing over the different meshes’ edges happens simultaneously, so that each node is
updated by all of its incoming edges. (Figure taken from [22])
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GraphCast neural network, after which a residual connection is added. After the information is
encoded to the multi-mesh, GraphCast iteratively runs GN updates on the hidden grid. As in
equations (2.1) - (2.3), first the edges and then the nodes are updated. To prevent overfitting, a
skip connection is added for each update. This layer of the neural network is repeated 16 times
in GraphCast, with unshared network weights for each layer. Finally, the latent representation
is decoded by applying a single message-passing step on the decoder graph. The decoder graph
connects each output grid point to the hidden grid by finding the closest triangle to that grid
point and adding edges from each of the corner nodes of that triangle. The edges of the decoder
graph are directed towards the output grid, and only these nodes are updated in the final
node update. After a final skip connection over these output nodes, the output function is the
prediction ŷGi = MLPOutput

V G (vGi ) for each of the grid nodes vGi , where MLP is a multi-layer
perceptron that projects the grid attributes to the final 227 predicted variables for that grid
node. The prediction represents the difference between two weather states, and thus the next
predicted weather state is given by [22]:

X̂t+1 = GraphCast(Xt, Xt−1) = Xt + Ŷ t, (2.7)

where Xt represents the weather state representation (ground truth) that is known for time t,
Ŷ t is the model output and X̂t+1 is the final predicted weather state, given by the sum of the
previous weather state Xt and the predicted difference Ŷ t.

2.2.2 Training details

The GraphCast network, as described above, is trained using the weighted Mean Squared Error
(MSE) loss between the target output and the predicted output over 12-step forecasts of 6 hour
lead times (so a total of three days). For longer lead time predictions the forecasts are rolled
out as shown in Figure 2.3. The MSE loss takes the average over latitude-longitude, pressure
levels, variables, lead times and batch sizes. Weights are applied proportional to the area of a
grid cell. Variables are weighted based on the inverse variances of the time differences and based
on pressure level, tuned to produce approximately comparable validation performance. For
GraphCast, the training data contains ERA5 re-analysis data at a 0.25 degree lat/lon resolution
(about 28 square km), ranging from 1979 to 2022. It consists of 6 atmospheric variables at 37
pressure levels, 5 surface variables, 5 static variables and 2 time variables. An overview can be
found in Table 2.1.

2.2.3 Evaluation of forecast skill

For deterministic forecasts, the common metrics that are used to evaluate the skill of a forecast
are the Root Mean Square Error (RMSE) and the Anomaly Correction Coefficient (ACC). The
RMSE relates to the root mean square of the difference between the ground truth and the forecast
for a specific lead time τ and variable j. Usually in forecasting, the RMSE is latitude-weighted
and is given by:

RMSE(j, τ) =
1

|D|
∑
t0∈D

√
1

|G|
∑
i∈G

ai(x̂
t0+τ
j,i − xt0+τ

j,i )2, (2.8)

where

• D is the test set consisting of the forecast initialization times,

• G contains all of the latitude/longitude coordinates,

11



• ai are the areas of the latitude/longitude grid cells (normalized to unit mean),

• x̂t0+τ
j,i is the prediction of variable j at grid point i and time t0 + τ ,

• xt0+τ
j,i is the ground truth of variable j at grid point i and time t0 + τ .

This latitude-weighted RMSE is widely used in geospatial analysis to assess the quality of me-
teorological variable predictions, although slightly adapted here to follow the convention set by
WeatherBench [22]. The ACC is a measure for the evaluation of forecasts in terms of the corre-
lation between the forecasted and observed anomalies, with respect to the long-term averaged
climatology. This ACC is typically also latitude-weighted and given as:

LACC(j, t) =
1

|D|
∑
t0∈D

∑
i∈G ai(x̂

t0+τ
j,i − Ct0+τ

j,i )(xt0+τ
i,j − Ct0+τ

j,i )√[∑
i∈G ai(x̂

t0+τ
j,i − Ct0+τ

j,i )2
][∑

i∈G ai(x
t0+τ
i,j − Ct0+τ

j,i )2
] , (2.9)

where Ct0+τ
j,i is the climatological mean of a variable j at spatial location i at time t0 + τ , with

all other components as defined above [22]. The climatological mean is the multi-year average
of a weather variable for a given location and time of the year.

2.2.4 Performance

GraphCast was trained on 32 TPUs (Tensor Processing Units) for 4 weeks. It has shown
comparable skill to HRES on a number of variables using the normalized RMSE and normalized
ACC skill scores as shown on the ECMWF scorecard . The results are summarized in Figure 2.4.
Note that GraphCast outperforms HRES for most variables, except for the RMSE of the lowest
pressure level (50 hPa). However, similar to other data-driven weather forecasting models, the
forecasts seem smoother compared to the HRES forecasts, although this blurring effect did not
increase with forecast lead time [7].

2.3 GC-LAM and Hi-LAM

While data-driven models, e.g. [22], show succesful results, the question of the extension of
the model to high-resolution forecasts remains. Currently, many institutes around the world
use Limited Area Models (LAMs) to provide high-resolution predictions for a specific area at
lower computational cost. One such limited area is the MEPS area, which is a rectangular grid
centered around Scandinavia, projected using a Lambert conformal conic map projection. [31]
designed two models adapting GraphCast to this MEPS area. They adapt the methodology from
classic limited area NWP models by using boundary forcing. Information on the boundary of the
limited area domain is included as an input during the autoregressive rollout of the prediction.
After making an initial prediction, the output is replaced by the external boundary information
for the grid cells that lay within the boundary area. [31] use ground-truth data, consisting of
3 years of archived forecasts from the operational MEPS system, as the boundary information
in their models, but highlight that this could be replaced by an external model (either NWP or
data-driven).

The first LAM model (called GC-LAM) adapts the multi-mesh framework from GraphCast,
using a connected grid over the regional domain. Their grid is similar to the structure of a
CNN, with each node point being connected to nine gridpoints. Unfortunately, the results show
circular artefacts around the nodes, as can be seen in Figure 2.5, especially for the nodes with

12



Table 2.1: ECMWF variables used as input/prediction for Graphcast. The first
column indicates whether the variable represents a static property, a time-varying single-level
property (e.g., surface variables are included), or a time-varying atmospheric property. The
second and third columns are ECMWF’s labels. The fourth column is a ECMWF’s numeric label,
and can be used to construct the URL for ECMWF’s description of the variable, by appending
it as suffix to the following prefix, replacing “ID” with the numeric code: https://apps.ecmwf.
int/codes/grib/param-db/?id=ID. The last column indicates whether the variable is taken
as input and is predicted, or is only used as input context (the double horizontal line separates
predicted from input-only variables, to make the partitioning more visible). Table taken from
[22].

Type Variable name
Short
name

ECMWF
Parameter ID

Role (accumulation
period, if applicable)

Atmospheric Geopotential z 129 Input/Predicted

Atmospheric Specific humidity q 133 Input/Predicted

Atmospheric Temperature t 130 Input/Predicted

Atmospheric U component of wind u 131 Input/Predicted

Atmospheric V component of wind v 132 Input/Predicted

Atmospheric Vertical velocity w 135 Input/Predicted

Single 2 metre temperature 2t 167 Input/Predicted

Single 10 metre u wind component 10u 165 Input/Predicted

Single 10 metre v wind component 10v 166 Input/Predicted

Single Mean sea level pressure msl 151 Input/Predicted

Single Total precipitation tp 228 Input/Predicted (6h)

Single TOA incident solar radiation tisr 212 Input (1h)

Static Geopotential at surface z 129 Input

Static Land-sea mask lsm 172 Input

Static Latitude n/a n/a Input

Static Longitude n/a n/a Input

Clock Local time of day n/a n/a Input

Clock Elapsed year progress n/a n/a Input
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Figure 2.4: Skill and skill scores for GraphCast and HRES in 2018. (a) RMSE skill (y-axis)
for GraphCast (blue lines) and HRES (black lines), on z500, as a function of lead time (x-axis).
Error bars represent 95confidence intervals. The vertical dashed line represents 3.5 days, which
is the last 12 hour increment of the HRES 06z/18z forecasts. The black line represents HRES,
where lead times earlier and later than 3.5 days are from the 06z/18z and 00z/12z initializations,
respectively. (b) RMSE skill score (y-axis) for GraphCast versus HRES, on z500, as a function of
lead time (x-axis). Error bars represent 95%-confidence intervals for the skill score. We observe
a discontinuity in GraphCast’s curve because skill scores up to 3.5 days are computed between
GraphCast (initialized at 06z/18z) and HRES’s 06z/18z initialization, while after 3.5 days skill
scores are computed with respect to HRES’s 00z/12z initializations. (c) ACC skill (y-axis) for
GraphCast (blue lines) and HRES (black lines), on z500, as a function of lead time (x-axis). (d)
Scorecard of RMSE skill scores for GraphCast, with respect to HRES. Each subplot corresponds
to one variable: u, v, z, t, q, 2t, 10u, 10v, msl, respectively. The rows of each heatmap correspond
to the 13 pressure levels (for the atmospheric variables), from 50 hPa at the top to 1000 hPa at
the bottom. The columns of each heatmap correspond to the 20 lead times at 12 hour intervals,
from 12 hours on the left to 10 days on the right. Each cell’s color represents the skill score,
as shown in (b), where blue represents negative values (GraphCast has better skill) and red
represents positive values (HRES has better skill). Figure taken from [22].
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Figure 2.5: Left: Overview of the prediction process of the GC-LAM and Hi-LAM models.
Input at the grid nodes (orange squares) are encoded to the mesh nodes (blue circles), processed
and decoded back to produce a one-step prediction. Right: Artefacts in GC-LAM prediction
(enlarged) centered at mesh nodes with > 8 neighbors (white dots). Figure taken from [31]

.

a large number of connections. As a solution, they propose a second model (Hi-LAM) that uses
a hierarchical grid that connects the different mesh-levels by adding extra encoding GN layers.
This ensures that the higher levels capture the latent representation of the entire domain more
effectively (see Figure 2.5). During prediction, information from all mesh levels are incorporated
in the final output [31].

2.3.1 Training details

All models are trained using the weighted MSE as loss function, similar to GraphCast. For
the GC-LAM model, 4 GN processing layers are used. For the Hi-LAM model only half the
amount of processing layers is needed, as each layer is updated twice. The models were trained
on a single NVIDIA A100 GPU for about 3-4 days, using a training data set of only two years.
The data contains 17 weather variables at a forecasting step time of 3 hours. The horizontal
resolution was downsampled from the original 2.5km to 10km.

