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Abstract

In recent years, the open RISC-V Instruction Set Architecture (ISA) has seen increasing
adoption in the industry. However, as RISC-V grows in popularity, it also becomes a
greater target for malicious behavior. Therefore, there is a need to facilitate the secure
execution of software, especially in embedded systems, where RISC-V is gaining the most
popularity. This is commonly achieved by making use of a Trusted Execution Environment
(TEE). However, embedded devices often operate ‘in the field’, where it is possible for an
attacker to gain physical access to the device in question, which enables physical attacks
involving Fault Injection (FI) and Side-Channel Analysis (SCA).

This research performs a deep dive into the world of RISC-V cores with respect to their
vulnerability to FI attacks using a commonly available FI method called ‘clock glitching’,
where the attacker takes control over the clock signal and modifies it to cause a timing
violation, resulting in faults such as skipped instructions. In this work, it has been con-
firmed that TEEs on RISC-V are generally vulnerable to FI attacks targeting Control and
Status Register (CSR) access instructions, since TEEs are commonly reliant on RISC-V’s
Physical Memory Protection (PMP) extension to provide isolation in memory, which needs
to be configured through CSRs, as specified by the RISC-V ISA.

However, in contrast to previous works that generally focus their efforts on a single
core or device, this work shows that susceptibility to FI attacks is highly dependent on
microarchitectural differences. Performing the same attack on different RISC-V cores using
nearly identical firmware leads to vastly different results, meaning that a TEE is at most as
secure as the hardware that it is running on when a system’s environment enables physical
attacks, which is often the case in embedded systems.

Keywords: RISC-V, Ibex, Fault Injection, Clock Glitch, Trusted Execution Environment



Chapter 1

Introduction

As of late, the RISC-V Instruction Set Architecture (ISA) is seeing a significant increase
in popularity due to its open-source nature. Especially in the realm of embedded systems,
RISC-V cores are widely being adopted. However, when a technology sees an increase in
adoption, it generally receives an increasing amount of unwanted attention from attackers.
Since computer resources are usually limited in an embedded system, but security is no
less of a concern, the concept of a Trusted Execution Environment (TEE) is introduced.
The TEE can be seen as a lightweight operating system that is able to support the con-
current execution of multiple user-level applications, while providing a certain guarantee
of separation, such that these (untrusted) user applications are not able to tamper with
other parts of the system. An example of its use can be found when looking at facilities
for over-the-air firmware updates [9], where TEEs are commonly employed. Additionally,
embedded systems are often deployed in uncontrolled environments where a potential at-
tacker is able to gain physical access to the device, leading to the possibility of physical
attacks involving Fault Injection (FI) and Side-Channel Analysis (SCA).

As a recent example of the implications that such attacks present, a team of security
researchers performed an FI attack on the System-on-Chip (SoC) used in Tesla’s infotain-
ment system, which could be used to unlock certain locked features, such as full self driving
mode [47]. A less prominent example of a real-life FI attack is the one described by Lu [29],
where the cryptographic processor of a PlayStation Vita is compromised using a voltage
glitch to gain arbitrary code execution at boot-time, enabling the attacker to dump the
ROM contents. These examples of FI attacks are not specifically targeting RISC-V, but
nevertheless illustrate the significance of FI attacks on embedded systems.

Continuing on the theme of attacks that target other ISAs, a trend starts to form:
multiple sophisticated attacks on ARM and x86 have been demonstrated in the past [47, 35,
11], which are often capable of bypassing a TEE or secure boot mechanism despite having to
consider a number of complicating circumstances, such as using a well-established industry
standard TEE (ARM TrustZone) or dealing with closed-source firm- and hardware. In
contrast, a recent RISC-V related study by Nashimoto et al. [31] shows how a Proof-of-
Concept (PoC) TEE can be bypassed using FI by targeting instructions that control the
underlying Physical Memory Protection (PMP) mechanism. In addition to the PoC-TEE,
it is theorized how a more sophisticated TEE, Keystone [23], could be bypassed. Their
theory is based on the fact that both their PoC-TEE and Keystone make use of the PMP
unit to provide separation in memory, which continually has to be configured correctly by
writing to so-called Control and Status Registers (CSR), which relies on the same set of
CSR-specific instructions. In essence, this would mean if one is able to successfully attack
a simple PoC-TEE, then it must be possible to attack a more sophisticated TEE such as
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Keystone. However, one of the key assumptions is that both TEEs are running on the
same core microarchitecture; it is yet unknown what the implications would be of using
the same attack scheme to target different microarchitectures.

From the current state of research, it becomes clear that particularly in the case of
RISC-V, the issue is not that it is inherently more or less vulnerable to physical attacks
than other ISAs, such as ARM or x86, but far less is known about the security impli-
cations of these attacks on cores that implement the RISC-V ISA. Additionally, previous
works generally do not consider the impact of microarchitectural differences when assessing
vulnerability to FI attacks, especially when it comes to RISC-V.

Therefore, the following research question is posed:

How can a TEE be compromised using fault injection on embedded RISC-V cores and how
is this affected by different microarchitectures?

To support the main research question, the following subquestions are formulated:

1. What are effective attack vectors for a TEE on RISC-V?

2. How are the effects of fault injections influenced by different microarchitectures?

3. Which strategies could be employed to reduce the effectiveness of these attacks?

Considering the state of the art, it is hypothesized that a TEE - without considering
any direct software vulnerabilities - on an embedded RISC-V core can be compromised
using an FI attack by directly or indirectly targeting underlying hardware-defined security
mechanisms, such as PMP. However, the susceptibility to FI attacks will likely depend
heavily on the type of hardware that is used, as FI techniques rely on physical phenomena
to cause hardware faults. Since architectures are often very differently implemented and
laid out in silicon, it is expected that different architectures will show different behavior
when exposed to an FI technique.

In summary, compared to well established ISAs, such as x86 or ARM, there are still
many unknowns about the security implications of physical attacks on RISC-V and its
different hardware implementations. This research attempts to contribute to the state
of the art by identifying different attack vectors for FI attacks on TEEs for RISC-V,
investigating the influence of different microarchitectures on attacks utilizing those attack
vectors and proposing specific countermeasures.
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Chapter 2

Background

2.1 Fault Injection

Fault Injection (FI) attacks were first demonstrated in 1997 by Boneh et al. [6] as a way to
compromise cryptographic hardware. Since then, a multitude of methods to purposefully
induce faults in integrated circuits has been introduced [2]. Nowadays, such methods are
not only used to attack cryptographic accelerators [3], but also for circumventing secure
boot mechanisms [11, 25], TEEs [31] and more types of secure software systems, as FI
attacks can offer a comparatively simple backdoor into an otherwise secure system if the
hardware is not properly secured.

2.1.1 Overview

Over the years, many techniques have been explored for injecting faults into integrated
circuits, either to compromise their security or to analyse their dependability in electro-
magnetically harsh environments such as space. Below is an overview of methods that are
commonly used today.

Voltage Glitching: Integrated circuits are often required to operate under certain
conditions, if these conditions are not met, then their correct operation is not guaranteed.
Violating the required operating conditions is often an easy target for attackers looking
to inject faults in a circuit. With voltage glitching, the idea is to manipulate the power
supply of a chip such that it either receives very short high voltage spikes or a voltage
that is too low. Short high voltage spikes have been shown to cause undefined behavior
in latches of flip-flops [21], while undervolting usually results in a continuous effect where
multiple faults occur. Voltage glitching attacks are commonly applicable in the embedded
space, where a physical attacker has close access to the power supply of the chip. Some
great benefits of voltage glitching are its ease of use and the low cost to mount an attack,
since it usually only requires modifications to the power supply using inexpensive parts.
However, it does not offer much precision, since power supply disturbances will generally
affect the whole chip.

Clock Glitching: Synchronous digital circuits receive either an internal or external
clock signal that is used to synchronize its operation. A typical clock glitching attack relies
on the manipulation of an external clock signal to violate timing requirements and cause
undefined behavior. To achieve this, the attacker usually generates a malicious clock signal
with a signal generator of their choice and feeds this into the target chip. The benefits of
this method are similar to the ones of voltage glitching, albeit with a slightly higher cost
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due to the need for hardware that is able to generate a glitched clock signal with a sufficient
degree of configurability; a Field-Programmable Gate Array (FPGA) is a commonly used
component in such a setup. It also offers slightly more precision, since different parts of
a chip could make use of different clock domains, allowing the attacker to choose which
clock domain to target.

Optical Fault Injection (OFI): The effects on transistors induced by ionizing radi-
ation have been known for a long time [15, 5] and are a great risk to the dependability of
exposed chips. This knowledge led to the first documented attacks on a CMOS chip using
either a simple laser pointer or a flashgun in combination with a lens [41]. OFI is one of the
first fault injection methods to be explored because of its higher precision and relatively
low equipment cost. An attacker only needs an exposed die, a visible light source, such as
a camera flash, and a lens to precisely direct the flash at the target. The main downside of
this method is that it can be cumbersome to prepare the target device for fault injection,
requiring at least decapsulation and possibly delayering of the silicon as the visible light
is not always able to penetrate the silicon to a sufficient depth. Since delayering is not
always possible without damaging the circuitry, OFI is not always feasible.

Laser Fault Injection (LFI): LFI is a rather similar method to OFI in that it is able
to direct an electromagnetic wave at a precise physical location in a circuit, but it makes use
of an infrared laser instead of a visible light source. It seems to be that LFI is a significantly
more popular method compared to OFI, since there are a number of commercial products
available to perform it. However, these setups are comparatively quite expensive (up to
∼ 100.000 USD) [7] and typically consist of specialized equipment, such as a laser source,
a lens, a positioning table and a controller. It should be noted that, although less is known
about them, there have been a number of recent efforts to significantly reduce the cost
and make LFI more openly accessible [13, 19], potentially bringing down cost of a setup
to hundreds of USD instead of hundreds of thousands.

