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Abstract 
Introduction. Coronary computed tomography angiography (CCTA) is a widely used 
non-invasive imaging technique for assessing coronary artery disease (CAD). It provides 
detailed images of the coronary arteries, allowing for the detection and characterization 
of atherosclerotic plaques. This thesis aims to investigate the relationship between 
different coronary plaque volumes identified through CCTA and the occurrence of major 
adverse cardiovascular events (MACE) and factors that can affect the plaque volume 
measurements. 
 
Methods. We retrospectively included all patients who underwent CCTA at Isala 
hospital between January 2019 and December 2021. Patient data were collected from 
medical records, and those with incomplete or unassessable scans were excluded. 
Propensity score matching was used to create comparable groups of patients with and 
without major adverse cardiovascular events (MACE). Plaque volumes were measured 
using GE AW-server software. We used Mood’s median test and the Mann-Whitney U 
test to compare the plaque volumes between the no MACE group and MACE group. 
 
Results. A total of 126 patients were included after propensity score matching, 63 with a 
MACE after CCTA and 63 without a MACE after CCTA with no significant differences in 
baseline characteristics (p > 0.05). Trends in plaque volumes indicated higher overall 
plaque volumes in the MACE group, with noncalcified and fibro-fatty plaques showing 
near-significant differences (p = 0.051, p = 0.067, respectively).  
 
Conclusion. Although we did not find a significant difference in plaque volume between 
the group that did not experience a MACE after CCTA and the group that did experience a 
MACE after CCTA, observable trends were present. Non-calcified plaque volumes (< 30 
HU) and fibro-fatty plaque volumes (31-130 HU) were generally larger in the MACE group. 
Additionally, we found that the calcified plaque volumes (>350 HU) were generally 
smaller in the MACE group compared to the no MACE group. 
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General introduction 
Cardiovascular disease (CVD) is the primary cause of mortality globally [1].  Acute 
coronary syndrome (ACS) frequently serves as the initial clinical presentation of CVD. 
Coronary artery disease (CAD) is the underlying pathophysiological process that leads 
to ACS, which is often the first clinical manifestation of CVD[1]. In the Netherlands, CVD 
was responsible for nearly 23% of all mortality and the second leading cause of 
mortality, following cancer [2, 3]. CAD is characterized by the progressive development 
of atherosclerotic plaque in the coronary arteries, leading to increasing stenosis and 
obstruction which can cause myocardial ischemia [4]. Symptoms associated with CAD 
are angina which can increase during exertion, dyspnoea, fatigue, or nausea [1, 4, 5].  
 
CAD can be divided into two categories, acute coronary syndrome (ACS), and chronic 
coronary syndrome (CCS). ACS is diagnosed using rapid assessment tools, including 
electrocardiograms (ECGs), cardiac biomarkers such as cardiac troponin, and invasive 
cardiac angiography (ICA) [1]. CCS, on the other hand, is diagnosed through non-
invasive imaging techniques like computed tomography-based calcium scoring (CACS), 
and coronary computed tomography angiography (CCTA) [4]. This research focuses on 
the quantification of CCTA images. 
 
New CAD-RADS guidelines introduce the possibility of plaque quantification using CCTA 
images [6]. Research shows that plaque volumes can be used for risk prediction for 
major adverse cardiovascular events (MACE) [7]. However, these CCTA scans can be 
made at different tube voltages which can have an effect on the measured CT number 
and thus on the plaque quantification [8–11]. Furthermore, in literature multiple 
thresholds are used to determine plaque categories, but there is no standardization yet 
[11].  
 
The first chapter will give a clinical background of CAD and CCTA. The second chapter 
will give a technical background in CT, how CT numbers are produced, how iodine 
contrast gives higher attenuation values, and what the partial volume effect is. Chapter 
3 describes a phantom study conducted to assess the influence of tube voltage on CT 
numbers for different phantom materials. The fourth chapter is a retrospective study 
performed to find whether plaque quantification can contribute to the risk stratification 
of patients with CAD. 
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Clinical Background 

Pathophysiology of CAD 

Coronary artery disease (CAD) is characterized by the progressive development of 
atherosclerotic plaques in the coronary arteries[4]. The formation of CAD begins with 
intimal thickening. This is a response to hemodynamic stress, or the production of 
sulfate-containing proteoglycans or other forms of extracellular matrix by intimal 
smooth muscle cells [12]. This causes the first intimal thickening of the intima and lipid 
accumulation is not yet involved in this process.  
 
Intimal thickening is followed by the development of a fatty streak, marking the initial 
phase of plaque buildup [13]. This stage is driven by the accumulation of low-density 
lipoprotein (LDL) cholesterol within the tunica intima layer of the arterial wall. The LDL 
cholesterol oxidizes in the arterial wall and triggers an inflammatory response, leading to 
the recruitment of macrophages that ingest LDL particles, which transforms the 
macrophages into lipid-laden foam cells [14]. 
 
Foam cells play a central role in sustaining inflammation [14]. Releasing cytokines and 
chemokines that recruit additional immune cells including T cells. These T cells further 
enhance inflammation by producing cytokines which activate the smooth muscle cells 
in the arterial wall. These smooth muscle cells start to proliferate and migrate towards 
the inner layers of the artery where they also begin to absorb LDL particles and secrete 
extracellular matrix components, including collagen, which contribute to plaque growth 
and structural complexity. These plaques are also called fibro-fatty plaques. 
 
Over time, plaque can either stabilize or continue to grow[14]. If the plaque grows, it can 
become significant enough to block the blood flow to the myocardial tissue. If there is an 
increased demand, angina symptoms can occur, which will disappear when the oxygen 
demand lowers. If the stenosis is ≥90%, it can cause angina at rest. Stable plaques are 
typically encapsulated by a thick fibrous cap that isolates the necrotic core from the 
lumen of the artery, reducing the likelihood of a rupture. However, plaques that continue 
to grow and become unstable, are at a high risk of rupture, which can lead to thrombus 
(blood clot) formation. Unstable plaques often contain a large necrotic core and a thin 
fibrous cap, which makes these plaques a high risk of rupture. Plaque rupture is a major 
cause of thrombosis, often resulting in acute coronary syndromes, such as myocardial 
infarction. The progression of CAD is also shown Figure 1 [15].  
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Coronary plaques can also become calcified through several pathways [16]. The first is 
cell death of the smooth muscle cells. When these cells die, calcium is released and 
can be deposited in the arterial wall. The macrophages, or foam cells, can release 
extracellular vesicles, that serve as a framework for the formation of calcium deposits. 
Genetic factors can also affect the calcification of the coronary plaques. Additional risk 
factors for coronary calcifications include chronic kidney disease, diabetes, metabolic 
syndrome, chronic inflammation, aging, postmenopausal women, hyperparathyroidism, 
and lifestyle factors such as a sedentary lifestyle and a diet high in saturated fats, 
cholesterol, and refined sugars.  
 
Atherosclerotic plaques, and therefore also coronary plaque can consist of many 
different components. These different components can be evaluated using coronary 
computed tomography angiography (CCTA) [7]. Fatty materials exhibit lower attenuation 
compared to fibrotic components, while calcified components have the highest 
attenuation.  
 
Fatty materials within the plaques have lower attenuation values, making them appear 
less dense on the CT images [7]. These fatty deposits are often associated with more 
vulnerable plaques that are prone to rupture, potentially leading to acute coronary 
events such as heart attacks. On the other hand, fibrotic components have intermediate 
attenuation values and represent more stable plaques that are less likely to rupture. 
 
Calcified components, which have the highest attenuation values, indicate the presence 
of hardened plaques [7]. These calcified plaques are generally more stable but can still 
contribute to the narrowing of the arteries, reducing blood flow to the heart muscle [17]. 
The ability to identify and quantify these different components using CCTA provides a 
comprehensive understanding of plaque composition and helps in evaluating the overall 
stability of the plaques. 
 

Figure 1: Progression of atherosclerotic plaque [15] 
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Coronary CT angiography 

Coronary CT angiography (CCTA) is the primary diagnostic tool for evaluating coronary 
anatomy [18]. Heart rate management is important for CCTA scans as higher and 
irregular heart rates can give motion and step artifacts [19]. Optimal heart rates are 
typically below 60 beats per minute. Therefore, patients should avoid caffeine as it can 
elevate their heartrate. Beta-blockers like metoprolol are commonly used to reduce the 
heartrate of the patients. Before scanning, an iodine based contrast agent is 
administered through an intravenous line to enhance the contrast of the coronary 
arteries and helps with identifying plaque buildup and narrowing of the coronary 
arteries. Segmentation is used to isolate the coronary arteries from the CCTA resulting 
volume. Post-processing techniques are used to create images that are used for 
detailed examination of the coronary arteries. 
 
