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Abstract 

This study aims to develop and evaluate the Guidance, Navigation, and Control (GNC) system for a 
Vertical Takeoff and Vertical Landing (VTVL) - also called rocket hoppers - using the Alpha rocket 
designed by the UT/VU student team RISE. By integrating fiducial marker-based visual navigation, 
the GNC system seeks to enhance accuracy, precision, and robustness during the landing phase of a 
simulated hop test. A co-simulation environment enables the assessment of visual and inertial sensor 
fusion in state estimation, particularly in the final descent and landing stages. The system’s 
performance is evaluated with and without visual navigation across multiple simulations under 
varying noise and disturbance conditions. Key metrics, including control stability, position estimation 
accuracy, landing precision and robustness, highlight the benefits of visual navigation integration. The 
results aim to establish a foundation for implementing the designed GNC subsystem on the physical 
Alpha rocket hopper, advancing its capabilities for accurate and robust autonomous landings. 
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1 Introduction 

In recent years, the landing of rockets has emerged as a focal point within the aerospace industry, 
garnering significant attention from industry leaders [1], [2] and student teams alike [3]. The ability to 
achieve precise and reliable landings not only enhances the efficiency of space missions [4] but also 
plays a pivotal role in advancing technologies related to reusability and cost-effectiveness [5]. Amidst 
this backdrop, student-led rocketry teams face unique challenges, navigating budget constraints while 
striving to push the boundaries of innovation and exploration. 

RISE was founded as a student team from both the Vrije Universiteit van Amsterdam (VU) and 
University of Twente UT) in September of 2021. The name RISE contains the core concepts “Rocketry 
Innovations” and “Space Engineering”. The idea behind “Rocketry Innovations” is to encourage 
innovations in the area of rocketry, and “Space Engineering” aims to focus on the design, 
development, production and testing of all types of space systems and components. The current focus 
of RISE, under the name Project Alpha, is the research and development of a rocket able to perform a 
propulsive rocket landing on a designated landing platform, and making the rocket reusable for 
multiple flights with minimal refurbishment required. It is this with this rocket (shown in Figure 1) 
that RISE intends competitions to showcase the capabilities of a reusable rocket used during student 
competitions. 

 

Figure 1: The Alpha rocket with stabilizing ascent support and descent support fins deployed 

At the core of this endeavor lies a fundamental problem: How can a student-led rocketry team, 
operating within budget constraints, develop a robust Guidance, Navigation and Control (GNC) 
subsystem capable of achieving precise positioning and control during the ascent, descent, and 
landing phases of a rocket mission. Addressing this challenge necessitates a multifaceted approach, 
encompassing the integration of navigation technologies, control algorithms, and comprehensive 
simulation-based studies. 

The objectives of the project are two-fold. Firstly, the development of a 6 Degrees of Freedom (6DoF) 
simulation environment serves as the cornerstone, providing a platform for iterative testing and 
refinement of the GNC subsystem. Secondly, developing a Navigation module to enhance the accuracy 
and robustness of the rocket’s navigation, thereby also designing the Guidance and Control modules, 
tailored to the Alpha’s unique mission requirements and constraints. By incorporating landing 
markers for visual navigation, the GNC subsystem seeks to navigate the Alpha rocket through key 
mission milestones further described in 1.4. 

1.1 Literature Review 

Recent advancements in rocket landing technologies have garnered significant attention, as evidenced 
by industry trends and student competitions focused on reusable launch vehicles. These endeavors 
highlight the growing emphasis on precision landing and reusability within the aerospace sector. 
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Research in this domain has explored various facets of GNC systems essential for achieving successful 
rocket landings. 

In one study, [6] explores the potential of vision-based navigation and hazard detection systems in 
enhancing rocket flight safety and precision landing capabilities. By introducing the Terrain-Relative 
Navigation & Descent Imager (TRNDI) system, the study showcases the feasibility of real-time terrain 
mapping and hazard assessment using onboard optical payloads. The modular software framework 
enables seamless integration with existing autonomous GNC systems, paving the way for closed-loop 
navigation and trajectory adjustments based on visual feedback. Simulated results demonstrate the 
system’s reliability in identifying suitable landing sites and assessing landing region safety, thus 
augmenting overall mission success rates. 

 

Figure 2: Masten’s Xombie Space-Access technology demonstrator used by NASA to develop the 

GENIE GNC system [7] 

Another study [8] presents the design, conception, and testing of EAGLE, a platform for flight testing 
of GNC algorithms and systems. The research mentions that the platform is designed to test new and 
advanced GNC algorithms that employ a base set of sensors and actuators typically present on such 
vehicles. It also mentions that the platform should provide the option for an additional small payload, 
for example, enhancing the on-board avionics with different or more precise sensors. This could 
potentially include vision-based sensors. 

[9] presents a comprehensive analysis of navigation and guidance algorithms deployed during a 
terrestrial suborbital rocket flight, offering valuable insights into real-world performance and 
applicability. The study highlights the successful integration of an extended Kalman Filter (EKF) 
navigation algorithm and a trajectory optimization framework, demonstrating the system’s efficacy in 
achieving precision altitude control and landing dynamics simulation. The study also presents the 
practical relevance of such algorithms in extraterrestrial landing scenarios, providing invaluable data 
for mission planning and technology development.  

Further exploration of GNC solutions for launcher return missions was conducted by [10]. Their work 
discusses the development of a GNC solution for the return mission of a launcher. The guidance 
strategy is based on direct optimal control methods via on-board optimization, which is necessary to 
satisfy the pinpoint landing requirement in a high uncertain dynamic system, such as a booster 
recovery mission. Online convex optimization and successive convexification are explored for the 
design of the guidance function. 

[11] discusses the development and evaluation of a high-fidelity simulation platform for precision 
landing. NASA’s science and exploration goals to return to the Moon and beyond will need to perform 

https://link.springer.com/article/10.1007/s12567-019-00269-5
https://link.springer.com/article/10.1007/s12567-019-00269-5
https://link.springer.com/article/10.1007/s12567-019-00269-5
https://link.springer.com/article/10.1007/s12567-019-00269-5
https://link.springer.com/article/10.1007/s12567-019-00269-5
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precision landings to place humans and cargo supplies near places of scientific interest, surface 
resources, or pre-established base camps. With the maturation of new navigation technology, such as 
terrain relative navigation, precision landing is now feasible, enabling new exploration sites, such as 
the lunar poles.  

The available literature presents possible opportunities for enhancing GNC development for unique 
mission objectives and requirements created by student teams. While existing studies have explored 
various sensor modalities and navigation algorithms for VTVL systems, the integration of landing 
markers as a means to augment traditional sensor suites has received limited attention, but it is 
extensively used in drone research [12] with the ArUco markers being a popular choice for aiding the 
landing and tracking of drones. Thus, visual navigation could potentially enhance the success rate of 
VTVL landing missions by fusing data retrieved from landing markers with existing sensor inputs. 

In light of the insights gained from existing literature, the present study seeks to address this gap by 
exploring the feasibility and efficacy of integrating visual navigation in the form of fiducial marker 
detections into the GNC subsystem of the Alpha rocket. 

1.2 Problem Definition and Objective 

With Alpha, RISE wants to achieve apogee of 3 [𝑘𝑚] and to perform a retro-propulsive landing, but 
before attempting such a feat initial low-altitude/low-velocity “hop” tests will be conducted. This a 
type of flight test where a rocket prototype performs a short, controlled flight, typically involving a 
vertical takeoff, a brief hover, and a vertical landing. These tests are crucial for evaluating the rocket’s 
engines, control systems, and landing mechanisms [13]. The results from these tests help engineers to 
gather data and make necessary adjustments before attempting more complex and higher-altitude 
flights.  

In preparation for the hop tests, RISE intends to develop a robust and adaptable GNC system to 
ensure the rocket’s precise and safe operation throughout its flight phases. To facilitate this 
development and thoroughly evaluate the GNC system’s performance, a comprehensive simulation 
environment is constructed by coupling Unreal Engine 5 and MATLAB’s Simulink. This co-simulation 
environment serves as a virtual testbed, enabling iterative testing and refinement of the GNC 
algorithms in a controlled and realistic setting. By simulating the rocket’s dynamics, sensor inputs, 
and control responses within this environment, the team can identify and address potential issues, 
optimize performance, and enhance the reliability of the GNC system before proceeding to actual 
flight tests. 

Unreal Engine 5 has been chosen for its ability to create photorealistic environments with ray tracing, 
which is an important factor to consider for simulating the visual input the rocket would receive 
during the hop test. This simulation allows for the testing of a key aspect of the GNC system: the 
integration of ArUco marker information. By sending back camera images from the virtual rocket to 
the Simulink environment, image processing can be applied to extract valuable data from these 
markers. The processed data is then fused into an Extended Kalman Filter which is part of the 
Navigation module. The fusion of visual and inertial data is expected to enhance the GNC system’s 
accuracy and robustness, ultimately contributing to the successful execution of the hop test and future 
flights. Thus, the following research question can be formulated: How can visual navigation, in the 
form of fiducial marker detections, be integrated into the GNC subsystem of a rocket to enhance 
landing accuracy and robustness? 

1.3 The Alpha Rocket 

It is important to note that the Alpha rocket, along with its rocket engine, is currently in the 
development phase. As such, the presented rocket design, including its control surfaces, onboard 
sensors, and other components, may undergo modifications and refinements as the project 
progresses. However, the core concept of the rocket, along with the GNC system developed in this 
research, will serve as a fundamental baseline for future iterations. This research aims to establish a 
solid foundation for the GNC system’s functionality and integration with the rocket’s hardware, 
ensuring a robust and adaptable framework that can accommodate potential design changes in the 
future. Thus, if otherwise stated, the rocket described in this section will be used for the co-simulation. 

1.1.1 Rocket Airframe 

The airframe is rocket’s body which houses the propulsion system, avionics, and payload, while 
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providing structural integrity during flight. The airframe’s design significantly influences the rocket’s 
aerodynamic characteristics, stability, and overall performance. Presented in Table 1: Rocket airframe 
specification are the specifications of the rocket airframe, encompassing rocket height, engine, 
propellant for both wet mass (fully fueled) and dry mass (after propellant depletion) parameters. 

Parameter Value Unit 

Height 3.081 [𝑚] 

Wet Mass 20 [𝑘𝑔] 

Dry Mass 15 [𝑘𝑔] 

Table 1: Rocket airframe specification 

Apart from these parameters it is important to know the wet and dry mass inertia parameters and 
where the Center of Gravity (CoG) which is the location about which the total forces and moments 
experienced by the rocket’s body act about. Presented in Table 2 are the principal axes of inertia along 
with the CoG of the rocket’s body. 
 