X-ray Fault Injection (XFI): XFI is again a quite similar method to OFI (and LFI)
for the same reason that LFI is similar to OFI; where LFI makes use of a laser beam, XFI
uses a nanofocused X-ray beam to target components on a nanometer scale. Besides its
precision, another great advantage of this method is that the package of a typical chip
is invisible to X-ray waves, meaning decapsulation is no longer required. However, it is
arguably the most expensive documented method of fault injection, ranging in the millions
of USD [7], rendering it highly impractical for most attacks. However, even though the
cost and specialized equipment needed might make this method seem highly impractical,
Nasr-Eddine et al. [42] have recently shown that such attacks are feasible and could be
considered a threat, especially in situations where the possible gain of an attacker outweighs
the initial cost of an XFI setup.

Electromagnetic Fault Injection (EMFI): EMFI relies on the effects that EM
emanations have on both analog and digital logic. In the case of digital logic specifically, the
goal is to inject faults by inducing a short but intense transient current in the circuit, such
that operations are affected during a single clock cycle [37]. These transient currents are
often induced using a high voltage pulse generator in combination with an injection probe,
which are relatively inexpensive components; low-cost pulse generators can be obtained for
around 3.300 USD and injection probes can be made from simple electrical components
[7]. Another benefit of this method is that decapsulation is usually not required, since
common packaging materials are invisible to EM emanations. To add an additional degree
of precision, the target chip may be mounted on a motorized positioning table. A downside
of EMFI is that the most expensive part, the pulse generator, can become more expensive
when a higher precision unit is required, the price of which ranges between 10.000-20.000
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USD [7].
Body Biasing Injection (BBI): BBI is an FI method that generally relies on in-

jecting a high voltage pulse on the backside of a chip that introduces a static bias within
the die for a short period of time [30, 33]. Similarly to EMFI, the most expensive part of
the setup for this method is an external pulse generator and power supply; O’Flynn [33]
shows how a viable setup can be constructed for around 750 USD. However, when a higher
precision pulse is needed, the cost becomes the same as high-precision EMFI setups, since
similar pulse generators are used. In contrast with EMFI, decapsulation may be required
depending on the type of chip packaging that is used. Most research of BBI indicates that
decapsulation is necessary, but O’Flynn [33] has recently shown that it is not needed on
Wafer-Level Chip-Scale Packaging, where the backside of the die is inherently exposed.
Finally, similarly to EMFI, an additional degree of precision can be obtained by targeting
different physical locations on the chip using a motorized positioning table.

2.1.2 Challenges

When performing fault injection attacks, there are numerous challenges to be addressed
by the attacker depending on what type of fault injection technique they have chosen.
Some techniques may involve more specialized (and expensive) equipment, while others
only require cheap, readily available parts.

Ease of Use: To even start performing fault injections on a circuit, an attacker often
needs to make various physical modifications to either the chip itself, the package or the
environment. The amount of effort that has to be expended before fault injections can be
attempted can differ greatly between FI techniques. One technique may only require the
attacker to attach wires to certain pins, while another may require much more invasive
practices, such as mechanical or chemical decapsulation to expose the die’s surface or
deeper layers.

Cost Efficiency: Different FI methods require different setups, some of which could
be made up of some wires and other common lab supplies, while others may require spe-
cialized and expensive equipment, such as precise lasers. Therefore, when assessing the
vulnerability of a system against FI attacks, the considered techniques should be limited
to the ones that have a cost which is proportional to the value of the target to a potential
attacker.

Spatial Precision: Different FI techniques have different physical effects on a circuit.
Some of them might be rather imprecise and affect the entire chip area, while others might
be able to target just a single transistor. It is said that a higher spatial precision generally
results in better control over the injected fault.

Temporal Precision: A fault injection most often requires the generation of some
anomalous signal or pulse. For example, a glitched clock signal or a pulse that is sent to an
EM probe or body biasing probe. A better capability to control the shape of that signal,
such as being able to configure it within a higher range of frequencies, often translates into
a greater level of control (temporal precision) and being able to target logic that operates
at a higher frequency

Table 2.1 shows each of the challenges mentioned above as a metric by which to assess
the desirability of a certain FI method. They are quantified on a scale from 1 to 5, where
a higher score is generally more desirable. In figure 2.1 each of the FI methods described
before is scored on each metric according to table 2.1. When choosing which method to use,
one can fill in their needs for each metric and use this figure to determine which method
is most suitable.
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Figure 2.1: Comparison of FI Methods Based on Metrics

Metric
Score 1 2 3 4 5

Ease of Use At least
decapsulation
and possibly
delayering are

needed

At least
decapsulation is

needed

Knowledge of
chip layout is

needed

Modification of
on-board

components
such as clock or
voltage source is

needed

No or light
modifications

are needed such
as attaching

wires or probes

Cost Efficiency cost > $100k $100k < cost <
$10k

$10k < cost <
$1k

$1k < cost <
$100

$100 < cost <
$0

Spatial
Precision Affects the

entire chip with
little or no

possibility of
adjustment

Different clock
domains can be

targeted

Can be
positioned over
a general area of
the target chip

Can target
specific chip
areas at a

millimeter or
micrometer scale

Can target
components on a
nanometer scale

Temporal
Precision Signal/pulse

shape cannot be
adjusted

Signal/pulse
shape could be
obstructed or

filtered by
on-board

components

Effectiveness is
fully dependent

on the pulse
generator used

Signal/pulse
shape can be
adjusted on a
nanosecond

scale

Signal/pulse
shape can be

adjusted
arbitrarily or is

irrelevant

Table 2.1: Scoring of each Challenge Metric for FI Methods
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2.1.3 Tools

Currently, one of the most popular platforms for fault injection is the ChipWhisperer
ecosystem offered by NewAE Technology Inc [17]. Their family of relatively low cost
devices covers a large subset of the commonly known FI methods described in section
2.1.1, namely voltage glitching, clock glitching, EMFI and BBI. The low cost nature of
their products makes it approachable for hardware designers and researchers to evaluate
their systems against FI attacks; consequently, this is the platform of choice in this research.

When considering other FI methods, such as OFI, LFI or even XFI, other tool platforms
should be considered, as these methods are more specialised and often require significantly
more expensive hardware. For example, Petryk et al. [34] show that the overwhelming
majority of research into OFI and LFI is performed using tools offered by Riscure. Even
though these tools are popular and well-documented, they are quite expensive. Therefore,
it should be noted that there have been recent efforts to offer similar tools at cheaper price
[19, 13]. Although these tools are not as mature, they could offer a decent alternative for
researchers and developers who are working with a lower budget.
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2.2 Trusted Execution Environments

A Trusted Execution Environment (TEE) [36] is defined as a tamper-resistant software,
often referred to as the monitor, that facilitates the isolation and concurrent execution of
untrusted software, often referred to as enclaves. Examples of enclaves include Operating
Systems (OS), facilities for over-the-air (OTA) firmware updates [9] and any application-
level (or user-level) software.

In a TEE, isolation is achieved by separating enclaves from each other, following the
principles of a so-called separation kernel, such that they are unable to tamper with other
enclaves or the monitor itself. As defined by the Separation Kernel Protection Profile [14]
and summarized by [50] and [36], a TEE is thereby required to comply with four main
security policies:

1. Spatial separation: Physical memory assigned to one enclave cannot be read or
written to by any other enclave.

2. Temporal separation: Shared resources, such as timers, cannot be used by a
malicious enclave to gather information about other enclaves or the monitor.

3. Inter-enclave communication: Communication between enclaves, for example
through shared memory or using certain registers, is not possible unless explicit
permission is given by the monitor.

4. Fault isolation: A fault in one enclave cannot propagate to other enclaves, meaning
that a security breach in one enclave cannot affect the other enclaves.

To enforce these requirements, the hardware being used to run a TEE must provide
appropriate primitives. For example, a memory protection unit and privilege levels. Gen-
erally, these primitives are defined differently for each ISA that supports trusted execution.
However, it could even be that the primitives differ per hardware implementation of an ISA.
For example, Intel and AMD are both companies that manufacture cores implementing
the x86 ISA, but both use different specifications for trusted execution.

When these primitives do not exist in a system or if they are not used by the developer,
it is generally the case that applications are able to freely access all physical memory on
the system. This may not be a problem in simple systems that just execute a single task,
but such a system cannot be considered secure.

2.2.1 ARM TrustZone

To draw a proper comparison between TEEs on more established ISAs and those on RISC-
V, ARM and its TrustZone specification are chosen. TrustZone [32] is chosen for both its
wide adoption in industry, as well as its similarity to RISC-V based TEEs. TrustZone’s
M-profile is especially similar, as it is aimed towards secure microcontrollers that are often
used in secure embedded systems. Other system-wide security specifications include In-
tel’s Software Guard Extensions and Trusted Execution Technology [8] and AMD Secure
Encrypted Virtualization [1], all of which are specifications for x86 systems, which tend
to be targeted less towards embedded systems and therefore less suitable for comparison
against RISC-V based TEEs.

TrustZone is a system-wide specification that is used to architect a hardware-enforced
TEE. It defines that the system is divided into two worlds: the secure world, where security-
critical tasks such as cryptographic algorithms are executed, and the normal world, which
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is used for general user applications. The goal of this separation is to guarantee a strong
isolation between ‘secure’ and ‘normal’ operations [24].

The main separation, which is specifically important in the context of TEEs, is separa-
tion in memory, which is achieved by the Memory Management Unit (MMU); in TrustZone
systems, both worlds have their own MMU. Each MMU is responsible for providing mem-
ory protection and virtual memory management, which is enforced during the translation
of virtual memory addresses to their physical counterparts. To guarantee this separa-
tion, each world (or MMU) must maintain its own page tables and memory protection
configuration.