CCTA scans are reported using a standardized system, called Coronary Artery Disease – 
Reporting and Data System (CAD-RADS). The degree of stenosis is classified using this 
system and helps to guide patient management [6]. Different degrees of stenosis lead to 
different CAD-RADS categories. The different CAD-RADS categories, corresponding 
degree of maximal coronary stenosis and recommendations for further cardiac 
investigation are shown in Table 1.  
 
Table 1: CAD-RADS reporting and data system for patients with stable chest pain [6] 

Category Degree of maximal 
coronary stenosis 

Further cardiac 
investigation 

CAD-RADS 0 0% (no plaque or stenosis) None 
CAD-RADS 1 1-24% minimal stenosis or 

plaque with no stenosis) 
None 

CAD-RADS 2 25-49% (mild stenosis) None 
CAD-RADS 3 50-69% (moderate 

stenosis) 
Consider functional 
assessment 

CAD-RADS 4a 70-99% Consider ICA or functional 
assessment 

CAD-RADS 4b Left main ≥ 50% or 3-
vessel obstructive (≥ 70%) 

ICA is recommended 

CAD-RADS 5 100% (total occlusion) Consider ICA, functional 
and/or viability 
assessment 

CAD-RADS N Non-diagnostic study Additional/alternative 
evaluation may be needed 

 
Modifiers can be added to the CAD-RADS score. An example of a modifier is high-risk 
plaque (HRP) which includes positive remodeling, low-attenuation plaque, spotty 
calcification and the napkin-ring sign. Plaques with these characteristics have the 
potential to develop into plaque rupture or thrombosis.   
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Technical background 

CT numbers 

Each voxel in a reconstructed CT image is assigned a CT number, also known as a 
Hounsfield Unit [20]. The CT number is calculated using the following formula: 

𝐻𝑈 = 1000 ∗ 
𝜇𝑡 −  𝜇𝑤

𝜇𝑤
 [20] 

Where µt is the linear attenuation coefficient of the tissue in the voxel, and µw is the 
linear attenuation coefficient of water, which serves as a reference. A CT number of 0 HU 
represents water, air is represented by a CT number of -1000. Every tissue has its own CT 
number, but by using water as a reference, CT numbers provide a consistent and 
interpretable representation of tissue density aiding in diagnosis and assessment of 
various medical conditions.  
 
The photons of an X-ray beam in CT-imaging have a wide range of energies [21]. The 
energy depends on the tube voltage used during scanning. The higher the tube voltage, 
the higher the maximum energy of the photons is. Typically, CT scanners operate at tube 
voltages ranging from 80 to 140 kVp (kilovolt peak), which results in a spectrum of 
photon energies. This spectrum includes lower energy photons that are more likely to be 
absorbed by the patient's tissues and higher energy photons that can penetrate more 
deeply.  
 
Every type of tissue consists of different molecules. Every molecule consists of different 
atoms and every atom has a specific response to X-rays, determined by its atomic 
number, electron density, and how it absorbs or scatters X-ray photons [21]. The 
interaction between X-rays and atoms in a tissue primarily occurs through three 
mechanisms: photoelectric absorption, Compton scattering and coherent or Rayleigh 
scattering. 
 
In the process of photoelectric absorption, an X-ray photon interacts with an inner-shell 
electron of an atom, transferring all its energy to the electron [21]. This interaction 
results in the ejection of the electron from its shell, creating a photoelectron, and the 
complete absorption of the incident photon. The probability of photoelectric absorption 
is highly dependent on the atomic number (Z) of the absorbing material and the energy 
(E) of the incident photon, which is dependent on the tube voltage [9, 21]. Specifically, 
the probability is proportional to (Z3) and inversely proportional to (E3). This means that 
materials with higher atomic numbers, such as bone, are more likely to undergo 
photoelectric absorption, which is why they appear brighter on CT scans.  
The ejected electron leaves a vacancy in the inner shell, which is filled by an electron 
from a higher energy level, resulting in the emission of characteristic X-rays or Auger 
electrons. 
 
Compton scattering occurs when an X-ray photon collides with an outer-shell electron, 
the X-ray photon transfers part of its energy to the electron and changes direction [21]. 
This interaction is more likely to occur in materials with lower atomic numbers, such as 
soft tissues, where electrons are less tightly bound. The scattered photon retains part of 
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its original energy. Compton scattering is a significant contributor to background noise 
in CT images, as it leads to the production of scattered radiation that can degrade image 
quality. The probability of Compton scattering is relatively independent of the atomic 
number, but is directly proportional to the electron density of the material. 
 
Coherent or Rayleigh scattering involves the deflection of X-ray photons by atoms 
without any loss of energy [21]. In this interaction, the incident photon causes all the 
electrons in the atom to oscillate in phase, and the atom re-emits the photon in a 
different direction. Since there is no energy transfer, the scattered photon retains its 
original energy. Coherent scattering is more likely to occur at lower photon energies and 
in materials with higher atomic numbers. Although this interaction is less significant for 
image contrast, it can slightly affect image clarity by contributing to the overall scatter 
radiation. 
 
The combination of these three interactions determines a tissue’s attenuation and its 
corresponding CT number [21]. For example, bone, with a high concentration of calcium, 
which has a high atomic number, absorbs X-rays more effectively than soft tissues, 
resulting in higher attenuation and CT numbers. Conversely, air, with a very low atomic 
density, interacts minimally with X-rays and has lower CT numbers. 
 

Iodine contrast 

In CT imaging, many diagnostic tests utilize iodine-based contrast agents. Due to its high 
atomic number (Z = 53), iodine is highly effective at attenuating X-rays [8]. This strong 
attenuation is primarily because iodine enhances photoelectric absorption, particularly 
at the tube voltages used in CT imaging. Since iodine has a K-edge at 33.2 keV, meaning 
that the electrons in its innermost shell (K-shell) are bound with a binding energy of 33.2 
keV. When an X-ray photon has energy just above this value, it can eject a K-shell 
electron from the atom. This results in high attenuation efficiency for X-ray photons at or 
near this energy. Consequently, there is a significant increase in contrast between 
tissues where iodine is concentrated, such as blood vessels or tumors, and the 
surrounding tissues. Additionally, the high attenuation caused by the iodine contrast can 
also have an effect on surrounding tissue as it can raise the attenuation of the 
surrounding tissue as well [22].  
 

Partial volume effect 

The partial volume effect is a phenomenon in CT, where a single voxel contains multiple 
tissue types due to limited spatial resolution [8]. When the boundaries of different 
tissues fall within the same voxel, the measured signal or attenuation value represents a 
weighted average of those tissues. This averaging can lead to inaccuracies in image 
interpretation or measurements, particularly at interfaces between structures of 
different densities. For example, on the boundary of the lumen of an iodine contrast 
enhanced artery (300-700 HU) and a soft plaque (-50 – 30 HU) in the wall of the same 
artery, the voxel can have an averaged CT number that does not accurately represent 
either material. This effect can impact plaque volume measurements [23]. 
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Variations in Hounsfield Units, a phantom study 

Introduction 
Computed Tomography (CT) imaging plays a crucial role in medical diagnostics due to 
its ability to provide detailed cross-sectional images of tissues. CT scans are widely 
used to diagnose various conditions, including tumors, internal injuries, and 
cardiovascular diseases [24][25]. One key factor influencing image quality and 
diagnostic accuracy is the X-ray tube voltage (kV) during scanning[26]. Extensive 
research has been conducted on kV optimization to enhance image quality and reduce 
radiation dose [27][28]. Lowering the tube voltage can increase image contrast, 
especially in iodine-enhanced CT scans, but it also increases image noise [27]. 
 
Despite the extensive research on kV optimization, there is limited understanding of how 
coronary plaque components, such as soft plaque and fibrotic plaque, respond to 
different tube voltage settings in terms of Hounsfield Units (HU) values [11]. The specific 
thresholds recommended for distinguishing different types of plaque in the coronary 
arteries are mostly specified for a single tube voltage [11][29][30]. However, in clinical 
practice, three types of tube voltages, 120 kV, 100 kV, and 80 kV, are typically used based 
on patient’s body weight, ensuring optimal image quality and minimizing radiation 
exposure [30]. Different tube voltages can affect the attenuation values of plaque 
components, potentially leading to variations in diagnostic accuracy [11][31]. 
 
In this study, we wanted to investigate how calibrated phantom materials with a specific 
CT number at 120 kV respond to different tube voltages. By providing quantitative 
insights into HU variations for different tube voltages, we aim to study whether it is 
relevant to use different thresholds to determine the composition of coronary plaque for 
different tube voltages. 

