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ABSTRACT 

Urban growth is accompanied by increased impervious surfaces and urban building densities, 

contributing to the (UHI) phenomenon. This phenomenon refers to areas in cities with higher temperatures 

than rural areas. This phenomenon has a negative impact on human health and quality of life by increasing 

heat stress and the urban environment. Due to UHI's adverse effects, multiple studies have been conducted 

to address this challenge and mitigate UHI in urban areas. This study introduces an innovative Digital Twin-

Based Planning Support System (DT-PSS) that can help urban planners mitigate the UHI formation and its 

effect in cities. This methodological research explored the development of a DT-PSS within the Unreal 

Engine (UE) platform for Wuppertal City, Germany. The research integrated real-time temperature data, a 

Machine Learning (ML) model, and remote sensing data to predict the temperature and assess the impact 

of urban planning scenarios on UHI ahead of implementation.  

This research is divided into three parts: data analysis, ML model training, and DT-PSS creation. Nine 

variables are selected as predictor variables of LST from the literature: Normalized Difference Vegetation 

Index (NDVI), Normalized Difference Water Index (NDWI), Normalized Difference built-up Index 

(NDBI), Patch Density (PD), Edge Density (ED), Aggregation Index (AI), population density, Land use, 

and Digital Elevation Model (DEM). Among the selected variables, NDVI, NDBI, and NDWI showed the 

highest correlation with LST. The study used four different regression models to train them based on the 

predictor variables: Random Forest (RF), Support Vector Machine (SVM), Artificial Neural Networks 

(ANNs), and Polynomial regression mode to predict LST and UHI. The RF model demonstrated high 

accuracy in predicting LST, with an R-squared value of 0.86 and a Mean Absolute Error (MAE) of 1.09, 

outperforming other ML models.  

To create DT-PSS, a 3D city model of Wuppertal is developed in City Engine and imported into the UE 

to reduce the computational workload for the UE platform.  The trained RF model and real-time 

temperature data from sensors in Wuppertal City are imported into UE to include prediction capability to 

the DT-PSS. Integrating the RF model and sensor data into the UE allowed for real-time updates and 

scenario assessment. The DT-PSS prototype is developed for a small neighbourhood as a test area. The DT-

PSS performance is evaluated by holding a workshop with Wuppertal municipality officials. Feedback is 

received regarding tool usability and the potential to enhance the performance of the tool for future research. 

The research also found that involving stakeholders from the beginning step is one of the primary and 

fundamental requirements in the process of creating and designing a DT-PSS. User requirements and needs 

should be met since they are the final users of the tool.  

The DT-PSS suggested in this study provides urban planners with an innovative tool to evaluate the 

effects of different planning/mitigation scenarios on urban temperature and UHI. These research findings 

proved that satellite imagery provides valuable insights regarding the historical and current data and the state 

of land cover and temperature.  This research also identified several limitations, such as data availability, 

GIS software and UE interoperability, and computation constraints. However, the findings of this research 

highlight the potential of the proposed DT-PSS tool for broader application. Further research should focus 

on enhancing model accuracy and data integration and including more predictor variables to expand the 

functionality of the tool for more complex and detailed urban scenarios such as green roofs or redesigning 

streets with vegetation. 

 



ii 

ACKNOWLEDGMENTS 

This thesis represents a journey in my academic career during which I have grown both personally and 
professionally. This journey would not have been possible without the support and guidance of many 
individuals to whom I am deeply grateful. 

First and foremost, I would like to express my sincere gratitude to my supervisors, Dr. Mila Koeva and Dr. 
Pirouz Nourian, for their invaluable guidance, encouragement, and support throughout this research. Their 
expertise and insights were instrumental in shaping the direction and outcome of this thesis. 

I also extend my heartfelt thanks to Dr. Christine Pohl for her help and support throughout my research. 
She provided data and helped organize a workshop where I had the opportunity to present my work.  

A heartfelt thanks goes to my family. To my parents, Suraya and Hamid, for their endless support and 
encouragement throughout my academic journey. Your belief in me kept me motivated even in the most 
challenging times. To my sister, Parisa, for her understanding and support. Even though we are miles apart, 
with me in the Netherlands and her in Iran, her support has always been a source of strength for me. Your 
patience, encouragement, and constant belief in me have been vital throughout this journey. The distance 
never diminished your support, and for that, I am grateful. Your messages, calls, and words have always 
lifted my spirits and kept me focused on my goals. 

A very special thank you to my wife, Majedeh. Your patience, love, and support have been my rock 
throughout this journey. Thank you for believing in me and standing by my side. I never forget your support.  

I am also grateful to my best friends, Alireza and Saeid, for their constant support and for inspiring me to 
continue my studies abroad. 

I extend my gratitude to my classmates and friends from UPM. Your kindness and friendship made this 
journey more enjoyable. Special thanks to Pritam and Wibi, my dear friends, for always being there for me. 
Your friendship and support were invaluable.  

Lastly, I would like to acknowledge everyone who, in one way or another, contributed to the successful 
completion of this thesis. Your help and support are deeply appreciated. 



 

 

 

DIGITAL TWIN-BASED PLANNING SUPPORT SYSTEM FOR URBAN HEAT ISLAND MITIGATION  

 

 

iii 

TABLE OF CONTENTS 

1. Introduction ........................................................................................................................................................... 9 
1.1. Research Problem ........................................................................................................................................................9 
1.2. Main Objectives and Research Questions ........................................................................................................... 10 

2. Literature Review ............................................................................................................................................... 11 
2.1. Urban Heat Island (UHI) ........................................................................................................................................ 11 
2.2. Digital Twin and 3D City Modelling .................................................................................................................... 13 
2.3. Machine Learning for Temperature Prediction .................................................................................................. 15 
2.4. Machine Learning in DT ......................................................................................................................................... 15 
2.5. Literature Summary .................................................................................................................................................. 16 
2.6. Research Gap ............................................................................................................................................................ 16 

3. Study Area ........................................................................................................................................................... 17 
3.1. Current Situation of UHI in Wuppertal ............................................................................................................... 19 

4. Conceptual Framework..................................................................................................................................... 21 
5. Methodology ....................................................................................................................................................... 22 

5.1. Phase 1 and Phase 2: Literature Review and Data Preparation ......................................................................... 23 
5.2. Phase 3: Training ML model .................................................................................................................................. 28 
5.3. Phase 4: Creating the DT-PSS Tool ....................................................................................................................... 28 
5.4. Phase 5: Evaluation .................................................................................................................................................. 32 

6. Results And Discussion .................................................................................................................................... 32 
6.1. Selecting Sample Points for Collecting Data ....................................................................................................... 33 
6.2. Calculating and Collecting Data for Each Sample Point ................................................................................... 35 
6.3. Calculating Spectral Indices and DEM for Sample Points ............................................................................... 47 
6.4. Machine Learning Models ....................................................................................................................................... 50 
6.5. Creating the DT-PSS Tool for UHI ..................................................................................................................... 51 
6.6. Evaluation .................................................................................................................................................................. 62 

7. Conclusion and Recommendations ................................................................................................................ 64 
7.1. Limitations ................................................................................................................................................................. 65 
7.2. Further Research ...................................................................................................................................................... 66 

8. Ethical Considerations ...................................................................................................................................... 67 
9. Annexes ............................................................................................................................................................... 73 

Annex A .................................................................................................................................................................................. 73 
Annex B ................................................................................................................................................................................... 74 
Annex C .................................................................................................................................................................................. 75 
Annex D .................................................................................................................................................................................. 76 
Annex E .................................................................................................................................................................................. 79 
Annex F ................................................................................................................................................................................... 80 
Annex G .................................................................................................................................................................................. 81 
Annex H .................................................................................................................................................................................. 82 
Annex I .................................................................................................................................................................................... 84 

 

 



iv 

LIST OF FIGURES 

Figure 1: Digital Twin elements. Source: Caprari et al., 2022. ............................................................................. 13 
Figure 2: Concepts of DM, DS, and DT. Source: Fuller et al. (2020) ................................................................ 14 
Figure 3: Wuppertal City. Source: Author, 2024. ................................................................................................... 18 
Figure 4: Digital Urban Twin Wuppertal Project. Source: Municipality of Wuppertal, 2024 ......................... 19 
Figure 5: Selected rural and urban areas for preliminary research. Source: Author, 2024. .............................. 20 
Figure 6: Applied farmwork for DT for Wuppertal City. Source: Author, 2024 .............................................. 21 
Figure 7: The location of temperature sensors in Wuppertal City. Source: Author, 2024 .............................. 22 
Figure 8: Flowchart of the study. Source: Author, 2024 ....................................................................................... 23 
Figure 9: Process of training the ML model. Source: Author, 2024. .................................................................. 28 
Figure 10: the process of creating the LOD 2 model for building. Source: Author, 2024. ............................ 31 
Figure 11: Process of creating the DT tool for this research. Source: Author, 2024. ...................................... 32 
Figure 12: Sample points for collecting the data in Wuppertal. Source: Author, 2024. ................................... 33 
Figure 13: Global Morons' I result for reference data points. Source: Author, 2024. ..................................... 34 
Figure 14: Selected points for this research. ........................................................................................................... 35 
Figure 15: Calculated LST using Landsat 8 Image for 1st of June 2023. Source: Author, 2024. ................... 36 
Figure 16: Heat stress and strong heat stress areas in Wuppertal City. Source: Municipality of Wuppertal, 

2024. .............................................................................................................................................................................. 37 
Figure 17: Comparing the LST map and the heat stress map. The right image is the LST map. The left 

image is the heat stress map. Source: Author, 2024. ............................................................................................. 37 
Figure 18: Calculated NDVI using Sentinel-2 Image for 1st of June 2023. Source: Author, 2024. .............. 38 
Figure 19: Comparing the NDVI map and the LST map. The right image is the NDVI map. The left 

image is the LST map. Source: Author, 2024. ........................................................................................................ 38 
Figure 20: Calculated NDBI using Sentinel-2 Image for 1st of June 2024. Source: Author, 2024. ............... 39 
Figure 21: Comparing the NDBI map and the LST map. The right image is the NDBI map. The left 

image is the LST map. Source: Author, 2024. ........................................................................................................ 39 
Figure 22: Calculated NDWI using Sentinel-2 Image for 1st of June 2023. Source: Author, 2024. ............. 40 
Figure 23: Comparing the NDWI map and the LST map. The right image is the NDWI map. The left 

image is the LST map. Source: Author, 2024. ........................................................................................................ 40 
Figure 24: Land-use map for the Wuppertal City. Source: Author, 2024. ......................................................... 41 
Figure 25: Comparing the land use map and the LST map. The right image is the land use map. The left 

image is the LST map. Source: Author, 2024. ........................................................................................................ 42 
Figure 26: Population density map. Source: Author, 2024. .................................................................................. 43 
Figure 27: Comparing the population density map and the LST map. The right image is the population 

density map. The left image is the LST map. Source: Author, 2024................................................................... 43 
Figure 28: Digital Elevation Mode. Source: Author, 2024. .................................................................................. 44 
Figure 29: Comparing the DEM map and the LST map. The right image is the DEM map. The left image 

is the LST map. ............................................................................................................................................................ 45 
Figure 30: Buil-up map for Wuppertal City. Source: Author, 2024. ................................................................... 46 
Figure 31: Comparing the built-up map and the LST map. The right image is the built-up map. The left 

image is the LST map. Source: Author, 2024. ........................................................................................................ 46 
Figure 32: Importing calculated landscape indices into the attribute table of selected points. Source: 

Author, 2024. ............................................................................................................................................................... 47 
Figure 33: Locating sample points on the NDVI raster layer using (X, Y) coordinates. Source: Author, 

2024. .............................................................................................................................................................................. 48 



 

 

 

DIGITAL TWIN-BASED PLANNING SUPPORT SYSTEM FOR URBAN HEAT ISLAND MITIGATION  

 

 

v 

Figure 34: Number of selected pixels around each sample point. Source: Author, 2024. .............................. 48 
Figure 35: Number of pixels around each sample point for window size 2. Source: Author, 2024. ............ 49 
Figure 36: Correlation matrix between variables. Source: Author, 2024. .......................................................... 50 
Figure 37: Südstadt neighbourhood location in Wuppertal city. Source: Author, 2024. ................................ 52 
Figure 38: The two triangles between sensors. Source: Author, 2024. .............................................................. 53 
Figure 39: Design a button on the user widget interface to update the temperature. Source: Author, 2024.

 ....................................................................................................................................................................................... 54 
Figure 40: The location of selected points for IDW interpolation. Source: Author, 2024. ............................ 54 
Figure 41: The LOD 2 building model. Source: Author, 2024. .......................................................................... 55 
Figure 42: Separating 3D models into building faces. Source: Author, 2024. .................................................. 55 
Figure 43: Adding texture to the building facade using the CGA rule for Zurich City. Source: Author, 

2024. .............................................................................................................................................................................. 56 
Figure 44: Importing base map and roads into the model. Source: Author, 2024. .......................................... 56 
Figure 45: Joining faces and buildings together to make the urban block as an object in the 3D model. ... 57 
Figure 46: Importing and loading the RF model in UE. Source: Author, 2024. .............................................. 58 
Figure 47: Visual scripting code, Blueprint in UE. Source: Author, 2024......................................................... 59 
Figure 48: Blueprint widget for UI is used for this study. Source: Author, 2024. ........................................... 59 
Figure 49: Different Events for buttons in UE. Source: Author, 2024. ............................................................ 60 
Figure 50: Linking event to visual code in Blueprint. Source: Author, 2024. ................................................... 60 
Figure 51: Planning scenarios in the UE widget interface. Source: Author, 2024. .......................................... 61 
Figure 52: Land use and population density in the user widget interface. Source: Author, 2024. ................ 62 
Figure 53: Workshop with Stakeholders in Wuppertal municipality. Source: Author, 2024. ......................... 64 
Figure 54: GEE code for calculating mean LST. .................................................................................................. 74 
Figure 55: Importing necessary modules for the whole training ML algorithm process.. .............................. 74 
Figure 56: Loading data and splitting the data into training and test sets. Source: Author, 2024. ................ 74 
Figure 57: Python code for training RF, SVM, ANNs regression algorithm, and the code for checking the 

accuracy. Source: Author, 2024. ............................................................................................................................... 75 
Figure 58: Saving the model and checking the performance. Source: Author, 2024....................................... 75 
Figure 59: Python plugins used in the study. Source: Author, 2024. ................................................................. 76 
Figure 60: Stakeholders’ opinions regarding the essential information for creating a 3D model for UHI.. 76 
Figure 61: Stakeholders' opinions regarding the important features and functionalities that should be 

included in the PSS tool. Source: Author, 2024. ................................................................................................... 77 
Figure 62: Stakeholders' opinions regarding the level of the interactivity of the PSS tool.. ........................... 77 
Figure 63: Stakeholders' opinions regarding how the tool can help them in UHI mitigation. Source: 

Author, 2024. ............................................................................................................................................................... 78 
Figure 64: Stakeholders' opinions regarding the level of the interactivity of the PSS tool.. ........................... 78 
Figure 65: Stakeholders' opinions regarding the level of the interactivity of the PSS tool.. ........................... 78 
Figure 66: Python code for calculating spectral indices for sample points. Source: Author, 2024. .............. 80 
Figure 67: API information for sensors. Source: Author, 2024. ......................................................................... 81 
Figure 68: API information after importing it in Postman.  Source: Author, 2024. ........................................ 81 
Figure 69: Visual code for importing real-time data for temperature form sensors. Source: Author, 2024. 82 
Figure 70: IDW interpolation using geographical coordinates. Source: Author, 2024. .................................. 83 
Figure 71: IDW interpolation using Cartesian coordinates. Source: Author, 2024. ........................................ 84 
Figure 72: String variable for importing and running Python files. Source: Author, 2024. ............................ 85 
Figure 73: Linking the string variable to the Execute Python Command function. Source: Author, 2024. 86 



vi 

 LIST OF TABLES 

Table 1: Selected variables from the literature. ....................................................................................................... 12 
Table 2: Data used for this study. ............................................................................................................................. 24 
Table 3: Accuracy of trained ML models ................................................................................................................ 51 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

DIGITAL TWIN-BASED PLANNING SUPPORT SYSTEM FOR URBAN HEAT ISLAND MITIGATION  

 

 

vii 

LIST OF ABBREVIATIONS 

AI                               Aggregation Index  

ANNs                         Artificial Neural Networks  

DEM                          Digital Elevation Model  

DL                              Deep Learning  

DM                             Digital Model DM 

DS                              Digital Shadow  

DT                             Digital Twin  

DT-PSS                      Digital Twin-Based Planning Support System 

ED                             Edge Density      

GEE                          Google Earth Engine  

LULC                         Land use Land Cover  

LST                            Land Surface Temperature                     

ML                             Machine Learning  

NDBI                         Normalized Difference Built-up Index     

NDVI                         Normalized Difference Vegetation Index           

NDWI                        Normalized Difference Water Index       

RF                              Random Forest  

RMSE                        Root Mean Square Error  

PD                             Patch Density       

PT                              Partial Twin  

PSS                            Planning Support System      

UE                             Unreal Engine  

UHI                           Urban Heat Island  

UI                              User Interface  

ST                              Subject Twin  

SVF                           Sky View Factor 

SVM                          Support Vector Machine  

DUT-W                     Wuppertal has a Digital Urban Twin  





DIGITAL TWIN-BASED PLANNING SUPPORT SYSTEM FOR URBAN HEAT ISLAND MITIGATION  

 

9 

1. INTRODUCTION 

About 68% of the population in the world is expected to live in cities by 2050, resulting in increased 

urbanization in the following decades (United Nations, 2022). The effects of urbanization on the 

environment will be widespread, making sustainable development challenging (Ravanelli et al., 2018). Rapid 

urbanization in recent decades has resulted in several environmental challenges, such as the Urban Heat 

Island (UHI) (Mutani & Todeschi, 2020). In the two previous decades, UHI has become a more common 

phenomenon, impacting the quality of life in cities through increasing temperatures in urban areas (Helmholz 

et al., 2021). Based on the current trend of global urbanization, the intensification and prevalence of UHI 

are expected to rise (Deilami et al., 2018). This highlights the urgent need for effective mitigation measures 

in the upcoming years. 