Wet Mass Parameter Value(s) Unit 

𝑰𝒙𝒙 0.052 [𝑘𝑔 ⋅ 𝑚2] 

𝑰𝒚𝒚 16.365 [𝑘𝑔 ⋅ 𝑚2] 

𝑰𝒛𝒛 16.365 [𝑘𝑔 ⋅ 𝑚2] 

𝐂𝐨𝐆 (1.117, 0, 0) [𝑚] 

Table 2: Rocket Wet Mass specification 

To create thrust, the rocket burns its propellant, as such the mass, inertia and the CoG of the rocket 
will decrease over the course of the trajectory. Presented in Table 3: Rocket Dry Mass specifications 
are the principal axes of inertia along with the CoG of the rocket’s body. 
 

Dry Mass Parameter Value(s) Unit 

𝑰𝒙𝒙 0.037 [𝑘𝑔 ⋅ 𝑚2] 

𝑰𝒚𝒚 12.308 [𝑘𝑔 ⋅ 𝑚2] 

𝑰𝒛𝒛 12.308 [𝑘𝑔 ⋅ 𝑚2] 

𝐂𝐨𝐆 (1.01, 0, 0) [𝑚] 

Table 3: Rocket Dry Mass specifications 

1.1.2 TVC and Control Surfaces 

The Alpha rocket is using a Hybrid Rocket Engine (HRE), nicknamed Green Phoenix, as its propulsion 
system, as one of the biggest reasons to focus on this type of engine is due to the fact that the Alpha 
rocket must be able to have a varying thrust output throughout its entire trajectory. 

The engine is equipped with a Thrust Vectoring Control (TVC) system and Jet Vanes (JV) at the exit of 
the rocket engine’s nozzle. With this system, the TVC allows Alpha to generate a pitching and yawing 
moment, while the JV can generate the rolling moments [14], all of which act about CoG of the rocket 
to propel it to the desired points of the trajectory.  

Naturally, the rocket is also equipped with landing legs which are released before landing. Once 
released, the landing legs are being brought downwards by the force of gravity and are latched in 
place. Showcased in Figure 3 shows the landing being released. 
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Figure 3: Deploying of the landing legs 

Although not used in the hop test nor in this project, but in order to explain more about the rocket 
seen in Figure 1, apart from the active controls described above, the rocket is also equipped with two 
sets of stabilizing fin groups, each group with 4 fins radially displaced 90° apart from each and placed 
at the top and bottom of the rocket. These fin groups are named Stabilizing Ascent Mechanism (SAM) 
and Stabilizing Descent Mechanism (SDM) which can be seen in Figure 4. The SAM is deployed 
during the ascent phase of Alpha to stabilize the rocket, and as the name suggests the SDM is deployed 
during the descent phase while the SAM is folded inside. This is done to stabilize the rocket during 
these different phases of the flight, as the rocket is only stable if the CoG is above the Center of 
Pressure (CoP) of the rocket [15]. 

Because the rocket will only ascend to an altitude of 30 [m] above the surface of the launch location, 
for the hop test the SMD and SAM will not be used. As the rocket will not be subjected to high 
aerodynamic forces, as in contrast to a high-altitude/high-velocity flight, these control surfaces and 
the resulting aerodynamic forces will not be considered in the co-simulation.  

  

Figure 4: SDM and SAM deployed 

1.1.3 Sensor suite 

The MTi-7, a GNSS/INS module [16], will serve as the primary sensor module for the Alpha rocket. 
This module integrates a 3D accelerometer, a 3D gyroscope, and a magnetometer, along with the 
capability to incorporate data from an external GNSS receiver. The GNC system will leverage the 
accelerometer and gyroscope data for inertial measurements, while the GNSS receiver will provide 
global positioning information. Presented in Table 4 are the specifications for the sensors which will 
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be used to model the sensors inside the Simulink environment. Note that the MTi-7 is also equipped 
with a magnetometer, but it will not be used throughout this project. 

MTi-7 Parameter Value Unit 

Sampling Frequency 100 [𝐻𝑧] 

Accelerometer 
Full Range ±16 [𝑔] 

In-Run Bias Stability 0.03 [𝑚𝑔] 

Bandwidth (-3dB) 324 (Z: 262) [𝐻𝑧] 

Noise Density 120 [
𝜇𝑔

√𝐻𝑧
] 

Gyroscope 

Full Range ±2000 [
∘

𝑠
] 

In-Run Bias Stability 10 [
∘

ℎ
] 

Bandwidth (-3dB) 255 [𝐻𝑧] 

Noise Density 0.007 [
∘ √𝐻𝑧

𝑠
] 

Scale Factor Variation 0.5 % 

GNSS 
Horizontal Position Accuracy 1 [𝑚] 

Vertical Position Accuracy 2 [𝑚] 

Velocity Accuracy 0.05 [
𝑚

𝑠
] 

Table 4: MTi-7 Module Specifications 

As seen in the table above the horizontal and vertical position accuracy of the GNSS can be considered 
too large to be used for accurate landings, this is due to the fact that the GNSS module of the MTI-7 
does not use Real-time kinematic (RTK) positioning [17] which has a typical accuracy between 1 [𝑐𝑚] 
and 5 [𝑐𝑚] [18], but depending on the manufacturer it can cost 5 to 10 times as much as standard 
GNSS module. 

To overcome such a price difference, RISE has decided to take a more cost-effective approach. Apart 
from the MTi-7, the rocket is also equipped with a Raspberry Pi Camera Module 3 Wide [19]. This is a 
versatile HD FPV camera designed for radio-controlled models such as drones. It combines a high-
definition camera with a built-in recording module, allowing it to capture 720 [𝑝𝑥] videos at 60 [𝑓𝑝𝑠] 
while providing a live feed for first-person view (FPV) applications. Its primary function will be to 
detect and track the landing marker, providing real-time visual feedback for enhancing landing 
accuracy during the rocket's descent phase. 

1.4 VTVL Hop Flight Trajectory 

For the hop test, RISE intends to attempt and complete the following mission objectives which are 
tied to the flight phases of the Alpha rocket: 

▪ Flight Phase I (Vertical Ascent and Hover): The rocket will launch vertically from the 
launch pad and ascend to an altitude of 30 meters. Upon reaching this altitude, the rocket will 
maintain a stable hover for a predetermined duration. This phase will test the rocket’s ability 
to achieve a controlled ascent and maintain stability at a specific altitude. 

▪ Flight Phase II (Lateral Maneuver): While maintaining the 30-meter altitude, the 
rocket will perform a lateral maneuver, translating 20 meters horizontally. This phase will 
assess the rocket’s maneuverability and control systems’ ability to execute precise lateral 
movements. 

▪ Flight Phase III (Descent and Landing): After completing the lateral maneuver, the 
rocket will initiate a controlled descent and touch down safely at the designated landing site, 
located 20 meters away from the launch pad. This phase will validate the functionality and 
accuracy of the rocket’s landing mechanisms. 
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The hop test trajectory for the Alpha rocket, as depicted in Figure 5, outlines a controlled flight path 
designed to evaluate its ascent, maneuverability, and landing capabilities. The trajectory resembles a 
distinctive "Π" shape, encompassing the vertical ascent, horizontal translation, and vertical descent 
segments. It is important to note that this trajectory represents a simulation-based study and the 
actual flight test location will be determined based on safety regulations and operational constraints. 

 

Figure 5: Proposed trajectory for the Alpha rocket hopper 
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2  Theoretical Background 

Creating a co-simulation platform for the VTVL vehicle requires the definition of the reference frames 
and modelling of the flight dynamics of the rocket. Reference frames are essential for defining the 
rocket's position, orientation, and motion relative to its environment. The modeling of rocket 
dynamics provides the equations governing the rocket’s forces, torques, and propulsion system, while 
the modeling of rocket kinematics describes the rocket’s motion and state transitions over time. These 
elements collectively form the basis for constructing the co-simulation platform and optimizing the 
rocket's behavior throughout its flight phases. 

2.1 Reference Frames 

Different reference frames are essential for the GNC to accurately track and control the rocket’s 
motion [20]. The rocket’s body itself is a non-inertial reference frame, meaning it experiences 
accelerations and rotations. In this frame, the concept of position is relative and only meaningful 
when described with respect to an external inertial reference frame, thus it is essential to describe the 
reference frames which Alpha uses.  

Figure 6 illustrates the coordinate transformations involved with the Navigation module of the co-
simulation, while also bridging the virtual environment of Unreal Engine 5 (UE5) with the GNC 
implemented in Simulink. 

 

Figure 6: Coordinate system transformations 

The reference frames illustrated above are used in the co-simulation, these are: 

▪ Body-Fixed: this frame is rigidly attached to the rocket’s CoG. Its axes move and rotate with 
the rocket, making it the most intuitive for understanding the rocket’s orientation and attitude 
changes. Sensor data from the INS sensors are given in this frame. 

▪ Flat-Earth: this is a local tangent plane approximation of the Earth’s surface, centered at the 
launch site. It is assumed to be flat and non-rotating. This simplification is valid for short-
range flights where the Earth’s curvature has minimal impact. The body-fixed frame is 
transformed to this frame to understand the rocket’s motion relative to the launch site. 

▪ GCS: stands for Geodetic Coordinate System. Its origin is at Null Island, a location in the Gulf 
of Guinea used as a reference point for mapping. It uses latitude, longitude and altitude 
𝐿𝐿𝐴 = (𝜙𝐿𝐿𝐴, 𝜆𝐿𝐿𝐴, ℎ𝐿𝐿𝐴) to represent the relative position of the rocket on the surface of the 
planet. GNSS data is received in this frame. 

▪ UE5: simulates the rocket’s motion inside the photorealistic environment using its own 
coordinate system [21]. The rocket’s position and orientation in the Flat-Earth frame are sent 
from Simulink to the UE5 environment and computes the position of the rocket with respect 
to the launch site inside its environment. 

2.1.1  Body-Fixed to Flat-Earth coordinates 

Shown in  Figure 7 is the rocket’s Body-fixed reference frame. Here the 𝑋𝑏 is aligned with the rocket’s 
longitudinal axis, while the 𝑌𝑏 and 𝑍𝑏 form an orthogonal frame. 
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Figure 7: Body-fixed reference frame 

The Flat-Earth is the inertial reference frame in which the rocket moves and rotates, this is illustrated 
in Figure 8. The frame’s origin is the launch site, with the 𝑋𝐸 pointing upwards with the remaining 
axes of 𝑌𝐸  and 𝑍𝐸 form the orthogonal frame.  