Methods 
Anthropomorphic chest phantom 
A thorax phantom (Thorax-CCI, QRM GmbH, Möhrendorf, Germany) which consists of an 
anthropomorphic phantom body and a custom water container insert was used for the 
scans. The anthropomorphic phantom contains artificial lungs and a spine insert 
surrounded by tissue equivalent material. The outer dimensions of the phantom body 
are 300*200 mm in transverse plane and 150 mm in height. One extension ring 
(Extension Ring L, QRM GmbH, Möhrendorf, Germany) was added to the phantom body 
to enlarge the phantom size in transverse plane to 400*300 mm. The water container 
was filled with water. In the center of the water container an artery phantom (QRM 
GmbH, Möhrendorf, Germany) that contains soft plaque components was placed 
(Figure 2). The artery phantom contains a hollow tube that can be filled with any liquid 
medium. To the outside of the hollow tube with a diameter of 3 mm, nine calibrated 
inserts are placed in three sizes (0.5, 1, and 2 mm) around half of the circumference and 
three calibrated CT numbers at 120 kV (-10, 20, and 50 HU). The entire phantom in the 
CT-scanner is shown in Figure 3. 
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Figure 2: Illustration of the artery phantom (HU: Hounsfield unit). 

 
Figure 3: Image of the complete phantom in the CT-scanner 

Scan protocol 
All CT scans were performed on a 128-rows dual layer detector CT system (Spectral CT 
7500, Philips) using a 0.27 seconds of gantry rotation time. A cardiac simulator (Sim4D, 
QRM GmbH, Möhrendorf, Germany) was used to synthesize ECG signal at a heart rate of 
60 bpm. The phantom was placed in the isocenter of the scanner using the laser guides. 
During the scanning of the phantom, a tube voltage of 120 kV, and a tube current of 991 
mA was used to reduce the amount of noise in the images and obtain the most optimal 
images for analysis. Other scan parameters include slice collimation of 128 x 0.625 mm, 
and a matrix size of 512 x 512. Because of the dual layer detector, we had the ability to 
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make different reconstructions for different tube voltages, while scanning using the 
IDOSE4 reconstruction algorithm.  
 
Analysis 
All images of the phantom were analysed using IntelliSpace portal (version 12.1.11, 
Philips Medical Systems Nederland B.V.), Philips’ specific software for image analysis. 
Using this software, circular regions of interest (ROI) were drawn in different phantom 
materials. Using the ROIs, a plot was made to evaluate the CT number of different 
phantom materials for different tube voltages in a 40-200 kV range. Furthermore, the 
mean CT numbers in Hounsfield Units (HU) and the standard deviation of the different 
ROI’s were measured separately for 80, 100, and 120 kV. We performed measurements 
on 9 different materials. The measurements were repeated 5 times to increase 
precision, reduce random error and improve reliability of the measurements.  
 
Statistical analysis 
Normality of the data was checked by creating a histogram of each ROI. If the histogram 
of the ROI shows a bell like curve, normality of the data is assumed. Measurement data 
was imported into R-Studio (RStudio, Version 2024.9.1.394, Boston, MA, Posit PBC). 
Repeated measures ANOVA was performed for normally distributed data with tube 
voltage as the within-subject factor. Effect sizes were calculated using generalized eta-
squared (ges). Post-hoc pairwise comparisons using Tukey’s Honest Significant 
Difference (HSD) test were conducted to identify specific differences between tube 
voltage levels when the ANOVA indicated statistical significance (p < 0.05).  
 

Results 
The response of the materials to different tube voltages varied. Specifically, the CT 
number in HU of materials such as artery, fat, spinal cord, lung, perspex, and soft tissue 
increased for a higher tube voltage. Conversely, the CT number (HU) of the materials air, 
spine, and water decreased as the tube voltage increased. The standard deviation of all 
measurements for all materials decreased for higher tube voltages, indicating reduced 
noise at higher tube voltages. All median and interquartile ranges are shown in Table 2. 
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Table 2: Median CT number of nine different materials at 80 kV, 100 kV, and 120 kV tube voltages. Each value is 
accompanied by the interquartile range, reflecting the variability of the measurements for each material across the 
three tube voltages. 

Material CT number 80 kV 
(IQR) (HU) 

CT number 100 kV 
(IQR) (HU) 

CT number 120 kV 
(IQR) (HU) 

Air -1000.4 (0.5) -1000.6 (0.8) -1000.7 (1.0) 
Artery 44.0 (1.8) 50.1 (1.6) 53.2 (1.3) 
Fat -73.1 (1.9) -64.9 (2.2) -60.9 (2.4) 
Spinal 
cord 

107.5 (0.1) 107.6 (0.2) 107.8 (0.2) 

Lung -803.4 (0.2) -801.7 (0.4) -800.9 (0.9) 
Perspex 138.6 (4.9) 147.5 (3.3) 151.8 (2.6) 
Soft 
tissue 

50.8 (1.2) 60.7 (1.1) 65.0 (1.7) 

Spine 343.6 (2.2) 308.4 (1.5) 291.5 (2.7) 
Water -1.1 (1.1) -1.6 (1.6) -1.8 (2.0) 

 
Every ROI measurement followed a bell-shaped distribution, and thus, normality was 
assumed for all measurements. To assess the differences in CT numbers across the 
different tube voltages (kV) for each material, a repeated measures ANOVA was 
conducted. Statistical significant differences in CT number were observed across the kV 
groups for the materials air, artery, fat, lung, perspex, soft tissue, and spine. The effect 
size for these materials ranged from 0.031 (air) to 0.971 (soft tissue), suggesting small 
differences in CT number for air, but also very large differences in CT number for soft 
tissue.  
Water demonstrated a p-value of 0.051, which is slightly above the threshold for 
statistical significance. It’s very small effect size of 0.047 suggests that tube voltage has 
an almost negligible impact on the CT number of water. 
For spinal cord, the p-value was 0.408, indicating no statistically significant difference, 
and the small effect size of 0.143 suggests that the tube voltage has minimal influence 
on the CT number of this material. The results are shown in Table 3. 
 
Table 3: P-values and effect sizes (ges) for CT number differences across tube voltages for different materials. 

Material p-value Effect size (ges) 
Air 0.018 0.031 
Artery <0.001 0.82 
Fat <0.001 0.93 
Spinal cord 0.41 0.14 
Lung <0.001 0.85 
Perspex <0.001 0.65 
Soft tissue <0.001 0.97 
Spine <0.001 0.99 
Water 0.051 0.047 

 
Post-hoc pairwise comparisons using Tukey’s HSD test were performed on materials 
that showed significant results in the repeated measures ANOVA. For most materials, 
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significant differences in CT number were found between all tube voltage comparisons 
(80 kV vs 100 kV, 80 kV vs 120 kV, and 100 kV vs 120 kV), with p-values less than 0.05. 
Artery, fat, perspex, soft tissue, and spine showed significant differences across all 
pairwise comparisons. The lung material also displayed significant differences between 
80 kV vs 100 kV and 80 kV vs 120 kV, but the difference between 100 kV and 120 kV was 
only marginally significant (p = 0.048). However, air shows only a significant difference 
between 100 kV vs 120 kV. These results indicate that the tube voltage has a measurable 
effect on the CT number of artery, fat, lung, perspex, soft tissue, and spine materials 
tested. The results are illustrated in Figure 4, and shown in Table 4. 
 

 

Figure 4: Boxplot showing the CT-number across tube voltages (80, 100, and 120 kV) for different materials. (* p < 0.05, 
** p < 0.01, *** p<0.001) 
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Table 4: Post-hoc Tukey's Honest Significant Difference (HSD) test result for CT number differences between tube 
voltages (80 kV, 100 kV, and 120 kV) for each material. 

Material 80 kV vs 100 kV 80 kV vs 120 kV 100 kV vs 120 kV 
∆ HU p-value ∆ HU p-value ∆ HU p-value 

Air -0.2 0.061 -0.2 0.019 0.0 0.70 
Artery 6.0 <0.001 9.1 <0.001 3.1 <0.001 
Fat 7.6 <0.001 11.3 <0.001 3.7 <0.001 
Lung 1.8 0.001 2.6 <0.001 0.8 0.048 
Perspex 8.7 <0.001 13.0 <0.001 4.3 <0.001 
Soft Tissue 9.3 <0.001 13.8 <0.001 4.5 <0.001 
Spine -35.2 <0.001 -52.5 <0.001 -17.3 <0.001 

 

Discussion 
The CT number of nine materials was evaluated at three different tube voltages: 80 kV, 
100 kV, and 120 kV. The results revealed that the response of materials to changing tube 
voltages varied across the materials tested. The variability in CT number, as measured 
by the standard deviation, decreased with increasing tube voltage, indicating reduced 
measurement noise at higher voltages. Differences were found between tube voltages 
for several materials (air, artery, fat, lung, perspex, soft tissue, and spine). HU for water 
(p = 0.051) and spinal cord (p = 0.408) did not differ between different tube voltages. 
Overall, the results indicate that the tube voltage has a measurable effect on the CT 
number of most materials, with varying levels of significance depending on the material.  
 
