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Abstract— Magnetic Resonance Imaging (MRI)-guided
breast biopsies, integral to breast cancer diagnosis, require
multiple preparatory and control scans to navigate the biopsy
needle to the target and are susceptible to human errors.
Robotic interventions offer the potential to automate these
procedures while enhancing targeting accuracy. The imperative
for practical and intuitive interfaces to keep operators in
the loop becomes apparent. Emerging technologies like
augmented reality (AR), and head-mounted displays (HMD)
present an immersive solution for human-robot interaction
and teleoperation. This study introduces an AR-based control
method for an MR-safe robot to conduct breast biopsies.
Leveraging hand gestures, voice commands, and intuitive
interfaces, operators can effectively engage with the robot
to perform the biopsy. Features such as auto-targeting and
path planning offer crucial support, ensuring a high degree
of accuracy and success rates. Experiments within an MRI
environment show the efficacy of these features, resulting in an
achieved accuracy of 1.36 ± 0.89 mm. A substantial reduction
of time cost of MRI-guided biopsy was observed as one full
biopsy procedure from acquisition to final control scan took
11.83 ± 2.10 min, compared to the 35-39 min in clinical
practice. In conclusion, the proposed method demonstrates a
promising approach to AR-guided robotic control in breast
biopsy. It also provides great potential to be extended to other
applications of robotic teleoperation.

I. INTRODUCTION

Clinical Background

With a mortality rate of 6.9%, breast cancer continues to
exert a significant societal impact, contributing to approxi-
mately 685,000 annual deaths globally [1], [2]. Representing
31% of female cancers, the likelihood of a woman being
diagnosed with breast cancer in her lifetime stands at 1 in 8
[3]. Annually, 2.3 million new cases are identified, marking
it as the most frequently diagnosed cancer with an incidence
rate of 55.9 per 100,000 [1], [2]. The annual increment of its
incidence rate by 0.5% signifies a growing concern regarding
its impact [3]. Notably, in countries of the global south,
the incidence rates are lower, accompanied by a mortality
rate that is 17% higher [1]. This underscores the critical
role of the accessibility of enhanced diagnostics in averting
breast cancer-related fatalities. Moreover, it suggests that as
diagnostics improve, the incidence rates in these regions are
anticipated to rise significantly, potentially leading to earlier
treatment and a subsequent reduction in mortality rates.
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Fig. 1: The point of view of the operator overviewing the
holographic scene. To the left is the real robot, which is
placed in the MRI, to the right the virtual surrogate. The
main menu is fixed in the field of view and is used to toggle
the MRI screen, control panel, voice command legend, and
the bounding box used to move and scale the scene.

Mammography and ultrasound imaging presently stand
as the most commonly employed tools for breast cancer
screening and diagnosis. However, their sensitivity in detect-
ing early-stage cancers is relatively low, at 33% and 40%,
respectively, while further diminishing with the density of the
breast, which is mostly higher in younger women [4], [5],
[6], [7]. Even when utilized in combination, their collective
sensitivity only marginally improves to 49%, underscoring
their limited efficacy in early breast cancer diagnosis. In
contrast, magnetic resonance imaging (MRI) shows a su-
perior sensitivity of 91% [4]. Consequently, routine MRI
screening is recommended for individuals with a 20% or
higher augmented risk of breast cancer, such as those with a
familial history of breast or ovarian cancer, or individuals
treated for Hodgkin’s disease [5]. The primary hindrance
to more widespread MRI screening for individuals at lower
risk is the associated MRI occupation time and cost [5], [8].
The reduction of the MRI occupation time and cost could
potentially facilitate increased screenings, leading to the early
detection of more lesions [9]. Upon the identification of a
potential lesion, a biopsy to confirm its benign nature has to
be conducted.

The current breast biopsy procedures are lengthy, requiring
multiple MRI scans to attain and ensure the desired outcome



Fig. 2: Various MRI safe robots used for breast and prostate biopsy. A - Song et al. and Liu et al. [11], [12], B - Chan et
al. [13], C - Vilanova et al. [14], D - Moreira et al. [15], [16], E - Yang et al. [17]

[10], [8]. Simultaneously, a substantial section of tissue is
extracted from the breast to minimize the risk of missing the
target, resulting in an extended and stressful period for the
patient within the confined space of the MRI bore. Preceding
the biopsy, a contrast agent is administered to enhance the
visibility of potential lesions. The patient is positioned face-
down on the examination table, and the breast is secured
in a grid-shaped plastic clamping system [8] simultaneously
serving as a reference for the needle insertion. After an
initial scan, the patient is removed from the MRI bore,
administered local anesthesia, and the biopsy needle, encased
in a plastic sheath, is inserted into the breast. The needle is
withdrawn, leaving the plastic sheath in place, acting as a
placeholder visible on the subsequent control scan. Following
a confirmation scan, if necessary, adjustments to the needle
needle position are made. Once the needle positioning is
deemed satisfactory, the surgeon extracts multiple biopsies
around the needle tip, employing a vacuum-assisted needle
to retrieve the tissue samples [8]. An additional control scan
after the biopsy is conducted, after which additional follow-
up biopsies may be performed.

The manual MRI-guided procedure remains susceptible to
human error, additionally the use of a flat grid for orientation
is restricting the insertion point, which is potentially sub-
optimal. Corrections to the needle position may be required,
leading to increased tissue damage, patient stress, and longer
occupation time of the MRI room. The integration of MR-
safe robotic manipulators can assist surgeons in the target-
ing task, accelerating the process and enhancing accuracy.
Various approaches to MR-safe robots are discussed in the
current literature. Song et al. as well as Chan et al. developed
MR-safe robots dedicated to breast biospies [11], [12], [13].
In both works, the robots are controlled through a graphical
user interface (GUI), via mouse and keyboard. Similar robots
dedicated to prostate biopsies were developed by Vilnova
et al. and Moreira et al. [14], [15], [16]. Both robots act
as a guide for the positioning of the needle, the insertion
still is conducted by the surgeon. A more intuitive control
system was introduced by Yang et al., utilizing an additional
controller robot to the peripheral robot in the MRI bore [17].
Through the controller robot, the operator received force-
feedback during the needle insertion. While robotic systems
are widely recognized as the prospective solution for targeted
MRI-guided biopsies and interventions [18], their integration
into clinical practice has yet to be implemented. This delay
could be attributed to the absence of an intuitive control

method, resulting in high training costs for specialized staff,
or to an unsubstantial improvement with respect to (w.r.t.)
the accuracy and time savings. Augmented reality, with its
spatial rendering capabilities, holds a potential starting point
to enhance the intuitiveness of human-robot interaction in
this context and streamline the biopsy procedure.

AR in Robotic Navigation

The application of Augmented Reality (AR) for robot
control varies in its complexity, ranging from basic floating
graphical user interfaces (GUI) to intricate gesture and
voice-controlled interactive environments. AR can serve as a
portable interface, replacing traditional computer screens for
robot control purposes (Fig. 3A [19]). These interfaces allow
manipulation of the robot’s joint space and adjustment of
specific control parameters (Fig. 3B, [20]). However, the in-
teractive potential of AR can be fully harnessed through more
advanced approaches. Xue Er Shemaine et al. developed a
framework utilizing the Robot Operating System (ROS) to
interactively control industrial robots. This was achieved by
creating floating objects representing waypoints along the
intended path for the robot to follow [21]. Similarly, Walker
et al. created a virtual surrogate of a drone that can be
manipulated and mirrored by the real drone [22]. Expanding
on the use of AR, additional communication methods, such
as gestures, can be employed for robot control [23]. Cameras
in the operator’s workspace or integrated into head-mounted
displays (HMD) can facilitate this interaction. An advanced
example of AR as a robot-human interface is demonstrated
in the work of Szczurek et al. [24], where the environment
of a remotely controlled robot, as well as the robot itself,
is reconstructed in 3D around the operator. Through voice
commands and direct interaction with the robot’s surrogate,
the operator can perform tasks, provide instructions, and
define paths, among other functionalities.

The application of Augmented Reality (AR) in surgical
settings has been less extensively documented. Lin et al.
explored the use of gestures to control a surgical robot in AR,
specifically for navigating endoluminal interventions [25].
In this setup, the trachea is represented in the AR space,
allowing the operator to define the desired destination of
the robot’s end effector with hand gestures, which is then
followed by the robot. One of the notable potentials of AR
in surgical navigation lies in its ability to leverage imaging
techniques, particularly from MRI scans. Morales Mojica
et al. and Velazco-Garcia et al. demonstrate the use of 3D
depictions of MRI images for surgical planning [26], [27].



Fig. 3: Various AR based robot control schemes reported in literature. A - Stone et al. [19], B - Islas et al. [20], C - Xue
et al. [21], D - Walker et al. [22], E - Thormann et al. [23], F - Szczurek et al. [24]

The 3D visualization of the MRI scan aids in locating the
target of the operation and planning the path of the robotic
manipulator.

(a) The Sunram7 robot. (b) The virtual surrogate.

Fig. 4: The Sunram7 robot and the virtual surrogate.

This study aims to enhance the efficiency and safety
of breast biopsies by introducing an intuitive and accurate
teleoperation method for an MR-safe robot. The primary
objective is to significantly reduce the time required for the
biopsy procedure, consequently lowering costs and poten-
tially extending access to a broader patient population. Such
advancements hold the potential to contribute to a reduction
in breast cancer mortality rates.

Augmented Reality (AR) serves as a crucial component,
providing a visual representation of the scene inside the
MRI bore. The operator can import the MRI dataset into
the AR application, where it is rendered as a 3D mesh
and automatically calibrated to the robot’s position. Through
the integration of gestures, voice commands, and other
features, the robot can be navigated quickly and precisely
to target the lesion and perform the biopsy with improved
accuracy. The proposed control paradigms are adaptable to
various manually or semi-autonomously controlled robotic
manipulators.

II. METHODS

System Overview

The MR-safe robot employed in this study is the Sunram7
[28]. To ensure complete MR safety, the robot is constructed
entirely from 3D-printed plastic components, except for
the MR-conditional titanium needle, and features pneumatic
motors that actuate its joints. The robot is designed with
five Degrees of Freedom (DOFs), four rotational joints that
facilitate movement along both the vertical and horizontal
planes, and one translational joint responsible for the back-
and-forth movement of the biopsy needle (Fig. 4).

Figure 5 presents an overview of the interactions between
the components within the system. The holographic repre-
sentation of the Sunram7 robot is rendered in AR in front of

the operator via the Hololens 2 HMD (Microsoft, Redmond,
Washington, U.S.) (Fig. 1). This HMD is controlled through
hand gestures, voice commands, and a virtual control panel
(Fig. 6). The operator utilizes hand gestures to define the
desired position of the end-effector (needle), through inverse
kinematics (IK) the required joint angles are calculated (Sec-
tion II). Subsequently, a controller computes the dynamics
with which the robot approaches the desired position (Section
II). An MRI scan of the patient’s breast - in the case of this
study in the form of a phantom - including the robot’s base
frame is obtained, similarly to traditional biopsy procedures
[8]. This dataset is imported, and automatically calibrated
relative to the robot’s position with a single button click, as
detailed in section II. The dataset is then transformed into
a 3D mesh, and a 2D plane is positioned within the mesh,
enabling the generation of an MRI image corresponding to
the plane’s position. With the implemented targeting system
(Section II), the operator can define a biopsy target in 3D
space, to which the robot can automatically align itself.
Throughout this automatic targeting process, the operator
receives feedback on the distance of the needle tip to the
target’s center. Upon satisfaction with the position, the biopsy
can be taken, and the needle retracted. Alternatively, a path
can be planned, previewed, and subsequently executed using
the built-in path planning system (Section II).

The cornerstone of the AR-based control scheme is the
gesture control, enabling the operator to specify the desired
position of the end-effector, by forming a fist with the right
hand. This is achieved by manipulating a virtual ray or
trajectory, to which the joint space alignment is calculated
via the IK. The basis for the positioning of the ray is the
operator’s hand when forming the according gesture. Since
the position of the hand is estimated by the outside-facing
cameras of the HMD, it is prone to small, high-frequent
errors. To mitigate the translation of these errors to the
end-effector’s movements, a controller is employed, which
defines the robot’s dynamics when approaching the desired
position.

Inverse Kinematics: Initially neglecting the translational
movement of the robot part holding the needle, the robot’s
kinematics can be divided into horizontal and vertical com-
ponents. In both dimensions, the robot features two joints
The primary joint moves along a circular trajectory, the
secondary joint rotates around the position of the robot on
this trajectory (Fig. 7). This simplifies the inverse kinematics
(IK) calculations to a circle-line intersection problem, as
expressed by equations 1 and 2, referencing figure 7.