Extensive usage of impervious surfaces in the cities, such as asphalt and concrete, has a crucial role in UHI 

formation. The capacity of the mentioned surface materials to absorb and re-radiate the heat is higher than 

that of natural landscapes (Mohajerani et al., 2017).  Additionally, UHI formation is intricately linked to land 

use, building configuration, and vegetation density variables. Thus, a comprehensive understanding of the 

relationship between these factors and UHI is essential to address and mitigate the adverse impacts of UHI.  

It has been proven that UHI has consequences such as reducing air quality, posing a threat to the urban 

ecosystem (Mohajerani et al., 2017), adverse effects on human health (Debbage & Shepherd, 2015), and an 

increase in energy demand (Gago et al., 2013). For example, retaining heat and increasing temperature in 

urban areas leads to more energy consumption for cooling effect and water usage. Several studies measure 

the increase in energy to almost double for cooling buildings (Santamouris, 2013). Increasing energy 

consumption for cooling buildings also produces more greenhouse gas emissions and air pollution, especially 

ground ozone (Ahmed Memon et al., 2008; Kolokotroni et al., 2006). Moreover, an increase in temperature 

significantly affects human health and quality of life in urban areas. Increases in temperature have a negative 

impact on many people's lives, particularly vulnerable groups such as the elderly, and create environmental 

issues (Mohajerani et al., 2017). It has been shown that most heat-related deaths happen in urban areas (Stone 

et al., 2010). Therefore, UHI is the main focus of many studies in several domains, including urban planning 

and urban geography (Estoque et al., 2017). 

To Mitigate UHI, researchers have employed different approaches to find the key factors influencing 

UHI. For instance, Huang & Wang (2019) explored the impact of 2D and 3D factors on LST and UHI using 

remote sensing images. They measure the effect of urban morphology and urban function zones on urban 

heat islands. Helmholz et al. (2021) quantified the impact of different infill urban planning scenarios on UHI 

by modelling. They suggested a simulation-based approach to compare different densities in buildings and 

greeneries for residential areas. They also showed that different building and vegetation densities significantly 

affect UHI and temperature (Helmholz et al., 2021). In addition, other scholars have introduced the use of 

nature-based solutions such as water bodies or green roofs to mitigate UHI. Mutani & Todeschi (2020) 

investigate the effect of green roofs in Italy to measure the impact of UHI, outdoor comfort zones, and 

energy saving.  

1.1. Research Problem 

Wuppertal City in Germany faces UHI effects due to its unique topography, high population density, and 

extensive urbanization in the city centre. During the night, there is a difference in the temperature in urban 

areas compared to rural areas in Wuppertal. Wuppertal is located in the Wupper Valley, and the valley 

structure restricts air movement. Dense built-up areas, especially along with Wupper Valley in the city centre, 

absorb heat during the day and release it at night. Limited airflow impedes the cooling air effect, accumulating 
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heat in the lower part of the city. Lack of ventilation, surface materials, materials used in construction, degree 

of sealing, and high population density are known as the main causes of UHI formation in Wuppertal 

(Municipality of Wuppertal, 2020). 

Future scenarios expect UHI intensity and heat stresses to increase in the city by 2060 (Municipality of 

Wuppertal, 2024). The future scenarios for UHI in Wuppertal expect a severe impact on UHI by 2060 based 

on the current global greenhouse gas emissions trend. The number of days above 30 degrees Celsius (hot 

days) has significantly increased from 100 years ago to almost double, ten days during the summertime. There 

is also expected to be a 100% increase in hot days in the next 50 years.  This significantly impacts the 

liveability of urban areas, quality of life, biodiversity, and energy consumption for cooling in Wuppertal 

(Steinrücke et al., 2019).  

The increasing number of hot days in Wuppertal might result in drought conditions and threaten urban 

vegetation cover. Impacting urban vegetation cover can reduce their cooling effect and even increase UHI 

formation in Wuppertal. This also impacts biodiversity in urban areas in Wuppertal (Scharte, 2020). 

Moreover, the increasing number of hot days has an adverse impact on vulnerability groups. The UHI in 

Wuppertal has health-related risks, especially for young and aged people. With the current population growth 

trend and demographic profile in Wuppertal, the number of aged and young people is expected to increase 

in future years (Steinrücke et al., 2019). This results in more heat-related health risks for the aged and young 

generation in Wuppertal City. Therefore, UHI is an urgent problem in Wuppertal City that needs to be 

addressed.  

1.2. Main Objectives and Research Questions 

This research aims to build a DT-PSS to support the decision-making process for UHI mitigation in 

Wuppertal. 

Sub-Objectives (SO) and Research Questions (RQ): 

SO1: To conduct a comprehensive literature review to find existing methods to build DT-PSS for UHI. 

RQ1: Which variables are identified in the literature that (statistically) have the most effect on LST? 

RQ2: What are the existing methods in the literature for building DT-PSS for UHI?  

RQ3: What data is needed to build DT-PSS for UHI? 

SQ2: To build a DT-PSS to assess the impact of different urban planning decision variables on the UHI. 

RQ1: What is the most suitable method for building a DT-PSS for Wuppertal City for UHI? 

RQ2: How can we integrate different data to create a DT-PSS tool? 

RQ3: Which planning processes might affect the UHI phenomenon, and how can their effects be 

traced and assessed using the proposed DT-PSS? 

SQ3: To evaluate the DT-PSS performance. 

RQ1: In which parts of the planning process may the DT-PSS tool support decision-makers in UHI 

mitigation? 
RQ2: What are the suggestions for further research to improve the performance of the DT-

PSS tool? 
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2. LITERATURE REVIEW 

2.1. Urban Heat Island (UHI) 

Urban Heat Islands refer to the areas in the city with higher temperatures than rural areas. This 

phenomenon is the primary cause of heat-related death, global warming, and unpredictable weather patterns 

(Deilami et al., 2018). Due to the adverse effects of UHI on human health and cities, scholars investigated 

the main variables that might increase UHI or LST (as the proxy of UHI). Variables driving UHI and 

temperature can be categorized into two main categories. The first are variables not under our control, such 

as global warming and natural topography. The second are variables under our control, such as surface and 

building materials and green spaces (Ahmed Memon et al., 2008; Garzón et al., 2021; Mohajerani et al., 2017). 

By establishing this distinction, understanding the spatial-temporal pattern of under-control variables that 

might impact UHI is crucial in urban planning and policymaking. 

In a comprehensive study of over a hundred cities, Santamouris (2015) explored how urban morphology, 

anthropogenic heat, and building materials affect UHI formations. Their analysis showed that denser urban 

fabrics and specific construction materials increase UHI impacts. Human activities, such as transportation 

and manufacturing operations, contribute significantly to UHI by emitting heat into metropolitan areas. 

Areas with higher population density have more concentrated heat sources from human activity, contributing 

to increased UHI effects. The form and arrangement of streets and buildings also may trap heat and prevent 

air from flowing to reduce it. This can result in UHI in metropolitan areas (Santamouris, 2015).  

Another critical factor influencing LST is land cover type, as highlighted by Wu et al. (2014). Vegetated 

regions, such as forests and croplands, cool the environment, whereas built-up areas raise the temperature. 

They found that water bodies also help decrease UHI impacts due to their large covering and cooling 

qualities. Their study underlines that both landscape composition and the arrangement of land uses have a 

significant effect on the thermal environment (Wu et al., 2014). Changes in land use/land cover (LULC) are 

also identified as a factor that has a relationship with change in LST. Ravanelli et al. (2018) conducted a 

spatial-temporal analysis between 1992 and 2011 to see how LULC changes contributed to the UHI pattern. 

They used the Google Earth Engine (GEE) to analyse more than 6000 Landsat images. They found an 

increase in the pattern and intensity of UHI due to the land cover change in six metropolitan areas in the 

USA (Ravanelli et al., 2018).  

Furthermore, researchers have used spectral indices and terrain factors to predict temperature. The 

common approach used is ML algorithms to model the relationship between predictors such as NDVI and 

NDBI (Wu & Li, 2019; Yang et al., 2017). Li et al. (2019) used terrain factors such as slope, the Digital 

Elevation Model (DEM), and spectral indices such as NDVI and NDBI to terrain the model.  They included 

more predictors in their studies to increase the accuracy of the models for LST and UHI prediction. Their 

study also recommended including other variables, such as soil moisture and humidity, to improve the 

accuracy in future studies and highlighted the importance of terrain factors such as DEM and slope. 

Moreover, 3D factors such as building height and Sky View Factor (SVF) are also used to predict LST.  

Hu et al. (2020) used the combination of 2/3D factors to find the relationship between variables and LST. 

They found that the relationship between variables and LST is not linear and changes during the seasons. 

They also found that 2D variables strongly correlate with LST during warmer seasons. In contrast, 3D 

variables strongly correlate with LST during the colder seasons (Hu et al., 2020).  
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In addition, landscape indices such as patch density, edge density, and aggregation index are found to have 

a relationship with LST. These factors contribute to landscape composition in urban areas. Estoque et al. 

(2017) classified land cover into different categories: water, impervious surface, green space, etc. Then, they 

calculated the spatial indices for each category and found the correlation between these indices and LST. 

They discovered that impervious areas have a strong positive relationship with LST, and green spaces have 

a strong negative relationship with LST (Estoque et al., 2017).  

Population is another variable that may influence UHI and LST. H. Zhang et al. (2013) included the 

population in their analysis to see the change in both LULC and population between 1997 and 2008 and the 

impact on LST. They tried quantitively examining the relationship between population, LCLU, and LST 

during the period. They saw a significant change in population and urban growth as an urban sprawl. The 

main development happened in shrubs, cropland, and forests, reducing water bodies and vegetation areas. 

This change in LULC affected the spatiotemporal pattern of UHI and intensified it (H. Zhang et al., 2013).  

Depending on the data availability and the context, scholars have selected different variables and factors 

to predict/quantify UHI and LST patterns. However, more and more predictors are included in the recent 

studies to increase the accuracy of the results. Especially for the studies that used ML algorithms to predict 

the LST and UHI patterns. Table 1 shows the selected variables from the literature for this study.  

Table 1: Selected variables from the literature.  

Factor Definition Reference 

NDVI normalized difference vegetation index range 

between +1 to -1 

(Garzón et al., 2021) 

NDBI normalized difference built-up index ranges from 

1+ to -1 

(Garzón et al., 2021) 

NDWI normalized difference water index ranges from 

1+ to -1 

(H. Zhang et al., 2013) 

Population Density Refers to the number of populations per unit area (H. Zhang et al., 2013) 

Land-use land use refers to specific human activities for 

which land is utilized, and land cover refers to 

different natural or artificial features that cover 

the land. 

(Wu et al., 2014) 

DEM It is a 3D digital representation of the surface 

topography or terrain of the Earth. 

(Li et al., 2019) 

Patch Density Patch density is a metric used in landscape 

ecology to calculate the number of patches in an 

area. This metric can help to comprehend the 

level of segmentation. 

(Wu et al., 2014) 

Edge Density Edge density is a measure used in landscape 

ecology to quantify the number of edges or 

boundaries per unit area of a landscape. This 

measure is beneficial for analysing landscape 

patterns. 

(Wu et al., 2014) 

Landscape shape index The landscape shape index (LSI) is a statistic used 

in landscape ecology to assess the shape 

complexity of patches or features in a landscape. 

 

(Estoque et al., 2017) 

Aggregation index The aggregate index is a statistical measure that 

quantifies the degree of concentration or 

dispersion of a built-up area within a city. 

(Estoque et al., 2017) 

Source: Author, 2024. 
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2.2. Digital Twin and 3D City Modelling 

Over the last two decades, 3D city modelling has been the main topic of much research in several domains 

of urban planning, including maintenance, disaster management, and infrastructure management (Biljecki et 

al., 2015). Many 3D city models are designed to help local and national governments, institutes, or companies 

in decision-making in various domains such as solar potential (Romero Rodríguez et al., 2017), flooding, 

wind safety (Blocken et al., 2012), and indoor and outdoor emergency response (Tashakkori et al., 2015). For 

example, Schrotter and Hürzeler (2020) demonstrated how 3D city modelling helps understand urban 

planning decisions that affect the built environment by visualising the outcome of possible planning scenarios 

and their consequences. To illustrate how planning scenarios impact the built environment, they 

demonstrated a number of 3D prototypes for air pollution, noise, radiation from mobile phones, and solar 

potential made in Zurich (Schrotter & Hürzeler, 2020). 

Additionally, other researchers employed 3D city modelling to support decision-making by comparing the 

outcomes of possible solutions at the building and city levels. Chen et al. (2015) created a novel 3D tool to 

assess the impact of new development on existing buildings and in the neighbourhood. The dynamic 3D tool 

allows users to replace the existing building with a new one. Their study demonstrated how 3D visualisation is 

efficient in showing specific variables, such as sky exposure or landmark change, due to new city developments 

and constructions (Chen et al., 2015.) 

The development of static 3D models resulted in a new concept of real-time simulation, the “Digital 

Twin.” Digital Twin (DT) is being used in the industry for the first time. Despite the concept being over 20 

years old and having continuous evolution and application in different domains, it has a diverse definition 

(VanDerHorn & Mahadevan, 2021). The Digital Twin GeoHub group under the Digital Society Institute of 

the University of Twente states that "DT is not merely a geometric (2D and 3D) representation of static 

assets, but a dynamic/live model that represents their past, current, and future states" (Digital Society 

Institute, 2022). Three components constitute the general framework for DT: the virtual world, the physical 

world, and the relationship between these two (Botín-Sanabria et al., 2022). Each element has a few 

components depending on the situation and the user's needs. Figure 1: Digital Twin elements. Source: Caprari 

et al., 2022Figure 1 shows the elements and the concept.  

 
Figure 1: Digital Twin elements. Source: Caprari et al., 2022. 
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Fuller et al. (2020) reviewed more than 88 articles in DT in different domains. They found that many scholars used 

the DT concept in the article while it was a Digital Shadow or Digital Model. The literature has a big misconception 

about DT (Fuller et al., 2020; Kritzinger et al., 2018). There are a few similar words with different meanings: Digital 

Model (DM), Digital Shadow (DS), and Digital Twin (DT).  

DM represents a physical asset, but there is no real-time data flow. Digital data of the asset might be used for creating 

the model, but the data flow is not automated integration, and all the digital information is added to the model manually 

(Fuller et al., 2020; Kritzinger et al., 2018). In DS, the data integration is automated, but the direction of the data is only 

from the physical asset to the virtual asset. In DT, data integration is automated, and it is done in both directions: 

physical assets and virtual assets (Khajavi et al., 2019; Kritzinger et al., 2018). Figure 2 shows the concept of the idea. 

