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Abstract

Dynamical systems, and estimations thereof, play an important role in various disciplines. The
Koopman operator encapsulates properties of a dynamical system. This thesis investigates the
estimation of the Koopman operator within the context of Reproducing Kernel Hilbert Spaces
(RKHSs). We begin by reviewing the relevant background on RKHSs, including the vector-valued
case, and Koopman operators in their natural setting of continuous functions. A general
framework that links Koopman theory and discrete-time dynamical systems is provided. We then
compare two methods for estimating Koopman operators in a unified framework, namely ridge
regression in spaces of Hilbert-Schmidt operators on a RKHS and kernel Extended Dynamic
Mode Decomposition. The boundedness of the actual Koopman operator between RKHSs is
investigated and illustrated through examples. Dynamics for which the Koopman operator is
bounded between Gaussian RKHSs on R

d are characterized.
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Chapter 1

Introduction

Dynamical systems play an important role in various disciplines including chemistry, physics, and
engineering. Numerous relevant dynamical systems in these respective fields are nonlinear, which
may lead to bifurcations and chaos [SH98]. Think of the Lorentz system or a double pendulum in
classical mechanics. Linear dynamical systems, however, are completely determined by their spectral
decomposition. Koopman operator theory transforms a nonlinear system into a linear one, by acting
on an infinite-dimensional function space [Koo31]; [Bru+21]. The benefit of this approach is that the
Koopman operator is linear and hence allows for analyzing complex nonlinear systems using linear
methods. Koopman theory has gained momentum due to advances in computational techniques and
the increasing availability of large datasets, which make it feasible to develop data-driven,
operator-theoretic models of complex dynamics [GE22]. However, one of the primary challenges in
this field remains the development of finite-dimensional approximations that retain the essential
structure of these infinite-dimensional representations.

An approach that tackles this issue is the Koopman mode decomposition, introduced by Mezić
[Mez05]. This method allows us to represent the dynamics of a nonlinear system in terms of a
sequence of triples (¼j , φj ,vj), where ¼j are the Koopman eigenvalues, φj are the associated
Koopman eigenfunctions and vj are the so-called Koopman modes. The nonlinear dynamics are
converted through this decomposition into a linear form in the space of these eigenfunctions. We can
thus understand complex nonlinear behavior through the spectral properties of the Koopman
operator. This Koopman mode expansion can be approximated by a finite sum of only the most
significant modes and eigenvalues, making it computationally feasible for practical applications.

One method to approximate the Koopman mode decomposition is the Dynamic Mode
Decomposition (DMD), first introduced by Schmid [Sch10]. Initially developed in the fluid dynamics
community as a tool to identify coherent structures within flows [Sch10], later to be connected to
Koopman theory by Rowley [Row+09]. The DMD algorithm is successful partly because it is a fully
data-driven method, it is fast due to its connections to the SVD, and the fact that it is easy to
implement. In DMD, the eigenvalues computed from data snapshots serve as approximations of the
Koopman eigenvalues ¼j , the DMD modes correspond to the Koopman modes vj , and the DMD
mode amplitudes approximate the values of the Koopman eigenfunctions evaluated at the initial
state of the observed dynamical system φj(x0).

Kernel methods have become increasingly popular in data-driven modeling of dynamical systems,
especially in combination with Koopman theory[Bat+24]; [Kos+22]. Kernels allow us to consider the
non-linear relationships between the data points, as well as the non-linear relation to the system
behaviors in high-dimensional spaces [HSS08]. All of the developed kernel methods find their
mathematical foundation in Reproducing Kernel Hilbert Space (RKHS) theory, introduced by
Aronszajn [Aro50]. A benefit of RKHSs is the presence of so the so-called representer theorem,
introduced by Kimeldorf and Wahba [KW70]; [KW71] and later generalized by Schölkopf [SHS01].
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This theorem allows us to write the general solutions of certain regularization functional in
high-dimensional or infinite-dimensional space as a linear combination of the elements of a
data-defined finite-dimensional subspace. This enables us to convert nonconvex optimization
problems in high or infinite dimensions, which often are intractable, into convex optimization
problems over scalar coefficients.

There is a fundamental conceptual difference concerning the types of approximation offered by DMD
versus kernel methods. DMD remains confined to the subspace spanned by the vectors that comprise
the observed data snapshots and thus can only capture the dynamics present in these data [Bru+21].
This makes DMD a localized method that cannot extrapolate well outside the data. On the other
hand, kernel methods embed the data into a higher-dimensional space shaped by the kernel function,
which is an a priori belief about how points are related [HSS08]. This makes it possible for kernel
methods to go beyond the limits of the data provided, as the assumed relationships introduced by
the kernel allow extrapolation. There is, however, a downside due to this additional flexibility. There
is a strong assumption that the kernel accurately characterizes the true structure of the system. If
this is not the case, the extrapolation will be inaccurate.

1.1 Our contribution

Most papers that combine kernel methods and the Koopman operator are brief on the foundation
of the underlying topics. We do not assume knowledge of RKHSs or Koopman theory and build
up an extensive theoretical framework. Furthermore, we contrast the more practical part with a
rather theoretical view of the Koopman operator between spaces of continuous functions. Within
this framework, we compare two methods that estimate the Koopman operator. We contrast a more
recent data-driven kernel ridge regression method in the space of Hilbert-Schmidt operators and kernel
Extended DMD. We state several examples in the positive and the negative for the boundedness of the
Koopman operator between RKHS. Lastly, we characterize dynamics on Gaussian RKHSs for which
the Koopman is bounded, which combines work from [Gon+24]; [Köh+24].

1.2 Outline

In Chapter 2, we start by introducing the mathematical foundation of scalar-valued RKHSs. We
discuss and characterize the boundedness of composition operators on RKHSs. We end by introducing
vector-valued RKHSs and stating important results for learning theory. In Chapter 3, we view the
continuous functions on a compact set K as a C∗-algebra. We show that the Koopman operator
between these spaces is uniquely determined by the underlying dynamics. In Chapter 4, we introduce
the Koopman paradigm for dynamical systems from snapshot data. Then, we explain DMD algorithms
and make a comparison with a recent data-driven kernel-based method. We end this chapter by
commenting on the boundedness of the actual Koopman operator between RKHSs with the use of
examples. We end with a summary, limitations, and outlook in Chapter 5.
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Chapter 2

Reproducing kernel Hilbert spaces

First, we will give the abstract definition of a RKHS and provide several (non)examples. Then we will
define what (reproducing) kernels are and show how they are related to RKHSs. We will provide an
explicit construction of a RKHS from a kernel. We conclude the theory of scalar-valued RKHSs with
characterizations of functions in RKHSs and characterize the boundedness of the composition operator.
We extend to vector-valued RKHS, hereafter we present representer theorems and an isomorphism
between a vector-valued RKHS and the space of Hilbert-Schmidt operators.

2.1 Basics of RKHS

2.1.1 Definition and non-example

Definition 2.1.1 (Evaluation functional). Let H be a Hilbert space of functions on a non-empty set
X . Let f ∈ H the evaluation functional at x ∈ X is the linear map defined as

¶x : H → R,

f 7→ ¶x(f) := f(x).

Definition 2.1.2 (Reproducing kernel Hilbert space). A reproducing kernel Hilbert space (RKHS) is
a Hilbert space of complex-valued functions on a non-empty set X where the evaluation functionals
are bounded for every x ∈ X .

We observe that a Hilbert space of functions can only be a RKHS if norm convergence implies
pointwise convergence.

Observation 2.1.3 (Norm convergence implies pointwise convergence in a RKHS). Let H be a RKHS
and (fn)n∈N in H such that fn → f , we have

|fn(x)− f(x)| = |¶x(fn)− ¶x(f)| = |¶x(fn − f)| f ∥¶x∥∥fn − f∥H → 0 (n → ∞).

To get an intuition what function spaces are RKHSs, it can help to look at a non-example. To do
so, we generalize a RKHS to non-complete spaces.

Definition 2.1.4 (Reproducing kernel inner product space). A reproducing kernel inner product
space (RKIS) is an inner product space of complex-valued functions on a non-empty set X where the
evaluation functionals are bounded for every x ∈ X .

Proposition 2.1.5. A Hilbert space is a RKHS on a set X if and only every dense subspace D ¦ H
is a RKIS on X .

Proof. Let H be a RKHS, it is clear that any dense subspace D is a RKIS. Conversely, let D be a
RKIS that is a dense subspace of a Hilbert space H. Let f ∈ H and x ∈ X , there exists a sequence
(hn)n∈N in D such that hn → f . We see that H is a RKHS, as point evaluations are bounded

|¶x(f)| = |¶x( lim
n→∞

hn)| = lim
n→∞

|¶x(hn)| f lim
n→∞

∥¶x∥∥hn∥ = ∥¶x∥∥f∥.
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Using Proposition 2.1.5, we can show that L2(0, 1) is not a RKHS. We do so by showing that a
dense subspace, C[0, 1] equipped with the standard inner product, is not a RKIS.

Example 2.1.6 (L2(0, 1) is not a RKHS). Equip C[0, 1] with the standard inner product, so that
C[0, 1] is dense in L2(0, 1). Define a sequence of functions in C[0, 1]

fn(t) =

{

( tx)
n 0 f t f x,

( 1−t1−x)
n x < t f 1.

Let x ∈ (0, 1), M > 0 and define gn = fn
∥fn∥L2

. Because fn(x) = 1 for all n ∈ N and ∥fn∥L2 → 0 as

n → ∞, there exists n(M) ∈ N such that

gn(M)(x) =
fn(M)(x)

∥fn(M)∥L2

=
1

∥fn(M)∥L2

> M/2.

By continuity of gn(M), there exists an interval I(M), that includes x, such that gn(M)(t) > M/2 for
all t ∈ I(M). Since ∥gn∥ = 1 for all n ∈ N we have that ∥¶y∥ > M/2 for y ∈ I(M). Observe that for
N > M we have that the interval I(N) is contained in I(M). Letting N → ∞, we conclude that the
evaluation functionals are unbounded on the interval I(M), in the L2 sense. Such an interval can be
constructed for any 0 < x < 1, for x = 0 consider the function

fn(t) =

{

(1− nt) 0 f t f 1
n ,

0 1
n < t f 1.

Then, fn(0) = 1 for all n ∈ N and ∥fn∥L2 → 0 as n → ∞ and a similar argument can be made, also for
x = 1. Since (C[0, 1], ï·, ·ðL2) is dense in (L2(0, 1), ï·, ·ðL2) and not a RKIS, we conclude by Proposition
2.1.5 that (L2(0, 1), ï·, ·ðL2) cannot be a RKHS.

Remark. Consider the space (L2(0, 1), ï·, ·ðL2) and the function fn(t) = 1[0,1/n]. Then, fn converges
to zero in norm and from Observation 2.1.3 we have |fn(0)| f ∥fn∥L2 → 0 as n → ∞. This appears to
be a contradiction, since |fn(0)| = 1 ¼ 0. However, recall that point evaluations are meaningless, as
we can modify fn at t = 0 and remain in the same equivalence class of functions. To conclude, since
the above argument depends on the representative of fn ∈ L2(0, 1), it is not sufficient to conclude that
L2(0, 1) is not a RKHS.

2.1.2 Reproducing kernels

We have not defined what a kernel precisely means, yet we have defined a RKHS which contains the
word “kernel”. To bridge this gap, we will define a RKHS from a given “kernel”. Then, we show that
these two definitions are equivalent. To do so, we have to define what a kernel is first.

Definition 2.1.7 (Positive semidefinite kernel). Let k : X × X → C be a bivariate function. The
map k is said to be a positive semidefinite (PSD) kernel if it is conjugate symmetric and if for any
collection x ∈ X n and a ∈ Cn,

n∑

i=1

n∑

j=1

aik(xi,xj)aj g 0. (2.1)

We allow functions in a RKHS and a kernel to take on complex values. In most examples that
follow we will restrict to the real case and will return to complex-valued RKHS at a later time.
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Remark. Given x ∈ X n and a ∈ Cn, the matrix Kij := k(xi,xj) is a positive semidefinite matrix,
since

n∑

i=1

n∑

j=1

aik(xi,xj)aj = aTKa g 0.

We will also call this matrix K, that is induced by the kernel k once x ∈ X n is chosen.

For brevity, we will refer to a positive semidefinite kernel as a kernel from now on. We make a
simple yet important observation about the pointwise sum and product of two kernels.

Observation 2.1.8 (Sums and products of kernels are kernels). Let k1, k2 be kernels on a set X .
Then ks(x, y) := k1(x, y) + k2(x, y) and kp(x, y) := k1(x, y) · k2(x, y) are kernels, too. Choose x ∈ X n,
a ∈ Cn and denote by K1 and K2 be the matrices induced by k1 and k2, respectively. The sum
Ks := K1 +K2. is PSD, as it is the sum of PSD matrices.
Let Kp be the Hadamard product of K1 and K2. By the Schur product Theorem1, it follows that Kp

is PSD.

Example 2.1.9 (Linear kernel). An example is the linear kernel on Rd, defined as k(x,y) := ïx,yð,
where x,y ∈ Rd and ï·, ·ð := ï·, ·ðRd is the standard inner product on Rd. It is clear that the standard
inner product (on Rd) is symmetric, and also PSD for any subset x ∈ Rd because for any a ∈ Rd

n∑

i=1

n∑

j=1

aiïxi,xjðaj lin.
= ï

n∑

i=1

aixi,

n∑

j=1

ajxjð = ∥
n∑

i=1

aixi∥2 g 0.

To illustrate what the interplay is between kernels and feature maps, we give some examples.

Definition 2.1.10 (Feature map). Let X be a non-empty set. A map Φ : X → ℓ2(N), or a (finite
dimensional) subspace thereof, is called a feature map.

Example 2.1.11 (Feature map for quadratic kernel I). We will define the feature map Φ : Rd → RD,
where D = d+

(
d
2

)
.

Φ(x) =

{

x2
j for j = 1, 2, . . . , d,√
2xixj for i < j.

Take d = 3 and let x ∈ R3, then

Φ(x) = (x2
1,x

2
2,x

2
3,
√
2x1x2,

√
2x1x3,

√
2x2x3).

Example 2.1.12 (Homogeneous polynomial kernel). Take the homogeneous polynomial kernel on Rd

defined as k(x,y) := (ïx,yð)m for some m g 2. Recall Observation 2.1.8 to note that k(x,y) is a
kernel, since it is a power of the linear kernel. Take m = 2, we get the quadratic kernel

k(x,y) = (ïx,yð)2 =
d∑

j=1

x2
jy

2
j + 2

∑

i<j

xiyj .

Observation 2.1.13 (Feature map for quadratic kernel II). Observe that the feature map from
Example 2.1.11 is closely related to the quadratic kernel k(x, y) = (ïx, yð)2. As before, choose d = 3
so that D = 3 +

(
3
2

)
= 6. Let x,y ∈ R3, we rewrite the inner product of the feature maps in R6.

ïΦ(x),Φ(y)ðR6 = ï(x2
1,x

2
2,x

2
3,
√
2x1x2,

√
2x1x3,

√
2x2x3), (y

2
1,y

2
2,y

2
3,

√
2y1y2,

√
2y1y3,

√
2y2y3)ðR6 ,

= x2
1y

2
1 + x2

2y
2
2 + x3y

2
3 + 2x1x2y1y2 + 2x1x3y1y3 + 2x2x3y2y3,

= (x1y1 + x2y2 + x3y3)
2,

= (ïx,yðR3)2.

1Appendix ?
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We see that the inner product between the features can be computed as an inner product between
the points itself. For large values of d, there is a substantial computational difference in evaluating
ïΦ(x),Φ(y)ðRD and (ïx, yðR3)2. Solely computing Φ(x), for some x ∈ Rd, takes O(d+

(
d
2

)
) = O(d+d2),

whereas the inner product (ïx, yðRd)2 takes O(d). For large values of d, this difference is substantial.

Example 2.1.14 (Inhomogeneous polynomial kernel). In Example 2.1.12, we have seen the
homogeneous polynomial kernel. Let x,y ∈ Rd and c ∈ R, the inhomogeneous polynomial kernel is
defined as k(x,y) = (c+ ïx,yðRd)m. It can be shown that the matrix with all entries equal to one is
PSD, hence k(x,y) = c is a kernel. The power of a linear kernel is a kernel too, hence the sum
k(x,y) = (c+ ïx,yðRd)m is a kernel.
Next, we will try to derive a feature map Φ : Rd → RD, where D =

(
d+m
m

)
, such that

k(x,y) = ïΦ(x),Φ(y)ðRD . Using the multinomial theorem, we get

k(x,y) = (c+ ïx,yðRd)m = (c+

d∑

j=1

xjyj)
m = (c+ x1y1 + . . .+ xdyd)

m

=
∑

k0+k1+...+kd=n
k0,k1,...,kdg0

(
n

k0, k1, . . . , kd

)

ck0
d∏

i=1

(xjyj)
ki ,

=
∑

k0+k1+...+kd=n
k0,k1,...,kdg0

(
n

k0, k1, . . . , kd

)

ck0
d∏

i=1

(xiyi)
ki ,

=
∑

k0+k1+...+kd=n
k0,k1,...,kdg0

(
n

k0, k1, . . . , kd

)

ck0

︸ ︷︷ ︸

:=bn

(x1y1)
k1(x2y2)

k2 . . . (xdyd)
kd ,

=
∑

k0+k1+...+kd=n
k0,k1,...,kdg0

(√

bnx
k1
1 xk22 . . .xkdd

)(√

bny
k1
1 yk22 . . .ykdd

)

,

=
∑

k0+k1+...+kd=n
k0,k1,...,kdg0

(√

bn

d∏

i=1

x
ki
i

)(√

bn

d∏

i=1

y
ki
i

)

,

= ïΦ(x),Φ(y)ðRD .

The feature map Φ : Rd → RD contains all components such that k0 + k1 + . . .+ kd = m and that
ki ∈ N0 for 1 f i f d. A component of Φ(x) looks like

Φ(x) = (. . . ,

√
(

n

k̃0, k̃1, . . . , k̃d

)

ck̃0
d∏

i=1

x
k̃i
i , . . .),

where (k̃i)
d
i=1 ∈ N0 are one of the

(
d+m
m

)
possibilities such that

∑

i k̃i = m. Directly evaluating

(c + ïx,yð)m can be done in O(d + m), whereas computing ïΦ(x),Φ(y)ðRD is done in O(
(
d+m
m

)
), a

significant difference for large d and m.

Definition 2.1.15 (Reproducing kernel). Let H be a Hilbert space of real-valued functions on a
non-empty set X . A bivariate map k : X × X → C is a reproducing kernel of H if

1. k(x, ·) ∈ H for all x ∈ X ,

2. ïf, k(x, ·)ð = f(x) for all f ∈ H and for all x ∈ X .

The second requirement is called the reproducing property.
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If requirements one and two are satisfied for a Hilbert space H, we say that H admits the
reproducing kernel k. The name “reproducing kernel” is justified, since a reproducing kernel is a
kernel, too.

Proposition 2.1.16 (Reproducing kernel is a kernel). We need to show that k is conjugate symmetric
and positive semidefinite. The conjugate symmetry follows from the reproducing property and the
conjugate symmetry of the inner product

k(y, x) = ïk(y, ·), k(x, ·)ð = ïk(x, ·), k(y, ·)ð = k(x, y) ∀x, y ∈ X .

Take any collection x ∈ X n and a ∈ Cn nonzero, we have

n∑

i=1

n∑

j=1

aik(xi,xj)aj =

n∑

i=1

n∑

j=1

aiïk(xi, ·), k(xj , ·ðaj = ï
n∑

i=1

aixi,

n∑

j=1

ajxjð g 0.

At this point it would, at least semantically, make sense to define a RKHS as a Hilbert space of
functions on a non-empty set X that contains a reproducing kernel. It turns out that this definitions
is sensible and equivalent to point evaluations being bounded, as explained in the following theorem.

Theorem 2.1.17. A Hilbert space of functions on X is a RKHS if an only if it admits a reproducing
kernel.

Proof. Suppose that H is a RKHS, by Riesz-Fréchet there exists a unique gx ∈ H such that ¶x(·) =
ï·, gxð. Define k(x, ·) := gx(·) ∈ H for all x ∈ X . To show the reproducing property, take f ∈ H,
we see that ïf, k(x, ·)ð = ïf, gxð = ¶x(f) = f(x). Conversely, suppose that H is a Hilbert space of
functions that contains a reproducing kernel k(x, ·) for any x ∈ X . Let f ∈ G, by Cauchy-Schwarz
wee see that all point evaluations are bounded

|¶x(f)| = |ïf, k(x, ·)ð| f ∥f∥∥k(x, ·)∥ ∀x ∈ X .

Proposition 2.1.18 (Reproducing kernel is unique). Suppose that H is a RKHS that admits two
reproducing kernels, k1 and k2. Then k1 = k2.

Proof. For any f ∈ H and x ∈ X , ïf, k1(x, ·)ð = f(x) = ïf, k2(x, ·)ð by the reproducing property.
Choose f = k1(x, ·)− k2(x, ·), definiteness of the inner product implies that k1 = k2.

We will denote a RKHS H that admits the kernel k as Hk or H(k) or simply H, depending on the
context.

Proposition 2.1.19. Let H be a RKHS on X that admits the kernel k, then span{k(x, ·) : x ∈ X}
is dense in H.

Proof. Take f ∈ span{k(x, ·) : x ∈ X}§, then 0 = ïf, k(x, ·)ð = f(x) for all x ∈ X , which implies that
f = 0.

We conclude this subchapter with two examples of RKHSs and determine their kernels.

Example 2.1.20 (Sobolev kernel). Consider the space H1
0(0, 1) := {f ∈ H1(0, 1) : f(0) = 0} equipped

with the inner product ïf, gðH1
0
:= ïf ′, g′ðL2 . It is a standard result that (H1

0(0, 1), ï·, ·ðH1
0
) is a Hilbert

space. To show that (H1
0(0, 1), ï·, ·ðH1

0
) is a RKHS, we show that point evaluations are bounded. Let

f ∈ H1
0(0, 1) and x ∈ [0, 1], we have

|f(x)| =
∣
∣
∣
∣

∫ x

0
f ′(t)dt

∣
∣
∣
∣
f
∫ 1

0
|f ′(t)1[0,x](t)|dt f

(∫ 1

0
|f ′(t)|2dt

)1/2(∫ 1

0
1[0,x](t)dt

)1/2

= ∥f∥√x.
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We can read off the derivative of the kernel,

ïf, k(x, ·)ðH1 = f(x) =

∫ x

0
f ′(t)dt =

∫ 1

0
f ′(t)1[0,x](t)dt.