2.3.2 Performance

The authors compare the performance of both models to a simple model called 1L-LAM, which
uses a fully connected graph without any hidden layers or hierarchical structure. Since the
models are not compared to any operational forecasts or NWP models on this domain at this
resolution, it is hard to evaluate the skill of the forecasts. Qualitative results indicate that the
Hi-LAM model predictions are close to the ground truth, although being slightly blurred for
some variables. Overall, these results are promising, especially since they show that with using
fewer computational resources (less GPUs, fewer training data), we can still expect reasonable
results on a high-resolution limited domain.
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Chapter 3

AIFS - ECMWF’s Data-Driven
Forecasting System

The European Centre for Medium Range Weather Forecasting (ECMWF) is an independent
intergovernmental meteorological institute. ECMWF produces high-quality global numerical
weather predictions for 35 member states, as well as for commercial customers. Following
the recent advances in DLWP as described in the previous chapter, ECMWF has developed
their own improved medium-range global data-driven forecasting model, called AIFS (Artificial
Intelligence/Integrated Forecasting System) [23] [24]. To implement the model in an operational
setting, they not only focus on the machine learning framework, but also on developing end-
to-end training and inference data pipelines, along with ensuring operational verification. The
model is based on the structure of GraphCast, consisting of a GNN-based encoder-processor-
decoder structure with 16 hidden processor layers.

3.1 Data and grid structure

Unlike GraphCast, AIFS avoids using a latitude-longitude data grid due to the over-representation
of gridpoints at the poles. Instead, spatial data is represented on a reduced Gaussian grid (N320),
widely acknowledged by the meteorological community for the reduction in data size and con-
venience in applying Fast Fourier Transforms [21]. The N320 grid has N = 320 equally-spaced
latitude lines between the poles and the equator, resulting in a total of 2N = 640 latitude lines.
The points on the latitude lines are calculated from the zeros of the Legendre polynomial of
order 2N :

P2N (sin(θk)) = 0, (3.1)

where θk is the number of points on latitude line k [11]. The solutions of the Legendre poly-
nomial provide (near)-regular distance intervals in both latitudinal and longitudinal directions,
resulting in a better spatial distribution across the globe [21]. The GNN’s flexibility in han-
dling irregular data structures allows for the smooth implementation of these non-uniform grids.
Furthermore, the data-loading pipeline is made more efficient by using the Zarr storage format,
allowing arrays to be chunked and loaded more conveniently. Incorporating this data format us-
ing the ECML-tools dataloader framework in Pytorch-Lightning results in a significant speedup
[24].

The model is trained on six key atmospheric variables at 13 pressure levels and a number of
surface variables, following conventions used in other models. To reduce computational costs,
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Table 3.1: AIFS training data. The table provides an overview of AIFS inputs and outputs
during training.

Field Level Type Input/Output

Geopotential, U component
of wind, V component of
wind, vertical velocity, spe-
cific humidity, temperature

Pressure level (hPa): 50, 100,
150, 200, 250, 300, 400, 500,
600, 700, 850, 925, 1000

Both

Surface pressure, mean sea-
level pressure, sea-surface
temperature, skin tempera-
ture, 2m temperature, 2m
dewpoint temperature, 10m
U component of wind, 10m V
component of wind, total col-
umn water

Surface Both

Land-sea mask, orography,
standard deviation of sub-
grid orography, slope of sub-
gridscale orography, insola-
tion, latitude/longitude, time
of day/day of year

Surface Input

less pressure levels are used (13 instead of the 37 pressure levels of GraphCast), resulting in fewer
variables for training/prediction. In addition, convective precipitation and total precipitation
are modeled as output variables only. The variables used in the AIFS training are given in Table
3.1.

3.2 Graph-Transformer

As of February 2024, AIFS is able to run at a spatial resolution of 0.25 degrees. This is due to
the introduction of attention mechanisms in both the encoder/decoder as well as the processor.
In the encoder and decoder, following the ideas of [36], the message aggregation step for the edge
updates is adjusted by transforming each source node attribute hi to a query vector qi = Wqhi+bq
and each target node hj to a key vector kj = Wkhj + bk. The edge attributes are encoded in the
bias vector êij = Weeij + be, and the value vector vi is again computed from the source node
using the attention operation:

αij =
eq

T
i (kj+êij))/

√
(dk)∑

u∈N (i) e
qTi (ku+êiu/

√
(dk)

, (3.2)

where dk is the dimension of the key vector. The softmax operation is performed over the neigh-
bourhood N (i) of the source node i. Thus, the attention operation represents the importance
of an edge by giving the edge probability distribution per source node. The new node features
are computed from a value vector vu = Wvhu + bv weighted by the (permutationally invariant)
aggregated attention values [36]:
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Figure 3.1: AIFS encoder / decoder and processor block schematics: GNN block (left), pro-
cessor block (right). The GNN block uses a multi-head graph transformer convolution operation
to update the nodes and the edges of the processor, whereas the pre-norm transformer block
relies on multi-head self-attention. Figure taken from [24].

.

Figure 3.2: Shifted window attention windows (in blue) for different grid points (in red) in
the AIFS processor. The range of information transfer within 6 processor layers is given in grey.
For visualization purposes, the grid is shown at a lower resolution. Figure taken from [24].
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ĥi =
∑

u∈N (i)

αiu(vu + êiu). (3.3)

This process is repeated C times for the encoder and decoder to accommodate multi-head
attention. For the decoder, the multi-head output is averaged. The source and target nodes
are normalized using a LayerNorm, similarly for the output of the transformer graph convolu-
tion. Finally, a MLP layer is added to form the GraphTransformer block, visualized in Figure 3.1.

The model eliminates the need for processor edges by adopting pre-norm transformer layers
with one-dimensional shifted window attention. Attention is computed along latitude bands
of a coarser resolution octahedral Gaussian reduced grid (O96, approximately 1 degree spatial
resolution). A visualization of the shifted window attention process can be found in Figure
6.3. Similar to GraphCast, sixteen processor layers facilitate the communication of information
across the globe. Additionally, eight learnable features are added to compensate for possible
missing fields [24].

3.3 Training

AIFS adheres to the training as mentioned in [24] by pretraining on 6 hour time steps and
finetuning on larger training steps up to 72 hours (called rollout steps). This finetuning is per-
formed by re-initializing the model from the output prediction in an auto-regressive manner.
The model is finetuned using the loss calculated over multiple rollout steps (rollout training).
The predicted values used as input are the prognostic variables, the excluded variables (total
precipitation and convective precipitation) are called diagnostic variables. The forcing variables,
used only as inputs, are appended to the prognostic variables to provide the complete future
state initialization. The variables are normalized using mean-max normalization, transforming
the data distribution to have a mean of zero and unit variance. Exceptions are some of the forc-
ing variables: sdor, slor and z, which are max-normalized, while the remaining forcing variables
(see Table 4.4) are left unnormalized.

The latitude-weighted MSE loss function described in Chapter 2 is enhanced by adding
variable weighting and pressure-level weighting to balance the data points in the loss function.
Variable weighting is applied in multi-variable optimization to account for the relative impor-
tance of each prognostic variable. These weightings are empirically tuned hyperparameters, with
the optimal values provided in Table 3.2. The diagnostic variables are assigned lower weightings,
as they should be induced from the prognostic variables to ultimately be evaluated on the test
set. Upper-atmosphere variables are weighted less than lower-atmosphere variables, reflecting
the meteorological preference to have improved predictions at high pressure levels. This is called
pressure level scaling, AIFS does so linearly starting using a weight of 0.001 ∗ pressure.

The learning rate is controlled by using a cosine learning rate scheduler with warm restarts.
The learning rate is increased during a warmup period to ensure proper initialization of the
model. After reaching the maximum value η0, the learning rate is decreased as follows:

ηt = ηT +
η0 − ηT

2
(1 + cos(πt/T )), (3.4)

where ηt is the learning rate at epoch t ∈ [0, T ][27]. In AIFS, the initial (maximum) learning
rate η0 is set to 0.625 × 10−4, the minimum (final) learning rate ηT is set to 3 × 10−7 and the
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total number of iterations is set to 300000. AIFS is trained on 64 Nvidia A100 GPUs for a total
duration of one week.

Table 3.2: Variable weighting in the latitude-weighted MSE loss function used by AIFS [22].
The weightings are hyperparameters tuned on the validation loss. The variables not mentioned
in this table are set to a default of one. For a list of variable abbreviations see Table 4.1, 4.2,
4.3 and 4.4.

variable name weighting variable name weighting

q 0.6 sp 10

t 6 10u 0.1

u 0.8 10v 0.1

v 0.5 2d 0.5

w 0.001 tp 0.025

z 12 cp 0.0025

3.4 Results

[24] compared the AIFS to the IFS by evaluating both on the test set, using the operational
ECMWF analyses - from which the models are initialized - as ground truth. For each variable
and pressure level, the ACC, RMSE and forecast activity are given. The forecast activity is a
measure for the smoothness of a forecast, where lower forecast activity indicates a more blurred
forecast. The mathematical definition of forecast activity of variable j at lead time τ is given as
follows:

SDAF (j, t) =

√
((xt0+τ

j,i − Ct0+τ
j,i ) − (xt0+τ

j,i − Ct0+τ
j,i )2. (3.5)

where xt0+τ
j,i is the forecast prediction of variable j at grid point i and time t0 + τ , Ct0+τ

j,i is the
climatological mean of variable j at grid point i and time t0 + τ and the bar indicates averaging
the variable over grid point i ∈ D with latitude weighting as in the RMSE and ACC described
in Chapter 2.

The results of [24] are summarized in a scorecard given in Figure 3.4. AIFS significantly
outperforms IFS for higher pressure levels on ccaf/SEEPS (precipitation skill scores) and RMSE.
Lower pressure levels show worse performance, as also observed by Lam et al. [22]. This is likely
influenced by the introduction of the pressure level scaler. It is noticable how AIFS gains
advantage over IFS for longer lead times, whereas IFS outperforms AIFS for the first day.

3.5 Stretched grid model

This research was done in collaboration with MET Norway, who developed a stretched grid
AIFS model (SG-AIFS) over the Nordics. The model is trained on ERA5 and a reanalysis of
the Met-CoOp Ensemble Prediction System (MEPS), their operational HARMONIE-AROME
NWP model.