 
Figure 2: Concepts of DM, DS, and DT. Source: Fuller et al. (2020) 

Building on the mentioned foundational concept, recent architectural and urban planning research projects 

have used DTs as an innovative idea. For example, DTs have been applied during many construction phases, 

including design and maintenance. Jiang et al. (2022) used DT to build new roadways and see the impact of 

different roadway scenarios in advance. DT technology has also expanded to include building life cycle 

management (Nica et al., 2023). Khajavi et al. (2019) used sensors to create a small DT of the building facade 

for life cycle management. 

Furthermore, DTs are also used as an essential tool in decision and planning support systems. Scholars 

have shown the potential of DTs in helping the process of decision-making (Macchi et al., 2018). According 

to Nica et al. (2023), DTs might help urban planning and management by providing a virtual urban model 

that sees dynamic and complex relations between urban elements. In addition, DTs might improve decision-

making by using real-time data, predictive analytics, and visualisation technologies. DT helps decision-makers 

in scenario-based planning, enabling them to examine the consequences of possible scenarios before 

implementing them. Caprari et al. (2022) studied the potential applications of DTs in urban planning in the 

context of smart cities. This study focuses on how the DT tool may help create a platform where decision-

makers can assess urban scenario simulations and get public feedback before making decisions (Caprari et 

al., 2022). 

In addition, research emphasis the benefits of DT as a planning support system in urban planning by 

suggesting a digital twin-based tool. K. Zhang et al. (2022) explored a tool named SpoVis for site locating. 

They created a DT tool to select optimal locations for sports facilities in the city. The research highlighted 

the advantages of DTs in city planning and development. K. Zhang et al. (2022) found that using DT, real-

time data, and advanced modelling increases the accuracy and efficiency of the process of site locating. This 

technology facilitated decision-making processes and enhanced sports facility planning(K. Zhang et al., 

2022). Similarly, White et al. (2021)  demonstrated that using DT helps participatory planning. Their 
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research focuses on how residents interact and provides feedback on urban planning scenarios that may 

change skylines and green spaces (White et al., 2021). According to them, releasing an open and public DT 

model allows planners to get feedback and promotes transparency to the public prior to action. As a result, 

DT supports decision-making and design by forecasting the influence of possible planning scenarios on built 

and non-built environments (Shahat et al., 2021). 

Despite the advances, uses, and research mentioned in DTs, several technical challenges, such as data 

collection and model accuracy, remain (VanDerHorn & Mahadevan, 2021). There are also a few challenges 

with the implementation of DTs, such as sensor placement, sensor integration, IoT system limitations for 

connectivity, current infrastructure for building DT, and cost associated with setting up and maintenance of 

DTs (Attaran & Celik, 2023; Khajavi et al., 2019). Also, high-quality data and data management are the 

challenges related to the data in DTs (Kikuchi et al., 2022; Onile et al., 2021; Rasheed et al., 2020). Austin et al. 

(2020) mentioned that integrating various data sources while maintaining privacy and safety is another difficulty 

in creating DTs. Furthermore, DTs rely heavily on technologies, and this reliance makes them very vulnerable, 

especially to cyberattacks. (Nica et al., 2023) 

Moreover, the current literature lacks practical applications in DT. The existing literature on DT is focused mainly on 

methodology and technical approaches rather than the implementation of DT. VanDerHorn & Mahadevan (2021) 

suggest demonstrating tangible benefits and practical applications of DTs to substantiate their value.  

2.3. Machine Learning for Temperature Prediction  

Researchers have used Machine Learning (ML) to interpolate temperature spatially. Scholars also have 

used ML to downscale or interpolate LST using satellite imagery data. They usually do this to increase the 

coarse resolution of satellite images and prepare them for further research. There are a few methods to do 

this process. The linear and multi-linear regression models are commonly used to find the relationship 

between LST and high-resolution remote sensing indices such as NDVI (Kustas et al., 2003). The most 

common statistical regression model is linear regression (Agam et al., 2007, 2008; Kustas et al., 2003). 

However, linear regression is incapable of representing nonlinear relationships. That is why other complex 

algorithms and models, such as artificial neural networks (ANNs), random forests, and support vector 

machines (SVM), have been used to capture the relationships between LST and predictors. Since the 

relationship between predictors and LST is complex, researchers used algorithms capable of capturing this 

relationship. Hu et al. (2020a) stated that the relationship between variables and LST is not linear and changes 

during the seasons. That is why they used a Boosted Regression Tree in their research. A boosted regression 

model might find linear and non-linear relationships between dependent and independent variables. Li et al. 

(2019) also used ANNs, SVM, and Random Forest (RF) algorithms. The results of this research showed that 

RF and ANNs provided more accuracy than SVMs. Random Forest is one of the regression algorithms that 

can efficiently find this complex relationship. Among ML models used in the studies, RF has shown high 

accuracy in predicting the LST (Yang et al., 2017).  

2.4. Machine Learning in DT 

ML models allow the prediction to be made possible inside the DTs. DTs get their prediction power either 

from ML models or a simulation model. A number of scholars recommend using the ML model in DT. New 

technologies such as ML and Artificial Intelligence (AI) have made DTs more efficient than before (Rasheed 

et al., 2020). Also, Austin et al. (2020) showed that AI and ML should be included to enhance the 

functionality of DTs.  



DIGITAL TWIN-BASED PLANNING SUPPORT SYSTEM FOR URBAN HEAT ISLAND MITIGATION  

 

 

16 

Furthermore, researchers also used real-time data and the ML model to exploit the potential of DTs as 

temporary self-evolving models. For instance, Edington et al. (2023) described a time-evolving DT tool for 

engineering dynamics applications and demonstrated how DTs may be more flexible and responsive than 

static 3D models. They created a DT by integrating physics-based and data-driven models. Based on the 

collected data, the concept allows the DT to upgrade over time (Edington et al., 2023). Strauss & Bulatov 

(2022) also explored a unique way of creating a digital thermal twin using an ML methodology. This work 

investigated how DT and ML technologies may be used for the complex dynamics of heat in urban 

environments, which is an essential factor in UHI assessment. 

As mentioned earlier in the DT literature part, DTs have three main elements: the virtual and physical 

models and the connection between these two. However, scholars add other elements, such as ML or AI, to 

the DT based on their research objective. Research shows that adding an ML model to DTs allows DTs for 

analysing the data and predicting the future state of the system (Austin et al., 2020; Edington et al., 2023; 

Khajavi et al., 2019; Rasheed et al., 2020).  

2.5. Literature Summary 

UHI refers to the area with higher temperatures than rural areas. This phenomenon has significant 

challenges, such as increasing heat-related health risks and decreasing quality of life in urban areas. Effective 

UHI mitigation requires understanding the factors driving UHI. Factors driving UHI are generally divided 

into two groups: those not under human control, like natural topography and global warming, and those 

under human control, such as surface material and green spaces. Understanding under-control variables in 

urban planning and policymaking is essential to mitigate UHI formation. Previous research incorporated ML 

algorithms and variables such as spectral indices to model LST and predict UHI pattern and formation. 

Studies included 3D factors such as SVF, highlighting their importance alongside 2D factors such as land 

cover. Recent studies included more factors to increase the accuracy of ML models and in the prediction of 

UHI formation.  

The evolution of 3D city models to dynamic DT models marks a development in the decision-making in 

urban planning. By integrating real-time data and predictive analysis, DT represents the past, current, and 

future state of the urban assets. The DT model consists of three main components: the virtual model, the 

physical world, and the interactions between them. Despite misunderstandings that exist for DTs like DM 

and DS, DTs have bidirectional data flow between the physical world and the virtual model. Recent studies 

demonstrated the potential of using DTs to enhance decision-making in urban planning. DTs have been 

used in different areas, such as design, maintenance, and site locating in urban planning. However, a number 

of challenges, such as sensor integration, data collection, and model accuracy, remain. The literature indicates 

that integrating ML into DTs provides DTs with analysis and prediction capability. This is an essential feature 

in decision-making for assessing the impact of decisions in advance.  

ML techniques have proven to be effective in predicting temperature. Although linear regression models 

are commonly used, they often fail to capture the nonlinear relationship between LST and the factors driving 

it.  As a result, more sophisticated algorithms like ANNs, RF, and SVM are needed to capture the complex 

and nonlinear relationships between factors.  

2.6. Research Gap 

The literature categorizes the main driving variables of UHI and LST into under-control and not under-

control variables. Since urban planning/design has a significant role in determining the characteristics of the 

under-control variables, considering their effect on UHI and LST in the urban planning/design process is 

essential (Deilami et al., 2018; Gago et al., 2013). However, a few issues about including the effect of the 
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under-control variables on UHI and LST in the decision-making process remain unanswered. First, where 

should planners consider the variables that affect UHI and LST during the planning process? Second, how 

can the impact of the variables be evaluated before bringing the decisions into action? 

To answer the first question, planners do not work with urban fabric variables like building height, land 

cover, and SVF. They deal with decision variables, including density, building codes and regulations, land 

use, etc. These decision variables indirectly or directly influence the urban fabric variables. For Instance, if 

urban planners want to increase density in a given area, they might increase the number of floors for buildings 

in the neighbourhood (this is related to building requirements in detailed plans). This directly impacts the 

SVF, which is one of the variables driving UHI. As a result, it is essential to determine which decision 

variables influence the urban fabric, resulting in an increase or decrease in LST and UHI (Ahmed Memon et 

al., 2008; Deilami et al., 2018; Gago et al., 2013). 

As previously stated, the relationship between urban fabrics and LST or UHI is complex. A non-linear 

regression task is needed to find the relationship between variables and LST and UHI (Hou et al., 2023; Hu 

et al., 2020; Huang & Wang, 2019; Jing et al., 2016). Previous research studies have been conducted to predict 

UHI and LST use of ML (Jing et al., 2016). However, the research found a static relationship, while the 

relationship between the variables (that drive UHI and LST) changes dynamically during seasons and 

nocturnal and diurnal cycles (Huang & Wang, 2019). This relationship brings another issue for finding the 

relationship between variables. That is why a real-time model is needed to continuously update and show 

this relationship. Hence, to address the second question, using new technologies such as DT might help in 

the real-time evaluation of the impact of variables on UHI and LST (Caprari et al., 2022). This is due to the 

ability of DT to illustrate the complex relation between variables.  

Overall, a number of gaps are found in the literature on UHI and DT. First, several studies have used 

remote sensing data to analyse the relationship between spectral indices and LST, such as Estoque et al. 

(2017) and Qi et al. (2022). However, limited research has tried to train an ML model for predicting LST in 

DT. Moreover, scholars who attempted to create DT (for UHI) created a DS or DM model instead of DT 

(Strauss & Bulatov, 2022). Second, while several research studies have employed DT as a decision-making 

tool (Strauss & Bulatov, 2022; White et al., 2021), limited research has been done on real-time what-if 

scenario examination on UHI. Finally, the literature indicates a gap in the practical application of DTs, 

highlighting the need for more specific examples of implementations(VanDerHorn & Mahadevan, 2021). 

This research intended to fill the mentioned gaps by creating a DT-PSS that supports decision-making for 

UHI mitigation. This research also explores the possibility of using remote sensing data (as historical data) 

for DT. The DT-PSS tool in this study is suggested as an innovative idea for predicting UHI and temperature 

after simulating the impact of different urban planning scenarios in the DT.  

3. STUDY AREA 

The case study for this research is Wuppertal City in Germany. Wuppertal has a population of 

approximately 350,000 people and is the largest economy in Bergisches Land (Figure 3). The city is in the 

western German state of Noordrijn-Westfalen and is located between Cologne (southwest), Essen (north), 

and Düsseldorf (west). The city has grown in a valley along the Wupper River (Wuppertal.de, n.d.). 
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Figure 3: Wuppertal City. Source: Author, 2024. 

In the framework of smart cities in Germany, the municipality of Wuppertal is interested in developing a 

DT tool. In the context of smart cities, Wuppertal municipality wants to use information and communication 

technologies to link the city infrastructure, such as energy, buildings, and water, to sustainable development. 

Wuppertal has a Digital Urban Twin (DUT-W), a project funded by the Ministry of Housing, Urban 

Development, and Building in Germany. Wuppertal is one of 73 German cities that intend to use digitization 

to support sustainable urban development. Creating a DT tool that maintains and processes real-time data 

and visualises the environmental effects of various decision variables in urban planning might help 

municipality authorities in sustainable urban planning (Municipality of Wuppertal, 2024.). 

The municipality of Wuppertal has identified five key areas in DUT-W that need to evolve as Subject Twin 

(ST), small DTs in the DUT-W project. The five ST areas are climate change, sustainable urban development, 

urban resilience, green infrastructure, and mobility( Figure 4). In the ST climate change, the municipality has 

two Partial Twins (PT), urban heat, and a heavy rain hazard map. The primary application of this study is 

PT urban heat in DUT-W. This research may be utilized to develop PT urban heat, in which the impact of 

urban planning decision variables can be simulated in a game engine environment, and decision-makers in 

the municipality of Wuppertal can examine the impact of decision variables on UHI formation. 
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Figure 4: Digital Urban Twin Wuppertal Project. Source: Municipality of Wuppertal, 2024 

 

3.1. Current Situation of UHI in Wuppertal 

Using Google Earth Engine (GEE), primary research is done to determine the current UHI situation in 

Wuppertal. For this purpose, the mean LST for rural and urban areas is calculated for years between 2013 

and 2024. Modis and Landsat images are used for this research. Both rural and Urban areas are defined 

manually in GEE based on the locations. Areas outside of Wuppertal city with high vegetation are selected 

as rural areas. In contrast, areas within the Wuppertal city with high building density are selected as urban 

areas. For both areas, mean LST between 2013 and 2024 is calculated. The result showed that between 2013 

and 2024, the difference in LST in the two areas is between 4 and 8 degrees Celsius during the day, depending 

on the seasons. This difference is lower at night compared to day, but the result still showed a difference 

from 1 to 4 degrees Celsius in LST between the rural and urban areas in Wuppertal. The difference in LST 

between the two areas is higher in warmer than colder seasons. Figure 5 shows the selected rural and urban 

areas for this preliminary research. Rural areas are orange, and the urban regions are magenta. The related 

GEE code is provided in the Annex A. 
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           Figure 5: Selected rural and urban areas for preliminary research. Source: Author, 2024. 
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4. CONCEPTUAL FRAMEWORK 

By combining real-time data and ML models with modelling capabilities, DTs can considerably help 

decision-making for UHI mitigation. The proposed DT-PSS tool in this study provides dynamic and detailed 

information on temperature so that decision-makers can do ex-ante assessments and make informed 

decisions to mitigate UHI. 

The conceptual framework of this research is not only based on the literature but also on the requirements 

of the context to create a DT tool for UHI. The existing literature for DT lacks implemented examples of 

DT for temperature and UHI in urban planning. Therefore, the author proposed the general framework 

based on the existing literature and his innovation to create the DT-PSS for UHI. The conceptual framework 

applied to develop the DT-PSS for UHI has an extra element: a trained ML model. The ML model in the 

DT is used to predict future temperatures. Thus, the author’s innovation lies in creating the framework for 

making the DT tool and adding the ML model that provides the predictive capability in the DT for future 

prediction of temperature and UHI formation. Figure 6 shows the DT framework for this study. 

 
Figure 6: Applied farmwork for DT for Wuppertal City. Source: Author, 2024 
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In the proposed framework, the real-time data is collected using the existing sensors for temperature in 

Wuppertal. This data is provided to the trained model in DT to make the real-time prediction. Four 

temperature sensors are used in this study. Figure 7 shows the location of the sensors. 

 
Figure 7: The location of temperature sensors in Wuppertal City. Source: Author, 2024 

5. METHODOLOGY 

The figure below shows the proposed flowchart for this study (Figure 8). In the following, each phase is 

explained in detail. 

 



DIGITAL TWIN-BASED PLANNING SUPPORT SYSTEM FOR URBAN HEAT ISLAND MITIGATION  

 

23 

 
Figure 8: Flowchart of the study. Source: Author, 2024 

5.1. Phase 1 and Phase 2: Literature Review and Data Preparation 

A comprehensive literature review is done in the first phase to select variables that statistically have a 

significant relationship with LST and UHI. Then, the author selected variables for further analysis based on 

data availability. Table 1 shows the variables identified from the literature for this study. Wind and SVF are 

excluded from this study while they are identified in the literature have significant relation with LST. The 

reason behind excluding SVF is a limitation in data availability. Moreover, including wind in the analysis 

required simulation of wind movement. This is out of the scope of this research due to the nature of wind 

movement and the difficulty of its simulation. A physics-based simulation is needed to capture the 

movement. It is worth mentioning that the past data for wind was also unavailable.  