2.2.2 TEEs for RISC-V

The TEE ecosystem for RISC-V is notably less developed than the ones for ISAs such
as ARM and x86, which have been on the market for a significantly longer time. Even
though the specification for hardware-defined mechanisms related to TEEs is well-defined
for RISC-V, software libraries are still largely fragmented. However, the projects that
are currently in development do show a number of similarities that are unavoidable when
building a TEE for generic RISC-V cores. These similarities are analyzed to construct an
attack scheme that will not just apply to a specific TEE implementation, but to the shared
elements between RISC-V TEEs.

One of the more prominent projects for architecting TEEs on RISC-V is Keystone [23],
which is fully open source and targets more powerful application class RISC-V processors,
as it supports running a secure TEE monitor, a rich OS such as Linux, as well as user
applications, each in their separate privilege mode. Since embedded RISC-V cores usually
support at most 2 privilege modes, they are considered to be incompatible with Keystone.
However, there do exist TEE-related projects that are compatible with embedded RISC-V
cores, such as HexFive’s MultiZone API [38] and its open-source implementation: OpenMZ
[18]. The MultiZone API aims to define TrustZone-like primitives to provide a compatibil-
ity layer between existing TrustZone-based designs and RISC-V hardware. Another recent
development is Penglai Enclave [12], which is an open source TEE framework for RISC-V,
it can be adapted to both application class and embedded processors.

Even though there are many competing projects for TEEs on RISC-V, there are a
number of similarities between them, which means targeting those similarities in an attack
enables it to affect most, if not all, RISC-V TEEs. In the context of an attack, the most
important similarities include the use of RISC-V’s PMP extension and at minimum 2
privilege modes, where a ‘secure’ TEE monitor is running in a high privilege mode and
‘non-secure’ user-level applications are running in a lower privilege mode.

Figure 2.2 shows the stack of different components required to construct a minimal
TEE on RISC-V, increasing in privilege level from the bottom upwards. It starts with
a collection of trusted hardware, consisting of at least one or more RISC-V cores that
implement the PMP extension. Other (custom) hardware extensions may also be present
to enhance the system’s security, such as a cryptographic accelerator. Below the hardware
is the TEE monitor software, which runs in the highest privilege mode, often referred to as
privileged execution mode, machine mode or M-mode. The monitor is responsible for the
boot process and performing context switches between user apps (i.e. switching between
their execution), meanwhile maintaining a correct configuration of the PMP hardware, such
that user apps - which are considered to be untrusted - only have access to their assigned
memory region. If one of the user apps attempts to read memory outside of its assigned
region, the PMP unit will detect this and notify the monitor by means of an interrupt,
allowing it to take whatever action is needed; for example terminating the app that caused
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the interrupt. Finally, there are a number of user-installed software applications who are
considered to be untrusted and should therefore be restricted and protected by the TEE.
The apps may request action from the monitor, similarly to how one would use system
calls in a Linux-like OS, by executing the ecall instruction; after the monitor handles the
request, it uses the mret instruction to lower the privilege level and return to the execution
of a user app.

Figure 2.2: Hardware and Software Stack for a TEE on RISC-V

Privilege Modes: Secure processors often employ so-called privilege modes that give
the firmware developer the possibility of dividing code into 2 or more levels of privilege.
This enables the separation of trusted code, such as the TEE monitor, from non-trusted
code, such as user applications running in a TEE.

This research deals with embedded RISC-V cores, which commonly employ 2 privilege
modes: a high-privilege mode called machine mode (or M-mode) and a low-privilege mode
called user mode (or U-mode). However, larger cores may employ a third privilege mode
in between M-mode and U-mode called supervisor mode (or S-mode), which is usually
reserved for an operating system such as Linux. Code running in a lower privilege mode is
able to request certain actions from the privilege level above it by triggering an interrupt
using the ecall instruction, after which the higher privilege mode is able to return to the
lower privilege mode using the mret (or sret) instruction. On a high level, this mechanism
is analogous to the concept of system calls in an operating system.

RISC-V Physical Memory Protection: The PMP extension was first introduced
in the RISC-V privileged 1.10 standard [46] as a hardware primitive that provides M-mode
software with the ability to impose memory access rules on lower privilege software. RISC-
V cores that implement this feature expose certain Control and Status Registers (CSR)
that allow the TEE monitor running in M-mode to configurably restrict U-mode (and
S-mode) from accessing regions of physical memory.

Each memory region and its access rules are configured by an 8-bit value that dictates
the rules, along with two 32-bit values that make up the first 32 bits of two 34-bit physical
memory addresses that dictate the address range, giving a maximum granularity of 4
bytes to each region. Such a combination of configuration values is commonly referred
to as a PMP entry; when the M-mode software writes the entry to its respective CSRs,
each subsequent memory access is verified according to it and any other entries that were
already present. An interrupt is raised when a disallowed memory access is attempted,
which is then handled by the TEE monitor.
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Chapter 3

Related Work

3.1 Existing Fault Injection Attacks

FI attacks are a major threat to embedded systems that are deployed in publicly accessible
spaces, since a potential attacker can easily gain physical access to the hardware and make
arbitrary changes to its environment, such as mounting an EM probe near it. However, even
embedded systems in private spaces could be affected. For example, it has been shown that
recent models of Tesla cars’ on-board computer is vulnerable to FI attacks [47], allowing the
owner to do anything from activating soft-locked heated seats, which is relatively innocent,
to severely compromising traffic safety by activating a strictly forbidden full self-driving
mode, which is only meant to be used for testing and not meant to be accessed by the end
user.

Clearly, these attacks are a real threat to the security of everyday embedded systems.
Therefore, this research will investigate the effects of FI attacks on them, specifically
using the RISC-V ISA since it is becoming an increasingly popular choice in the world
of embedded systems, while relatively little research on FI attacks has been done using
different RISC-V cores, which will become clear from this chapter.

3.1.1 Fault Injection on ARM

Research into FI attacks on ARM is quite advanced when compared to RISC-V, which
is in part explainable by the fact that RISC-V processors have been on the market for
a significantly shorter period of time than their ARM counterparts, thus garnering more
attention earlier.

To show some recent examples, Qiu et al. [35] have shown how the current standard for
a TEE on ARM - TrustZone - can be breached by manipulating the dynamic voltage and
frequency scaling present on multi-core ARM processors using just software. Additionally,
Fanjas et al. [11] propose a methodology to perform an FI attack on a closed-source TEE
for a smartphone-grade ARM processor.

Looking at the research on FI attacks that has been performed so far using ARM
chips, it becomes quite clear that these attacks are rather well developed. This can be
observed by looking at the attacker models used in recent studies, which describe complex
and restrictive conditions for the attacker. For example, closed source TEEs have been
successfully attacked on closed, consumer-grade hardware and there have even been so-
called ‘remote’ FI attacks that do not even require the attacker to have physical access to
the target device (for example Qiu et al. [35]).
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3.1.2 Fault Injection on RISC-V

When it comes to RISC-V, research on its susceptibility to FI attacks has only recently
taken off compared to other architectures such as ARM, because of its relatively short time
in the market. It seems to be the case that much of the research focuses on FI simulation
to verify certain fault tolerance methods, with only a few studies using FI as a technique
to perform an attack.

One of the earlier examples is when Laurent et al. [22] investigated the security implica-
tions of FI attacks on a RISC-V core by means of Register-Transfer Level (RTL) simulation
and showed the possibility of various attacks in 2019. In the same year, Werner et al. [48]
theorize a variety of techniques to protect RISC-V cores against FI attacks. However, this
is again supported by a simulation-based FI campaign and does not evaluate any real FI
attack scenarios. A year later, Elmohr et al. [10] advanced the field by showing experi-
mental results of applying Electro-Magnetic (EM) FI techniques on an embedded RISC-V
processor, demonstrating that faults can be reliably injected into a hard RISC-V core when
considering a real attack scenario. Finally, research by Nashimoto et al. [31] demonstrates
an FI attack on their PoC TEE (2020) and is able to attack a more sophisticated TEE
(2022), Keystone, when adapting the firmware to simplify the attack.

In summary, research into the consequences of FI attacks on RISC-V cores has only
recently taken off and therefore has numerous limitations when compared to other ISAs.
When drawing a comparison between RISC-V and ARM in this respect, it becomes clear
that within the world of research into FI attacks, research that utilizes RISC-V technology
is lagging behind the ones that have used ARM, owing to the often looser constraints in
the attacker model of RISC-V related work. Since processors from both ISAs are used
extensively in the embedded systems space, with RISC-V usage steadily increasing, it is
imperative that more FI attack related research needs to focus on RISC-V and its different
microarchitectures.

3.1.3 Fault Injection Timing

With many FI attack scenarios, across a variety of FI methods, there is often the same
problem that arises when bringing the attack into practice: finding the appropriate injec-
tion timing. Since FI methods commonly make use of an external device that observes the
target and injects the faults, it can be tricky to synchronize this device with the operations
happening on the target.

In many cases, for example in Nashimoto’s work [31], the attacker is assumed to be able
to run at least some software in a lower privilege mode to allow it to produce a so-called
‘trigger’ to the outside world through GPIO pins or other output ports. It can be argued
that this is still realistic, for example in a TEE where a user is allowed to install their own
applications under a lower privilege mode. However, this still leaves the problem of finding
the delay between receiving a trigger signal and the target executing its critical operation,
as these are often far apart in time.