We see that k′(x, ·) = 1[0,x](·), we evaluate

k(x, y) = ïk(x, ·), k(y, ·)ðH1 =

∫ 1

0
1[0,x](t)1[0,y](t)dt =

∫ min(x,y)

0
dt = min(x, y)

Since we can write k(x, y) = ï1[0,x],1[0,y]ðL2 , we see that k is conjugate symmetric and PSD.

Another interesting example of a RKHS is the Hardy space on the unit disc.

Definition 2.1.21 (Hardy space). Analytic functions on the unit disk D := {z ∈ C : |z| < 1} where

sup
0fr<1

(
1

2Ã

∫ 2Ã

0
|f(rei¹)|2d¹

)1/2

< ∞ (2.2)

are called the Hardy space, denoted H2(D). The expression in Equation 2.2 is called the Hardy space
norm, denoted ∥f∥H2(D).

We will show that H2(D) is a RKHS in two steps, first that H2(D) can be identified with a Hilbert
space and secondly that point evaluations are bounded.

Example 2.1.22 (H2(D) is a RKHS). Let f ∈ H2(D), which can be written as f =
∑∞

n=0 ³nz
n for

z ∈ D and (³n)
∞
n=0 in C as f is analytic. From the Weierstrass M test and the ratio test it follows that

the series f(z) =
∑∞

n=0 ³nz
n converges absolutely and uniformly on D. Any z ∈ D can be expressed

as rei¹ for some ¹ ∈ [0, 2Ã) and 0 f r < 1. Substituting results in f(rei¹) =
∑∞

n=0 ³nr
nein¹, a Fourier

series with only non-negative coefficients ³nr
n. By Parseval’s identity, we have

1

2Ã

∫ 2Ã

0
|f(rei¹)|2d¹ =

∞∑

n=0

|³n|2r2n.

Consider the sequence of functions gr(n) = |³n|2r2n on N0 := N∪ {0}. Observe that
∑∞

n=0|³n|2r2n is
the same as integrating gr(n) on N0 with respect to the counting measure. Since |³n|2r2n ↑ |³n|2 as
r ↑ 1, it follows by the Monotone Convergence Theorem that

∞ > sup
0fr<1

(
1

2Ã

∫ 2Ã

0
|f(rei¹)|2d¹

)1/2

= sup
0fr<1

∞∑

n=0

|³n|2r2n = lim
r↑1

∞∑

n=0

|³n|2r2n =
∞∑

n=0

|³n|2.

Define the map ϕ : H2(D) → ℓ2(N0) where ϕ(f) = (³n)n∈N0
for f(z) =

∑∞
n=0 ³nz

n with z ∈ D. Any
ℓ2(N0) sequences defines an H

2(D) function, and vice versa. This shows that H2(D) is a Hilbert space
with inner product

ïf, gðH2(D) := ïϕ(f), ϕ(g)ðℓ2(N0)

for f, g ∈ H2(D) and that ϕ is an isometric isomorphism.
Evaluating f at d ∈ D can be bounded as

|¶d(f)| = |
∞∑

n=0

³nd
n| f

∞∑

n=0

|³n|d||n f
(

∞∑

n=0

|³n|2
)1/2( ∞∑

n=0

|d|2n
)1/2

= ∥f∥H2(D)
1

√

1− |d|2
.

Since H2(D) is a vector space of functions, all requirements of Definition 2.1.2, we conclude that
H2(D) is a RKHS. Theorem 2.1.17 guarentees the existence of a reproducing kernel in H2(D). By
working backwards, it is not difficult to read off the kernel. Let w ∈ D, the kernel k(w, ·) can be
written as k(w, z) =

∑∞
n=0 bnz

n. Evaluate f at w, we get

f(w) =

∞∑

n=0

³nw
n = ïf, k(w, ·)ðH2(D) = ïϕ(f), ϕ(k(w, ·))ðℓ2(N0) =

∞∑

n=0

³nbn.

Hence, bn = wn for n ∈ N0 and k(w, z) =
∑∞

n=0w
nzn. The kernel function for the Hardy space H2(D)

is called the Szëgo kernel.
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2.1.3 Construction of a RKHS using a kernel

Suppose we are given a RKHS H, the existence of a reproducing kernel that is admitted by H is
guaranteed, as we have seen in Theorem 2.1.17. The converse path holds as well, as first shown
by Aronszajn [Aro50]. Given a kernel k, there exists a Hilbert space of functions where k satisfies
the conditions of a reproducing kernel. In the proof of the next theorem, the existence is not only
guaranteed; the construction is made explicit. A priori, it is not clear how such a RKHS can be
defined; Proposition 2.1.19 is, however, a helpful starting point.

Theorem 2.1.23 (RKHS from a kernel). Let k be a kernel, then there exists a RKHS with reproducing
kernel k.

Proof. Define H0 := span{k(x, ·) |x ∈ X} and the bivariate map

ï·, ·ðH0
: H0 ×H0 → C,

(f, g) 7→ ïf, gðH0
:=

n∑

j=1

k∑

i=1

ajbik(xj ,yi)

for f(·) =
∑n

j=1 ajk(xj , ·), g(·) =
∑k

i=1 bik(yi, ·) ∈ H0. Then, the pair (H0, ï·, ·ðH0
) is an inner

product space. Let f ∈ H0 and y ∈ X . By construction we have

f(y) =
n∑

j=1

ajk(xj , y) = ïf, k(y, ·)ðH0
.

Under the standard pointwise addition and scalar multiplication, H0 is a vector space. The linearity
of ï·, ·ðH0

is straightforward, the symmetry follows from the commutativity of scalar multiplication
and the fact that k is symmetric. Since k is a kernel, we have ïf, fðH0

g 0. Suppose that ïf, fðH0
= 0

and x ∈ X . From Cauchy-Schwarz for linear symmetric nonnegative maps |f(x)|2 = |ïf, k(x, ·)ðH0
|2 f

ïf, fðH0
ïk(x, ·), k(x, ·)ðH0

= ïf, fðH0
∥k(x, ·)∥2H0

, which implies that f is zero on K. We conclude that
the map ï·, ·ðH0

is an inner product and therefore (H0, ï·, ·ðH0
) is an inner product space.

What is left to do is to complete the space. Before doing so, we will show that any Cauchy sequence
in H0 such that fn(x) → 0 satisfies ∥fn∥H0

→ 0, as n → ∞. Let (fn)n∈N be a Cauchy sequence
in H0 bounded from above by M > 0. Let ε > 0 and N ∈ N be such that for n > N we have
∥fn − fN∥H0

< ε/2M . Since fN ∈ H0, one can write fN =
∑p

j=1 cjk(xj , ·) for some x ∈ Rn and
c ∈ Rn. For n > N , we get

∥fn∥2H0
= |ïfn − fN , fnðH0

|+ |ïfN , fnðH0
|,

f ε/2 + |
p
∑

j=1

cjfn(xj)|.

Since fn(xj) converges to zero for each xj , there exists L ∈ N such that for all n > L we have
|∑p

j=1 cjfn(xj)| < ε/2. For n > max{N,L} we get that ∥fn∥2H0
f ε and we are done.

Let (fn)n∈N be a Cauchy sequence in H0. For each x ∈ X , the sequence (fn(x))n∈N is Cauchy in C,
and therefore has a pointwise limit f(x) := limn→∞ fn(x). Let H be the set of functions which are
pointwise limits of Cauchy sequences in H0. Note that H0 ¢ H, since for each f ∈ H0 the sequence
(fn)n∈N = (f, f, . . .) converges to f pointwise. Next, we will define an inner product on H so that the
reproducing property is satisfied and that each Cauchy sequence converges.
Let f, g ∈ H, which are pointwise limits of Cauchy sequences (fn)n∈N and (gn)n∈N, respectively.
Define

ïf, gðH := lim
n→∞

ïfn, gnðH0
.

To show that this definition is reasonable, we need to first of all show that (ïfn, gnðH0
)n∈N converges

and that ïf, gðH is independent on the Cauchy sequences that converge to f and g.
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To address the first issue, using Cauchy-Schwarz and the fact that Cauchy sequences are bounded,

|ïfn, gnðH0
− ïfm, gmðH0

| = |ïfn, gn − gmðH0
+ ïfn − fm, gnðH0

|,
f ∥fn∥H0

∥gn − gm∥+ ∥fn − fm∥H0
∥gn∥H0

→ 0 (n → ∞).

This shows that (ïfn, gnðH0
)n∈N is Cauchy in C and therefore has a limit. To address the second issue,

let (f ′
n)n∈N and (g′n)n∈N be Cauchy sequences, different from (fn)n∈N and (gn)n∈N, that converge to

f and g, respectively. The sequences (fn− f ′
n)n∈N and (gn− g′n)n∈N converge pointwise to zero, hence

∥fn − f ′
n∥H0

→ 0 and ∥gn − g′n∥H0
→ 0, as shown above. Taking the absolute difference, we get

|ïfn, gnðH0
− ïf ′

n, g
′
nðH0

| = |ïfn, gn − g′nðH0
+ ïfn − f ′

n, g
′
nðH0

|,
f ∥fn∥H0

∥gn − g′n∥+ ∥fn − f ′
n∥H0

∥g′n∥H0
→ 0 (n → ∞).

Next, we will show that ï·, ·ðH is an inner product. The symmetry, linearity and nonnegativity follows
readily from ï·, ·ðH0

. Let f ∈ H such that ïf, fðH = 0 = ∥f∥2H = limn→∞∥fn∥H0
, for a Cauchy

sequence (fn)n∈N in H0 converging to f . Then, for any x ∈ X

|f(x)| = lim
n→∞

|fn(x)| = lim
n→∞

|ïfn, k(x, ·)ðH0
| f lim

n→∞
∥fn∥H0

∥k(x, ·)∥H0
= 0,

which shows that f is the zero function. We conclude that (H, ï·, ·ðH) is an inner product space. From
Proposition 2.1.19, it follows that H0 is dense in H. Let (hk)k∈N be a Cauchy sequence in H, then for
each k ∈ N, there exists a sequence (gkm)m∈N such that limm→∞∥hk−gkm∥H = 0. In other words, for
any k ∈ N, there exists an N(k) ∈ N such that for all m g N(k) we have ∥hk − gkm∥ < 1/k. Define
(h′k)k∈N := (gkN(k))k∈N, then limk→∞∥hk − h′k∥H = 0. Let ε > 0 and choose N ∈ N such that for
k, l > N we have ∥hk − hl∥ < ε/3 and ∥hl − h′l∥ < ε/3. Since ∥·∥H0

coincides with ∥·∥H on H0, we get
that

∥h′k − h′l∥H0
= ∥h′k − h′l∥H f ∥h′k − hk∥H + ∥hk − hl∥H + ∥hl − h′l∥H < ε/3 + ε/3 + ε/3 = ε.

We have shown that (h′k)k∈N is Cauchy in H0 and therefore limk→∞ h′k := h, the pointwise limit, exists
and is an element of H. Since h ∈ H and (h′k)k∈N is Cauchy in H0 converging pointwise to h, we get

lim
k→∞

∥h− h′k∥H = lim
n→∞

lim
k→∞

∥h′n − h′k∥H0
= 0.

Therefore
∥h− hk∥H f ∥h− h′k∥H + ∥h′k − hk∥H → 0.

We have shown that any Cauchy sequence (hn)n∈N in H has a limit, therefore (H, ï·, ·ðH) is complete.
A complete Hilbert space of functions that contains a reproducing kernel is a RKHS, by Theorem
2.1.17.

In case we have multiple kernels, k1, k2, we will denote the corresponding RKHSs with Hki or Hi

and their norms as ∥·∥Hki
, or ∥·∥i, for i = 1, 2.

Theorem 2.1.24 (Uniqueness of a RKHS). The kernel determines a RKHS uniquely.

Proof. Suppose that G and H are RKHSs that both admit a kernel k. We have that k(x, ·) ∈ H for
all x ∈ X . As H is a Hilbert space, it is complete and closed under addition and scalar multiplication.
From Proposition 2.1.19, we conclude that H is a closed linear subspace of G. By the decomposition
theorem, we can write G = H · H§. Take g ∈ H§, x ∈ X and since g(x, ·) ∈ H we get 0 =
ïg, k(x, ·)ðH = g(x). Since x was arbitrary, it follows that g ≡ 0. We conclude that H§ = {0} and
that G = H.

Combining Theorems 2.1.23 and 2.1.24 leads to the following Corollary.

Corollary 2.1.25. Let k : X ×X → R be a kernel, then there exists a unique RKHS with reproducing
kernel k.



11

We denote Hk as the RKHS with reproducing kernel k. If X is a topological space, we naturally
equip the product X ×X with the product topology. From Proposition 2.1.19, it is not surprising that
Hk is contained in the continuous functions if k is continuous on X × X , denoted C(X ).

Theorem 2.1.26. Let X be a topological space and k a continuous kernel function. Then H(k) is
contained in the continuous functions on X .

Proof. Fix y ∈ X , ε > 0 and let (yn)n∈N be a sequence in X converging to y. By the reproducing
property and Cauchy-Schwarz |f(yn)− f(y)| = ïf, k(yn, ·)− k(y, ·)ð f ∥f∥∥k(yn, ·)− k(y, ·)∥. Showing
that limn→∞∥k(yn, ·) − k(y, ·)∥ = 0 completes the proof. By continuity of k on X × X , we also have
that k(y, ·) and k(·, y) are continuous on X . By the reproducing property and the triangle inequality

∥k(yn, ·)− k(y, ·)∥2 = ïk(yn, ·)− k(y, ·), k(yn, ·)− k(y, ·)ð,
= |k(yn, yn)− k(yn, y)− k(y, yn) + k(y, y)|,
= |(k(yn, yn)− k(y, y))− (k(yn, y)− k(y, y))− (k(y, yn)− k(y, y))|,
f |k(yn, yn)− k(y, y)|+ |k(yn, y)− k(y, y)|+ |k(y, yn)− k(y, y)| → 0 (n → ∞).

2.2 Characterizations

In Example 2.1.14, we constructed a feature map from a given kernel. It turns out that this
construction is always possible. In this section we build up the necessary theory to prove Mercer’s
Theorem [Mer09], which directly implies two results. The first is a spectral definition of a RKHS, the
other being the so called kernel trick, a backbone in machine learning first discovered by Schölkopf
[Sch00].
Thereafter, we will characterize when, a Hilbert space of functions is a RKHS, a function is an
element of a RKHS, the difference of kernels is again a kernel and construct the RKHS of a sum of
two kernels.
We will state an assumption that is necessary for Hk to be separable. Whenever necessary, we shall
freely assume this.

Assumption 1 (Separability). To ensure that the RKHS Hk is separable, we need to make an
additional assumption on the underlying space X and the kernel k. It turns out that Hk is separable
if X is a compact topological space and k is continuous [SC08, Lemma 4.33].

2.2.1 Mercer’s theorem and the kernel trick

We assume that X is a compact metric space and that the kernel function k is continuous. It follows
that Ck = supx,t∈X |k(x, t)| < ∞. First we will define an integral operator from a space of square
integrable functions into the continuous functions. Hereafter, we show that this map is well-defined.

Definition 2.2.1 (Integral operator). Let k be a continuous kernel on a compact metric space X . Let
É be a finite measure on X and let L2(X , É) be the space of square integrable functions on X with
respect to the measure É. Let Bk be the bounded linear map

Bk : L
2(X , É) → C(X ),

f 7→ (Bkf)(·) :=
∫

X
k(x, ·)f(x)dÉ(x).

The integral operator with kernel k is the bounded linear map given by Ak := Ik ◦ Bk, where Ik :
C(X ) ↪→ L2(X , É).
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Definition 2.2.2 (Hilbert-Schmidt operator). Let H,K be Hilbert spaces. A bounded linear operator
D : H → K is called a Hilbert-Schmidt operator if

∑

j

∥Dej∥2 < ∞,

for some orthonormal basis (ej)j of H.

Proposition 2.2.3 (Hilbert-Schmidt operators are compact). Every abstract Hilbert-Schmidt
operator is compact.

Proof. Let D : H → K be a Hilbert-Schmidt operator acting between Hilbert spaces. As D acts
between Hilbert spaces, it is equivalent to show that there exists a sequence of finite rank operators
(Dn)n∈N such that ∥D − Dn∥L(H,K) → 0 as n → ∞. Let f ∈ H, define Dnf :=

∑n
i=1ïf, eiðDei, we

get

∥Df −Dnf∥2 = ∥
∞∑

i=n+1

ïf, eiðDei∥2 f ∥f∥2
∞∑

i=n+1

∥Dej∥2 < ∞,

and we have ∥D −Dn∥L(H,K) f
∑∞

i=n+1∥Dej∥2 → 0 as n → ∞.

To show that this is a meaningful definition, we need to show that Bk and Ik are bounded maps
into their respective spaces. It turns out that Ak is compact and we can derive an upper bound on its
operator norm.

Proposition 2.2.4. Suppose k is continuous, then Ak is well defined and compact self-adjoint Hilbert-
Schmidt operator. Furthermore, ∥Ak∥ f

√

É(X )Ck.

Proof. Let f ∈ C(X ), then

∥Ik(f)∥L2
ω
=

(∫

X
f(x)2dÉ(x)

)1/2

f ∥f∥∞
√

É(X ).

Since k is continuous and X is compact metric space, it follows that k is uniformly continuous. Let
y1, y2 ∈ X and f ∈ L2(X , É), then

|Bkf(y1)−Bkf(y2)| =
∣
∣
∣
∣

∫

X
f(x)(k(x, y1)− k(x, y2))dÉ(x)

∣
∣
∣
∣
,

C.S.
f ∥f∥L2

ω
∥k(·, y1)− k(·, y2)∥L2

ω
,

f ∥f∥L2
ω

√

É(X )max
t∈X

|k(t, y1)− k(t, y2)|.

It follows from the continuity of k(x, ·) that Bkf is continuous. Let ε > 0 and choose ¶x > 0 such
that |y1 − y2| < ¶x implies that maxx∈X |k(x, y1) − k(x, y2)| < ε/∥f∥L2

ω

√

É(X ). For any y ∈ X and
f ∈ L2(X , É),

|Akf(y)|
C.S.
f ∥f∥∥k(·, y)∥ = ∥f∥

(∫

X
k(x, y)dÉ(x)

)

f ∥f∥
√

É(X ) sup
x∈X

|k(x, y)|.

By definition of the operator norm, we have the inequality ∥Ak∥L2
ω
f
√

É(X )Ck.
The operator Ak is a self adjoint Hilbert-Schmidt operator, since k is symmetric and
∥Ak∥L f ∥Ak∥HS = ∥k∥L2

ω
f
√

É(X )Ck. It follows from Proposition 2.2.3 that Ak is compact.

We have shown that for the integral operator Ak, the spectral Theorem applies. This is an
important step in the proof of Mercer’s theorem.
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Theorem 2.2.5 (Mercer [Mer09]). Let k be a continuous kernel on a compact metric space X and
let É be a finite Borel measure on X . Let (ϕk, ¼k)k be the eigen-pairs of the operator Ak. The kernel
can be written as

k(x, t) =

∞∑

k=1

¼k(ϕk ¹ ϕk)(x, t) ∀x, t ∈ X . (2.3)

The convergence in (2.3) is absolute and uniform.

The eigen-pairs of the Hilbert-Schmidt operator Ak can be used to define the RKHS defined by
the kernel k.

Corollary 2.2.6 (Spectral RKHS construction). Under the same notation, we define a RKHS with
kernel k as the vector space

Hk(X ) :=






f ∈ L2(X , É) | f =

∞∑

j=1

³jϕj ,

(

³2
j

¼j

)

j∈N

∈ ℓ2(N)






, (2.4)

equipped with the inner product

ïf, gðHk
:=

∞∑

j=1

ïf, ϕiðïg, ϕið
¼j

=

∞∑

j=1

³j´j
¼j

,

where f =
∑∞

j=1 ³jϕj and g =
∑∞

k=1 ´kϕk.

Proof. As done in [Wai19]; [Sai16].

It is in fact a general fact that any kernel can be written as an inner product

Proposition 2.2.7. Let X be a compact topological space and k : X ×X → C be a continuous map.
Then k is a kernel if and only if there exists a feature map Φ such that k(x, y) = ïΦ(x),Φ(y)ðℓ2(N).

Proof. Suppose that k is a kernel then it follows from Corollary 2.1.25 that there exists a unique
RKHS Hk such that k has the reproducing property. Define Φ̃ : X → ℓ2(N) by Φ̃(x) := k(x, ·). Since
Hk is a seperable Hilbert space (Assumption 1), it is isometrically isomorphic to ℓ2(N) under some
map À. Then Φ := À ◦ Φ̃ suffices, since

k(x, y) = ïk(x, ·), k(y, ·)ðHk
= ïΦ̃(x), Φ̃(y)ðHk

= ï(À ◦ Φ̃)(x), (À ◦ Φ̃)(y)ðℓ2(N) = ïΦ(x),Φ(y)ðℓ2(N).

Conversely, the map k defined by k(x, y) = ïΦ(x),Φ(y)ðℓ2(N) is a kernel since for x ∈ X n and a ∈ Cn

we have
n∑

i,j=1

aik(xi,xj)aj = ï
n∑

i=1

aiΦ(xi),

n∑

i=1

aiΦ(xi)ðℓ2(N) = ∥
n∑

i=1

aiΦ(xi)∥2ℓ2(N) g 0.

It need not be the case that the feature map Φ maps into ℓ2(N), it may also be some finite
dimensional subspace thereof. In Example 2.1.14, the feature space was RD, which is a finite
dimensional subspace of ℓ2(N). One often calls this, finite dimensional, subspace F the feature space.
From any feature map, one can define a kernel function canonically k(x, y) := ïΦ(x),Φ(y)ðℓ2 and the
converse path also holds, as we have seen in Proposition 2.2.7. Mercer’s theorem allows us to
construct the feature map explicitly

Φ : X → ℓ2(N), (2.5)

x 7→ (
√

¼1ϕ1(x),
√

¼2ϕ2(x), . . .). (2.6)
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By definition we have

∥Φ(x)∥2ℓ2 =
∞∑

j=1

¼jϕi(x)
2 = k(x, x) < ∞.

Moreover, the feature map provides an easy way to compute the inner product of the representation
of x, z ∈ X in the feature space, i.e. ℓ2, as follows

ïΦ(x),Φ(z)ðℓ2 =
∞∑

j=1

¼jϕi(x)ϕi(z) = k(x, z)

so inner products boil down to kernel evaluations, we rediscovered the kernel trick.

2.2.2 RKHS and its elements

The Theorems presented in this chapter rely on the Interpolation Theorem A.1.1. To ensure we can
apply this theorem, we make the following assumption throughout the remainder of this report.