We observed that the phantom materials we measured could be grouped into two 
categories based on their CT number response to tube voltage. In the first group, 
phantom materials displayed decreased CT-number with increasing tube voltage, while 
for the second group, the CT-number increased.  
Our results are consistent with the fundamental principles of physics, particularly the 
interactions between X-ray photons and matter. These interactions are governed by well-
established physical laws. 
Materials with a high atomic number (Z), such as iodine, are more effective at absorbing 
X-rays due to their larger number of protons [8]. At lower tube voltages, the photo-
electric effect dominates for these materials. The probability of photoelectric absorption 
increases with the cube of the atomic number and inversely with the cube of the photon 
energy [9]. Additionally, the beam hardening effect is more pronounced for high-Z 
materials [10]. Consequently, at low tube voltages, high-Z materials exhibit higher CT 
numbers due to the photoelectric effect. As the tube voltage increases, the contribution 
of the photoelectric effect decreases, and Compton scattering becomes more 
significant, resulting in a reduction of the CT number [8].  
In contrast, materials with a low atomic number, such as hydrogen or oxygen are less 
effective at absorbing X-ray photons. For low-Z materials, the photo-electric effect is 
less prominent [8]. Compton scattering is more significant at higher tube voltages, and 
beam hardening is less significant for these materials [32]. Therefore, at lower tube 
voltages, the CT number of low-Z materials is generally lower due to the lower 
probability of photoelectric absorption. At higher tube voltages, the CT numbers for 
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these materials tend to increase slightly or remain relatively stable, as Compton 
scattering, which is less dependent on the atomic number and more on the electron 
density, becomes the dominant mechanism [33][34][26]. 
 
Since water and air are used as reference materials in CT, with water having a CT number 
of 0 and air a CT number of -1000, CT scanners should be calibrated to ensure accurate 
CT number measurements. Our results indicated that the CT numbers were close to the 
expected values. However, we observed a significant difference between 80 kV and 120 
kV for air. Rhee et al. found similar results for air, attributing the differences to variations 
in noise at different tube voltages [9]. Another phantom study also described differences 
for a variety of materials in CT numbers at different tube voltages, highlighting the 
importance of accurate calibration and correction schemes [35]. 
 
Roa et al. conducted a comprehensive study comparing the image quality of six different 
CT scanners from four different vendors over a six-year period. Their findings revealed 
notable differences in CT image quality between different vendors and even variations 
over time for the same CT system [36]. These variations were observed in multiple image 
quality parameters, including image noise, uniformity, and spatial resolution. The study 
highlighted that the Hounsfield Units (HU) for different object densities varied not only 
between different CT scanner models from different vendors but also over time for a 
single CT scanner. This indicates that both inter-vendor and intra-vendor differences can 
significantly impact the consistency and accuracy of CT imaging.  
 
Visually, these differences in CT-number for different tube voltages, can be adjusted for 
using the window width and the window level setting. However, when it comes to 
measuring absolute values, such as categorizing different types of plaques, this 
approach can present challenges. 
 
The artery phantom we used with the specific plaques in the lumen, gave some 
problems. The plaque inserts, with a specific attenuation of -10 HU, 20 HU, and 35 HU, 
were undetectable with the Philips Spectral CT 7500. Therefore, the phantom was also 
scanned using the Siemens Naeotom Alpha, a photon counting CT-scanner with a better 
spatial resolution to ensure that the plaque inserts were incorporated in the artery. It 
became clear that the plaque inserts were not incorporated, and therefore we could not 
measure any of the calibrated inserts. 
 
Limitations 
The artery phantom we used, which included specific plaques in the lumen, presented 
some issues. The plaque inserts, with specific attenuations of -10 HU, 20 HU, and 35 
HU, were undetectable using the Philips Spectral CT 7500. To address this, we also 
scanned the phantom using the Siemens Naeotom Alpha, a photon-counting CT 
scanner with superior spatial resolution, to ensure that the plaque inserts were correctly 
incorporated into the artery. Upon further examination, it became evident that the 
plaque inserts were not integrated in the phantom, which prevented us from measuring 
any of the calibrated inserts. 
Furthermore, we only used one scanner for this study, while patients will also be 
scanned using different CT scanners. Because Roa et al. proved that the measured CT-
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number varied between CT scanners, the experiment should be repeated on different 
scanners to ensure uniformity between different scanners [36]. For the CCTA scans in 
our hospital, we use a GE Revolution Apex CT scanner which can produce slightly 
different CT numbers for the materials we measured in our study. Another limitation of 
our study is the use of dual-energy reconstructions and not actual scans at 80, 100, and 
120 kV, which could result in slightly different results. 
 
Clinical implications 
Variations in CT numbers due to different tube voltages can impact the accuracy of 
diagnostic imaging. Accurate CT numbers are crucial for distinguishing between 
different types of plaque and identifying abnormalities. Inconsistent CT numbers can 
lead to misdiagnosis or missed diagnoses, particularly in cases where precise plaque 
characterization is essential. 
 
Our study found differences in the CT numbers of specific materials at different tube 
voltages. These variations suggest that the thresholds used for coronary plaque 
characterization can vary with different tube voltages. This variability underscores the 
need for more research to define specific thresholds for different tube voltages and CT 
scanners. Establishing these thresholds is essential to ensure the comparability of 
coronary plaque characterization results across various imaging systems. 
 

Conclusion 
In conclusion, our study demonstrated that the CT-numbers of various materials are 
influenced by tube voltage. This underscores the importance to consider tube voltage 
effects in diagnostic imaging, especially when absolute values are used for 
measurements.  
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The role of coronary plaque volumes in major adverse 
cardiovascular events 

Introduction 
Coronary computed tomography angiography (CCTA) is a widely used non-invasive 
imaging technique for assessing coronary artery disease (CAD) [37]. It provides detailed 
images of the coronary arteries, allowing for the detection and characterisation of 
atherosclerotic plaques [37]. Previous studies have demonstrated the utility of CCTA in 
diagnosing CAD, predicting adverse cardiovascular events, and guiding clinical 
decision-making [38]. The use of CCTA has been validated in various populations, and 
its accuracy and prognostic value are well-established [39]. Additionally, CCTA can 
identify coronary stenosis severity, distinguish plaque morphology, and characterize 
alterations in plaque structure in response to treatment [40]. CCTA has also been shown 
to improve cardiovascular risk stratification and prompt timely initiation of preventive 
treatments [41]. 
 
Despite the established benefits of CCTA, there are still gaps in our understanding of 
plaque characterization and its correlation with clinical outcomes. For example, while 
CCTA has shown better long-term prognostic value for major adverse cardiac events 
(MACE) compared to coronary artery calcium scoring in some studies [40][42], its 
effectiveness in predicting MACE in real-world clinical settings needs further 
investigation [40]. More data are needed to explore the role of CCTA in predicting MACE 
and other cardiovascular outcomes over extended follow-up periods [43]. Studies have 
also highlighted the need for more research into the prognostic value of CCTA in 
asymptomatic populations and its role in personalized approaches to prevent 
atherosclerotic cardiovascular disease [40][43]. 
 
With this study, we aim to study the relationship between different coronary plaque 
categories in CCTA and the occurrence of MACE. We used propensity score matching to 
minimize bias and confounding, ensuring that our comparisons between the MACE and 
no MACE group were accurate and meaningful. We explored several different plaque 
categories found in GE AW server software and in literature to explore the best set of 
categories to use. 
 

Methods 
Population 
Patients who underwent CCTA (GE Lightspeed VCT XT, GE Healthcare) (Philips Ingenuity 
CT, Philips) at Isala Hospital (Zwolle, The Netherlands) between January 2019 and 
December 2021 were retrospectively included. Patient history, characteristics, and 
clinical data were collected through a review of medical records using CTcue (version 
4.11.1, CTcue), HiX (version 6.2, Chipsoft B.V.), and Sectra IDS7 (version 24.1, Sectra 
AB). Patients whose data were incomplete or corrupt were excluded. Additionally, those 
whose CCTA scan were unassessable were excluded. The follow-up period for the 
patients included was two years. Because of the research's retrospective nature, the 
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Medical Research Involving Human Subjects Act (WMO) was not applicable. The study 
was approved by the Lokale Haalbaarheid committee in Isala Hospital (Zwolle, The 
Netherlands). Subjects did provide informed consent for the use of their data for 
research purposes. 
 