A good solution to this problem is triggering by template matching. This method
has been used in practice by van Woudenberg et al. [44] to successfully target a secure
microcontroller with OFI. A specific template matching external triggering tool was later
presented by Beckers et al. [4]. Essentially, template matching relies on the collection of a
side-channel trace, which is known to be captured during the execution of a critical section
of code. After which, the target device is left to execute its code, while its side-channel
trace is continually being recorded; when the earlier recorded template is then ‘matched’
in real-time to the target’s trace, the fault injection is triggered.
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However, since this method involves quite a few difficult technicalities and is not yet
demonstrated in any of the previous work on RISC-V, it will not be the focus of this
research. Like previous works on RISC-V, this work will make use of a trigger signal which
is simply generated internally in the device under test.

3.2 Fault Injection Countermeasures

Countermeasures against FI attacks often overlap with techniques for improving the fault
tolerance of computer systems, which is often necessary when a system is deployed in en-
vironments where hardware faults are likely to be induced by environmental factors. For
example, the ionizing effects of radiation have been known to cause faults in semiconduc-
tors, in both a lab setting [15], as well as in real-world scenarios such as satellites [5].
Techniques for improving a (digital) circuit’s resilience to faults are generally based on
introducing redundancy to a certain degree. Said techniques are not only useful in envi-
ronments such as space, where cosmic radiation may induce unintentional hardware faults,
but also in (embedded) systems that are deployed in spaces where an attacker could gain
physical access and intentionally inject faults.

Techniques for introducing redundancy can usually be categorized in 3 different cat-
egories, namely spatial redundancy, temporal redundancy and information redundancy.
Spatial redundancy often involves duplicating certain components in a system that are
mission-critical and/or sensitive to faults. For example, one might only need 1 processor
in a system, but chooses to arrange 2 or more in parallel; this technique is often referred
to as N-modular redundancy [20]. By doing so, errors can be detected or even corrected
when the parallel units do not give the same output, given the same input. While spatial
redundancy strategies can significantly reduce fault propagation rates without compro-
mising execution time, it often incurs a high cost in terms of chip area usage and power
consumption.

On the other hand, temporal redundancy is based on the repetition of a critical oper-
ation over time, which allows for the comparison of initial and subsequent outputs. This
initially allows for error detection and could be used as a trigger for the system to start
a self-recovery procedure. However, temporal redundancy does generally depend on the
fault being transient; if the fault is permanent, the subsequent result will be equal to the
initial, but both will be erroneous and the fault is therefore not detected. As a recent
example, Villa et al. [45] have shown how temporal redundancy techniques, such as the so-
called ‘Checkpoint Recovery technique’, can be used to detect and recover from transient
hardware faults caused by the effects of ionizing radiation.

Finally, information redundancy relies on the addition of redundant bits of information
to critical data, allowing for the detection and possibly correction of one or more bit-flips.
A rather common way of achieving information redundancy is with error-correcting codes
(ECC), which was already proposed by Hamming [16] in 1950. Since the advent of modern
computing, ECC are often employed in memories of mission-critical systems in order to
periodically detect and correct soft errors. Similarly to spatial redundancy techniques,
the extra memory needed to store redundant bits and the circuits to encode and decode
information often incur a penalty in terms of hardware cost.

3.2.1 Hardware Countermeasures

There are a number of ways to implement fault mitigation patterns in hardware. Since
this work evaluates 2 specific RISC-V cores’ susceptibility to fault injection attacks, their
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most significant hardware countermeasures are discussed. The first core being evaluated is
SiFive’s E31 core [40], which is not specifically disclosed by SiFive to have any protection
from hardware faults. However, the second core, being lowRISC’s Ibex core [28], does
support a number of significant fault tolerance methods in hardware. Since the Ibex is
used as a soft core, meaning its hardware structure is synthesized and placed on an FPGA,
it is possible to configure the hardware synthesis process such that its redundancy measures
are enabled.

One of Ibex’s major security features is dual-core lockstep, which can be categorized as
both a spatial and a temporal redundancy technique. When dual-core lockstep is enabled,
a second instance of the core is realized, also known as the shadow core. Outputs of the
shadow core are continually checked against a delayed output of the main core; when a
discrepancy is detected, a major alert is signaled, which can be used to trigger an interrupt.
Such interrupts could then be used, for example by a TEE’s monitor firmware, to attempt
a recovery from the detected fault.

Additionally, Ibex makes use of ECC in various memories, which is categorized as
information redundancy. For example, it uses ECC checking to detect errors on a read of
the register file. When an error is detected, it is not corrected, but a major alert is signaled,
similarly to when a mismatch is detected by the shadow core when dual core lockstep is
enabled. Another place where the Ibex employs ECC is in the instruction cache; when
an error is detected, the whole cache is invalidated to avoid the execution of potentially
malicious code.

In conclusion, hardware measures for improving fault tolerance of digital circuits are
plentiful and have been researched since the start of modern computing technology. Each
one belonging to one or more categories of redundancy techniques and coming with their
own benefits and trade-offs. Many more of these techniques exist than mentioned in this
section, but these are some of the more notable ones to be found in the work related to
this research.

3.2.2 Software Countermeasures

Aside from implementing countermeasures against fault injection in hardware, it is also
quite possible and effective to implement countermeasures in software [43, 49]. Where hard-
ware countermeasures often have a high cost in terms of chip area/power usage and require
specialized hardware designs or reconfigurable hardware to be implemented, software coun-
termeasures are often able to introduce a substantial improvement to fault tolerance with
the addition of a small piece of software.

In an overarching review by Theissing et al. [43], it is shown that known software coun-
termeasures are quite numerous and can be categorized into 2 categories: data/instruction
redundancy and control flow verification. Data redundancy often relies on a simple du-
plication of critical instructions and data, which works by reducing the probability of the
same fault occurring in all copies of the instruction/data; if the probability of faults occur-
ring in each copy is independent, this makes for quite an effective strategy. Control flow
verification techniques operate by storing a unique identifier of the jump target as a signa-
ture and verifying this after each jump; if the previously stored signature and the current
code block’s identifier do not match, a recovery procedure can be triggered. Theissing et
al. conclude from their tests that a combination of both categories yielded the best fault
tolerance while still incurring an acceptable execution time penalty.
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Chapter 4

Methodology

To find an answer to the research questions and place them into context, the scenario of
an FI attack by clock glitching on a TEE is described in this chapter. First, the attack
scheme is laid out, describing the different steps that the attacker will take to mount a
successful attack, including a motivation and detailed specification of the chosen attacker
model. Finally, the PoC-TEE used in this scenario is described in more detail, showing
why this case study is applicable to more well known TEEs for RISC-V, such as Keystone.

Answering the first part of the research question - ‘What are effective attack vectors for
a TEE on RISC-V?’ - is done by observing similarities between previous works that deal
with implementing TEEs on RISC-V (see section 3.1.2), implementing similar behavior in
the PoC-TEE and showing a successful attack that exploits these features on a RISC-V
core.

Then, in order to effectively answer the second part of the research question - ‘How are
the effects of fault injections influenced by different microarchitectures?’ - the proposed
attack scheme will be tested in two different experiments involving different RISC-V cores:
the first experiment covers SiFive’s E31 core and the second uses lowRISC’s Ibex core. This
approach will give an idea about the differences and similarities between the two cores when
it comes to their vulnerability to clock glitching attacks. Since the two chosen cores are
quite different, doing this will not give a definite answer as to which microarchitectural
features correspond to an increase or decrease in vulnerability to hardware faults, but it
should provide some interesting clues and discussion points. However, it will definitely show
whether there is a significant difference worthy of further investigation between different
RISC-V microarchitectures.

Finally, to answer the third part of the research question - ‘Which strategies could be
employed to reduce the effectiveness of these attacks?’ - different methods can be argued on
the basis of microarchitectural implementation details that are common between RISC-V
cores capable of running TEEs.

4.1 Attack Scheme

Figure 4.1 shows a general overview of the proposed attack scheme to be considered in this
research. It includes a two-part profiling phase where a copy of the target device is used
with firmware modified by the attacker in order to gather information to aid in the attack,
after which there is an attack phase where the previously acquired information is used to
mount an attack. More detailed explanations of the profiling and attack phases can be
found below in section 4.1.2 and 4.1.3 respectively.
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Figure 4.1: Flowchart of Attack Scheme

4.1.1 Attacker Model

Based on the definition of a TEE, as described in section 2.2, a TEE should guarantee
spatial separation, or separation of physical memory. Therefore, it is assumed that the
goal of the attacker is to access memory assigned to other user applications running in the
same TEE, for example to find a key used for encryption of sensitive data by the victim
application. Apart from guaranteeing isolation in various aspects, a TEE does not guar-
antee much else, such as confidentiality, integrity and/or authenticity of user applications
running within it. Therefore, attack vectors such as tampering with the TEE firmware are
not considered.

Seeing the current state of the art with respect to FI attacks on RISC-V (please refer
to section 3.1.2), a rather powerful attacker model is chosen. In this scenario, the attacker
is said to have the following privileges:

• The target device is physically accessible to the attacker, opening up the possibility
for physical attacks.

• The target device is a common off-the-shelf component, in which case the attacker
is able to obtain one or more duplicates of the device to use for testing.

• The TEE’s monitor firmware is openly accessible (open source).

• The attacker is able to install or execute their own firmware application in the TEE
with U-mode privileges.

• The attacker application can make requests to the TEE’s monitor that eventually
cause the victim application to run.

• The attacker application has access to I/O facilities such as GPIO pins and serial
(UART) I/O. In practice the TEE could block U-mode applications from accessing
memory mapped I/O facilities using the PMP unit, but with this attacker model it
is allowed.
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4.1.2 Profiling Phase

During the profiling phase, a modified version of the software is uploaded to the target
such that information can be gathered by performing fault injections on it. Information is
gathered about effective fault intensity and timing, which is later used during the attack
phase.