The sequential rotation of a body frame relative to an Earth frame is achieved by utilizing three Euler 
angles (𝜙, 𝜃, 𝜓) in the following order: 𝑅(𝜙, 𝜃, 𝜓)  =  𝑅𝑧(𝜓)𝑅𝑦(𝜃)𝑅𝑥(𝜙). In this sequence, 𝜙 represents 

the roll angle, which is the rotation of the body in the Flat-Earth frame. While the 𝜃 and 𝜓 represents 
the pitch and yaw angles, of the y and z axes respectively. 

 

Figure 8: Flat-Earth reference frame 

Presented in Eq. 1 is the transformation matrix [22] associated with transforming the coordinates 
from the Body-fixed frame to the Flat-Earth frame, where the 𝑠 and 𝑐 letters are placeholders for the 
sin()  and cos()  trigonometric functions respectively. 

𝑅𝐸
𝑏 = [

𝑐𝜃𝑐𝜓 𝑠𝜙𝑐𝜃𝑠𝜓 − 𝑐𝜙𝑠𝜓 𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜙𝑠𝜓
𝑐𝜃𝑠𝜓 𝑠𝜙𝑠𝜃𝑠𝜓 + 𝑐𝜙𝑐𝜓 𝑐𝜙𝑠𝜃𝑠𝜓 − 𝑠𝜙𝑐𝜓
−𝑠𝜃 𝑠𝜙𝑐𝜃 𝑐𝜙𝑐𝜃

] 
Eq. 1 

 

2.1.2 Flat-Earth to UE5 coordinates 

As shown in Figure 6, from the Flat-Earth reference frame the Simulink environment transmits the 
position of the rocket to the UE5 environment. 

 

 

Figure 9: Difference between Flat-Earth and UE5 axes 
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Shown in Figure 9 is the difference between the axes of the coordinate systems. From this figure one 
can deduce that there is a need of two rotation to complete the transformation from the Flat-Earth 
frame to the UE5 frame, namely a first rotation of 90° around the y axis and secondly a rotation of 
180° around the z axis, Eq. 2 represents the resulting rotation matrix about these axes. 

 

𝑅𝑈𝐸4
𝐸 = [

0 0 −1
0 −1 0
−1 0 0

] 
Eq. 2 

2.1.3 GCS to Flat-Earth coordinates 

Geodetic coordinates allow for global navigation, enabling the rocket to pinpoint their exact position 
anywhere on the Earth’s surface using LLA. The transformation between the two coordinate systems 
can be computed using the geographic coordinate conversion [23]. The transformation from LLA to 
the Flat-Earth reference frame involves a series of coordinate transformations that approximate the 
Earth as flat near a chosen reference point 𝐿𝐿𝐴𝑟𝑒𝑓 = (𝜙𝐿𝐿𝐴𝑟𝑒𝑓 , 𝜆𝐿𝐿𝐴𝑟𝑒𝑓 , ℎ𝐿𝐿𝐴𝑟𝑒𝑓), where 𝜙𝐿𝐿𝐴𝑟𝑒𝑓  [°] is the 

reference latitude, 𝜆𝐿𝐿𝐴𝑟𝑒𝑓 [°] is the reference longitude and ℎ𝐿𝐿𝐴𝑟𝑒𝑓  [𝑚] is the reference altitude. The 

transformation converts the LLA coordinates into coordinates relative to the reference point. For 
small regions, this is a linear transformation. The transformation is defined as: 

𝑋𝐸 = [

𝑥𝐸
𝑦𝐸
𝑧𝐸
] = 𝑇𝐸

𝐿𝐿𝐴 ⋅ [

𝜙 − 𝜙𝑟𝑒𝑓
𝜆 − 𝜆𝑟𝑒𝑓
ℎ − ℎ𝑟𝑒𝑓

] 
Eq. 3 

where 𝑥𝐸 , 𝑦𝐸  and 𝑧𝐸 are the coordinates in the Flat-Earth reference frame in meters. The 
transformation matrix which maps the LLA coordinates into the local Flat-Earth reference coordinate 
frame is defined as: 

𝑇𝐸
𝐿𝐿𝐴 = [

𝑀𝜙 0 0

0 𝑁𝜆 cos𝜙𝑟𝑒𝑓 0

0 0 1

] 
Eq. 4 

where 𝑀𝜙 [𝑚] is the Meridian radius and 𝑁𝜆 [𝑚] is the Prime vertical radius of curvature [24]. 

2.1.4 Camera Image frame to Flat-Earth  

The ArUco pose estimation algorithm [25] is used to detect the fiducial marker near the landing site, 
providing the translation vector of the marker relative to the Camera Image frame. This translation 
vector represents the position of the marker in the camera’s coordinate system. Shown in Figure 10 is 
overview of how the Camera Image frame is related to the Flat-Earth frame. 

To localize the rocket in the Flat-Earth frame, the detected position of the marker within the Camera 
Image frame must first be transformed into the rocket’s Body-fixed frame by applying the known 
extrinsic parameters between the camera and the rocket, this transformation is given by: 

𝑡𝑟𝑜𝑐𝑘𝑒𝑡 
𝑏 = 𝑅𝐶

𝑏−1 ∙ 𝑡𝑖𝑚𝑎𝑔𝑒 
𝐶 + 𝑡𝑐𝑎𝑚𝑒𝑟𝑎 

𝑏  
Eq. 5 

where  𝑡𝑐𝑎𝑚𝑒𝑟𝑎 
𝑏  translation vector which represents the camera offset from the center of the rocket’s 

Body-fixed frame, the 𝑡𝑖𝑚𝑎𝑔𝑒 
𝐶  is the translation vector retrieved by the ArUco pose estimation 

algorithm, the 𝑅𝐶
𝑏 is the rotation matrix from the rocket’s Body-fixed frame to the Camera Image 

frame. 
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Figure 10: Camera Image frame relation to Flat-Earth frame 

Once the marker’s position is expressed in the rocket’s Body-fixed frame, a sequential transformation 
is applied to convert it into the Flat-Earth frame using the following equation: 

𝑡𝑟𝑜𝑐𝑘𝑒𝑡 
𝐸 = 𝑅𝐸

𝑏 ∙ 𝑡𝑟𝑜𝑐𝑘𝑒𝑡 
𝑏 + 𝑡𝑚𝑎𝑟𝑘𝑒𝑟 

𝐸  
Eq. 6 

Where 𝑡𝑚𝑎𝑟𝑘𝑒𝑟 
𝐸  is the known marker translation vector from the origin of the Flat-Earth reference 

frame and 𝑅𝐸
𝑏 is the rotation matrix from the rocket’s Body-fixed frame to the Flat-Earth reference 

frame computed by using the information retrieved by the onboard gyroscope.  

2.2 Modelling of Dynamics 

Before creating the dynamic model of the rocket some assumptions are used to simplify the procedure. 
The following list contains assumptions which are used to derive the model: 

A. Rocket rigid body: neglecting elastic behaviors. This is a valid assumption for control 
system design due to the smaller size of typical sounding rockets and the reduced impact of 
elastic behavior on overall dynamics. 

B. Axially symmetric mass allocation: the principal inertia axes align with the body axes, 
the center of mass is on the longitudinal axis, and aerodynamic behavior is identical in both 
pitch and yaw planes. 

C. Optimal burn efficiency of propellants: simultaneous depletion of both the solid fuel 
and liquid oxidizer which means that all energy released during combustion is converted into 
useful thrust. 

D. Ideal TVC system response: instantaneous response to control commands, which implies 
that the motors driving the TVCS actuators move directly to the desired position without any 
delay or overshoot. 

E. Ideal roll stabilization: a roll control system is assumed to be present on the rocket, 
ensuring stable roll dynamics, this allows roll-induced effects, such as gyroscopic coupling or 
asymmetric aerodynamic forces, to be neglected in the dynamic model, simplifying the control 
system design and focusing on pitch and yaw plane dynamics. 
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2.2.1 Hybrid Rocket Propulsion 

The amount of thrust generated by the propulsion model assumes ideal conditions [14]. Rocket thrust 
is directly influenced by the mass flow rate through the engine, the exhaust's exit velocity, and the 
pressure at the nozzle's exit: 

𝐹 
𝑏
𝑡 = �̇�𝑝𝑉𝑒 + (𝑝𝑒 − 𝑝0)𝐴𝑒 Eq. 7 

where 𝐹𝑡 represents thrust magnitude generated, �̇�𝑝 denotes the mass flow rate of the propellants, 𝑉𝑒 

signifies effective exhaust velocity, 𝑝𝑒 stands for nozzle exit pressure, 𝑝𝑎 represents the ambient 
atmospheric pressure, and 𝐴𝑒 represents nozzle exit area.  

Assuming that the ambient outside pressure of the nozzle, and the pressure generated by the exhaust 
is equal (𝑝𝑒 = 𝑝𝑎) Eq. 7 simplifies to: 

𝐹 
𝑏
𝑡 = �̇�𝑝𝑉𝑒 

Eq. 8 

The ability to throttle the combustion process is given by the control valve found between the liquid 
oxidizer tank and the combustion chamber of the rocket. An oversimplified version of a HRE 
propulsion model is presented in Figure 11. 

 

 

Figure 11: Hybrid rocket propulsion model 

The thrust of a HRE is generated by combining a solid fuel grain with a liquid or gaseous oxidizer. The 
oxidizer is injected into the combustion chamber, where it reacts with the fuel grain's surface, causing 
it to burn and produce high-pressure gases. Table 5: Alpha HRE specifications presents the 
specifications of the HRE which Alpha will use to generate thrust. 

Parameter Value Unit 

Max. Mass Flow Rate 0.5 [
𝑘𝑔

𝑠
] 

Engine Exhaust Velocity 2000 [
𝑚

𝑠
] 

Max. Thrust 1000 [𝑁] 

Oxidizer-to-fuel Ratio 2 ∶ 1 𝑁/𝐴 
Min. Throttling % 5 % 
Max. Throttling % 100 % 

Table 5: Alpha HRE specifications 

In case of Alpha, the oxidizer is Nitrous oxide, while the solid fuel is Paraffin wax. As presented in 
Table 1 the propellant mass of the rocket is 5 [𝑘𝑔], this means that the mass flow rate can be divided 
into two parts, namely the mass flow rate of the solid fuel and that of the oxidizer. The following 
equation describes this relationship while taking into account assumption C: 
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�̇�𝑝𝑠
=
2

3
�̇�𝑚𝑎𝑥  

�̇�𝑝𝑜
=
1

3
�̇�𝑚𝑎𝑥  

 Eq. 9 

where �̇�𝑝𝑠
 is the mass flow rate of the solid fuel, while �̇�𝑝𝑜

 is of the oxidizer and the �̇�𝑚𝑎𝑥 is the 

maximum flow rate of the HRE. Summing both of these terms and multiplying the result by the 
percentage of the control valve’s opening 𝛿𝑣 gives the overall mass flow rate of the propellants: 

�̇�𝑝 = (�̇�𝑜𝑠
+ �̇�𝑝𝑠

) 𝛿𝑣 Eq. 10 

2.2.2 Center of Gravity Shift and Inertia Decrease 

As the rocket burns propellant its mass decreases, this results in the CoG of the rocket to shifts 
towards the remaining mass, which is typically at the bottom of the rocket due to the to the remaining 
propellants in the lower part of the tanks. This effect is illustrated Figure 12. As a result of this shift, 
the moment arm of any external force which acts about the CoG of the rocket, including those 
generated by the TVC system, is affected by this.  