Data Acquisition and Reconstruction 
Patients had to abstain from any drinks and food for 2 hours prior to scanning. In 
preparation for the CCTA scans, patients heart rate were measured 1 hour to 45 minutes 
before the CCTA scan. Patients with a rest heart rate between 60 and 69 beats per 
minute received 50 mg metoprolol and patients with a rest heart rate ≥ 70 received 100 
mg metoprolol. 
 
CCTA scans were performed using a 64-slice CT-scanner (Lightspeed VCT XT, GE 
Healthcare) or (Philips Ingenuity CT, Philips). The coronaries were prospectively scanned 
using ECG-triggering at 75% of the R-R interval. The kV assist technique was used to 
automatically select the tube voltage (100kV, or 120kV), and tube current (265 – 800 
mAs) based on patient size. Scans were set up to include 12 to 16 cm of detector 
coverage. Other scan parameters include a rotation time of 0.35 seconds (GE 
Lightspeed VCT XT, GE Healthcare) or 0.4 seconds (Philips Ingenuity CT, Philips), a slice 
collimation of 64 x 0.625mm, a matrix size of 512 x 512, and a field of view of 12 to 16 
cm.  
 
Propensity score matching 
We performed propensity score matching (PSM) to create two similar groups, one group 
who did not experience MACE and a group who did experience MACE. MACE was 
defined as those who had an ST-elevation myocardial infarction (STEMI), non-ST-
elevation myocardial infarction (NSTEMI), unstable angina pectoris (UAP), or all-cause 
death and cardiovascular death within two years following the CCTA scan. PSM was 
performed using the following patient characteristics: age, sex, body mass index (BMI), 
CAD-RADS score, and several cardiovascular risk factors: smoking status, diabetes 
mellitus, hypercholesterolemia, hypertension, and a family history of cardiovascular 
disease. Using these characteristics we tried to minimize possible bias and confounding 
in this study. 
 
The PSM process was conducted using a genetic algorithm, an optimization technique 
inspired by natural selection. The algorithm starts with an initial set of weights for the 
variables used for matching to calculate the propensity scores. Subsequently, it 
iteratively adjusts these weights to improve the balance of variables between the MACE 
and non-MACE group. During this process, better solutions are selected and combined 
to produce new solutions. Once the optimal weights to calculate the propensity scores 
are determined, the algorithm performs nearest-neighbour matching based on the 
propensity score of each patient. To verify the quality of the matches, we calculated the 
maximum caliper width and compared it to the caliper width of 0.2 times the standard 
deviation of the logit of the propensity score as recommended by Austin [44]. 
Furthermore, we calculated the standardized mean difference (SMD) to assess the 
balance before and after matching, with an SMD less than 0.1 indicating a negligible 
difference between the groups. Using this approach, we ensured a well-balanced 
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matching that minimized selection bias and allowed for more accurate comparisons 
between the groups regarding their clinical outcomes.  
 
Measurement protocol 
The coronary arteries were segmented and labelled with their corresponding anatomical 
names using AW-server (version 3.2 Ext. 4.9, GE Healthcare) software in the auto 
coronary analysis module. In situations where the automatically generated centerline 
was inaccurate, manual adjustments were made to ensure precision. Figure 5 shows 
how two measurements are placed next to the segmented artery, from the origo to the 
minimum diameter of 1.5mm or to when the diameter measurement increases while the 
image shows that the diameter becomes smaller. The first measurement (PlaqueID 1) is 
the measurement for the LM, and the second measurement (PlaqueID 2) is the 
measurement for the LAD. With these measurements, the table as shown in Figure 6 is 
created. By dragging the thresholds to different values, we can create different 
thresholds for different plaques. By dragging these measurements next to the artery, the 
lumen volume is measured too. If no plaque is detected in the measured artery, the 
volume is shown as 0.0 mm3. 

 

Figure 5: Screencapture of AW server. On the left, the LAD is shown with two measurements:  PlaqueID1 and 
PlaqueID2. PlaqueID1 is the LM, and PlaqueID2 is the LAD. In the image in green is the diameter of the artery shown. 
On the right, the thresholds are shown in the column with the numbers 30 and 429 which can be dragged to different 
values to determine plaque volumes for different thresholds. 
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Figure 6: Screencapture of AW server. The table shows the measurement results for the standard thresholds defined 
by AW server. The screencapture of the AW server shows the measurement results for the standard thresholds of 
PlaqueID 2. The table includes the lumen volume in mm³. Plaque1 (non-calcified plaque) is defined as >-50 HU and 
≤30 HU, Plaque2 (fibrotic plaque) as >30 HU and ≤429 HU, and Calcium (calcified plaque) as >430 HU, all providing 
their respective volumes in mm³. 

All arteries with >1.5 mm diameter were measured, following the recommendations 
provided by GE Healthcare [45]. The AW software automatically determines a threshold 
to differentiate between fibrotic and calcified plaques. However, the exact method for 
calculating these thresholds remains undisclosed by GE Healthcare. We investigated 
the mechanism behind the automatic threshold determination by plotting all thresholds 
against the attenuation in the aorta for each tube voltage group. To identify the 
contributing variables, we fitted a linear regression model to these data points. The 
model included the attenuation in the aorta, the tube voltage, and their interaction as 
predictors. The adjustable threshold was used as the response variable. Additionally, we 
performed an ANOVA test to compare two models: one that includes both the 
attenuation in the aorta and the tube voltage, and another that considers only the 
attenuation in the aorta.  
Next to the automatic threshold determined by the GE AW server software, alternative 
thresholds, described in literature were also applied to explore which combination of 
thresholds provides the most accurate assessment. In total, seven plaque volumes, and 
one lumen volume were measured, and the total plaque-to-lumen ratio was calculated 
for each artery. All of the measurements and their respective thresholds are described in 
Table 5.  
 
Table 5: Measurement names, and their corresponding Hounsfield Unit Thresholds and unit 

Measurement name Hounsfield Unit thresholds Unit 
Noncalcified -50 – 30 HU mm3 or µL 
Fibrotic 31 – threshold mm3 or µL 
Calcified > threshold mm3 or µL 
Fibro-fatty 31 – 130 HU mm3 or µL 
Fibrous 130 – 350 HU mm3 or µL 
Fibrotic 31 – 350 HU mm3 or µL 
Calcified > 350 HU mm3 or µL 
Lumen  mm3 or µL 
Plaque/lumen   
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We performed a maximum of 99 measurements per patient based on 9 measurements 
per coronary artery. Arteries that were measured are the left main coronary artery, left 
anterior descending artery, a maximum of two diagonals that split off from the left 
anterior descending artery, the left circumflex artery, the marginal obtuse artery, the 
right coronary artery, posterior descending artery, posterior lateral artery, the total of all 
of the measurements mentioned before, and the largest plaque in the coronary arteries.  
For analysis, the measurements were summed per perfusion artery. This resulted in the 
LM perfusion area, LAD perfusion area, LCX perfusion area, and RCA perfusion area, 
each containing nine measurements.  
 
Statistical analysis 
Statistical analysis was performed using RStudio (RStudio, Version 2024.9.0.375, 
Boston, MA, Posit PBC). To assess the relationship between aortic attenuation and the 
automatic threshold, we employed linear regression analysis. Separate regression 
models were fitted to the data from 100 kV and 120 kV scans. To evaluate the impact of 
kV on the relationship between aortic attenuation and the automatic threshold, a 
comprehensive linear regression model was constructed. This model included aortic 
attenuation, kV, and their interaction term as predictors for the adjustable threshold. 
The significance of each predictor was assessed using t-tests. To determine whether 
adding kV as a predictor significantly improved the model's fit, an ANOVA comparison 
was conducted between two nested models. The first model included only aortic 
attenuation, while the second model incorporated both aortic attenuation and kV. 
 
To assess the impact of kV on plaque characteristics and MACE risk, we conducted a 
series of univariate analyses. First, we compared plaque measurements between the 
100 kV and 120 kV groups for each plaque category. We developed univariate logistic 
regression models to evaluate the association between individual plaque 
measurements and MACE, adjusting for kV. Due to the multicollinearity among the 
plaque measurements, a multivariate analysis was not feasible. 
 
We used Mood’s median test and the Mann-Whitney U test to compare the plaque 
volumes of the coronary artery with the largest plaque between the no MACE group and 
the MACE group. Mood’s median test was applied to assess differences in the medians 
of the plaque categories [46]. The Mann-Whitney U test, a non-parametric test, was 
used to compare the distribution of the plaque volumes of the different plaque 
categories between the no MACE and MACE group, providing a measure of whether the 
ranks of the plaque volumes differ significantly [47].  
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Results 
Study population 
We retrospectively included 4,253 patients who underwent CCTA at Isala Hospital 
between January 1. 2019 and December 31. 2021. Of these, 50 patients were excluded 
due to unusable CCTA scans for diagnostic purposes (CAD-RADS N). Additionally, 2,503 
patients were excluded because of incomplete data, such as missing risk factors. The 
remaining patients were divided into two groups for propensity score matching: one 
group comprised patients who did not experience a MACE after CCTA, and the other 
group included patients who did experience a MACE following CCTA. The inclusion and 
exclusion process is illustrated in Figure 7. Baseline characteristics of both groups did 
differ significantly for CAD-RADS categories, other characteristics did not differ 
significantly as shown in Table 6. 