The first part of the profiling phase, as shown in figure 4.1, deals with finding effective
intensity parameters for fault injection on the selected target instruction. The attacker
does this by obtaining a copy of the target device and uploading a simplified firmware,
where finding the timing for fault injection is trivial. This allows the attacker to fix the
timing parameter in order to reduce the search space by an order of magnitude. To then
find effective intensity parameters, the attacker simply performs a sweep over the possible
configurations for as many times as desired. When enough data is collected about different
intensities and the observed behavior of the target, it becomes clear which combination of
parameters provides the most consistent results.

After finding effective parameters for the intensity by simplifying the timing with a
modified firmware, these parameters can be fixed and the attacker can start trying to
find an attack timing that will work during the attack phase. This can be achieved in
a multitude of ways, such as gathering timing information using performance counters
or by measuring side channels such as power usage and EM emanations; section 3.1.3
provides a summary of such methods and section 5.1.3 describes an attempt that was
made at developing a RISC-V specific method within this research. However, given the
state of previous work [31] together with the relative technical difficulty of applying these
methods, this step is currently ignored.

4.1.3 Attack Phase

During the attack phase, the parameters obtained during the profiling phase(s) are applied
to the original TEE firmware and victim application running on the target device. The
attacker application is installed in the TEE, which will output a trigger signal and attempt
to dump the victim’s memory, where it stores its secret key.

Figure 4.2 shows a sequence diagram of the attacker app attempting to read out the vic-
tim app’s secret key during the attack phase. If a fault was successfully injected, such that
the PMP configuration got corrupted to a degree that the malicious read operation from
the attacker is allowed by the PMP unit, the attacker will read and print out the victim’s
secret key. If the fault injection failed and the PMP configuration remained as intended,
the hardware will trigger an interrupt signaling an illegal memory access (MCAUSE=0x5),
allowing the TEE monitor to undertake action and block any further execution of the
attacker app.
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Figure 4.2: Sequence Diagram of an Attempted Malicious Read Operation

4.1.4 Clock Glitching

There are numerous ways of injecting faults for the purpose of the described attack scheme.
All of the ones described in section 2.1.1 could theoretically be effective on the hardware
that will be targeted in this work. However, considering that investigating different fault
injection methods is not the purpose here, only one method is elected for the upcoming ex-
periments: clock glitching. The reason for using clock glitching is simply its cost efficiency
and ease of use, while still offering some precision.

As briefly explained previously, clock glitching is a method of fault injection that in-
volves an attacker generating their own clock signal and feeding it into the target processor.
By doing so, it opens up the possibility of the attacker modifying the clock signal such
that the target’s timing requirements are violated, at which point undefined behavior may
start to occur in the target, leading to hardware faults.

More specifically, the intention of an attacker in this case would be to corrupt the
contents of critical registers by introducing a clock cycle with a duration that is just short
enough to violate the setup or hold time of those registers, while ideally not affecting
any other registers as this may cause unwanted behavior. Since the critical path to each
flip-flop in a digital circuit will (slightly) differ from the critical paths to other flip-flops,
it is theoretically possible to target each one with a specific glitch shape (or intensity).
However, it may not be possible to target each one separately, possibly leading to unwanted
side effects.
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4.2 TEE Design

In this research, a PoC-TEE is used and adapted to enforce separation of user-level appli-
cations by utilizing RISC-V’s Physical Memory Protection extension and privilege modes
(please refer to section 2.2.2 for background on these subjects). The PoC-TEE serves as
a case study to motivate the investigation of certain instructions that are critical to its
operation.

4.2.1 Global Overview

Figure 4.3 shows a flowchart of how the PoC-TEE operates and where the attack vector
lies in its operation. The goal of this design is to simplify the concept of a TEE as much
as possible, while still retaining all of the guarantees provided by a ‘real’ TEE, most
importantly the separation in memory between applications, using the same mechanisms:
2 privilege modes and the PMP extension.

The PoC-TEE’s primary behavior is that it performs context switches between two
applications: the victim app and the attacker app; with each context switch, the PMP
configuration is switched such that the app running next in sequence cannot access the
memory of the previous app. More specifically, after a reset the PoC-TEE starts by
performing the boot process and preparing the PMP configuration to run the victim app.
When the victim app is done running its encryption, it executes an ecall instruction to
trigger an exception, which the monitor handles by performing a context switch to the
other application, in this case the attacker app. The attacker app will then send out a
trigger signal on one of the GPIO pins shortly before requesting another context switch
from the monitor; the trigger signal tells the attacker’s external hardware that something
critical is about to happen (a context switch) and it should start counting cycles until it
is the right time to inject a fault. During the context switch, the attacker aims to glitch
the exact clock cycle when the PMP configuration CSR is being set, possibly leading to a
corrupted configuration. When execution returns to the attacker app, it attempts to read
out the victim’s memory, which is shown in figure 4.2.

However, this is just the ideal case for the attacker. For example, it might occur that
the clock glitch does not cause a fault to be injected, causing the attacker’s malicious read
operation to be caught by the TEE. Another scenario might be that the clock glitch causes
too many undesired side effects and causes other parts of the software to malfunction.
This is solved by simply resetting the target and executing the attack again; because
of the probabilistic nature of FI attacks, it may require many tries before an attack is
successful.
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Figure 4.3: PoC-TEE Flow Chart

4.2.2 Memory Layout

Figure 4.4 shows the memory layout of the PoC-TEE firmware, showing exactly which
parts of memory are protected and to what degree. The figure shows the memory layout of
a typical SoC used in embedded systems, having two separate physical memories: a Read-
Only Memory (ROM) and a Random Access Memory (RAM). The RAM is commonly
used to store runtime data that is dynamically updated by the software, while the ROM
is typically chosen to contain read-only sections of memory such as code, as these sections
are not expected to be written to; as a useful byproduct, this introduces some physical
protection against tampering with the data stored in the ROM.

For this TEE, it has been chosen to disable any memory protection on the ROM, as it
just contains the code (.text sections) and the read-only data (.rodata sections). Given
the attacker model, where it is specified that the TEE’s code must be open source, this is
already considered to be known by the attacker. Furthermore, as mentioned previously the
ROM protects against write operations by its nature, which means tampering with these
sections is not considered a threat. However, in the case of a system that does not have a
ROM, these sections should at least be protected against write operations.

The runtime data of each process (TEE monitor and each user app) is stored in the
RAM, as it needs to be dynamically read and written to. Because the content of this part
of memory is not known at compile-time and could be of interest to an attacking party,
since it might for example contain an encryption key, it is in need of memory protection.
First of all, to eliminate the possibility of tampering with the TEE monitor it is configured
to never be accessible in any way, except when running in the highest privilege mode,
which is only possible when the monitor’s own code is being run. By default, the regions
assigned to each user application are also configured to be inaccessible, except when the
monitor is about to switch the context to the app in question, at which point it configures
the PMP to allow read and write operations to that app’s runtime memory.
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Figure 4.4: PoC-TEE Memory Layout

4.2.3 PMP Configuration and Target Instructions

When a RISC-V hardware thread that supports the PMP extension performs any action
that requires memory access, by default, the hardware-defined PMP unit implicitly verifies
whether the address that is being accessed is authorized according to the current privi-
lege level and PMP configuration. This includes the execution of simple memory access
instructions, such as read and write operations, but also the fetching of every instruction
that is going to be executed.

The memory protection regions and their specific rules are configured solely by a set of
CSRs: the pmpcfg0-pmpcfg3 CSRs, which control the rules for each region (4 8-bit values
corresponding to a region per CSR) and the pmpaddr0-pmpaddr15 CSRs, which define the
address range of each region. The two basic instructions that are able to write to these
regions are the csrw and csrs instructions; csrw allows the programmer to write a value
from a general purpose register to the specific CSR, while csrs gives the possibility of
specifying a mask for the CSR write operation.

Even though there exist various, slightly different, alternatives to both of these instruc-
tions, such as ones that read the old value at the same time that they write the new value,
the differences are too slight and the number of instruction variants too numerous to draw
a meaningful comparison. Therefore, it is concluded that the csrw and csrs instructions
should both be considered in the experiments, as they are both commonly used in config-
uring the memory protection offered by a TEE on RISC-V. However, their sub-variations
are not considered.
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Chapter 5

Experimental Setups

This research performs the profiling phase for glitch intensity, as described in the previous
chapter, as a means to evaluate a core’s susceptibility to FI attacks using clock glitching.
The experimental setup is kept as similar as possible between testing the 2 different cores.
For each tested core - the E31 and the Ibex - 2 different instructions are profiled. The
setup that is required for these experiments, as well as relevant details about the tested
systems are specified in this chapter.

5.1 Fault Injection Setup

Figure 5.1 shows a block diagram that provides a high level overview of the setup used
to perform all experiments on the E31 core. Additionally, Figure 5.2 provides a physical
overview of the experimental setup. There are three main components to the setup:

• The target chip: in this experiment there is an FE310 RISC-V board, containing
the E31 core, mounted on the ChipWhisperer CW308 target board, which allows for
convenient access to the FE310’s pins, including its clock input in order to feed it a
clock glitch.

• The glitch generator: in this case the ChipWhisperer CWLite is used to generate
a clock signal for the target chip, inserting a clock glitch when a trigger signal is
received. Additionally, it controls the reset input of the target chip, which provides
more control during the experiments.