After selecting variables from the literature, the data required to calculate each variable is downloaded 

from available open sources. The other data necessary for the 3D city model, such as Wuppertal building shapefiles and 

Lidar data, are provided on the Wuppertal municipality website1. Table 2 shows the data used in this research. In 

addition, initial research is done to find the existing method and data needed to build the DT tool for UHI. 

 
1 https://www.offenedaten-wuppertal.de/search/tags/Geo-17 

https://www.offenedaten-wuppertal.de/search/tags/Geo-17
https://www.offenedaten-wuppertal.de/search/tags/Geo-17
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Table 2: Data used for this study. 

Name of 
Data File 

Source owner 
Restrictions 
and License 

Data Format 
Contains 
Personal 
Information 

Sentinel 2 Secondary European Space 
Agency. 

https://scihub.cop 

ernicus.eu/ 

open data Raster (10m) No 

MOD11A1 
(MODIS Terra) 

Secondary NASA. 
https://modis.gsfc 
.nasa.gov/ 

open data Raster 
(1000m) 

No 

MYD11A1 
(MODIS Aqua) 

Secondary NASA. 

https://modis.gsfc 

.nasa.gov/ 

open data Raster 
(1000m) 

No 

Landsat 8 Secondary NASA. 
https://www.usgs.g
ov/landsat-
missions/landsat-
collection-2 

open data Raster 
(30m) 

No 

Building 
Shape File: 
Gebaeude_EPSG 
25832_SHAPE.sh 

p 

Secondary Wuppertal 
Municipality 

open data SHP file No 

Population 

File: 

Bevoelkerungsdic 

hte_EPSG3857_

S HAPE.shp 

Secondary Wuppertal 
Municipality 

open data SHP file No 

Wuppertal 
Thermal Sensors 
 

Secondary APIs for Wuppertal 
Municipality  

open data  JSON No 

Contour line 

File: 

Hoehenlinien-

10M_EPSG3857_

SHAPE 

Secondary https://www.geopo
rtal.nrw/?activetab=
map&openDownloa
dclient=true 

open data SHP file No 

Lidar Data 

File: 

3dm_32_371_567

9_1_nw 

Secondary https://www.geopo
rtal.nrw/?activetab=
map&openDownloa
dclient=true 

open data .Laz No 

land use 

File: 
 ALKIS 

Tatsächliche 

Nutzung 

Secondary https://www.offene
daten-
wuppertal.de/search
/tags/Geo-17  

open data .Laz No 

Source: Author, 2024. 

https://eur02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.geoportal.nrw%2F%3Factivetab%3Dmap%26openDownloadclient%3Dtrue&data=05%7C02%7Ca.afzalinezhad%40student.utwente.nl%7C03f8ec6f74c94fc1dc0108dc2ee2a5ea%7C723246a1c3f543c5acdc43adb404ac4d%7C0%7C0%7C638436798363928294%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=0hrFnelJ%2FjeggSnGh%2F5mu%2FoW4J7aZDp2AcAr7hxgagY%3D&reserved=0
https://eur02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.geoportal.nrw%2F%3Factivetab%3Dmap%26openDownloadclient%3Dtrue&data=05%7C02%7Ca.afzalinezhad%40student.utwente.nl%7C03f8ec6f74c94fc1dc0108dc2ee2a5ea%7C723246a1c3f543c5acdc43adb404ac4d%7C0%7C0%7C638436798363928294%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=0hrFnelJ%2FjeggSnGh%2F5mu%2FoW4J7aZDp2AcAr7hxgagY%3D&reserved=0
https://eur02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.geoportal.nrw%2F%3Factivetab%3Dmap%26openDownloadclient%3Dtrue&data=05%7C02%7Ca.afzalinezhad%40student.utwente.nl%7C03f8ec6f74c94fc1dc0108dc2ee2a5ea%7C723246a1c3f543c5acdc43adb404ac4d%7C0%7C0%7C638436798363928294%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=0hrFnelJ%2FjeggSnGh%2F5mu%2FoW4J7aZDp2AcAr7hxgagY%3D&reserved=0
https://eur02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.geoportal.nrw%2F%3Factivetab%3Dmap%26openDownloadclient%3Dtrue&data=05%7C02%7Ca.afzalinezhad%40student.utwente.nl%7C03f8ec6f74c94fc1dc0108dc2ee2a5ea%7C723246a1c3f543c5acdc43adb404ac4d%7C0%7C0%7C638436798363928294%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=0hrFnelJ%2FjeggSnGh%2F5mu%2FoW4J7aZDp2AcAr7hxgagY%3D&reserved=0
https://eur02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.geoportal.nrw%2F%3Factivetab%3Dmap%26openDownloadclient%3Dtrue&data=05%7C02%7Ca.afzalinezhad%40student.utwente.nl%7C03f8ec6f74c94fc1dc0108dc2ee2a5ea%7C723246a1c3f543c5acdc43adb404ac4d%7C0%7C0%7C638436798363928294%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=0hrFnelJ%2FjeggSnGh%2F5mu%2FoW4J7aZDp2AcAr7hxgagY%3D&reserved=0
https://eur02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.geoportal.nrw%2F%3Factivetab%3Dmap%26openDownloadclient%3Dtrue&data=05%7C02%7Ca.afzalinezhad%40student.utwente.nl%7C03f8ec6f74c94fc1dc0108dc2ee2a5ea%7C723246a1c3f543c5acdc43adb404ac4d%7C0%7C0%7C638436798363928294%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=0hrFnelJ%2FjeggSnGh%2F5mu%2FoW4J7aZDp2AcAr7hxgagY%3D&reserved=0
https://eur02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.geoportal.nrw%2F%3Factivetab%3Dmap%26openDownloadclient%3Dtrue&data=05%7C02%7Ca.afzalinezhad%40student.utwente.nl%7C03f8ec6f74c94fc1dc0108dc2ee2a5ea%7C723246a1c3f543c5acdc43adb404ac4d%7C0%7C0%7C638436798363928294%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=0hrFnelJ%2FjeggSnGh%2F5mu%2FoW4J7aZDp2AcAr7hxgagY%3D&reserved=0
https://eur02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.geoportal.nrw%2F%3Factivetab%3Dmap%26openDownloadclient%3Dtrue&data=05%7C02%7Ca.afzalinezhad%40student.utwente.nl%7C03f8ec6f74c94fc1dc0108dc2ee2a5ea%7C723246a1c3f543c5acdc43adb404ac4d%7C0%7C0%7C638436798363928294%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=0hrFnelJ%2FjeggSnGh%2F5mu%2FoW4J7aZDp2AcAr7hxgagY%3D&reserved=0
https://www.offenedaten-wuppertal.de/search/tags/Geo-17
https://www.offenedaten-wuppertal.de/search/tags/Geo-17
https://www.offenedaten-wuppertal.de/search/tags/Geo-17
https://www.offenedaten-wuppertal.de/search/tags/Geo-17
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In this part, 15219 sample points within the boundary of Wuppertal City are selected to collect and 

calculate the variables that are further used as the training data set for training the ML models. Stratified 

random sampling is used to select sample points within the Wuppertal boundary due to spatial 

Autocorrelation (refer to section 6.1). This sampling method divides samples into subgroups based on 

specific characteristics and then randomly selects samples to ensure they represent a variety of data. This 

sample selection method reduces bias and increases the accuracy and precision of the data (Howell et al., 

2020). The variables that are calculated in this study are explained below. 

LST: The study uses the Landsat data to calculate LST. Through several steps, LST is calculated using the 

USGS formula (Avdan & Jovanovska, 2016). The steps and the formula are explained below.  

Step 1: Calculation of TOA spectral radiance  

                                                        𝑇𝑂𝐴 (𝐿)  =  𝑀𝐿 ∗  𝑄𝑐𝑎𝑙 +  𝐴𝐿                                                       (1) 

Where:  

𝑀𝐿 is a band-specific multiplicative rescaling factor. 

𝑄𝑐𝑎𝑙 corresponds to band 10. 

𝐴𝐿 is a band-specific additive rescaling factor. 

Step 2: TOA to Brightness Temperature conversion 

                                      𝐵𝑇 =  (𝐾2 / (𝑙𝑛 (𝐾1 / 𝐿)  +  1))  −  273.15                                          (2) 

Where:  

𝐾1 is band-specific thermal conversion constant.  

𝐾2 is band-specific thermal conversion constant. 

Step 3: Calculate the NDVI 

Step 4: Calculate the proportion of vegetation 𝑃𝑣 

𝑃𝑣 =  𝑆𝑞𝑢𝑎𝑟𝑒 ((𝑁𝐷𝑉𝐼 –  𝑁𝐷𝑉𝐼𝑚𝑖𝑛) / (𝑁𝐷𝑉𝐼𝑚𝑎𝑥 –  𝑁𝐷𝑉𝐼𝑚𝑖𝑛))                         (3) 

    

Step 5: Calculate Emissivity 𝜀 

Step 6: Calculate LST  

𝐿𝑆𝑇 =  (𝐵𝑇 / (1 +  (0.00115 ∗  𝐵𝑇 / 1.4388)  ∗  𝐿𝑛(𝜀)))                                      (4) 

 

NDVI:  normalized difference vegetation index range between +1 to -1 calculated using red and near-

infrared bands (NIR) of remote sensing imagery such as sentinel 2. The sentinel 2 data is downloaded from 

the Copernicus Open Access Hub2 Below is the formula to calculate NDVI (equation 5). 

                                        𝑁𝐷𝑉𝐼 =  (𝑁𝐼𝑅 −  𝑅𝐸𝐷)/(𝑁𝐼𝑅 +  𝑅𝐸𝐷)                                                        (5) 

Since the Sentinel-2 NIR band is band 8 and the red band is band 4, the formula looks like this: 

                                            𝑁𝐷𝑉𝐼 =  (𝐵8 −  𝐵4)/(𝐵8 +  𝐵4)                                                                        (6) 

 
2 https://scihub.copernicus.eu/ 

https://scihub.copernicus.eu/
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NDBI: normalized difference built-up index ranges from 1+ to -1, calculated using NIR and shortwave 

infrared (SWIR) bands. Similar to NDVI, Sentinel-2 data is used to calculate the NDBI). Below is the formula 

for NDBI (equation 7). 

𝑁𝐷𝐵𝐼 =  (𝑆𝑊𝐼𝑅 −  𝑁𝐼𝑅)/( 𝑆𝑊𝐼𝑅 +  𝑁𝐼𝑅)                                                           (7) 

Since the Sentinel-2 NIR band is band four and the SWIR band is band 11, the formula looks like this: 

𝑁𝐷𝐵𝐼 = (𝐵11 −  𝐵4)/(𝐵11 +  𝐵4)                                                                         (8) 

NDWI: normalized difference water index ranges from 1+ to -1, calculated using NIR and green bands. 

Sentinel-2 data is used to calculate NDWI (equation 9). Below is the formula to calculate it: 

𝑁𝐷𝑊𝐼 =  (𝐺 − 𝑁𝐼𝑅)/(𝐺 + 𝑁𝐼𝑅)                                                             (9) 

Since the Sentinel-2 NIR band is band 8 and the green band is band 3, the formula looks like this: 

𝑁𝐷𝑊𝐼 =  (𝐵3 − 𝐵8)/(𝐵3 + 𝐵8)                                                                   (10) 

Edge Density (ED): Edge density is a measure used in landscape ecology to quantify the number of 

edges or boundaries per unit area of a landscape. This measure is beneficial for analysing landscape patterns 

(Fragstats, 2024). Equation 11 is the formula to calculate ED. 

𝐸𝐷 =  𝐴/𝐸 ∗ 𝐶                                                                           (11) 

Where: 

𝐸 is the total length of the edges  

𝐴 is the total area of the landscape, 

𝐶 is a constant to convert the units to a standard form (e.g., meters of edge per hectare).  

Patch Density (PD): Patch density is a metric used in landscape ecology to calculate the number of 

patches in an area. This metric can help to comprehend the level of segmentation (Fragstats, n.d.). Equation 

12 is the formula to calculate PD. 

𝑃𝐷 =  (𝑛𝑖 ∗ 10000/𝐴) ∗  100                                                           (12) 

Where: 

𝑛𝑖 is the total number of patches in the landscape. 

𝐴 is the total landscape area (m2) 

Aggregation Index (AG): The aggregate index is a statistical measure that quantifies the degree of 

concentration or dispersion of a built-up area within a city (Fragstats, n.d.). Equation 13 is the formula to 

calculate AG. 

𝐴𝐺 =  (∑𝑛𝑖 = 1(𝑔𝑖 ∗ 𝑝𝑖)/ 𝐺𝑚𝑎𝑥) ∗ 100                                             (13) 

Where: 
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𝑔𝑖 is the number of like adjacencies (i.e., bordering cells of the same habitat type) involving patch type i 

based on a user-defined adjacency rule (usually four-cell or eight-cell rule), 

𝑝𝑖  is the perimeter of patch type i. 

𝐺𝑚𝑎𝑥 is the maximum possible value of ∑(𝑔𝑖 ∗ 𝑝𝑖),  

𝑛 is the number of patches of the focal type. 

Land Scape Shape Index (LI): The Land Scape Shape Index is a metric that measures the irregularity of 

the landscape patch in comparison to the standard shape and shows how the patches deviate from being 

compact (circle shape) (Fragstats, n.d.). Equation 14 is the formula to calculate LI.  

 𝐿𝑆𝐼 = 𝑃 ∕ 2√𝜋𝐴                                                                  (14) 

Where: 

𝐸 is the length of edges in the landscape (m), 

A is total landscape area (m2), 

 

Population Density: Population density measures the number of people living in an area, and the unit 

usually is people per square kilometer (km2). Equation 15 shows the calculation for population density. 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 = 𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 / 𝑇𝑜𝑡𝑎𝑙 𝐿𝑎𝑛𝑑 𝐴𝑟𝑒𝑎                            (15) 

Where: 

Total Population is the total number of people living in the area, 

Total Land Area is the size of the area (km2) 

Land-use: Land-use refers to how people utilize the land. In this study, the land use map is downloaded 

from the municipality of Wuppertal website3. Then, the land use is reclassified into the primary land use 

classes, such as vegetation, water, residential, etc. Since few land use classes, such as shrubs and trees, could 

generally be classified as vegetation, reclassification reduces the number of land use classes.  

DEM: DEM refers to the 3D representation of the surface of a terrain created from terrain elevation data. 

For calculating DEM in this study, contour lines representing lines of equal elevation are used to create a 

Triangular Irregular Network (TIN) (Bonin & Rousseaux, 2005). Then, the TIN is converted into a raster 

format. The result is a grid-based DEM. 

Moreover, this study also calculated UHI intensity. UHI intensity refers to the difference in temperature 

between rural and urban areas (Deilami et al., 2018). UHI intensity is calculated and used in the DT model 

to predict the change in UHI formation for scenario simulation. The change in UHI intensity is simulated 

in percent. Thus, 100 % is equivalent to 8 degrees Celsius (maximum temperature difference between rural 

and urban areas), as calculated for Wuppertal City (refer to section 3.1). 

 
3  https://www.offenedaten-wuppertal.de/search/tags/Geo-17 

https://www.offenedaten-wuppertal.de/search/tags/Geo-17
https://www.offenedaten-wuppertal.de/search/tags/Geo-17
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5.2. Phase 3: Training ML model 

In this phase, four ML algorithms are used to predict UHI and LST. This study used ML instead of Deep Learning 

(DL) because of two main reasons. The first reason is that the data type in this study is vector data, and DL is usually 

used for another type of data, such as raster data (images). The second reason is that the driving variables of UHI are 

identified from the literature, and DL models are usually used when the driving values are unknown. Several variables 

from the literature have been determined to have a statistically significant relationship with LST and UHI. Therefore, 

it is known which variables drive UHI and LST. However, the relationship between the variables is complex, and 

regression tasks are needed to find this relationship. Therefore, ML models are used to capture this relationship.  

This phase is separated into two steps: 1-preparing the data for training the model and 2- training the model.  

1. The data preparation involved the relevance predictor variables (Table 1) and LST. In this step, all 

the variables calculated for each point are exported and combined into a .SHP file to make further 

analysis easier. The data (calculated LST and predictors) is divided into two parts randomly using 

Python. The first part consists of 80% of the data for training the model, and the second part 

consists of 20% for checking the accuracy of models. This process is done randomly to reduce the 

bias for both the test and the train data set. The logic behind separating the data into two separate 

parts is that, after training the model, the model accuracy can be measured using the test data. 