Assumption 2 (Independence of kernels). Assume that the set {k(x, ·) : x ∈ X} is linearly
independent.

It turns out that this Assumption 2 is satisfied if and only if the kernel is strictly positive, meaning
that there is a strict inequality in Equation (2.1).

Lemma 2.2.8. Let X be a set and let k be a kernel on X . The set {k(x, ·) : x ∈ X} is linearly
independent if and only if k is a positive kernel.

Proof. We will assume k is not a positive kernel and show that the set {k(x, ·) : x ∈ X} is linearly
dependent. By assunption, there exists x ∈ X n and a ∈ Rn such that

n∑

i=1

n∑

j=1

aiajk(xi,xj) = 0.

Using the reproducing property

0 =
n∑

i=1

n∑

j=1

aiajk(xi,xj) =
n∑

i=1

n∑

j=1

aiajïk(xi, ·), k(xj , ·)ðHk
= ∥

n∑

i=1

aik(xi, ·)∥2Hk
. (2.7)

Thus
∑n

i=1 aik(xi, ·) = 0, by definiteness of the norm. This shows that {k(x, ·) : x ∈ E} is linearly
dependent. By contraposition, we have shown that linear independence implies K to be positive
definite. On the other hand, assume that {k(x, ·) : x ∈ E} is linearly dependent, then there exists
x ∈ X n and 0 ̸= a ∈ Rn such that

∑n
i=1 aik(xi, ·) = 0. By definiteness of the norm

0 = ∥
n∑

i=1

aik(xi, ·)∥2Hk
= ï

n∑

i=1

aik(xi, ·),
n∑

j=1

ajk(xj , ·)ðHk
=

n∑

i=1

n∑

j=1

aiajk(xi,xj) (2.8)

which shows that k is not a positive definite kernel. We have shown that k is a positive kernel implies
linear independence, by contraposition.

Theorem 2.2.9 (Theorem 3.11 in [PR16]). Let H be a RKHS on X with positive kernel k and let
f : X → C be a function. Then, f ∈ H if and only if there exists a constant c g 0 such that
(x, y) 7→ c2k(x, y)− f(x)f(y) is a kernel function. Moreover, ∥f∥ is the smallest possible value for c.
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Proof. Suppose f ∈ H and let ∥f∥ f c, by the reproducing property ïf, k(x, ·)ð = f(x). By the
Interpolation Theorem A.1.1, for all n ∈ N there exists x ∈ X n and b ∈ Cn such that

n∑

i=1

n∑

j=1

bibjf(xi)f(yj) f c2
n∑

i=1

n∑

j=1

bibjïk(xi, ·), k(yj , ·)ð = c2
n∑

i=1

n∑

j=1

bibjk(xi,yj).

It follows that c2k(x, y) − f(x)f(y) is a kernel function, with least possible constant c = ∥f∥.
Conversely, suppose that c2k(x, y) − f(x)f(y) is a kernel function. We conclude by A.1.1 that there
exists f ∈ H with ∥f∥ f c such that ∥f∥ f c and ïf, k(x, ·)ð = f(x) for any x ∈ X.

A different way to write that k(x, y) − f(x)f(y) is a kernel function is to say that k − ff ° 0 or
alternatively ff ¯ k. With this, we mean that for all n ∈ N and every x ∈ X n and a ∈ Cn we have

n∑

i,j=1

ai

(

k(xi,xj)− f(xi)f(xj)
)

aj g 0

2.2.3 Sums and differences of kernels

In Observation 2.1.8, we saw that the sum and product of kernels are again kernels. It turns out
that when the difference of kernels is again be a kernel, can be characterized by the inclusion of two
RKHSs.

Definition 2.2.10 (Contractively contained). Let (H1, ∥·∥1) and (H2, ∥·∥2) be Hilbert spaces. We
say that H1 is contractively contained in H2 if H1 is a subspace of H2 and ∥f∥2 f ∥f∥1 for all f ∈ H1.

Theorem 2.2.11 (Aronszajn’s inclusion theorem). Let k1 and k2 be kernels on a set X . Then
Hk1 ¦ Hk2 if and only if there exists a constant c > 0 such that k1 ¯ c2k2. Additionally, ∥f∥2 f c∥f∥1
for any f ∈ Hk1 .

Proof. Suppose that Hk1 ¦ Hk2 . Let i : Hk1 → Hk2 denote the inclusion operator. Let (fn)n∈N
be a sequence in Hk1 converging to f ∈ Hk1 . Since the norm ∥·∥1 is stronger than ∥·∥2, we have
i(fn) = fn → f in Hk2 . Then (fn, i(fn)) → (f, f) and by the closed graph Theorem, we conclude that
i is bounded. Set c = ∥i∥, take x ∈ X n, a ∈ Cn, by the reproducing property,

0 f ∥
n∑

i=1

aik1(xi, ·)∥21 =
n∑

i,j=1

aiajk1(xi,xj), (2.9)

=
n∑

i,j=1

aiajïk1(xi, ·), k2(xj , ·)ð2, (2.10)

= ï
n∑

i=1

aik1(xi, ·),
n∑

j=1

ajk2(xj , ·)ð2, (2.11)

C.S
f ∥

n∑

i=1

aik1(xi, ·)∥2∥
n∑

j=1

ajk2(xj , ·)∥2, (2.12)

f c∥
n∑

i=1

aik1(xi, ·)∥1∥
n∑

j=1

ajk2(xj , ·)∥2. (2.13)

Canceling ∥∑n
i=1 aik1(xi, ·)∥1 and squaring both sides results in

n∑

i,j=1

aiajk1(xi,xj) f c2
n∑

i,j=1

aiajk2(xi,xj).
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This implies that k1 ¯ c2k2 and since i was bounded, we have ∥i(f)∥2 f ∥i∥∥f∥1 = c∥f∥1. Conversely,
suppose that there exists a c > 0 such that k1 ¯ c2k2. Let f ∈ Hk1 , from Theorem 2.2.9 it follows that
ff ¯ ∥f∥21k1. Combining these results gives ff ¯ ∥f∥21c2k2 and we conclude that f ∈ Hk2 . Using the
same theorem, we conclude that f ∈ Hk2 with ∥f∥2 f c∥f∥1.

Corollary 2.2.12 (Difference of kernels). Let k1 and k2 be kernels on a set X . Then Hk1 is
contractively contained in Hk2 if and only if k2 − k1 is a kernel.

Proof. Both implications are a direct consequence of Theorem 2.2.11.

Theorem 2.2.13 (RKHS from a sum of kernels). Let k1 and k2 be kernels on a set X . The space of
functions H = Hk1 +Hk2 with norm

∥f∥2H := min{∥f1∥21 + ∥f2∥22 : f = f1 + f2, fi ∈ Hki , i = 1, 2}, (2.14)

is a RKHS with kernel k1 + k2.

Proof. Let k = k1 + k2 and denote the elements f, g ∈ Hk1 ·Hk2 as f = (f1, f2) with fi ∈ Hki and
similarly for g. Then, Hk1 ·Hk2 is a Hilbert space with inner product

(ï(f1, f2), (g1, g2)ðHk1
·Hk2

) := ïf1, g1ðHk1
+ ïf2, g2ðHk1

for f, g ∈ Hk1 · Hk2 so that (Hk1 · Hk2 , ï·, ·ðHk1
·Hk1

) is a Hilbert space. Define the subspace N =
{(h,−h) ¦ Hk1 · Hk2 : f ∈ H1 ∩ H2} where we assume that Hk1 ∩ Hk2 is non empty. Otherwise,
the decomposition theorem applies immediately and we are done. Let (fn,−fn)n∈N be a sequence in
Hk1 ∩Hk2 converging to (f, g). Using the definition of the norm, we see that fn → f in Hk1 and that
−fn → g in Hk2 , therefore f = −g and N is closed. Hence, by the decomposition theorem, we can
write Hk1 ·Hk2 = N ·N§ so that (f1, f2) = (h,−h) + (g1, g2) with (h,−h) ∈ N and (g1, g2) ∈ N§.
Define H := Hk1 + Hk2 and the map L : Hk1 · Hk2 → H with L(f1, f2) = f1 + f2, so that L is a
linear surjection and that the kernel of L is N . This implies that the restriction of L to N§, denoted
L|N⊥ := L§, is a vector space isomorphism. Equip H with the inner product induced by the map L§,
which ensures that (H, ï·, ·ðH is a Hilbert space. Thus, for f, g ∈ H,

ïf, gðH := ïL−1
§ (f), L−1

§ (g)ðHk1
·Hk2

.

What is left to do is to show that the norm is as in Equation (2.14), and that k satisfies the reproducing
property. Let P be the orthogonal projection from Hk1 ·Hk2 on N§. Let f = f1+f2 ∈ H and observe
that ∥f∥H = ∥P (f1, f2)∥Hk1

·Hk2
. Take f ∈ H so that f = f1 + f2, then (f − Pf) ∈ (N§)§ = N ,

using the definitions of the norms and Pythagoras,

∥f1∥21 + ∥f2∥22 = ∥(f1, f2)∥2Hk1
·Hk2

= ∥(f1, f2)− P (f1, f2) + P (f1, f2)∥2Hk1
·Hk2

,

= ∥(f1, f2)− P (f1, f2)∥2Hk1
·Hk2

+ ∥P (f1, f2)∥2Hk1
·Hk2

,

= ∥(f1, f2)− P (f1, f2)∥2Hk1
·Hk2

+ ∥f∥2H .

We get ∥f∥2H f ∥f1∥21 + ∥f2∥22 with equality if and only if f ∈ N§, which shows Equation (2.14).
Take (h,−h) ∈ N , x ∈ X , then

ï(h,−h), (k1(x, ·)), k2(x, ·)ðH1·H2
= h(x)− h(x) = 0,

and hence (k1(x, ·), k2(x, ·)) ∈ N§ for all x ∈ X . Let f ∈ H, since L§ is a bijection, there exists
unique elements (h1, h2) ∈ N§ such that [L§(h1, h2)] (x) = f(x) for any x ∈ X . Using the reproducing
properties of k1 and k2 on Hk1 and Hk2 , respectively

ïf, k(x, ·)ðH = ïL−1
§ (f), L−1

§ (k(x, ·))ðH1·H2
= ï(h1, h2), (k1(x, ·), k1(x, ·))ðH1·H2

,

= ïh1, k1(x, ·)ðHk1
+ ïh2, k2(x, ·)ðHk2

= h1(x) + h2(x) = f(x).

We have shown that k satisfies the reproducing property. Since (H, ï·, ·ðH) is a Hilbert space of
functions on X that admits a reproducing kernel, it is a RKHS, by Theorem 2.1.17.
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A direct consequence of Theorem 2.2.13, which is also discussed in its proof, is the case when
Hk1 ∩Hk2 = {0}, in which the sum of the underlying RKHS has a simple form.

Corollary 2.2.14. Let k1 and k2 be kernels on a set X and set k = k1+k2. Suppose that Hk1 ∩Hk2 =
{0}, then H = Hk1 + Hk2 := {f1 + f2 : fi ∈ Hki , i = 1, 2} with ∥f∥2Hk

= ∥f1∥21 + ∥f2∥22 is a RKHS
with reproducing kernel k.

2.2.4 Composition operators

Let k1 and k2 be kernels defined on X1 and X2, respectively. Next, we study the composition operator
between the RKHSs Hk1 and Hk2 induced by a map φ : X1 → X2. First we give a general definition.
Let CX be the set of all complex-valued functions from a set X to C.

Definition 2.2.15 (Composition operator). Let X , S be sets and φ : S → X a map. The composition
operator Tφ : CX → CS is defined as Tφf := f ◦ φ, where f ∈ CX .

Let F(X ) ¦ CX be a function space with the standard pointwise operations and φ : X → X . We
say that the composition operator preserves the space if Tφ : F(X ) → ran(Tφ) ¦ F(X ).
For the remainder of this section, we will restrict ourselves to a special case where k1 and k2 are
kernels on X1 and X2, respectively and φ : X1 → X2. Then, Tφ : Hk2 → Hk1 with Tφf = f ◦ φ. The
composition operator is linear, but is it also bounded? To characterize the boundedness, we introduce
the notion of a pullback and state the pullback theorem. For semantic reasons we write k ◦ φ, where
we actually mean k ◦ (φ× φ).

Proposition 2.2.16. Let φ : S → X be a map. If k is a kernel function on X , then k ◦ φ is a kernel
on S

Proof. Choose s ∈ Sn and a ∈ Cn. We have that {φ(s1), . . . , φ(sn)} = {x1, . . . ,xp} with p f n.
Define Ik = {i ∈ {1, . . . , n} : φ(si) = xk} for 1 f k f p and bk =

∑

i∈Ik
ai. Then we have

n∑

i,j=1

aiajk(φ(si), φ(sj)) =

p
∑

k,l=1

∑

i∈Ik

∑

j∈Il

aiajk(xk,xl) =

p
∑

k,l

bkblk(xk,xl) g 0.

This shows that k ◦ φ is a kernel function on S.

Since k ◦ φ is a kernel, it induces its own RKHS, which we call the pullback RKHS of H(k) along
φ. The RKHS H(k) is “pulled back” from X to S via the map φ.

Definition 2.2.17 (Pull-back). Let X and S be sets, let φ : S → X be a map and let k be a kernel
on X . We call the RKHS H(k ◦φ) the pullback of H(k) along φ and we call the composition operator
H(k) → H(k ◦ φ) the pullback map.

The elements of the pullback RKHS are characterized in the following theorem.

Theorem 2.2.18 (Pullback theorem). Let X and S be sets, let k a kernel on X and φ : S → X
be a map. Then, H(k ◦ φ) = {f ◦ φ : f ∈ H(k)} and for u ∈ H(k ◦ ϕ) we have ∥u∥H(k◦ϕ) =
minf∈H(k){∥f∥H(k) : u = f ◦ φ}.

Proof. Let f ∈ H(k), from Theorem 2.2.9 we have f(x)f(y) ¯ ∥f∥2H(k)k(x, y) for any (x, y) ∈ X ×X .

Hence, for any (s, t) ∈ S ×S we have f(φ(s))f(φ(t) ¯ ∥f∥2H(k)k(φ(s), φ(t)). Following the converse of

Theorem 2.2.9 for k ◦φ, which applies by Proposition 2.2.16, we immediately see that f ◦φ ∈ H(k ◦φ)
and ∥f ◦ φ∥H(k◦φ) f ∥f∥H(k).
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Any u ∈ H(k ◦ φ) can be written as f ◦ φ, for some f ∈ H(k). The reproducing property is then
ïu, k(φ(t), φ(·)ðH(k◦φ) = u(t). Let t ∈ Sn and a ∈ Cn, set u =

∑n
i=1 aik(φ(ti), φ(·)) and note that

∥u∥2H(k◦φ) =

n∑

i,j=1

aiajïk(φ(ti), φ(·), k(φ(tj), φ(·)ðH(k◦φ),

=

n∑

i,j=1

aiajk(φ(ti), φ(tj)),

=
n∑

i,j=1

aiajïk(φ(ti), ·), k(φ(tj), ·)ðH(k),

= ∥
n∑

i=1

aik(φ(ti), ·)∥2H(k).

The map

· : span{k(φ(t), φ(·) : t ∈ S } → H(k),
n∑

i=1

aik(φ(ti), φ(·)) 7→
n∑

i=1

aik(φ(ti), ·)

is an isometry that extends to H(k ◦ φ) by Proposition 2.1.19. We see that u = ·(u) ◦ φ, with
∥u∥H(k◦φ) = ∥·(u)∥H(k), the result follows from the fact that ∥f ◦φ∥H(k◦φ) f ∥f∥H(k) for any f ∈ H(k).

Corollary 2.2.19 (Restriction theorem). Let k be a kernel on a set X and let S be a non-empty
subset of X . Denote k|S , the kernel k restricted to the set S. Then u ∈ H(k|S) if and only if u is the
restriction of a function in H(k) to the set S. Moreover,

∥u∥H(k|S)
= min

f∈H(k)
{∥f∥H(k) : u = f

∣
∣
S
}.

Proof. Let φ : S → X be the inclusion map, that is φ(s) = s. Note that H(k ◦φ) = H(k|S) and apply
the pullback Theorem 2.2.18. Conversely, suppose that u = f |S = f ◦ φ for f ∈ H(k). Let t ∈ S we
get |¶t(u)| = |¶φ(t)(f)| f ∥¶φ(t)∥∥f∥ and point evaluations of u are bounded, hence u ∈ H(k|S).

At this point, we are ready to state the characterization of the boundedness of the composition
operator between two RKHSs.

Theorem 2.2.20 (Boundedness characterization of the composition operator). Let k1 and k2 be
kernels on X1 and X2, respectively and let φ : X1 → X2 be a map. Then, the following are equivalent

(i) {f ◦ φ : f ∈ Hk2} ¦ Hk1 ,

(ii) Tφ : Hk2 → Hk1 is a bounded operator

(iii) there exists a constant c > 0 such that k2 ◦ φ ¯ c2k1.

Moreover, c = ∥Tφ∥ is the smallest possible constant.

Proof. Let f ∈ Hk2 , let x ∈ X1 and suppose that Tφ is bounded, then by Cauchy-Schwarz

|¶x(f ◦ φ)| = |¶φ(x)(f)| = |ïf, Tφk2(x, ·)ðHk2
| f ∥f∥Hk2

∥Tφk2(x, ·)∥ f ∥f∥Hk2
∥Tφ∥∥k2(x, ·)∥Hk2

.

So point evaluations of f ◦ φ are bounded and (ii) implies (i). Assume (iii) and let f ∈ Hk2 . From
Theorem 2.2.9 we have that f(x)f(y) ¯ ∥f∥2Hk2

k(x, y) for all (x, y) ∈ X2×X2. Let (s, t) ∈ X1×X1 and

we have f(φ(s))f(φ(t)) ¯ ∥f∥2Hk2
k(φ(s), φ(t)) ¯ ∥f∥2Hk2

c2k1(s, t). Therefore Tφf = f ◦ φ ∈ Hk1 and

Tφ is bounded because ∥Tφf∥Hk1
f c∥f∥Hk2

and we have (ii). Note that (i) states H(k2 ◦ φ) ¦ Hk1 ,
which is equivalent to (iii) by Aronszajn’s inclusion Theorem 2.2.11. As in the proof of Aronszajn’s
inclusion Theorem, one can choose the inclusion map to be Tφ and follow the same procedure, which
shows the final statement.



19

2.3 Vector-valued RKHS

Functions f in a RKHS H on some set X have values f(x) in the real or complex numbers. This
theory can be generalized to where the codomain of the functions in the RKHS is not the field R or C
but a Hilbert space. This section builds up the necessary theory with some examples to later be used
for applications in Section 2.4.

Definition 2.3.1 (vector-valued RKHS). Let C be a Hilbert space and let X be a set. Denote F(X , C)
the vector space of functions from X to C under the usual pointwise addition and multiplication. Let
G ¦ F(X , C) be a subspace, then G is called a a C-valued RKHS on X provided that

(i) G is a Hilbert space.

(ii) for every y ∈ X , the linear evaluation map Ey : G → C given by Ey(f) = f(y) is bounded.

We will also call a C-valued RKHS a vector-valued RKHS, for some Hilbert space C. The most
basic example is taking copies of a scalar-valued RKHS.

Example 2.3.2 (C = Cn). Let C = Cn and H be a RKHS with kernel k on a set X . Denote
Hn :=

⊕n
i=1H, which is a Hilbert space, by Theorem A.1.2. For Hn to be a Cn valued RKHS, one

needs to identify Hn with F(X ,Cn). This can be via the following map,

L : Hn → ran(L) ¦ F(X ,Cn),
f 7→ L(f),

where L(f) is defined pointwise as L(f)(x) = (f1(x), . . . , fn(x)) ∈ Cn for x ∈ X and f ∈ Hn. Point
evaluations are bounded, let x ∈ X and f ∈ Hn

∥Ex(L(f))∥2Cn =
n∑

i=1

|fi(x)|2 f
n∑

i=1

∥fi∥2H∥k(x, ·)∥2H = ∥k(x, ·)∥2H
n∑

i=1

|fi|2H = ∥k(x, ·)∥2H∥f∥2Hn . (2.15)

We see that ∥Ex∥L(Hn,Cn) f ∥k(x, ·)∥H and is bounded. We already conclude that (Hn, ï·, ·ðHn) is a
Cn valued RKHS, the operator norm ∥Ex∥L(Hn,Cn) can be determined with slightly more work. Let
f = (k(x, ·), 0, . . . , 0) ∈ Hn, then we have ∥Ex(L(f))∥Cn = |k(x, x)| = ∥k(x, ·)∥2H = ∥f∥Hn∥k(x, ·)∥H
and hence ∥Ey∥ g ∥k(x, ·)∥H , resulting in ∥Ex∥L(Hn,Cn) = ∥k(x, ·)∥H .

At this point, we have not yet defined what a kernel for a vector-valued RKHS should be. We
review the scalar-valued case, as the the vector-valued case is a generalization of this. Let H be a
scalar-valued RKHS on X that admits a kernel k. Once we fix x ∈ X n, the kernel k induces a PSD
matrix K. A similar notion holds for the kernel of a vector-valued RKHS. To do so, we state what it
means for matrices of operators to be positive.

Definition 2.3.3 (Positive operator). Let C be a Hilbert space, an operator T ∈ L(C) is called positive
if ïTc, cðC g 0 for any c ∈ C, written as T g 0.

Let T = (Ti,j) with 1 f i, j f n with n ∈ N where each (Ti,j) ∈ L(C) is a positive operator. We
call T a matrix of operators on C. One can identify, using the standard matrix-vector multiplication
rules, T with an operator on Cn. Let c ∈ Cn and define

T (c) :=






∑n
j=1 T1,jcj

...
∑n

j=1 Tn,jcj




 .

The operator T is bounded, since

∥T (c)∥2Cn =
n∑

i=1



∥
n∑

j=1

Ti,jcj∥2C




△
f

n∑

i,j=1

∥Ti,jcj∥2C f
n∑

i,j=1

∥Ti,j∥2L(C)∥cj∥2 f ∥c∥2Cn

n∑

i,j=1

∥Ti,j∥2L(C).
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Definition 2.3.4 (Positive matrix of operators). Let T be a matrix of operators on C. We say that
T is positive, written T g 0, if for any c ∈ Cn the inner product

ïTc, cðCn = ï
( n∑

j=1

Ti,jcj

)n

i=1
, cðCn =

n∑

i,j=1

ïTi,jcj , ciðC g 0.