• The glitch controller: controls the glitch generator by specifying when to reset the
target and the glitch parameters (intensity and timing). It also controls the target
in this case by sending it data over UART. Lastly, it observes the UART output
from the target, from which it is able to roughly determine the result of each fault
injection attempt. In this case a Raspberry Pi is used to host a Jupyter server where
a script can be executed that controls the process of systematically repeating fault
injection attempts.
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Figure 5.1: Block Diagram of Devices in Experimental Setup

Figure 5.2: Physical Overview of Experimental Setup for FE310

The setup is kept largely the same when considering the Ibex core. However, where
the CW308+FE310 target was used to assess the E31 core, the CW305 is now used. The
CW305 hosts a Xilinx Artix-7 FPGA, which is used in this case to deploy an Ibex core
along with peripherals to interface with it during runtime. Figure 5.3 shows a physical
overview of the experimental setup when assessing the Ibex core.
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Figure 5.3: Physical Overview of Experimental Setup for Ibex

5.1.1 Clock Glitch in Effect

Figure 5.4 shows a capture of the clock glitch taking effect in real time during one of the
experiments. For illustration purposes, the glitch generator is configured to output a glitch
with a delay of 3 clock cycles, a width of 25% and an offset of 25%. The timeline is as
follows: at time t1 the attacker application makes the target board output a trigger signal
to the glitch generator, after which at t2 the glitch generator has registered the trigger
and starts counting down the delay cycles until t3, where the glitch should be inserted
into the clock signal. In figure 5.5 the glitched clock cycle is shown in more detail; it can
be observed that the glitch takes effect at t4, after 25% of a clock period from the start of
the affected clock cycle and also has a duration of 25% of a clock period, continuing with
a normal clock signal after t5.

Figure 5.4: Clock Glitch in Effect During Experiment
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Figure 5.5: Glitched Clock Cycle During Experiment in Detail

5.1.2 Profiling I - Glitch Intensity

After determining the target instruction, the main challenge of successfully performing
a fault injection attack is to determine the right glitch parameters. For a clock glitching
attack, the parameters can roughly be subdivided into two categories: intensity and timing,
both of which are covered separately below. The intensity of a clock glitch is determined by
its width and offset relative to the clock period, while the timing is solely measured by the
number of clock cycles that the glitch generator waits to insert the glitch after receiving a
trigger signal. For a more in-depth explanation of the parameters related to clock glitching
attacks (and fault injection in general), please refer to section 4.1.4. Algorithm 1 shows
the algorithm used by the glitch controller to profile a target for the appropriate intensity.

As shown in the algorithm, each possible combination of width and offset is tested 100
times in order to get a sufficient number of samples. Each experiment is logged as being
either a success, a reset or normal, following these definitions:

• Success: a CSR write was observably skipped or caused an undefined value to be
written to the CSR, while resuming normal execution.

• Reset: a fault was injected, but caused excessive effects leading to a non-responsive
target or the target otherwise diverted from normal execution, needing to be reset.

• Normal: The glitch was either too weak to inject a fault or the propagating effects
of the fault were not observable. The target resumed normal execution.
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Algorithm 1 Algorithm executed by the glitch controller
delay ← 17 ▷ Fixed ‘Known-to-work’ delay to profile for intensity only
for i ∈ {1, 2 . . . 100} do

for width ∈ {−45,−44 . . . 45} \ {0} do
for offset ∈ {−45,−44 . . . 45} \ {0} do

configureGlitch(width, offset, delay) ▷ Passes config to glitch generator
prepGlitch() ▷ Signals glitch generator to perform glitch at next trigger
capture() ▷ Waits until glitch has been performed
out ← readUART() ▷ read incoming UART buffer
if ‘Success’ ∈ out then

logSuccess() ▷ Log fault injection with desired effect
resetTarget() ▷ Reset the target board for next injection

else if ‘Normal’ ∈ out then
logNormal() ▷ Log fault injection without propagating effect

else
logReset() ▷ Log fault injection resulting in a crash/reset
resetTarget()

end if
end for

end for
end for

5.1.3 Profiling II - Glitch Timing

Now that effective intensity parameters are known, the timing of the glitch insertion is the
only parameter that still needs to be discovered. A naive way of determining the timing is
to fix the intensity parameters to a set that is known to be the most effective, after which
sweeping the delay parameter until there is a successful attack. However, in the majority
of real attack scenarios there is a rather significant (and often unknown) time between the
attacker application signaling a trigger and the target instruction being executed. This
often causes a naive parameter sweep to be unfeasible due to the explosion in search space,
considering that a single experiment in a fault injection campaign might take anywhere
from a few 100 milliseconds to a few seconds.

However, there are more time-efficient ways of determining the correct timing that can
be applied here. The most notable of which is ‘template matching’, which is used in [44]
and [4] and consists of using side-channel analysis to record a trace of during a known
critical section, which is then used to match against a real-time trace during the target’s
execution. However, since these methods are not applied in any previous works involving
RISC-V, applying one of them is not considered to be in the scope of this research. Instead,
a trigger signal is generated internally by the TEE monitor, similarly to Nashimoto’s [31]
recent work.

Even though profiling for the timing of the glitch is purposefully left out of this work for
reasons mentioned above, it should be noted that an attempt was made at introducing a
novel method for obtaining a timing estimate using RISC-V specific performance counters.
Within a RISC-V core there exists a CSR called mcycle, which can be set to an arbitrary
value and counts up by 1 for every clock cycle. During the profiling phase, it is theoretically
possible to start the timer (i.e. setting it to 0) right after the attacker app is supposed to
output the trigger signal and measuring it at the injection point in the TEE monitor. In
theory, this would give a timing estimate that is accurate enough to find the actual timing
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by ‘brute force’. However, some yet unknown complications (possibly due to its instruction
cache) with the FE310 SoC cause the timing to be extremely jittery. This jitter is far too
large (in the range of thousands of clock cycles) to perform a feasible brute force search
around the estimate. However, this method might be applicable to other SoC’s, which is
the reason for including these thoughts here.

5.2 Attacking the E31

The first experiment is conducted on SiFive’s E31 core, which is a hard RISC-V core suit-
able for use in embedded systems. It is not documented [40] to have any countermeasures
against hardware attacks and serves as a baseline to compare with the second experiment
(see chapter 5.3), where the same attack is evaluated against a different RISC-V core.

5.2.1 Hardware

The E31 core [39], the RISC-V core used on the FE310 [40] development board, has
a 5-stage pipeline consisting of the following stages: instruction fetch, instruction de-
code/register fetch, execute, data memory access and register writeback. The pipeline has
a maximum throughput of 1 instruction per clock cycle, but in some cases it might incur
a penalty of a few clock cycles due to so-called hazards, which occur when a subsequent
instruction requires the result of the previous instruction, thus requiring the pipeline to
stall execution until the required instruction is completed. Other cases where a penalty
might be incurred is when a branch is mispredicted or when there is a cache miss on a
memory reading operation. It should be noted that branching and memory-related instruc-
tions generally tend to incur a small penalty, even if there is a cache hit or correct branch
predictions. Therefore, as an attacker, it is especially interesting to attack at these points,
as the prolonged operation of a certain instruction gives more fine-grained control and a
larger window to attack. Additionally, since no other operations are taking place at the
same time during a stall or pipeline flush, there is a reduced chance of causing unwanted
side effects when injecting a fault during that time.

In the E31 core specifically, memory access instructions have an additional latency
of 2 or 3 cycles depending on the specific instruction; mispredicted branches incur a 3
cycle penalty, with correctly predicted branches not incurring any penalty. This makes
memory access instructions and mispredicted branches an interesting target for FI attacks
in general. However, what stands out in this case is the requirement to flush the pipeline
on a CSR write operation, which effectively causes all subsequent instructions to be stalled
until the CSR is written to. This means that when a CSR is written to, which is often a
critical part of trusted execution (when setting the PMP configuration), there is 5 cycle
window for an attacker to exploit, where only the CSR write instruction is being executed.
Therefore, it follows that this experiment on the E31 also makes use of this window.

Another concern when using a clock glitching method for an FI attack is the clock
domains that exist, as targeting a different clock domain will allow the attacker to target
different parts of the system. In the case of the FE310 package, there are 2 clock domains:
the always-on (AON) domain and the mostly-off (MOFF) domain. Both can be supplied
with an external clock, technically allowing an attacker to use clock glitching to target
either one. For example, the AON domain contains the power management unit, which
might be targeted to induce an error in the power supply (i.e. a possible voltage glitch).
However, in this research, one of the main points is to evaluate a generic attack on TEEs
for RISC-V, meaning that attacking an implementation-specific detail, which does not even
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contain the E31 core (the E31 core exists in the MOFF domain), would defeat the purpose.
Therefore, the focus will lie on attacking the domain where the E31 core resides, focusing
on targets that are common between RISC-V cores.

In conclusion, the CSR writing instructions that should be targeted according to the
attack scheme seem to be a promising target on the E31 because of their behavior in the
pipeline. Since the core is not documented to implement any FI-specific security features,
it is expected that CSR writing instructions on the E31 will be quite vulnerable to attack
by clock glitching.

5.2.2 Firmware

The goal of this experiment is to determine how effectively the PoC-TEE could be attacked
by an attacker. For this purpose, an altered version of the PoC-TEE firmware is used, since
the attack model dictates that the attacker may have their own copy of the hardware target
in question, as well as the firmware’s source code.

When trying to find effective glitch parameters as an attacker, it is often a good idea to
eliminate parameters from a sweep where possible. Since an attacker is often looking for
multiple glitch parameters related to the shape and timing of the glitch, the search space
easily explodes and becomes unmanageable.

To this end, a simplified firmware is used that eliminates the timing parameter by
placing the target instruction shortly after triggering the attack. By doing so, the attacker
can immediately search for an effective glitch intensity (i.e. width and offset) without
having to consider timing, since the glitch is guaranteed to hit the target instruction.
Listing 5.1 shows the critical section of the firmware used to extract the glitch intensity
parameters when targeting the csrw instruction. In this case, the critical section starts
at the point when the glitch generator is triggered and ends when the trigger signal is
pulled back to 0. During the time that the trigger is high, the processor has to write a
predefined value to 8 different CSRs that influence the PMP settings. It should be noted
that communication between the target and the controller is ongoing outside of this critical
section in order to control the target and observe its behavior for data collection, this is
intentionally left out of the code listing.