2. Four regression algorithms are used to evaluate their performance in predicting LST: Support 

Vector Machine (SVM) and Random Forest (RF), Artificial Neural Networks (ANNs), and 

Polynomial Regression. The algorithms are selected because of their proven performance in 

predicting LST and UHI in the literature. For training the model, the Scikit-Learn Library in Python 

is used. The four algorithms of SV, RF, ANNs, and Polynomial regression model) are used to train 

with the sample data to make the most accurate model. Usually, SVM and RF algorithms are used 

for classification tasks, but in this study, they are used for regression tasks. In the sample data, LST 

is the dependent variable. NDVI, NDWI, NDBI, population density, PD, ED, AI, and land use are 

independent variables (predictors). The Python code for this part is provided in 0. The figure below 

shows the ML model training process (Figure 9).  

 

Figure 9: Process of training the ML model. Source: Author, 2024. 

5.3. Phase 4: Creating the DT-PSS Tool 

This part explains the process of creating the DT-PSS tool in detail. This part also includes methodology 

and rational software selection for creating the DT-PSS tool. It consists of several sections, each explained 

in the following. Figure 11 shows the process of creating the DT-PSS tool. It shows how the different pieces, 

such as the RF model, real-time data, and 3D models, are imported and included in the UE to create the 

DT-PSS.  
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As mentioned in the literature part, DTs have three main elements: the physical model, the virtual model, 

and the connection between them. Other elements like ML or DL are added to DT based on the objective 

of the DT tool in different research. From the literature, several examples of DT in different domains are 

explored. However, the literature lacks examples of implementation for building DT for UHI. Several 

requirements are identified for building DT for UHI from the literature and author innovation. In the 

following, identified requirements used in this study to create a suggested DT-PSS toll for UHI are explained. 

• 3D city Model: 3D representation of urban areas with buildings, roads, vegetation, water bodies, 

terrain, and surface. Overall, a 3D city model contains all the elements within the urban area. The 

3D city model serves as the virtual twin in the DT.  

• Machine Learning (ML): Integrating ML models into DT allows the DT to predict the future state 

of the LST and UHI. The ML algorithms are trained based on historical and real-time data to predict 

temperature changes. 

• Real-Time Data: Update the virtual twin based on the real-time data from the sensors. 

• Platform to Implement DT: A platform is needed to integrate all the DT elements. The platform 

must have 3D model visualisation, real-time data integration, and analysis capability. Thus, choosing 

a suitable platform to create DT is one of the major prerequisites for building DT for UHI. 

From the literature and findings of this research, the below data is also crucial to creating DT for UHI: 

• Satellite Imagery: Satellite images from different sources, such as MODIS, Landsat, and Sentinel, 

are crucial for creating a DT tool for UHI. Satellite images provide valuable information about the 

historical and current state of urban and vegetation cover. Satellite images are essential in calculating 

spectral indices such as NDVI, NDWI, and NDBI. 

• Sensor Data: Importing real-time temperature data into the DT tool is crucial since it updates the 

model and enhances the simulation accuracy. 

• Geospatial Data: Land use or land cover map, building configurations, population density map, 

DEM, etc., helps to understand the spatial distribution of urban elements and their impact on UHI 

formation.  

• Meteorological Data: Weather data such as wind is essential in creating DT tools for UHI since it 

can help increase simulation assessment accuracy. Additionally, including variables that are not 

under control, such as climate scenarios, will improve the accuracy of the models. Although these 

variables are not under planners' control, including them in the DT tool enhances the model 

performance.    

This research used UE 4 as the main platform to create the DT tool. Several critical factors of UE 4 are 

the driving factors for the tool selection. This includes the UE 4 advanced visualisation capabilities, real-time 

data integration features, analysis, support for complex 3D city models, and the ability to create an interactive 

interface. These abilities are essential for creating an interactive DT tool for UHI. The UE has the possibility 

to modify and extend the engine functionality for different purposes. Therefore, developing C ++ or Python 

code-based functions in the UE projects is possible.   

Unreal Engine primarily uses C++ programming language. However, it also supports Python scripting 

through various plugins. There are open-source and paid plugins for using Python in UE. The plugins allow 

developers to call UE functions from Python or perform automation tasks. This study used two plugins, 
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"Sequencer Scripting" and "Python Editor Script Plugin," to extend the functionality of the UE engine. (refer 

to Annex C ). Both mentioned plugins are open source.  

The process of creating the DT tool is divided into several parts. The first part relates to incorporating 

the stakeholders’ requirements for the DT tool. A survey is provided to include users' and stakeholders’ 

opinions in making the DT tool. The link for the survey with the received responses is provided in Annex 

D 

Since people in the Wuppertal municipality are the final users of the tool, the survey is distributed among 

people responsible for the DUT-W project, urban and environmental planning, and urban management. In 

the survey, a video is provided to show stakeholders an example of a planning support system tool in urban 

planning. This helped to bring stakeholders to a common ground and convey the purpose of this study as a 

DT-PSS. Then, the questions are provided to know their needs and expectations. The survey helped to 

engage the stakeholders in the first steps of designing the DT-PSS tool. Since the primary users of the DT 

tool are people in the municipality of Wuppertal, it is crucial to know their expectations and requirements 

for creating the DT tool. The survey results are analysed and used to make the DT tool and design interface 

and functions in UE for the users. Here, a summary of several questions from the survey is provided. Due 

to privacy, the survey results are anonymously provided. 

• The respondents stated that creating a model for UHI elements such as buildings, land cover, green 

spaces, wind, and water bodies is essential. They expect these elements to be provided in the model.  

• The respondents mentioned they expect the planning support system for UHI to have several 

functionalities, such as data visualisation, scenario model capability, and interactive interface. 

• Based on the stakeholder's opinion, the DT model should have a middle to a high level of 

interactivity. This means the DT-PSS tool should enable users to remove or add elements such as 

buildings, water bodies, or greeneries to see the future change in temperature and UHI (refer to). 

• Most stakeholders suggested that inner city areas with high population density and built-up areas be 

used as test areas to create a DT-PSS prototype.  Between the suggestions, the Elberfeld and Barmen 

areas are mainly repeated. Based on the stakeholder's suggestions and requirements for temperature 

interpolation (discussed in the section0 6.5.1), the Südstadt neighbourhood in the Elberfeld area is 

selected to create the DT prototype. Here are suggestions for the area for making the DT tool from 

stakeholders:  

“Two city centres: Elberfeld and Barmen,” “ Fußgängerzonen Elberfeld und Barmen, Alles rund um die Kreuzungen 

Robert-Daum-Platz und Döppersberg,” “Valley axis, City Elberfeld and Barmen,” “All densely populated areas 

within the valley axis and in particular the inner cities of Elberfeld and Barmen,” “Very densely built-up areas 

exposed to the sun in the inner cities of Elberfeld and Barmen.”, “city centres in Elberfeld and Barmen, B7 and 

surrounding”, “There are some poorer neighbourhoods like Barmen, Uellendahl, Langerfeld which need more 

support.” 

The second part is creating the 3D city model of Wuppertal. For developing the 3D model, 3D buildings 

are made using Lidar data. Building points are filtered from the other Lidar data points (e.g., vegetation, 

terrain, and noise points). Then, a level of detail 2 (LOD 2) model for buildings is created using the building 

footprints and filter building points. Figure 10 shows the process of creating a LOD 2 model for buildings.  
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Figure 10: the process of creating the LOD 2 model for building. Source: Author, 2024. 

Afterwards, the model is imported to the City Engine software to integrate terrain and street layout into 

the model. This is an essential step in enhancing the accuracy of the representation of urban elements in the 

model and creating the 3D city model of Wuppertal. Then, the model is exported in .FBX format to facilitate 

compatibility with the UE software. This format also ensures that all the objects in the UE software are 

modifiable. 

The third part integrates sensor data and the trained ML model into the 3D model to create the DT-PSS. 

The real-time temperature from sensors is connected to the 3D city model in this part to include temperature 

sensor data to the DT-PSS. This is done using the VaRest plugin in UE. The Plugin enables communication 

and data transfer between the model and sensor data.  Moreover, the temperature is interpolated using 

Inverse Distance Weighted (IDW) interpolation (refer to section 6.5.1). The IDW interpolation is chosen 

because it effectively estimates unknown values based on the location of known values (Ozelkan et al., 2015). 

Finally, the trained ML model is imported to the Unreal Engine using the Python script function in 

Blueprint. This is crucial for creating the DT-PSS since integrating the ML model gives the ability of 

prediction to DT-pSS to predict LST and UHI formation. This also allows the DT-PSS to predict LST based 

on user interactions dynamically.  

To make the platform interactive, several widgets are created to allow users to change the variables and 

see the changes in LST and UHI formation. This interactivity is essential for exploring different scenarios 

and understanding the impact of various factors in UHI.  Figure 11 shows the process of creating the DT-

PSS tool in this research.  
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Figure 11: Process of creating the DT tool for this research. Source: Author, 2024. 

5.4. Phase 5: Evaluation 

This research topic is aligned with the ongoing projects in the municipality of Wuppertal for developing 

DUT-W to address current urban challenges in Wuppertal, such as UHI. During the initial meeting with 

representatives from the municipality of Wuppertal, several possible topics for the MSc thesis were 

discussed. The municipality representatives shared a document that briefly explained the DUT-W project in 

Wuppertal City and several of the current urban challenges in the city. Then, the meeting shaped the topic 

of this thesis. More information about the DUT-W project is explained in the case study section3.  

After creating the DT-PSS prototype, the performance is shown to the users for feedback. The author 

did this by holding a workshop with Wuppertal Municipality officials. They saw the performance of the DT 

tool during the workshop and shared their experience. Then, the workshop output is used to provide 

suggestions for further research. The workshop output is provided in the evaluation section 6.6. 

6. RESULTS AND DISCUSSION 

This section presents and discusses the results of the study. This section consists of several sections. In 

the following, each section is explained.  
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6.1. Selecting Sample Points for Collecting Data 

This section outlines the selection of sample points for data collection within the Wuppertal boundaries. 

These sample points served as training data for training the ML models.  The dependent and independent 

(predictors) variables are calculated and stored in the attribute table of sample points for training the ML 

models. For example, LST (dependent variable) and variables selected for this study (Table 1) are calculated 

for each point. Then, this data in the attribute table of each point is added as sample data for training the 

ML model. Since the dependent variable is LST, the LST raster image calculated from the Landsat 8 image 

is converted to points. The sample points are the centre of each pixel in the LST raster images. Then, 185776 

points are selected within the Wuppertal boundaries (Figure 12).  

 
Figure 12: Sample points for collecting the data in Wuppertal. Source: Author, 2024. 

Afterwards, Spatial Autocorrelation is checked before calculating the variables for the sample points to 

ensure that sample points are not clustered. Spatial Autocorrelation refers to the degree to which spatial 

objects and their values are clustered in the space. This is crucial in the analysis because if the sample points 

are clustered, this might impact the trained model performance and cause bias. When the data is clustered, 

neighbouring data points are more similar than distance data points. This means the neighbouring data points 

have similar values to those of the distance data points. Consequently, clustered data reduces the 

generalizability of the model since the model is trained based on the cluster data. This is because the model 

learns patterns specific to the clusters instead of learning general relationships. Clustered data also 

overestimate the model performance and underestimate the uncertainties. This happens when the train and 

test data contain similar points, making them seem more accurate than when trained by independent data. 

Spatial Autocorrelation measures the data based on attribute value and object location using Global 

Morons’ I. The result showed that there is a high Spatial Autocorrelation between the sample points, and 

the data points are clustered. Figure 13 shows Global Moron’s I results for the reference data points. The 

results showed that the z-score is higher than 2.58 and the p-value is less than 0.01, meaning there is less 

than a 1% likelihood that the clustered pattern could result from random chance.  This means the Spatial 

Autocorrelation for sample points is not from a random chance, and Spatial Autocorrelation is between the 

sample points.  
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Figure 13: Global Morons' I result for reference data points. Source: Author, 2024. 

Therefore, to avoid spatial autocorrelation, from 185776 points, 15219 points are randomly selected using 

stratified random sampling as final sample points for calculating the variables. Stratified random sampling 

selects points based on their cluster (refer to methodology section 5.1). This random selection helped to 

have an unbiased and more balanced data set for training ML models. Figure 14 shows the selected sample 

points for this research.  
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Figure 14: Selected points for this research. Source: Author, 2024. 

6.2. Calculating and Collecting Data for Each Sample Point 

This section elaborates on the process of calculation and preparation of predictor variables (Table 1) and 

the dependent variable (LST). These variables are essential for the training and validation of ML models in 

this study. For LST, Landsat 8 images with 30m spatial resolution are used to calculate LST. Also, for spectral 

indices such as NDVI, NDBI, and NDWI, Sentinel-2 images with 10m spatial resolution are used. Due to 

the different temporal resolutions of Landsat8 and Sentinel-2, images are downloaded for the dates that both 

satellites overpassed Wuppertal. This ensured the consistency of temporal data coverage. Moreover, this 

study selected and used images with a cloud cover of less than 20% to minimize the impact of clouds on the 

data quality.  

6.2.1. Calculating Land Surface Temperature 

For calculating LST, Landsat 8 images between 2017 and 202 are downloaded from the USGS website4 

and processed using the steps mentioned in the section 5.1, methodology. After calculating the LST, raster 

images are converted to points. The figure below shows the calculated LST for the 1st of June 2023 (Figure 

15). The areas with higher temperatures are red, and those with lower temperatures are blue. The figure 

below provides a spatial understanding of temperature variation in Wuppertal City. The temperature in urban 

areas is higher than in the areas covered with vegetation and trees. Moreover, the temperature in peripheries 

with fewer buildings compared to urban areas is still higher than in areas fully covered with vegetation.  
 

 

 

 

 

 

 

 

 

 

 

 

 
4 https://www.usgs.gov/landsat-missions/landsat-collection-2 

https://www.usgs.gov/landsat-missions/landsat-collection-2
https://www.usgs.gov/landsat-missions/landsat-collection-2
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Figure 15: Calculated LST using Landsat 8 Image for 1st of June 2023. Source: Author, 2024. 

 

This pattern is also found in the Wuppertal municipality report for temperature. Along the Wupper River, 

where the density of the built-up area is high, the temperature is high. Furthermore, the municipality of 

Wuppertal identified heat stress and strong heat stress locations in Wuppertal City. Figure 16 shows the heat 

stress and strong heat stress areas identified by the municipality. Red areas are strong heat stress areas, and 

the yellow areas are heat stress areas. Comparing the LST map and heat stress map (Figure 17) shows a 

similar pattern between the created LST map in this study and the heat stress map.  
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Figure 16: Heat stress and strong heat stress areas in Wuppertal City. Source: Municipality of Wuppertal, 2024. 

 
Figure 17: Comparing the LST map and the heat stress map. The right image is the LST map. The left image is the heat 

stress map. Source: Author, 2024. 

6.2.2. Calculating Spectral Indices 

Sentinel-2 images are downloaded from the Copernicus open-access hub5. to calculate NDVI, NDWI, 

and NDBI. All three indices are calculated using the formula mentioned in the methodology part. Figures 

18, 20, and 22 show the results of the calculated NDVI, NDWI, and NDBI for the 1st of June 2023, 

respectively. The higher values in the map are in red, and the lower values are in blue. For instance, in Figure 

 
5 https://scihub.copernicus.eu/  

https://scihub.copernicus.eu/
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18, red areas have higher NDVI values, meaning that these areas have higher vegetation. On the other hand, 

blue and yellow areas have lower NDVI values, meaning that these areas have lower vegetation.  

 
Figure 18: Calculated NDVI using Sentinel-2 Image for 1st of June 2023. Source: Author, 2024. 

Comparing the NDVI map with the LST map (Figure 19) shows that the areas with lower NDVI have 

higher temperatures than those with higher NDVI. To be more specific, areas with more vegetation cover 

tend to have lower temperatures than those with less vegetation coverage. From the literature, NDVI and 

vegetation cover have also been identified to have a significant correlation with LST (Li et al., 2019; Ravanelli 

et al., 2018). The created NDVI map is used to calculate NDVI values for sample points to train ML models. 