The MEPS dataset spans 3 years (2020-2023), thus a transfer learning framework is intro-
duced. In transfer learning, the limited area model utilizes the knowledge acquired from previ-
ously trained models by initializing its weights. This approach not only addresses the challenge
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of varying data availability, but also reduces the overall training time. Moreover, transfer learn-
ing improves performance by allowing a smoother transition to intermediate downscaling steps.
However, transfer learning comes with two challenges: catastrophic forgetting and the preva-
lence of trainable parameters. Catastrophic forgetting occurs when parameters are overwritten
during finetuning. [29] mitigates this effect by adjusting the learning rate during finetuning, as
well as decreasing the number of training steps. The second challenge is the presence of trainable
parameters. The problem particularly arises during the transferal of GNN parameters, when
the graph structure is different across the models. Since the trainable parameters are inherently
tied to the graph structure, omission is necessary during both pretraining and finetuning. [29]
suggests this omission to have minimal influence on model performance.

Four finetuning steps are performed, increasing resolution at the first three steps (see Figure
3.3). First, the model is pre-trained on 1 degree ERA5 reanalysis data, after which a refinement
step to 0.25 degree ERA5 data is performed. Subsequently, the ERA5 0.25 degree dataset is
integrated with a 2.5 km regional MEPS dataset with a training period of 3.3 years. Finally,
training is performed for four prediction time steps of rollout. [29] demonstrated better perfor-
mance than MEPS when evaluating on surface observations, particularly for temperature and
wind speed, although their model showed an underestimation of extreme values.

Figure 3.3: Stretched grid model training by Nipen et al. [29] follows a four-stage procedure.
First, the DDM is pre-trained on 43 years of ERA5 data with a global resolution of 100 km
(stage A) and 31 km (stage B). In stage C, the 31 km global IFS dataset is combined with
the 2.5 km regional MEPS dataset with a training period of 3.3 years. Finally, the model is
fine-tuned by auto-regressive rollout training over four prediction time steps (stage D). Figure
taken from [29].
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Figure 3.4: Scorecard comparing forecast scores of AIFS versus IFS (for 2022). Forecasts are
initialised on 00 and 12 UTC. Shown are relative score changes as function of lead time (day 1 to
10) for northern extra-tropics (n.hem), southern extra-tropics (s.hem), tropics and Europe. Blue
colours mark score improvements and red colours score degradations. Purple colours indicate
an increased in standard deviation of forecast anomaly, while green colours indicate a reduction.
Framed rectangles indicate 95% significance level. Variables are geopotential (z), temperature
(t), wind speed (ff), mean sea level pressure (msl), 2 m temperature (2t), 10 m wind speed (10ff)
and 24 hr total precipitation (tp). Numbers behind variable abbreviations indicate variables on
pressure levels (e.g., 500 hPa), and suffix indicates verification against IFS NWP analyses (an) or
radiosonde and SYNOP observations (ob). Scores shown are anomaly correlation (ccaf), SEEPS
(seeps, for precipitation), RMSE (rmsef) and standard deviation of forecast anomaly (sdaf, see
text for more explanation). Figure taken from [23].
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Chapter 4

Data description and preprocessing

Over the past 50 years, an increasing amount of meteorological data can be gathered from
satellites and ground observations, among other observation types. In data assimilation, NWP
model predictions are combined with observations in an optimal manner in order to provide a
regular and accurate representation of the state of the atmosphere in both space and time [3]
[20]. In this research project, reanalysis and reforecast products are combined: ERA5 data and
DOWA data, respectively.

4.1 ERA5

ERA5 is the 5th generation of reanalysis data provided by ECMWF. The model used is the
Integrated Forecasting System (IFS) Cycle 41r2, from which reanalyses were made starting
from 1979. The assimilation is done using the novel 4D-Var data assimilation, optimizing the
meteorological representation of the initial state in the three dimensions of space as well as
optimizing over a time window. Moreover, the reanalysis couples land, sea and atmospheric
modeling to form a complete representation. [3] [20]. In this project, the ERA5 data and the
variables used are equivalent to the AIFS model variables (see Table 4.1, 4.2 and 4.3). Further
details are described in Section 3.

4.2 DOWA

The DOWA dataset is a reforecast dataset, consisting of 11 years of ERA5-HARMONIE fore-
casts (2008-2017). This reforecast was saved on the domain as depicted in Figure 4.1, which has
789 by 789 grid points corresponding to a spatial resolution of about 2.5 kilometers. It is saved
in daily files with 3-hourly forecasts, where the forecast is initialized every 3 hours. DOWA is
saved on the ECFS file system, a High-Performance Storage System (HPSS of ECMWF). Files
are saved on tapes and have to be explicitly retrieved onto a local server. With a 1-hour tem-
poral resolution and a spatial resolution of 2.5 km on 65 pressure levels, the retrieved dataset
has a total size of about 50TB. Due to the storage space policy of ATOS, files are removed after
30 days. The initial training set consisted of the years 2008-2009 and 2013-2015. The year 2016
was chosen as evaluation year and 2017 as testing year. After the adjustments described below
are processed, the data size is reduced to 0.493TB.
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Figure 4.1: ERA5-HARMONIE domain (yellow) of 789x789 points and DOWA-subdomain of
217x234 points (red). ERA-Interim-HARMONIE domain of 500x500 points (green) and KNW-
subdomain of 170x188 points (blue). Figure taken from [39].

4.2.1 Preprocessing

Although the DOWA dataset contains most of the ERA5 re-analysis variables used by AIFS,
many adjustments had to be made to combine the DOWA and ERA5 datasets.

Firstly, some surface variables are missing in DOWA. The dewpoint temperature at 2 meter
height, the total column water, and the convective precipitation are not present in DOWA. The
dewpoint temperature at 2 meter height d2m can be calculated from the relative humidity at 2
meter height RH2m and the temperature at 2 meter height T2m, but the relative humidity at 2m
height is not present in the dataset. Thus, the relative humidity is computed from the specific
humidity using the following equations [25]:

RH2m = 100
w

ws
, (4.1)

where ws = 0.622 ∗ es
P2m−es

and w ≈ q2m. Here, q2m is the specific humidity at 2m height, P2m

is the pressure at 2m height and es is the saturation vapor pressure, defined as:

es = 610.94 × e
17.67

T2m−273.15
T2m−29.65 . (4.2)

Then, d2m can be calculated using T2m as follows [25]:

d2m = T2m − ((100 −RH2m)/5). (4.3)

The total column water and convective precipitation could not be computed from the avail-
able variables and are consequently omitted from both datasets. As a consequence, the dataset
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contains insufficient hydrological variables to evaluate precipitation results (cp, tp in AIFS) in
a meaningful way. Incorporating proper precipitation data is left to future research.

Secondly, the atmospheric variables in DOWA are saved on model levels, instead of pressure
levels. Model levels follow the shape of the terrain for lower pressure levels, and consequently
become closer to pressure levels higher in the atmosphere. The pressure between two levels is
constant, and defined in so-called half-levels, depending on the pressure at surface level ps [15]:

pk+1/2(x, y) = Ak+1/2(x, y) + Bk+1/2(x, y) ∗ ps(x, y) ∀(x, y) ∈ R, (4.4)

where R is the two-dimensional region where DOWA is defined. The coefficients Ak+1/2 and
Bk+1/2 are fixed, such that the pressure at the lowest level (65) is equivalent to the surface pres-
sure, and the pressure at the highest atmospheric level is zero. DOWA is saved on HARMONIE-
AROME’s 65 pressure levels. Thus, to convert from model levels to the pressure levels defined
by ERA5, first the pressure is calculated at each spatial point from A and B, then each spatial
point is interpolated vertically to the 13 desired pressure levels (Table 3.1). Since this is compu-
tationally expensive in Python, we use the Python package numba to speed up computation. A
challenge with this interpolation strategy is the orography of the domain. High pressure levels
(such as 1000 hPa) are not present over mountainous regions, such as the Alps. In ERA5 and
MEPS, this is addressed by extrapolating to these regions while completely disregarding the
orography. However, high-quality extrapolation is computationally expensive and adds little
value to the outcome of the model. Therefore, we decide to set these values to NaN. During
training, these NaNs are imputed with the mean or minimum of each corresponding variable,
depending on the normalization. As a consequence, after normalization the missing values will
be zero and the model is able to identify these regions effortlessly, eliminating any impact on
training. After training, the imputation is reversed to provide the proper predictions.

Thirdly, DOWA is re-gridded using a Lambert conformal conic projection instead of a lati-
tude/longitude grid. Fortunately, the structure of GNNs is very adaptable to grid types, meaning
that no spatial interpolation of DOWA is necessary. However, the u and v components of the
wind are provided relative to the grid and therefore require re-projection of the wind directions
relative to the latitude/longitude grid. We adopt the code provided by the Norwegian Meteoro-
logical Institute (MET Norway) using the package pyproj and taking into account the change
in windspeed that occurs due to differently sized gridboxes. Moreover, since the vertical wind
velocity w is given in a hydrostatic manner (in meters per second), it should be converted to the
pressure velocity ω in Pascal per second as in ERA5. This can be done using the temperature
T in Kelvin and the pressure p in Pascal, according to the following formula:

ω = −wgp/(TRd), (4.5)

where g is the gravitational acceleration and Rd is the specific gas constant.

Lastly, the forcing variables (Table 4.4) are calculated and the required statistical attributes
(sums, squares, minimum and maximum) are added. We selected 6-hourly time steps to match
the ERA5 temporal resolution (meaning the dataset fully consists of +3h reforecasts) and the
resulting dataset is added to a Zarr archive matching the metadata and structure of ERA5. The
code was based on the Zarr converting package provided by MET Norway. An overview of the
comparison of ERA5 and DOWA variable names can be seen in Tables 4.1, 4.2, 4.3 and 4.4.
Note that abbreviations for the statistical attributes are not given, since these are calculated
from the data for fast accessibility during training. Due to long pre-processing times, 7 of the
10 available years were converted when starting the high-resolution training.
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Table 4.1: Atmospheric variables.

Variable name AIFS/ERA5 code DOWA code

Geopotential z phi

U component of the wind u ua

V component of the wind v va

Vertical velocity w w

Specific humidity q hus

Temperature t ta

Table 4.2: Surface variables.

Variable name AIFS/ERA5 code DOWA code

Surface pressure sp ps

Mean sea-level pressure msl psl

Sea surface temperature sst sst

10m U component of

wind
10u uas

10m V component of

wind
10v vas

2-meter temperature 2t tas

Skin temperature skt ts

2-meter dewpoint temperature 2d -

Total column water tcw -

Table 4.3: Diagnostic variables.

Variable name AIFS/ERA5 code DOWA code

Total precipitation tp prrain

Convective precipitation cp -

Table 4.4: Forcing variables.