1 jal trigger_high # sends the trigger signal
2 li a3, 0x abcdef # load predefined value
3 csrw pmpaddr0 ,a3 # start writing to each CSR
4 csrw pmpaddr1 ,a3
5 csrw pmpaddr2 ,a3
6 csrw pmpaddr3 ,a3 # <-- INJECT FAULT
7 csrw pmpaddr4 ,a3
8 csrw pmpaddr5 ,a3
9 csrw pmpaddr6 ,a3

10 csrw pmpaddr7 ,a3
11 jal trigger_low # no longer send trigger

Listing 5.1: Firmware Used for Extracting Glitch Intensity Parameters on FE310
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5.3 Attacking the Ibex

The second experiment is conducted on lowRISC’s Ibex core [28], which is an open source
RISC-V core. In this experiment, the effects of clock glitching are investigated similarly
to the experiment described in section 5.2, such that a comparison can be drawn.

5.3.1 SoC Structure

Figure 5.6 shows a global overview of the SoC being targeted during this experiment. It is
deployed as a soft core on the FPGA of the CW305 target board and consists of an Ibex
core, which is described in more detail below, and SRAM along with peripherals such as:

• GPIO is needed to let the attacker application signal the glitch generator when to
‘start’ attacking. Similarly to the previous experiment, this is done to simplify the
experiment to the part of interest. In a ‘real’ scenario, there are a multitude of ways
to acquire an actual trigger, as described in section 3.1.3.

• UART is used to communicate with the target, either signaling it to start executing
critical code or analysing its output to determine normal, reset or success behavior.

• The debug module is needed to upload the firmware to the RAM and to reset the
core when it experiences an observable effect caused by FI.

Figure 5.6: Block Diagram of the Used Ibex System [27]
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5.3.2 Ibex Core

The Ibex core [28] has a 2-stage pipeline consisting of an instruction fetch and an instruction
decode and execute stage. Similarly to the E31, it has a theoretical maximum throughput
of 1 instruction per clock cycle, but might be stalled because of exceptional events, such
as branching instructions, memory access instructions, or costly operations such as integer
division and multiplication. Additionally, with the Ibex it is again the case that CSR write
instructions incur a pipeline flush [26], meaning that it is also a promising target for clock
glitching. However, given that a CSR write is only in the pipeline of the Ibex for 2 cycles
instead of 5 with the E31, it might be harder to successfully inject a fault, as this offers a
reduced window of control for the attacker.

Furthermore, with the Ibex there is the possibility of enabling hardware-based security
features that are known to mitigate FI attacks, more information on some of these features
can be found in section 3.2.1. Naturally, enabling this during the Ibex’s synthesis would
greatly reduce the effectiveness of FI attacks, but for the purpose of this research, security
features have not been enabled. In this case, the Ibex is not documented to have any
security features that counteract FI attacks, similarly to the E31.

Finally, the Ibex, when deployed in the previously described SoC, only has 1 clock
domain as opposed to the FE310’s 2 clock domains. This means that when it comes to clock
glitching, there is no choice to be made in terms of locality. However, as the Ibex is open
source, it does offer a possible additional degree of knowledge to the attacker in comparison
to the E31’s closed source ASIC implementation. Since all of Ibex’s implementation details
are technically known, the attacker could for example analyze critical paths in the logic in
order to more specifically target certain flip-flops with timing violations, for example those
that make up the CSRs.

In conclusion, the Ibex core seems to offer a bit less freedom for an FI attacker in
comparison with the E31, mainly due to its shorter pipeline. However, its open source
implementation does provide a potential attacker with additional information.
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5.3.3 Firmware

The firmware for this experiment, shown in listing 5.2 has been slightly altered to account
for microarchitectural differences, while retaining the essence of the first experiment (please
refer to section 5.2.2). As mentioned earlier, the default configuration of the Ibex core in
the SoC does not implement the PMP extension. However, since the attack targets CSR
access instructions that configure the PMP unit, rather than directly targeting the PMP
unit, the experiment still gives the same insight when targeting other CSRs.

To this end, the mhpmcounter3..10 CSRs have been chosen for this experiment, since
writing values to these registers does not have an inherent effect on the core or the firmware
running on it. In preparation for the critical section, the mcountinhibit register must be
set appropriately, such that actual usage (incrementation) of the performance counters is
inhibited and does not influence the result of the experiment.

1 # Before glitching inhibit all counter CSRs
2 # Allowing them to be used as general purpose registers
3 li a3, 0x ffffffff
4 csrw mcountinhibit ,a3
5
6 jal trigger_high # sends the trigger signal
7 li a3, 0x abcdef # load predefined value
8 csrw mhpmcounter3 ,a3 # start writing to each CSR
9 csrw mhpmcounter4 ,a3

10 csrw mhpmcounter5 ,a3
11 csrw mhpmcounter6 ,a3 # <-- INJECT FAULT
12 csrw mhpmcounter7 ,a3
13 csrw mhpmcounter8 ,a3
14 csrw mhpmcounter9 ,a3
15 csrw mhpmcounter10 ,a3
16 jal trigger_low # no longer send trigger

Listing 5.2: Firmware Used for Extracting Glitch Intensity Parameters on Ibex
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Chapter 6

Results

Following from the previous chapter, where the experiments are described for both cores
used in this study, the steps for the first profiling phase are followed to find how susceptible
each core is to clock glitching attacks. To summarize: the experiment is conducted on
both cores, targeting the same instructions and using minimally altered firmware. Each
parameter combination is tried 100 times in order to obtain sufficient amounts of data,
since fault injection attacks are known to be a stochastic process.

6.1 Susceptibility of the E31 Core

Figure 6.1a and 6.1b give an overview of effective width and offset parameter combinations
for the csrs and csrw target instructions respectively in the form of a scatterplot. Each
shaded dot in the scatter plot signifies that at least one effectful fault injection (either a
success or a reset) was observed at that combination of width and offset. A darker shade
already gives a hint towards the probability of causing effects. Later in this section, figures
6.2 and 6.3 illustrate more fully how probabilities for both types of effects are distributed.

The scatter plots show two clear bands of effects in both target instructions, along with
a few outliers. It should be noted that the results look quite similar when comparing the
csrs and csrw instructions, which can be attributed to the fact that both instructions
essentially deal with the same basic operation: writing a value to a CSR. Thus, they likely
follow a very similar data path with similar critical paths, leading to a similar susceptibility
to timing violations caused by clock glitches. The minor differences, mainly with respect
to the outliers, can be attributed to the minor differences in data path between both
instructions, as csrw writes a value from a register to a CSR, while csrs applies a mask
as well.
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(a) Profiling for csrs (b) Profiling for csrw

Figure 6.1: Profiling Scatterplots for E31

Figure 6.2 shows a more detailed representation of the density of effects for both param-
eters when profiling the csrs instruction, separating the 2 categories of effects: successes
and resets. The graph on the left fixes the offset parameter, showing the probability of
successes and resets for different widths, while the graph on the right fixes the width.

From this figure, as well as figure 6.3, the probabilistic nature of FI attacks becomes
clear, since even the most successful parameter combinations do not provide any guarantee
of a successful effect. It can also be seen that most effects are concentrated around a
specific width, with successful offsets being more uniformly distributed. Going from these
graphs, the attacker should fix the width between 0 and -5 and the offset between -25 and
-30 when going to the attack phase of the attack scheme (refer to section 4.1 for more
details), as this will maximize the success chance.

Figure 6.2: Probabilistic Representation of Profiling for csrs on E31

Figure 6.3 again shows a more detailed, probabilistic view of the first profiling step, in
this case for the csrw instruction, similarly to figure 6.2. There are some small differences
between the two instructions though. For example, the distribution of effects seems to be
more uniformly distributed csrw, having a less pronounced peaks of effects. Because of
this, there are a few areas of interest that an attacker could fix their parameters on; for
example, choosing a very negative width and very positive offset gives quite a high chance
success, which is also partially visible in the top-left corner of figure 6.1b. The same could
be said for the exact opposite corner, as there seems to be a similar concentration of effects
there.
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Figure 6.3: Probabilistic Representation of Profiling for csrw on E31

6.2 Susceptibility of the Ibex Core

Figure 6.4a and 6.4b show an overview of the effects of all width and offset parameter
combinations for both target instructions, similarly to figure 6.1a and 6.1b, which illustrate
the same concept for the E31. Again, each shaded blue dot signifies the occurrence of at
least one effect (either success or reset) observed at that width and offset combination, with
a darker shade indicating a higher rate of observed effects. Figures 6.5 and 6.6 show a more
detailed representation of how both types of effects are distributed across the parameters,
similarly to figures 6.2 and 6.3 for the E31.

The graphs for both target instructions are quite similar again, which is also seen
during the previous experiments on the E31 core. There are two distinct areas of parameter
combinations in both graphs that seem to yield the most effects, which likely corresponds
to the parts of the data path where both instructions are similar. However, this time the
csrw seems to offer an outlier where the csrs does not, likely owing to a minute difference
in their data paths where csrw exposes a slight susceptibility to FI.

(a) Profiling for csrs (b) Profiling for csrw

Figure 6.4: Profiling Scatterplots for Ibex

34



What stands out from figure 6.5 in comparison with the experiments on the E31 core,
is that there have been no successes when using the Ibex. A possible explanation for this
could lie in its microarchitectural details (see section 5.3.2 for more details). For example,
the reduced pipeline length restricts the attacker’s ability to target specific parts of the
target instruction’s execution, possibly leading to unwanted side effects.