 
Figure 19: Comparing the NDVI map and the LST map. The right image is the NDVI map. The left image is the 

LST map. Source: Author, 2024. 
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Figure 20 shows the NDBI map. Areas with higher NDBI values are in red, and areas with lower NDBI 

values are in blue. The map shows that NDBI values are high in the Wuppertal centre where the building 

density is high. Comparing this map to the LST map (Figure 21) shows that where the NDBI value and 

building density are high, the temperature is higher than in areas with less building density. This correlation 

is identified in the previous research. Scholars stated that building density has a significant positive 

correlation with temperature (Garzón et al., 2021). 

 
Figure 20: Calculated NDBI using Sentinel-2 Image for 1st of June 2024. Source: Author, 2024. 

 
Figure 21: Comparing the NDBI map and the LST map. The right image is the NDBI map. The left image is the LST 

map. Source: Author, 2024. 
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Figure 22 shows the NDWI map for Wuppertal. The higher values are in red, and the lower values are in 
blue. Comparing this map to the LST map shows that where NDWI values are moderate to high (except 
with the very high value, which is coloured in red), the temperature is high. Moderate to high values represent 
the build-up areas in Wuppertal city. This is because NIR bands are used to calculate NDWI, and the 
reflectance of material used in construction or pavements is usually moderate in NIR bands (and results in 
over-estimating water bodies). To prevent errors in the training data, the values between -0.1 and 0.2 are 
clustered as built-up areas and removed from the analysis. The strong red areas on the map are water bodies 
in Wuppertal City. Figure 23 shows the comparison between the LST map and the NDWI map. It shows 
that the temperature is low where the water bodies are (strong red area).  
 

 
Figure 22: Calculated NDWI using Sentinel-2 Image for 1st of June 2023. Source: Author, 2024. 

 
Figure 23: Comparing the NDWI map and the LST map. The right image is the NDWI map. The left image is the 

LST map. Source: Author, 2024. 
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6.2.3. Land Use Classification 

The land use map is downloaded from the Wuppertal municipality website6. The land use map contained 

many classes, few of which were similar. As a result, the land use map is reclassified and coded. Figure 24 

shows that the final land use map consists of eight land use classes. For example, green areas are the 

vegetation areas. Yellow areas represent residential, and red areas represent commercial and industrial areas.  

 
Figure 24: Land-use map for the Wuppertal City. Source: Author, 2024. 

 

Comparing the land use map to the LST map (Figure 25) shows where the land use is vegetation, water, 

and recreational, and the temperature is low. On the other hand, where the land use class is residential, 

industrial, and road, the temperature is high. This highlights the impact of temperature on surface material 

and construction materials. From the literature, the type of land use is also identified to impact temperature 

and UHI (H. Zhang et al., 2013). This map is used to calculate land use type for sample data to train the ML 

model in this study. 

 

 

 
6 https://www.offenedaten-wuppertal.de/search/tags/Geo-17   

https://www.offenedaten-wuppertal.de/search/tags/Geo-17
https://www.offenedaten-wuppertal.de/search/tags/Geo-17
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Figure 25: Comparing the land use map and the LST map. The right image is the land use map. The left image is the 

LST map. Source: Author, 2024. 

 

6.2.4. Population Density 

Population density is downloaded from the Wuppertal municipality website 7 . The resolution for 

population density is not very high due to privacy. Figure 26 shows the population density map for Wuppertal 

city. The map resolution is 1000m per pixel. The areas with a higher population density are in dark red, and 

the areas with lower population density are in white. Comparing the population density map to the LST map 

(Figure 27) shows that the area with higher population density has higher temperatures than areas with lower 

population density. The literature also identified that anthropogenic heat released from human activities 

impacts temperature. Thus, where the population density is high, the temperature is higher than in areas with 

less population density (Santamouris, 2015). This map is used to calculate population density for sample data 

points to train the ML models. 
 

 
7 https://www.offenedaten-wuppertal.de/search/tags/Geo-17  

https://www.offenedaten-wuppertal.de/search/tags/Geo-17
https://www.offenedaten-wuppertal.de/search/tags/Geo-17
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Figure 26: Population density map. Source: Author, 2024. 

 

 
Figure 27: Comparing the population density map and the LST map. The right image is the population density map. 

The left image is the LST map. Source: Author, 2024. 
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6.2.5. Digital Elevation Model 

This study generated DEM using the contour map downloaded from the Wuppertal municipality 

website8. The process of creating a DEM map is explained in section 5.1 of the methodology. The resolution 

for the DEM is 10m. Figure 28 shows the DEM for Wuppertal city. Areas with higher elevation are displayed 

in red, and areas with lower elevation are displayed in blue.  

 
Figure 28: Digital Elevation Mode. Source: Author, 2024. 

Figure 29 shows the comparison between the DEM map and the LST map. This comparison shows that 

areas with higher elevations have a higher temperature compared to areas with lower temperatures. The blue 

line in the middle of the map is the Wupper Vally (Wupper River), where Wuppertal city is located around. 

As stated in the research problem, one of the reasons for UHI formation in the centre part of Wuppertal is 

the Wupper Vally. Wind cannot reduce temperature since the valley prevents wind flow in the city centre. 

This might be the result of the temperature difference between the low and high-elevated areas in Wuppertal 

City. The DEM map created in this part is used to calculate the elevation of sample points in this research. 

 
8 https://www.offenedaten-wuppertal.de/search/tags/Geo-17 

https://www.offenedaten-wuppertal.de/search/tags/Geo-17
https://www.offenedaten-wuppertal.de/search/tags/Geo-17
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Figure 29: Comparing the DEM map and the LST map. The right image is the DEM map. The left image is the LST 
map. 

6.2.6. Calculating Landscape Indices for Sample Points 

For calculating landscape indices, the built-up area for Wuppertal city is generated. The built-up area is 

generated using the building footprints shape file (Table 2). The shape file is converted to a raster file to 

generate a build-up map, and the values of 1 and 0 are assigned to the built-up and non-built-up areas, 

respectively. The resolution for the raster image is 2m. Figure 30 shows the built-up area map for Wuppertal 

City. The non-built-up areas are black, and the built-up areas are white. Comparing the built-up map with 

the LST map (Figure 31) show that higher built-up areas have higher temperatures compared to non-built-

up areas. The literature also identifies this relation (Wu et al., 2014). Due to the construction materials and 

pavements in the built-up areas, the temperature is higher than in non-built-up areas. The Build-up map is 

used to calculate landscape indices for sample points in this study. 
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Figure 30: Buil-up map for Wuppertal City. Source: Author, 2024. 

 
Figure 31: Comparing the built-up map and the LST map. The right image is the built-up map. The left image is the 

LST map. Source: Author, 2024. 

Previous research typically calculated landscape indices at the city scale to facilitate comparison between 
different cities. However, in this study, the scale of analysis is much lower than the scale of the city. 
Therefore, the built-up map is divided into smaller tiles to include this lower scale (1000m pixel size). Because 
of neighbourhood boundary irregularity, the author did not select the neighbourhood boundaries for 
dividing the built-up map. The irregularity of neighbourhood boundaries might bias the landscape indices 
analysis. Hence, the scale of landscape analysis is based on the population density layer. The population layer 
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resolution is neither very high nor coarse, with a 1000 m pixel size (high-resolution photos do not yield 
valuable results for landscape indices).  

To calculate landscape indices, the built-up raster image is divided into smaller tiles, the same as the 
population density tile size. Then, each tile is added to the Fragstats software to calculate the landscape 
indices. Fragstats is a landscape ecology tool that can calculate various landscape indices. Fragstast 
performance has been proven in several scientific research. The software has a different input format and 
analytical setting to calculate patch, class, and landscape scale metrics.  

After calculating the landscape indices for each tile, the results are added to the points inside each tile. 
This is done by selecting points inside each tile and adding the result of related landscape indices to the 
attribute table of the points. Figure 32 shows the attribute table of each point after adding the landscape 
indices.  

 

 
Figure 32: Importing calculated landscape indices into the attribute table of selected points. Source: Author, 2024. 

6.2.7. Calculating Population Density and Land Use for Sample Points 

 

For calculating population density and land use for sample points, the points that are located in each tile 

(in the population density layer) and polygon (in the land use layer) are selected, and the corresponding values 

for population density and land use layer are added to the attribute table of sample points. For example, if 

the selected points are in a polygon with a land-use class of 1, then this land-use class is added to their 

attribute table.   

6.3. Calculating Spectral Indices and DEM for Sample Points 

After calculating variables, sample points are located on the calculated variables data layer using Python. 

For example, Figure 33 shows how sample points are located on the NDVI raster layer. Then, the mean 

pixel values around each sample point are calculated using Python code to calculate spectral indices and 

DEM for each sample point.  
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Figure 33: Locating sample points on the NDVI raster layer using (X, Y) coordinates. Source: Author, 2024. 

The window size (number of pixels around each point) is set to 1 pixel. This means that 1 pixel is chosen 
from each side of the points, as illustrated in Figure 34. With a pixel size of 10 meters for NDVI, NDWI, 
NDBI, and DEM, this configuration gives a mean calculation across a 400-square-meter area surrounding 
each point. 
 

 
Figure 34: Number of selected pixels around each sample point. Source: Author, 2024. 



DIGITAL TWIN-BASED PLANNING SUPPORT SYSTEM FOR URBAN HEAT ISLAND MITIGATION  

 

49 

A window size of more than 1 pixel means a bigger area around each point, which is meaningful for the 

analysis. For example, a window size of 2 pixels selects 2 pixels from each side. This results in a total area of 

1600m around each pixel. This area is high for correlation analysis. Figure 35 shows the number of pixels 

on each side for window size 2. 

 
Figure 35: Number of pixels around each sample point for window size 2. Source: Author, 2024. 

 After calculating the variables, all the variables are added to the attribute table of each point using Python 

code. The code is available on the 0Annex E. Then, a correlation matrix is created between variables to see 

the relationship between variables. The correlation matrix is created to ensure that all the variables have a 

significant relationship with LST before using them as training data for ML models. All the variables show 

a moderate to significant relationship with LST. Figure 36 shows the correlation matrix between calculated 

variables for each sample point and LST. Spectral indices, NDVI, NDWI, and NDBI have the highest 

correlation with LST compared to other variables. The correlation coefficient for these indices is around 

0.75, a very strong correlation. However, the built-up area value in the NDWI map affected the correlation 

result between NDWI and LST. After removing the values between -0.1 and 0.2 (refer to the explanation 

for Figure 23) the correlation is -0.58. Moreover, population density has the lowest correlation with LST, 

among other variables. The correlation is 0.46, a moderate correlation with LST. The correlation for 

landscape indices, PD, AI, ED, and LSI is also strong and higher than 0.5. Correlation is significant at the 

0.01 level. This means that there is a 1% probability that the correlation happened by chance. Therefore, the 

correlation values are reliable. Moreover, the  
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Figure 36 

 
Figure 36: Correlation matrix between variables. Source: Author, 2024. 

Correlation is significant at the 0.01 level. 

6.4. Machine Learning Models  

Two data sets are used to train and test the ML models (refer to methodology, section 5.2). Using the 

training data set, the ML models are trained. The test data set is used to check the accuracy of the trained 

models. Four regression algorithms, SVM, RF, ANNs, and the polynomial regression model, are also used 

in this research. The process of preparing train and test data sets and the logic behind selecting the four 

regression algorithms are provided in the section 5.2, in methodology.  

The accuracy of the trained model is evaluated using two metrics, R-squared and Mean Absolute Error 

(MAE), which are evaluated using Python code. The Python code for checking the accuracy is available in 

the Annex B. The R-squared value, also known as a coefficient determination, shows to what extent the 

variance of the dependent variable is predicted using the independent variables. The more the R-squared, 

the better the model. Moreover, MAE measures the differences between predicted and actual values in the 

model. The less the MAE values, the better the model.  

For the trained RF model, the result for R-squared is 0.863, meaning the RF model could predict 86 

percent of the variance of the LST by the predictors. The result for MAE is 0.98 degrees Celsius, which 

means, on average, the LST values made by the RF model are around 0.02 degrees Celsius away from the 

actual LST. R-squared and MAE are 0.75 and  1.44 degrees Celsius for the polynomial regression model, 

respectively. This means the trained polynomial regression model predicted 75% of the temperature variance, 

and the mean predicted temperature is 0.44 degrees Celsius away from the actual temperature. The accuracy 

for the ANNs and SVM models is low. For ANNs, the R-squared is 0.59, and the MAE is 1.8 degrees Celsius. 
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This means the ANNs model only predicted 59 % of the variance of the LST. For the SVM model, the R-

squared is 0.33, and the MAE is 2.3 degrees Celsius. This means the SVM model only predicted 33 % of the 

variance of the LST. The low accuracy of the SVM and ANNs model might be due to the land use data. 

Land-use data is categorical, and  SVM and ANNs are not developed to be trained by categorical data. They 

are generally effective with numerical data. Because of its accuracy, the RF model is chosen as the final model 

for creating the DT-PSS. Table 3 shows the accuracy of the trained models in summary.  

Table 3: Accuracy of trained ML models.  

Model R-squared MAE 

Random Forest 0.86 0.98 

Support Vector machine 0.33 2.3 

Artificial Neural Networks 0.59 1.8 

Polynomial Regression Model 0.75 1.44 

Source: Author, 2024. 

6.5. Creating the DT-PSS Tool for UHI 

This part explains the process of creating the DT-PSS tool in detail. It consists of several sections. In the 

following section, each section is explained. Figure 11 (methodology part) shows the process of creating the 

DT tool. It shows how the different elements, such as the RF model, real-time data, and 3D models, are 

imported and included in the UE to create the DT-PSS tool.  

A neighbourhood in Wuppertal City is selected as a test case for creating the DT-PSS tool. Due to 

computational resource constraints, Graphics Processing Unit (GPU), and memory capacity limitations, 

creating the DT-PSS tool for the whole of Wuppertal City was infeasible. As a result, a smaller prototype is 

developed and tested on a neighbourhood scale in Wuppertal City to test the feasibility of creating and 

performing the DT-PSS tool. This also helped show the potential of the DT-PSS tool before implementing 

it for the whole city. The neighbourhood that is selected for creating DT is Südstadt (Figure 37). This 

neighbourhood is mixed with residential, commercial, and other buildings. It also is a dense neighbourhood 

in Wuppertal City that is suggested by stakeholders to be a test case for the DT tool (refer to the methodology 

section 5.3). 
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Figure 37: Südstadt neighbourhood location in Wuppertal city. Source: Author, 2024. 

One of the reasons for selecting the neighbourhood is that the Südstadt is located between the location 

of the temperature sensors. The location of sensors creates two triangles, and the selected neighbourhood is 

located between the two triangles. This makes the analysis for interpolating temperature more precise. Figure 

38 shows the two triangles between the sensors. Sensors located at each angle of the right triangle are used 

to interpolate the temperature for the right side of the neighbourhood. Also, sensors located at each angle 

of the left triangle are used to interpolate the temperature for the left side of the neighbourhood. 
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Figure 38: The two triangles between sensors. Source: Author, 2024. 

6.5.1. Importing Real-Time Temperature Data 

Currently, the municipality of Wuppertal is digitalizing the Wuppertal city due to the DUT-W project. 

They are installing temperature sensors and plan to install more in the future. So far, they have installed four 

sensors in different locations. Figure 38 shows the location of different sensors in the city. The real-time 

data for the sensors is accessible using APIs provided by the municipality. The API addresses and 

information of sensors are provided in the Annex F. 

The VaRest plugin is used to import real-time data into UE. VaRest Plugin is an extension for UE that 

allows interaction and communication with web services using APIs. VaRest allows UE projects to send and 

receive the data. Therefore, real-time data can be imported into the UE project, and the project can use this 

real-time data for analysis. Since the APIs also provide other unnecessary data, the data has been filtered, 

and only temperature is imported into UE. Annex G shows the visual code (Blueprint) for importing the 

sensor data into UE. The sensors update the temperature every 10 minutes. After importing the real-time 

data for temperature, a button on the screen (in the user widget interface) is designed for users to update the 

temperature (Figure 39). The user can import the real-time data for temperature into the project by pressing 

this button.  
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Figure 39: Design a button on the user widget interface to update the temperature. Source: Author, 2024. 

After importing the temperature data, the temperature is interpolated for the selected locations within 

the Südstadt neighbourhood boundary using IDW interpolation. Figure 40 shows the location of selected 

points inside the Südstadt boundary. The black points represent the selected locations within the boundary 

of the Südstadt neighbourhood to interpolate real-time temperature.  

 
Figure 40: The location of selected points for IDW interpolation. Source: Author, 2024. 