 

Figure 7: Inclusion flowchart. 50 patients were excluded because of a nondiagnostic CCTA. 2503 patients were 
excluded because of missing data 
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Table 6: Baseline characteristics of all 1700 patients who were included before propensity-based matching who either 
had a MACE or no MACE after CCTA. BMI, body mass index; values are presented as mean ± sd or percentages. 

Characteristic No MACE (n = 
1637) 

MACE (n = 63) p-value 

Male 803 (49.1%) 37 (58.7%) 0.168 
Age (years) 60.13 ± 11.26 60.65 ± 12.05 0.720 
Length (cm) 174.84 (9.89%) 174.55 (9.53%)    0.820 
Weight (kg) 84.52 ± 16.93 81.66 ±  14.10 0.187 
BMI (kg⋅m2) 27.59 ± 4.75 26.84 ± 4.70 0.222 
CAD-RADS 0 452 (27.6%) 6 ( 9.5%) <0.001 

1 691 (42.2%) 6 ( 9.5%) 
2 342 (20.9%) 10 (15.9%) 
3 109 (6.7%) 17 (27.0%) 
4a 38 (2.3%) 20 (31.7%) 
4b 2 (0.1%) 3 (4.8%) 
5 3 (0.2%) 1 (1.6%) 

Smoking Never 473 (28.9%) 31 (42.2%) 0.399 
Ever 931 (56.9%) 23 (36.5%) 
Present 233 (14.2%) 9 (14.3%) 

Diabetes 122 (7.5%) 9 (14.3%) 0.079 
Hypercholesterolemia 638 (39.0%) 31 (49.2%) 0.134 
Hypertension 780 (47.6%) 37 (58.7%) 0.110 
Family history of CAD 941(57.5%) 39 (61.9%) 0.571 

 
Propensity score matching 
After propensity score matching, baseline characteristics of both groups did not differ 
significantly as shown in Table 7 (p > 0.05). In summary, before matching, there was an 
unbalance for the characteristics propensity distance, age, gender, BMI, CAD-RADS 
categories 0, 1, 3, and 4a, hypercholesterolemia, and hypertension. This means that the 
groups being compared (those with and without MACE) were not equivalent in terms of 
these key characteristics. This lack of balance can introduce bias and confounding 
factors, potentially skewing the results and leading to inaccurate conclusions about the 
relationship between CCTA findings and clinical outcomes. The covariates CAD-RADS 2, 
CAD-RADS 4b, CAD-RADS 5, smoking, diabetes mellitus, and family history of CAD were 
all already balanced. After matching, the balance of all covariates improved, no 
imbalance was observed, and the SMD of all covariates was < 0.1, which indicates a 
good balance, as shown in Figure 8. This indicates that the group with MACE and the 
group without MACE are equivalent in terms of the characteristics used for matching. 
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Table 7: Baseline characteristics of all 126 patients who were included after propensity-based matching who either 
had a MACE or no MACE after CCTA. BMI, body mass index; values are presented as mean ± sd or percentages. 

Characteristic No MACE (n = 63) MACE (n = 63) p-value 
Male  39 (61.9%) 37 (58.7%) 0.856 
Age (years) 61.51 ± 10.72 60.65 ± 12.05 0.674 
Length (cm) 175.20 ± 10.12 174.55 ± 9.53 0.709 
Weight (kg) 82.93 ± 13.80 81.66 ± 14.10 0.609 
BMI (kg⋅m2) 26.97 ± 3.68 26.84 ± 4.70 0.866 
CAD-RADS 0 6 ( 9.5%) 6 ( 9.5%) >0.999 

1 6 ( 9.5%) 6 ( 9.5%) 
2 11 (17.5%) 10 (15.9%) 
3 17 (27.0%) 17 (27.0%) 
4a 20 (31.7%) 20 (31.7%) 
4b 2 (3.2%) 3 (4.8%) 
5 1 (1.6%) 1 (1.6%) 

Smoking Never 31 (42.2%) 31 (42.2%) >0.999 
Ever 23 (36.5%) 23 (36.5%) 
Present 9 (14.3%) 9 (14.3%) 

Diabetes Mellitus 8 (12.7%) 9 (14.3%) >0.999 
Hypercholesterolemia 31 (49.2%) 31 (49.2%) >0.999 
Hypertension 38 (60.3%) 37 (58.7%) >0.999 
Family history of CAD 40 (63.5%) 39 (61.9%) >0.999 
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Figure 8: Standardized Mean Differences before and after matching. This figure shows the standardized mean 
differences (SMDs) for each covariate before and after propensity score matching. The SMDs before matching are 
represented by blue dots, and the SMDs after matching are represented by red dots. The vertical dashed line at an 
SMD of 0.1 indicates the threshold below which covariates are considered to be balanced. The plot demonstrates that 
the matching procedure has substantially improved the balance of covariates between the treated and control 
groups. 

The maximum caliper after matching was 0.1448, while the maximum calculated caliper 
of 0.2 times the standard deviation of the logit of the propensity score was 0.3203. This 
indicates a good quality of matches, suggesting that the propensity score matching 
process effectively balanced the covariates between the groups. 
 
Automatic threshold 
To assess how the adjustable threshold works, we plotted the adjustable threshold on 
the y-axis and the attenuation in the aorta on the x-axis. The R² value of the 100 kV model 
was 0.73, indicating a good fit as the model explains 73% of the variance in the 
adjustable threshold at 100 kV. In contrast, the R² value of the 120 kV model was 0.453, 
indicating a weaker fit as it explains only 45.3% of the variance. This comparison 
suggests that the 100 kV model provides a better fit for predicting the adjustable 
threshold based on the attenuation in the aorta. The model fitted to all data points had 
an R² value of 0.662, explaining 66.2% of the variance, which lies between the values for 
the 100 kV and 120 kV models. The results are illustrated in Figure 9. 
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Figure 9: Scatter plot with linear regression lines illustrating the relationship between the attenuation in the aorta and 
the adjustable threshold. The datapoints are grouped by kV level with separate regression lines for 100 kV and 120 kV 
in the same color. In green the regression line for the combined data is shown. 

A linear regression analysis was conducted to evaluate the impact of the attenuation in 
the aorta (Attenuation_aorta) and tube voltage (kV 120) on the adjustable threshold. The 
intercept of the model was estimated to at 94.550 (Std. Error = 35.342, p = 0.008), 
indicating that when both the attenuation in the aorta and the tube voltage is 120 kV, the 
adjustable threshold is expected to be 94.550. The coefficient for the attenuation in the 
aorta was 0.942 (Std. Error = 0.075, p < 0.001), suggesting a significant positive 
association between the attenuation in the aorta and the adjustable threshold while kV 
is kept constant. The coefficient for kV120 was 10.445 (Std. Error = 64.195, p = 0.871), 
indicating that the effect of kV on the adjustable threshold was not statistically 
significant on the adjustable threshold when the attenuation in the aorta is accounted 
for. The interaction term Attenuation aorta:kV had a coefficient of -0.046 (std. error = 
0.144, p = 0.751), indicating that the interaction between the attenuation in the aorta 
and kV was also not statistically significant. This implies that the relationship between 
the attenuation in the aorta and the adjustable threshold does not significantly differ for 
both levels of kV. 

Overall, the results highlight that the attenuation in the aorta is a significant predictor of 
the adjustable threshold, while kV and its interaction with attenuation in the aorta do not 
have significant effects, as shown in Table 8. 
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Table 8: Summary of linear regression model coefficients for the relationship between the attenuation in the aorta and 
the adjustable threshold. The table presents the estimates (Estimate), standard errors (Std. Error), t-values (T value) 
and p-values(Pr(>|t|)  for the intercept, attenuation in the aorta, 120 kV, and the interaction term attenuation 
aorta:kV120. Significant p values are highlighted in bold. 

Coëfficients Estimate Std. Error T value Pr(>|t|) 
Intercept 94.55 35.34 2.675 0.008 
Attenuation 
aorta 

0.942 0.075 12.566 <0.001 

kV 120 10.45 64.20 0.163 0.871 
Attenuation 
aorta:kV 120 

-0.046 0.14 -0.318 0.751 

 

The ANOVA comparison between the two linear regression models, one without kV and 
one with kV, shows that there is no significant difference between the two models (p = 
0.202). This means that including the tube voltage (kV) as a predictor does not 
significantly improve the model’s fit compared to the model that only includes the 
attenuation in the aorta. The full ANOVA results are shown in Table 9. 