Definition 2.3.5 (Operator-valued kernel). Let X be a set and C be a Hilbert space and k : X ×X →
L(C). Then k is an operator-valued kernel if k(x, y) = k(y, x)∗ for any x, y ∈ X and the matrix of
operators defined by Ki,j := k(xi, xj) is positive.

Let us look at the most simple example of an operator-valued kernel.

Example 2.3.6 (Simple example of an operator-valued kernel). Let H be a scalar-valued RKHS with
kernel k on a set X and let C be a Hilbert space. Then k̃ : X×X → L(C) defined by k̃(x, y) = k(x, y)IC ,
where IC is the identity on C, defines an operator-valued kernel.
Let x, y ∈ X , we have k̃(y, x)∗ = k(y, x)I∗C = k(x, y)IC = k̃(x, y). For the positivity, take x ∈ X n,
c ∈ Cn, we get

n∑

i,j=1

ïk̃(xi,xj)cj , ciðC =

n∑

i,j=1

k(xi,xj)ïcj , ciðC g 0.

since k is a scalar-valued kernel.

As in the scalar-valued case, an operator-valued kernel induces a vector-valued RKHS. The
construction is explicit and similar to the scalar-valued case. To get some intuition of how this
construction should be, we state the following proposition.

Proposition 2.3.7. Let G be a C-valued RKHS on a set X with kernel k. The set span{E∗
xc : (x, c) ∈

X × C} is dense in G.

Proof. Call D := span{E∗
xc : (x, c) ∈ X × C} and let f ∈ D§. Then 0 = ïf,E∗

xcðG = ïExf, cðC =
ïf(x), cðC for all c ∈ C. As this holds for all (x, c) ∈ X × C, we conclude that f = 0 and hence that D
is dense in G.

Lemma 2.3.8 (Moore’s vector-valued theorem for RKHS). Let C be a Hilbert space and let k :
X × X → L(C) be an operator-valued kernel. There exists a Hilbert space G ¦ F(X , C) of C valued
functions such that

• [kxc](·) := k(·, x)c ∈ G for any x ∈ X , c ∈ C,

• ïf, kxcðH = ïf(x), cðC for any f ∈ G and c ∈ C.
We will also call this Hilbert space Gk.

Proof. Let x ∈ X and c ∈ C, define kx : C → F(X , C) as [kxc](·) := k(·, x)c. Let Gpre := span{kxc :∈
X , c ∈ C}. Let f =

∑n
j=1 kxj

vj and g =
∑n

i=1 kyi
wi, where x,y ∈ X n and v,w ∈ Cn, be elements of

Gpre. We may assume w.l.o.g. that f and g have an equal number of terms. Define the map

ï·, ·ðGpre
: Gpre ×Gpre → C,

ï·, ·ðGpre
(f, g) 7→ ïf, gðGpre

:=
n∑

i,j=1

ïk(yi,xj)vj ,wiðC .

It is straightforward to check that ï·, ·ðGpre
is linear in the first component and conjugate linear in

the second component. We have that ïf, fðGpre
g 0, since k is an operator-valued kernel. Suppose

that f = 0, meaning that f(x) = 0 for all x ∈ X . Then, ïf, fðGpre
=
∑n

i,j=1ïk(xi,xj)vj ,viðC =
∑n

i=1ïf(x),viðC =
∑n

i=1ï0,viðC = 0. Conversely, suppose that ïf, fðGpre
= ∥f∥2Gpre

= 0. Then, by the

Cauchy-Schwarz inequality for quasi products we get |ïf, hð| f ∥f∥Gpre
∥h∥Gpre

= 0 for any h ∈ Gpre.
Let h = kyc for some y ∈ X and c ∈ C, then 0 = ïf, kycðGpre

= ï∑n
j=1 k(y,xj)vj , cðC = ïf(y), wðC .

Since w is arbitrary, we conclude that f(y) = 0 for any y ∈ X and f is the zero function. The Hilbert
space G is the completion of the inner product space (Gpre, ï·, ·ðGpre

).
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It is not difficult to see that then Gk from Lemma 2.3.8 is a vector-valued RKHS.

Corollary 2.3.9. The Hilbert space Gk from Lemma 2.3.8 is a vector-valued RKHS. The evaluation
functional Ex = k∗x, the adjoint of the map kx ∈ L(C, Gk) for x ∈ X .

Proof. Let x ∈ X and c ∈ C. It is clear that kx : C → Gk is linear, using Cauchy-Schwarz ∥kxc∥2Gk
=

|ïk(x, x)c, cðC | f ∥k(x, x)∥L(C)∥c∥2C and we conclude that ∥kx∥L(C,Gk) f ∥k(x, x)∥1/2L(C). Since kx is a

bounded linear map between Hilbert spaces, the adjoint exists. Let f ∈ Gk, the property ïf, kxcðGk
=

ïf(x), cðC , we conclude that Ex(f) = f(x) = k∗x(f). It follows that k(x, y) = k∗xky, for x, y ∈ X . Since
the evaluation map is bounded, we conclude that Gk is a vector-valued RKHS.

Proposition 2.3.10. Let G1 and G2 be a C-valued RKHSs on a set X . Suppose that k1 = k2, then
G1 = G2 as sets, and ∥f∥G1

= ∥f∥G2
.

Proof. Since both ki(x, y) = E
(i)
x E

(i)∗
y with x, y ∈ X and i = 1, 2 are kernels for Gi, it follows from

Proposition 2.3.7 that Di := span{E(i)∗
x c : (x, c) ∈ X × C} is dense in Gi. Since E(1)∗ = E(2)∗, we

have G1 = D1 = D2 = G2. Let f ∈ G1, then f =
∑∞

i=1E
(1)∗
xi

ci for x ∈ X n and c ∈ Cn and k1 = k2 we
have,

∥f∥2G1
= lim

n→∞
∥
n∑

i=1

E
(1)∗
xi

ci∥2 = lim
n→∞

n∑

i,j=1

ïE(1)∗
xi

ci, E
(1)∗
xj

cjð = lim
n→∞

n∑

i,j=1

ïE(1)
xj
E

(1)∗
xi

ci, cjð,

= lim
n→∞

n∑

i,j=1

ïk1(xi,xj)ci, cjð = lim
n→∞

n∑

i,j=1

ïk2(xi,xj)ci, cjð = lim
n→∞

n∑

i,j=1

ïE(2)
xj
E

(2)∗
xi

ci, cjð,

= lim
n→∞

n∑

i,j=1

ïE(2)∗
xi

ci, E
(2)∗
xj

cjð = lim
n→∞

∥
n∑

i=1

E
(2)∗
xi

ci∥2 = ∥f∥2G2
.

An operator-valued kernel gives rise to a vector-valued RKHS. In the scalar-valued case, the
existence of a reproducing kernel in an abstract RKHS is guaranteed, by Riesz-Fréchet . However,
using Corollary 2.3.9, an operator-valued kernel can always be constructed from an abstract vector-
valued RKHS from Definition 2.3.1.

Proposition 2.3.11. Let C be a Hilbert space Let G be a C valued RKHS on a set X . Then
k(x, y) := EyE

∗
x is an operator-valued kernel.

Proof. Let x ∈ X n and c ∈ Cn, we get

n∑

i,j=1

ïk(xi,xj)cj , ciðC =
n∑

i,j=1

ïExi
E∗

xj
cj , ciðC =

n∑

i,j=1

ïE∗
xj
cj , E

∗
xi
ciðC = ∥

n∑

i=1

E∗
xi
ci∥2C g 0.

With Proposition 2.3.11, let us have a look how this definition breaks down in the case C = C. Let
G be a C valued RKHS on a set X . If EyE

∗
x = k(x, y), then we expect E∗

x = k(x, ·).
The kernel k(x, y) is an element of L(C), and not of C. However, there is a natural isomorphism
between these two spaces by identifying linear maps T ∈ L(C) with the complex number T (1) ∈ C.
Furthermore, the element k(x, ·) ∈ L(C, H) and not an element of H. Similarly, one can identify
linear maps in L(C, H) with elements of H uniquely. This can be done by mapping S ∈ L(C, H) to
S(1) ∈ H, which is one-to-one.
To see how the adjoint map E∗

x : C → H acts on ³ ∈ C, we let f ∈ H and x ∈ X , then

ïf,E∗
x(³)ðH = ïEx(f), ³ðC = ïf(x), ³ðC = ³ïf, k(x, ·)ðH = ïf, ³k(x, ·)ðH .
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We see that E∗
x(³) = ³k(x, ·) and that E∗

x(1) is naturally identified with k(x, ·). The operator
EyE

∗
x(1) ∈ L(C) boils down to

EyE
∗
x(1) = Ey(k(x, ·) = k(x, y).

With this identification, we can revisit Example 2.3.2, where we looked at copies of existing scalar-
valued RKHSs. Using Proposition 2.3.11, we can find the kernel for this Cn valued RKHS.

Example 2.3.12 (Example 6.4 from [PR16]). From Example 2.3.2, we have seen that (Hn, ï·, ·ðHn)
is a Cn valued RKHS. Let x, y ∈ X , we will work out the kernel k̃(x, y) = ẼyẼ

∗
x. The kernel for

H will be denoted as k. The bounded linear maps L(Cn) can be identified with the space Cn×n, by
letting the linear maps acting on standard basis vector and constructing the matrix representation.
Let f ∈ Hn, with abuse of notation we will write f(x) instead of (Lf)(x) as in Example 2.3.2. Let
a ∈ Cn, we get

ïf, Ẽ∗
x(a)ðHn = ïf(x),aðCn =

n∑

i=1

fi(x)ai =

n∑

i=1

ïf,aik(x, ·)ðH = ïf, (a1k(x, ·), . . . ,ank(x, ·))ðHn .

We see that Ẽ∗
x(a) = (a1k(x, ·), . . . ,ank(x, ·)). Observe that Ẽ∗

x(ei) is the vector k(x, ·) in the i-th
component and zeroes elsewhere. As we can identify k̃ ∈ L(Cn) with complex square matrices of size
n× n, we evaluate the (i, j) component of k̃,

ïk̃(x, y)ei, ejðCn = ïẼyẼ∗
xei, ejðCn = ïẼ∗

xei, Ẽ
∗
yejðHn =

{

k(x, y) i = j,

0 i ̸= j.

Therefore, the kernel function k̃(x, y) can be written as a product with the identity matrix In as
follows

k̃(x, y) =









k(x, y) 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 k(x, y)









= k(x, y)In.

Example 2.3.12 can be extended to the infinite dimensional case.

Example 2.3.13 (6.5 from [PR16]). Let H be RKHS on a set X that admits kernel k. Define the set

ℓ2(H) := {(fn)n∈N : fn ∈ H ∀n ∈ N,

∞∑

i=1

∥fi∥2H < ∞}

and the map

ï·, ·ðℓ2(H) : ℓ
2(H)× ℓ2(H) → C,

(f, g) 7→ ïf, gðℓ2(H) :=
∞∑

i=1

ïfi, giðH .

Using Cauchy-Schwarz, we see that the sum always converges

|ïf, gðℓ2(H)| f
∞∑

i=1

|ïfi, giðH | f
∞∑

i=1

∥fi∥H∥gi∥H f
∞∑

i=1

max(∥fi∥2H , ∥gi∥2H) f
∞∑

i=1

∥fi∥2H + ∥gi∥2H < ∞

Using that ï·, ·ðH is an inner product, it is not hard to show that this map defines an inner product
on ℓ2(H). By defining pointwise limits, it follows that (ℓ2(H), ï·, ·ðℓ2(H) is in fact a Hilbert space.
Similar to the identification in Example 2.3.2, one can identify ℓ2(H) with ℓ2-valued functions. For
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f ∈ ℓ2(H) and x ∈ X , write with abuse of notation, f(x) = (f1(x), f2(x), . . .) . One can show that
f(x) has finite ℓ2-norm

∥Ex(f)∥2ℓ2 = ∥f(x)∥2ℓ2 =

∞∑

i=1

|fi(x)|2 =
∞∑

i=1

|ïf, k(x, ·)ð|2 f
∞∑

i=1

∥fi∥2H∥k(x, ·)∥2H < ∞.

Since Ex : H → ℓ2 is bounded, the space ℓ2(H) is an ℓ2 valued RKHS. Let a = (an)n∈N be an ℓ2

sequence, then

ïf,E∗
x(a)ðℓ2(H) = ïf(x), aðℓ2 =

∞∑

i=1

fi(x)ai =

∞∑

i=1

ïf, aik(x, ·)ðℓ2(H) = ïf, (ank(x, ·)n∈Nðℓ2(H). (2.16)

Let y ∈ X the inner product between the kernel and the canonical basis vectors for ℓ2, ei and ej

ïEyE∗
xei, ejðℓ2 = ïE∗

xei, E
∗
yejðℓ2(H) = ïk(x, ·)ei, k(y, ·)eiðℓ2(H) =

{

k(x, y) i = j,

0 i ̸= j.

Hence, the operator-valued kernel for ℓ2(H) is given by k̃(x, y) = k(x, y)Iℓ2 , where Iℓ2 is the identity
operator on ℓ2.

Finally, one can bound any f(x) ∈ C by the norm of f and the operator norm of k(x, x).

Proposition 2.3.14. Let G be a C-valued RKHS on a set X with kernel k and let x ∈ X n. Then

∥f(x)∥C f ∥k(x, x)∥1/2L(C)∥f∥G.

Proof. Using Cauchy-Schwarz and the fact that f(x) = k∗x(f)

∥f(x)∥2C = |ïf(x), f(x)ðC | = |ïk∗xf, k∗xfðC | = |ïf, kxk∗xfðC | f ∥kxk∗xf∥G∥f∥G,
f ∥kxk∗x∥L(H)∥f∥2G = ∥k∗xkx∥L(C)∥f∥2G = ∥k(x, x)∥L(C)∥f∥2G.

2.4 Results for learning theory

We present two key abstract results with profound implications in learning theory. The first is the
representer theorem, which is essential for deriving closed-form solutions when optimizing over a
RKHS. This theorem leads to an optimal way of recovering a function that matches a set of data
points. We show that a projection onto a finite-dimensional subspace of a RKHS can be viewed as a
regression problem. The second result describes how elements in a specific vector-valued RKHS can
be evaluated in terms of a Hilbert-Schmidt operator. Both of these results are used in addressing the
estimation of the Koopman operator from snapshot data, which will be introduced in Chapter 4.

2.4.1 Representer theorem

Theorem 2.4.1 (Representer theorem). Let k be a kernel with values in R on a set X and let H its
associated RKHS. Fix x ∈ X n and let Ä : Cn → Rg0 and · : Rg0 → R where · is nondecreasing and
Ä depends on f only through f(x1), . . . , f(xn). If the minimization problem

min
f∈H

Ä(f(x1), . . . , f(xn) + ·(∥f∥H) (2.17)

has a solution, it can be written as

f∗(·) =
n∑

i=1

c
f∗

i k(xi, ·), (2.18)

with cf
∗ ∈ Rn. If · is strictly increasing, then every solution is of the form (2.18).
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Proof. Let S := span{k(xi, ·) : 1 f i f n}, which is a finite dimensional subspace of H and thus
closed. Therefore, we may decompose H = S · S§ and any minimizer f∗ = fS + f§ evaluated at a
data point xi results in,

f∗(xi) = ïf, k(xi, ·)ð = ïfS , k(xi, ·)ð+ ïf§, k(xi, ·)ð = fS(xi).

We may bound the objective from below by,

Ä(f∗(x1), . . . , f
∗(xn) + ·(∥f∗∥) = Ä(fS(x1), . . . , fS(xn) + ·(∥f∗∥),

g Ä(fS(x1), . . . , fS(xn) + ·(∥fS∥). (2.19)

The bound follows since ∥f∗∥2 = ∥fS∥2 + ∥f§∥2 and · is nondecreasing. If f∗ minimizes (2.17), then
so does fS , which is of the form in (2.18). If · is strictly increasing, we get a strict inequality in
equation (2.19) and we conclude that f∗ must be of the form (2.18).

Example 2.4.2 (Regression in a RKHS). Let k be a real kernel on X and the data (x,y) ∈ (X ×R)N .
Consider the problem

min
f∈Hk

∥f∥Hk
s.t. f(xi) = yi, 1 f i f N.

By the representer theorem, the solution lies in in the finite dimensional subspace of Hk spanned by
the canonical feature maps centered at the points xi. Imposing the constraint results in

f∗(xj) =
n∑

i=1

c
f∗

i k(xi,xj) = yj , 1 f j f N.

We see that the coefficients cf
∗

= K−1y ∈ RN , where Kij = k(xi,xj) for indices 1 f i, j f N and
y ∈ RN .

Example 2.4.3 (Projection on finite dimensional subspace of a RKHS). Let x ∈ XN , let k be a
kernel on X and assume that g ∈ Hk. Let Vx be the subspace spanned by the functions
span{k(x1, ·), . . . , k(xN , ·)} ¢ Hk. Finding the best approximation of f ∈ Hk in the subspace Vx
results in the regression problem

min
f∈V

∥g − f∥2Hk
.

It is clear that f := PVxg, the projection onto the closed linear subspace Vx solves the problem. It is
a standard result from Hilbert space theory that for f = PVxg we have g − f § Vx. Thus,

0 = ïg − f, k(xi, ·)ðHk
, 1 f i f N.

By the reproducing property, this is equivalent to g(xi) = f(xi) for 1 f i f N . Let
gx = (g(x1), . . . , g(xN ))

T ∈ RN×1 and since fx = gx we get the formula for the projection map

PVx : Hk → Vx,

f(·) 7→ [PVxf ](·) :=
N∑

i=1

(K−1fx)ik(xi, ·).

Observe that the coefficients of the optimal solution to our regression problem in Example 2.4.2 is
equivalent to the projection, with gx = y. Thus, the regression problem in a RKHS can be viewed as
a projection onto the subspace Vx.

Example 2.4.4 (Regression in RKHS with a penalty term). Let k be a real kernel on X and the data
{xi,yi}Ni=1 ∈ X ×R. Consider the problem

min
f∈Hk

1

N

N∑

i=1

(yi − f(xi))
2 + ¼∥f∥2Hk

,
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for some ¼ > 0. This optimization problem is of the form described in the representer theorem. Thus,
the solution f∗ is of the form (2.18). Observe that

∥f∗∥2Hk
= ï

N∑

i=1

c
f∗

i k(xi, ·),
N∑

j=1

c
f∗

j k(xj , ·)ð = (cf
∗

)TKcf
∗

.

Evaluating f∗ at xj results in

f∗(xj) =

n∑

i=1

c
f∗

i k(xi,xj) = eTj Kcf
∗

.

Substituting this into the original problem results in an equivalent convex optimization problem

min
cf

∗∈RN

1

N
∥y −Kcf

∗∥2
RN + (cf

∗

)TKcf
∗

= min
cf

∗
∈RN

1

N
(y −Kcf

∗

)T (y −Kcf
∗

) + ¼(cf
∗

)TKcf
∗

,

= min
cf

∗∈RN

1

N
yTy − 2

N
yTKcf

∗

+
1

N
(cf

∗

)TKTKcf
∗

+ ¼(cf
∗

)TKcf
∗

,

= min
cf

∗
∈RN

1

N
yTy +

1

N
(cf

∗

)T (K2 + ¼NK)cf
∗ − 2

N
yTKcf

∗

.

Taking the gradient with respect to cf
∗

and setting equal to zero results in

2

N
K2cf

∗

+ 2¼Kcf
∗ − 2

N
Ky = 0,

K(K+ ¼NI)cf
∗

= Ky.

Solving for cf
∗

yields the coefficients

cf
∗

= (K+ ¼NI)−1y.

2.4.2 Hilbert-Schmidt operators and vector-valued RKHS

We will show that the tensor product of two real separable Hilbert spaces H1 and H2, denoted
H1¹H2, is isometrically isomorphic to the class of Hilbert-Schmidt operators from H2 to H1, denoted
HS(H2, H1). We write ∼=Ξ to denote that two spaces are isometrically isomorphic under the map Ξ.
To do so, we briefly introduce the concept of tensor products of Hilbert spaces. Let v ∈ H1 and
e ∈ H2, define the bilinear map

v1 ¹ e2 : (H1 ×H2) → R,

(v2, e2) 7→ [v1 ¹ e1](v2, e2) = ïv1, v2ðH1
ïe1, e2ðH2

.

Let E := span{v ¹ e : (v, e) ∈ H1 ×H2}, the set of all finite linear combinations of such bilinear
maps. We equip this space with the inner product

ïv1 ¹ e1, v2 ¹ e2ð¹ := ïv1, v2ðH1
ïe1, e2ðH2

.

One can readily check that this is in fact an inner product by using the properties of ï·, ·ðH1
and

ï·, ·ðH2
. The completion of E with respect to the inner product ï·, ·ð¹ is called the tensor product of

the Hilbert spaces H1 and H2, denoted (H1 ¹H2, ï·, ·ðH1¹H2
). Since both H1 and H2 are separable,

it is not surprising that the tensor product is separable too, with a predictable basis.

Lemma 2.4.5 (Basis for tensor product). Let H1 and H2 be two separable real Hilbert spaces with
bases (vj)

∞
j=1 and (ej)

∞
j=1, respectively. Then, the basis for the tensor product H1 ¹ H2 is given by

(vj ¹ ej)
∞
j=1.
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Proof. Define B := (vj ¹ ej)
∞
j=1 and observe that for any a ∈ R and f ¹ g ∈ H1 ¹ H2 we get

a(f ¹ g) = a
∑∞

i=1 vi¹ ei =
∑∞

i=1(avi)¹ ei = (af)¹ g. Thus, an arbitrary element in H1¹H2 may be
written as f¹g. Define h1n :=

∑n
i=1ïf, viðvi and h2n :=

∑n
i=1ïg, eiðei and note that h1n¹h2n ∈ span{B}.

To show that B is fundamental in H1 ¹H2 we compute

∥f ¹ g − h1n ¹ h2n∥2H1¹H2
= ∥f − h1n∥2H1

∥g − h2n∥2H2
→ 0 (n → ∞).

Theorem 2.4.6 (H1¹H2
∼= HS(H2, H1)). Let H1 and H2 be separable Hilbert spaces. Then H1¹H2

is isometrically isomorphic to HS(H2, H1).

Proof. Let (vi)
∞
i=1 and (ej)

∞
j=1 be ONB for H1 and H2, respectively, and Let B ∈ H1¹H2 be arbitrary.

Then, B can be written as B =
∑∞

i=1 fi¹gi with fi ∈ H1 and gi ∈ H2 for i g 1 and ∞ > ∥B∥2H1¹H2
=

∥∑∞
i=1 fi ¹ gi∥2H1¹H2

=
∑∞

i=1∥fi∥2H1
∥gi∥2H2

. Define the map

Ξ : H1 ¹H2 → L(H2, H1),
∞∑

i=1

fi ¹ gi 7→ Ξ(

∞∑

i=1

fi ¹ gi)(·) :=
∞∑

i=1

ï·, giðH2
fi.