 

 

Figure 12: CoG shifts downwards to the bottom of the rocket 

Because of the axially symmetric mass allocation assumption described in the beginning of this 
section, the dynamic moment arm length associated with moments created by the TVC can be 
calculated the following way: 

𝑙 = 𝑙𝑑𝑟𝑦 +
(𝑙𝑤𝑒𝑡 − 𝑙𝑑𝑟𝑦) ⋅ 𝑚

𝑚𝑤𝑒𝑡

 Eq. 11 

where  𝑙𝑤𝑒𝑡 and 𝑙𝑑𝑟𝑦 are the lengths of the moment arms when the rocket is fully fueled and completely 

depleted described in Table 2 and Table 3 respectively as the first value of the CoG vectors, 𝑚𝑤𝑒𝑡 is the 
wet mass of the rocket described in Table 1 and 𝑚 is the actual mass of the rocket.  

Another important aspect which needs to be taken into account while modelling the dynamics of the 
rocket is the change of the rocket’s inertia matrix given by the following equation:  

𝐽 =
𝐽𝑤𝑒𝑡 − 𝐽𝑑𝑟𝑦

𝑚𝑤𝑒𝑡 −𝑚𝑑𝑟𝑦

⋅ �̇� Eq. 12 

where 𝐽 is the current inertia matrix of the rocket’s body, while  𝐽𝑤𝑒𝑡 and 𝐽𝑑𝑟𝑦 compose the wet and dry 

inertia matrix of the rocket’s body respectively. The values of these diagonal matrices are described in 
Table 2 and Table 3 as the principal axes of inertia of Alpha. 

The principal axes of inertia of the rocket in the Body-fixed frame of the X, Y and Z axes are going to 
be referred as: 𝐼𝑥, 𝐼𝑦  and 𝐼𝑧. 
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2.2.3 Thrust Vector Control 

The TVC system enables the rocket to gimbal the direction of the rocket's thrust to generate torques 
which act about the CoG of the rocket, affecting its rotation in both pitch (up and down) and yaw (side 
to side) planes. Rotating the body enables the rocket to propel itself in the positive direction of the 
thrust vector, thus changing its direction during flight. 

 

Figure 13: TVC force decomposition 

Illustrated in Figure 13 is the thrust vector �⃗�𝑡 generated by the HRE, where this force is broken down 
using angles 𝜑𝑝 (gimbal angle influencing pitch) and 𝜑𝑦 (gimbal angle influencing yaw). By gimbaling 

these angles the TVC produces the following forces in the Body-fixed frame of the rocket [26]: 

𝐹 
𝑏
𝑇𝑉𝐶 = [

𝐹𝑡𝑐𝜑𝑝𝑐𝜑𝑦
−𝐹𝑡𝑐𝜑𝑝𝑠𝜑𝑦
−𝐹𝑡𝑠𝜑𝑝

] 
Eq. 13 

Naturally, these forces act about the CoG, thus generating moments in the Body-fixed frame described 
in Eq. 14. 

𝑀 
𝑏

𝑇𝑉𝐶 = [

0
−𝐹𝑡𝑠𝜑𝑝𝑙

−𝐹𝑡𝑐𝜑𝑝𝑠𝜑𝑦𝑙
] 

Eq. 14 

The forces and moments generated by the TVC system of the rocket in the Body-fixed frame of the X, 
Y and Z axes are going to be referred as:  𝐹 

𝑏
𝑇𝑉𝐶𝑥

, 𝐹 
𝑏
𝑇𝑉𝐶𝑦

, 𝐹 
𝑏
𝑇𝑉𝐶𝑧

 and 𝑀 
𝑏

𝑇𝑉𝐶𝑥
, 𝑀 
𝑏

𝑇𝑉𝐶𝑦
, 𝑀 
𝑏

𝑇𝑉𝐶𝑧
 respectively. 

2.2.4 Earth’s Gravity Model 

For the modelling of the Earth’s gravity the WGS-84 model [27] is used which assumes the Earth as a 
perfect sphere with a uniform mass distribution. This simplification allows for the assumption that the 
gravitational force acts towards the center of the Earth, aligning with the center of gravity of the 
rocket. Furthermore, since the gravitational force is considered to act through the center of gravity, it 
does not create any moments about this point. 

As the body of the rocket rotates in flight, the force of gravity remains constant, acting through the 
rocket's CoG and always directed towards the center of the Earth (as shown in Figure 14). Thus, to 
express this force in the Body-fixed frame of the rocket, the following equation is used: 

𝐹 
𝑏
𝑔 = 𝑅𝐸

𝑏 ⋅ [

−𝑚𝑔
0
0
] 

Eq. 15 

where 𝑚 is the current body mass of the rocket, 𝑔 is the varying gravitational acceleration on the 

surface of the Earth. This variable is computed as 𝑔 = 𝑔0 ⋅
𝑅𝑒
2

(𝑅𝑒+ℎ)
2, where 𝑔0 is the constant 

gravitational acceleration, 𝑅𝑒 is the mean Earth radius and ℎ is the current altitude of the rocket. 
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Figure 14: Gravity model 

For the forces generated by the Earth’s gravity in the Body-fixed frame of the X, Y and Z axes are going 
to be referred as:  𝐹 

𝑏
𝑔𝑥, 𝐹 

𝑏
𝑔𝑦 and 𝐹 

𝑏
𝑔𝑧. 

2.2.5 Aerodynamic Effects 

A rocket experiences aerodynamic forces and moments [28] during flight due to its interaction with 
the surrounding atmosphere, as a result aerodynamic forces are generated in the Body-fixed frame 
and include axial, lateral, and normal components, represented as: 

𝐹 
𝑏
𝐴 = [

−𝑞𝐶𝐴𝑆
𝑞𝐶𝑌𝑆
−𝑞𝐶𝑁𝑆

] 
Eq. 16 

where 𝐶𝐴, 𝐶𝑌 and 𝐶𝑁 are the axial, lateral, and normal aerodynamic force coefficients, respectively. The 
parameters 𝑞 and 𝑆 represent the dynamic pressure and a reference area, often corresponding to the 
fuselage’s cross-sectional area. 

These forces depend on the rocket's velocity relative to the atmosphere: 

𝛼 = tan−1
𝑤𝑟𝑒𝑙
𝑢𝑟𝑒𝑙

 

𝛽 = sin−1
𝑣𝑟𝑒𝑙
𝑉𝑟𝑒

 

Eq. 17 

where these are characterized by the angle of attack 𝛼 and the sideslip angle 𝛽. These angles are 
defined by the components of the relative velocity vector 𝑤𝑟𝑒𝑙,𝑣𝑟𝑒𝑙  and 𝑉𝑟𝑒𝑙  which also determines the 
coefficients 𝐶𝑌 = 𝐶𝑌𝛽 and 𝐶𝑁 = 𝐶𝑁𝛼 through linear relations with the angles. 

Similarly, aerodynamic moments, including rolling, pitching, and yawing moments, are represented in 
the Body-fixed frame as: 

𝑀 
𝑏

𝐴 = [

𝑞𝐶𝑙𝑆𝑑
𝑞𝐶𝑚𝑆𝑑
𝑞𝐶𝑛𝑆𝑑

] 
Eq. 18 

where 𝐶𝑙, 𝐶𝑚 and 𝐶𝑛 are the aerodynamic rolling, pitching and yawing moment coefficients, and 𝑑 is a 
reference length, often the fuselage diameter. These coefficients are influenced by the vehicle’s static 
stability margin and damping characteristics, which are essential for controlling the rocket's attitude 
and maintaining stability during flight. 
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2.3 Modelling of Kinematics 

The translational dynamics [28] of the rocket is given by applying Newton’s second law on the forces 
acting on the rocket and including the cross-products created by the moments: 

�̇� 
𝑏 =

1

𝑚
( 𝐹 
𝐵

𝑇𝑉𝐶 + 𝐹 
𝐵
𝑔) − 𝑆( 𝜔 

𝑏 ) 𝑣 
𝑏   

Eq. 19 

where  𝑆(∙) is a skew-symmetric matrix, the 𝑣 
𝑏 = [𝑢 𝑣 𝑤]𝑇 is the velocity vector and 𝜔 

𝑏 =
[𝑝 𝑞 𝑟]𝑇 is the angular velocity vector with the components of these vectors also illustrated in the 
Body-fixed frame in  Figure 15. 

 

Figure 15: Decomposition of the translational and rotational vectors in the Body-fixed frame 

As for the rotational dynamics of the rocket, Euler’s equation for a rigid body produces the following 
equation: 

𝑀 
𝑏

𝑇𝑉𝐶 = 𝐽 𝜔 
𝑏 + �̇� 

𝑏 × 𝐽 𝜔 
𝑏  

Eq. 20 

The rotation matrix 𝑅𝐸
𝑏 needs to be applied to �̇� 

𝑏  and �̇� 
𝑏  respectively, which will result in the 

acceleration �̇� 
𝐸  and the angular acceleration �̇� 

𝐸  of the rocket in the Flat-Earth reference frame. To 
find the position 𝑥 

𝐸 = [𝑥 𝑦 𝑧] and the orientation 𝛼 = [𝜙 𝜃 𝜓] of the rocket in the Flat-Earth 
reference frame, the �̇� 

𝐸  and the �̇� 
𝐸  is numerically integrated two times using the discrete time step Δ𝑡. 