Table 9: ANOVA comparison of two linear regression models, one that does not consider kV when predicting the 
adjustable threshold, and one that does consider kV next to the attenuation in the aorta to predict the adjustable 
threshold. The table shows the residual degrees of freedom (Res. Df.), residual sum of squares (RSS), R^2,  degrees of 
freedom (Df), sum of squares (Sum of Sq.), F-statistic, and p-value (Pr(>F) for the models.  

 Res. Df. RSS R^2 Df Sum of 
Sq 

F Pr(>F) 

Model 
without 
kV 

123 204799 0.667     

Model 
with kV 

124 207540 0.662 -1 -2740.2 1.6457 0.202 

 

Impact of tube voltage on plaque volumes 
None of the plaque categories showed a statistically significant association with kV, as 
all p-values were above the threshold of p = 0.05. The closest plaque category to 
significance was fibro-fatty plaque (31-130 HU) with a p-value of 0.088. This suggests 
that while there may be trends, the differences in plaque volumes for the different 
plaque categories were not statistically significant between 100 and 120 kV. All p-values 
are shown in Table 10. Because the impact of kV is not significant, we will not correct for 
differences. 
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Table 10: Univariate analysis of plaque measurements and MACE adjusted for kV. P-value of kV is shown to focus on 
the impact of kV on the different plaque categories. 

Plaque categories P-value kV 
Affected vessel Noncalcified plaque (<30 HU) 0.164 
Affected vessel Fibrotic plaque (31-threshold HU) 0.132 
Affected vessel calcified plaque (>threshold HU) 0.389 
Affected vessel Fibro-fatty plaque (31-130 HU) 0.088 
Affected vessel fibrous plaque (131-350 HU) 0.230 
Affected vessel fibrotic plaque (31-350 HU) 0.113 
Affected vessel calcified plaque (>350 HU) 0.358 
Affected vessel lumen volume  0.236 
Affected vessel plaque/lumen 0.372 

 
Plaque volumes 
The boxplots provide a clear visualization of the distribution of plaque volumes across 
different categories for the MACE and No MACE groups. In general, the MACE group 
exhibits higher plaque volumes across all plaque categories, indicating a greater overall 
burden of plaque in individuals with MACE. This trend is consistent across noncalcified, 
fibrotic, fibro-fatty, fibrous plaque categories, and the plaque/lumen ratio. 
 
However, an interesting exception is observed in the calcified plaque categories. Both 
calcified plaque categories (Calcified (>threshold) and Calcified (>350 HU) show 
smaller volumes in the MACE group compared to the No MACE group. This suggests that 
while the MACE group has a higher overall plaque burden, the volume of calcified 
plaques is relatively lower in these individuals. This finding could imply differences in the 
composition and stability of plaques between the two groups, potentially influencing the 
risk and outcomes associated with MACE. All plaque categories are illustrated using 
boxplots in Figure 10. 
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Figure 10: Boxplots illustrating the distribution of different categories of plaque volume, lumen volume, and 
plaque/lumen ratio across the no MACE on the left and the MACE group on the right of each boxplot. Every boxplot 
illustrates a different plaque volume category for the coronary artery that had the largest plaque. 
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None of the plaque categories showed a significant difference between the no MACE 
and MACE  group. However, several trends were observed that warrant further attention. 
The closest to significance was the noncalcified plaque category (<30 HU), which had a 
p-value of 0.051 in Mood's median test and 0.070 in the Wilcoxon test. Similarly, the 
fibro-fatty plaque (31-130 HU) showed trends toward significance with p-values of 0.110 
and 0.067, respectively, for the two tests. Calcified plaque (>350 HU) also was almost 
significant, as the p-values of the Mood’s median test and Wilcoxon test were p = 0.076, 
and p = 0.211 respectively. Other plaque categories had p-values > 0.2 indicating that 
these categories do not have such a strong association with the occurrence of MACE. 

These findings suggest that while the differences in plaque volumes between MACE and 
no-MACE groups are not statistically significant, certain trends in specific plaque 
categories, particularly noncalcified (<30 HU) and fibro-fatty plaques (31-130 HU), and 
calcified plaques (>350 HU) may be clinically relevant and have an association with the 
outcome MACE. Table 11 presents the median values, interquartile ranges, and p-values 
from both Mood's median test and the Wilcoxon test for all plaque categories. This table 
details the median plaque volumes for both groups and their corresponding statistical 
significance. 

Table 11: Comparison of plaque characteristics between MACE and no MACE groups for all patients. The table 
presents the median values of various plaque volumes for both the non-MACE and  MACE groups. Additionally, it 
includes the p-values from Mood's median test, and the p-values from the Mann-Whitney U test.  

Variable (HU 
thresholds) 

Median no 
MACE 

Median 
MACE 

p-value 
Mood’s 
median test 

p-value Mann-
Whitney U test 

Affected vessel 
Noncalcified plaque (<30 
HU) 

16.1 (22.4) 24.50 
(27.1) 

0.051 0.070 

Affected vessel Fibrotic 
plaque (31-threshold HU) 

167.4 
(121.6) 

186.7 
(162.9) 

0.214 0.151 

Affected vessel calcified 
plaque (>threshold HU) 

2.4 (16.9) 0.4 (11.3) 0.214 0.426 

Affected vessel Fibro-
fatty plaque (31-130 HU) 

65.9 (57.4) 88.3 
(82.1) 

0.110 0.067 

Affected vessel fibrous 
plaque (131-350 HU) 

82.8 (57.4) 85.0 
(81.6) 

0.595 0.438 

Affected vessel fibrotic 
plaque (31-350 HU) 

153.7 
(120.6) 

186.7 
(152.7) 

0.214 0.135 

Affected vessel calcified 
plaque (>350 HU) 

14.1 (33.9) 6.0 (27.9) 0.076 0.211 

Affected vessel lumen 
volume  

608.9 
(352.2) 

675.7 
(485.2) 

0.214 0.299 

Affected vessel 
plaque/lumen 

0.32 (0.29) 0.41 
(0.32) 

0.214 0.421 
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Discussion 
In this study, we found that three plaque categories, noncalcified plaque (<30 HU), fibro-
fatty plaque (31-130 HU), and calcified plaque (>350 HU), may be clinically relevant and 
associated with the outcome of MACE. Noncalcified and fibro-fatty plaques were 
generally larger in patients who experienced a MACE after their CCTA, whereas calcified 
plaques were generally smaller in these patients as demonstrated by our results. 
Additionally, we discovered that the automatic threshold determined by the GE AW 
software for distinguishing between fibrotic and calcified plaque is explained by the 
luminal attenuation in the aorta. 

We found that the automatic threshold used in the GE AW server software is 
predominantly based on the attenuation of the lumen as shown in Figure 9, Table 8, and 
Table 9. Intravascular attenuation has a high correlation with the attenuation of coronary 
atherosclerotic plaques as shown by Cademartiri et al. [22]. The variability in 
intracoronary attenuation can lead to differences in the measured plaque volumes per 
category when standardized thresholds are used when comparing patients. This 
variability is caused by the partial volume effect where different materials within one 
voxel are interpolated, leading to inaccuracies. Therefore, it would be logical to use a 
threshold that adapts to the intravascular attenuation. 

Our results revealed that standardized thresholds result in lower p-values compared to 
the automatic threshold plaque categories, determined by the GE AW server software, 
when comparing the no MACE and MACE groups as shown in Table 11. This suggests 
that standardized thresholds may provide more consistent and statistically significant 
results. However, the influence of intravascular attenuation on plaque measurements 
underscores the importance of using standardized imaging protocols to minimize 
variability and improve the reliability of comparisons between patient groups when using 
standardized thresholds. 

Our results showed that noncalcified plaque (<30 HU) and fibro-fatty plaque (31-130 
HU) volumes have an almost statistically significant difference between the no MACE 
and MACE group in our study. This finding can be explained by the nature of these 
plaques. As these plaques are softer, they are more prone to wear and tear, which can 
lead to plaque rupture. Such ruptures can result in the formation of a thrombus, 
potentially causing a MACE [14]. 

This is also found by Deseive et al [48]. They combined fibrotic plaque and noncalcified 
plaque into one category, called noncalcified plaque. They found a significant difference 
between the group without a MACE and the group with a MACE (p < 0.001). They however 
included all patients who underwent a CCTA in a specific time period. Therefore their 
group with no cardiac event is much larger than the group with a cardiac event (1518 vs 
59 patients). This can introduce bias since there is an imbalance in group sizes. 
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Furthermore, the larger sample size increases the likelihood of including more patients 
with smaller plaque volumes in the no MACE group, thereby enhancing the probability of 
detecting a significant difference between the no MACE and MACE groups.  