Variable name AIFS/ERA5 code DOWA code

Land-sea mask lsm sftof

Orography z Orog

STD of Orography sdor -

Slope of Orography slor -

Insolation Insolation Insolation

Sine of latitude sin latitude sin latitude

Sine of longitude sin longitude sin longitude

Cosine of the Julian day cos julian day cos julian day

Sine of the Julian day sin julian day sin julian day

Sine of the local time sin local time sin local time

Cosine of the local time cos local time cos local time

26



Chapter 5

Methodology

While advances in global medium-range weather prediction are numerous and promising, further
improvements are needed in the field of high-resolution weather prediction. This MSc thesis seeks
to build on recent developments in collaboration with MET Norway [29], aiming to effectively
apply the stretched grid approach to increase resolution for regional forecasts. Fully utilizing
the data driven model developed by [29] is not feasible, due to the memory and computational
requirements. Nevertheless, it shows that transfer learning has the potential to optimize data
utilization whilst accelerating individual model training time. In this section, we describe the
stretched grid (SG-AIFS) experiment setup and explain how we expand on the current develop-
ments by exploring the properties of this model.

A stretched hidden grid is implemented within the AIFS framework, enabling the use of ad-
ditional regional high-resolution data. Initially, the vanilla GNN version of AIFS is considered,
allowing us to directly compare the performance of the GNN to the Transformer. The hidden
mesh structure of the GNN follows an iteratively refined icosahedron similar to GraphCast, but
the triangles overlapping with the area of interest are refined multiple times to keep the number
of neighbours constant for the finest level of the multi-mesh. This results in a more gradual
boundary and incorporates global data directly during training. Two configurations arise to
combine the different data sources: concatenating overlapping global and regional data points
(“concatenation”) or excluding global data points within the limited area domain (“cutout”).
The latter “cutout” approach was elected to avoid data continuity issues that could arise from
combining inherently different reanalysis and reforecast datasets on the same domain. Addition-
ally, deviating from the implementation of the stretched grid by [29], we iterate over the regional
data points, refining any triangles that contain such a data point. On the other hand, [29] con-
catenate two graphs by masking out nodes and edges within the region of interest, resulting
in minor connectivity differences. Additionally, the available preprocessed DOWA data spans
seven years as opposed to the three years of MEPS reanalysis. DOWA’s extended temporal
range could positively impact performance on more recent years (as noted by [22]).

5.1 ERA5 experiments

Due to large training and data preprocessing times associated with the DOWA dataset, a lower
resolution stretched grid framework was tested to experiment with the configuration of the
model. For the initial experiments, ERA5 data are used on a global scale as well as on a
regional scale, albeit at different resolutions. The N320 octahedral grid at about 0.25 degree
resolution is extracted over the regional domain. On the remainder of the globe, o96 Gaussian
grid data are provided at about 1 degree resolution. The training data range from 1979 to 2020,
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Figure 5.1: Visualization of the stretched hidden grid, with the refined area corresponding to
the HARMONIE-AROME/DOWA full model domain. Each of the triangles of the hidden grid
are split into four triangles and projected to the unit sphere.

with 2021 as validation set and 2022 as testing set. Training is done using an Adam optimizer
on a single NVIDIA A200 GPU for 150 epochs on the European Weather Cloud (EWC). The
batch size is set to 2, with 4000 batches per epoch. For the validation and testing, a batch size of
4 is used with a maximum number of batches of 700. The number of channels is set to 256, and
the learning rate is scaled in each epoch, starting from 0.00000619 and increasing to 0.0000624
over the course of 10 epochs before decreasing to 3 ∗ 10−7 according to the cosine learning rate
scheduler. Incorporating the high-resolution data requires alteration of the latitude-weighted
loss function. Typically, latitude-based weighting is applied, assuming an equal distribution of
points across each latitude band [17]. To compensate for the imbalance introduced by addi-
tional high-resolution data, we combined a latitude weighted global loss with an unweighted
high-resolution loss. Each high-resolution data point is weighted equally to adhere to the total
weighting of the global area summing to equal the amount of data points. As a result, for the
ERA5 experiments all grid boxes in the DOWA domain are assumed to have approximately the
same size, amounting to a total weight contribution of the high-resolution data of about 10% to
the total loss.

We assume that the ERA5 experiment results can be consequently transferred to a higher-
resolution model. Three of the research questions posed in Chapter 1 are addressed, namely
1) the influence of increasing resolution in the processor hidden grid 2) the performance of the
Transformer model and 3) the influence of including the rollout step described in [22], [23] and
[29]. Concerning the first research question (Experiment 1), the adaptation of the hidden grid
structure will be analyzed, specifically the difference in resolution of the processor grid. Two
stretched grids are developed: one with a global refinement level of 4 and a local refinement
level of 6, later referenced as having resolution 4 (about 4 longitudinal degrees). The second
grid has a global refinement of 5 and a local refinement of 7 (referred to as resolution 5, about
2 longitudinal degrees). To test if the adaptation of the grid changed the training results, we
connect the hidden grid to the ERA5 data and run it with the same parameters as for AIFS.
The models are trained to optimize on 6 hour lead time, initially excluding rollout training.

Addressing the second research question (Experiment 2), the GNN processor will be com-
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pared with the Transformer processor. The current AIFS model has deviated from using a
GNN in part of the processing layers, opting instead for using attention mechanisms. This
development is based on promising results in the literature, where Transformer models have
been applied successfully to global weather data (see Appendix A for background on applying
Transformers as DLWP models). This has the potential to increase model speed and eliminate
the need for predetermined edges. We experiment with implementing this adaptation for a lim-
ited area model. Since AIFS implements the Transformer in a one dimensional sliding window
attention operation, complications arise when adapting this process to a combined hidden mesh.
The decision is made for a simple data appendment, resulting in a reasonable model considering
the large window size. Since the Transformer processor should be on a Gaussian grid (following
Lang et al [24])], resolution N32 is used on the global scale, whereas on a local scale resolution
N80 is implemented. However, for future implementation we anticipate that a two dimensional
attention mechanism will be more suitable. Our model follows the approach of AIFS in using
a Gaussian grid for the global ERA5 data. A visualization of this grid can be seen in Figure
5.1. The Gaussian grid is refined locally by increasing the hidden grid resolution twice. Note
that the multi-mesh allows nodes with local connectivity and global connectivity to be mixed
in order to provide a better latent representation of the state of the atmosphere. Lastly, for
the third research question (Experiment 3), the impact of rollout training on the limited area is
investigated. We compare the results of the rollout model to the best performing model to the
resolution 5 hidden grid model to investigate the influence of including an autoregressive rollout
finetuning phase.

5.2 High-resolution experiments

After testing the stretched grid on the lower resolution ERA5 data, we introduce the DOWA
dataset, described in Chapter 4. Due to time and resource constraints, we adapt only Stage C of
the framework described by [29]. Stage C is adapted to have 100km resolution globally, instead of
31km, without applying transfer learning. We implement some hyperparameter adaptations to
improve learning performance, and train a graph-transformer model in the new Anemoi frame-
work, developed by ECMWF. Although we planned on implementing the stretched grid using
the local DOWA data, due to slow retrieval speeds we were not able to obtain the full dataset
initially. We decided to start experiments when 7 of the 10 available years were converted.
The initial model was trained on 5 years of data (2008, 2009 and 2013-2015), with validation
year 2016 and testing year 2017, based on the data available after pre-processing. Additionally,
preliminary results from both KNMI and MET Norway indicate the potential performance ben-
efits of increasing the learning rate and the number of channels. The maximum learning rate
is increased eight-fold, to a rate of 5 ∗ 10−5, effectively reducing the training time by half. The
number of channels is raised from 256 to 512, with the reasoning that the large data volume
available in this field elicits increasing the parameter space.

Besides, adjustments were made to the model connectivity. Previously, a fully connected
encoder was deemed necessary for optimal information flow across the network. However, pre-
liminary results suggest that a smaller connectivity minimally impacts WMSE performance.
It appears that local data points are of highest importance during encoding and disconnected
nodes exert limited influence, allowing the number of neighbouring connections to a grid point
to be reduced to 10. This adjustment conserves the GPU memory necessary for increasing the
number of channels without compromising model efficiency. To further alleviate GPU mem-
ory constraints, he model is distributed over 4 GPUs using PyTorch’s DDP (Distributed Data
Parallel) framework. Moreover, the batch size was reduced to 1 during training and validation,
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doubling the available GPU memory. To make a fair comparison with transfer-learning models
such as the model by [29], trainable parameters are omitted from the model. The model is
trained for 150 epochs on 16 NVIDIA GPUs at the ECMWF HPC called ATOS.

These high-resolution experiments aim to answer three of the research questions from Chap-
ter 1: 4) The impact of training on 2.5 km resolution data 5) the effectiveness of the model
in capturing extreme events and 6) the performance of the model compared to the HA model.
Research question 4 is answered by evaluating the high-resolution model described above on the
test year 2017 and examining the RMSE and power spectra plots. Research questions 5) and
6) will be addressed using a case study from the 22nd and 23rd of February, containing a storm
with moderate impact on the Netherlands. For this case study, the pressure and wind speed
of the SG-AIFS model predictions will be compared to the HA model predictions, allowing us
to infer information on the performance of the model on extreme events. These experiments
collectively form a comprehensive framework for analyzing the strengths and limitations of the
SG-AIFS model, which will be assessed in the following chapter through both quantitative and
qualitative performance analyses.
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Chapter 6

Results

This chapter presents the results of the experiments described in Chapter 5. First, convergence
results of the ERA5 experiments are analyzed, examining convergence speed and final training
and evaluation loss scores. In addition, inference results for the ERA5 experiments are provided,
including Root Mean Squared Error (RMSE) evaluation at extended lead times. Eighteen initial
dates are selected from the test set (see Appendix B for a list of testing dates), equally distributed
throughout the year to account for seasonal variability. For the four 6-hour time steps included
in these dates, autoregressive rollout predictions for up to 40 time steps (10 days) are initialized
and the results are averaged over the selected 18 days to obtain the final averaged RMSE
values. Besides, qualitative analyses are presented using visualizations of the best-performing
model’s predictions for January 2, 2022, and power spectrum analysis is conducted on this
date to diagnose blurring. For the high-resolution experiments, visual examination together
with RMSE plots and power spectrum analysis is utilized to provide an overview of the model
performance. The impact of missing values due to the conversion from model to pressure levels
described in Chapter 4 is inspected visually. Finally, the case study described in Chapter 5 is
conducted and visualizations of the air pressure at sea level and wind speed are examined to
assess the performance of the SG-AIFS model for an extreme weather event compared to the
HA model.