Fig. 5: The schematic overview of different components in the system. The operator is using the Hololens 2 HMD to visualize
the scene inside the MRI bore. The IK, controller, and graphics calculations are done by the computer, which simultaneously
communicates with the physical controller and the MRI scanner. The physical controller translates the stepper motor inputs
to pneumatic inputs.

Fig. 6: The control panel, facilitating the operator to lock the
DOFs of the robot, activate its functionalities, and adjust its
dynamics.

y = s− (r0 + r⃗d((s− r0) · r⃗d) (1)

p1, 2 = r0 + r⃗d(((s− r0) · r⃗d)±
√
r2 − y2) (2)

After calculating the intersection of the line representing
the end-effector of the robot, with the circle representing
the trajectory of the robot in that dimension, the target
angle of the primary joint is determined by the angle that
the intersection point forms with the baseline (Fig. 7).
Subsequently, the angle of the secondary joint is defined by
the angle between the trajectory of the end-effector and the
projection of the intersection point onto the center of the
circle.

A mapping of the joint angles to step positions of the robot
is required (Eq. 3 and 4), where θ represents the joint angle
and p the step position. dstep is a constant depending on the
stepper motor parameters and the radius of the joint it moves
along.

pmin =
θmin

dstep
, pmax =

θmax

dstep
(3)

Mapping joint angle to step:

psteps = pmin + (
θ − θmin

θmax − θmin
∗ (pmax − pmin)) (4)

Fig. 7: The diagram visualizes the variables used in the IK
calculations (Eq. 1 and 2). Here for the horizontal plane with
the blue circle representing the trajectory of the robots joint.
The green circle represents the same for the vertical plane.

Control: To ensure precise control of the needle given the
somewhat uncertain hand position estimation of the Head-
Mounted Display (HMD), a straightforward Proportional-
Derivative (PD) controller was implemented, rather than a
direct one-to-one translation of movements (Eq. 5).

u(t) = Kpe(t) +Kd
d

dt
e(t) (5)

Moreover, the motion of the hand was scaled down w.r.t.
the desired change on the end effector’s side, with a 2:1
ratio. For example, 20 cm of translation and 30 degrees of
rotation of the hand would result in 10 cm of translation and
15 degrees of rotation of the desired position, respectively.
Both the proportional gain Kp and the scaling ratio can
be adjusted during runtime to tailor the dynamics to the
operator’s preference.

MRI Image to Robot Calibration

To register the relative position between the mesh created
from the MRI images and the robot, a registration algo-
rithm based on six MRI-detectable markers was developed.
Through a connected component labeling algorithm, the
positions of the markers from the 3D reconstruction of the



MRI data set are retrieved. The dataset is binarized using
Otsu’s method to determine a threshold between dark voxels
representing empty space and light voxels representing the
tissue and the markers [29]. Using a 3D kernel that scans
the dataset, connections between neighboring voxels are
established. The union-find algorithm is employed to find
the root group for each connected component afterward [30].
The markers can be distinguished from other objects in the
scene by their volume and shape. To transform the dataset
into the correct position, orientation, and scale, the Procrustes
method is applied [31]. This method assumes a correlation
between the datasets, implying that a relationship between
the detected marker array and their ground truth must be
established. Distance metrics between the markers were used
to identify the labels of the markers according to the ground
truth.

Procrustes Analysis: Subsequently, the Procrustes analysis
was performed to calculate the required scale, rotation, and
translation to align the markers with the ground truth in
the 3D space of AR [31]. For the integration into Unity,
the Procrustes analysis was divided into three components
and applied separately in the order of scale, rotation, and
translation.

The scaling of the mesh to match the scale of the ground
truth is determined by the ratio of the Frobenius norms
between the two datasets centered around their centroids (Eq.
9).

||A||F =

√√√√ 3∑
i=1

n∑
j=1

|aij |2 where n = #points (6)

To determine the rotation between the datasets, the coor-
dinates of each set are organized into 3× n matrices, where
n is the number of markers. A singular value decomposition
(SVD) is then performed on the matrix product of the
datasets, from which the rotational matrix can be derived
(Eq. 10). The resulting rotation matrix was transformed into
a quaternion rotation for the application in Unity.

R = UV ′ where SV D(Z) = UΣV ′ (7)

Finally, the translation is calculated as the vector between
the centroids of the data sets.

Interactive Functionalities: The primary interactions with
the holographic surrogate are facilitated through hand ges-
tures. The operator forms a fist with their right hand to gain
control of the desired position of the end-effector, which the
surrogate, and subsequently the physical robot, follows with
the defined dynamics. The same gesture with the left hand is
employed to manipulate the position and orientation of the
slicing plane in the mesh, displaying the corresponding MRI
image on the screen in the Augmented Reality (AR) scene.

When the operator extends the index and middle finger
of the right hand, they can designate a target on the MRI
screen, which is subsequently transformed into the 3D space
of the mesh. This target can be utilized by the auto-targeting
function of the system. The auto-targeting mode removes the

(a) Planning the path with the
phantom (transparent).

(b) The surrogate following the
phantom’s trajectory (opaque).

Fig. 8: The robot in the path planning mode. Defining a
trajectory with the phantom (left - transparent), and following
it with the surrogate (right - opaque). Here, the robot is also
in the auto-targeting mode during the path planning (left),
where the distance to the target is indicated by a blue label.

Fig. 9: (left) The targets and needle filled with petrolatum
and their respective 3D reconstruction of the MRI images.
(middle) The breast phantom and the respective 3D recon-
struction. (right) The holographic surrogate of the robot with
the marker ground truth, and after the import and automatic
calibration of the MRI dataset of the breast phantom.

control of the robot’s orientation from the operator’s gesture
control, allowing them to solely control the position of the
robot. The orientation is calculated separately to maintain the
alignment of the needle with the target. In the preview and
execution mode during the path planning described later, the
operator can either extend the index finger of their right hand
or their left hand, to move the robot forward or backward
along the trajectory, respectively.

A path planning function was implemented, creating a
second ”phantom” surrogate that operates independently of
the physical robot (Fig. 8a). To distinguish the phantom
from the opaque surrogate, it is depicted transparent. In
this mode, the operator can control the phantom without
the physical robot following its movements. After defining
a path by moving the phantom to its desired position, the
operator can switch to the preview mode. In this mode, the
phantom can be moved back and forth along the defined path.
Once satisfied with the path after the preview, the execution
mode can be activated to enable the original surrogate, and
consequently the physical robot, to follow the path until it
reaches the phantom’s position (Fig. 8b). Upon exiting the
path planning mode, the operator regains manual control over



Fig. 10: The Euclidean distance to the three targets represented per trial.

the robot.
Experimental Evaluation: The calibration accuracy is

assessed by calculating the target registration error (TRE)
between the ground truth of the physical markers and their
positions after the calibration.

To evaluate the performance of the AR-based control
interface, two distinct experiments were conducted. In the
first experiment, three torus-shaped targets were positioned
at various heights and positions on the robot’s base plate
(Fig. 9).

The targets, as well as the mock needle used in this
experiment, are filled with petrolatum, for visibility on the
MRI images. To measure the accuracy of the targeting
system, the intended targeting method of slicing through
the imported MRI dataset and defining a target on the MRI
screen is used. Subsequently, the auto-targeting function is
utilized to bring the needle tip to the center of the torus-
shaped target. Since earlier experiments showed warping in
the 3D reconstruction of the MRI data perpendicular to the
scan direction, which influenced the accuracy significantly
(Sec. IV), two scans were used for targeting; a coronal scan
for the horizontal plane, and a sagittal scan for the vertical
plane. The distance from the needle tip to the center of the
target is measured to quantify the accuracy of the targeting
system. Since the biopsy needle extends for 17 mm when
performing the biopsy, cutting away tissue along its path, an
accurate positioning along its path is not paramount. For that
reason, mainly the Euclidean distance of the needle trajectory
was chosen for the evaluation of the accuracy of the system.

A second, qualitative experiment is conducted to simulate
the intended application in breast biopsies. Two mock breast
phantoms, with different stiffness, crafted out of softened
PVC plastisol, with inlets of harder, colored material repre-
senting targets (e.g., lesions), are used to mimic the breast
with lesions. The goal of this experiment is to verify the
efficacy of the AR-based system in the assistance of the
biopsy procedure, by successfully removing parts of the
colored tissue in the breast phantom. The time taken for the
different steps of the whole procedure is measured, as well as
the success rate of extracting material from the target lesion.

III. RESULTS

The performance of the calibration algorithm was assessed
through the TRE of twelve MRI scans. The mean TRE over
all six markers in twelve scans was 0.86 ± 0.35 mm.

To identify potential biases in the targeting of the robot,
such as the calibration system, both accuracy and precision

were evaluated, the results are summarized in table I. The
time taken to reach each target was also recorded. Using the
previously described targeting method, while utilizing both
coronal and sagittal scans combined, an accuracy of 1.36
± 0.89 mm and a precision of 0.94 ± 0.60 mm could be
achieved (Fig. I). It took a mean of 27.7 ± 2.9 seconds
to reach the desired target. The distances of the needle
trajectories to the targets per trial are visualized in figure
10.

TABLE I: The per trial accuracy and precision, as well as
the average accuracy and precision, when targeting the torus-
shaped targets.

Trial Accuracy [mm] Precision [mm]
1 1.24 ± 1.18 0.96 ± 0.40
2 1.01 ± 0.49 0.86 ± 0.43
3 1.97 ± 0.79 0.75 ± 0.32
4 2.21 ± 1.21 2.02 ± 0.39
5 0.80 ± 0.15 0.46 ± 0.18
6 0.96 ± 0.73 0.60 ± 0.30

Average 1.36 ± 0.89 0.94 ± 0.60

As initial experiments showed, that the 3D meshes re-
constructed from the acquired MRI scans display significant
deformations distal from its isocenter, the error w.r.t. distance
of the targets to the isocenter was evaluated (Fig. 11). An
ANOVA was performed to investigate the significance of the
trend showing in the data, resulting in a p-value of 0.00107.

Fig. 11: The error w.r.t to the targets distance to the sagittal
plane of the isocenter of the scan. The error significantly
increases with increasing distance (p-value = 0.00107)



MRI-guided breast biopsies were simulated using the
plastisol phantoms. Three biopsies were conducted inside the
MRI bore on two different breast phantoms with different
stiffness. The targets inside the phantom were cube-shaped
and ranged in side length from 5 to 15 mm. Each of the in
total six biopsies removed parts of the colored tissue, result-
ing in a success rate of 100% without any false negatives,
albeit a small sample size (Fig. 12). The mean time spent
on each biopsy, including acquisition scan, targeting, control
scan and taking the biopsy was 11.83 ± 2.10 min.

Fig. 12: One of the biopsy experiments, showing the coronal
view (left) and sagittal view (right) of the breast phantom
with the inserted needle at the target position. When taking
the biopsy, the needle is extended by a further 17mm, cutting
out tissue along this path.

IV. DISCUSSION

This study presents an MRI-integrated, accurate, and
efficient AR-based method for conducting breast biopsies.
The holographic surrogate enables the operator to intuitively
control the biopsy robot through gestures, interfaces, and
voice commands. Features such as visual cues, automatic
targeting, and path planning assist the operator during the
procedure, ensuring a fast and precise biopsy.

The results indicate that the system and the robot perform
at a comparable level to current literature standards (Tab.
II). Given that targeted tumors are rarely smaller than 5
mm in diameter, an accuracy of 1.36 ± 0.89 mm could
be sufficient to conduct biopsies with a high success rate,
especially when utilizing vacuum-assisted needles [8] and
correcting for the identified causes of errors. This is also
reflected in the results of the biopsy simulation, which
achieved a 100% success rate, albeit a small sample size.
The simulated biopsies took 11.83 ± 2.10 min. The current
standard in clinical practise is around 35 to 39 minutes,
excluding the preparation of the patient [8]. This shows, that
the proposed system has the chance to significantly decrease
the time the patient spends in the MRI bore, resulting in
a less stressful experience. Moreover, a lower occupation
time of the MRI room opens up the possibility for more
control scans, covering a larger percentage of women with
increased risk, which could increase the number of early
detected lesions and in turn decrease the mortality rate.

TABLE II: Achieved accuracies in other biopsy robots.

Proposed [11] [12] [13] [14]
Accuracy
[mm]

1.36±0.89 1.04±0.15 0.70±0.04 0.34 7.4±4.6

The system demonstrating better precision than accuracy
(Tab. III) suggests a bias in the system, potentially stemming
from calibration errors or warping in the MRI images.
Improving the calibration method, such as by minimizing po-
tential rotations through different fiducial marker placements,
could enhance accuracy and potentially achieve values closer
to the precision.