2.4 VTVL System 

Putting together the equations described in 2.2 and 2.3 the general 6DoF equations of motion [29] of 
the Alpha rocket can be constructed:  

�̇� =
𝐹 
𝑏
𝐴𝑥
+ 𝐹 
𝑏
𝑇𝑉𝐶𝑥 + 𝐹 

𝑏
𝑔𝑥

𝑚
− (𝑞𝑤 − 𝑟𝑣) 

�̇� =
𝐹 
𝑏
𝐴𝑦
+ 𝐹 
𝑏
𝑇𝑉𝐶𝑦

+ 𝐹 
𝑏
𝑔𝑦

𝑚
− (𝑟𝑢 − 𝑝𝑤) 

�̇� =
𝐹 
𝑏
𝐴𝑧
+ 𝐹 
𝑏
𝑇𝑉𝐶𝑧 + 𝐹 

𝑏
𝑔𝑧

𝑚
− (𝑝𝑣 − 𝑞𝑢) 

�̇� =
𝑀 
𝑏

𝐴𝑥
+ 𝑀 
𝑏

𝑇𝑉𝐶𝑥
− 𝑞𝑟(𝐼𝑧 − 𝐼𝑦)

𝐼𝑥
 

�̇� =
𝑀 
𝑏

𝐴𝑦 + 𝑀 
𝑏

𝑇𝑉𝐶𝑦 − 𝑟𝑝(𝐼𝑥 − 𝐼𝑧)

𝐼𝑦
 

�̇� =
𝑀 
𝑏

𝐴𝑧 + 𝑀 
𝑏

𝑇𝑉𝐶𝑧 − 𝑝𝑞(𝐼𝑦 − 𝐼𝑥)

𝐼𝑧
 

�̇� = 𝑝 + (𝑞𝑠𝜙 + 𝑟𝑐𝜙) tan 𝜃 

�̇� = 𝑞𝑐𝜙 − 𝑟𝑠𝜙 

�̇� =
𝑞𝑠𝜙 + 𝑟𝑐𝜙

𝑐𝜃
 

Eq. 21 
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While the aerodynamic forces and moments have been described for the sake of completeness, their 
impact is significantly reduced in the context of the low-altitude/low-velocity hop test described in 1.4 
and simulated for this study. Due to the relatively short duration and limited atmospheric interaction 
during the test, only the axial force 𝐹 

𝑏
𝐴𝑥

 acting on the hopper will be considered in the simulation. 

This simplification is justified as the lateral and normal aerodynamic forces, along with their 
associated moments, are negligible under the specific operating conditions of the test. Another 
important factor which will further simplify Eq. 21 is due to the E assumption, which will result in the 
rolling angular velocity 𝑝, roll angle 𝜙 and their derivatives to become virtually 0.  

It is also desirable to have the 𝑥𝐸 , 𝑦𝐸  and 𝑧𝐸 position of the rocket in the Flat-Earth reference frame 
added into equations of motion, because it will further simplify and make the controller and sensor 
fusion design intelligible, as both of these require the position of the rocket. Thus, the motion of the 
Alpha VTVL will be defined by: 

�̇�𝐸 = 𝑢 
�̇�𝐸 = 𝑣 
�̇�𝐸 = 𝑤 

�̇� =
𝐹 
𝑏
𝐴𝑥
+ 𝐹 
𝑏
𝑇𝑉𝐶𝑥 + 𝐹 

𝑏
𝑔𝑥

𝑚
− (𝑞𝑤 − 𝑟𝑣) 

�̇� =
𝐹 
𝑏
𝑇𝑉𝐶𝑦 + 𝐹 

𝑏
𝑔𝑦

𝑚
− 𝑟𝑢 

�̇� =
𝐹 
𝑏
𝑇𝑉𝐶𝑧

+ 𝐹 
𝑏
𝑔𝑧

𝑚
+ 𝑞𝑢 

�̇� =
𝑀 
𝑏

𝑇𝑉𝐶𝑦

𝐼𝑦
 

�̇� =
𝑀 
𝑏

𝑇𝑉𝐶𝑧

𝐼𝑧
 

�̇� = 𝑞𝑐𝜙 − 𝑟𝑠𝜙 

�̇� =
𝑞𝑠𝜙 + 𝑟𝑐𝜙

𝑐𝜃
 

Eq. 22 

2.4.1 System Linearization 

The states and the control inputs of the rocket can be contained in vectors of: 

x = [𝑥𝐸 𝑦𝐸 𝑧𝐸      𝑢 𝑣 𝑤     𝑞 𝑟     𝜃 𝜓]𝑇 
u = [𝜇𝑝 𝜇𝑦 𝑇]𝑇  

Eq. 23 

where x and u are the state and the control vectors representing the non-linear equation of motions of 
the hopper. However, for the design of a controller and sensor fusion algorithm, the system must be 
converted into a linear state-space representation. This is achieved by applying a first-order Taylor 
series expansion around a specific operating point, effectively linearizing the non-linear system. This 
is achieved by computing the Jacobian for both the state transition A and control-input B matrix. 

JA =
𝛿̇ẋ

𝛿x
=

[
 
 
 
 
𝛿𝑥𝐸
𝛿𝑥𝐸

⋯
𝛿𝑥𝐸
𝛿𝜓

⋮ ⋱ ⋮
𝛿𝜓

𝛿𝑥𝐸
⋯

𝛿𝜓

𝛿𝜓 ]
 
 
 
 

     JB =
𝛿ẋ

𝛿u
=

[
 
 
 
 
 
𝛿𝑥𝐸
𝛿𝜇𝑝

⋯
𝛿𝑥𝐸
𝛿𝑇

⋮ ⋱ ⋮
𝛿𝜓

𝛿𝜇𝑝
⋯

𝛿𝜓

𝛿𝑇 ]
 
 
 
 
 

 
Eq. 24 

This will result in a 10 × 10 dimensional JA(⋅) and a 10 × 3 dimensional JB(⋅) matrices where each 
matrix component is the equation of motion for the derived Jacobian of the state derivatives ẋ with 
respect to the state vector x and control vector u.  

These matrices are evaluated around a small disturbance from specific equilibrium points 
corresponding to the flight phases of the mission. For simplicity and proof-of-concept purposes, the 
system will be linearized around operating points x𝟎, representing the end states of the three flight 
phases described in 1.4 with small disturbances to account for these expected effects which are 
captured in the A and B matrices.  

The approach described earlier provides a straightforward and computationally efficient way to design 
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a gain-scheduled controller for the flight. However, it does come with drawbacks. Linearizing the 
system at only flight phase end points fails to capture the continuous variations in dynamics 
throughout the flight. This can lead to suboptimal control performance, particularly during transitions 
between phases or when the rocket operates far from the chosen linearization points. In a more robust 
and scalable design, the system should be linearized at multiple points along the trajectory, creating a 
time-varying linear model. This would allow for more accurate gain scheduling and better handling of 
dynamic changes during flight. Nonetheless, the current approach is sufficient to validate the concept 
and demonstrate the feasibility of the proposed GNC system. 

2.4.2 State-space Representation 

Substituting the vector of operating points x𝟎 (presented in the Appendix A) of each flight phase of the 
hopper into JA and JB results in the state transition A and control-input B matrices. These matrices 
create a linearized version of the VTVL system around the operating points, thus the system can be 
written in state-space representation:  

ẋ(𝑡)=Ax(𝑡)+Bu(𝑡) 
y(𝑡)=Cx(𝑡) 

Eq. 25 

where C is the output identity matrix [30] of dimension 10 × 10, which essentially would make the 
VTVL system fully observable. This assumption is consistent with the described system as the sensor 
suite of the rocket presented in 1.1.3 provides every state measurement which is needed to make the 
system fully observable.  

Considering that there are three flight phases in total, substituting x𝟎 will result in a different A and B 
matrices for each flight phase. These matrices will be used to create the controllers for the Control 
module and Kalman filter for the Navigation module of the GNC subsystem, and considering the fact 
that the GNC designed in this project will be used onboard the flight computer of the real life rocket 
the state-space matrices are linearized with the Zero-order hold method [31] using highest sampling 
frequency from the sensor suite, that is 100 [𝐻𝑧]. 

2.5 Landing Legs Model 

Lastly, an important aspect which needs to be modelled in order to simulate the landing of a rocket is 
the motion of the landing legs. As seen in Figure 3, initially the Landing Legs of Alpha are latched on 
the outside of the airframe and are released before landing. Illustrated in Figure 16 is one landing leg 
which is gravity-actuated, this means that once released the legs are pulled towards the bottom of the 
rocket by the force of gravity and are latched in place after a threshold angle is reached.  

As such, a single landing leg can be modelled as a simple gravity pendulum [32] with the differential 
equation describing the motion of the landing leg as: 

�̈� + 𝑏�̇� +
𝑔

𝐿
sin 𝜗  = 0 

Eq. 26 

where �̈� is the angular acceleration,  �̇� is the angular velocity, 𝜗 the angle with respect to the 
longitudinal axis of the rocket, 𝑏 is the damping coefficient and 𝐿 is the length of the landing leg. 

 

Figure 16: Gravity actuated landing legs 

The described equation in Eq. 26 can solved iteratively in the Simulink environment, thus it can be 
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broken down into the following set of equations which is solved at each 𝑘 discrete time step and 𝑇𝑠 
sampling intervals: 

{
�̇�[𝑘] = �̇�[𝑘] − (

𝑔

𝐿
sin 𝜗[𝑘] + 𝑏�̇�[𝑘]) 𝑇𝑠

𝜗[𝑘 + 1] = 𝜗[𝑘] + �̇�[𝑘 − 1]𝑇𝑠

 
Eq. 27 

In order to model the latching mechanism, and the inevitable bouncing of the landing leg just before 
correctly latching in place, a restitution coefficient is included into the model when 𝜗[𝑘 + 1] < 𝜗𝑙𝑎𝑡𝑐ℎ 

and �̇�[𝑘 + 1] < 0 condition is achieved: 

{

𝜗[𝑘 + 1] = 𝜗𝑙𝑎𝑡𝑐ℎ
�̇�[𝑘 + 1] = −𝑒 ⋅ �̇�[𝑘 + 1]

�̇�[𝑘 + 1] < 0.1 ⟹ �̇�[𝑘 + 1] = 0

 
Eq. 28 

 

  



23 
 

3 Methods and Materials 

To facilitate the development and evaluation of the GNC subsystem, the co-simulation platform will be 
constructed by coupling UE5 and MATLAB's Simulink. This co-simulation environment will leverage 
the Aerospace Blockset of Simulink, which provides a messaging interface between Simulink and UE5. 
This interface enables the exchange of data between the two environments, allowing for the simulation 
of the rocket's dynamics, sensor inputs, and control responses within the photorealistic virtual 
environment. This chapter describes the methods and system implemented within the two 
environments. 

3.1 Co-Simulation Design 

The co-simulation framework integrates MATLAB Simulink and UE5 to test the GNC subsystem in a 
realistic environment. Simulink models the rocket’s dynamics, environmental conditions, sensor suite, 
and GNC algorithms, while UE5 provides a visual simulation for navigation and collision detection. 
Communication between the two environments is achieved via the UDP protocol, enabling the 
exchange of state information, commands, and visual data. Figure 17: Co-Simulation Framework 
illustrates the framework and its key components, which are detailed in the following subsections. 