Figure 6.5: Probabilistic Representation of Profiling for csrs on Ibex

Figure 6.6 shows the results for the csrw instruction, which paints a similar picture to
what is seen for the csrs instruction. There are only resets, but no successes, meaning
that there are likely too many unwanted side effects occurring.

Figure 6.6: Probabilistic Representation of Profiling for csrw on Ibex
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Chapter 7

Discussion

In this thesis it is shown that performing the same fault injection attack on nearly identical
firmware running on different hardware targets gives vastly different results. Supporting
the hypothesis and indicating that in the scenario of a physical attack, a TEE is at most
as secure as the hardware that it is running on.

7.1 Effective Attack Vectors

The first subquestion asks which attack vectors are the most effective in attacking a TEE on
a RISC-V core. Technically, targeting almost any instruction with a fault injection attack
has the possibility of propagating the desired effect. However, during the development
of the PoC-TEE case study, it became clear which type of instructions would be most
promising to target during an attack.

For example, an attacker could try to corrupt a branching instruction such that the
program counter skips over a security-critical portion of code. However, this would require
the injected fault to propagate in an extremely improbable manner, eventually corrupting
the program counter to the exact desired position.

A more direct target would be the specific RISC-V instructions that deal with access to
the control and status registers (CSRs). As the name implies, these special registers that
exist in many RISC-V cores give direct control over parts of the core and contain valuable
status information. Write operations to the CSRs are often done to configure security-
critical parts of the system, for example the protection of memory zones in a TEE. When
these instructions are skipped, the configuration is not updated and an application, possibly
that of the attacker, will have access to memory that it is not supposed to have.

As is shown in the results, there does not seem to be a major difference between
targeting different instructions on the same core that can be used to configure the CSRs.
Since all instructions that deal with writing to CSRs in some way likely follow a similar
critical path in the hardware, they are similarly affected by timing violations caused by
clock glitches. There are some exceptions to the similarity in both experiments, which
likely account for the slight difference in the data path of each instruction.
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7.2 Difference Between Cores

The second subquestion addresses the influence that different microarchitectures have on
the effects observed from injecting faults in RISC-V cores. From the conducted experi-
ments, it seems to be the case that there is a vast difference between different cores running
similar firmware. However, some similar patterns do arise between the different instruction
targets on the different cores.

The most notable difference arises in the effectiveness of glitch parameters, or the shape
of the glitch. While the FE310 is affected across a broad range of parameters, with successes
occurring throughout, the Ibex system does not see any of the attacker’s desired effects,
only undesired effects or normal behavior. This implies that microarchitectural differences
indeed play a large role in the effectiveness of FI attacks involving clock glitching. This
difference could be attributed (in part) to the different pipeline structure of each core, a
more detailed description of which can be found in sections 5.2.1 and 5.3.2 for the E31 and
Ibex respectively. It is theorized that the E31, having a 5-stage pipeline as opposed to the
Ibex’s 2-stage pipeline, offers more fine-grained control over which part of the instruction’s
execution is affected by the clock glitch; since each instruction is executed over 5 or more
clock cycles (depending on stalls), the attacker may choose between which stage(s) to
attack specifically.

However, the lack of precision when attacking the Ibex does give some insights into
future steps that could be taken. Referring back to section 2.1.1, where different FI methods
are discussed, the lack of precision offered by the Ibex’s pipeline could be compensated
by choosing an FI method that offers an additional degree of precision, such as LFI or
EMFI, as performing FI by clock glitching might be too coarse-grained, which causes
many unwanted side effects.

In contrast to the large difference in overall effectiveness between cores, a notable
similarity is that in both experiments there does not seem to be a large difference between
targeting different CSR access instructions. Since different CSR access instructions likely
follow a very similar data path in the hardware, they are similarly affected by timing
violations caused by clock glitches. Similarly, in both cases there exist some outliers,
which could be due the small differences in the data path between instructions.

A limitation to be considered with the experiments is that a distinction is made between
‘normal’, ‘reset’ and ‘success’ behavior based on the observed output of the target, while
there may have been faults that propagated and changed the state of the core, which were
not observed. Since the target is not fully reset after a ‘normal’ execution in order to save
time during the experiments, the core might have continued with a (hidden) corrupted
state, possibly influencing the results of subsequent runs. To remove the possibility of this
happening, one could opt to reset the target after every single FI attempt. However, in
this study the inaccuracy is accepted and made justifiable by the fact that it saves several
orders of magnitude in time, allowing for much more data to be collected, offsetting the
inaccuracy per FI attempt.
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7.3 Mitigation of Faults

The third subquestion focuses on the mitigation of FI attacks on TEEs for RISC-V. Some of
them can be logically reasoned using available knowledge of each microarchitecture, while
others have been discovered during the execution of the experiments and development of
the methodology.

First, since a CSR write causes the pipeline to be flushed in both the E31 and the Ibex
core (see section 5.2.1 and 5.3.2 respectively for more details), subsequent CSR writes to
the same CSR are executed independently of each other. Meaning if one performs the same
CSR write n times and each one has a probability Psuccess of being successfully skipped
using an injected fault, the probability of successfully attacking the software would be
Pn
success. By simply introducing redundancy in the software, the probability of a successful

attack can be greatly reduced. This would be quite a strong countermeasure that is gen-
erally applicable to RISC-V cores, since CSR writes will usually cause a pipeline flush or
similar event in a pipelined RISC-V core, as a CSR write should have an immediate effect
on the subsequently executing instructions. For example, if a memory access instruction
is preceded by a CSR write that performs a PMP reconfiguration, the CSR write should
be fully executed before the memory access instruction to prevent the memory access from
being checked against an outdated PMP configuration.

Even though replicating CSR writing instructions is a great method for reducing the
effectiveness of the attack scheme used in this study, possibly greatly reducing the success
chance just by using a few redundant instructions, it is only applicable to attacks that
target CSR writes. Although RISC-V CSRs are a prime target for attackers because of
their influence over the behavior of the core, it might not be enough to only protect CSR
writing operations from being targeted.

Other than using the inherent structure of RISC-V cores to mitigate CSR write-based
attacks in software, there also exist more general hardware and software countermeasures
that could be implemented, which are described in more detail in section 3.2. For exam-
ple, methods such as dual core lockstep, which operates by comparing the output of a
duplicated core against the delayed output of the real core, could be employed as a more
overarching countermeasure against fault injections. Such methods have been shown to be
quite effective and can even be enabled on the Ibex core. However, they often come at a
significant cost in terms of hardware area usage and/or execution time, as they commonly
introduce redundancy in either space, time, information or a combination of those. For
example, dual core lockstep will always more than double the needed area, as the entire
core is duplicated and a comparison mechanism is added.
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Chapter 8

Conclusion

To conclude this work, it is confirmed that Trusted Execution Environments (TEE) on
RISC-V have inherent commonalities that can be targeted using Fault Injection (FI) at-
tacks. Any TEE that makes use of RISC-V’s Physical Memory Protection (PMP) exten-
sion, which most notable RISC-V TEEs (such as Keystone [23]) do, needs to configure it
appropriately using Control and Status Register (CSR) access instructions. When one of
these instructions is skipped by means of an FI attack, the PMP configuration is corrupted,
which may lead to a breach in the isolation that the TEE should provide between user
applications.

Additionally, it was found that using different RISC-V cores heavily impacted the
results obtained during the experiments; when assessing the vulnerability of a device with
respect to FI attacks, it is important to consider its core’s microarchitecture in addition
to its ISA. While the FE310 target board with a hard E31 RISC-V core was shown to be
vulnerable against clock glitching in the first experiment, the same cannot be said for the
Ibex soft core used in the second experiment. Where the E31 showed successful attacks
across a range of glitch shapes, the attacks on Ibex only showed normal or reset behavior.
This behavior could be attributed to the Ibex’s shorter pipeline, which limits the attacker’s
range of control over the injected fault, possibly causing too many unwanted side effects.
However, to obtain a more conclusive answer as to which microarchitectural differences
specifically contribute to a reduced susceptibility to FI attacks, a more comprehensive
study should be conducted.

Finally, it can be argued that there is quite an effective way to mitigate the attack on
a TEE as performed in the case study, namely by duplicating the CSR writing instruction
that configures the PMP. Since it is a commonality between RISC-V cores that CSR
writing operations are executed independently of each other, thus having an independent
probability (Psuccess) of being successfully skipped or corrupted by an FI attempt, each
duplicate instruction that is added reduces the probability of successfully skipping all
of them by a factor of Psuccess. Furthermore, general fault tolerance techniques could
be employed to cover a wider array of attack vectors. For example, dual core lockstep
which is supported by certain configurations of the Ibex core. However, these techniques
often introduce redundancy, which generally results in more hardware area usage and/or
execution time.
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8.1 Future Work

While the results seen in this work answer the research questions posed in the beginning,
they also bring forth some speculation and follow-up questions, opening up avenues for
future research. For example, while the experiments using the Ibex core did offer some
insights into its vulnerability to clock glitching, a desired fault never occurred. It was
concluded that this could be due to a lack of control over the injected fault due to the
Ibex’s shorter pipeline, prompting the need for a more precise FI method that compensates
for the lack of precision. For example, EMFI, LFI or even XFI (see section 2.1.1) could be
considered in future research for their additional precision at the expense of cost efficiency
and/or ease of use.

Finally, although this work gives a clear indication that microarchitectural differences
play a large role in a core’s susceptibility to FI attacks, simply comparing 2 cores does not
give sufficient insight to deduce which specific microarchitectural details contribute the
most. In future research, a more comprehensive analysis could be performed by comparing
a range of more similar cores, each with a small variation in its microarchitecture. Reducing
the amount of differences between each core should help to narrow down which details are
the most influential.
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