During the evaluation of the performance of the system in
an MRI environment, it became evident, that the largest cause
for errors was introduced by a warping of the reconstructed
3D mesh from the MRI images (Fig. 14). The warping
occurred perpendicular to the scan direction with which the
data set was acquired. To circumvent inaccuracies introduced
by this warping, the coronal and sagittal scans were both used
for targeting, which increased the accuracy significantly (Tab.
III). Figure 11 shows, that the accuracy is still significantly
affected by the warping of the MRI images, as there is
an increasing error with the distance of the target to the
sagittal plane of the isocenter. Further investigation after
the experiments made evident, that using the integrated 3D
correction function of the MRI scanner would have mitigated
this issue. This was evaluated by using a calibration cube
with a grid of 11 × 11 × 11 MRI detectable markers (Fig.
13). These results underline the previously mentioned effect
of the distance to the isocenter on the accuracy (Fig. 11).

Fig. 13: The calibration cube used to determine the amount of
warping after the experiments. Both images show the coronal
view of the scan acquired in sagittal orientation. The result
of using the MRI parameters used for the experiments are
shown on the left side. The result of using the available 3D
correction utility is depicted right.

The resulting accuracy can likely be expected to improve
towards the values close to the isocenter, below 1 mm.
Another solution would be to computationally correct the
warping. Groenhuis et al. used a custom 3D calibration grid
to construct a fifth-order polynomial correction function to
counteract the warping [32].



(a) The 3D reconstruction of
the coronal scan seen from the
sagittal view.

(b) The 3D reconstruction of
the sagittal scan seen from the
coronal view.

Fig. 14: The 3D reconstruction from the MRI scan showing
the view perpendicular to the scan direction. The line on
the right side of each image is a petrolatum-filled mock
needle, depicted as severely bent, although perfectly straight
in reality.

TABLE III: The estimated marginal means (EMM) of the
accuracy and precision when using either coronal or sagittal
scan, and the accuracy and precision when using them
combined.

Accuracy [mm] Precision [mm]
Coronal/Sagittal Scan 1.91 ± 1.00 0.68 ± 0.36

Combined Scans 1.36 ± 0.89 0.94 ± 0.60

Comparing the present findings with the previously pub-
lished results (Sec. V) of the system’s performance under-
scores the advantages of the implemented targeting system
(Table IV). In contrast to targeting without the assistance of
the targeting system, the accuracy witnessed a substantial
improvement, increasing from 2.43 ± 1.32 mm to 1.36
± 0.89 mm. The time required to reach each target was
comparable to the other methods. It is crucial to note that in
the prior results, the ground truth of the target positions was
known, unlike the current method, where experimental out-
comes relied on calibration. This underscores that despite the
introduced calibration errors, the accuracy was significantly
increased.

TABLE IV: The current results compared to those of the
previous work [V], where the current targeting method was
not yet developed.

Method Accuracy [mm] Precision [mm] Time [s]
Current 1.36 ± 0.89 0.94 ± 0.60 27.7 ± 2.9
Manual 2.44 ± 1.32 1.64 ± 1.00 27.9 ± 6.4

3D-Target 2.72 ± 1.58 1.84 ± 1.39 37.7 ± 8.3
Joystick 3.71 ± 2.42 3.32 ± 2.30 29.0 ± 7.1

While the proposed system is currently operational, sev-
eral limitations need to be addressed. The accuracy of
the calibration method is constrained by the registration
approach and the placement of markers. Exploring alternative
marker placements and employing markers with enhanced
detectability could improve calibration accuracy and, conse-

quently, targeting accuracy. Various MRI-compatible calibra-
tion methods should be tested to optimize outcomes.

Presently, the system does not account for deformations of
the breast during needle insertion. While a clamping system
was used to mitigate this, deformations still occurred during
the needle insertion. A model-based approach predicting
target displacement during deformations should be consid-
ered. Real-time feedback is crucial to gather information and
mitigate the impact of deformations.

Going forward, an integration with the MRI scanner to
implement real-time feedback could be developed. APIs
provided by MRI machine manufacturers enable the de-
velopment of applications with direct access to the MRI
scanner, facilitating the possibility of generating scanning
planes along the needle trajectory. This could act as visual
real-time feedback telling the operator the position of the
needle relative to the target, as well as provide information
about the deformation of the breast.

Given that the robot is driven by stepper motors, the
accuracy is constrained by their step size. Optimizations,
such as identifying joint configurations with minimal Eu-
clidean distance from the needle trajectory to the target,
could minimize errors introduced by stepper motors.

While the system is designed to be intuitive, new users
require instruction on its functionalities and features, particu-
larly when encountering AR for the first time. An integrated
demonstration featuring animations and explanations could
provide users with guidance without the need for additional
personnel.

V. CONCLUSIONS

An AR-based system for control of an MR-safe robot
to aid surgeons during MR-guided breast biopsies was
developed to improve the targeting accuracy and decrease
the occupation time of the MRI room. With an accuracy
of 1.36 ± 0.89 mm, which was strongly affected by a
correctable warping of the MRI images, it is comparable
to the state of the art, while having the potential of reducing
the MRI occupation time from 35-39 min to 11.83 ± 2.10
min. The system provides supporting functionalities such
as auto-targeting, path planning, and automatic calibration,
to enable a fast and accurate procedure. By facilitating
the control of the robot through gestures, voice commands
and interactive holograms, an intuitive human-robot interface
was created. Going forward, the several identified error
causes should be addressed to improve the performance of
the system. Additionally, the implementation of real-time
feedback through direct interfacing with the MRI machine
could further improve the efficacy of the system.
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APPENDIX A
CALIBRATION

For the operator to be able to accurately target a lesion
with the system, the relative position of the breast to the robot
has to be known. Several approaches can be taken to achieve
such a calibration, with different levels of autonomy and
different levels of freedom of the initial setup. A method with
a low level of autonomy and a small degree of freedom would
for example make assumptions about the initial position of
the robot in the MRI bore and its joint positions. When
these parameters are known, the position of the patient
inside the MRI can be extracted from the MRI image meta-
data and related to position of the robot. Such a method
can work after an accurate initial calibration to find the
position of the robot inside of the MRI machine. The lack
of flexibility of this method likely outweighs the benefit
of the trivial calibration procedure this creates. A change
in the setup, e.g. where the robot is placed, renders this
method useless until the initial calibration is renewed. A
more generally robust and flexible method should be able
to handle changes in setup and optimally also different
joint positions of the robot, without the need for parameter
changes in the algorithm. In this work, the focus was on
solving the first issue of being able to reposition the robot
relative to the target without restraining the functionality of
the calibration method. Returning the robot’s joints to their
zero position is a trivial task, which is why the problem of
having a calibration method considering different initial joint
positions was postponed. For this reason, a more generalized
approach was chosen in the form of the Procrustes method
[31].

Mesh Creation

To perform the calibration, the DICOM data from the
MRI scans has to be converted to 3D voxel data. The mesh
creation of the 3D reconstruction of the MRI images is
facilitated by the open-source volume rendering framework
developed by Matias Lavik [7]. This framework is also em-
ployed to generate slicing planes, which are used to produce
the corresponding MRI images Easy Volume Rendering.

Procrustes Method

In the Proctrustes method, two datasets, where each dat-
apoint is related to a datapoint in the other dataset, are
required. One dataset is then transformed to best fit the
other. Example use cases of the method in the medical field
are human pose estimation, gait evaluation, or coordination
analysis [1], [2], [3]. In the case of this work, it is used to
fit a set of markers to their known ground truth. Six MRI
detectable markers are placed on the baseplate of the robot,
in a way that is rotationally unambiguous (Fig. 15).

These show up in the MRI data as groups of bright pixels,
or voxels in 3D, from which their relative position to each
other can be derived. To get the positions of each group
of voxels from the raw voxel data of the MRI images, a
connected component labeling algorithm is applied.

Fig. 15: (From left to right, top to bottom) The physical
markers attached to the robot, their representation in the
virtual world, how they show up on the MRI images and
after the calibration.

Connected Components Labeling

Connected components labeling tries to solve the problem
of finding groups in a dataset of adjacent components, for
example, pixels in an image or voxels in a 3D dataset,
without any information beforehand. It does so by scanning
through the dataset identifying adjacent entities and grouping
them with a label. Due to the consecutive order of scanning
rows, and in 3D, layers, each group will consist of multiple
subgroups that are interconnected (Fig. 16). A common root
group will have to be found for those subgroups, in order to
apply one label to the desired entity.

Thresholding: In order to be able to perform the connected
component labeling, the dataset has to be binarized to
distinguish voxels, that belong to groups from voxels that
don’t. A generalized solution to finding a binary threshold
in a gradient dataset can be found in Otsu’s Method [29]. If a
histogram of the underlying grey-scale/intensity data exists,
that has two clear peaks, a threshold in between the peaks
can be found by this method. In the case of the MRI data,
the two peaks represent the area with no tissue that shows
up as voxels with low intensity, and the areas with tissue that
show up as voxels with high intensity. The algorithm finds
the threshold by minimizing the within-class variance, of the
two classes, by calculating the weighted sum of variances
(Eq. 8).

σ2
w(t) = ω0(t)σ

2
0(t) + ω1(t)σ

2
1(t) (8)

After the binarization of the dataset, the kernel which is
used to scan through the dataset and connect the voxels has
to be defined. A three-dimensional dataset requires a three-
dimensional kernel, where multiple types of kernels with
varying complexity, and in turn accuracy, can be used. In this
application, the simplest kernel was sufficient, consisting of

https://github.com/mlavik1/UnityVolumeRendering


Fig. 16: The connected components before labeling, labeled
with subgroups, and finally labeled into the target groups
after the union find algorithm was applied. An abstract
example on the use of the connected component analysis.
Here four different groups have to be identified.

three voxels around its center, reaching in each dimension
(Fig. 17).

Fig. 17: The kernel used in the connected components
labeling algorithm, scanning from left to right, bottom to
top, front to back.

Scanning through the dataset row by row, the kernel
checks if the voxel below it has a label, if it does, it takes on
this label, if it doesn’t it checks the same for the voxel to its
left and takes on that label. If both cases are not true, a new
label is created. To make connection in the third dimension,
the kernel also checks, if there is a voxel in front of it in
the previous layer, if there is, it makes its label the parent
label of the current label. This results in a lot of subgroups
inside the components, which are interconnected through a

parent-child relationship (Fig. 16). Finding a common root
group can then be done via the union-find algorithm.

Union Find Algorithm: The Union Find algorithm finds
a common root for disjoint sets [30]. During the labeling
procedure, the subgroups are inter-connected, but initially, a
common root is not obvious, as no clear hierarchy in the
parent-child relationships is evident, and recursive relation-
ship can exist (Fig. 18).
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Fig. 18: An illustration of the union find algorithm. A single
root is found for the connected labels, even if a recursive
relationship is present.

The union find algorithm merges these overlapping,
smaller sets and creates a tree of connections. Then it finds
a common root, even when the parent-child relationships are
recursive. In code, the algorithm can be implemented via a
class with according members. Listing 1 shows an example
implementation of such a label class [4].

Listing 1: An example implemetation of the Union Find
Algorithm [4].

1 internal class Label
2 {
3 public int Name { get; set; }
4 public Label Root { get; set; }
5 public int Rank { get; set; }
6

7 public Label(int Name)
8 {
9 this.Name = Name;

10 this.Root = this;
11 this.Rank = 0;
12 }
13

14 internal Label GetRoot()
15 {
16 if (this.Root != this)
17 {
18 this.Root = this.Root.GetRoot();//Compact

tree
19 }
20 return this.Root;
21 }
22

23 // The Union Find Algorithm.
24 internal void Join(Label root2)
25 {
26 if (root2.Rank < this.Rank)//is the rank of

Root2 less than that of Root1 ?
27 {
28 root2.Root = this;//yes! then Root1 is

the parent of Root2 (since it has the
higher rank)

29 }
30 else //rank of Root2 is greater than or

equal to that of Root1
31 {



32 this.Root = root2;//make Root2 the parent
33

34 if (this.Rank == root2.Rank)//both ranks
are equal ?

35 {
36 root2.Rank++;//increment Root2, we need

to reach a single root for the
whole tree

37 }
38 }
39 }
40 }

After all connected components are labeled with a single
label, the amount of voxels contained in each component can
be used to determine their volume. The volume per voxel can
be derived from the meta-data of the MRI image, containing
resolution and slice thickness. This volume can then be mul-
tiplied by the amount of voxels in the component. Similarly,
the coordinates of the voxels contained in each component
can be averaged to determine its position. Using this, the
six markers and their position in voxel space, meaning their
relative placement to the number of voxels in the 3D cube,
can be extracted. To be able to use this information, the
positions have to be converted into a common space with
the ground truth. The world space in the Unity game engine
is used for that purpose, the ground truth is converted from
the space of the base plate of the robot to world space, the
connected components from voxel space to world space.