 

 

Figure 17: Co-Simulation Framework 

3.1.1 Simulink Environment 

The subsystems in the Simulink model (as shown in Figure 17: Co-Simulation Framework) and their 
functionalities are as follows: 

▪ Alpha Rocket Model: represents the dynamics of the Alpha hopper, including rocket mass 
shift, a simplified hybrid propulsion model for thrust generation, forces and moments created 
by TVC and the aerodynamics of the airframe. 

▪ 6-DoF Airframe Model: simulates the 6DoF motion of the hopper, incorporating 
translational and rotational dynamics. 

▪ Environmental Models: provides models of the environment which exert forces and 
moments on the hopper, such as a gravity model and an atmospheric model. 
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▪ Coordinate Transformations: computes the transformation of data between various 
reference frames (e.g., inertial, body, and navigation frames). 

▪ Sensor Suite: The sensor suite simulates the outputs of onboard sensors, including an 
accelerometer, a gyroscope, a GNSS unit, and a camera. 

▪ Guidance, Navigation, and Control: holds the model of the GNC, where each module. 

3.1.1.1 Sensor Suite Design  

To ensure the co-simulation closely resembles real-world conditions, the sensor models in Simulink 
are designed to replicate the performance of the actual sensors that will be onboard the rocket. Key 
specifications such as accuracy, resolution, and noise levels are modeled to reflect the behavior of 
these sensors under realistic operating conditions. This level of detail is essential to produce reliable 
data for testing the GNC system and validating its performance in a simulated environment. To this 
end, the sensors described in 1.1.3 are modelled using Simulink sensor blocks from the Aerospace 
Blockset and values provided in the datasheets [16], [19]. 

3.1.1.1.1 Accelerometer Modelling 

To model the Three-axis Accelerometer [33] the following parameters need to be entered into the 
Simulink Block: 

▪ Natural frequency [
𝑅𝑎𝑑

𝑠
] 

▪ Damping ratio 

▪ Scale factors and cross coupling 

▪ Measurement bias [
𝑚

𝑠2
] 

▪ Update rate [𝑠] 

▪ Noise power [(
𝑚

𝑠2
)
2

] 

▪ Lower and upper output limits [
𝑚

𝑠2
] 

 

The natural frequency of the three-axis accelerometer can be approximated based on its bandwidth. 
Since bandwidth is the frequency at which the response is reduced by 3 dB, the natural frequency can 
be estimated using the relationship: 

𝜔0 = 2𝜋 ⋅ 𝐵 Eq. 29 

where 𝜔0 is the natural frequency and 𝐵 is the bandwidth, and using the lowest bandwidth of the 

accelerometer found in Table 4, the natural frequency will be around 1646.2 [
𝑅𝑎𝑑

𝑠
]. 

Typically, the damping ratio is around 0.707 for accelerometers to ensure a good trade-off between 
speed and stability. However, the damping ratio is not provided directly, so this is an assumed typical 
value [34]. 

The scale factor variation for the accelerometer is 0.5%, but since cross-coupling is not explicitly 
provided in the MTi-7 datasheet, a reasonable assumption for a well-calibrated sensor would be: 

(
1.005 0.001 0.001
0.001 1.005 0.001
0.001 0.001 1.005

) 

The in-run bias stability for the accelerometer is 2.943 ⋅ 10−5 [
𝑚

𝑠2
] . Assuming this is uniform across all 

axes, the bias vector is [2.943 ⋅ 10−5 2.943 ⋅ 10−5 2.943 ⋅ 10−5 ] [
𝑚

𝑠2
]. 

The MTi-7 datasheet specifies a maximum output data rate of 100 [𝐻𝑧] or 
1

100
 [𝑠] for the 
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accelerometer. 

Noise power is related to the sensor's noise density, thus for the accelerometer is 120 [
𝜇𝑔

√𝐻𝑧
] or 1.177 ⋅

10−3 [
𝑚

𝑠2

√𝐻𝑧
]. The noise power over the sensor's bandwidth can be estimated as: 

𝑁𝑝 = 𝑁0 ⋅ 𝐵 Eq. 30 

where 𝑁𝑝 is the resultant noise power and the 𝑁0 is the accelerometer’s noise density? As the 

bandwidth for the Z axis differs from the X and Y axes of the noise power vector would be 

approximately [4.48 ⋅ 10−4 4.48 ⋅ 10−4 3.62 ⋅ 10−4 ] [(
𝑚

𝑠2
)
2

]. 

The accelerometer's range is ±16[𝑔]. Converting this to [
𝑚

𝑠2
] is ±16[𝑔] = ±16 ⋅ 9.81 = ±156.96 [

𝑚

𝑠2
]. 

Therefore, the output limits vector is [−156.96 −156.96 −156.96     156.96 156.96 156.96] [
𝑚

𝑠2
]. 

The three acceleration values of measured by the Three-axis Accelerometer in the Body-fixed frame of 
the X, Y and Z axes are going to be referred as: 𝐴𝑚𝑒𝑎𝑠𝑥, 𝐴𝑚𝑒𝑎𝑠𝑦 and 𝐴𝑚𝑒𝑎𝑠𝑧. 

3.1.1.1.2 Gyroscope Modelling  

To model the Three-axis Gyroscope [35] the following parameters need to be entered into the 
Simulink Block: 

▪ Natural frequency [
𝑅𝑎𝑑

𝑠
] 

▪ Damping ratio 

▪ Scale factors and cross coupling 

▪ Measurement bias [
𝑅𝑎𝑑

𝑠
] 

▪ G-sensitive bias [
𝑅𝑎𝑑⋅𝑔

𝑠
] 

▪ Update rate [𝑠] 

▪ Noise power [(
𝑅𝑎𝑑

s
)
2

] 

▪ Lower and upper output limits[
𝑅𝑎𝑑

s
] 

Similarly, to the accelerometer, the gyroscope’s natural frequency can be estimated using it’s 

bandwidth of 255[𝐻𝑧] and Eq. 29, which would result in a frequency of 1602.2 [
𝑅𝑎𝑑

𝑠
]. 

The datasheet does not specify a damping ratio, thus the same value of 0.707 will be used for the 
gyroscope as well. 

The scale factor variation for the gyroscope is the same as for the accelerometer: 0.5%. Thus, as above 
with accelerometer, the cross-coupling terms can be modelled similarly: 

(
1.005 0.001 0.001
0.001 1.005 0.001
0.001 0.001 1.005

) 

The in-run bias stability for the gyroscope is 10 [
°

ℎ
], converting to radians per second 10 [

°

ℎ
] =

10

3600
⋅

𝜋

180
≈ 4.8481 ⋅ 10−5 [

𝑅𝑎𝑑

𝑠
]. Assuming uniform bias across the three axes of the gyroscope, the resultant 

bias vector is [4.8481 ⋅ 10−5 4.8481 ⋅ 10−5 4.8481 ⋅ 10−5 ] [
𝑅𝑎𝑑

𝑠
]. 

The g-sensitivity of the gyroscope is 0.001 [
°𝑔

𝑠
]. Converting this to radians per second per meter per 

second squared 0.001 [
°𝑔

𝑠
] = 0.001 ⋅

𝜋

180
≈ 1.7453 ⋅ 10−5 [

𝑅𝑎𝑑⋅𝑔

𝑠
].Assuming equal sensitivity across the 

axes of the gyroscope, the resultant g-sensitive bias vector would be 
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[1.7453 ⋅ 10−5 1.7453 ⋅ 10−5 1.7453 ⋅ 10−5 ] [
𝑅𝑎𝑑⋅𝑔

𝑠
]. 

The gyroscope in the MTi-7 has the same update rate as the accelerometer, with a maximum output 

data rate of 100 [𝐻𝑧] or  
1

100
 [𝑠]. 

The noise density for the gyroscope is 0.007 [
∘√𝐻𝑧

𝑠
] which is 1.2217 ⋅ 10−4 [

𝑅𝑎𝑑⋅√𝐻𝑧

𝑠
]. Using Eq. 30 and a 

bandwidth of 255[𝐻𝑧], assuming uniform noise power value across all three axes of the gyroscope, the 

noise power vector is [3.80 ⋅ 10−6 3.80 ⋅ 10−6 3.62 ⋅ 10−6 ] [(
𝑅𝑎𝑑

s
)
2

]. 

The standard full range of the gyroscope is ±2000 [
∘

𝑠
] or ±34.9066 [

𝑅𝑎𝑑

𝑠
]. Therefore, the output limits 

vector is [−34.9066 −34.9066 −34.9066     34.9066 34.9066 34.9066] [
𝑅𝑎𝑑

s
]. 

The three angular velocity values of measured by the Three-axis Gyroscope in the Body-fixed frame of 
the X, Y and Z axes are going to be referred as: 𝜔𝑚𝑒𝑎𝑠𝑥, 𝜔𝑚𝑒𝑎𝑠𝑦 and 𝜔𝑚𝑒𝑎𝑠𝑧. 

3.1.1.1.3 GNSS Modelling  

To model the GNSS [36] the following parameters need to be entered into the Simulink Block: 

▪ Horizontal position accuracy 

▪ Vertical position accuracy 

▪ Velocity accuracy 

▪ Decay factor 

The horizontal position accuracy for the MTi-7 GNSS, using Satellite-Based Augmentation System 
(SBAS), is 1.0 [𝑚] (1𝜎 STD).  

The vertical position accuracy, using SBAS and a barometer, is 2.0 [𝑚] (1𝜎 STD).  

The velocity accuracy is 0.05 [
𝑚

𝑠
] (1𝜎 RMS).  

The decay factor is a value between 0.0 (which generate purely white noise) and 1.0 (which would 
generate a random walk sequence). To generate sensor data which would exhibit behavior received by 
the sensor in the real-world, a decay factor between 0.1 − 0.3 can be chosen. This range captures a mix 
of random errors and slow drift, reflecting the behavior of most GNSS systems under real-world 
conditions [37]. 

The vector containing the latitude, longitude and altitude values measured by the GNSS is going to be 
referred as 𝐿𝐿𝐴𝑚𝑒𝑎𝑠 = (𝜙𝐿𝐿𝐴𝑚𝑒𝑎𝑠 , 𝜆𝐿𝐿𝐴𝑚𝑒𝑎𝑠 , ℎ𝐿𝐿𝐴𝑚𝑒𝑎𝑠). 

3.1.1.1.4 Camera Modelling  

To model the Camera [38] the following parameters need to be entered into the Simulink Block: 

▪ Image size 

▪ Optical center 

▪ Focal length [𝑝𝑥] 

The image size is 720 𝑥 1280 pixels, thus the optical center for the camera will be 640 and 360 
respectively. 