The linearity is clear, let h ∈ H2 and use Cauchy-Schwarz to show the boundedness

∥[Ξ(B)](h)∥2H1
= ∥

∞∑

i=1

ïh, giðH2
fi∥2H1

f ∥h∥2H2

∞∑

i=1

∥fi∥2H1
∥gi∥2H2

= ∥h∥2H2
∥

∞∑

i=1

fi ¹ gi∥2H1¹H2
= ∥h∥2H2

∥B∥2H1¹H2
.

By definition of the operator norms on L(H2, H1) and L(H1 ¹H2,L(H2, H1)), we conclude that

∥Ξ(B)∥L(H2,H1) f ∥B∥H1¹H2
, and ∥Ξ∥L(H1¹H2,L(H2,H1)) f 1.

We claim that Ξ maps into HS(H2, H1), by expressing gi as a linear combination of basis elements,
consider

∥Ξ(B)∥2HS(H2,H1)
=

∞∑

j=1

∥[Ξ(B)](ej)∥2H1
=

∞∑

j=1

∥
∞∑

i=1

ïej , giðH2
fi∥2H1

,

=
∞∑

j=1

∥
∞∑

i=1

ïej ,
∞∑

k=1

ïek, giðH2
ekðH2

fi∥2H1
,

=

∞∑

j=1

∥
∞∑

i=1

∞∑

k=1

ïgi, ekðH2
ïej , ekðH2

fi∥2H1
,

= ∥
∞∑

i=1

∞∑

k=1

ïgi, ekðH2
fi∥2H1

(j = k),

f
∞∑

i=1

∥fi∥2H1

∞∑

k=1

|ïgi, ekðH2
|2,

=
∞∑

i=1

∥fi∥2H1
∥gi∥2H2

,

= ∥
∞∑

i=1

fi ¹ gi∥2H1¹H2
= ∥B∥2H1¹H2

< ∞.
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We conclude that Ξ maps into HS(H2, H1) with ∥Ξ∥L(H1¹H2,HS(H2,H1)) f 1. On the other hand, by
evaluating Ξ on vi ¹ ei ∈ H1 ¹H2 we get

∥Ξ∥2L(H1¹H2,HS(H2,H1))
= sup

B∈H1¹H2

∥B∥f1

∥Ξ(B)∥2HS(H2,H1)
g ∥Ξ(vi ¹ ej)∥2HS(H2,H1)

,

=

∞∑

k=1

∥ïek, ejðvi∥2H1
,

= ∥vi∥2H1
= 1.

We conclude that Ξ is an isometry. To show that Ξ is surjective, it suffices to show that the range
maps into a dense subset of HS(H2, H1). From Proposition 2.2.3 any D ∈ HS(H2, H1) is compact
and hence finitely approximable, since H1 is a Hilbert space. Hence, the set of finite rank operators
between H2 and H1 is dense in HS(H2, H1). Any bounded finite rank operator D : H2 → H1 with
rank n can be written as D(·) =∑n

i=1ï·, eDi ðvDi , for specific (vDi )
n
i=1 ∈ H1 and (eDi )

n
i=1 ∈ H2. Choose

zD =
∑n

i=1 v
D
i ¹ eDi ∈ H1¹H2, then Ξ(zD) = D and Ξ is surjective as it maps in a dense set. Since Ξ

is isometric and surjective, we conclude that H1¹H2 is isometrically isomorphic to HS(H2, H1) under
Ξ.

Let k be a real-valued kernel on a set X and F be real-valued separable Hilbert space. From
Example 2.3.6 we have seen that Γ(x, y) = k(x, y)IF defines an operator-valued kernel. The next
theorem allows us to make the connection between the tensor product of a RKHS and a vector-valued
RKHS. This theorem is a slight generalization of the case studied by Carmeli et. al. in [Car+10,
Example 3.6(i)] where the F is replaced with Hk. Keep in mind that for the remainder of this thesis,
we will assume (1- 2).

Theorem 2.4.7 (G ∼= F ¹ Hk ). Let (F, ï·, ·ðF be a real-valued separable Hilbert space and k a
continuous real scalar-valued kernel on a compact topological space X . Let G be the F valued RKHS
with kernel Γ(x, y) := k(x, y)IF . Then F ¹Hk and G are isometrically isomorphic.

Proof. Define

Υ : F ¹Hk → G,
∞∑

i=1

fi ¹ hi 7→ Υ(

∞∑

i=1

fi ¹ hi)(·) :=
∞∑

i=1

ïhi, k(·,−)ðHk
fi =

∞∑

i=1

hi(·)fi.

The linearity of Υ is clear and the boundedness follows readily from the Cauchy-Schwarz and the fact
that

∑∞
i=1∥fi∥2F ∥hi∥2Hk

< ∞. The sets {f : f ∈ F} and {k(x, ·) : x ∈ X} are fundamental in F
and Hk, respectively. It follows from proposition 2.4.5 that G0 := {f ¹ k(x, ·) : f ∈ F, x ∈ X} is
fundamental in F ¹Hk. The isometry follows since

∥Υ(f ¹ k(x, ·))∥2G = ïk(x, ·)f, k(x, ·)fðG = ïE∗
xf,E

∗
xfðG = ïEx(E∗

x)f, fðF ,
= ïk(x, x)IF f, fðF = k(x, x)ïf, fðF = ïk(x, ·), k(x, ·)ðHk

ïf, fðF ,
= ïf ¹ k(x, ·), f ¹ k(x, ·)ðF¹Hk

,

= ∥f ¹ k(x, ·)∥2F¹Hk
.

The isometry of Υ can be extended via linearity and continuity to F ¹ Hk. What is left to show is
that Υ is surjective. Consider the closure of the image of G0

Υ(G0) = span{k(x, ·)f : f ∈ F, x ∈ X} = span{E∗
xf : f ∈ F, x ∈ X}.

by proposition 2.3.7, it follows that span{E∗
xf : f ∈ F, x ∈ X} = G, which means that Υ is surjective.

We conclude, as Υ is an isometry and bijective.
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F ¹Hk

G HS(Hk, F )

Ξ
Υ

Ξ◦Υ−1

Υ−1

Figure 2.1: Chain of isomorphisms that shows G ∼=Ξ◦Υ−1 HS(Hk, F ).

Combining Theorem 2.4.6 and 2.4.7 result in the isometry G ∼=Υ F ¹ Hk
∼=Ξ HS(Hk, F ), which

schematically can be seen as
Any element in G can be uniquely represented by a Hilbert-Schmidt operator. This viewpoint will

be very useful in learning operators in a vector-valued RKHS. It states that any element of the vector-
valued RKHS can be thought of as a Hilbert-Schmidt operator evaluated at the canonical feature map.
The case where the isomorphism G ∼= HS(Hk, Hk) is considered is Corollary 4.5 in [MK20], here we
present the extension where the image may be chosen freely as a real-valued separable Hilbert space.

Corollary 2.4.8 (“Operator reproducing property”). For every g ∈ G, there exists an operator
A := [Ξ ◦Υ−1](g) ∈ HS(Hk, F ) such that

g(x) = A
[

k(x, ·)
]

, (2.20)

for all x ∈ X and ∥F∥G = ∥A∥HS(Hk,F ). Conversely, for any pair g ∈ G and A ∈ HS(Hk, F ) satisfying
Equation 2.20 we have A = (Ξ ◦Υ−1)(g).

Proof. The first claim can be obtained via a direct computation using the isometries Ξ and Υ from
Theorems 2.4.6 and 2.4.7, respectively. Since span{E∗

xf : f ∈ F, x ∈ X} = G we may express
g(·) =

∑∞
i=1 k(xi, ·)fi. Applying Υ−1 to g, we get Υ−1(g) =

∑∞
i=1 fi ¹ k(xi, ·), applying Ξ and

evaluating at k(x, ·) for some x ∈ X results in

A
[

k(x, ·]
)

= Ξ

[
∞∑

i=1

fi ¹ k(xi, ·)
]
(

k(x, ·)
)

=

∞∑

i=1

ïk(x, ·), k(xi, ·)ðHk
fi =

∞∑

i=1

k(xi, x)fi = g(x).

Conversely, assume that B ∈ HS(Hk, F ) is any operator satisfying Equation 2.20. Then A and B
must be equal as operators, since they agree on the fundamental set {k(x, ·) : x ∈ X}.

Furthermore, Corollary 2.4.8 enables the explicit construction of the F -valued RKHS G, defined
by the kernel Γ(x, y) = k(x, y)IF , through the space of Hilbert-Schmidt operators HS(Hk, F ). This
construction is established via the chain of isomorphisms shown in Figure 2.1. Specifically, we have:

G = {g : X → F : g(·) = A
[

k(x, ·)
]

, A ∈ HS(Hk, F )}.
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Chapter 3

The Koopman operator on the Banach
space C(K)

3.1 Preliminaries

3.1.1 Topological aspects

The powerset of a set X , denoted P(X ), is the set containing all subsets of X .

Definition 3.1.1 (Topological space). Let X be a set. A topology O on X is a subset O ¦ P(X )
satisfying

1. ∅ ∈ O and X ∈ O.

2. If U, V ∈ O, then U ∩ V ∈ O.

3. Let A be an index set, which is a set whose elements are used as indices. Given U³ ∈ O, then
⋃

³∈A U³ ∈ O.

Any set U ∈ O is called an open set. A set C is closed if X \ C is open. The pair (X ,O) is called a
topological space.

Example 3.1.2 (Examples of topologies). Let X be a set, we state several topologies on can define
on X .

• The discrete topology, O := P(X ).

• The chaotic topology, O := {∅,X}.

• Let d be a metric on X , and define the open ball of radius ε > 0 centered at x ∈ X as
Bε(x) := {y ∈ X : d(x, y) < ε}. The standard topology is defined as Os := {U ¦ X : ∀x ∈ U :
∃ ε > 0 : Bε(x) ¦ U}.

Example 3.1.3 (Subspace topology). A subset Y ¦ X of a topological space (X ,O) is also called a
subspace. One can canonically define a topology on Y called the subspace topology, as O|Y := {U ∩Y :
U ∈ O}. It is straightforward to verify that (Y,O|Y) is a topological space.

Definition 3.1.4 (Hausdorff and normal). A topological space (X ,O) is said to be

• Hausdorff if for any x, y ∈ X , x ̸= y, there exists disjoint open sets U, V ∈ O such that x ∈ U
and y ∈ V .

• normal if any disjoint two closed sets can be separated by disjoint open sets. That is, let C,D
be disjoint closed sets. Then, there exist disjoint U, V ∈ O such that C ¦ U , D ¦ V .
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Definition 3.1.5 (Topological convergence). A sequence (xn)n∈N ¢ X is said to converge in a
topological space (X ,O) to some x ∈ X if for every U ∈ O with x ∈ U there exists an N ∈ N such
that for all n > N we have xn ∈ U .

Example 3.1.6 (Convergence with respect to different topologies). We will discuss convergence of a
sequence in topological spaces from Example 3.1.2.

• In the chaotic topology, any sequence (xn)n∈N in X converges against any point x ∈ X . Since
X is the only non-empty open set and xn ∈ X for all n ∈ N.

• Sequences in the discrete topology only converge if they are eventually constant.

• In the standard topology, a sequence (xn)n∈N converges to a limit point x if for any ε > 0, there
exists an N ∈ N such that d(xn, x) < ε.

A desirable property to have is that limit points are unique. This is guaranteed to happen in
Hausdorff topological spaces. Suppose on the contrary that a sequence (xn)n∈N in a Hausdorff
topological space (X ,O) has distinct limit points x, y ∈ X . By the Hausdorff property, there exists
disjoint open sets U, V ∈ O that contain x, y, respectively. There exist N,M ∈ N such that xn ∈ U
for all n > N and xn ∈ V for all n > M . However, xn ∈ U ∩ V = ∅ for n > max(N,M), a
contradiction. A standard example of a topological space that is not Hausdorff is (N,Oco), the
natural numbers equipped with the cofinite topology. That is
Oco := {U ¦ N : U = ∅ or N \ U is finite}. Suppose the cofinite topology has the Hausdorff
property, then for distinct x, y ∈ N there exists disjoint open sets U, V that containing x and y,
respectively. However, we have U ¦ V c which cannot happen as V c is either the empty set or
contains finitely many points. A similar argument shows that (N,Oco) is not normal either. Let A
be an index set, C = (U³)³∈A covers X if X ¦ ⋃³∈A U³.

Definition 3.1.7 (Compactness). A topological space (X ,O) is compact if every open cover of X has
a finite subcover. That is, for every collection C of open subsets of X such that

X ¦
⋃

U∈C

U

there exists a finite collection I = {U1, . . . , Un} ¦ C such that

X ¦
⋃

U∈I

U.

A subset Y ¦ X is compact if it is compact as a subspace with respect to the subspace topology. We
call Y a compact subset of X .

Further, we can prove that compact Hausdorff topological spaces are normal, to do so we need a
small proposition.

Proposition 3.1.8. Let (X ,O) be a Hausdorff topological space. Let x ∈ X and Y be a compact
subset of X . Then there exists disjoint open sets U, V ∈ O such that x ∈ U and Y ¦ V .

Proof. For every y ∈ Y, there exists disjoint open sets Vy and Uy,x containing y and x, respectively.
We have that ∪y∈YVy is an open cover for Y, whereas Uy,x contains x for all y ∈ Y. Since Y is compact,
there exists a finite subcover ∪ni=1Vyi of Y. Then

U :=

n⋂

i=1

Uyi,x, V :=

n⋃

i=1

Vyi

are such that x ∈ U and Y ¦ V . Suppose that there exists z ∈ U ∩ V , then z ∈ Uyi,x for all i and
z ∈ Vj for some j, where 1 f i, j f n. However, Uyi,x ∩ Vyi = ∅ for all i, and we conclude that U and
V are disjoint.
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Let (X ,O) be a compact topological space and let Y be closed. If C be a cover of Y, then C ∪ Yc

is an open cover of X and there exists a finite subcover {C1, . . . , Cn} ∪ Yc of X . Since
F ¦ X ¦ ∪ni=1Ci ∪ Yc it follows that ∪ni=1Ci is a finite subcover of Y. Thus, we have shown that a
closed subset of a compact topological space is in turn compact with respect to the subspace
topology.

Lemma 3.1.9. A compact Hausdorff topological space (X ,O) is normal.

Proof. Let A and B be disjoint closed sets in X . By Proposition 3.1.8 we have that for any a ∈ A
there exists disjoint open sets Ua and Va such that a ∈ Ua and B ¦ Va. Since B is a closed in a
compact topological space, it is itself compact. Hence, there exists a finite subcover for B ¦ ∪ni=1Vai .
Then

U :=

n⋂

i=1

Uai , V :=

n⋃

i=1

Vai

are disjoint open sets containing A and B, respectively.

Lemma 3.1.10. Let (X ,O) be a topological space. Then (X ,O) is normal if and only if for any open
U and any closed set C ¦ U there exists an open set V such that

C ¦ V ¦ V ¦ U.

Proof. Assume that (X ,O) is normal and let C,U be a closed and open set, respectively, such that
C ¦ U . Since C and U c are disjoint closed sets, there exists, by assumption, disjoint V,W ∈ O such
that C ¦ V and U c ¦ W . Because V,W are disjoint and W c ¦ U , we conclude V ¦ W c ¦ U . We
conclude by observing that W c is closed, C ¦ U and taking the closure in V ¦ W c ¦ U .
On the other hand, let A,B be disjoint closed sets. Since A ¦ Bc, there exists, by assumption, an
open set D such that A ¦ D ¦ D ¦ Bc. From D ¦ Bc we get B ¦ D

c
. Since D ¦ D we conclude

D ∩ Dc
= ∅. We have found disjoint open sets U := D and V := D

c
such that A ¦ U and B ¦ V .

We conclude that (X ,O) is normal.

Definition 3.1.11 (Base of a topology). Let (X ,O) be a topological space. A collection of sets B ¦ O
is called a base if each set in O can be written as a union of sets in B. That is

∀U ∈ O : ∃I : U =
⋃

i∈I

Vi Vi ∈ B.

where I is a countable index set.

Definition 3.1.12 (Continuity). Let (M,OM ) and (N,ON ) be topological spaces. A map f :M → N
is called continuous if

∀V ∈ ON : preimf (V ) ∈ OM ,

where
preimf (V ) := {m ∈ M : f(m) ∈ V }

is the preimage of the set V with respect to the map f . One also writes f−1(V ) := preimf (V ).

The set of all C valued continuous functions on a topological space (X ,O) is denoted by C(X ).

Definition 3.1.13 (Homeomorphism). Let (M,OM ) and (N,ON ) be topological spaces. A map
f :M → N is called a homeomorphism if f is bijective and both f and f−1 are continuous.

Proposition 3.1.14 (Preimage of the union is the union of the preimage). Let X,Y be sets and
f : X → Y be a map. Let (Yi)i∈I be a collection of subsets of Y over a countable index set I. We
have

preimf

(
⋃

i∈I

Yi

)

=
⋃

i∈I

preimf (Yi)
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Proof. By definition of the preimage and the union, we get

preimf

(
⋃

i∈I

Yi

)

def
=
{

x ∈ X : f(x) ∈
⋃

i∈I

Yi

}

,

=
{

x ∈ X : ∃i ∈ I s.t. f(x) ∈ Yi

}

,

def
=
⋃

i∈I

{

x ∈ X : f(x) ∈ Yi

}

,

def
=
⋃

i∈I

preimf (Yi) .

We end this section with several statements that we need later on. We do not give proofs of these
statements, we refer the reader to any popular textbook on topology.

Proposition 3.1.15. Let (Ω,O), (Ω′,O′) be a compact spaces. If f : Ω → Ω′ is continuous and Ω′

is Hausdorff, then f(A) = f(A) is compact for every A ¦ Ω. If in addition f is bijective, then f is a
homeomorphism.

Lemma 3.1.16 (Urysohn). Let (X ,O) be a topological space. Then (X ,O) is normal if and only
if for any two non-empty closed disjoint subsets A and B of X , there exists a continuous function
f : X → [0, 1] such that f |A = 0 and f |B = 1.

Urysohn’s lemma tells that C(X ) separates the points of X since singletons {x} are closed.
The original version of Tietze states the result for a normal topological space. The spaces we consider
are Hausdorff and compact. In Lemma 3.1.9, we have shown that such spaces are normal and therefore
Tietze applies to our context.

Theorem 3.1.17 (Tietze). Let (X ,O) be a normal topological space and Y ¦ X a closed subset.
Then, for f ∈ C(Y), there is a g ∈ C(X ) such that g|Y = f .

3.1.2 Algebraic aspects

Definition 3.1.18 (Group). Let S be a set and let ⋆ : S×S → S be a map that satisfies the following
properties

1. (Associative) ∀s, t, u ∈ S : s ⋆ (t ⋆ u) = (s ⋆ t) ⋆ u.

2. (Neutral element) ∃eN ∈ S : ∀s ∈ S : eN ⋆ s = s ⋆ eN = s. We call eN the identity element.

3. (Inverse element) ∀s ∈ S : ∃t ∈ S : s ⋆ t = t ⋆ s = eI . We denote t := s−1, the inverse of s.

Then, the tuple (S, ⋆) is called a group. If in addition the map ⋆ is associative, i.e.

∀s, t ∈ S : s ⋆ t = t ⋆ s

we call (S, ⋆) an abelian or commutative group.

Definition 3.1.19 (Field). An (algebraic) field is a triple (K,⊞,�), where K is a set and ⊞,� are
maps satisfying K×K → K satisfying the following axioms

• (K,⊞) is an abelian group.

• (K∗,�), where K∗ = K \ {0}, is an abelian group.

• The maps ⊞ and � satisfy the distributive property
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1. ∀a, b, c ∈ K : (a⊞ b) � c = a� c⊞ b� c.

Definition 3.1.20 (Vector space). Let (K,⊞,�) be a field. A K-vector space, or vector space over
K is a triple (V,·,»), where V is a set and

· : V × V → V,

» : K× V → V

are maps satisfying

1. (V,·) is an abelian group.

2. The map » acts on (V,·):

• ∀¼ ∈ K : ∀v, w ∈ V : ¼� (v · w) = ¼� v · ¼� w;

• ∀¼, µ ∈ K : ∀v ∈ V : (¼⊞ µ)» v = ¼� v · µ� v;

• ∀¼, µ ∈ K : ∀v ∈ V : (¼� µ)» v = ¼» (µ» v);

• ∀v ∈ V : 1» v = v, where 1 denotes the unit element of the abelian group (K \ {0},�).

Example 3.1.21 (C as a vector space over R). The complex numbers C together with the standard
addition and multiplication can be viewed as a vector space over the real numbers R. To be complete,
we write (C,+, ·), where + : C× C → C and · : R× C → C.

Example 3.1.22 (C(X ) as a vector space over C). Let (X ,O) be a compact Hausdorff topological
space. With C(X ) we denote all continuous C-valued functions on X . Together with the standard
pointwise addition and multiplication, the triple (C(X ),·,») is a vector space over C. That is, for
any f, g ∈ C(K), ¼ ∈ C and x ∈ X we have,

(f · g)(x) := f(x) + g(x), (¼» f)(x) := ¼ · f(x).

Definition 3.1.23 (Vector subspace). Let (V,·,») be a vector space over K and let U ¦ V be
nonempty. The triple (U,·|U×U ,»|

K×U ) is a vector subspace if it is a vector space itself.

We will define an algebra as a unital algebra. All the algebras we will encounter will be algebras
that contain a unit element.

Definition 3.1.24 (Algebra). Let (V,·,») be a vector space. Let · : V × V → V be a bilinear
map. The quadruple (V,·,», ·) is called an algebra. The bilinear map is called multiplication and a
distinguished element e ∈ A satisfying,

v · e = e · v = v, ∀v ∈ V

is called the unit element. If the multiplication is commutative, v · u = u · v for all u, v ∈ V , we call
(V,·,», ·) a commutative (unital) algebra.

Example 3.1.25 (C(X ) as an algebra). Recall Example 3.1.22 and add
⊙

: C(X )× C(X ) → C(X ),
which is defined as the pointwise multiplication. That is, for f, g ∈ C(X ) and x ∈ K,

(f
⊙

g)(x) := f(x) · g(x).

The quadruple (C(X ),·,»,⊙) is an algebra.