With both datasets in the same space, each marker from
the connected components set has to be linked to the cor-
responding marker of the ground truth, in order to proceed
with the calibration. An algorithm was developed that auto-
matically establishes this connection, given some restrictions
concerning the positioning of the markers relative to each
other.

Closest Pair Correspondance: The algorithm operates
under the assumption that the distances between each data
point and its two closest other data points are unique and
that the transformation between the datasets involves only
translation, rotation, and scaling. For each point in both
datasets - the ground truth and the detected components -
the distances to every other point are calculated and sorted.
The algorithm identifies the two data points in each dataset
with the smallest distance to the next data point (Fig. 19).
To determine which of the two marker points corresponds to
which of the two ground truths, the second smallest distance
to the next marker is considered. The point with the smallest
distance to the second-closest marker corresponds to the
ground truth with the second-smallest distance to the second-
closest ground truth. By removing these two correlated points
from the dataset and repeating this process until none are left,
a relationship between each marker and the ground truth can
be established.

Once a connection of all the detected markers from the
MRI images to the ground truth is established, the Proctrustes
method can be applied to transform the dataset to match
the position, orientation, and scale of the ground truth,
effectively resolving the calibration (Alg. 1).
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Fig. 19: An illustration of the closest pair correspondence
algorithm. (1) For both the known and unknown datasets, the
distances between the data points are calculated. (2) The data
pair with the closest distance is identified. (3) The distance
to the second closest data point is evaluated to distinguish
the labels of the pair. (4) The points of the unknown datasets
are labeled, then the closest pairs of both sets are removed
from the algorithm.

Algorithm 1 Closest Pair Correspondance

Dictionary correspondanceMap;
List[List] distances = GetDistancesToOtherMarkers(data,
groundTruth);
while # Data Points > 1 do

closestPairs = GetClosestPairs(distances)
secondClosest = SecondClosestDistance(closestPairs)
correspondanceMap[groundTruth] = data;
RemoveMappedDataPoints();

end while

Procrustes Analysis: The Procrustes analysis uses the sin-
gular value decomposition (SVD) to apply a transformation
of one dataset, that has a connection to another, to find
the optimal orthogonal linear transformation to match this
dataset. For easier application to the Unity game engine, the
components of the Proctrustes analysis were split and ordered
into scaling first, rotation second and translation last (Fig.
20). Scaling was achieved by multiplying the dataset to be
scaled by the ratio of the Frobenius norms of both the dataset
and the ground truth, centralized around their centroid (Eq.
9).

||A||F =

√√√√ 3∑
i=1

n∑
j=1

|aij |2 where n = #points (9)

The needed rotation was calculated by performing an SVD
on the matrix product of the marker coordinates of the two
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Fig. 20: An illustration of the transformation done via the
Procrustes analysis. (1) The Frobenius norm centered around
the centroid of each data set is calculated. The ratio of the
Frobenius norm is used to scale the detected dataset to the
size of the ground truth. (2) The SVD of the matrix product
of the two datasets is used to calculate the rotation between
them, here the corresponding labels are crucial. The resulting
rotation matrix in converted to a quaternion rotation and
applied. (3) The detected dataset is transposed along the
vector between its centroid and the centroid of the ground
thruth. (4) The detected dataset is successfully aligned with
the ground truth, completing the calibration.

datasets. The necessary rotation matrix is then derived by
multiplying the left singular vectors with the right singular
vectors (Eq. 10). For use in the Unity game engine, the
rotation matrix has to be converted to a quaternion rotation
(Eq. 11).

R = UV ′ where SV D(Z) = UΣV ′ (10)

qw =
1

2

√
max(0, 1 +m00 +m11 +m22)

qx =
1

2

√
max(0, 1 +m00 −m11 −m22)

qy =
1

2

√
max(0, 1−m00 +m11 −m22)

qz =
1

2

√
max(0, 1−m00 −m11 +m22)

(11)

An additional check for the correct sign of the quaternion
has to be made in order to have a consistent representation
(Eq. 12).

qx = qx · sign(qx · (m21 −m12))

qy = qy · sign(qy · (m02 −m20))

qz = qz · sign(qz · (m10 −m01))

(12)

Finally, the translation was calculated by determining the
centroids of the ground truth, and the scaled and rotated
dataset, then moving the dataset along the vector between
the centroids.



APPENDIX B
SOFTWARE ARCHITECTURE

As software grows in complexity over the time of develop-
ment with added features and control modes, the complexity
of the code grows exponentially. Parts of code start to
depend on others which themselves depend on other parts of
code, forming a complex dependency structure, which slows
down development. Adding new features becomes harder, as
weaving them into the net of dependencies without breaking
the whole fabric of the rest of the code becomes more and
more difficult.

Similarly, a greater complexity hinders the performance
of the program, necessitating optimizations to ensure a high
enough frame-rate to be comfortably operatable. Since most
of these things are not evident or predictable from the
start of the development, it is almost guaranteed, that the
initial state of the program will be sub-optimal in a lot
of places. In software development, these shortcomings are
called ”technical debt”. The term implies, that these problems
will have to eventually be tackled in order to not cause
bigger issues in the long run. The process of restructuring
and optimizing the program is called ”refactoring”. Over the
development of the software described in the paper, the code
was refactored multiple times to address the technical dept
introduced by the quick development in earlier stages of
development.

In object-oriented programming (OOP), which the lan-
guage C# as used for Unity development counts to, software
design patterns resolving common issues causing technical
dept were developed for over 30 years [5]. These structures
and ideas, while undergoing improvements and reformations,
remain highly relevant and apply to almost all software
utilizing OOP. Several of these ideas and abstractions were
applied in this work to ensure the performance of the
program, as well as to ensure that further development is
possible without hindrance.

State Machine

Fig. 21: An illustration of the state machine - the interchange-
able states dictate the behaviour of the program [6].

One way of optimizing the performance of the program is
to ensure, that only the code necessary at any given moment,

is running. A state machine splits the logic into parts, or
states, that are only being executed when the according state
is active (Fig. 21). Through certain conditions or inputs, the
state machine can switch states to change to the expected
behavior. This is achieved by implementing an abstract
”base-state”, that the other states are inheriting from, or a
”base-state” interface, that the other states implement (Fig.
22). This ensures, that all states include the same methods,
such as ”execute” or ”check switch state condition”. The
term ”method” refers here to a function inside of a class.
The methods themselves are implemented differently for
every state according to its desired behavior. This creates
an abstraction layer, where each state looks the same from
the ”outside”, but differently from the ”inside”. The state
machine itself then only holds the context - or variables
needed in the states - and a reference to the currently running
state. Conversely, each state holds a reference to the state
machine, to be able to access the context and variables. The
state machine only executes the abstracted methods which
every state has implemented making it autonomously run by
itself given the correct conditions for switching between the
states.

Context

- BaseState CurrentState

- StateFactory

+ Context(InitialState)

+ Update(CurrentState)

+ MethodX()

+ MethodY()

ConcreteState

+ override OnEnter()

+ override UpdateState()

+ override OnExit()

+ override CheckSwitchCondition()

abstract BaseState

- m: Context

- m: StateFactory

+ abstract OnEnter()

+ abstract UpdateState()

+ abstract OnExit()

+ abstract CheckSwitchCondition()

+ SwitchState(BaseState)

StateFactory

- Context

- enum eStates

- Dictionary<eStates, BaseState>

+ CreateStates()

+ GetStateA()

+ GetStateB()

Fig. 22: The class diagram of the implemented state machine
and it’s factory.

This design was applied to most parts of the program
requiring some kind of control - the surrogate and its
phantom, the slice generating the MRI images, and the ray
indicating the desired trajectory of the end-effector of the
robot. The slice required the simplest implementation of the
state machine, an idle state, and a controlled state. In the
idle state simply the switch condition is checked, other than
that, no code is executed. Once the operator forms a fist with
their left hand, the ”controlled state” is entered, facilitating
control over the slice by moving and rotating the fist. A
controller was implemented to define the behavior between
gesture and slice. Similarly, the state machine for the ray was
implemented, with the addition of two targeting states, one
idle and one controlled. The targeting state ensures, that the



ray is always pointing towards the target in 3D space which
was defined by the operator. In that state, the operator is able
to control the position of the robot, whereas the rotation is
automatically decided by the targeting state. This creates the
necessity for an extra idle targeting state, as the code for
the position control does not need to be executed when the
operator releases the control gesture, but the rotation should
still be automatically adjusted, if the target changes position.
As a result, the target can be moved around in space, while
the robot’s end-effector keeps alignment with it.

Hierarchical State Machine

A more sophisticated state machine had to be implemented
for the virtual surrogate of the robot and its phantom (Fig. 23.
This state machine encapsulates two different entities in one
state machine, which increases its complexity. This added
complexity is tackled with a hierarchical state machine.
Instead of adding dozens of situational states, a hierarchy
of a few main- and sub-states is introduced. The parent
states function similarly to the states described earlier, with
the difference of them delegating functionalities to their
sub-states. The sub-states have in turn the authority to
conditionally change states between each other, the parent-
state is detached from this logic. Additionally, the amount of
conditional state-change checks each state has to make each
frame reduces significantly. This simultaneously makes the
program more efficient, as well as more comprehensible for
future developers.

Normal

ManualIdle

Follow

Execution

Surrogate

Off

Path Planning

Command
UndoCommand

Follow

Preview

Phantom

Off

Fig. 23: The structure of the hierarchical state machine
implemented in this work.

In this application, the main states are responsible for
the general mode the robot is in. This is either the manual
controlled mode, the path planning mode, the preview mode,
or the execution mode. Additionally, the virtual robots can
be completely turned off. The different modes also dictate,
which version of the virtual robot - surrogate and phantom
- is active, or even visible. The Surrogate can be in its
normal, manually controlled mode, where the phantom is not
visible, and in its execution mode, in which the phantom was
previously used to define a path that is now followed. The
phantom is visible in this mode, but inactive. The phantom
in turn is active in the path planning mode, used to define

the path for the surrogate to execute, while the surrogate
itself is inactive. Similarly, the surrogate is inactive during
the preview mode, in which the phantom moves along its
own defined path. The basic functionalities are delegated to
the sub-states, which mostly are responsible for the motion
of the robot. A special case exists in the path planning state
of the phantom, where a command pattern was implemented
to save its trajectory to be later executed by the surrogate
and in turn the physical robot.

Command Pattern

Fig. 24: A real-world analogy of the commend pattern - the
chef receives orders and processes them in succession [6].

The problem of path planning was solved by the creation
of a phantom of the virtual surrogate, which can be controlled
like the surrogate itself, while not causing the physical robot
to follow its motions. Its path taken during these movements
is saved in a reference list, which can be reused to make the
phantom, and later the surrogate move along it, both forward
and backward, while the movement can be initiated from any
position in the list. This is done with the command design
pattern (Fig. 24, which consists of a command interface and
a command invoker class (Fig. 25). The command interface
contains an ”Execute()” and an ”Undo()” method, whose
implementation is defined in concrete command classes.
In the context of the path planning mode, the concrete
command class ”MovementCommand” executes the move-
ments of the robot through the controller aligning the end-
effector with the ray with the defined dynamics. For each
increment in the movement of the phantom, a new object
of the MovementCommand class is created and stored in a
list. Each MovementCommand contains the Execute() and
Undo() methods as well as the position before and after the
incremental movement. This way, the Execute() method can
move the position of the robot to the next in the list, while
the Undo() method can do the inverse movement to move
backward along the path.

The command invoker is responsible for storing the list
containing the MovementCommand objects and adding and
removing MovementCommands from the list. In the specific
application, it is also responsible for checking if a movement
even occurred. This is useful, as the operator can decide to
pause during the path planning, which would add periods
of non-motion to the path. These periods of pauses are not



interface Command

+ Execute()

+ Undo()

MovementCommand

- Robot

+ CalcControlOutput()

+ MoveRobot()

+ Execute()

+ Undo()

Invoker

- Command

- m: CommandList

+ AddCommand()

+ UndoCommand()

Robot

- m: Parameters

+ Movement()

+ GetParameters()

Fig. 25: The class diagram of the command pattern, with the
MovementCommand as an example.

desirable in the later execution of the path and, thus are not
added to the list, essentially creating one smooth path, even
if pauses are taken.

In the preview and execution mode, the phantom, and sur-
rogate respectively are moving along this path by calling the
Execute() and Undo() methods of the MovementCommand
objects in the list and moving to the next or previous object
in the list.