The longitude and latitude of the sensors and the selected points inside the Südstadt boundary are used 

to interpolate the real-time temperature from the sensors to the selected point within the neighbourhood 

boundary. At first, the temperature data from sensor APIs is fetched. Then, it is interpolated to each selected 

point using IDW interpolation. The interpolation is done using two coordinate systems: geographical and 

cartesian coordinates. To make the interpolation more precise, geographical coordinates are converted to 

cartesian coordinates (due to the curvature of Earth). The difference between the output of these two 

coordinate systems is slight, around 0.2 degrees Celsius. This study used cartesian coordinates. The Python 

code for this step is provided in Annex H. The output is in string format for use in UE. 

6.5.2. Creating 3D Model of Wuppertal City 

To create a 3D city model of Wuppertal, the method in the section 5 (methodology) is followed. The 

method part explains how the LOD 2 building model is created using Lidar data (Figure 41). All the buildings 
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in the model are joined together as one object. Due to this issue, applying city engine rules to the buildings 

is impossible. This is because separated objects are needed to apply rules, such as building a façade. 

Otherwise, the buildings are not separated, and it is impossible to use rules separately for each building. As 

a result, to apply City Engine rules to the model, the model is divided into separated faces using the separated 

faces function in City Engine. Figure 42 shows the model after separating all buildings and faces. 

 
Figure 41: The LOD 2 building model. Source: Author, 2024. 

 
Figure 42: Separating 3D models into building faces. Source: Author, 2024. 

In the next step, City Engine rules enhanced the model realism. City Engine rules are procedural scripting 

written in Computer Graphic Architecture (CGA) language. The rules are written for the procedural 

generation of 3D urban environments. It is also possible to write new rules for different purposes, which is 
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out of the scope of this research. After separating the model into faces, textures are added to the building 

facade to make the model more realistic. Predefined building textures and facades existed in City Engine for 

3D city modelling, such as New York or Zurich. The building texture of Zurich is used on the model to 

make a 3D model like Wuppertal City (Figure 43).  
 

 
Figure 43: Adding texture to the building facade using the CGA rule for Zurich City. Source: Author, 2024. 

Following this, roads and terrain are added to the model by getting map data in City Engine. The base 

map had the selected neighbourhood elevation and an orthophoto of the neighbourhood (Figure 44). The 

CGA rule for the complete street is also used to add texture to the streets in the model. The rule is 

downloaded from the ESRI website9.  
 

 
Figure 44: Importing base map and roads into the model. Source: Author, 2024. 

 
9 https://www.arcgis.com/home/item.html?id=863f4e7139314101a5cee1d7cde079d9  

https://www.arcgis.com/home/item.html?id=863f4e7139314101a5cee1d7cde079d9
https://www.arcgis.com/home/item.html?id=863f4e7139314101a5cee1d7cde079d9
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Subsequently, the model is exported from City Engine in the format of .FBX and is imported into Blender 

to join the building together. This is because after importing the model directly from City Engine into UE, 

the laptop used for this study could not handle importing and reading the data due to the limitations and 

constraints of GPU and memory. The created model had over 20,000 separate mesh (mesh pieces for 

building facades, roads, etc.), making it massive information for the laptop to read and visualise. To address 

this issue, separated parts in the model, such as building facades and buildings, are joined together to make 

an urban block as an object in the model instead of separate buildings. Figure 45 shows an object (an urban 

block) in the model made by joining buildings. 
 

 

 
Figure 45: Joining faces and buildings together to make the urban block as an object in the 3D model. Source: Author, 

2024. 

Afterward, the model is exported in .FBX format and imported in UE. The number of pieces is reduced 

to around 200. Then, UE could read and visualise the model faster and without lagging. Reduction in the 

number of separated meshed results in improving the performance of UE. This shows the importance of 

reducing complexity and unnecessary information from the model to match the hardware capability, 

especially when the model is at the urban scale. 

6.5.3. Using Python in Unreal Engine 

After using Python scrips and importing the Python files in UE, the output of the functions is not usable 

in other functions. This issue affected running functions in sequence. To solve this issue, the output of 

Python codes is changed to string format. Additionally, the output must be a string that prints the result on 

the screen. As a result, all the code output, such as interpolation or prediction, is formatted as strings (refer 

to Annex I).  
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6.5.4. Importing Trained RF Model into Unreal Engine 

To Import the trained RF model into UE, the model is saved in .joblib format. This file format ensures 

that the model is preserved with all its trained parameters intact. Then, using “Execute Python Command” 

in the UE blueprint, the RF model is imported to the UE. For this purpose, the execution mode is set to 

execute file (Figure 46). This configuration allowed Python codes to run directly from saved files, facilitating 

the integration of complex models like the RF.  

 

 
Figure 46: Importing and loading the RF model in UE. Source: Author, 2024. 

After importing the model, input variables for the RF model are linked to the Python function. The input 
variables for the RF model are defined as new float and integer variables in Blueprint that matched the 
predictor variables used during the model training process. As a result, nine new variables are defined in UE 
with the same type of input variables (integer type for land use and float type for the other variables). 
Defining variables in UE is enabled using the RF model in the UE platform. If the variables change in 
runtime in UE, the RF model can predict the new temperature. 

6.5.5. Development of User Interface of DT-PSS 

Several key components are used to create an interactive and user-friendly user interface for the DT-PSS. 
User interface (UI) is a graphical interface that allows users to interact, edit, or create content in UE. It 
consists of several elements such as “Main Editor Window,” “Viewport,” “Content Browser,” “Detail 
Panel,” and “Viewport Navigation.” For example, the main editor window allows users to change game 
content or various tools. Viewport Navigation also allows users to navigate the viewport using a mouse, 
keyboard shortcuts, or navigation control.  

The Blueprint Widget is used for this study to create the user interface. The Blueprint widget is a UI 
created using the visual scripting code Blueprint. First, several elements, such as sliders, buttons, and text 
fields, are added to the widget window. These features are designed to interact with the underlying playing 
logic, allowing users to alter variables and see changes in real-time. For example, sliders are utilized to change 
environmental settings, and buttons are added to the model to perform specified activities. Next, the 
Blueprint system in UE connected UI components to their related functions and data. This is done using 
visual scripting code in UE. Figure 47 shows an example of visual scripting code in UE. 
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Figure 47: Visual scripting code, Blueprint in UE. Source: Author, 2024. 

Blueprint in UE utilizes Event-driven Programming. This capability defines custom events or functions 

in the game environment. Additionally, Blueprint Widgets support dynamic changes and updates. This allows 

users to modify elements in UI in runtime and see the real-time changes in the game environment. This 

flexibility enabled dynamic responses based on runtime changes in DT-PSS, which is an essential capability 

for creating DT in UE. Figure 48 is the Blueprint widget for the user interface of this study. Each button is 

an Event linked to a function or sequence of functions in the Event Graph (where visual scripting is created) 

in UE. 

 

 
Figure 48: Blueprint widget for UI is used for this study. Source: Author, 2024. 

Afterwards, the buttons are linked to Event Graphs by creating Events. Different types of Events for 

each button run the visual code when users utilize them in the simulation mode. For example, Figure 49 

shows different types of events for each button. For this study, the “On Clicked” event (the first one) is 

used. This means that if the users click on the button, it runs the visual codes or sequence of functions in 
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Blueprint. The  “On Clicked” event in this study is linked to the visual code in Blueprint. Figure 50 shows a 

link between the “On Clicked” event and the visual code in Blueprint.  

 
Figure 49: Different Events for buttons in UE. Source: Author, 2024. 

 
Figure 50: Linking event to visual code in Blueprint. Source: Author, 2024. 

 

6.5.6. Coordinate Reference System in Unreal Engine 

This research utilized the UE Coordinate Reference System (CRS) to locate the object within the UE 

scene. UE employs a standard 3D CRS to define and locate the objects in the scene. UE operated two spaces: 

world and local space. World spaces refers to the global coordinate system of the entire game environment. 

In the world space, locations and positions of all objects are related to the origin of the game world, which 

is (0,0,0). Object space refers to a local coordinate of objects. This means all the positions and locations are 

related to the origins of an object. For this study, the world space coordinate system is used to determine 

the position and location of objects in UE. It is also possible to bring a GIS coordinate system into UE. 

First, the coordinate system must be compatible (e.g., UTM) with UE, and coordinate system plugins must 

be installed.  
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6.5.7. Scenarios in the DT-PSS Tool 

To assess the impact of planning scenarios and processes by the proposed DT-PSS tool in this study, 

translating decision variables to input variables for the ML model is required. This is because the input 

variables on the DT tool to predict temperature differs from the decision variables. For example, spectral 

indices such as NDVI and NDBI are not decision variables in the planning process (they are input variables 

for the ML model in DT-PSS). Instead, increasing greeneries or building density are examples of decision 

variables in the planning process. After translating the planning processes to input variables for the DT-PSS, 

the tool can assess the effects of the planning process on the UHI. Thus, this study translated planning 

scenarios into input variables to define scenarios in the DT-PSS. The following describes the process of 

designing and defining planning scenarios in the DT tool.  

A feature is defined in UI to develop multiple urban planning scenarios in the UE platform. This feature 

includes planning/mitigation scenarios, such as constructing new residential blocks, green spaces, or water 

bodies (Figure 51). Users can drag and drop these scenarios into the scene to see the change in temperature 

resulting from this intervention.  

The planning scenarios in the UE widget interface are defined by translating urban planning scenarios to 
input variables for the RF ML model in DT. For example, one scenario is constructing new residential 
buildings by removing greenery. This scenario translated urban planning variables like population density 
and land use into ML model inputs like NDVI and landscape indices. For instance, constructing new 
residential buildings will decrease NDVI and increase population density. 

Two steps are taken after introducing scenarios to the UE scene to analyse the impact of scenarios. First, 

new input variables, such as NDVI, NDWI, and landscape indices, are calculated. Second, these calculated 

variables are imported into the RF model as input to calculate the new temperature and UHI intensity.  

 
Figure 51: Planning scenarios in the UE widget interface. Source: Author, 2024. 

The second step involves using new variables as an integer input for the RF model and creating a function 

that links them to the RF model (refer to section 6.5.4, importing ML model into UE). No new calculations 

are needed for land use and population density variables. This is because a new value can be defined by the 

user for these two variables. In addition, these two mentioned variables are decision variables in urban 

planning. For instance, if the new scenario is about increasing the population density by 10%, the user can 

write this number as a new variable for population density. Similarly, users can change land use by changing 
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the land use class in the widget. Figure 52 displays the land use and population density variables in the user 

widget interface so that users can change them. 

 
Figure 52: Land use and population density in the user widget interface. Source: Author, 2024. 

New variables for spectral indices are calculated by corresponding values for each surface. For example, 

values approaching -1 are water, or values between 0.2 and 0.4 are shrub. So, for constructing a water body, 

the NDVI value is -1. Although it is possible to calculate spectral indices instead of default values, due to 

the constraints in computational resources, corresponding values for each scenario are used. 

Calculating landscape indices for new buildings is more challenging since changes in the built-up area 
influence all landscape indices. The new landscape indices should be calculated using software such as 
Fragstat, and it is not possible to calculate them in UE. There is a possibility of writing Python code that also 
calculates the landscape indices, but it is out of the scope of this research due to time constraints. Thus, for 
proposed scenarios in UE (the scenarios developed as a feature in the UI), the landscape indices are 
calculated using Fragstat software. New variables are imported for the scenarios in the UI. Then, when users 
drag new scenarios to the scene, the trained RF model calculates the new temperature based on the 
predefined landscape indices.  

6.6. Evaluation 

This part explains the results of workshops and discusses the feedback from stakeholders. The workshop 

is organized to facilitate dialogue between researchers and stakeholders. Representatives from different 

departments of Wuppertal municipality participated. The main objective of the workshop was to showcase 

the capability of the DT tool and gather feedback for further improvement of the model. During the 

workshop session, the research results and the model performance were presented to the stakeholders in 

Wuppertal municipality (Figure 53). Along with the model performance, the potential of the DT tool for 

further development is discussed with municipality officials. Below quotes and feedback from stakeholders 

are provided: 

• Stakeholders stated that the scenarios designed in the DT-PSS tool efficiently demonstrate the ability 

of the tool. However, the scale of ongoing plans in Wuppertal is much smaller. For example, the 

suggested scenarios include the implementation of green roofs or redesigning streets with greenery. 

They are also currently considering designing the bike lanes and streets in Wuppertal. 

“More detail and realistic scenarios could be designed.”  

• Stakeholders mentioned that future climate scenarios could be integrated into the model simulation 

to increase the robustness of the model. This would involve including data regarding different 

scenarios for extreme weather or precipitation changes. 
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“Climate scenarios could be integrated.”  

• stakeholders stated that wind is one of the main variables that has impacted UHI in Wuppertal and 

including it in the DT-PSS is crucial.  

“Wind could be included as a variable in the model.”  

• Stakeholders stated that the DT-PSS has financial and environmental benefits. Environmentally, 

managing UHI reduces the demand for cooling energy; thereby, it will reduce CO2 emissions that 

result from the production of electricity. Financially, the tool helps reduce the UHI effect so that 

households can save on the energy cost for cooling effects. 

“The municipality will benefit from urban heat island management in terms of CO2 reduction. Such tools will 

contribute to sustainable urban planning and also to environmental aspects.” Urban heat island management reduced 

reliance on air conditioning. Reduced reliance on air conditioning also leads to financial savings for households.”  

• During the workshop, stakeholders provided valuable feedback on the proposed DT-PSS. They 

highlighted the role of the tool in decision-making and implementing sustainable planning. They 

stated that the tool could help them to assess the consequences of their decision in advance. The 

tool also can help them improve sustainable development. 

“Urban development and planning can only reach sustainability if different scenarios can be evaluated based on the 

current situation and future planning. Therefore, considering the effects of urban planning on urban heat islands is 

essential. The only framework that enables the city of Wuppertal to implement sustainable planning is the concept of 

urban digital twins.”  

“Climate change adaptation is important. Urban planners must consider the consequences of their planning with 

respect to living quality and heat-related burdens on urban citizens. The presented tool is a valuable contribution to 

knowledge transfer and visualisation”. 

• Based on the stakeholder's point of view, the DT-PSS tool is designed to be user-friendly but needs 

further development. More functions and features regarding data visualisation and scenario 

assessment should be included in the tool. 

“The tool successfully integrates diverse data, such as remote sensing and in situ almost real-time climate data. The 

processing and visualisation using a gamification approach is user-friendly and will help the municipality deal with 

climate change issues more efficiently and actively. The municipality is planning to further evolve the tool and use the 

protype in the context of the urban digital twin of Wuppertal.” 
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Figure 53: Workshop with Stakeholders in Wuppertal municipality. Source: Author, 2024. 

7. CONCLUSION AND RECOMMENDATIONS 

This research developed a DT-PSS in the UE platform to help urban planners mitigate UHI formation. 

The research shows that by integrating real-time temperature data from sensors and an RF ML model into 

DT, it is possible to assess the impact of urban planning scenarios on UHI formation. The created DT-PSS 

in this study provided urban planners with a beneficial tool for assessing the impacts of planning decisions 

on temperatures and UHI formation before implementing them. The DT-PSS tool in this study provided an 

ex-ante assessment for planners. Moreover, the tool allowed users to modify variables in DT in runtime and 

see the real-time changes in the virtual twin. This flexibility enabled dynamic responses based on runtime 

changes in UE, which is necessary for creating DT.  

Furthermore, several key areas are identified in the urban planning and design in which the DT-PSS can 

be used.  The tool can be used to define population density and land use policies. Additionally, the tool 

provides insights into the impact of different population densities on UHI formation. The tool helps revise 

design policies, select surface material, and locate green infrastructure to maximize UHI mitigation efforts 

in urban planning. The tool also can continuously monitor and analyse the data and provide feedback on 

UHI mitigation measures for adjusting and improving decisions.  
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Involving stakeholders in creating a PSS is a significant requirement for creating the DT-PSS. The final 

users should be involved in the design process from the beginning steps since they are the primary users of 

the tool. By involving stakeholders in the process of creating the DT-PSS, this study ensures that the tool 

meets the practical needs and user requirements. Engaging stakeholders in the process of creating the tool 

can enhance the usability of the DT tool.  

Furthermore, geospatial data integration provides significant insights into the historical data in Wuppertal 

City. Since the temperature sensors are installed recently in Wuppertal, there was no historical information 

on temperature. However, satellite imagery archives make it possible to download and process satellite 

images of the past years in Wuppertal City. As a result, using satellite images for LST and UHI studies is 

essential. 