From an abstract point of view, we can view C as an algebra. This is overkill, but it does allow
for good generalizations later on.
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Example 3.1.26 (C as an algebra). Recall that from Example 3.1.21 that we can view C as a vector
space over R. Now, we will make a distinction between ·R : R × C → C and ·C : C × C → C, which
denotes the standard multiplication between the complex numbers. Then the quadruple (C,+, ·R, ·C)
is a (commutative) algebra.

Definition 3.1.27 (Algebra homomorphism). A linear map T : A → B between two algebras
(A,·A,»A, ·A), (B,·B,»B, ·B) is called multiplicative if

T (a ·A b) = T (a) ·B T (b), ∀a, b ∈ A

and an algebra homomorphism if in addition T (eA) = eB.

Definition 3.1.28 (Algebra isomorphism). An algebra homomorphism T : A → B is an algebra
isomorphism if T is bijective.

Definition 3.1.29 (Subalgebra). Let (V,·,») be a vector space, and ¸ : V × V → V be a map. The
quadruple (V,·,», ¸) is called a subalgebra.

Definition 3.1.30 (Banach algebra). Let (V,·,», ·) be an algebra and ∥·∥ be a norm on V such that
(V,·,», ·, ∥·∥) is a Banach space. If

∀a, b ∈ V : ∥a · b∥ f ∥a∥∥b∥

we call the quintuple (V,·,», ·, ∥·∥) a Banach algebra.

Example 3.1.31 (C(X ) as a Banach algebra). One can define the supremum norm ∥·∥∞ on C(X ),
defined as

∥f∥∞ = sup
x∈K

|f(x)|

for f ∈ C(X ). Adding the supremum norm to the algebra from Example 3.1.25 results in a Banach
algebra.

Definition 3.1.32 (Ideal). Let (V,·,», ·, ∥·∥) be a commutative Banach algebra. An (algebra) ideal
of V is a vector subspace I ¦ V satisfying

f ∈ I, g ∈ V =⇒ f · g ∈ I.

We say that I is closed if it is closed with respect to the norm ∥·∥.

Observation 3.1.33. Since multiplication is continuous, the closure of an ideal is still an ideal.

Definition 3.1.34 (Proper). Let I be an ideal of a commutative Banach algebra (V,·,», ·, ∥·∥). The
ideal I is called proper if I ̸= V .

Lemma 3.1.35. An ideal I of a commutative Banach algebra (V,·,», ·, ∥·∥) is proper if and only if
e /∈ I.

Proof. Suppose that I is a proper ideal of V and that e ∈ I. Take any f ∈ V , then e ·f = f ∈ I which
shows that I = V , a contradiction. On the other hand, let I be an ideal of V so that e /∈ I, then it is
clear that I ̸= V .

Definition 3.1.36 (Maximal). A proper ideal I of a commutative Banach algebra (V,·,», ·, ∥·∥) is
called maximal if

I ¦ J ¦ V =⇒ J = I or J = V.

Definition 3.1.37 (Linear map). Let (A,·A,»A), (B,·B,»B), be vector spaces over the same field
K, and À : A → B a map. The map À is called linear if

∀¼ ∈ K : ∀a, b ∈ A : À(¼»A a·A b) = ¼»B À(a)·B À(b).
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Definition 3.1.38 (Involution). An involution on a complex (the field over which is vector space is
is C) Banach algebra (V,·,», ·, ∥·∥) is a map

∗ : V → V, (3.1)

x 7→ ∗(x) := x∗ (3.2)

satisfying
(x∗)∗ = x, (x+ y)∗ = x∗ + y∗, (¼x)∗ = ¼x∗, (xy)∗ = y∗x∗

for all x, y ∈ V and ¼ ∈ C.

Definition 3.1.39 (C∗-algebra). Let (V,·,», ·, ∥·∥) be a Banach algebra over C and ∗ be an involution
defined on V . If

∥x∗ · x∥ = ∥x∥2 ∀x ∈ V,

we call the sextuple (V,·,», ·, ∥·∥, ∗) a C∗-algebra.

It follows that in a C∗-algebra ∥x∗∥ = ∥x∥ and ∥e∥ = 1.

Example 3.1.40 (C(X ) as a C∗-algebra). Observe that taking elementwise complex conjugates is an
involution. Adding this operation to the Banach algebra of Example 3.1.31 results in a C∗-algebra.

Now we will make a remark on the notation. From now on, we will suppress the long notation for
algebras, vector spaces and so on and instead just write the name of the set. That is, with “The
Banach algebra A is ...”, we actually mean “The Banach algebra (A,·,», ·, ∥·∥) is ...”. The explicit
use of » and · is clear from the context, a difference between these operations will be made when
necessary.

3.2 The C
∗-algebra C(K) and the Koopman operator

For notational convenience, we shall from now use K to be a compact Hausdorff topological space,
instead of (X ,O). In this chapter we will define a dynamical system and lay out its relation to the
Koopman operator when acting on C(K).

Definition 3.2.1 (Topological dynamical system). Let (X ,O) be a compact topological space and
φ : X → φ(X ) ¦ X be continuous. The pair (X , φ) is called a topological (dynamical) system (TDS).
A topological system is surjective if φ is surjective, and the system is invertible if φ is invertible, i.e.,
a homeomorphism.

Instead of studying φ : K → K, we study its Koopman operator T := Tφ defined by

Tφf := f ◦ φ

for f ∈ C(K). Thus, the Koopman operator is nothing more than the composition operator between
f and φ.
The Koopman operator T commutes with each operation defined on the algebra C(K). That is, for
any f, g ∈ C(K) and ¼ ∈ C we have

T (f + g) = Tf + Tg, T (¼f) = ¼(Tf),

T (fg) = (Tf)(Tg), T f = Tf, |Tf | = T |f |.

Since φ is continuous, the Koopman operator is continuous if f is continuous. The goal of this
chapter is to show that the Koopman operator Tφ contains all information about φ. In other words,
we can uniquely determine φ from given a Koopman operator. To do so, we need to study C(K) as a
C∗-algebra.
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3.2.1 The space C(K) as a Commutative C
∗-Algebra

In certain applications, it suffices to view C(K) as a vector space with pointwise addition and scalar
multiplication. We have seen from Example 3.1.40 that C(K) can be viewed as a C∗-algebra. The
key point of viewing C(K) as a C∗-algebra, is that we can define ideals. We will show that the closed
ideals of C(K) can easily be characterized. The maximal ideals can easily be spotted.
For a closed subset F ¦ K we define

IF := {f ∈ C(K) : f ≡ 0 on F} .

It is clear that IF is an ideal, since

∀x ∈ K : ∀f ∈ IF : ∀g ∈ C(K) : (f · g)(x) = f(x) · g(x) = 0.

The one function 1K ∈ IF if and only if F is empty, hence IF is a proper ideal if and only if F ̸= ∅.
Furthermore, IF is a closed ideal. To see this, let (fn)n∈N be a sequence in IF converging to f ∈ C(K)
and x ∈ F . By the triangle inequality

|f(x)| f |f(x)− fn(x)|+ |fn(x)| f ∥f − fn∥∞ − 0 → 0 (n → ∞),

which shows f is zero on F .
Next is an interesting result. It states that for all closed ideals of C(K), there exists a closed set
F ¦ K such that I = IF . Thus, if we are have a closed ideal of C(K), we know what it “looks” like.
The outline of the proof is as follows. It easily follows that I ¦ IF . To show that IF ¦ I we apply the
following strategy. We choose an f ∈ IF , construct a sequence (gn)n∈N in I and show that gn → f
as n → ∞. Since I is closed, it must be that f ∈ I which implies that IF ¦ I, which completes the
proof.

Lemma 3.2.2. Let I ¦ C(K) be a closed algebra ideal. Then, there is a closed subset F ¦ K such
that I = IF .

Proof. Define

F := {x ∈ K : f(x) = 0 for all f ∈ I} =
⋂

f∈I

[f = 0] =
⋂

g∈I

{x ∈ K : f(x) = 0}.

It can be shown that F is closed, since the functions in I ¦ C(K) are continuous. We have I ¦ IF , as
IF contains all functions f ∈ C(K) that are zero on F . Fix f ∈ IF , ε > 0 and define Fε := [|f | g ε].
We have F ∩ Fε = ∅ and therefore Fε ¦ F c. Let (xn)n∈N ¦ Fε be a sequence converging to x ∈ K.
By the continuity of f

|f(x)| = lim
n→∞

|f(xn)| > lim
n→∞

ε = ε,

which shows that x ∈ Fε. Hence Fε is a closed subset of a compact set K and thus compact. For
each x ∈ Fε, we can find fx ∈ I such that fx(x) ̸= 0. Since C(K) is conjugation invariant, we have
fx ∈ C(K) and fx · fx ∈ I, as I is an ideal. By multiplying with a suitable constant, we may assume
w.l.o.g., that fx g 0 and fx(x) > 1. We have the following open cover

Fε ¦
⋃

x∈Fε

{y ∈ K : fx(y) > 1} =
⋃

x∈Fε

[fx > 1].

By the compactness of Fε, there exists a finite subcover Fε ¦ [f1 > 1] ∪ . . . ∪ [fk > 1]. Define
g := f1 + . . . + fk ∈ I. Since each fi g 0, we have that g g 0. For any x ∈ Fε, we have x ∈ [fj > 1]
for 1 f j f k. Therefore, we have the inclusion Fε = [|f | g ε] ¦ [g g 1]1. Define

gn :=
fn

1 + ng
· g.

1
This is a trivial inclusion.



37

We have gn ∈ I, since g ∈ I, fn ∈ C(K) and (1 + ng)−1 ∈ C(K), as (1 + ng) has no zeroes. Then,

|gn − f | = | nfg

1 + ng
− f − fng

1 + ng
| = |f |

1 + ng
f max

{

ε,
∥f∥∞
1 + n

}

.

Hence, ∥f − gn∥∞ f ε as n → ∞. Because ε was arbitrary and I is closed, f ∈ I and IF ¦ I. Since
I ¦ IF and IF ¦ I, we conclude that I = IF .

Using Lemma 3.2.2, we can show that the maximal ideals of C(K) have a special structure.

Lemma 3.2.3. An ideal I of C(K) is maximal if and only if I = I{x} for some x ∈ K.

Proof. Suppose that I is a maximal ideal. We claim that it suffices to show that I is closed. By
Lemma 3.2.2, there exists a closed set F such that I = IF . Suppose there exists a closed set H ¢ F ,
then IF ¢ IH ¦ C(K) and IF would not be maximal. Hence, such set H cannot exist and we conclude
that F = {x} for some x ∈ K. If I is closed, then I = I and we are done. The other case is that
I = C(K), then we can find a sequence (fn)n∈N in I that converges to 1 ∈ C(K). Therefore, we can
find a function f such that ∥1− f∥∞ < ε. Then, f = 1− (1− f) has no zeroes and 1

f ∈ C(K). Since

I is an ideal, f · 1
f = 1 ∈ I, from Lemma 3.1.35 we conclude that I = C(K). This is a contradiction,

as we assumed that I is maximal. Therefore, I is closed and the assertion follows as discussed above.
Now suppose that I = I{x} for some x ∈ K, and suppose that I{x} is not maximal. Then there exists
an ideal J such that

I{x} ¦ J ¦ C(K)

such that I ̸= J and C(K) ̸= J . Take any f ∈ J with f /∈ I{x}. It must be that f(x) ̸= 0 for all x ∈ K.

Then, since f has no zeroes, 1
f ∈ C(K) and 1 = f 1

f ∈ J . However, since J contains the identity, we
have that J = C(K), a contradiction. We conclude that I{x} is maximal.

Using Lemmas 3.2.3 and 3.2.2, we can show that the linear functionals on C(K) are multiplicative
if and only if they equal some evaluation functional.

Lemma 3.2.4. A nonzero linear functional È : C(K) → C is multiplicative if and only if È = ¶x for
some x ∈ K

Proof. If È = ¶x for some x ∈ K, it is clear that È then is multiplicative. Suppose that µ : C(K) → C

is a nonzero multiplicative linear functional. Take f ∈ C(K), then µ(f) = a for some a ∈ C. By the
linearity of µ, we see that f/a ∈ C(K) is such that µ(f/a) = 1. After rescaling, we may assume that
µ(f) = 1. We see that

1 = µ(f) = µ(f · 1) multipl.
= µ(f)µ(1) = µ(1).

The identity element of C(K), 1, is mapped to the identity element of C, 1. Therefore, µ is an algebra
homomorphism. Define I = ker(µ), it follows from the multiplicativity of µ that I is an ideal,

∀g ∈ I : ∀h ∈ C(K) : µ(g · h) multipl.
= µ(g)µ(h) = 0µ(h) = 0 =⇒ g · h ∈ I.

Since µ is a nonzero mapping, I is a proper ideal. Moreover, we claim that I is maximal. Suppose it
is not, then there exists an ideal J such that I ¦ J ¦ C(K) and J ̸= I and J ̸= C(K). Take g ∈ J
such that g /∈ I, thus µ(g) ̸= 0. Then we may assume that µ(g) = c ∈ C. By linearity, we may assume
that µ(g) = 1 and it follows that g = 1. Since 1 ∈ J we have J = C(K), a contradiction. Therefore,
I is maximal.
By Lemma 3.2.3, there exists an x ∈ K such that ker(µ) = I{x} = {x ∈ K : f(x) = 0} = ker(¶x).
Since µ(f) = 1 and µ(1) = 1, we have

0 = µ(f)− µ(f) = µ(f)− µ(f)µ(1)
lin.
= µ(f − µ(f)1).

Therefore, f−µ(f)1 ∈ ker(µ) = ker(¶x). Since f−µ(f)1 ∈ ker(¶x), we have µ(f) = f(x) = ¶x(f) ∀f ∈
C(K). Since f was arbitrary, we conclude that there exists an x ∈ K such that µ = ¶x.
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Theorem 3.2.5 (Collection of results). Let K be a compact space, and let

Γ(C(K)) :=
{
µ ∈ C(K)′ : µ algebra homomorphism

}
.

Then the map

¶ : K → Γ(C(K)),

x 7→ ¶x

is a homeomorphism, where Γ(C(K)) is endowed with the weak∗-topology as a subset of C(K)′.

Proof. Since the weak∗-topology is Hausdorff, it follows from Proposition 3.1.15 that ¶ is a
homeomorphism if it is continuous and bijective. Since Γ(C(K)) is equipped with the
weak∗-topology it follows by definition that ¶ is continuous. Take any x, y ∈ K and suppose that
¶x = ¶y, which means that

∀f ∈ C(K) : f(x) = ¶x(f) = ¶y(f) = f(y).

Since C(K) separates the points of K, there exists a function h ∈ C(K) such that h(x) ̸= h(y), which
implies that x = y. We conclude that ¶ is injective. Suppose that µ ∈ Γ(C(K)) is nonzero, by Lemma
3.2.4, it follows that there exists an x ∈ K such that µ = ¶x. Therefore, the map ¶ : K → Γ(C(K)) is
surjective. We have shown that ¶ is injective and surjective, hence a homeomorphism.

3.2.2 Koopman Operator

We return to the original setting of a topological dynamical system (K,φ) with its Koopman operator
T = Tφ defined as

Tφ : C(K) → C(K),

f 7→ Tφf = f ◦ φ.
But first, we will look at a slightly more general case, for a map φ : L → K, where we only assume
that K is compact and L is any topological space. We will show that φ is continuous if and only if
f ◦ φ ∈ C(L) for any f ∈ C(K), i.e. Tφ(C(K)) ¦ C(L). One implication is clear, the idea behind
the other one is to show that

⋃

h∈I preim|h|(V ) form a base of the topology of K for some countable
collection of continuous functions I.

Lemma 3.2.6. Let K be a compact space, Ω a topological space, and let φ : Ω → K be a map. Then
φ is continuous if and only if f ◦ φ is continuous for all f ∈ C(K).

Proof. Suppose that f ∈ C(K) and φ is continuous, then f ◦ φ is also continuous. On the other
hand, suppose that f ◦ φ is continuous. Assume that C is equipped with the standard topology, then
V = (0,∞), once canonically embedded into C, is open. The map |f ◦ φ| is continuous since f ◦ φ is
continuous, therefore the set preim|f◦φ|(V ) is open in Ω for every f ∈ C(K). We may rewrite

preim|f◦φ|(V ) = {y ∈ Ω : |(f ◦ φ)(y)| ∈ V } ,

=
{

y ∈ Ω : φ ∈ preim|f |(V )
}

,

def.
= preimφ

(

preim|f |(V )
)

,

and note that this set is open in Ω for any f ∈ C(K). Suppose that the sets of the form preim|f |(V )
form a base for the topology on K. This means that for any open set U of K, we can find a countable
collection of functions I such that U =

⋃

h∈I preim|h|(V ). From Lemma 3.1.14, we conclude

preimφ (U) = preimφ

(
⋃

h∈I

preim|h|(V )

)

=
⋃

h∈I

preimφ

(

preim|h|(V )
)

︸ ︷︷ ︸

open in Ω

.
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A countable union of open sets is again open Ω. Since U was an arbitrary open set in K, we conclude
that φ is continuous since we showed that preimφ (U) is open in Ω. Next we will construct an open
cover for an open set U ¦ K from sets of the form preim|f |(V ).
Let V = (0,∞), as before, from the continuity of f it follows that preim|f |(V ) is open in K. Let
U ¦ K be a nonempty open set and choose x ∈ U . The sets {x} and U c are closed and disjoint, it
follows from Urysohn that there exists a function f ∈ C(K) such that

f : K → [0, 1], f
∣
∣
{x}

= 1, f
∣
∣
Uc = 0.

Since f(x) = 1, we have x ∈ preim|f |(V ) ¦ U . Hence, for every x ∈ U , we can find a function hx, that
depends on x, such that x ∈ preimhx(V ) ¦ U . Then, we have the open cover

U ¦
⋃

x∈U

preimhx(V ).

Because each preimhx(V ) ¦ U we conclude that U =
⋃

x∈U preimhx(V ). Since U is arbitrary we have
found a base for the topology on K.

We now return to when K and L are compact spaces. If φ is continuous, we are ensured that
Tφf = f ◦φ maps into C(L). Hence the operator Tφ is an algebra homomorphism between C(K) and
C(L) when φ is continuous. The next result states that every algebra homomorphism between C(K)
and C(L) is such a Koopman operator. In other words, for any algebra homomorphism T : C(K) →
C(L), there exists a continuous function φ : L → K such that T = Tφ. This is stated in the following
theorem.

Theorem 3.2.7. Let K,L be (nonempty) compact spaces and let T : C(K) → C(L) be linear. Then,
the following assertions are equivalent:

(i) T is an algebra homomorphism.

(ii) There is a continuous mapping φ : L → K such that T = Tφ.

In this case, φ in (ii) is uniquely determined and the operator has norm ∥T∥ = 1.

Proof. Let T : C(K) → C(L) be an algebra homomorphism. Let y ∈ L and define

¸y := ¶y ◦ T : C(K) → C,

f 7→ (¶y ◦ T )(f) = ¶y(T (f)) = (Tf)(y).

By a straightforward argument, it can be seen that ¸y is an algebra homomorphism. By Theorem
3.2.5,

∀y ∈ L : ∃!xy ∈ K : ¸y(f) = ¶xy(f).

We write xy ∈ K, to stress the dependency on the choice of y ∈ L. The uniqueness of this dependency,
which we call φ : L → K, follows from the fact that ¶ from Theorem 3.2.5 is a homeomorphism. To
conclude (ii), we have show is that Tf = f ◦φ and that φ is continuous. Apply an arbitrary f ∈ C(K)
to both sides of ¸y = ¶φ(y), we get (Tf)(y) = (f ◦ φ)(y). Since y ∈ L was arbitrary, we conclude
that Tf = f ◦ φ. Recall that T : C(K) → C(L), so that f ◦ φ = Tf ∈ C(L) is continuous for any
f ∈ C(K). By Lemma 3.2.6, we conclude that φ is continuous and we have shown that (i) implies (ii).
Conversely, let T : C(K) → C(L) be linear and suppose that there exists a continuous map φ : L → K
such that T = Tφ. By definition of the Koopman operator, we have

∀f, g ∈ C(K) : T (fg) = Tφ(fg) = Tφ(f)Tφ(g) = T (f)T (g).
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The one function on K, 1K , gets mapped to T1K = Tφ1K = 1K ◦ φ = 1L. We conclude that T is an
algebra homomorphism. Let f ∈ C(K), then

∥Tf∥ = ∥Tφf∥∞ = ∥f ◦ φ∥ = sup
y∈L

|(f ◦ φ)(y)| f sup
x∈K

|f(x)| = ∥f∥∞,

and we have ∥T∥ f 1. The lower bound is obtained by choosing f = 1K ,

∥T∥ g ∥T1K∥∞ = ∥1K ◦ φ∥∞ = 1.

The implications from Theorem 3.2.7 are important, as we can study something that is highly
nonlinear, φ, and translate it to something that is linear, Tφ. We have shown that there is a 1-1
correspondence between these objects. Linear operators can be studied with our tools from linear
analysis.
We end this chapter with an example of the Koopman operator acting on a permutation map of a
finite dimensional space.

Example 3.2.8 (Permutations on a finite dimensional space). Let K = {1, 2, . . . , n} with n ∈ N and
equip K with the discrete topology, i.e. O = P(K), so that we have a compact Hausdorff topological
space. Let φ : K → K be a permutation on K, which is continuous since every map is continuous in
the discrete topology. Let f ∈ C(K), i ∈ K and let the Koopman operator Tφ : C(K) → C(K) act on
f

(Tφf)(i) = (f ◦ φ)(i) = f(φ(i)).

We observe that the Koopman operator Tφ is the permutation matrix induced by the permutation φ.
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Chapter 4

The Koopman operator between
RKHS

This chapter aims to provide a general framework in which we compare several recent developments in
the field of estimating the Koopman operator from data using the theory of RKHS. In Section 4.1, we
explain the Koopman paradigm for estimating a dynamical system through observed snapshot data.
We introduce the general Dynamic Mode Decomposition (DMD) and conclude with kernel Extended
Dynamic Mode Decomposition (kEDMD) in Section 4.2. We cover a recent method, kernel ridge
regression, which is used to approximate the Koopman operator and compare it with kEDMD. Lastly,
we discuss the boundedness of the Koopman operator and limit the dynamics for which this is feasible
for specific RKHSs.