Factory

In the context of the state machines, the abstraction of
the implemented base-state interface demands an abstraction
of the reference to the state it switches into. The objects
using the base-state interface only know that they will have to
receive some form of state to turn into, but not what specific
state. For this problem a factory design pattern is useful.
It counts to the creational patterns, as the name implies,
it will create the states used in the state machines. The
typical factory class creates and returns a specific demanded
state of the type ”base-state”, which means only a reference
to the factory is needed to have access to all states. The
slightly, in terms of performance, improved implementation
of the factory used in this work takes a different approach.
Upon creation of the factory, each available state is created
and its reference is stored in a dictionary, that can be
accessed through a enum stating the type of desired state.
The advantage is, that each time a state is demanded of the
factory, it does not have to create a new one, but merely
passes the reference to the initially created state. This one-
time creation of each state should increase the performance
of the state machine.

Mediator

The growing complexity of the software introduces cross-
dependencies between the components of the program. In
the presented application for example, the robot depends
on the ray, which depends on the voice commands, which
depend on the state of the UI menu, which depends on
the user input handler, the UI menu and user input handler

Fig. 26: A real-world analogy of the mediator pattern -
aircraft pilots communicating through the control tower [6].

also depend on the voice commands, and so on. This net
of dependencies grows and gets tighter each time a new
component is introduced into the system. Resolving these
dependencies is key to ensure that further development can
be made without a lot of resistance. Similarly, changes in one
part of the program would affect all other parts depending
on it.

The mediator design pattern was used to tackle this
issue (Fig. 26). Instead of the complex net of dependencies
between the components, a separate class acts as a mediator,
hence its name. As a result, each component only depends
on the mediator instead of all the other components.

interface Mediator

+ Notify()

Concrete Mediator

- Component 1

- Component 2

- Component 3

+ Notify()

Component 1

- m: Mediator

+ Method1()

Component 3

- m: Mediator

+ Method3()

Component 2

- m: Mediator

+ Method2()

Fig. 27: The class diagram of the mediator pattern.

As for the implementation, a mediator interface con-
taining a ”Notify()” method is made, which handles all
the communication traffic (Fig. 27). The concrete mediator
implements this Notify() method to define the behavior of
how each notification is handled. A class holding a reference
to that interface called ”MediatorBase” is created, which is
inherited from by all the components communicating through
the mediator. To initially set the reference to the concrete
mediator in all the components, an evoker is used. It holds
references to all components and creates the concrete medi-
ator object, making all components member variables of the
concrete mediator. Upon construction, the concrete mediator



then passes itself as a reference to all the components. To
communicate, the components can now call the Notify()
method of the concrete mediator, in which they simply pass a
string describing its intention and a reference to themselves,
for the case in which it is relevant which component sent the
notification. In the Notify() method, the concrete mediator
then defines which component has what reaction to the
notification that was sent. An added benefit to this setup is,
that the same functionality of a component can be triggered
from many different angles by simply passing the according
notification. For example, if the operator wants to lock the
degrees of freedom of the robot, they can either click a button
in the UI, which sends the appropriate notification, or trigger
a voice command, which sends the same notification, the
reaction will be the same. Adding another angle to lock the
robot, for example through a gesture, now becomes trivial.



APPENDIX C
CONTROL PARADIGM AND FUNCTIONALITIES

Control Paradigms of the Software

Gesture Recognition: Through the outside cameras of the
HMD, the hand of the operator is parameterized into 25
components representing the links of the fingers and dividing
the palm into its main components (Fig. 28). The relative
position of the finger links to each other and the palm can
be used to calculate the curl of each finger, ranging from 0 to
1 representing fully extended fingers and fully curled fingers
respectively. A finger is classified as curled if it satisfies a
curl threshold of ≥ 0.5, and as extended, if it satisfies a
curl threshold of ≤ 0.1. This metric is used to define the
gestures used in the system by applying these thresholds on
each finger separately. A fist gesture is recognized, when
all fingers are classified as curled, a two-finger gesture is
recognized, when index and middle fingers are classified
as extended and the rest as curled, a one-finger gesture is
recognized if only the index finger is extended. Another
metric utilized from the parameterization of the hand is the
distance of the links to each other. The distance can be used
to determine if fingertips touch each other. In the case of this
application, a double tap of the index finger and thumb is
used to activate certain functionalities. This gesture is defined
by the distance of the fingertips crossing a certain distance
threshold three times in a period of 0.5 s.

Fig. 28: The cuboids representing the parameters of the
fingers as seen from the users perspective, here from a palmar
view.

Moving the robot: The operator gains control over the
robot by forming a fist gesture. The ray then follows the po-
sition and rotation of the fist, taking into account its relative

position in 3D space compared to where the fist was initially
formed (Fig. 29). This design is crucial to ensure that ray
control remains independent of the operator’s position and
hand orientation relative to the robot. In practical terms, this
means that the holographic robot mimics movements from
the operator’s perspective, rather than w.r.t. its own frame.
This approach significantly enhances control intuitiveness,
eliminating the need for the operator to consider the robot’s
frame relative to the world frame during operation.

Fig. 29: A schematic of how the gesture control of the ray is
facilitated, which defines the desired end-effector position.

Locking Degrees of Freedom: Through either voice com-
mands or the control panel, the operator has the capability to
both lock and unlock specific degrees of freedom (DoF) of
the robot. Locking can be applied to horizontal or vertical
movement independently, simplifying adjustments along a
single dimension. Additionally, the operator can opt to lock
the robot’s movement in all dimensions, this feature is mainly
used when the desired position and orientation for needle
insertion have been achieved. By default, the robot’s end-
effector is locked along its sliding joint, but the operator can
unlock it at any point, primarily for performing the needle
insertion during the procedure.

Collisions: The robot has the inherent risk of self-
collision, which could result in the stepper motors skipping
steps and consequently disrupt the program’s ability to track
the robot’s position. Given the MRI environment, encoders
can’t be utilized. To avert collisions within the robot, such as
between the needle and the baseplate, a collision prevention
script was developed. This script detects when the robot
is approaching a potential collision and locks the robot’s
movements that could lead to such collisions. This collision
prevention mechanism is versatile and can be extended to
safeguard against collisions with any object present in the
virtual space, including protecting against collisions with the
patient or the MRI machine.

Auto-targeting: The auto-targeting mode constitutes the
most important and most used feature of the system. When
activating this mode, the control over the orientation of the
ray defining the desired end-effector position and orientation
is released from the operator, which only retains control
over the end-effector position. The ray is forced to keep its
orientation towards a target in the 3D mesh, whose position
is defined by the operator. The operator does so by using
a two-finger gesture with the index and middle finger, with



(a) The collision being detected
and prevented in the virtual
space.

(b) The resulting position of the
real robot shortly before the col-
lision.

Fig. 30: An example of a prevented collision. The part
subject to a potential collision lights up red (a) and locks
its motion in the direction of the collision. The collision
prevention is translated to the real robot (b).

which they gain control over a target on the MRI screen
(Fig. 31a). This target is then converted from the 3D MRI
image into a 3D position in the mesh through the slice
position inside of the mesh (Fig. 31b). Since the orientation
of the ray is constantly updated in this mode, the robot will
follow the target in real-time. This could be exploited to
keep orientation to a moving target, for example, due to
respiration.

(a) The operator defining the
target on the MRI screen.

(b) The target translated into it’s
position in the 3D mesh.

Fig. 31: The interaction with the system in the auto-targeting
mode. The operator defines a target on the MRI screen by
using the two-finger gesture (a). This target is translated into
the 3D space of the mesh for the robot to target (b).

Moving and resizing the hologram: To relocate the holo-
gram to a specific position, users can activate the moving and
resizing mode, either as a voice command or via the main
menu. This mode introduces a bounding box surrounding
the hologram, which can be manipulated by pinching ges-
tures (Fig. 32). This enables users to effortlessly move the
hologram to the desired position, as well as rotate and resize
it to their preferred dimensions. It’s important to note that
these adjustments do not impact the robot’s operation, as all
functionalities account for the changes in scale introduced
during this process.

User Interface

Addition to Inverse Kinematics from the paper

The resulting joint angles from the IK have to be converted
to step positions of the stepper motors. The conversion
depends on the radius along which the joint moves, as well

Fig. 32: The holographic scene surrounding by the bounding
box, while the operator scales the scene. As the whole
scene is scaled, relations between parts of the system remain
unchanged.

Fig. 33: The control panel, letting the operator lock or unlock
certain DoFs of the robot, e.g. to only allow for movement of
the biopsy gun for insertion of the needle. The modes of the
robot can also be controlled, such as locking the target, path
planning, previewing the path, and executing it. The biopsy
gun can be fired, as well as retracted and the robot dynamics
can be changed.

as the gear ratio of the motor. First, the distance in degree per
step is calculated by the conversion formulas of Equation 13,
14. Afterward, the limits of the joint angles can be converted
into ”step-space” (Eq. 3). Finally, the current joint angle can
be converted into the step position of the motor (Eq. 4).

The conversion from angle to step amount depending on
the step size for motors with a 13:10 or 17:10 gear ratio:

dstep13:10 = 180/π ∗ 0.462mm/rjoint (13)

dstep17:10 = 180/π ∗ 0.604mm/rjoint (14)

The fixed constant in the conversion is the step size in mm,
depending on the parameters of the motor. The pinion in the
motor has 10 teeth and a gear modulus of 1, the steps per
revolution are four times the amount of teeth of the outside



gear. This results in step sizes in mm derived by Equations
15, 16.

lstep13:10 =
π

4

10

13
= 0.604mm (15)

lstep17:10 =
π

4

10

17
= 0.462mm (16)

Adjustable PD Control

Since the estimation of the hand position and orientation
of the outside cameras of the HMD is susceptible to frame-
by-frame variance, using this estimation directly to control
the end-effector would introduce noise. A PD controller
was implemented that defines the dynamics, with which
the end-effector follows the input of the operator. This
stabilizes the noise introduced by the estimation errors of
the cameras. Additionally, the movement of the end-effector
is scaled down w.r.t. to the input from the operator, such
that larger movements of the hand of the operator result in
smaller movements of the robot. Both the parameters of the
PD controller and the scaling of movements were chosen
arbitrarily through the subjective preference of the developer.
The operator can adjust these values to their preference via
the control panel (Fig. 33). Two sliders, one for the p-gain
of the PD controller, and the other for the scale, can be
adjusted to change the robot dynamics during the runtime of
the application.

Adjustable Intensities of the MRI screen

The parameters of the MRI machine used in the image
acquisition of the MRI data influence the resulting pixel
values w.r.t. their intensities. This can cause a low contrast in
the image, dependent on how the intensity values are mapped
to the color depicted on the screen. Since a high-contrast
image is crucial for the identification of potential lesions,
being able to adjust the color values is a necessity. Sliders
attached to the MRI screen facilitate this functionality (Fig.
34).

Fig. 34: The MRI screen before and after adjusting the
transfer function defining the color intensities in the image,
increasing the visibility of the target tissue.

During runtime, the operator can use these sliders to adjust
the mapping of pixel intensity - which is dependent on the
acquisition - to color values. This is done by assembling the

pixel intensities as a histogram and applying a color gradient
to it (Fig. 34). One slider moves a dark color along the length
of the histogram, the other moves a lighter color.



APPENDIX D
FUTURE WORK

Real-time feedback

The current control paradigm is based on the initial
diagnostic scan that is converted to a 3D mesh and imported
to the holographic scene. Based on this calibration, feed-
forward control is used to steer the end-effector to the desired
position. From the 3D mesh and the MRI images alone, the
operator only knows the current position of the end-effector
relative to the initial scan. If the tissue deforms or moves
during the procedure, there is no way of knowing until a
control scan is conducted. The MRI scanner is not capable
of imaging the entire field of interest in a short amount of
time, but single slices can be taken with a relatively high
frequency of up to 30 Hz [8]. This could be used to take
control scans along the needle direction during the insertion
to have live feedback on its trajectory. Some manufacturers of
MRI scanning machines provide software/APIs, with which
the control of the MRI machine through the AR application
would be possible.

Since the software for the third-party control of the MRI
machine was not available at the time of writing this paper,
a demonstration based on the initial MRI scan was created.
Two slicing planes are fixed to the surrogate along the needle
trajectory, one in the vertical direction and the other in the
horizontal direction. The corresponding MRI images, along
with an indicator for the needle trajectory in the plane, are
presented in a separate window (Fig. 35).

Fig. 35: Screenshot of the slicing planes along the needle
and the corresponding MRI images including the needle
trajectory.