The focal length needs to be given in pixels and is calculated as: 

𝑓𝑥 = 𝑙𝐹 ⋅ 𝑠𝑥
𝑓𝑦 = 𝑙𝐹 ⋅ 𝑠𝑦

 Eq. 31 

Where 𝑓𝑥, 𝑓𝑦 are the focal lengths in the X and Y direction respectively of the camera in pixels, 𝑙𝐹 is the 

focal length of the Camera Module 3 Wide which is 2.75 [𝑚𝑚], while 𝑠𝑥, 𝑠𝑦  are pixel density in the X 

and Y direction respectively. The Camera Module 3 Wide uses a Sony IMX708 image sensor with a 
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resolution of 4608 𝑥 2592 and a sensor size of 7.2 𝑥 5.4 [𝑚𝑚2].  Thus, the pixel density can be 
calculated as: 

𝑠𝑥 =
4608

7.2
≈ 640

𝑠𝑦 =
2592

5.4
≈ 480

 Eq. 32 

Computing the values for the focal length using Eq. 31 results in the values of [1760 1320][𝑝𝑥]. 

3.1.2 Unreal Engine 5 Environment 

This environment serves as the high-fidelity visualization and interaction platform for the co-
simulation framework. It provides a photorealistic simulation of the hopper’s operating environment, 
including the terrain, fiducial markers, and dynamic elements critical for visual navigation. The 
environment receives relevant data from the Simulink model via UDP, including the rocket’s position, 
orientation, TVC pitch and yaw angles, and commands such as landing leg deployment and engine 
throttle exhaust. The UE5 environment is programmed using Blueprints, a visual scripting language 
that enables dynamic control of the rocket and its components in the virtual environment. This 
programming ensures that the rocket’s pose and movements match the data received from the 
Simulink environment in real time, accurately representing the hopper’s dynamics within the 
constructed scene. In return, the UE5 environment provides two critical outputs to the Simulink 
model. First, it streams images from the onboard rocket camera, simulating real-time visual data for 
use in state estimation. Second, it provides collision information during the landing phase, detecting 
interactions between the rocket and the terrain or landing pad. This bidirectional communication 
allows for a seamless integration of visual navigation and collision detection into the co-simulation 
framework, enabling comprehensive testing and evaluation of the Guidance, Navigation, and Control 
(GNC) system. 

3.1.2.1 Launch site and landing site 

For the UE5 simulated environment the Lucerne Valley ROC (Rocketry Organization of California) 
launch site was chosen (as shown in Figure 18). Cesium is used to enhance the photorealistic aspect of 
the UE5 environment [39]. The launch site is at an altitude of 870 meters above sea level and it is 
known for its wide-open space, making it ideal for rocketry activities. 

 

Figure 18: Aerial view of the ROC launch site inside the UE5 environment  

Inside the simulated environment, a launch and landing site is created which is not found in the real 
world. The launch pad is located at (34.495624°, −116.95782°, 868), these coordinates are used as 
reference coordinates (𝜙𝐿𝐿𝐴𝑟𝑒𝑓 , 𝜆𝐿𝐿𝐴𝑟𝑒𝑓 , ℎ𝐿𝐿𝐴𝑟𝑒𝑓) in the GCS reference frame to transform the LLA 
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coordinates received from the GNSS to Flat-Earth coordinates. The landing pad (34.495824°, 
−116.95782°, 868) is positioned 20 meters from the launch pad. Patches of rocks and fauna, which are 
usually found in these types of arid areas, are added to further enhance the photorealistic aspect of the 
project, this can be seen in Figure 19. 

 

Figure 19: Constructed launch and landing site inside the UE5 Editor  

The ArUco markers used for visual navigation measures 1 × 1 [𝑚2] and 0.5 × 0.5 [𝑚2] and are 
positioned at coordinates (0.0, -2.75, 20) and (0.0, -1.15, 20) relative to the launch site in the Flat-
Earth reference frame, placing it 2.75 and 1.15 meters to the west of the landing pad, with the landing 
site being a concrete circle slab with a diameter of 10 meters.  

 

Figure 20: Landing Site ArUco Maker Size and Placement 

To facilitate real-world mission replication by RISE, the marker and other landing site features are 
rendered in UE5 with attention to photo-realism. The marker is painted onto a concrete tiled surface 
using the black matte spray paint material available in the UE5 library, ensuring high visual fidelity 
under simulated lighting conditions. The selected markers are from the ArUco 4x4 dictionary with an 
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ID of 0 and 1. This specific choice ensures that the detection algorithm is as efficient as possible by 
minimizing the search space for the marker ID during processing. The detailed configuration and 
placement aim to replicate conditions for precise and robust visual navigation during the rocket's 
landing phase, both in simulation and potential real-world trials. 

3.1.2.2 Rocket Engine Exhaust, Smoke and Dust 

The exhaust plume of the RISE Green Phoenix engine exhibits a distinct orange-purplish hue. This 
characteristic coloring results from the combustion of the paraffin wax and nitrous oxide propellants, 
which achieve high efficiency and clean burning [40]. The bright orange core of the plume indicates a 
well-optimized temperature and combustion chamber pressure, while the purplish edges highlight the 
presence of certain ionized components within the exhaust. These colors were replicated in the co-
simulation by studying similar characteristics observed in real-world hybrid rocket engines, such as 
those showcased in the image from Figure 21. 

 

Figure 21: Paraffin Powered Rocket Engine developed by NASA at the Ames Research Center  [41] 

In addition to its vivid coloration, the smoke production from the Green Phoenix engine remains 
relatively low. This is a direct consequence of the clean-burning nature of the hybrid rocket design, 
where the oxidizer (nitrous oxide) and fuel (paraffin wax) react efficiently to produce minimal 
particulate matter. The combination of high combustion efficiency and reduced soot generation leads 
to a visually distinct, mostly transparent exhaust plume, this contrasts with traditional solid rocket 
engines, which often produce substantial smoke trails. This recreation can be seen in the UE5 
environment showcased in Figure 22. 

 

Figure 22: RISE’s Paraffin Powered Green Phoenix Engine in the UE5 Editor 
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Smoke and dust generation during engine operation is primarily influenced by the interaction of the 
exhaust jet with the ground surface at liftoff or landing. Despite this, the relatively small scale of the 
Green Phoenix engine and the low particulate emissions ensure that dust clouds remain minimal 
compared to larger or less efficient propulsion systems. The co-simulation accounts for this to create a 
realistic visual representation of the rocket engine's behavior during hop tests. 

3.2 GNC Subsystem Design  

The GNC subsystem is responsible for maintaining stability, guiding the vehicle along a predefined 
trajectory, and ensuring precise landing of the VTVL hopper. The GNC subsystem comprises three 
primary modules: Guidance, Navigation, and Control. Presented in Figure 23 is the GNC subsystem 
along with subsystems witch which it interacts. 

 

Figure 23: GNC subsystem and it’s interaction with other relevant subsystems 

The Guidance module holds the predefined reference trajectory and determines the current flight 
phase of the vehicle from the estimated states received from the Navigation module. The determined 
flight phase is then transmitted to the Control module to set the desired states and gains for the 
controllers (essentially acting as a gain scheduler) and to the Navigation module to correctly configure 
the matrices of the EKF for the given flight phase. 

The Navigation module employs a Preliminary Transformation unit and an EKF to determine the 
vehicle's state. This module receives sensors data which includes readings from an accelerometer, 
gyroscope, GNSS module and a camera. The Preliminary Transformation unit computes the relative 
velocity and Euler angles of the rocket using a Complementary Filter and transforms the LLA 
coordinates into Flat-Earth Frame coordinates. The EKF fuses the data from the Preliminary 
Transformation unit and the measurements from the sensors to estimate position, velocity, angular 
velocity and orientation. 

Finally, the Control module compromises of two controllers – a Longitudinal and a Latitudinal 
controller – to adjust the vehicle’s orientation and thrust. These controllers receive input from both 
the Guidance and the Navigation modules. Both Longitudinal and Latitudinal controllers use a gain 
scheduled Linear Quadratic Regulator (LQR) with Integral Action design to compute the pitch, yaw 
and throttle percentage commands. These commands are then used to actuate the TVC’s pitch and 
yaw actuators along with the engine’s throttle valve. 
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3.2.1 Guidance Module Design 

As mentioned above, this module of the GNC subsystem is responsible for determining the desired 
flight phase using the estimated states of the rocket and the predetermined flight trajectory which 
retains in its memory. Essentially, the Guidance module acts as a supervisory controller that ensures 
that the rocket follows the planned trajectory and achieves the mission goals with precision and 
accuracy. 

3.2.1.1 Flight Phase Determination 

The Flight Phase Determination is a simple algorithm which utilizes the rocket's position to ascertain 
its current flight phase. This determination is achieved through a two-step process. Depending on the 
flight phase, the position can be either the height of the rocket above the surface of the Earth or the 2D 
Euclidian distance from the launch site.    

First, a moving average (MA) filter with a sliding window length of 𝑛𝑀𝐴 is applied to the position 
readings, smoothing out fluctuations and providing a more stable altitude estimate. Inside the 
Simulink environment this is implemented using a FIFO data structure and is computed as: 

𝐴 =
1

𝑛𝑀𝐴
∑𝑝𝑖

𝑛𝑀𝐴

𝑖=1

=
𝑝1 + . . . + 𝑝7

𝑛𝑀𝐴
 

Eq. 33 

where 𝑝𝑖  is the current position reading, 𝑝7 is the newest position reading and 𝑝1 is the oldest position 
reading. 

Second, a moving standard deviation (MSTD) with a sliding window length of 𝑛𝑀𝑆𝑇𝐷  is calculated 
from the filtered height data. This MSTD serves as a stability indicator, where a low value signifies 
stable hovering, thereby enabling the transition to subsequent flight phases based on predefined 
thresholds and hysteresis checks. 

𝑃 = √
1

𝑛𝑀𝑆𝑇𝐷 − 1
∑ |𝐴𝑖 − 𝜇|

2

𝑛𝑀𝑆𝑇𝐷

𝑖=1

 
Eq. 34 

where 𝜇 is the mean of the current sliding window implemented as a FIFO made up of the MA values 
[𝐴1 𝐴2 … 𝐴𝑛𝑀𝑆𝑇𝐷]

𝑇 and where 𝐴𝑖 is one of the values of the vector. 