6.1 ERA5 experiments

6.1.1 Quantitative results

In the first experiment, we compare the SG-AIFS model with a global grid resolution of 4 and
local grid resolution of 6 against the same configuration, but with a global grid resolution 5 and
local grid resolution of 7. Convergence results for this experiment are presented in Figure 6.2.
SG-AIFS with global resolution 5 exhibits faster convergence, achieving a lower final loss. This
can be attributed to the expanded parameter space facilitating accelerated adaptation to the
training samples. Following training, model performance is assessed through performing several
consecutive evaluation rollout steps on selected dates from the test set, allowing for an analysis
of prediction accuracy at extended lead times. The evaluation focuses on two variables: the
temperature at 2 meter height in Kelvin (K) and the wind speed in meter per second (m/s) at
10 meter height. The RMSE as a function of lead time, evaluated on the local domain and the
global domain, is shown in Figure 6.1. Both evaluation variables show a near-linear increase of
RMSE with lead time, which is expected given that predictability of the atmosphere diminishes
with lead time. Although resolution 5 significantly lowers the global RMSE for lead times up
to 114 hours, the difference in performance between the hidden grid resolutions at longer lead
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Figure 6.1: SG-AIFS averaged RMSE of the air temperature (K) at 2 meter height and the
wind speed at 10 meter height, evaluated on 18x4 cases of the test set (Appendix B) for lead
times up to 10 days. The colored bands represent the 95% confidence intervals. Increasing the
hidden grid refinement to resolution 5 improves RMSE values for short lead times. However,
performance is similar or worse for longer lead times. Rollout training substantially lowers
RMSE for all lead times.

times is minimal. This indicates that a refinement level of 4 could suffice for data at this res-
olution. Computational resources (in particular GPU memory) can be saved by using a lower
resolution hidden grid. However, further experimentation is required to determine how these
results generalize to higher resolution datasets such as DOWA. On the regional domain, the
SG-AIFS model with resolution 5 demonstrates improved short lead time performance, however
this effect may be influenced by fluctuations in RMSE associated with a smaller sample size.
Indeed, the 95% confidence intervals suggest that the difference lacks statistical significance. On
the other hand, the short lead time global performance increase may advocate for additional
latent space resolution, although this effect diminishes over time.

Prediction accuracy at extended lead times can be enhanced by finetuning on longer lead
times (rollout training). In the experiment, the SG-AIFS model with resolution 5 is finetuned
for up to 12 rollout steps (3 days), as shown in Figure 6.1. Rollout training significantly im-
proves the performance for short and long lead times for both models, in alignment with the
results found by [22], [24] and [29], highlighting the importance of finetuning. Rollout training
could substantially decrease temperature RMSE up to 0.5 degree Celsius temperature and wind
speed RMSE up to 0.5 m/s. On the other hand, high impact of rollout training may indicate
the necessity for further training, although consistency in RMSE performance strongly indicates
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Figure 6.2: Influence of different hidden grid resolution on model convergence. The model
with hidden grid resolution 4 has a limited area resolution of 6. The model with hidden grid
resolution 5 has a limited area resolution of 7. Higher resolution results in faster convergence
for both validation loss as well as training loss.

Figure 6.3: Comparison of the WMSE between the transformer model and the SG-AIFS model.
Including the transformer architecture appears to accelerate training convergence, although
resulting in a higher final validation loss.

convergence (Fig 6.1).

The second experiment compares the Transformer processor architecture to the GNN-based
stretched-grid model. The results of this experiment are presented in Figure 6.3. The inclusion
of the Transformer processor leads to faster convergence relative to the GNN model, with the
attention mechanism correctly identifying relationships between nodes in fewer training steps
than the GNN. However, the GNN processor results in an improved final validation loss, while
the Transformer displays poor generalization in comparison. Given the Transformer’s higher
number of parameters - with 105 million parameters compared to the GNN’s 17.6 million - it is
suspected that the model is overfitting on the training data and thereby reducing its general-
ization capability on the validation data. Moreover, the high number of parameters causes the
iterations per second to drop, yielding minimally improved overall training time.

Examining the performance on the test set reveals a relatively high RMSE for the selected
surface variables. Additional RMSE figures for lower-pressure-level variables are provided in
Appendix C.2. While RMSE values for the air temperature (in Kelvin) at 150 hPa display
strongly improved performance, RMSE values for variables at lower atmospheric levels reflect
the opposite. This contradiction suggests that the pressure level performance of the Transformer
is imbalanced, indicating the necessity of adjustments to improve performance at higher pres-
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Figure 6.4: SG-AIFS GNN processor compared to the Transformer processor, averaged RMSE
of the air temperature (K) at 2 meter height and the wind speed (m/s) at 10 meter height,
evaluated on 18x4 cases of the test set (Appendix B) for lead times up to 10 days. The colored
bands represent the 95% confidence intervals. The Transformer model shows decreased perfor-
mance compared to the GNN over these surface variables.

sure levels. Furthermore, the plots in Appendix C.2 reveal certain variables that have good
performance globally failing to predict local values accurately, particularly at short lead times.
This may indicate an imbalance in the weighting of the high-resolution data, which could be
attributed to the single dimensional processor structure as mentioned in Chapter 5. In conclu-
sion, preliminary results show the necessity for further tuning and developing the Transformer
framework before similar RMSE performance could be achieved in fewer training steps. Until
proper pressure level weighting is implemented in the AIFS framework, the GNN will continue
to outperform the Transformer on surface variables at both the global and regional domain.

6.1.2 Qualitative results

Qualitative analysis reveals reasonable predictions for short lead times. In Figure 6.5 visualiza-
tions of the temperature at 2 meter height in Kelvin (K) and the windspeed in meter per second
(m/s) at 10 meter height are shown. In general, we see that surface variables and variables at
higher pressure levels show better performance than upper air variables. This is comparable to
GraphCast and AIFS model results ([22], [24]). For longer lead times the model tends towards
the mean, resulting in blurred forecasts. Smoothing is a prevalent issue in deterministic deep
learning for weather prediction (DLWP), since the mean squared error loss (MSE loss) tends to
favour predictions towards the mean of the distribution [40].
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Figure 6.5: SG-AIFS with hidden grid resolution 5 (7) with rollout evaluated on the test set.
The first and second row of the figure show the SG-AIFS forecast and ground truth, respectively,
of the air temperature (K) at 2 meter height. The forecast is initialized from 2022-01-02T06.
The model learns to predict on a high-resolution data grid, although at longer lead times the
quality of the forecast decreases.
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(a) Power spectra of the air temperature (K) at 2 meter height for a single case from the test
set (2022-01-02 at 06UTC). The top row displays the global power spectra for lead times 24h,
120h and 180h, the bottom row shows the regional power spectra for lead times 24h, 120h and
180h.

(b) Power spectra of the wind speed (m/s) at 10 meter height for a single case from the test
set (2022-01-02 at 06UTC). The top row displays the global power spectra for lead times 24h,
120h and 180h, the bottom row shows the regional power spectra for lead times 24h, 120h and
180h.
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To diagnose smoothing in the model, a power spectrum analysis is performed. Power spec-
trum analysis is based on spherical Fourier transforms, stating that any real square-integrable
function f(θ, ϕ), defined on the unit sphere, can be expressed as a series of spherical harmonic
functions [10]:

f(θ, ϕ) =
∞∑
l=0

l∑
m=−l

fm
l Y m

l (θ, ϕ), (6.1)

where Y m
l is a complex spherical harmonic function, given as

Y m
l (θ, ϕ) = eimϕP−m

l (cos(θ)), (6.2)

a solution to the Legendre equation ∇Y = 0. Here, m is the order, and l is the degree of
the Legendre polynomial P−m

l . The complex spherical harmonic coefficients fm
l can then be

calculated as follows:

fm
l =

1

4π

∫
ω
f(θ, ϕ)Y m∗

l (θ, ϕ)dΩ, (6.3)

where dΩ is the differential surface area on the unit sphere and the asterisk denotes complex
conjugation. These coefficients indicate the contribution of each spherical harmonic function to
the function f . A power spectrum S for a function f at degree l is then defined as [10]:

Sff (l) =
l∑

m=−l

|fm
l |2. (6.4)

The power spectrum allows us to analyze how well the model performs at different scales
(wavelengths). The example power spectra for the air temperature at 2 meter height and the
wind speed at 10 meter height on 2022-01-02 at 06UTC can be seen in Figure 6.6a and Figure
6.10b, respectively. For longer lead times we observe minimal decrease in the spectral power of
high wavelengths, corresponding to an under-representation of small-scale features of the model.
Rollout training does not appear to decrease blurring, but instead shows similar loss of small
spatial features for both the wind speed and temperature. This discrepancy can be viewed as a
consequence of the small relative difference and the low regional data resolution. When moving
to higher resolution regional data, these differences are expected to increase.

6.2 High-resolution experiments

Considering the results presented above, the initial high-resolution model is trained using a
Graph-Transformer architecture, with a global resolution of 5 and a local resolution of 9, align-
ing with the increased DOWA dataset resolution. As described in Section 5, Stage C of [29] is
adapted to 1 degree resolution globally, without using transfer learning. Qualitative and quan-
titative results are presented, as well as an evaluation of the model using a case study. Note
that the ground truth data consists of +3h reforecast DOWA data.

6.2.1 Example forecasts and RMSE

Example forecasts for the air temperature at a height of 2 meters are presented in Figure 6.7
and Figure 6.8. The model captures some temperature features even at extended forecast lead
times. Diurnal cycles seem to be somewhat represented. However, a large overestimating and
underestimation of temperature can be observed (up to 30 degree Celcius globally), indicating a
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Figure 6.7: SG-AIFS with hidden grid resolution 5 (9) trained on ERA5 globally and DOWA
locally, initialized from 2017-02-10T06. The first and second row of the figure show the SG-AIFS
forecast and ground truth, respectively, of the air temperature (K) at 2 meter height, and the
bottow row shows the air temperature difference between the ground truth and the forecast.
The model learns to predict on a high-resolution data grid, although longer lead times reveal
underestimated air temperature values and the difference plots show hidden grid artefacts.
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deviation away from the mean. The model encounters challenges in extracting detailed features,
with visible artifacts reflecting the structure of the latent space, particularly noticeable in the
predictions of the wind speed at a height of 10 meters (see Appendix C.1, Figure C.1) and in the
difference plots in Figure 6.7 and 6.8. The global wind speed at a height of 10 meters (Figure
C.2) highlights the model capability to capture large-scale atmospheric patterns. At 60-hour
lead times, some high-level features remain reasonably accurate. Similarly, global temperature
forecasts (Figure 6.8) exhibit some accuracy for extended lead times. As anticipated, predictions
show incremental smoothing over time, which can be attributed to the deterministic training
of the model towards the WMSE loss, resulting in the model’s diminished ability to capture
finer-scale patterns. Moreover, at longer lead times the forecast error accumulates rapidly and
underestimation of extremes becomes more prevalent. This inclination is particularly evident
when plotting the RMSE as a function of lead time, as can be seen in Figure 6.9. The RMSE
rises steeply from 6h until 42 h, after which the error increases less. Notably, the RMSE of the
temperature at 2 meter doubles compared to the corresponding RMSE during the low-resolution
experiments, whereas the RMSE for the wind speed remains of a similar magnitude. This
discrepancy may suggest overfitting, given the large parameter space and the limited available
training data. The observed artifacts matching the grid lines in the hidden grid support this
hypothesis.