Before and during the insertion of the needle, the operator
can assess the orientation of the needle relative to the
target lesion by observing its trajectory on the screens. In
a subsequent implementation utilizing the MRI scanner, the
positions of the slicing planes will be transformed into the
MRI coordinate frame, and scans corresponding to those
slices will be acquired and presented in AR. This approach
will reveal potential deformations of the breast and any

associated targeting errors, providing the operator with the
opportunity to make necessary corrections.

Taking this approach further, the real-time update on
the slices along the needle trajectory could be utilized to
recalculate the 3D mesh in the holographic representation of
the acquired MRI images.

Robot Position Feedback

Due to the circumstances in the MRI room, the physical
robot controller, providing the pressurized air to the motors,
must stay in the control room. Long tubes gap this distance,
causing a drop-off in pressure due to the increased volume
(Eq. 17), which makes a frequency reduction in order for the
motors not to skip steps necessary.

V = r2πl (17)

The resulting lower movement speed of the robot causes
an inaccurate depiction of the holographic surrogate rep-
resenting the physical robot. Currently, the operator relies
on auditory feedback from the controller to know if the
robot reached the desired position. Multiple other ways to
give feedback w.r.t. the position of the robot could be used.
Firstly, the surrogate could be slowed down to match the
step frequency of the physical robot. This would most likely
result in an unsatisfactory user experience and impede the
use of the surrogate to facilitate the control. Secondly, a
phantom, similar to the one used for path planning, could be
used to represent the physical robot position. Other, simpler
approaches, could be visual cues, such as progress bars or
signal lights turning on once the desired position is reached.

Fig. 36: Physical Robot controller.

Improved Calibration

The targeting accuracy of the system is to a certain
degree dependent on the initial calibration accuracy. To fully
harvest the potential of the system, efforts should be made
to improve the calibration accuracy. The orientation of the
markers used for the calibration potentially leaves room for
slight rotational errors, that could be addressed by a different
marker placement. Moving some markers from the side of
the base of the robot to it’s front and back, would increase



their leverage w.r.t. the rotation, potentially decreasing the
rotational error. Similarly, increasing the number of markers,
or using markers even better detectable by the MRI machine,
such as wireless coils, could improve the calibration accuracy
[9], [10], [11].

Dependent on the resolution and slice orientation, the
3D reconstructed mesh used for targeting the lesions is
morphing, resulting in an inaccurate representation of the
actual tissue of the patient (Fig. 14).

(a) The 3D reconstruction of
the coronal scan seen from the
sagittal view.

(b) The 3D reconstruction of
the sagittal scan seen from the
coronal view.

Fig. 37: The 3D reconstruction from the MRI scan showing
the view perpendicular to the scan direction. The line on
the right side of each image is a petrolatum-filled mock
needle, depicted as severely bent, although perfectly straight
in reality.

This is currently circumvented by utilizing multiple scans
with different orientations, namely coronal and sagittal scans.
Since this, in its current implementation, slightly impedes
the workflow of the system, methods to correct this warping
are desirable. One method to counteract the warping of the
3D reconstruction was introduced by Groenhuis et al. using
a fifth-order correction polynomial, to analytically correct
the error evaluated by a 3D calibration cube [32]. After
further investigation toward the end of this work, it became
evident, that the software of the MRI machine includes
such a utility. Further experiments should be conducted to
re-evaluate the performance of the system based on the
corrected 3D reconstructions of the MRI images.

Improving Accuracy

Another cause of errors is the nature of the stepper motors
used by the robot. The target that the robot approaches
is defined in a quasi-continuous space, the stepper motors
however force the robot to move in a discrete space. De-
pendent on the radius along which the respective link of
the robot moves, as well as the gear ratio of the motor,
one step of the motor can be translated to the amount of
degrees the link moves (Eq. 4). The end-effector operating
at a distance to those joints, results in leverage of this
displacement dependent on its extension w.r.t. the needle tip.
In the most extreme case of the joint most distant to the
needle tip, one step of the motor corresponds to a change in
angle of 0.577◦. When the end-effector is fully extended, the
lever to the needle tip is approximately 300 mm, resulting

in a displacement at the needle tip of 3mm. In practice, the
effect is less detrimental than that, as it is compensated by
the second joint in the same plane, although an error remains.

Taking the constraints of the stepper motors into account
when targeting could increase the accuracy of the robot. An
optimization algorithm could find the robot configuration,
that respects the motor step sizes, and minimizes the Eu-
clidean distance error to the target. This optimization could
be thresholded and combined with a cost function w.r.t the
initially desired position. When in the auto-targeting mode,
the robot could be guided to the desired position, after which
it automatically finds a nearby minimum and approaches it.

Integrated User Guide

To familiarize the user with the system, which capabilities
might not be evident from the UI alone, an introduction or
explanation is needed. Instead of using trained staff to give
this introduction, the potential of the spatial computing of the
HMD could be utilized. When entering the application for
the first time, the user could be guided through an AR-based
tutorial in which the functions of the system are presented
and explained. The user follows each step to apply and
learn each functionality. Additionally, voice commands could
be used to revisit these tutorials for specific functionalities.
These tutorials could even be implemented in a way that does
not impede the workflow of the system, but rather co-exist,
such that the user can inquire about them at any given time.

Improving the Software Architecture

Although the code was refactored multiple times during
the development, new learnings were gathered that could not
be implemented in time. Due to the lack of these learnings in
the starting phase of the development, sub-optimal software
structures lay the foundation of the project. Before taking the
system into a more developed stage, rebuilding the project
should be considered.

Intuitive/Self Adjusting Voice Commands

Currently, to utilize voice commands for the control of
functionalities of the system, the user has to speak the
exact sentences hard-coded into the program. Oftentimes a
command could be described with similar words, effectively
carrying the same meaning. In the example of the user
wanting to use the path planning mode of the system, both
”Activate Path Planning” and ”Enable Path Planning” convey
the same meaning, whereas only one will activate the path
planning mode. Theoretically, all possibilities could be hard-
coded into the system to facilitate an activation of certain
functionalities through different voice commands, which
would however be inaccurate and most likely prone to edge
cases that are still missing. The recent developments in AI,
more specifically the availability of large language models
(LLM), provide an elegant solution for such a problem. A
prompt could be used to give the LLM the target outputs of
the voice commands, it can then be instructed to interpret
an arbitrary command given by the user and map it to one
of the target outputs. To prevent the model from constantly



interpreting everything the user says, a cue can be given to
signal the intent of giving a command. This could be in the
form of a name, similar to companies giving their assistive
AI names that are called before a question is asked (e.g. Siri,
Cortana etc.).
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APPENDIX E
GENERAL REMARKS

Use of AI Tools

The use of the recently rapidly developing generative AI
tools provides the opportunity to increase productivity when
used correctly. Trivial parts of a program, commonly referred
to as ”boilerplate”, can easily be generated by these tools,
accelerating the process from the idea to a functioning prod-
uct. At the time of writing this, these tools can’t yet generate
more complex programs, such as the software presented in
this work. Especially, when using a programming language
and a piece of software for the first time, like was the case
in this work for C# and Unity, tools like ChatGPT can
be tremendously helpful with answering quick questions.
During the development of the software, these tools were
used to provide answers to syntax questions w.r.t the C#
programming language and the inner workings of the Unity
game engine. Generative AI also provides help with writing,
by finding synonyms and alternate formulations of sentences.
Parts of this work were pre-written and fed into such a tool
to provide alternative words and slightly altered sentences,
accelerating the otherwise lengthy process, when doing the
same manually.
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An Augmented-Reality based digital twin for controlling an MR safe
robot in breast biopsy

Lennard Marx1, Vincent Groenhuis1, Stefano Stramigioli1 and Kenan Niu1

Abstract— Magnetic resonance (MR) guided breast biopsies
can be demanding and time-consuming procedures for both
patients and surgeons. Inaccurate needle insertion can lead
to false negatives, resulting in faulty diagnoses with serious
consequences. Incorporating robots into these procedures has
the potential to improve accuracy, reduce patient strain, and
decrease MRI time and costs. For the surgeons to remain in
control and make adjustments, a control interface is a necessity.
In this study, an augmented reality (AR)-based control method
for surgeons is proposed by offering a new means of interacting
with robots with enhanced intuition. A virtual surrogate of the
MR safe robot that can be controlled through gestures and
voice commands in the AR scene was developed. This virtual
surrogate can be operated outside of the bore of MRI scanner.
Moreover, the proposed system enables collision avoidance and
supports semi-autonomous behavior for targeting lesions and
performing biopsies. The system was evaluated by comparing
two different AR based control strategies to manual control
using physical joysticks. The gesture based control method
exhibited an accuracy of 2.44 ± 1.32 mm and a precision
of 1.64 ± 1.00 mm. In the auto-targeting mode, where the
subject moved the locked target, an accuracy of 2.72 ± 1.58
mm and a precision of 1.84 ± 1.39 mm was achieved. These
findings highlight the efficacy of holographic surrogate control
in enhancing the efficiency, precision and user experience of
robot tele-operation. Moving forward, it will facilitate the
application of MR safe robots in breast biopsy.

I. INTRODUCTION
Breast cancer accounts for nearly one-third of cancer cases

in women worldwide [1]. With a gradually increasing preva-
lence in breast cancer and a mortality rate of 10%, which
is considerably higher for individuals with limited access to
preventive care, an early diagnosis becomes increasingly im-
portant. There is an urgent need for the development of novel
diagnostic approaches. The primary methods for diagnosing
breast cancer are mammography and ultrasound. However,
in cases involving a heightened risk of breast cancer, such
as a high familial predisposition, mammography, even when
combined with ultrasound, may prove insufficient for early
detection [2]. The utilization of magnetic resonance imaging
(MRI) has the potential to significantly enhance diagnostic
sensitivity and enable earlier detection [2]. Nonetheless, the
MRI-guided breast biopsy procedure can be time-consuming
and physically intensive for patients [3]. To ensure precise
needle placement during the biopsy, multiple interim MRI
scans are conducted. In between these scans, the patient
must be removed from the MRI bore to readjust the needle

1Robotics and Mechatronics, University of Twente, Enschede,
AE, The Netherlands l.marx@student.utwente.nl
(L.M.), v.groenhuis@utwente.nl (V.G.),
s.stramigioli@utwente.nl (S.S.), k.niu@utwente.nl
(K.N.)

Fig. 1: The demonstration of AR-based digital twin for
controlling Sumram7 robot. The Sunram7 robot imitates
the scaled-up holographic surrogate. A ray is controlled via
the hand forming a fist gesture, to which the holographic
surrogate aligns its end-effector. The green dot indicates the
movable target used in the auto-targeting mode. The left hand
menu is to adjust the functionalities of the robot is visible,
when the operator opens their palm and faces it towards the
HMD.

position. MR safe robots, such as the Sunram7 (Fig. 4a),
offer the potential to expedite this process by enabling remote
adjustments from a control room [4].

Augmented reality (AR) technology can be employed
to visualize MRI images as three-dimensional (3D) ob-
jects through head-mounted displays (HMD) and facilitate
intuitive path planning via projecting 3D Holographs of
segmented anatomical structures [5]. Concurrently, AR can
be used to interact with and teleoperate robots using gestures,
voice commands, and holographic interfaces [6], [7]. An
AR interface for teleoperating and potentially automating
MRI-compatible robots like the Sunram7 could significantly
simplify the breast biopsy procedure, making it less of a
burden for patients and more intuitive for surgeons. More-
over, it could reduce the time duration and, consequently,
the cost of the procedure. This, in turn, could enable MRI
as a cost-effective diagnostic method, potentially increasing
its utilization for early-stage diagnosis [8].

A. State-of-the-art

Currently, augmented reality (AR) is predominantly used
for visualization purposes and facilitating human-robot col-
laboration in various applications [6]. However, there exists
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Fig. 2: Various AR-based interactive applications exerted from the state-of-the-art referenced here (Sec. I-A). (a): Lin et al.
[9], (b): Morales Mojica et al. [10], (c): Velazco-Garcia et al. [11], (d): Xue et al. [12], (e): Quintero et al. [14], (f): Walker
et al. [15].

limited research on the use of AR for robot control, partic-
ularly in the context of medical applications. For instance,
Lin et al. developed a teleoperated robot for endoluminal
interventions, which is controlled through gestures using a
HMD [9]. A hologram of the trachea and the endoscope is
presented in front of the user, allowing the user to manipulate
the endoscope’s position within the trachea through hand ges-
tures. Different hand gestures were used for different degrees
of freedom (DoF), making a simulateous control of multiple
DoFs impossible. Similarly, Morales Mojica et al. used AR
for image-guided control of interventional manipulators [10].
They visualized MRI images as holograms in front of the
user, offering the ability to manipulate and display specific
slices of the MRI scan. The AR interface was simultaneously
used to control the manipulator, as well as to regulate the in-
cision depth. This was done by defining a target point in a 2D
plane and an incision point in the same plane, direct control
of the robot was not possible. In a related study, Velazco-
Garcia et al. conducted a comparative analysis of different in-
put methods for planning MR-guided prostate biopsies [11].
They evaluated a holographic interface, comparing it with
Gamepad and Mouse/Keyboard input methods. In this setup,
the robot, along with the organs and lesions, were rendered
as meshes in front of the user, enabling visualization of the
robot’s workspace. Notably, Velazco-Garcia et al. concluded
that the AR input method yielded the least favorable results
[11]. The sensitivity of the interactions with the holograms
made it challenging to make precise adjustments along one
dimension without inadvertently affecting another, ultimately
deeming this method impractical.