Motoyama et al. conducted a study examining the relationship between low attenuation 
plaque volume, also referred to as noncalcified plaque volume, and the incidence of 
acute coronary syndrome (ACS) [49]. ACS was defined as ischemic discomfort 
presenting with elevation of troponin level, and ischemic discomfort that was Canadian 
Cardiology Society class 3 or 4 without elevation of troponin level. Their findings 
revealed that patients with ACS, as well as those who developed ACS within 0 to 24 
months following CCTA, had significantly larger volumes of noncalcified plaque (p < 
0.001). In contrast to our study, Motoyama et al. included all patients who underwent 
CCTA, which likely increased the inclusion of more low risk patients. Due to the 
propensity matching in our study, we have two comparable groups with a similar risk. 
This methodological difference suggests that Motoyama et al. were more likely to find a 
significant difference in plaque volumes.  

The SCOT-HEART trial further supports the importance of CCTA quantification [50]. The 
trial demonstrated that low-attenuation plaque burden is the strongest predictor of fatal 
or nonfatal myocardial infarction. Specifically, the study found that patients with a 
higher low-attenuation plaque burden were significantly more likely to experience a 
myocardial infarction compared to those with lower burdens (p < 0.001). In contrast to 
our study, they included patients who had stable chest pain, and did not have a 1:1 
matched patient cohort, which makes it more likely to find a difference between the 
group who experienced myocardial infarction and the group that did not. This does 
however give a good insight into the role of low-attenuation plaques in predicting 
cardiovascular events for a larger population. These results highlight the critical role of 
low-attenuation plaque burden in risk stratification and underscore the need for 
incorporating this measure into clinical practice to improve the prediction and 
prevention of adverse cardiovascular events. 

A remarkable result in our study is that the calcified plaque volume in general is smaller 
for the MACE group compared to the no MACE group. However, the MACE group 
contains some outliers with a larger calcified plaque volume compared to all patients in 
the no MACE group. This finding is intriguing when compared to the Agatston score, also 
known as coronary artery calcium score (CACS). In this scoring system, plaques with a 
CT number of 300-399 HU are assigned 3 points per voxel, while those with a CT number 
of 400+ HU receive 4 points per voxel, thereby contributing to a higher score and an 
increased risk of MACE [51]. Kamerman et al. have categorized the different scores into 
four groups (CACS 0, CACS 1-399, CACS 400-999, and CACS >1000) and found that the 
MACE rate increased significantly with each higher CACS category [52]. Rosendael et al. 
also found that calcified plaque volumes were larger in the control group compared to a 
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ACS group and contributed this finding to the stability of the plaque [17]. Calcified 
plaques are more stable compared to noncalcified plaques and are therefore 
associated with a lower risk for ACS. 

Limitations 

Our study had several limitations. Firstly, the patient group consisted of 126 individuals, 
from whom we segmented the coronary arteries and measured plaque volumes. We 
compared a 1:1 matched cohort based on risk factors. Consequently, our results are not 
applicable to the entire patient population, as our study cohort has a relatively high risk 
profile. Although we did not find any statistically significant differences overall, some 
plaque categories showed trends towards significance between the no MACE and MACE 
group. With a larger patient population, these trends would likely reach statistical 
significance, thereby providing more definitive insights into the differences in plaque 
characteristics between the two groups. This limitation underscores the need for further 
research with larger sample sizes to validate our findings and enhance the 
generalizability of the results. 

Secondly, we had to manually adjust the segmentation of multiple patients. This manual 
intervention introduces a potential source of variability, which can affect the 
reproducibility of our study. The need for manual adjustments to the segmentation 
highlights the challenges in achieving consistent and automated segmentation. 
Furthermore, we found significant differences between the software we used (AW 
server) and Medis QAngio CT plaque analysis. When we measured two patients in both 
software packages, we observed differences in all plaque categories and lumen 
volumes. This suggests that the software used for plaque quantification can also 
introduce variability in the plaque volumes measured. Therefore, it is important to avoid 
comparing plaque volumes measured with different software packages to ensure 
consistency and accuracy in the results. 

Thirdly, in our study, we did not take the tube voltage into account, since it had no 
significant effect on the measured plaque volumes. However, multiple articles have 
shown that the tube voltage can have an effect on the measured plaque volumes [53, 
54].  

Additionally, the study was performed at a single center (Isala hospital). The patient 
population and clinical practices in Isala may not be representative of other hospitals. 
Consequently, the results may not be applicable for other hospitals.  

Lastly, our study was conducted using images made using the GE Lightspeed VCT XT 
and Philips Ingenuity CT. Currently, CCTA scans in Isala hospital are mostly made using 
the GE Revolution Apex CT, which has a wider detector and newer deep learning 
reconstruction algorithms that may affect the plaque characteristics and volumes [55, 
56]. 
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Clinical implications 

The findings of our study have several clinical implications. Firstly, we found that the 
standardized thresholds (noncalcified plaque (<30 HU), fibro-fatty plaque (31-130 HU), 
and calcified plaque (>350 HU)) resulted in the lowest p-values, and these are 
potentially clinically relevant and associated with MACE outcomes. Noncalcified and 
fibro-fatty plaques were generally larger in patients who experienced a MACE after their 
CCTA scan, whereas calcified plaques were generally smaller in these patients. This 
suggests that plaque composition and volume could serve as biomarkers for predicting 
adverse cardiovascular events, aiding in risk stratification and personalized patient 
management. 

Secondly, while we did not find a significant effect of tube voltage on plaque volumes, 
existing literature suggests otherwise [53, 54]. Clinicians should consider the potential 
impact of imaging parameters, such as tube voltage, on plaque measurements. Future 
research should aim to clarify these effects to ensure that plaque quantification is 
accurate and comparable across different imaging settings. 

Lastly, advancements in imaging technology, such as the use of the GE Revolution Apex 
CT with its wider detector and deep learning reconstruction algorithms, may influence 
plaque characteristics. Clinicians should stay informed about these technological 
developments and consider their potential impact on plaque assessment. Future 
studies should incorporate these newer technologies to provide relevant and up-to-date 
insights into plaque characteristics and their clinical implications. 

 

Future perspectives 

Larger cohort studies should be performed to validate the trends observed in plaque 
volumes between the no MACE and MACE groups in our study. This could help establish 
more definitive biomarkers for predicting adverse cardiovascular events.  

Secondly, the variability introduced by manual segmentation adjustments and 
differences between software packages underscores the need for standardized and 
automated plaque quantification methods. Clinicians should be aware of these 
potential sources of variability and consider them when interpreting plaque volume 
measurements. The development and adoption of more consistent and reliable 
segmentation tools could improve the accuracy and reproducibility of plaque 
assessments, ultimately enhancing clinical decision-making. New software packages 
like Cleerly AI-guided quantitative CCTA (AI-QCT), which automatically performs CCTA 
analysis, can potentially help with this problem [57]. With this software, a lot of time can 
be saved, and insights into plaque characteristics can be obtained more efficiently.  
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In this study we performed plaque quantification using conventional CT, which shows CT 
numbers per voxel. However, using dual-energy CT, material decomposition can be 
applied to the CCTA scans, allowing for a more detailed and precise analysis of plaques 
[58]. This technique enables the differentiation of various plaque components, such as 
calcium, lipid, and fibrous tissue, providing a more comprehensive understanding of 
plaque composition and potentially improving the assessment of plaque stability and 
the risk of cardiovascular events. This method is also independent from the lumen 
attenuation which is a large advantage. 

Pericoronary adipose tissue (PCAT) attenuation is a promising new imaging marker [59]. 
Measured in Hounsfield units (HU), it reflect coronary inflammation, with higher values 
indicating increased risk of adverse cardiovascular events. Future studies should 
standardize PCAT measurements protocols and validate its prognostic value in diverse 
populations. Another promising new imaging marker is CT-derived fractional flow 
reserve (CT-FFR) [60]. Using deep learning techniques, the coronary arteries are 
segmented from the CCTA scan, and computational fluid dynamics are applied to 
calculate the blood flow reduction caused by any blockage in the coronary arteries. 

Conclusion 
Although we did not find a significant difference in plaque volume between the group 
that did not experience a MACE after CCTA and the group that did experience a MACE 
after CCTA, observable trends were present. Non-calcified plaque volumes (< 30 HU) 
and fibro-fatty plaque volumes (31-130 HU) were generally larger in the MACE group. 
Additionally, we found that the calcified plaque volumes (>350 HU) were generally 
smaller in the MACE group compared to the no MACE group.  
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