6.2.2 Power spectra

Similarly to Section 6.1.2, blurring in the model is diagnosed using power spectrum analysis,
allowing us to analyze the performance of the model at different wavelengths. The power spectra
for the air temperature at 2 meter height and the wind speed at 10 meter height can be seen
in Figure 6.10b and Figure 6.10a, respectively. Wind speed global power spectra show a slight
underestimation of power across all wavelengths, also for lead times with poor predictive skill
(lead time +120h). On the regional domain a significant loss of power is observed across all
wavelengths. Already after 24 hours, smoothing is observed for both the wind speed at 10 meter
height and the temperature at 2 meter height. This is in accordance with the limitations of deter-
ministic data-driven models found by Bonavita et al. [6]. Since smoothing and underestimation
of extreme values appear to be especially prevalent over the DOWA domain, the necessity of
moving away from the Mean Squared Error loss and towards probabilistic modeling is even more
important for limited area modeling. Deterministic models fail to provide a realistic represen-
tation of the chaotic nature of the atmosphere and tend towards the mean of the distribution.
The uncertainty is better quantified in probabilistic models such as GenCast, a diffusion model
introduced by [33]. On the other hand, the temperature power spectra display higher power
than the ground truth. This reflects the overestimation and underestimation of temperature
values seen in Figure 6.7 and 6.8, of which the exact cause remains to be investigated.

6.2.3 Missing value prediction

As described in Chapter 4, the preprocesssed DOWA dataset contains high pressure level vari-
ables with missing values dependent on the pressure and the orography. Since these missing
values are imputed with the average of each field so that the model can easily predict these val-
ues, the assessment of the SG-AIFS model prediction of these values is necessary. We evaluate
the missing values of the temperature at 1000 hPa, the pressure level with on average the most
imputed values. The predicted values and ground truth values are displayed in Figure 6.11. Over
extended lead times, an increasing overestimation of the missing values’ magnitude is observed,
possibly due to the influence of other fields on the temperature predictions. Furthermore, after
60 hours lower pressure levels cause the amount of missing values to noticeably increase (for
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Figure 6.8: SG-AIFS with hidden grid resolution 5 (9) trained on ERA5 globally and DOWA
locally, initialized from 2017-02-10T06. The first and second row of the figure show the SG-
AIFS prediction and ground truth of the air temperature (K) at 2 meter height. The bottom
row shows the air temperature difference between the ground truth and the forecast.

40



Figure 6.9: SG-AIFS trained on 5 years of ERA5 and DOWA data. The figure shows the
averaged RMSE of the air temperature (K) at 2 meter height and the wind speed (m/s) at 10
meter height, evaluated on 18x4 cases of the test set (Appendix B) for lead times up to 10 days.
The colored bands represent the 95% confidence intervals. RMSE values increase rapidly from
+6h onwards.

example in the west of France). The SG-AIFS model fails to properly capture this phenomenon,
and instead assumes a constant number of missing values. This indicates that the model has
not properly learned to associate the decrease in pressure with the increase in missing values.

Both of these aspects, combined with possible errors resulting from the linear interpolation
used to convert the DOWA model levels to ERA5 pressure levels, emphasize the need for a
different approach when dealing with missing values, such as introducing a separate encoder
and decoder.

6.2.4 Case study

One of KNMI’s core tasks is extreme weather prediction, issuing warnings for high-impact
weather events. In order to compare our model to the operational HA forecast and to eval-
uate the model performance on an extreme weather event, a case study from the test year 2017
was selected, containing a storm with moderate impact on the Netherlands. On the 22nd of
February 2017 a low pressure system with a core pressure of 985hPa developed over Ireland. The
low pressure system deepened until it arrived above the North Sea, before continuing eastwards.
The passage of this low pressure system caused extreme wind gusts in a small area. On the
23rd of February the wind speed increased, reaching a peak in the west and the southwest of the
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(a) Power spectra for a single case from the test set (2017-02-10 at 06UTC) of the wind speed
(m/s) at 10 meter height for rollout times 24h, 60h and 120h. The top row displays the global
power spectra for lead times 24h, 60h and 120h, the bottom row shows the regional power
spectra for lead times 24h, 60h and 120h.

(b) Power spectra for a single case from the test set (2017-02-10 at 06UTC) of the air tem-
perature (K) at 2 meter height for rollout times 24h, 60h and 120h. The top row displays the
global power spectra for lead times 24h, 60h and 120h, the bottom row shows the regional
power spectra for lead times 24h, 60h and 120h.
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Figure 6.11: Missing values of the air temperature (K) at 1000 hPa on the 10th of February
2017 at 06UTC. The magnitude of the missing values is slightly overestimated, and the increase
in missing values after 60 hours due to decreasing pressure is not properly captured.

Netherlands at 12:00CEST, between 16:00CEST and 18:00CEST; and between 20:00CEST and
21:00CEST. Wind gusts up to 115km/h were measured along the west coast, causing disruptions
in traffic due to falling trees. Lower wind speeds occurred in the north, where the centre of the
low pressure system passed over. From the 22nd of February 2017 02:01 CEST until the 23rd
of February 23:26CEST KNMI issued warnings for very severe wind gusts of 100-120km/h for
North-Holland, South-Holland, Zeeland, Utrecht and North-Brabant. In the rest of the country
warnings were issued for severe wind gusts of 80-90km/h. The warning was issued until the 23rd
of February 2017 [38].

We analyze the air pressure at sea level and the wind speed predictions of the HA cycle
40 forecast compared to the SG-AIFS forecast, initializing both forecasts from the 22nd of
February 2017 at 00:00UTC. The air pressure at sea level on the 22nd and 23rd of February can
be seen in Figure 6.12. In terms of pressure, SG-AIFS performs similarly to HA for lead times
+12h and +24h. For lead time +48h, HA still outperforms SG-AIFS in terms of location and
intensity of the pressure. SG-AIFS shows overestimation of the pressure in the southeast, and
underestimation in the north, whereas the HA predictions remain consistent through longer lead
times. When comparing the wind speed predictions of the storm on the 23rd (see Figure 6.13),
it can be noticed that although SG-AIFS predicts the approximate location of high and low
wind speeds, detailed featured are missing. Furthermore, for extended lead times cross-shaped
artefacts appear which we have not seen for the air pressure at sea level, but we have seen for
other wind speed predictions (Figure C.1). On the other hand, the HA predictions remain closer
to the ground truth and do not present any physical inconsistencies. We can conclude that more
developments of the SG-AIFS model are needed to obtain the same or higher accuracy as the
HA model.
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Figure 6.12: Air pressure (in Pa) at sea level on the 22nd and 23rd of February initialized
from 22-02-2017 00:00UTC. The top row shows the SG-AIFS forecasts, the middle row shows
the HA forecasts and the bottom row shows the ground truth.
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Figure 6.13: Wind speed (m/s) at 10 meter height on the 23rd of February 2017 initialized
from 23-02-2017 00:00UTC, showing high wind speeds passing over Ireland and the UK towards
the Netherlands. The top row shows the SG-AIFS forecasts, the middle row shows the HA
forecasts and the bottom row shows the ground truth.
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Chapter 7

Model limitations

In this section we present the limitations of DLWP models in general, as well as discussing
shortcomings of the SG-AIFS model in relation to the results from Chapter 6. The limitations
can be categorized into six main areas:

1. DLWP models
Some limitations of global DLWP models have been well-documented [34] [30] [7]. Data-driven
models are dependent on the quality of the reanalyses and the data availability. DLWP models
appear to learn the biases inherited from the reanalyses. Reanalyses depend on the quality
of NWP models, in particular their data assimilation scheme and the quality of observations.
Similarly to NWP models, initializing DLWP models directly from operational analysis or even
finetuning it on operational real-time data (like in [23]), would improve the overall forecasting
performance of DLWP models, since the performance of DLWP also depends on the quality of
the training data, i.e. quality of initial conditions. Besides, as mentioned before, deterministic
models trained to minimize the MSE tend to show blurred predictions, although this blurring ef-
fect has not been shown to increase significantly with lead time. Therefore, deterministic DLWP
models tend to struggle with predicting extreme values. This is a result of the training objective,
which favors predictions towards the mean (as shown by [40]) and thus performance for the tail
of the distribution is limited. Given the societal impact of extreme weather, further improve-
ment of the extreme weather prediction skill of DLWP models is required. Another aspect of
DLWP models is that they are not physically constrained and might show nonphysical behaviors
both inside and outside the learned data distribution. Careful supervision is required to guar-
antee physical properties are preserved. Hybrid NWP-DLWP models are able to impose these
constraints. Finally, although some (aggregated) precipitation results have been documented
[29][23][33] using precipitation as diagnostic variable, many global models -and the model pre-
sented in this MSc thesis- provide no precipitation input data for medium-range forecasts. This
is partially due to the limited data quality of ERA5, since convection is not resolved.

2. The AIFS model
In this paragraph we discuss the limitations of the chosen AIFS model and the stretched grid
approach. Due to the structure of the AIFS model and the dataloader, the data in- and output
is limited to a specific data structure (Zarr) and type of variables (following ERA5 conven-
tions). Furthermore, the model contains many - largely untuned -hyperparameter settings that
are expensive to be optimized. Moreover, as noted by [29], the original AIFS model contains
additional fields (trainable parameters) that are dependent on the grid structure, inhibiting di-
rect transfer learning from AIFS. Furthermore, the input and output variables of each model
must align precisely, as there are one encoder and one decoder available presently. This makes
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transfer learning less efficient, since a new model has to be trained for different applications.
Due to these constraints, as well as limited time, this MSc thesis does not evaluate the added
value that transfer learning might bring to model performance, although this was demonstrated
already by [29].