While this paper primarily centers on the medical appli-
cation of AR, it is essential to provide a comprehensive
overview of the state-of-the-art focusing on AR for robot
control, including non-medical applications. Xue et al. in-
troduced an AR-based robot control interface that allows
users to manipulate the virtual end-effector to a desired
position [12]. The inverse kinematics (IK) are resolved by
the FABRIK method [13]. Additionally, they implemented
collision detection to ensure a safe interaction with the
environment. Quintero et al. programmed robots by defining
trajectories within an AR environment [14]. These trajecto-
ries could be established by placing AR waypoints in 3D
space, automatically generating a corresponding trajectory.
Moreover, they introduced the capability to simulate tasks
using a virtual surrogate before executing them with the
physical robot. An impedance control mode was enabled by

planning trajectories along surfaces along which the robot
applied a constant force. Issues were reported concerning the
stability of hologram locations when operators moved while
wearing the HMD. Walker et al. employed two distinct AR-
based control methods to manage a drone via a holographic
surrogate: real-time PID control and waypoint control [15].
Operators could either directly move the virtual surrogate,
causing the drone to follow, or lock the drone’s position and
create waypoints by manipulating the virtual surrogate.

In this paper, the aim is to introduce an AR-based approach
for intuitive interaction and tele-operation of an MR-safe
robot. The proposed method uses a HMD to present a
holographic surrogate of the robot. The surrogate robot and
its actual physical presentation (i.e. real robot) are linked as
a digital twin to reproduce the same robotic executions. By
utilizing gestures and voice commands, the operator gains the
immersive ability to engage with the holographic surrogate,
enabling precise control of the robot from the operating
room. Concurrently, common challenges associated with AR-
based control, such as the heightened sensitivity of the
hologram, which can lead to reduced targeting accuracy
are addressed. While this work focuses on the medical
application, it is worth noting that the proposed approach
and its implementation hold the potential for adaptation to a
wide range of robotic manipulators.

II. METHODS

A. Overview of the Framework

Figure 3 provides an overview of the intended use case
of the system. The process begins with an MRI scan to
generate the virtual scene and calibrate the virtual robot’s
position to match the physical robot’s position. The operator
in the control room wears the Hololens 2 HMD, which
renders the hologram representing the scene and recognizes
their input through gestures and voice commands. This input
is used to calculate the desired joint positions through the
IK and control the robot with the intended dynamics via
the controller. Visual feedback from the holographic scene
is provided to the operator to make necessary adjustments.
Subsequently, the HMD sends the intended joint positions
via WIFI, either through a computer or directly to the
micro-controller of the robot. Finally, the robot executes the
commands in the MR room.
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Fig. 3: The schematic overview of different components in the system in the intended use case of MR-guided biopsy.

(a) The Sunram7 robot. (b) The virtual surrogate.

Fig. 4: The Sunram7 robot and the virtual surrogate. The
blue and green circles on the surrogate represent the radii on
which the primary joints of the robot move.

B. Sunram7 robot configuration

The Sunram7 is a five-degree-of-freedom MRI-safe robot
designed for breast biopsy procedures [4]. To ensure com-
patibility within an operational MRI environment, the robot’s
construction relies entirely on 3D-printed plastic compo-
nents. The Sunram7 utilizes pneumatic stepper motors for its
actuation, which are also manufactured using rapid prototyp-
ing techniques [16]. Its five degrees of freedom consist of
four revolute joints and one prismatic joint. Specifically, two
revolute joints facilitate horizontal movements of the robot,
while the other two enable vertical motion. The prismatic
joint controls the movement of the end-effector, responsible
for guiding the biopsy needle along its designated trajectory.

C. Augmented reality-based robotic control framework

For software development, the Unity game engine (Unity
Technologies, San Francisco, U.S.) was employed in con-
junction with the Mixed-Reality-Toolkit (MRTK) (Microsoft,
Redmond, Washington, U.S.). The MRTK is an open-source
software development kit (SDK) designed for creating mixed
reality (MR) and AR applications. The application was
deployed on the Hololens 2 MR and AR HMD (Microsoft,
Redmond, Washington, U.S.).

To generate the holographic representation of the robot, the
same CAD (computer-aided design) files used for 3D print-
ing the Sunram7 were imported into Unity and configured

to replicate the robot’s physical structure. A custom script
was developed to solve the IK, allowing the robot’s end-
effector to align itself with a designated ray, thereby defining
the desired position and orientation. Due to the robot’s
design, the IK problem can be solved in two dimensions
independently. Figure 4b illustrates the two main circles on
which the robot moves, as well as the ray. In each dimension,
two angles, denoted as θ1 and θ2, need to be calculated.
This is achieved by first determining the intersection point
of the ray with the circle and then deriving the angle offset of
that point from the baseline (Fig. 5). First, the perpendicular
distance from the ray to the center of the circle is calculated
to verify if it is smaller than the circle’s radius. If it is not, no
intersection can be found, and the ray is outside the robot’s
workspace (Eq. 1). Subsequently, the intersection point p1
of the ray with the circle can be computed, enabling the
straightforward derivation of angles θ1 and θ2 (Eq. 2).

y = s− (r0 + r⃗d((s− r0) · r⃗d) (1)

p1, 2 = r0 + r⃗d(((s− r0) · r⃗d)±
√
r2 − y2) (2)

To make the operator’s interaction with the robot more
intuitive, the ray is controlled through hand gestures and

Fig. 5: The diagram visualizes the variables used in the IK
calculations.
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voice commands. Hand motions are considered commands
only when the user closes their hand, effectively implement-
ing a ”reconfiguration clutch,” a feature commonly found
in many commercial surgical robots for hand reconfigura-
tion purposes, typically activated using a foot pedal. The
MRTK is employed to detect the operator’s hands, from
which gestures can be derived. Robot motion is defined
by a proportional derivative (PD) controller that takes into
account the error between the robot’s end-effector and the
ray, effectively filtering out high-frequency noise from the
estimation of hand position. To further enhance the stability
of robot control, the hand’s motion is down-scaled by a
factor of 4, meaning that 100 mm of movement by the
operator translates to 25 mm of movement of the robot.
Alternatively, the robot can automatically align itself with
a predefined target upon receiving the command. This target
can be moved in 3D space by the operator using the default
interaction method built into the HMD, which consists of a
beam extending from the operator’s hand, allowing objects
to be manipulated with a pinching gesture (Fig 6(b)). The
system also supports voice commands, which are mapped to
specific robot functionalities. As an alternative input method
to voice commands, all instructions can be provided through
a menu that appears when the operator opens their left
hand and positions their palm toward the HMD (Fig. 1).
The current joint position is then forwarded through serial
commands to the physical robot. Given that the robot uses
stepper motors, the joint positions must be converted to step
positions of the motors. First, the change in angle per step
is calculated, which depends on the gear ratio of the motor
and the radius on which the joint moves. Equations 3 and 4
demonstrate the conversion from angle rate to step rate.

dstep13:10 = 180/π · 0.462/rjoint (3)

dstep17:10 = 180/π · 0.604/rjoint (4)

The workspace limits of the robot can then be calculated by
equation 5.

pmin =
θmin

dstep
, pmax =

θmax

dstep
(5)

Finally, the current joint angles are mapped to the step
position with equation 6.

psteps = pmin + (
θ − θmin

θmax − θmin
· (pmax − pmin)) (6)

D. Interactive control strategies

The integration of these features gives rise to two distinct
control strategies. The first strategy involves controlling
the robot’s end-effector by initiating movement with a fist
gesture and positioning the robot by manipulating the ray.
Additionally, specific DoFs can be locked to facilitate mi-
nor adjustments along one dimension without inadvertently
impacting others. The second control method leverages the
robot’s auto-targeting mode. In this mode, the operator can
manipulate and move the target to a desired landmark,
and subsequently, the robot’s end-effector will follow this
movement. Position control of the robot is still possible in

Fig. 6: The three different control methods from left to right:
(a) Gesture control, (b) auto-targeting mode, and (c) joystick
control.

this control mode, as the robot will maintain the target in
aligned with its end-effector.

E. Experimental evaluation

To evaluate the effectiveness of the proposed methods, a
pseudo-randomized study involving ten subjects was con-
ducted. A sheet of paper containing ten designated targets
was placed in a holder in front of the robot. Subjects were
instructed to puncture the paper at the target locations using
the biopsy needle. Both the total time required to puncture
all ten targets and the distance from the penetration point
to the center of each target were measured. Three distinct
control methods were tested and subsequently compared
in this manner. The first two methods correspond to those
previously described (Section II-D): directly moving the end-
effector and moving the auto-locked target. The third method
involved controlling the joint angles via physical joysticks
(Fig. 6(c)). To minimize potential bias due to training effects,
the order of the trials was alternated for each subject. Five
subjects started with the AR-based methods followed by the
physical control method, while the other five subjects started
the other way around. Subsequently, the accuracy, precision,
and task completion times achieved with the three different
control methods were compared.

III. RESULTS

Ten subjects with limited or no prior experience with
AR participated in the experiments. Figure 7 provides an
overview of all trials, with rows representing the different
methods and columns representing the different subjects. In a
few trials, noticeable offsets from the center of the target can
be observed (e.g., Subject 7). Figure 8 displays the accuracy
and precision of the incision point relative to the target center
for all trials, along with the time spent on each trial. Table
I summarizes the results for all three methods. The leftmost
comparison assesses the accuracy of the trials by analyzing
the raw data collected (Fig. 8(a)). The average accuracy was
2.44 ± 1.32 mm for the gesture control method, 2.72 ± 1.58
mm for the auto-targeting method, and 3.71 ± 2.42 mm for
the joystick control method. A pairwise analysis of variance
(ANOVA) was conducted to identify significant differences
between the methods. Both AR-based methods outperformed
the joystick method significantly.
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Fig. 7: The overview of all trials of ten subjects. The rows represent the three different methods used, the columns/colors
represent the different subjects. The outer circle of the target has a radius of 3mm.

Fig. 8: Boxplots comparing the three different methods. (a)
shows the raw data of the distance in mm to the target of
all trials. (b) To show the precision, the inter-subject mean
vectors where subtracted from each data point. (c) shows
the trial times for each of the methods in seconds. The lines
above the plots indicate comparisons via a pairwise ANOVA.
The asterisk indicate the order of significance.

TABLE I: The results of the experiments for each of the
methods used in the experiments.

Method Accuracy [mm] Precision [mm] Time [s]
Gesture 2.44 ± 1.32 1.64 ± 1.00 279.1 ± 64.5

Auto-Target 2.72 ± 1.58 1.84 ± 1.39 377 ± 83.4
Joystick 3.71 ± 2.42 3.32 ± 2.30 290.4 ± 70.6

To assess the precision of the methods, offsets (e.g.
caused by calibration errors or subject-specific biases) were
mitigated by subtracting the inter-subject mean vector from
the trials. The resulting average scores were 1.64 ± 1.00
mm, 1.84 ± 1.39 mm, and 3.32 ± 2.30 mm for gesture
control, auto-targeting, and joystick control, respectively. The
pairwise ANOVA revealed significant differences between
the joystick control method and the AR-based methods, with
the AR-based methods demonstrating significantly better
performance.

Finally, the time it took each subject to complete a trial
(puncturing 10 targets with the needle tip) was assessed. On

average, subjects took 279.1 ± 64.54 s for gesture control,
377 ± 83.42 s for auto-targeting, and 290.4 ± 70.59 s for
joystick control to complete the trials. A pairwise ANOVA
analysis was conducted once more, revealing significant
differences between the auto-targeting method and the oth-
ers, with the auto-targeting method performing significantly
worse in terms of time efficiency.