4.1 The Koopman operator and dynamical systems

The setting of this chapter is as follows, the goal is to approximate an unknown topological dynamical
system (φ,X ). Recall that this means that φ is a continuous map between a compact topological
space X . For simplicity we assume that X ¢ Rd. We are given observed snapshot data

{xi,yi = φ(xi)}Ni=1

such that φ(xi) = yi for 1 f i f N . The map φ encapsulates the evolution of the data. We will say
that φ(xi) = yi is an observed discrete time dynamical system. We will store these data in matrices,

X = [x1, . . . ,xN ] and Y = [y1, . . . ,yN ] ∈ R
d×N . (4.1)

Instead of studying the observed data directly, we will study measurements of these states.
Koopman operators are precisely the tool that allows us to do so. To define the Koopman operator
we need a dynamical system (X , φ) and a Banach space of functions F : X → R so that we can
define the Koopman operator T on a domain D(Tφ) ¢ F such that,

Tφ : D(Tφ) → F ,
g(·) 7→ [Tφ(g)](·) := (g ◦ φ)(·) = g(φ(·)).

We assume that the Koopman operator is bounded, an assumption we shall make some remarks
on in Section 4.4. Elements of this Banach space F are called observables, so that g(x) is a measure
of the state x ∈ X , for some g ∈ F . The underlying dynamical system from which we have observed
snapshot data does not define the Koopman operator uniquely. Rather, it depends on the choice of
observables F together with the dynamical system. A canonical choice in the literature for F is the
Hilbert space L2(X , É) for some measure É. The measure É is positive and the space is equipped with
the standard inner product ïg1, g2ð =

∫

X g1(x)g2(x)dÉ(x). To ensure that the Koopman operator is
well defined on L2(X , É), we need to check that Tφ does not depend on the chosen representative
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in the equivalence classes of functions that are equal É-almost everywhere. That is, if g1(·) = g2(·)
É-almost everywhere, then we need that g1(φ(·)) = g2(φ(·)) É-almost everywhere, too. Assuming that
φ is non-singular with respect to É is sufficient, which means that,

∀X ¢ X : É(X) = 0 =⇒ É(φ−1(X)) = É ({x ∈ X : φ(x) ∈ X}) = 0.

Letting the Koopman operator act on our observed data results in,

Tφg(xn) = g(φ(xn)) = g(xn+1),

which is the measurement of the next time step. The trade-off that is made in studying dynamical
systems through the Koopman operator is that we gained linearity at the cost of the finite
dimensionality of the data, as shown in Figure 4.1.

Figure 4.1: The concept of Koopman operators: By mapping the system to a space of observables, a
nonlinear finite-dimensional system is transformed into a linear infinite-dimensional system.

Fix the Hilbert space F = L2(X , É) and suppose that g ∈ L2(X , É) is an eigenfunction of Tφ with
eigenvalue ¼ ∈ C, then evaluating g on our observed data point xn results in,

g(xn) = Tnφ g(x0) = ¼ng(x0).

Thus, the observable evaluated at the data point xn is a growth or decay by parameter ¼ multiplied by
the value of the observable on x0. The spectrum of the Koopman operator encapsulates information
about the underlying dynamical system [Mez15]; [BMM12]; [Mez94]. The eigenvalues of an operator
generalize to the notion of its spectrum,

Ã(Tφ) := (¼ ∈ C : (Tφ − ¼I) is not invertible) ¢ C,

where I denotes the identity operator. It is not difficult to show that the set of approximate eigenvalues,
denoted Ã(Tφ)ap, is contained in the spectrum,

Ã(Tφ)ap =
{

¼ ∈ C, : ∃(fn)n∈N ¢ L2(X , É), ∥fn∥ = 1∀n ∈ N, lim
n→∞

∥Tφfn − ¼fn∥ → 0
}

¢ Ã(Tφ) ¢ C.

The approximate pseudoeigenvalues for ε > 0 are given by,

Ã(Tφ)ap,ε =
{

¼ ∈ C, : ∃(fn)n∈N ¢ L2(X , É), ∥fn∥ = 1∀n ∈ N, lim
n→∞

∥Tφfn − ¼fn∥ f ε
}

¢ Ã(Tφ)ap ¢ C.

An observable g ∈ L2(X , É) with ∥g∥ = 1 and ∥Tφg−¼g∥ f ε is called a pseudoeigenfunction. By the
structure of the Koopman operator, for n ∈ N we get,

∥Tnφ g − ¼ng∥ = O(nε).

It is more challenging to approximate the spectral properties of an infinite dimensional operator, Tφ,
compared to a finite dimensional system. Dynamic Mode Decomposition (DMD) and the various
extensions thereof aim to approximate spectral properties of Tφ and has numerous variants. We will
introduce exact DMD, Extended DMD (EDMD) and kernel EDMD (kEDMD). For extensive overview
of these methods, we refer to [Tu+14]; [WKR15]; [Wil+15], respectively. A review of the applications
of the Koopman operator and what various other variants can be found in, e.g., [Bru+21]; [Col23].
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4.2 Dynamic Mode Decomposition and its variants

4.2.1 Exact DMD

We will explain the original DMD algorithm, introduced by Schmidt [Sch10]. To fit to the Koopman
paradigm, we need a dynamical system (X , φ) and a Banach space of functions F . The dynamical
system we consider is a discrete time dynamical system given by the observation data in equation (4.1).
Having a finite amount of data results in that we cannot evaluate our data on an unobserved point.
A way to resemble this in the choice of the domain of the Koopman operator is to equip the space of
square integrable functions on X with the empirical point measure ÉN := 1

N

∑N
i=1 ¶xi

. One can check
that this choice of measure is nonsingular with respect to φ. The observable function g ∈ L2(X , ÉN )
is taken to be the identity function, also called a full state observable. Given the snapshot data
X, Y ∈ Rd×N from equation (4.1), we aim to find a matrix KDMD such that Y ≈ KDMDX. The best
fit that best describes the linear dynamics may be formulated as,

K̃DMD := argmin
KDMD∈Cd×d

∥Y −KDMDX∥. (4.2)

It is well known that K̃DMD = YX
 ∈ Cd×d, where  denotes the pseudo-inverse. The objective of

the DMD algorithm is to approximate the leading spectral decomposition of the matrix K̃DMD. In
doing so, the K̃DMD is never explicitly computed. The dimension of the data is typically much larger
than the number of observations points, that is d k N . The large size of the dimension d makes it
intractable to compute the full spectrum. In exact DMD, devoloped by Tu et. al. [Tu+14], the SVD
of rank r ∈ N of X is used to compute the pseudo-inverse of X. The rank-r SVD of X is denoted as
UrΣrV

∗
r , where the columns of Ur and Vr are orthonormal and Σr is diagonal. Tu et. al showed

that the following procedure covers all of the nonzero eigenvalues of KDMD.

Algorithm 1 Exact DMD Algorithm [Tu+14]

Require: Snapshot data matrices X ∈ Cd×M and Y ∈ Cd×N , rank r ∈ N.
1: Compute the truncated singular value decomposition (SVD) of X: X ≈ UrΣrV

∗
r , where Ur ∈

Cd×r, Σr ∈ Rr×r is diagonal, and Vr ∈ CN×r.
2: Compute the low-dimensional compression: f̃DMD = U∗

rYVrΣ
−1
r ∈ Cr×r.

3: Perform the eigendecomposition of K̃DMD,r: K̃DMD,rW = WΛ, where W contains eigenvectors
and Λ is a diagonal matrix of eigenvalues.

4: Compute the DMD modes: Φ = YVrΣ
−1
r W.

Ensure: Eigenvalues Λ and modes Φ ∈ Cd×r.

If the SVD in Algorithm 1 is exact, then the result should compute the eigenvalues of K̃DMD. In
this case, we may write K̃DMD = YVΣ−1U∗, we get,

K̃DMDΦ = YVΣ−1U∗
YVΣ−1

︸ ︷︷ ︸

=K̃DMD

W = [YVΣ−1W]Λ = ΦΛ.

The spectrum of K̃DMD , or an approximation thereof, encapsulates information of the dynamical
system φ. This may appear odd, as the approximation in (4.2) assumes a linear case, whereas the
dynamics are in practice often complex and nonlinear. For complicated systems, the spectrum of such
linear methods can be too restricted. Imposing a prior nonlinear belief on the data can overcome this
issue.

4.2.2 Extended Dynamic Mode Decomposition (EDMD)

A limitation of DMD is that it implicitly assumes the observables in L2(X , ÉN ) are full state
observables, i.e. , g(x) = x. This restricts the approximation K̃DMD of the Koopman operator to the
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subspace of the direct measurements X. Thus, DMD is limited in its extrapolation. To address this
issue, Williams et al. [WKR15] designed an extended version of DMD that allows a prior belief
about the underlying dynamics to be imposed, dubbed the Extended Dynamic Mode Decomposition
(EDMD). A predefined set of observable functions {È1, . . . , ÈM} in L2(X , É) is selected. A common
name for this set of functions is a dictionary, and we define VM = span{È1, . . . , ÈM}. For any
collection of points Z = (zi)

P
i=1 in X and P ∈ N, we introduce the notation,

Ψ(zi) = [È1(zi), . . . , ÈM (zi)] ∈ C
1×M , ΨZ =






Ψ(z1)
...

Ψ(zP )




 ∈ R

P×M .

Using this notation, any function in g ∈ VM evaluated at x ∈ X may be written as,

g(x) =
M∑

i=1

c
g
iÈi(x) = Ψ(x)cg.

for coordinates cg ∈ CM×1. The aim of EDMD is to find a finite dimensional approximation of Tφ
restricted to the subspace VM , that we call K̃EDMD. For a given g ∈ VM , we are after K̃EDMDR

M×M

such that,

Tφg ≈
M∑

i=1

(KEDMDc
g)i Èi.

This approximation can only be exact if Tφ is VM invariant. Thus, we seek to minimize the following
error term R(g, x),

[Tφg](x) = (g ◦ φ)(x) = Ψ(φ(x))cg = Ψ(x)KEDMDc
g +Ψ(φ(x))cg −Ψ(x)KEDMDc

g,

= Ψ(x)KEDMDc
g +

(
M∑

i=1

Èi(φ(x))c
g
i −Ψ(x)KEDMDc

g

)

︸ ︷︷ ︸

:=R(g,x)

.

Again, R(g, x) can only equal zero if Tφ is VM invariant. However, this is generally not the case
for our chosen dictionary. From the observation data, the optimization problem becomes term to be
minimized may be rewritten as,

K̃EDMD := argmin
KEDMD∈CM×M

1

2

N∑

i=1

|Ψ(φ(xi))c
g −Ψ(xi)KEDMDc

g|2,

= argmin
KEDMD∈CM×M

1

2

N∑

i=1

|(Ψ(yi)−Ψ(xi)KEDMD) c
g|2.

Approximating via the quadrature rule with nodes X and appropriate weights (wi)
N
i=1, this least

squares problem may be solved uniquely by K̃EDMD := G A, where,

G =

N∑

i=1

wiΨ(xi)
∗Ψ(xi) ∈ C

M×M , A =

N∑

i=1

wiΨ(xi)
∗Ψ(yi) ∈ C

M×M (4.3)

where ∗ denotes the complex transpose. Let D = diag( 1
M , . . . ,

1
M ), for entries 1 f i f N and

1 f j f M of we may write,

Gij =
[

Ψ∗
X
DΨ

X

]

ij
=

1

N

N∑

k=1

Èi(xk)Èj(xk) = ïÈj , ÈiðL2(X ,ÉN ), (4.4)

Aij =
[

Ψ∗
X
DΨ

Y

]

ij
=

1

N

N∑

k=1

Èi(xk)Èj(yk) = ïTφÈj , ÈiðL2(X ,ÉN ). (4.5)
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Algorithmically, we have

Algorithm 2 EDMD Algorithm [WKR15]

Require: Snapshot data matrices X ∈ Cd×N and Y ∈ Cd×N , quadrature weights {wi}Ni=1, and a
dictionary of functions {Èm}Mm=1.

1: Compute the matrices Ψ
X
, Ψ

Y
and D = diag(w1, . . . , wM ).

2: Compute the matrices G and A according to equations (4.4) and (4.5), respectively.
3: Compute the EDMD matrix K̃EDMD : G A ∈ CM×M

4: Perform the eigendecomposition of K̃EDMD : K̃EDMDV = VΛ, where V contains eigenvector
coefficients and Λ is a diagonal matrix of eigenvalues.

Ensure: Eigenvalues Λ and eigenvector coefficients V ∈ CM×M .

Forming the matrices G and G both take O(NM2) and computing the eigendecomposition of
K̃EDMD is O(M3). For dictionaries with a large amount of functions, computations swiftly become
intractible. The type of functions inside the dictionary are vital to a high quality approximation the
Koopman operator. By choosing linear functions as observables, this algorithm is equivalent to
standard DMD, developed by Tu et. al. except that in this particular choice of dictionary, we have
K̃T

EDMD = K̃DMD. Hence, the name extended DMD is in place. Often it is the case that the size of
the dictionary scales with the dimension of the state space Rd. For example, suppose we are given
dynamics in R2 from which we belief that the eigenfunctions of the Koopman operator are analytic.
Then, we may choose all polynomials up to some degree, say 30. From Example 2.1.14, the set of all
polynomials would have size

(
2+30
30

)
= 496, which makes computations feasible. However, suppose we

now have a dynamical system in R128, then the set of all polynomials up to degree 30 is
(
128+30

30

)
= O(1032). Scaling poorly with the dimension of the state space is also referred to as the

curse of dimensionality. To address this issue, one requires an algorithm where the size of the
dictionary does not scale problematically with respect to the dimension d.

4.2.3 Kernel Extended Mode Decomposition (kEDMD)

Suppose we are given a real-valued kernel k over Rd and snapshot data X and Y. Then, a canonical
data-driven approach to choose a dictionary is the set {k(x1, ·), . . . , k(xN , ·)}. Call
V
X

= span{k(x1, ·), . . . , k(xN , ·)} and define V
Y

analogously. We see that the size of the dictionary
equals the number of observation points, M = N . A suitable kernel function is the only choice to
make. When the dictionary contains the canonical feature maps of a kernel, we will call EDMD with
this specific dictionary kernel EDMD (kEDMD). We will make a distinction for kEDMD with one
and two dictionaries. First, we will cover the case where V

X
is the dictionary present. Hereafter, we

present a different version of EDMD with two dictionaries, V
X

and V
Y
.

Before we continue, we introduce some notation. Let L,P ∈ N, for sets of points (zi)
L
i=1 ¢ Rd and

(wj)
P
j=1 ¢ RP , we define the kernel matrices Kz,w ∈ RL×P componentwise as (Kz,w)ij := k(zi,wj)

where 1 f i f L and 1 f j f P . Let h ∈ Vw and define hz := (h(z1), . . . , zL)
T ∈ RL×1. Since h ∈ Vw

we can write h =
∑P

i=1 c
h
i k(wi, ·) and we call the element ch ∈ RP×1 the coordinates of h, with

respect to the canonical basis of Vw. It turns out that Kz,wc
h consists of the function h, evaluated

at the points of z, for 1 f i f N we have,

(

Kz,wc
h
)

i
=

P∑

j=1

(Kz,w)ij c
h
j =

P∑

j=1

k(zi,wj)c
h
j =





P∑

j=1

chj k(wj , ·)



 (zi) = h(zi). (4.6)

We have that Kz,wc
h = hz.
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Suppose that we choose only one dictionary, V
X
. This is a special case of EDMD where the

dictionary is the set of kernel functions centered at the data X. For a given g ∈ V
X

with coordinates

cg, the matrix K̃kEDMD aims to approximate,

(Tφg)(·) ≈
N∑

i=1

(

K̃kEDMDc
g
)

i
k(xi, ·).

We read off the matrix K̃kEDMD immediately from Equations (4.4) and (4.5) to see that
K̃kEDMD = K−1

X
K
X,Y

. We immediately see that the kernel trick can be used for a computationally
efficient construction of the matrices G and A, respectively. By being able to compute the inner
product through a kernel evaluation, G and A can be computed in O(N2M), an improvement from
O(NM2) if the size of the dictionary M is large.

Now we present kEDMD with two dictionaries, V
X

and V
Y
. The objective in this case changes

slightly. We desire the Koopman operator to map into V
X
, when acting on V

Y
. Given g ∈ V

Y
with

coordinates cg, estimate K̃kEDMD ∈ RN×N such that

(Tφg)(·) ≈
N∑

i=1

(

K̃kEDMDc
g
)

i
k(xi, ·).

Note that on g is a linear combination of kernel functions, centered on V
Y
. Going through the

machinery of the EDMD procedure, we see that the formulae for the matrices G and A from Equations
(4.4) and (4.5) change as follows,

Gij = ïk(xj , ·), k(xi, ·)ð, Aij = ïTφk(yj , ·), k(xi, ·)ð, 1 f i, j f N.

For this version of kEDMD, we see that the approximation of the Koopman operator is K̃kEDMD =
K−1

X
K
Y

∈ RN×N . Recall that, for g ∈ V
Y
, the matrix K̃kEDMD aims to approximate

N∑

i=1

(

K̃kEDMDc
g
)

i
k(xi, ·) ≈ (Tφg) (·) = g(φ(·)) =

N∑

j=1

c
g
jk(yj , φ(·)).

We claim that the matrix represents the operator PV
X
Tφ

∣
∣
∣
V
Y

, the Koopman operator followed by a

projection onto V
X
, restricted to V

Y
. The formula for the projection from Hk onto V

X
, denoted

PV
X
, was explored in Example 2.4.3. Let f ∈ Hk, then with some abuse of notation [PV

X
Tφf ](·) =

∑N
i=1(K

−1

X
f
φ(X)

)ik(xi, ·). The coordinates of PV
X
Tφ

∣
∣
∣
V
Y

(g) with respect to the canonical basis of

V
X

are given by
(

K−1

X
g
Y

)

. Note that g
Y

can, as we have shown in Equation (4.6), be written as

g
Y

= K
Y
cg. Thus, the Koopman operator followed by the projection onto V

X
, restricted to V

Y
is

given by,
[

P
X

∣
∣
V
Y

(g)

]

(·) =
N∑

i=1

(

K−1

X
K
Y
cg
)

i
k(xi, ·) =

N∑

i=1

(

K̃kEDMDc
g
)

i
k(xi, ·).

In the same spirit, one can show that the operator that is represented in the case of only one dictionary

V
X

is PV
X

∣
∣
∣
V
Y

.

It turns out that the matrix K̃kEDMD with one dictionary does not encapsulate any form of composition
with the dynamics φ. Instead, it is a change of coordinates from V

Y
to V

X
in the form of a projection

onto the subspace V
X
. The matrix K̃kEDMD when electing two dictionaries, V

X
and V

Y
does reflect

a composition in the operator that it represents.
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4.3 Kernel ridge regression

In this section, we discuss a recent “DMD-free” method by Kostic et. al [Kos+22] that approximates
the Koopman operator from data. This method depends on the developed theory in Section 2.4.
The approach taken by Kostic et. al. is explained after which it will be put in the same context as
introduced in Section 4.1. Hereafter, the comparison with the kEDMD is made. Let k be a real-valued
continuous kernel on a compact set X , so that Assumptions (1- 2) are satisfied, and (φ,X ) an unknown
dynamical system. We assume that the Koopman operator maps Tφ : L2(X , É) → L2(X , É) boundedly.
Assume further that É is finite and that for any x ∈ X the k(x, x) < ∞ É almost-everywhere. It follows
that the inclusion operator SÉ : Hk ↪−→ L2(X , É) is bounded, let f ∈ Hk

∥f∥2L2(X ,É) =

∫

X
|f(x)|2dÉ(x) =

∫

X
|ïf, k(x, ·)ðHk

|2dÉ(x) f
∫

X
∥f∥2Hk

k(x, x)dÉ(x) = ∥f∥2Hk
k(x, x)É(X ) < ∞.

The bound above holds É-almost everywhere. It is shown in [SC08, Theorem 4.26] that that the
adjoint of SÉ is the integral operator

S∗
É : L2(X , É) → Hk,

f 7→ (S∗
Éf)(·) =

∫

X
k(x, ·)f(x)dÉ(x).

We see that S∗
É is Ak|Hk

, where Ak is defined as in Proposition 2.2.4. Since Ak is Hilbert-Schmidt,
the restriction is Hilbert-Schmidt too. As the norms of an operator and its adjoint are equivalent, we
conclude that SÉ is a Hilbert-Schmidt operator. Since by assumption Tφ is bounded,the composition

T̂φ := TφSÉ : Hk → L2(X , É),
is a Hilbert-Schmidt operator too. Thus, it is appropriate to approximate T̂φ by means of Hilbert-
Schmidt operators. To do so, let M ∈ HS(Hk) and define the risk as

R(M) := ∥T̂φ − SÉM∥HS(Hk,L2(X ,É)).

Our aim is to minimize the empirical risk, once we are given data. Error bounds from the risk to
the empirical risk are given in the original paper by Kostic et. al. To fit the framework presented in
Section 4.1, we assume the same snapshot data are present. To define the empirical risk, we need the
following operators.

Ŝ : Hk → R
N ,

f 7→ Ŝ(f) :=
1√
N

(f(x1), . . . , f(xN )).

Since the range of Ŝ is finite dimensional and each component of Ŝ(f) can be bounded, it follows that
Ŝ ∈ HS(Hk,R

N ). The adjoint can easily be computed, let f ∈ H and a ∈ RN ,

ïŜf,aðRN =
1√
N

N∑

i=1

aif(xi) =
1√
N

N∑

i=1

aiïf, k(xi, ·)ðHK
= ïf, 1√

N

N∑

i=1

aik(xi, ·)ðHk
= ïf, Ŝ∗aðHk

.

In fact, even though it is true that Ŝ∗ maps into Hk, we can make the stronger statement that
Ŝ∗ : RN → V

X
. The composition ŜŜ∗ : RN → RN is a map between finite dimensional spaces, and

thus can be represented as a matrix in RN×N . It turns out that this matrix is precisely the kernel
matrix K

X
multiplied by 1/N . To see this, let a ∈ RN , since k is symmetric we get,

ŜŜ∗(a) =
1√
N
Ŝ

(
N∑

i=1

aik(xi, ·)
)

=
1

N






∑N
i=1 aik(xi,x1)

...
∑N

i=1 aik(xi,xN )




 =

1

N






k(x1,x1) . . . k(x1,xN )
...

. . .
...

k(xN ,x1) . . . k(xN ,xN )











a1
...

aN




 ,

=
1

N
K
X
a.
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Similarly for Ŝ∗Ŝ ∈ HS(Hk), let f ∈ Hk we get

Ŝ∗Ŝ(f) =
1√
N
Ŝ∗
[
(f(x1, . . . , f(xN ))

]
=

1

N

N∑

i=1

f(xi)k(xi, ·) =
1

N

N∑

i=1

ïf, k(xi,−)ðHk
k(xi, ·),

=
1

N

N∑

i=1

Ξ (k(xi, ·)¹ k(xi,−)) (f).