3. ERA5 experiments
The principal drawbacks identified in the ERA5 experiment setup concern the size of the model
and the data resolutions. Given that the SG-AIFS models were trained on regional data at a
coarse resolution, it remains uncertain how indicative these results are for the performance of
the high-resolution stretched grid model using the DOWA data. Furthermore, the model size
was limited due to the single GPU memory restriction, and the question remains whether the
models were fully optimized after training for 150 epochs, as the WMSE training loss displayed
a small yet persistent decrease. In addition, the Transformer model exhibited signs of overfitting
during convergence, along with an observed imbalance in pressure level performance.

4. High-resolution experiments
Identifying the shortcomings of the high-resolution experiments described in this report, the most
significant obstacle was the data availability. Long data transfer times and data pre-processing
times caused significant delay, attributed to the strict AIFS model input requirements and to the
large initial size of the dataset of 50TB. The training data is a +3h reforecast and thus contains
inaccuracies. The data size was restricted to 5 years, which is reflected in the model results.
The high-resolution model exhibits two mayor inaccuracies: low predictive power beyond 6-hour
lead times and the presence of artefacts reflecting the shape of the hidden grid. We suspect both
phenomena can be attributed to overfitting, because of the steep incline of the RMSE curve and
loss of power appearing across all wavelengths in longer lead time power spectra. There are
three factors that could contribute to this overfitting: the model size, data size and the training
regime. The model size was optimized with the assumption of utilizing 40 years of ERA5 data,
as model performance generally improves with an increase in parameters given a sufficiently
large dataset. Therefore, the number of channels was doubled. However, since the dataset was
limited due to the factors described above, the risk of overfitting was greatly increased. Addi-
tionally, due to the large model size, we were unable to perform rollout training, further limiting
performance at longer lead times. Finally, the exclusion of trainable parameters could have
further degraded performance by potentially omitting essential field information. Concerning
the hidden grid artefacts appearing in some of the longer lead time predictions: similar artefacts
have been observed by [31]. The authors of [31] argue that these artefacts are caused by a lack of
spatial connections over a longer range. Since message passing steps occur at all refinements of
the hidden grid simultaneously, the decoder is not able to homogenize information from nodes at
different locations of the hidden grid. Therefore, the artefacts could be associated with limited
computational resources, since the global resolution remained at 1 degree latitude-longitude,
causing an increased gap in resolution between the global and the regional (2.5 km resolution)
dataset.

5. Missing values
Another important challenge identified in this thesis is the handling of missing values in the
conversion from model to pressure levels, which are influenced by both pressure and orographic
variations, as described in section 6.2.3. To enable model predictions despite these gaps, missing
values were imputed with the average of each field. However, a visual examination of the model
output after predicting the imputed values -specifically for the temperature at 1000 hPa- revealed
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that the model insufficiently captured the magnitude and temporal changes of the missing values.

6. Model evaluation
Regarding the model evaluation, the RMSE is known to provide limited evidence of the skill of
DL models. Since the training loss is designed to optimize this metric, forecast smoothing can
remain unnoticed. Furthermore, the eighteen selected dates might have been insufficient to pro-
vide a comprehensive analysis, particularly given the presence of temporal correlations between
different run hours within the same day. Qualitative analysis reveals that better metrics are re-
quired to evaluate factors such as smoothing and variable dependence. Besides, the RMSE was
computed with respect to the ground truth, hence an evaluation against station observations
as in [29] is missing. Since the ground truth reanalysis is based on the HA model predictions,
comparing the ground truth with HA predictions in the verification results in a biased compar-
ison. Regarding the confidence intervals presented in this paper, time independence is assumed
which is a requirement that is generally not met for time series predictions, as these are highly
correlated. Besides, for the power spectra equal coverage of the globe is assumed, which is an
assumption that does not apply to limited area evaluation.
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Chapter 8

Conclusion and outlook

This MSc thesis explores the adaptation of the Artificial Intelligence/Integrated Forecasting Sys-
tem (AIFS) for high-resolution limited area weather prediction. Addressing the limitations of
existing models, we implement a framework following a similar approach as in [29], based on the
AIFS model developed by ECMWF: a stretched hidden grid AIFS (SG-AIFS). This framework
leverages a locally refined multi-mesh hidden grid to enhance information flow, especially for
extended lead times. Our findings reveal several important insights: using global and regional
ERA5 data, we observed that while increasing the hidden-grid resolution accelerates training
time by expanding the parameter space, it has a marginal effect on the performance of the
SG-AIFS model beyond a 90-hour lead time. However, finetuning the SG-AIFS model on longer
rollout steps proved effective in reducing RMSE values across all lead times, with a notable
improvement in global RMSE as lead time increases. Additionally, we extended the AIFS model
processor to incorporate Transformer layers for prediction on a high-resolution regional domain,
and compared its performance with that of the original GNN-based AIFS. Preliminary results
indicate an pressure level imbalance in the Transformer model, degrading the performance of
surface variables.

A high-resolution model was trained using the AIFS Graph-Transformer on 5 years of DOWA
+3h reforecast data at a 2.5 km resolution over Western Europe, integrating global informa-
tion from the ERA5 dataset at 1-degree resolution. This model demonstrates the ability to
produce medium-range temperature forecasts at 2.5km resolution, effectively leveraging global
information at 1 degree resolution for 6-hour lead times. For the 10-meter wind speed, the model
provides 6h predictions with reasonable accuracy, although it lacks detailed features and longer
lead times showed artefacts similar to those identified in [31]. Power spectrum analysis provided
crucial insights into the SG-AIFS model’s performance across different spatial scales for both
2-meter air temperature and 10-meter wind speed. Further analysis with DOWA regional data
confirmed these findings, as significant smoothing effects became apparent for both the 2-meter
temperature and 10-meter wind speed predictions. In contrast to global power spectra, where
spectral power remained consistent even at extended lead times (+120h), regional power spectra
revealed a marked loss across all wavelengths, reinforcing the limitations of deterministic models
for capturing the high spatial variability of localized phenomena. This aligns with findings by
[6] that deterministic data-driven models often smooth extreme values as a result of training to
minimize the mean squared error (MSE).

Finally, the SG-AIFS model performance in predicting an extreme weather event was inves-
tigated. A case study was conducted, comparing the SG-AIFS model with the HARMONIE-
AROME (HA) forecasts for a storm that occurred on the 22nd and 23rd of February 2017.
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Although the SG-AIFS model predicted the storm’s pressure and location with reasonable ac-
curacy, the model consistently failed to capture finer-scale features. These findings demonstrate
that while the SG-AIFS model shows promise in forecasting extreme weather phenomena, it
currently does not match the operational accuracy of the HA model. Nonetheless, the potential
of SG-AIFS and similar models for future development has become evident. As deep learning
models for meteorology continue to evolve, the SG-AIFS framework could be of high relevance
for the prospective operational usage of deep learning based meteorological models by national
meteorological institutions.

For future research, numerous promising directions can be explored. Future work should
focus on advancing the data integration of the model, exploring probabilistic forecasting ap-
proaches, and improving model evaluation. First and foremost, to elevate the SG-AIFS model
to operational standards it is essential to improve the representation of fine-scale features. Hav-
ing identified the three main contributors to the issue in Chapter 7, namely the model size,
data size and the training regime, we recommend several directions of research. A straightfor-
ward approach to addressing the model size would be to re-train it with a reduced number of
channels, which would also help confirm whether overfitting is indeed the underlying issue. Sec-
ondly, to increase the available data several possibilities arise. Leveraging transfer learning to
incorporate additional ERA5 data could significantly improve results, as seen in [29]. Transfer
learning would not only increase the number of usable years, but also allow us to incrementally
incorporate different types of datasets. Possible candidates for incorporating additional data are
the remaining DOWA years (2010-2012), the UWC-West reforecasting dataset (2km resolution;
2020-2023) and the CERRA dataset (Copernicus European Regional ReAnalysis, 1984-2021,
5.5km resolution [14]). Further study is required to investigate the impact of omitting train-
able parameters necessary for transfer learning. Another experiment regarding transfer learning
would be to investigate the influence of the temporal size of the regional dataset on the effective-
ness of transfer learning. This investigation could help optimize the number of years required,
thereby reducing the pre-processing effort needed for incorporating additional datasets across
Europe. Transfer learning has the potential to resolve the issues related to the training regime,
allowing us to transfer from a 1 degree resolution global grid to our current stretched-grid setup.
Given additional computational resources, an increase in global resolution (as in [23] and [29]) or
intermediate European datasets such as the CERRA dataset [14] could smoothen the transition
and allow for more efficient information transfer within the model. Another limitation of this
model is the lack of precipitation and poor humidity predictions. Including rain-gauge adjusted
radar data [32] in the model could lead to high-quality precipitation forecasts. Ultimately, we
believe that investigating the influence of transfer learning in the SG-AIFS model will be pivotal
for improving this model.

Regarding the Transformer model, we recommend fine-tuning of the pressure level scaler to
equalize performance across variables or even further prioritize surface variables. Other parame-
ters of the SG-AIFS model that need to be tuned are the learning rate, the number of channels,
and number of processor layers. The influence of rollout in the high-resolution model remains to
be investigated, as well as the influence of eliminating trainable parameters. Since the number
of rollout steps is limited by the size of the model, a trade-off has to be found between the
benefit of increasing the number of parameters and the value of additional rollout steps. The
rollout finetuning step could be made more efficient by eliminating the encoding and decoding
in between steps. Additionally, the influence of taking larger rollout steps at once could be
investigated.
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To improve the data processing, more flexibility in the encoder and decoder would allow for
extending the data sources and moving towards a more foundational weather model with fewer
pre-processing steps. A potential solution could involve the use of separate encoder and decoder
components specifically designed for different data sources, allowing the model to learn the
transformations between variables instead of computing them manually. Alternatively, running
AIFS on model levels, with ERA5 data retrieved at the model level, may improve prediction
quality by incorporating level definitions that account for orography. Addressing these aspects
would likely enhance the model’s performance and accuracy in high-resolution forecasting ap-
plications. Alternatively, different imputation methods could be investigated to manage missing
data effectively.