IV. DISCUSSION

In this paper, two AR-based methods for tele-operation
of an MR-safe robot were developed to create an intuitive
and precise method of controlling the robot and targeting
lesions in 3D space during breast biopsy. Both the accuracy
and precision of the methods (Fig. 8) exhibited a significant
increase in both metrics compared to the manual joystick
control method. While the subjects had visual feedback from
the real targets when using the joystick control, they only
had a virtual representation of the targets with the AR-based
methods, which implies that real tele-operation would only
be feasible with the proposed methods. Nonetheless, the
joystick control method still performed significantly worse
than the AR-based methods. Figure 7 reveals that many
trials exhibited biases, which could have originated from
various sources. In the AR-based methods, the calibration
of the robot to the holographic representation is assumed to
be a major source of the offset. With the joystick control
method, there was a much greater spread of the distance
to the target along the y-axis. This discrepancy could be
attributed to the visual feedback being clearer in terms of the
horizontal alignment of the biopsy needle to the target when
sitting behind the robot. To mitigate these biases, the inter-
subject mean vector was subtracted from the trials, centering
the average of each trial on the target. This allowed for the
evaluation of the precision of the different methods. With
the inter-subject mean subtracted, the average precision was
shown to be 1.64 ± 1.00 mm and 1.84 ± 1.39 mm for both
AR-based methods, performing almost twice as well as the
joystick method. These values could already be sufficient for
performing biopsies, which are rarely performed on tumors
smaller than 5 mm in diameter [17]. For comparison, other

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 2453 submitted to 2024 IEEE International Conference on
Robotics and Automation (ICRA). Received September 15, 2023.

29



biopsy methods report a targeting error of 4.4 ± 2.9 mm
as a good result, although those were evaluated in a real
biopsy environment [18]. Arguably, these values can be
further improved. The subjects had little to no experience and
limited time to become accustomed to the interaction with the
holograms. With more training and further improvement in
the interfacing and control, the precision could be increased.
Additionally, the precision is limited by the step size of the
motor. With a gear ratio of 13:10, as used in the experiments,
one step corresponds to an angle difference of 0.577◦ at
the joint. At the joint that is furthest away from the needle
tip, at distances of 200 mm and 300 mm when the needle
is retracted and extended respectively, this translates to a
theoretical displacement of approximately 2.014 mm and
3.021 mm at the needle tip. In practice, the other joint in
that degree of freedom compensates for this displacement,
but it is certainly a limiting factor. These results demon-
strate that, especially with the potential for further precision
improvement, the proposed methods effectively address the
concern expressed in other literature that AR might be
too sensitive for precise control [11]. Concerning the time
taken by the subjects to complete the trials, there was no
significant improvement from the gesture-based method to
the joystick control method. Here, additional training and
greater familiarity with the system could enhance the speed
at which subjects can target with the biopsy needle. The auto-
targeting method allows the robot to automatically track a
predefined target, which can be manipulated by the operator.
Even though grasping the target was made easier by a
transparent halo that effectively expanded the graspable area
manifold, this proved to be challenging for the subjects to
adapt to and represented the most significant limitation of the
auto-targeting method. Finding a more user-friendly method
for moving the target could potentially improve both the
speed and precision of this method. For instance, a method
similar to the general control of the robot proposed here
could be employed. One of the greatest benefits of using AR
in the proposed methods was the scalability of the scene and
its flexibility regarding positioning relative to the hologram.
Subjects could scale up the size of the scene, making the
virtual representation of the robot and the targets more than
twice as large as their physical counterpart. Additionally,
they could position the virtual surrogate favorably to clearly
observe the trajectory of the biopsy needle and even adjust
their positions to the hologram during the trials. Scaling and
flexibility significantly improved precision, as small hand
movements had a reduced impact. With the incorporation of
the already scaled-down hand movements to the robot and
the PD controller, precise control became feasible. One could
argue that visualizing the end-effector without simulating the
entire robot would suffice. However, this approach has the
advantage of providing a better visualization of the robot’s
workspace constraints, making the restrictions on the end-
effector’s position more apparent to the user. Furthermore,
potential collisions can be easily avoided in the software, as
opposed to performing complex calculations on the robot’s
constraints in various joint configurations. Additionally, the

current position of the robot can be visualized by the
holographic surrogate, rather than only displaying the desired
position of the end-effector.

Currently, the primary limitation of the proposed method
is the calibration of the robot. Since the physical robot moves
in steps, a flawed calibration can result in an offset of the
end-effector position by up to 3 mm. Secondly, although this
paper effectively addressed the issue of hologram instability,
especially concerning hand position estimation by the HMD,
remaining jittering causes slight inaccuracies. These unin-
tended motions are challenging to filter out without making
the entire system feel sluggish. Lastly, it is crucial that
the real-world scene is accurately translated into the virtual
world. This introduces another potential source of error. If
the target is inaccurately represented in the hologram (e.g.,
with an offset from its actual location relative to the robot),
the real target could potentially be missed, even though the
virtual target is precisely hit.

To improve the system further, a calibration system should
be implemented to eliminate the noticeable offset observed
in some of the trials. Additionally, the interaction with the
holograms can be refined and made more intuitive. However,
the primary focus will be on introducing additional features
specific to the intended application - breast biopsy. This will
involve representing the patient’s anatomical structures along
with the target lesion as a hologram directly constructed
from MRI images. One potential solution could be to insert
a plane into the 3D mesh representing the breast and display
the corresponding MRI slice on which the lesion can be
marked. This would create a 3D spatial target that can be
automatically tracked by the system. The operator could then
maneuver the robot to the desired incision point, avoiding
specific anatomical structures during the biopsy.

V. CONCLUSIONS

An AR-based digital twin control scheme for surgeons
to interact with an MR-safe robot has been developed. This
scheme involves creating a holographic surrogate of the robot
and the biopsy target, enabling intuitive interaction through
gestures and voice commands for the operator. Experiments
were conducted with ten subjects to assess the performance
of two distinct AR-based control methods and compare them
to manual control via joysticks. The results demonstrated
a significant advantage in terms of precision and accuracy
compared to the manual control method. Achieving a pre-
cision of 1.64 ± 1.00 mm, it is feasible to target tumors
with a diameter of ∼ 5 mm while tele-operating the robot
from the control room. Moving forward, it is essential to
integrate the system into a real MR environment to close the
loop between the imaging process and the biopsy procedure.
This integration could involve visualizing the anatomical
structures of the patient to target the lesions accurately
and providing visual feedback during the incision, thereby
enhancing the overall system functionality.

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 2453 submitted to 2024 IEEE International Conference on
Robotics and Automation (ICRA). Received September 15, 2023.

30



REFERENCES

[1] Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA
Cancer J Clin. 2022 Jan;72(1):7-33. doi: 10.3322/caac.21708. Epub
2022 Jan 12. PMID: 35020204.

[2] Kuhl, C., Schrading, S., Leutner, C., Morakkabati-Spitz, N., Wardel-
mann, E., Fimmers, R., Kuhn, W., Schild, H. (2005). Mammography,
Breast Ultrasound, and Magnetic Resonance Imaging for Surveillance
of Women at High Familial Risk for Breast Cancer. Journal of
clinical oncology : official journal of the American Society of Clinical
Oncology. 23. 8469-76. 10.1200/JCO.2004.00.4960.

[3] Papalouka V, Kilburn-Toppin F, Gaskarth M, Gilbert F. MRI-guided
breast biopsy: a review of technique, indications, and radiological-
pathological correlations. Clin Radiol. 2018 Oct;73(10):908.e17-
908.e25. doi: 10.1016/j.crad.2018.05.029. Epub 2018 Jul 2. PMID:
30041954.

[4] H. Ranjan, M. van Hilten, V. Groenhuis, J. Verde, A. Garcia, S.
Perretta, J. Veltman, F.J. Siepel, S. Stramigioli, ”Sunram 7: An MR
Safe Robotic System for Breast Biopsy”. IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Oct 2023, pp.
In press.

[5] Morales Mojica CM, Velazco-Garcia JD, Pappas EP, Birbilis TA,
Becker A, Leiss EL, Webb A, Seimenis I, Tsekos NV. A Holo-
graphic Augmented Reality Interface for Visualizing of MRI Data
and Planning of Neurosurgical Procedures. J Digit Imaging. 2021
Aug;34(4):1014-1025. doi: 10.1007/s10278-020-00412-3. Epub 2021
May 23. PMID: 34027587; PMCID: PMC8455790.

[6] Ryo Suzuki, Adnan Karim, Tian Xia, Hooman Hedayati, and Nicolai
Marquardt. 2022. Augmented Reality and Robotics: A Survey and
Taxonomy for AR-enhanced Human-Robot Interaction and Robotic
Interfaces. In Proceedings of the 2022 CHI Conference on Hu-
man Factors in Computing Systems (CHI ’22). Association for
Computing Machinery, New York, NY, USA, Article 553, 1–33.
https://doi.org/10.1145/3491102.3517719

[7] Vörös, Viktor, Li, Ruixuan, Davoodi, Ayoob, Wybaillie, Gauthier,
Vander Poorten, Emmanuel and Niu, Kenan. (2022). An Augmented
Reality-Based Interaction Scheme for Robotic Pedicle Screw Place-
ment. Journal of Imaging. 8. 273. 10.3390/jimaging8100273.

[8] Feig S. Cost-effectiveness of mammography, MRI, and ultrasonog-
raphy for breast cancer screening. Radiol Clin North Am. 2010
Sep;48(5):879-91. doi: 10.1016/j.rcl.2010.06.002. PMID: 20868891.

[9] Z. Lin et al., ”ARei: Augmented-Reality-Assisted Touchless Teleop-
erated Robot for Endoluminal Intervention,” in IEEE/ASME Transac-

tions on Mechatronics, vol. 27, no. 5, pp. 3144-3154, Oct. 2022, doi:
10.1109/TMECH.2021.3105536.

[10] C. M. Morales Mojica et al., ”Interactive and Immersive Image-Guided
Control of Interventional Manipulators with a Prototype Holographic
Interface,” 2019 IEEE 19th International Conference on Bioinformat-
ics and Bioengineering (BIBE), Athens, Greece, 2019, pp. 1002-1005,
doi: 10.1109/BIBE.2019.00186.

[11] J. D. Velazco-Garcia et al., “Evaluation of how users interface with
holographic augmented reality surgical scenes: Interactive planning
MR-Guided prostate biopsies,” The International Journal of Medical
Robotics and Computer Assisted Surgery, vol. 17, no. 5. Wiley, Jun.
08, 2021. doi: 10.1002/rcs.2290.

[12] C. Xue, Y. Qiao and N. Murray, ”Enabling Human-Robot-Interaction
for Remote Robotic Operation via Augmented Reality,” 2020 IEEE
21st International Symposium on ”A World of Wireless, Mobile and
Multimedia Networks” (WoWMoM), Cork, Ireland, 2020, pp. 194-
196, doi: 10.1109/WoWMoM49955.2020.00046.

[13] A. Aristidou and J. Lasenby, ”FABRIK: A fast iterative solver for the
Inverse Kinematics problem”, Graphical Models, vol. 73, no. 5, 2011,
pp. 243-260

[14] C. P. Quintero, S. Li, M. K. Pan, W. P. Chan, H. F. Machiel Van
der Loos and E. Croft, ”Robot Programming Through Augmented
Trajectories in Augmented Reality,” 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Madrid, Spain,
2018, pp. 1838-1844, doi: 10.1109/IROS.2018.8593700.

[15] M. E. Walker, H. Hedayati and D. Szafir, ”Robot Teleoperation
with Augmented Reality Virtual Surrogates,” 2019 14th ACM/IEEE
International Conference on Human-Robot Interaction (HRI), Daegu,
Korea (South), 2019, pp. 202-210, doi: 10.1109/HRI.2019.8673306.

[16] V. Groenhuis and S. Stramigioli, ”Rapid Prototyping High-
Performance MR Safe Pneumatic Stepper Motors,” in IEEE/ASME
Transactions on Mechatronics, vol. 23, no. 4, pp. 1843-1853, Aug.
2018, doi: 10.1109/TMECH.2018.2840682.

[17] Raza S, Sekar M, Ong EM, Birdwell RL. Small masses on breast
MR: is biopsy necessary? Acad Radiol. 2012 Apr;19(4):412-9. doi:
10.1016/j.acra.2011.12.014. Epub 2012 Jan 24. PMID: 22277636.

[18] El Khouli RH, Macura KJ, Barker PB, Elkady LM, Jacobs MA, Vogel-
Claussen J, Bluemke DA. MRI-guided vacuum-assisted breast biopsy:
a phantom and patient evaluation of targeting accuracy. J Magn Re-
son Imaging. 2009 Aug;30(2):424-9. doi: 10.1002/jmri.21831. PMID:
19629977; PMCID: PMC2735014.

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 2453 submitted to 2024 IEEE International Conference on
Robotics and Automation (ICRA). Received September 15, 2023.

31


	INTRODUCTION
	METHODS
	RESULTS
	DISCUSSION
	CONCLUSIONS
	References
	References