Where we made use of the isomorphism Ξ defined in Theorem 2.4.6. For notational convenience, we
will omit the map Ξ. To summarize, we have the following operators,

Ŝ ∈ HS(Hk,R
N ), Ŝ(f) =

1√
N

(f(xi))
N
i=1, ŜŜ∗ ∈ L(RN ), ŜŜ∗a =

1

N
K
X
a,

Ŝ∗ ∈ HS(RN , V
X
), Ŝ∗(a) =

N∑

i=1

aik(xi, ·), Ŝ∗Ŝ ∈ HS(Hk), Ŝ∗Ŝ(f) =
1

N

N∑

i=1

k(xi, ·)¹ k(xi,−)(f).

Define analogous operators on Y,

Ẑ ∈ Ẑ(Hk,R
N ), Ẑ(f) =

1√
N

(f(yi))
N
i=1, ẐẐ∗ ∈ L(RN ), ẐẐ∗a =

1

N
K
Y
a,

Ẑ∗ ∈ Ẑ(RN , V
Y
), Ẑ∗(a) =

1√
N

N∑

i=1

aik(yi, ·), Ẑ∗Ẑ ∈ Ẑ(Hk), Ẑ∗Ẑ(f) =
1

N

N∑

i=1

k(yi, ·)¹ k(yi,−)(f).

We can read off the empirical input, output and cross covariances, which are given by Ŝ∗Ŝ, Ẑ∗Ẑ
and Ŝ∗Ẑ, respectively. The respective empirical kernel matrices with respect to the snapshot data
are given by ŜŜ∗, ẐẐ∗ and ẐŜ∗. The Koopman operator that we can estimate can only be acting
between the spaces, i.e. M : V

Y
→ V

X
, as we do not have knowledge of what is outside these data.

The Koopman can now be estimated by minimizing the empirical risk,

R̂(M) = ∥Ẑ − ŜM∥2HS(V
Y
,RN )

Our optimization problem boils down to,

Given, X, Y, solve min
M∈HS(V

Y
,RN )

R̂(M) = min
M∈HS(V

Y
,V
X

)

1

N

N∑

i=1

∥k(yi, ·)−M∗k(xi, ·)∥Hk
. (4.7)

It can be shown that the empirical risk can be written as in the right hand side in Equation 4.7,
which is connected with Conditional Mean Embeddings (CME) [Son+09]. Within a more grounded
measure theoretical framework, one can view the Koopman operator as a conditional expectation.
Unfortunately, we can merely motivate the presence of the adjoint by mentioning that this ensures all
objects live inside the same space, namely V

Y
, in our framework. A connection between vvRKHS and

Hilbert-Schmidt operators was explored in Section 2.4. It turns out that the connection between least
squares regression problems and CME relies on Corollary 2.4.8, studied by Mollenhauer and Koltai in
[MK20].
Through the isometry Ξ ◦ Υ−1 from Corollary 2.4.8, we may formulate the problem by minimizing
over V

X
valued functions, instead of optimizing over for an operator M ∈ HS(V

Y
, V

X
). Recall that

optimization over functions in a scalar-valued RKHS is convenient, as a closed form solution can
be found easily by means of the representer Theorem 2.4.1. We presented a regularized regression
problem for a scalar-valued RKHS in Example 2.4.4. An analogous result holds true for regression in
vector-valued RKHS, shown by Micchelli and Pontil [MP05]. Let µ g 0 and a Tikhonov regularization
term to Equation (4.7). The estimator M̂ to the altered problem,

min
M∈HS(V

Y
,V
X

)
R̂(M) + µ∥M∥2HS(V

Y
,V
X

), (4.8)
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is given by M̂ = Ŝ∗(K
X

+ µIN )
−1Ẑ, where IN denotes the identity on RN×N . The regularized

problem in Equation (4.8) is referred to as Kernel Ridge Regression (KRR). To put KRR in the same
framework as kEDMD, we let M̂ act on an arbitrary element in its domain. Let Ẑ act on some g ∈ V

Y

with coefficients cg with respect to the canonical basis. Note that evaluating an element in V
Y

on V
Y
,

which is what Ẑ does up to a constant, is a special case of Equation (4.6). We immediately write,

Ẑ(g) =
1√
N

K
Y
cg.

Thus, we see that the approximation of the Koopman operator M̂ can be written as,

M̂(g) = Ŝ∗(
1

N
K
X
+ µIN )

−1Ẑ(g) =
1√
N

N∑

i=1

(

(
1

N
K
X
+ µIN )

−1 1√
N

K
Y
cg
)

i

k(xi, ·),

=
N∑

i=1

(

(K
X
+NµIN )

−1K
Y
cg

︸ ︷︷ ︸

:=K̃KRR

)

i

k(xi, ·).

We claim that, for µ = 0, the matrix K̃KRR represents the operator PV
X
Tφ

∣
∣
∣
V
Y

. Let f ∈ Hk, the

projection onto V
X

is given by [PV
X
f ](·) = ∑N

i=1(K
−1

X
f
X
)ik(xi, ·). Let g ∈ V

Y
with coordinates cg.

The coordinates of g after composing with φ and then projecting are, with some abuse of notation,
K−1

X
g
φ(X)

= K−1

X
g
Y
. Recall from the derivation in Equation (4.6) that this equals K−1

X
K
Y
cg =

K̃KRRc
g.

Observe that for the case µ = 0 the matrices K̃KRR and K̃kEDMD coincide, in the case one chooses
two dictionaries, V

X
and V

Y
, for kEDMD. For µ > 0, the regularization term NµIN is added.

4.4 Some caveats

We give a slightly more negative view of the approximation of the Koopman operator. As we have seen
in the case for K̃KRR, the Koopman operator is approximated using a finite rank operator. The idea
is that the Koopman operator is approximated more accurately when the number of sample points
increases. It is therefore natural to question the compactness of the Koopman operator. It turns out
that the compactness of the Koopman operator on L2(X , É) depends on the underlying measure É.
First, we need the notion of an atom. Let (S,Σ) be a measurable space and let µ be a measure on
that space. An measurable set A is an atom if µ(A) > 0 and if for any measurable subset B ¢ A
we have 0 ∈ {µ(B), µ(A \ B}. A measure that does not contain atoms is called non-atomic. It was
shown by Singh and Kumar that no compact Koopman operators exist on L2(X , É) if É is non-atomic
[SK79, Corollary 2.1]. Since the Lebesgue measure is non-atomic, it follows that the standard L2(R)
space does not contain any compact Koopman operators, no matter the underlying dynamics.
The choice of underlying Banach space on which the Koopman operator reflects in its properties.
Boundedness of the Koopman operator between Banach spaces was characterized in Theorem 2.2.20.
We saw that the Koopman operator is bounded if the space is preserved which can be a simple
condition, depending on the underlying RKHS. Hence, the choice of RKHS is of great importance to
what dynamics one can have for a bounded Koopman operator. Even for popular Gaussian kernels,
the dynamics for which the Koopman operator is bounded are dramatically restricted.

4.4.1 Space preservation

We give two examples of RKHSs Hk and dynamics φ such that Tφ maps boundedly between Hk.

Example 4.4.1 (Rotation preserves the RKHS H2(D)). Consider the Hardy space H2(D) from
Example 2.1.22 and the dynamical system (D, φ), where φ(z) = zeiÃ/2. Let f ∈ H2(D) and z ∈ C.
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We immediately see that ∥f∥H2(D) = ∥Tφf∥H2(D) and we conclude that the dynamical system preserves
the RKHS structure.

Example 4.4.2 (Sobolev space Hs(Rd)). Let Hk(Rd) with k > d/2. It is a well known result that
this space is included in the bounded continuous functions on Rd, which makes Hk(Rd) a RKHS.
Let φ be a k times continously differentiable diffeomorphism on Rd. Then the Koopman operator Tφ
between Hk(Rd) is bounded. Let f ∈ Hk(Rd), we need to show that f ◦ φ ∈ Hk(Rd). We will show
that the norm of the first partial derivative is bounded, similar calculations can be done for higher
order derivatives. To show this, we will use the fact that ∥ ∂φ∂xi ∥∞ f C for some C > 0. We use the
symbols ∇ and D for the gradient and the Jacobian, respectively. By a change of variables and since
φ(Rd) = Rd we get,

∫

Rd

∣
∣
∣
∣

∂

∂xi
f ◦ φ(z)

∣
∣
∣
∣

2

dz =

∫

Rd

∣
∣
∣
∣
∣
∣

d∑

j=1

∂f

∂xj
(φ(z))

∂φ

∂xi
(z)

∣
∣
∣
∣
∣
∣

2

dz,

=

∫

φ(Rd)

∣
∣
∣
∣
∣
∣

d∑

j=1

∂f

∂xj
(w)

∂φ

∂xi
(φ−1(w))

∣
∣
∣
∣
∣
∣

2
∣
∣detDφ(φ−1(w))

∣
∣
−1

dw
(
w = φ(z), so φ−1(w) = z

)
,

f C̃

∫

Rd

|∇f(w)|2 dw,

= C̃∥∇f∥L2(Rd) < ∞.

Here C̃ > 0 is some constant depending on C.

4.4.2 The Koopman operator between Gaussian RKHS

The Gaussian kernel and its corresponding RKHS turns out to be an interesting space to study the
boundedness of the Koopman operator. The Gaussian kernel on R with parameter Ã > 0 is denoted

kÃ(x, y) = exp

(

−(x− y)2

2Ã2

)

.

Example 4.4.3 (Inclusion of Gaussian kernels [Phi+24]). Let X be a compact subset of R, letM k 1
and define φ : X → X by φ(x) := x/M . Let Ã > 0 and let kÃ denote the Gaussian kernel, composing
kÃ and φ results in,

(kÃ ◦ φ)(x, y) = exp
(

− ( xM − y
M )2

2Ã2

)

= exp
(

− (x− y)2

2(ÃM)2

)

= kÃM (x, y).

This is another Gaussian kernel with parameter ÃM k Ã > 0. From [SHS06, Corollary 6] it follows
that HÃM ↪−→ HÃ with constant

√
M . From Theorem 2.2.11 we have ∥f∥Hσ f

√
M∥f∥HσM

and
kÃM ¯ MkÃ. In [SHS06, Corollary 7], it is shown that the inclusion is not surjective.

We generalize the Gaussian kernel to act on elements of Rd, the parameter Ã ∈ R is replaced with
a PSD matrix C ∈ Rd×d. With kC we denote Gaussian kernel on Rd with parameter C and is defined
as,

kC(x,y) := exp
(
∥−C−1(x− y)∥2

)
.

For the special case C = ÃId, where Ã > 0 and Id is the identity on Rd, the kernel
kÃId = exp

(
−∥(x− y)∥2/Ã2

)
.

Example 4.4.4 (Restriction on dynamics for bounded operator on HC). Let φ : Rd → Rd be a map.
It has been shown in [Gon+24, Corollary 1] that the Koopman operator Tφ is bounded between HÃ

only if the underlying dynamics are affine, that is φ(x) = Ax+ b, where A ∈ Rd×d and b ∈ Rd.
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Corollary 4.4.5 (Proposition 3.3 in [Phi+24]). Let C1, C2 ∈ Rd×d with d > 1 be positive semidefinite.
Then HC1

can be continuously embedded in HC2
if and only if C2

1 − C2
2 is positive semidefinite. In

this case we have for f ∈ HC1

∥f∥C2
f
(
det(C1)

det(C2)

)1/2

∥f∥C1
and, k2C1

¯ det(C1)

det(C2)
k2C2

.

It follows from Example 4.4.4 that at least the dynamics need to be affine for the Koopman
operator to be bounded between HC . Combining this result with Corollary 4.4.5 we can impose
further restrictions on the dynamics, given that the dynamics are invertible.

Corollary 4.4.6. Let C ∈ Rd×d be a positive semidefinite matrix and φ be affine dynamics given
by φ(x) = Ax + b for A ∈ Rd×d and b ∈ Rd. Furthermore, assume that A is invertible. Then, the
Koopman operator Tφ is bounded between HC if only if (CA−1)2 − C2 is positive semidefinite.

Proof. Composing the Gaussian kernel with the dynamics φ results in

(kC ◦ φ)(x,y) = exp
(
∥−C−1((Ax+ b)− (Ay + b)∥2

)
= exp

(
∥−(A−1C)−1(x− y)∥2

)
= kA−1C(x,y).

It follows from Corollary 4.4.5 that HA−1C can be continuously embedded into HC if and only if
(A−1C)2 − C2 is PSD.

Let us apply Corollary 4.4.6 to the special case C = ÃId. We make a further assumption that
A is diagonalizable and that b = 0. This means that we may write A = PDP−1, where D =
diag(¼1, . . . , ¼d) ∈ Rd×d, P = [p1, . . . ,pd] ∈ Rd×d and each pi ∈ Rd×1 is an eigenvector of A with
eigenvalue ¼i, for 1 f i f d. Then, the condition can be simplified,

(A−1C)2 − C2 =
(
P−1diag(¼−2

1 , . . . , ¼−2
d )PÃ2Id

)
− Ã2Id = P−1diag(Ã2(

1

¼21
− 1), . . . , Ã2(

1

¼2d
− 1))P.

We see that this matrix is PSD if and only if ¼i g 1 for all 1 f i f d. Since the elements of P form a
basis for Rd, we see have that any x ∈ Rd can be written as x =

∑d
i=1 cipi, for some scalars c ∈ Rd.

In this case, we have an expanding dynamical system,

∥φ(x)∥Rd = ∥Ax∥Rd = ∥
d∑

i=1

ciApi∥Rd = ∥¼x∥Rd g ∥x∥Rd .

This system may arise from a practical problem. Let z(t,x) : [0,∞)×Rd → Rd be continuous and let
B ∈ Rd×d. We interpret the components of z as time and space, respectively. The partial derivative
with respect to time and the boundary condition are given by,

∂tz(t,x) = Bz(t,x), z(0,x) = x.

The solution to this ODE is given by z(t,x) = exp (Bt)x. For a fixed t = t0 ∈ [0,∞), the dynamical
system z(t0,x) maps an input x forward in time by t0 units. We get the map z(t0,x) = exp (Bt0)x =
Ax = φ(x).

4.4.3 Identifiability for strictly positive kernels

It is desirable that the Koopman operator can uniquely be formed from the underlying dynamical
system, a result we have seen holds true when acting between spaces of continuous functions on
compact sets in Theorem 3.2.7. We will show that the composition map induced from a densely
defined Koopman operator on a RKHS with a strictly positive kernel is injective. First, we define
what it means for the Koopman operator to be densely defined.

Definition 4.4.7 (Densely defined). Let k be a kernel and φ be map on X . Define D(Tφ) := {g ∈ Hk :
g ◦φ ∈ Hk}, so that Tφ : D(Tφ) → Hk. We say that Tφ is densely defined on Hk if span (D(Tφ)) = Hk.
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Densely defined Koopman operators do not need to be bounded on Hk, but they are closed.

Lemma 4.4.8. If Tφ is a densely defined operator, Tφ is a closed operator.

Proof. Let (fn)n∈N be a sequence in Hk such that ∥f−fn∥HK
→ 0 and ∥g−(Tφfn)∥Hk

→ 0 as n → ∞.
To show that Tφ is closed, we need to show that f ◦ φ = g. Let x ∈ X , by the reproducing property,

g(x) = ïg, k(x, ·)ðHk
= lim

n→∞
ïTφfn, k(x, ·)ðHk

= lim
n→∞

fn(φ(x)) = lim
n→∞

ïfn, k(φ(x), ·)ðHk
= f(φ(x)).

Since x ∈ X was arbitrary, we conclude that g = Tφf .

Theorem 4.4.9. Let (X , φ) and (X , È) maps on X . Let k be strictly positive kernel on X . Assume
that Tφ and TÈ are densely defined on Hk. Then, È = φ if and only if TÈ = Tφ.

Proof. Suppose that È = φ, then it is clear that TÈ = Tφ. Conversely, suppose that TÈ = Tφ. Let
h ∈ Hk, and let (fn)n∈N and (gn)n∈N be sequences in D(Tφ) and D(TÈ), respectively, converging to
h. By Lemma 4.4.8, Tφ and TÈ are closed. Therefore,

lim
n→∞

Tφfn = h ◦ φ = h ◦ È = lim
n→∞

TÈgn.

Let x ∈ X and use the reproducing property,

h ◦ φ(x) = h ◦ È(x) ⇐⇒ h(È(x))− h(φ(x)) = 0,

⇐⇒ ïh, k(È(x), ·)ðHk
− ïh, k(φ(x), ·)ðHk

= 0,

⇐⇒ ïh, k(È(x), ·)− k(φ(x), ·)ðHk
= 0.

By the definiteness of the inner product, we have k(È(x), ·) = k(φ(x), ·). It follows from Lemma 2.2.8
that È = φ, as x ∈ X was arbitrary.
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Chapter 5

Conclusion

In this thesis, we gave an extensive overview of kernel methods combined with Koopman theory. We
started by reviewing relevant RKHS theory, ending with vector-valued RKHS. We concluded the
theory by presenting the scalar-valued representer theorem and an important isometry between a
vector-valued RKHS and the class of Hilbert-Schmidt operators. Then, we took a more theoretical
view of the Koopman operator between Banach spaces of continuous functions on compact sets.
Hereafter, we posed the problem of estimating the properties of an unknown, complex, and perhaps
chaotic dynamical system from observed snapshot data. The Koopman paradigm was introduced,
where we motivated that estimating spectral properties of the Koopman operator encapsulate
properties of the underlying dynamical system. The classic DMD algorithm, its extension EDMD,
and kernel EDMD are explained. Then kEDMD and a recent development in the estimation of the
Koopman operator through dynamical systems are put in the same framework and compared. We
have shown that the “DMD-free” method in fact coincides with kEDMD for µ = 0. Lastly, we
provide examples of RKHSs where the Koopman operator is bounded. For Gaussian RKHSs, we
characterize dynamics for which it cannot be bounded and combine recently published results into a
small Corollary 4.4.6.

By providing a broad review of existing literature, we were able to comment on various aspects of
the Koopman operator. We presented the advantages of kernel methods but also laid out instances
that limit their applicability.

A limitation of this work is that a more measure-theoretic or ergodic view is missing. Studying
dynamical systems through these lenses and putting existing literature within this broadened
framework would be an interesting path for future research.



54

Bibliography

[SH98] A. M.. Stuart and A.R. Humphries. Dynamical systems and numerical analysis. Cambridge
University Press, 1998, p. 685. isbn: 9780521645638.

[Koo31] B. O. Koopman. “Hamiltonian Systems and Transformation in Hilbert Space.” In:
Proceedings of the National Academy of Sciences of the United States of America 17.5
(May 1931), pp. 315–318. issn: 0027-8424. doi: 10.1073/PNAS.17.5.315.

[Bru+21] Steven L. Brunton et al. “Modern Koopman Theory for Dynamical Systems”. In: SIAM
Review 64.2 (Feb. 2021), pp. 229–340. issn: 00361445. doi: 10.1137/21M1401243. url:
https://arxiv.org/abs/2102.12086v2.

[GE22] Amin Ghadami and Bogdan I. Epureanu. “Data-driven prediction in dynamical systems:
recent developments”. In: Philosophical Transactions of the Royal Society A 380.2229
(2022), pp. 1429–1442. issn: 1364503X. doi: 10.1098/RSTA.2021.0213. url: https:
//royalsocietypublishing.org/doi/10.1098/rsta.2021.0213.
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Appendix A

Functional Analysis

A.1 Selection of results

Theorem A.1.1 (Interpolation theorem). Let H be a Hilbert space, X a non-empty set and c g 0.
Consider the maps T : X → ran(T ) ¦ H, with T (x) := fx and assume that span{ran(T )} = H. Then,
the following statements are equivalent

• There exists an element g ∈ H such that ∥g∥ f c and ïfx, gð = ³x for any x ∈ X

• For any x ∈ X n and b ∈ Cn

n∑

i=1

n∑

j=1

bibj³xi
³xj

f c2
n∑

i=1

n∑

j=1

bibjïfxi
, fxj

ð (A.1)

Proof. If such an element g ∈ H exists, by Cauchy-Schwarz

n∑

i=1

n∑

j=1

bibj³xi
³xj

=
n∑

i=1

n∑

j=1

ïbifxi
, gðïbjfxj

, gð = ï
n∑

i=1

bifxi
, gðï

n∑

j=1

bjfxj
, gð =

∣
∣
∣
∣
∣
ï
n∑

i=1

bifxi
, gð
∣
∣
∣
∣
∣

2

,

f ∥g∥2∥
n∑

i=1

bifxi
∥2,

f c2
n∑

i=1

n∑

j=1

bibjïfxi
, fxj

ð.

Conversely, assume that equation (A.1) holds. Define S : span(ran(T )) → C as S(
∑n

i=1 bifxi
) =

∑n
i=1 bi³i. This defines a well defined linear functional if the elements fx are linearly independent,

with norm bounded above by c. By taking the closure, this bounded linear functional can be extended
to H and we conclude by Riesz-Fréchet that there exists a unique g ∈ H such that S(fx) = ax = ïfx, gð
for any fx ∈ ran(T ).

Theorem A.1.2 (Direct sum of Hilbert spaces). Let (Hi, ï·, ·ðHi
)Mi=1 be a sequence of Hilbert spaces.

Then, the set
M⊕

i=1

Hi :=

{

h ∈
M∏

i=1

Hi :
M∑

i=1

∥hi∥2Hi
< ∞

}

equipped with the inner product

ïf, gð⊕M
i=1Hi

:=
M∑

i=1

ïfi, giðHi
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is a Hilbert space. This Hilbert space is called the direct sum of (Hi)
M
i=1

Proof. The sesquilinearity and the definiteness of the inner product ï·, ·ð⊕M
i=1Hi

readily follow from the

inner products on Hi. Let (f (n))n∈N be a Cauchy sequence in
⊕M

i=1Hi. Since ∥·∥⊕M
i=1Hi

is stronger

than each ∥·∥Hi
we have that (f

(n)
i )n∈N is Cauchy in Hi for 1 f i f M and therefore has a limit

limn→∞ f
(n)
i = fi. Define f = (fi)

M
i=1, then ∥f − f (n)∥2⊕M

i=1Hi
= limm→∞

∑M
i=1∥f

(m)
i − f

(n)
i ∥2Hi

→ 0.

Hence, there exists an m ∈ N such that ∥f∥⊕M
i=1Hi

f ∥f − f (m)∥⊕M
i=1Hi

+ ∥f (m)∥⊕M
i=1Hi

< ε +

∥f (m)∥⊕M
i=1Hi

< ∞ and f ∈⊕M
i=1Hi.