Ultimately, developing ensemble forecasting for DLWP is a crucial step to improve (extreme)
weather prediction, mitigate blurring effects and providing the uncertainty information neces-
sary for decision-making [33][7]. The results presented in this MSc thesis further highlight the
need to move away from the Mean Squared Error loss for high-resolution, limited-area modeling.
Probabilistic approaches, such as GenCast (a diffusion model proposed by Price et al. [33]), may
provide a more accurate quantification of forecast uncertainty, offering a better representation
of extreme events by capturing the full distribution of possible atmospheric states rather than
predicting forecasts deterministically. In general, for future research diffusion models, varia-
tional auto-encoders and score-based uncertainty quantification are recommended to deal with
the chaotic nature of the atmosphere. Such advancements will be essential for enhancing the
reliability and accuracy of high-resolution weather forecasting models in operational contexts.
Besides, alternative metrics could evaluate whether known physical properties are maintained.
For regional analysis, Euclidean spectral analysis instead of spectral analysis based on spherical
harmonics, might prove more suitable in terms of evaluation of smoothing. Proper confidence
intervals would have to be computed, taking the temporal correlation of time series into ac-
count. Finally, future verification should consider the full testing set to provide an improved
representation of forecast skill. The advancements described above will be imperative for the
prospective operational deployment of deep learning-based meteorological models by national
meteorological institutions, thereby enhancing the speed and precision of weather forecasting
systems.
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Joaqúın Muñoz-Sabater, Julien Nicolas, Raluca Radu, Dinand Schepers, Cornel Soci, Se-
bastien Villaume, Jean Raymond Bidlot, Leo Haimberger, Jack Woollen, Carlo Buon-
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Appendix A

Transformer models

This appendix provides some additional information on Transformer models, also referred to as
Transformers. These represent a second class of data-driven models used in data-driven medium-
range global weather forecasting. Originally introduced by Vaswani et al. [37], Transformers
serve as an alternative to recurrent models for machine translation, to pass important informa-
tion over a longer range. With their Vision Transformer (ViT), Dosovitskiy et al. extended the
Transformers framework to image recognition tasks. ViTs have shown state-of-the-art results
while being more computationally efficient than CNNs [13]. However, they do not scale well with
image resolution, giving rise to an adapted model called Swin Transformer. Swin Transformer
uses shifted windows in each Self-Attention layer to partition the image into smaller segments
with the same parameters. This model achieves faster results for the training and prediction of
higher-resolution images [26].

A.1 Mathematical framework

The basis of Transformer models is the Self-Attention operation (also called qkv self-attention).
The operation consists of three weight matrices corresponding to the so-called queries, keys and
values (WQ, WK and W v), such that q = WQx, k = WKx and v = W V x. Then, the attention
matrix A ∈ RN×N is computed as follows:

A = SoftMax(qkT /
√
D) (A.1)

where D is the matrix containing the query/key feature dimensionality. The attention matrix
A aims to capture the relationships between the components of a given input sequence x ∈ RN .
It consists of weights that should be learned, where each element ai,j ∈ A corresponds to the
similarity between a query qi and a key kj . The softmax operation normalizes the matrix into
a probability distribution, with each row computed as follows:

Ai =
eqiki/

√
di∑

j e
qjkj/

√
dj

(A.2)

where dj corresponds to the dimensionality of the key vectors. Based on this matrix, the output
sequence is Attention(x) = Av, where v is called the value vector. In Swin Transformers, a
relative positional bias B is added, which learns the distances between the patches as extra
parameters in the model. This results in the final definition:

Attention(q, k, v) = SoftMax(qkt/
√
D + B)v (A.3)
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Figure A.1: PanguWeather: An overview of the 3D Earth-specific transformer architecture.
Based on the standard encode-decoder design, we (i) adjust the shifted-window mechanism and
(ii) apply an Earth-specific positional bias. Figure taken from [5].

A.2 Pangu-Weather

Pangu-Weather was developed by Bi et al. [5], and is considered to be the first deep learning
based model that outperformed state of the art medium-range global deterministic NWP meth-
ods in terms of accuracy. Its novelty lies in training a Swin Transformer with a 3D Earth-specific
bias, and using a combination of different forecast lead times to mitigate the effect of cumulative
forecasting errors.

Pangu-Weather uses an encoder-decoder architecture, similar to GraphCast. However, the
encoder and decoder consist of a simple downsampling and upsampling in resolution using a Vi-
sion Transformer block specifically adjusted to match the Earth’s geometry. Moreover, instead
of having a linear or textual output as in classical (Vision) Transformers, the model is genera-
tive, such that the information is decoded back into the same shape. The model architecture of
Pangu-Weather is visualized in Figure A.1.

The Earth-specific positional bias BESP adds a positional bias based on the absolute coor-
dinate of each window. The bias matrix contains of submatrices corresponding to the specific
latitudes and pressure levels (the longitude is assumed to have the same bias). When the
attention is computed between two units in the same window, the bias can be found in the
three-dimensional submatrix of that window. It contains the bias of the intra-window coordi-
nates (h1, ϕ1, λ1) and (h2, ϕ2, λ2) at position (h1 +h2 ×Wpl, ϕ1 +ϕ2 ×Wlat, λ1 −λ2 +Wlon − 1),
where Wpl × Wlat × Wlon would be the size of the window. Even though the use of this prior
increases the number of parameters, the performance remains unaffected.

A.2.1 Training details

The authors of Pangu-Weather introduce hierarchical temporal aggregation, where four differ-
ent models are trained for different lead times (1 hours, 3 hours, 6 hours and 24 hours) and
predictions are made for a specific hour using the least amount of aggregated predictions. The
four models are trained individually on 192 NVIDIA Tesla-V100 GPUs for 16 days. The train-
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ing/testing data used is similar to GraphCast (0.25 degree resolution), but the pressure levels
are downsampled to 13.

A.2.2 Results

The authors of Pangu-Weather do not compare their model to HRES, but rather to an indi-
vidual ensemble member of the operational ECMWF ENS by using the model output, started
from the unperturbed initial conditions. Pangu-Weather shows consistent improvement over the
operational IFS in all forecast times and all variables, with increasing improvement over longer
lead times.

A.3 FuXi

FuXi is a Transformer based model proposed by Chen et al. [9]. With their model, they not
only extended the prediction lead time to 15 days, but also introduced an ensemble version
of their model to provide probabilistic forecasts. The basis model consists of a convolutional
3D embedding, which splits the data into vectorized blocks. Besides, they propose a Swin
Transformer V2, by using post-normalization and changing the original self-attention to a scaled
cosine attention:

Attention(q, k, v) = (cos(q, k)/τ + B)v, (A.4)

where τ is a learnable scalar, which is not shared across heads and layers. The choice of the
cosine attention is motivated by the natural normalization that this function provides. Other-
wise, the model again has an encoder-decoder structure, using 48 Transformer blocks (with skip
connections) during processing.

They implemented these adaptations (the convolutional embedding and the Swin Trans-
former v2) and train three different models: FuXi-Short optimizing for 6 hour forecasts, FuXi-
Medium for 5-10 days, and FuXi-Long for 10-15 days. The models are cascaded, similarly to
PanguWeather, to produce the final forecast. Additionally, ensemble forecasts are generated
from the cascaded models, by introducing random noise to perturb the initial conditions and
introducing Monte Carlo dropout during inference to perturb the model parameters.

The models are trained on 8 Nvidia A100 GPUs for 30 hours. The training data consists
of ERA5 data as similar to AIFS (13 pressure levels, 0.25 degree resolution). The results show
comparable performance of the ensemble mean to the ECMWF ENS mean in 15-day forecasts at
a 6 hour temporal resolution. FuXi is the first data-driven model reaching similar performance
to the ECMWF ENS mean, which is valuable in some applications.

A.4 FengWu

In April 2023, Chen et al. [8] introduced FengWu, which treats the problem from a multi-task
perspective, since the general problem objective is to predict many variables simultaneously.
The weather states are separated to extract features independently during the encoding, and
only fuses them later during processing. Separate decoders are defined for each feature to predict
the output weather state. They also adapt the loss function to allow for multi-task learning, by
defining a Gaussian probablistic model for each predictand (variable and grid cell), minimizing
the maximum likelihood.
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Furthermore, FengWu uses a replay buffer, to replay data from earlier predictions (e.g. used
as input). This buffer consists of the last N predictions, which are sampled with a certain
probability, resulting in better results for longer lead times. This is an alternative to the hier-
archical temporal aggregation used by Pangu-Weather or the autoregressive training stage used
by GraphCast.

FengWu exceeds GraphCast in performance for 80% of the prediction variables, as well as ex-
tending prediction to longer lead times (10.75 days). The authors attribute these improvements
to the adaptations described above.
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Appendix B

List of testing dates

Table B.1: Testing dates for the tuning experiments and high-resolution SG-AIFS model
trained on 5 years of ERA5 and DOWA data described in Chapter 6. The dates are selected to
ensure evenly distributed evaluation across the year. For each date 4 runs have been performed,
starting at 00, 06, 12 and 18UTC.

ERA5 experiments

2022-01-02

2022-01-22

2022-02-11

2022-03-03

2022-03-23

2022-04-12

2022-05-02

2022-05-22

2022-06-11

2022-07-01

2022-07-22

2022-08-10

2022-08-30

2022-09-19

2022-10-09

2022-10-29

2022-11-18

2022-12-08

High-resolution model

2017-01-01

2017-01-21

2017-02-10

2017-03-02

2017-03-23

2017-04-11

2017-05-01

2017-05-21

2017-06-10

2017-06-30

2017-07-20

2017-08-09

2017-08-29

2017-09-18

2017-10-08

2017-10-28

2017-11-17

2017-12-07
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Appendix C

Additional results

C.1 SG-AIFS additional results

Figure C.1: SG-AIFS with hidden grid resolution 5 (9) trained on ERA5 globally and DOWA
locally initialized from 2017-02-10T06. The first and second row of the figure show the SG-AIFS
forecast and ground truth, respectively, of the wind speed (m/s) at 10 meter height over western
Europe. The bottom row shows the wind speed difference between the ground truth and the
forecast. The model displays smoothing and hidden grid artefacts on the regional domain, with
wind speed differences of up to 10 m/s.
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Figure C.2: SG-AIFS with hidden grid resolution 5 (9) trained on ERA5 globally and DOWA
locally, initialized from 2017-02-10T06. The first and second row of the figure show the SG-AIFS
prediction and ground truth, respectively, of the global wind speed (m/s) at 10 meter height.
The bottom row shows the wind speed difference between the ground truth and the forecast. The
model captures the intricate global patterns well, although longer lead times display smoothing.

C.2 Transformer additional results
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Figure C.3: SG-AIFS GNN processor compared to the Transformer processor, averaged RMSE
for the air temperature at 50, 150, 200 and 300 hPa, evaluated on 18x4 cases of the test set
(Appendix B) for lead times up to 10 days. The colored bands represent the 95% confidence
intervals. The Transformer model shows decreased performance compared to the GNN for higher
pressure levels.
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Figure C.4: SG-AIFS GNN processor compared to the Transformer processor, averaged RMSE
for the air temperature at 400, 500, 700 and 850 hPa, evaluated on 8x4 cases of the test set
(Appendix B) for lead times up to 10 days. The colored bands represent the 95% confidence
intervals. The Transformer model shows decreased performance compared to the GNN for higher
pressure levels.
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