Moreover, the DT-PSS tool showed broader application potential. The tool can potentially expand the 

application to address other environmental challenges. For instance, the tool can be adopted for air quality 

monitoring, traffic management, energy consumption, and urban green space management. Stakeholders 

also mentioned this during the workshop in the municipality of Wuppertal.  

Additionally, the integration of sensor data for temperature provided the model with up-to-date 

information, making the simulation more accurate. Accessing the real-time data helps the model reflect the 

current situation and then predict the future state. This might help planners with more reliable data and 

information to evaluate the impact of different planning scenarios. 

  Integrating the RF ML model in DT-PSS allowed the tool to analyse and forecast LST and UHI. Since the 

RF model is trained based on past data from environmental and urban factors, the trained RF model in this 

study helped with more accurate temperature forecasting. Moreover, the relationship between variables that 

drive temperature and UHI is complex, and the trained RF model helped to find the relationship between 

variables and amplify the predictive capabilities of the model. Thus, integrating the ML in DTs is essential 

in creating a DT for UHI. 

 Including uncontrollable factors related to climate changes, such as future temperature trends or extreme 

weather scenarios in the model, might enhance the prediction and accuracy of the model. This is also 

mentioned by stakeholders during the municipality workshop (refer to section 6.6, stakeholders). Although 

planners have no control over this variable, including them in the model increases the prediction 

performance. This is because planners evaluate the urban planning scenarios and select the best one that 

might tackle climate change scenarios.   

   Standardizing data formats is also essential for creating the DT tool, as it requires integrating various data 

types from different sources. Converting data format to a standard and compatible format is a fundamental 

step for integrating data in DT. Additionally, data should be cleaned and filtered to ensure that there is no 

error. Also, temporal and spatial data should be synchronized to ensure consistency between the data.  

Last but not least, the created DT tool in this study is a good example of DT practical application. While the 

study made a small prototype of the DT tool for a neighbourhood in Wuppertal City due to the 

computational constraints, the methodology showed that the DT-PSS model is applicable to the whole city. 

7.1. Limitations 

Limited computational resources are one of the main challenges of this study. Due to the limited 

computational resources, the DT-PSS tool is made only for a small neighbourhood in Wuppertal City. This 

limitation prevents the demonstration of the full potential of the tool for the whole of Wuppertal City.  

In addition to computational constraints, data availability might impact the results of this study. The real-

time data in this study is imported from four sensors in the study area. That is why IDW interpolation is 
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used to calculate the real-time temperature of the Südstadt neighbourhood. The more sensors for real-time 

data would provide more accurate simulation. Additionally, the past data for wind and the data to calculate 

SVF for the whole city were unavailable. Furthermore, privacy concerns resulted in low-resolution data for 

population density. The resolution of population density used in this study is low due to privacy, which might 

affect the result.  

Another significant issue is interoperability between different software tools. Interoperability between GIS 

software and UE is another challenge that limited the functionality of the DT tool. For defining new 

scenarios in UE, several variables, such as PD and ED, are calculated in another software (Fragstat) before 

being brought into UE. Thus, interoperability between different software for calculating variables in real 

time was a major issue in this study.  

Choosing suitable ML models also presented a problem. The RF model showed the highest accuracy in 

this study compared to the other three used models: SVM, ANNs, and the Polynomial regression model. 

However, this might be due to one of the input variables, land use. This is because the land use data was 

categorical, and SVM, ANNs, and Polynomial regression models are more proficient with numerical data. 

Therefore, selecting the models that can handle categorical data is another limitation of this study that could 

not be solved in the time scope of this research.  

Finally, there was a limitation in defining scenarios in UE for the DT assessment. This limitation is due to 

the limited time and knowledge of working with UE. The time limitation was a significant constraint in 

exploring the abilities of the UE platform. Hence, more scenarios, such as ongoing urban planning plans in 

Wuppertal city, could be considered and included in the DT tool.  

7.2. Further Research 

• Inclusion of Additional Variables: From the literature review, more variables are identified that 

statistically have a significant correlation with temperature and UHI. However, due to the data 

limitation, only the selected variables (Table 1) are included in this research. Other variables, such 

as wind and SVF, are essential for predicting temperature and should be considered in future 

research. 

• Accuracy of ML Models: In this study, four ML models are trained, and the RF model showed 

the highest accuracy compared to the other three models. However, further research can increase 

the accuracy of ML models. For example, decay rate and iteration in ANNs, tuning hyper-parameter, 

and choosing kernels in SVM are important to achieve more accuracy for ML models. More 

advanced algorithms can also be used for future research. Moreover, the data for this study was 

collected between 2017 and 2023. For future studies, the data can be collected for a longer period 

to include more past data in training the models. Furthermore, this study also used categorical data 

to train ML models, which might result in the lowest accuracy of ML models. Therefore, future 

studies can explore which ML algorithms are more compatible with the categorical data to increase 

the accuracy of the ML model for UHI/LST prediction. 

• Visualisation: The user interface created for the tool was simple and had limitations. Moreover, 

the UI was created using blueprint scripting due to the limited time and skills in C++ programming. 

In future research, improving the UI and providing more user capabilities, functions, and scenarios 

might be possible. More functions can be developed to increase the interactivity of the DT tool. 

• Developing a Mobile Version: The UE platform is a powerful game engine that allows mobile 

platform development for iOS and Android. Therefore, using UE, it is possible to create a mobile 

version of the DT tool. This might enhance collaboration and public engagement. Additionally, it 
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provides residents with smooth access to the platform, and they can give their feedback regarding 

urban planning scenarios using the platform. 

• Integrating Private Data: Due to concerns about privacy, data such as population density cannot 

be integrated into DTs, or at least they can be included after reducing the spatial resolution. This 

might directly affect the DT performance. Consequently, this raises a problem in using private data 

as real-time data in DT, which needs to be addressed by the data governance framework and further 

research.    

8. ETHICAL CONSIDERATIONS 

Privacy concerns are carefully considered during the research process to protect private information. No 
phase of the research process involves the sharing or release of any personal data. The primary data of this 
study is obtained from reliable, publicly accessible databases to ensure that no personal data existed in this 
research. A survey was also conducted to obtain information needed to create and design the suggested DT-
PSS tool for this study. The result of the survey is anonymously reflected in this research to prevent 
publishing any private data related to participants.  
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9. ANNEXES 

Annex A 

 
In this Annex, the GEE code is used to calculate the mean LST value for urban and rural areas in 

Wuppertal City from 2013 to 2024 is provided (Figure 54). This code calculates the mean LST within the 
defined polygons in GEE. Before calculating mean LST, several polygons are defined as rural and urban 
areas within the boundary of Wuppertal (Figure 54).   
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Figure 54: GEE code for calculating mean LST. Source: McCartney et al. (2020). 

Annex B 

In this Annex, python code for training and checking the accuracy of the ML models is provided. Figure 

55 shows the necessary modules for training ML algorithms in this study. Figure 56 shows importing data 

and splitting it into two sets for training and testing data. 

 

 
Figure 55: Importing necessary modules for the whole training ML algorithm process. Source: Author, 2024. 

 

 
Figure 56: Loading data and splitting the data into training and test sets. Source: Author, 2024. 

The code below is for training three regression algorithms of RF, SVM, ANNs, and the Polynomial regression 

model (Figure 57). After checking the accuracy, RF and polynomial models are saved for use in UE for temperature 

prediction. Figure 58 shows the Python code for saving the models as .Joblib format (Figure 58).  
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Figure 57: Python code for training RF, SVM, ANNs regression algorithm, and the code for checking the accuracy. 

Source: Author, 2024. 

 
Figure 58: Saving the model and checking the performance. Source: Author, 2024. 

Annex C 

 
There are several plugins for using Python in UE, such as “Python Editor” and “Python Runtime”. A 

few of them are commercial but have more functionality in UE. This study used only free and non-

commercial plugins for Python in UE. Figure 59 shows the free plugins that are used in this study, 

“Sequencer Scripting” and “Python Editor Script Plugin.” 
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Figure 59: Python plugins used in the study. Source: Author, 2024. 

Annex D 

In this annex, a summary of the survey is provided. Also, a link to the survey is provided. In total, 13 

people from the municipality of Wuppertal participated in the survey. Due to the privacy and prevention of 

publishing private information of respondents, the results related to questions such as respondents' role in 

the Wuppertal municipality are not provided.  the survey results that directly is linked to the design DT toll 

are provided in the methodology section 5.4. In the following survey, questions and answers are provided. 

 

1. In your opinion, what information is essential to create a 2\3D model of an urban heat island (multiple 

answers)? 

The respondents stated that for creating a 3D model for UHI buildings, land cover/land use, green 

spaces, wind, temperature, and water bodies are important information. They believe that this information 

should be included in the UHI 3D city model. Figure 60 show the result of this question. 
 

 
Figure 60: Stakeholders’ opinions regarding the essential information for creating a 3D model for UHI. Source: 

Author, 2024. 
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2. What features or functionalities would you like to see incorporated into the Decision Support System 

tool to make it more useful and user-friendly for your purposes (multiple answers)? 

Stakeholders mentioned that data visualisation, scenario modelling, and interactive map are the most 

important functionalities and features that should be included in the PSS tool for UHI. Figure 61 show the 

result of this question. 

 
Figure 61: Stakeholders' opinions regarding the important features and functionalities that should be included in the 

PSS tool. Source: Author, 2024. 

1. What level of interactivity (based on your opinion) is helpful for the Decision Support System 
tool? The level of interactivity allows the users to make changes in the model. The video 
provided in section one has the highest level of interactivity. 

 Stakeholders believed that the PSS tool for UHI should have a basic to a high level of interactivity. 

Figure 62 show the result of this question. 

 

 

 
Figure 62: Stakeholders' opinions regarding the level of the interactivity of the PSS tool. Source: Author, 2024. 

 

 

4. What is the role of a Decision Support System tool in your work or decision-making processes related to 

urban heat island mitigation? 

Stakeholders stated the tool is helpful in their workflow for UHI mitigation planning. Figure 63 show the 

result of this question. 
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Figure 63: Stakeholders' opinions regarding how the tool can help them in UHI mitigation. Source: Author, 2024. 

 

5. After creating the Decision Support System tool in the future, what will the level of integration 

of the Decision Support System tool be in the decision-making procedures (in urban planning) in 

Wuppertal municipality? 

Based on stakeholders’ opinions, the level of integration of PSS is still unclear in their planning 

process. More research is needed to integrate PSS into the planning process. Figure 64 shows the 

result for this question. 

 
Figure 64: Stakeholders' opinions regarding the level of the interactivity of the PSS tool. Source: Author, 2024. 

6. How can the Decision Support System tool be designed to encourage active participation and 

collaboration among stakeholders and community members (multiple answers)? 

From the stakeholders’ points of view, designing user-friendly interfaces in the PSS tool and 

educational resources can increase the participation of stakeholders and community members. 

Figure 65 show the result of this question. 

 

 
Figure 65: Stakeholders' opinions regarding the level of the interactivity of the PSS tool. Source: Author, 2024. 
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Here the link for the survey is provided: 

https://forms.office.com/Pages/ResponsePage.aspx?id=oUYycvXDxUOs3EOttASsTSqNb0ZO0

RlAjs76cUYcwGNUMlE4Szg0RVZUSUxIWkcyWlFLSzdBNFRJSi4u  

 

 

 

 

Annex E 

This part provides Python code calculating spectral indices of the ML model in this research. The code 

below (Figure 66) shows the necessary modules for importing data and calculating spectral indices for each 

sample point. 
 

 

 

 

https://forms.office.com/Pages/ResponsePage.aspx?id=oUYycvXDxUOs3EOttASsTSqNb0ZO0RlAjs76cUYcwGNUMlE4Szg0RVZUSUxIWkcyWlFLSzdBNFRJSi4u
https://forms.office.com/Pages/ResponsePage.aspx?id=oUYycvXDxUOs3EOttASsTSqNb0ZO0RlAjs76cUYcwGNUMlE4Szg0RVZUSUxIWkcyWlFLSzdBNFRJSi4u
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Figure 66: Python code for calculating spectral indices for sample points. Source: Author, 2024. 

Annex F 

Information for each sensor is provided below. The information consists of related API, and Longitude 

and latitude are provided:  
 

1. BAD – APH Am Diek 

Latitude: 51.28579071558207 

Longitude: 7.226010517432712 

API:https://element-iot.com/api/v1/devices/e10dcd31-db06-484b-9e85-

149b9e3ca412/readings?limit=1&auth=b3944955d7ecfd588a1eb0b5778c5854    

 

2. EWA – Von-der-Heydt-Museum 

Latitude: 51.25632580035739 

Longitude: 7.146776594655364 

API:https://element-iot.com/api/v1/devices/471beb73-8f31-44b4-

8e00070089894ece/readings?limit=1&auth=b3944955d7ecfd588a1eb0b5778c5854 

 

https://element-iot.com/api/v1/devices/e10dcd31-db06-484b-9e85-149b9e3ca412/readings?limit=1&auth=b3944955d7ecfd588a1eb0b5778c5854%20%20%20
https://element-iot.com/api/v1/devices/e10dcd31-db06-484b-9e85-149b9e3ca412/readings?limit=1&auth=b3944955d7ecfd588a1eb0b5778c5854%20%20%20
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3. RBL – An der Blutfinke 

Latitude: 51.225220707271404 

Longitude: 7.1899988651351805 

API:https://element-iot.com/api/v1/devices/0b2c081e-e0d3-4ea5-a342-

c62b815ec4bb/readings?limit=1&auth=b3944955d7ecfd588a1eb0b5778c5854 

 

4. ZOO – oka-Wetterstation 

Latitude: 51.239055407584544 

Longitude: 7.1099243537421035 

API:https://element-iot.com/api/v1/devices/4d2d12a3-f8d2-4bfe-aa50-

4c31aeaa86f4/readings?limit=1&auth=b3944955d7ecfd588a1eb0b5778c5854 

Annex G 

This Annex provides the visual code for importing real-time temperature data. VaRest plugin is used to 

import real-time data from sensors. Figure 67 shows the API information for one of the sensors. As shown, 

the information that is provided is not in a structured way. This issue made it difficult to find which array 

and object should be extracted by visual code to get temperature data. So, Postman is used to find the 

structure of code in APIs. Figure 68 shows the JSON code after importing the API in Postman. As it isclear 

after importing the API in Postman, the temperature is inside the body array and inside the data.  

 
Figure 67: API information for sensors. Source: Author, 2024. 

. 

 

 

 

 
Figure 68: API information after importing it in Postman.  Source: Author, 2024. 
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After finding the structure of JSON code for APIs, through Calling URL and Contact JSON Object 

Functions, API information is imported in UE. After that, the temperature data is extracted and printed on 

the screen using the Get Array Field and Get Field functions. The output of this step is imported as an input 

for IDW interpolation. The figure below shows the whole visual code for this part (Figure 69). Event Begin 

Play is used to run the code. So, as the visualisation starts, the code will get the information from sensors. 

 

 
Figure 69: Visual code for importing real-time data for temperature form sensors. Source: Author, 2024. 

Annex H 

In this annex, the Python code for IDW interpolation is provided. The first code is for IDW interpolation 
using geographical coordinates, and the second code is for IDW interpolation using Cartesian coordinates 
(Figure 70 and 71). At first, information on each sensor, such as longitude, latitude, API URL, and ID, is 
imported. Then, the temperature interpolated to each point.  The output is in string format and can be used 
in UE.  
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Figure 70: IDW interpolation using geographical coordinates. Source: Author, 2024. 
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Figure 71: IDW interpolation using Cartesian coordinates. Source: Author, 2024. 

Annex I 

This part explains how Python code is executed in UE. The “Execute Python Command” function is 

used to execute Python files in UE. The Python codes that are written in Jupyter Notebook are saved in .Py 

format. After that, the files are imported into the UE. For importing the .Py files, the mode of the “Execute 

Python Command” function is set to execute a file, and a string variable is defined and linked to the function 
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to get access to the file by calling the file and importing it using the file address. Figure 72 shows the string 

variable that is defined for importing and running the Python code. In the Details panel of the string variable 

(named Import and Reload), Python code for importing the file is written. The file is for IDW interpolation. 

Figure 73 also shows the link between the string variable and the “Execute Python Command” function in 

Blueprint.  

 
Figure 72: String variable for importing and running Python files. Source: Author, 2024. 
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Figure 73: linking the string variable to the Execute Python Command function. Source: Author, 2024. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 