3.2.1.2 Terminal Landing Phase Command 

The Apollo 11 lunar landing offers a valuable lesson for developing a Guidance module for a VTVL. 
During the final phase of the landing, Neil Armstrong could not find a suitable landing spot for the 
Lunar Excursion Module (LEM) which he operated, and as the LEM was hovering over the surface of 
the Moon its fuel levels were dwindling fast [47]. As everyone in Houston feared the worst, Gerard 
Elverum - the LEM descent engine’s chief engineer, urgently advised Armstrong from the back of the 
mission control room “Find the damn rock and set it down” [46] . Prompted by the command 
Armstrong has done exactly that and the landed the LEM on the surface of the Moon. 

Analog to this situation the rocket can find itself stuck in a similar problem. In the descent phase the 
ArUco marker of the landing site can disappear from the camera image, which will ultimately happen 
as the rocket descents further down and/or the marker is not in the camera’s line of sight. Because of 
this, the Guidance module dynamically switches to an IMU-based positioning strategy. This approach 
involves integrating filtered velocity estimates over time and incorporating them into the Kalman filter 
for state estimation. When this happens the Control module will try to fly the rocket to the desired 
landing position, but if the descent velocity or the position error is too large, the Control module can 
either make the rocket hover until it runs out of fuel or fly to the desired landing position and tip the 
rocket over. To avoid such situations, the Guidance module prompts the Control module to urgently 
land, which is a valid redundancy objective as the rocket would already be above the landing site, 
making it a good area to land.  

3.2.2 Navigation Module Design 

To ensure the co-simulation accurately evaluates the GNC system's performance, the Navigation 
module is designed to replicate the state estimation process which will be used in the actual rocket. It 
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integrates sensor data, while accounting for real-world factors such as measurement noise and system 
dynamics.  

3.2.2.1 Preliminary Transformation Unit 

The Preliminary Transformation unit is responsible for pre-processing raw sensor data from the 
accelerometer, gyroscope, and GNSS to produce filtered and transformed outputs necessary for state 
estimation. Its task is to compute a velocity estimation from accelerometer data, Euler angle 
estimation through a Complementary Filter  [44], and coordinate transformation for GNSS data.  

The accelerometer measurements (𝐴𝑚𝑒𝑎𝑠𝑥, 𝐴𝑚𝑒𝑎𝑠𝑦 and 𝐴𝑚𝑒𝑎𝑠𝑧) undergo low-pass filtering using 

Butterworth filter to remove high-frequency noise and vibrations that can corrupt the signal: 

𝐴𝑓𝑖𝑙𝑡[𝑘] = 𝑏0𝐴𝑓𝑖𝑙𝑡[𝑘] + 𝑏1𝐴𝑓𝑖𝑙𝑡[𝑘 − 1] +⋯+ 𝑎1𝐴𝑓𝑖𝑙𝑡[𝑘 − 1] + ⋯ Eq. 35 

where 𝑏0, 𝑏1, … and 𝑎1, … are the filter cofficients determined by the Butterworth filter design [45] for 
a 8th order with a cutoff frequency of 60 [𝐻𝑧] and a sampling frequency specified in Table 4. The cutoff 
frequency of 60 [𝐻𝑧] for the MTi-7’s accelerometer was found through trial and error.  

The filtered acceleration data is then integrated to obtain velocity estimates: 

𝑉𝑓𝑖𝑙𝑡[𝑘] = 𝑉𝑓𝑖𝑙𝑡[𝑘 − 1] + 𝑇𝑠𝐴𝑓𝑖𝑙𝑡[𝑘] 
Eq. 36 

where 𝑉𝑓𝑖𝑙𝑡[𝑘 − 1] is the velocity from the previous time step. This integration assumes an initial 

velocity condition and is sensitive to bias and drift in the accelerometer data. 

As stated in 3.2.1.2 when the ArUco markers are not visible in the camera frame and thus cannot 
estimate the rocket’s position, the Navigation module will use the IMU-based positioning strategy. 
This is done by integrating the already filtered velocity 𝑉𝑓𝑖𝑙𝑡  vector to compute the position filtered 

position vector:  

𝑋𝑓𝑖𝑙𝑡[𝑘] = 𝑋𝑓𝑖𝑙𝑡[𝑘 − 1] + 𝑇𝑠𝑉𝑓𝑖𝑙𝑡[𝑘] 
Eq. 37 

where 𝑋𝑓𝑖𝑙𝑡[𝑘 − 1] is the position from the previous time step, which in case of the switch from the 

ArUco-based positioning to the IMU-based positioning is the last known position of the rocket 
computed by the ArUco pose estimation algorithm. 

Using a Complementary Filter, the system fuses these two sources of data to estimate the Euler angles 
(𝜙, 𝜃, 𝜓), prioritizing gyroscope data for short-term changes and accelerometer data for long-term 
stability. The accelerometer provides orientation based on the gravity vector: 

𝜙𝑎𝑐𝑐[𝑘]  = tan
−1 (

𝐴𝑚𝑒𝑎𝑠𝑦[𝑘]

𝐴𝑚𝑒𝑎𝑠𝑧[𝑘]
) 

𝜃𝑎𝑐𝑐[𝑘]  = tan
−1

(

 −
𝐴𝑚𝑒𝑎𝑠𝑥[𝑘]

√𝐴𝑚𝑒𝑎𝑠𝑦[𝑘]
2 + 𝐴𝑚𝑒𝑎𝑠𝑧[𝑘]

2

)

  

Eq. 38 

The gyroscope data provides angular rates which are integrated to estimate changes in orientation: 

𝜙𝑔𝑦𝑟𝑜[𝑘] = 𝜙𝑔𝑦𝑟𝑜[𝑘 − 1] + 𝑇𝑠𝜔𝑚𝑒𝑎𝑠𝑥[𝑘] 

𝜃𝑔𝑦𝑟𝑜[𝑘] = 𝜃𝑔𝑦𝑟𝑜[𝑘 − 1] + 𝑇𝑠𝜔𝑚𝑒𝑎𝑠𝑦[𝑘] 

𝜓𝑔𝑦𝑟𝑜[𝑘] = 𝜓𝑔𝑦𝑟𝑜[𝑘 − 1] + 𝑇𝑠𝜔𝑚𝑒𝑎𝑠𝑧[𝑘] 

Eq. 39 

The Complementary Filter combines these estimates to reduce drift and noise: 

𝜙𝑓𝑖𝑙𝑡[𝑘] = 𝛼𝜙𝑔𝑦𝑟𝑜[𝑘] + (1 −  𝛼)𝜙𝑎𝑐𝑐[𝑘] 

𝜃𝑓𝑖𝑙𝑡[𝑘] = 𝛼𝜃𝑔𝑦𝑟𝑜[𝑘 − 1] + (1 −  𝛼)𝜃𝑎𝑐𝑐[𝑘] 
Eq. 40 

As a result of the sensor suit not considering the usage of a magnetometer, the equivalent of 𝜓𝑓𝑖𝑙𝑡[𝑘] is 

𝜓𝑔𝑦𝑟𝑜[𝑘] as yaw estimation relies purely on gyroscope integration. 

Finally, the GNSS measurements 𝐿𝐿𝐴𝑚𝑒𝑎𝑠 is converted to a Flat-Earth reference coordinate frame 
position 𝑋𝐸𝑚𝑒𝑎𝑠  to localize the rocket using the transformation described in 2.1.3. 
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𝑋𝐸𝑚𝑒𝑎𝑠 = [

𝑥𝐸𝑚𝑒𝑎𝑠
𝑦𝐸𝑚𝑒𝑎𝑠
𝑧𝐸𝑚𝑒𝑎𝑠

] = 𝑇𝐸
𝐿𝐿𝐴 ⋅ [

𝜙𝐿𝐿𝐴𝑚𝑒𝑎𝑠 − 𝜙𝐿𝐿𝐴𝑟𝑒𝑓
𝜆𝐿𝐿𝐴𝑚𝑒𝑎𝑠 − 𝜆𝐿𝐿𝐴𝑟𝑒𝑓
ℎ𝐿𝐿𝐴𝑚𝑒𝑎𝑠 − ℎ𝐿𝐿𝐴𝑟𝑒𝑓

] 
Eq. 41 

3.2.2.2 Extended Kalman Filter 

The Kalman filter [46] estimates the rocket's states described in Eq. 23, but to counteract the 
inevitable drift caused by the accumulation of sensor noise and biases, the state vector for the Kalman 
filter is augmented additionally by accelerometer (𝑏𝑢, 𝑏𝑣, 𝑏𝑤) and gyroscope (𝑏𝑞, 𝑏𝑟) biases to 

eliminate drift in the estimated velocities and Euler angles, resulting in a total of 15 states denoted by 
the augmented state vector: 

𝛘 = [x𝑇 𝑏𝑢 𝑏𝑣     𝑏𝑤 𝑏𝑞     𝑏𝑟]
𝑇 

Eq. 42 

This results in the need to redefine the state transition A, the control-input B for the Kalman filter to 
account for these added states, as the Jacobian for both A and B matrices need to be recomputed. 
Thus, to differentiate between these matrices, for the Kalman filter the state transition matrix and the 
control-input matrices will be referred as F and 𝐏 respectively. The Jacobian for these matrices will be 
computed as: 

JF =
𝛿�̇� 

𝛿𝛘
=

[
 
 
 
 
𝛿𝑥

𝛿𝑥
⋯

𝛿𝑥

𝛿𝑏𝑟
⋮ ⋱ ⋮
𝛿𝑏𝑟
𝛿𝑥

⋯
𝛿𝑏𝑟
𝛿𝑏𝑟]

 
 
 
 

     JP =
𝛿�̇� 

𝛿u
=

[
 
 
 
 
 
𝛿𝑥

𝛿𝜇𝑝
⋯

𝛿𝑥

𝛿𝑇

⋮ ⋱ ⋮
𝛿𝑏𝑟
𝛿𝜇𝑝

⋯
𝛿𝑏𝑟
𝛿𝑇 ]
 
 
 
 
 

 
Eq. 43 

This will result in a 15 × 15 dimensional JF(⋅) and a 15 × 3 dimensional JP(⋅) matrices where each 
matrix component is the equation of motion for the derived Jacobian of the state derivatives �̇� with 
respect to the augmented state vector 𝛘 and control vector u. Substituting the operating points x𝟎 of 
each flight phase described in Appendix A will result in three F and 𝐏 matrices which are used 
throughout the hop, effectively creating an EKF. 

Just as with A and B matrices, the output matrix also needs to be redefined, thus the measurement 
(ouput) matrix for the Kalman filter will be denoted as H. The bias states will be slowly changing over 
the course of the flight as these values will be recomputed into better estimates by the Kalman filter at 
each 𝑘 time step. In order to remove the drift, the bias terms are subtracted from the accelerometer 
and gyroscope readings, by updating measurement equation. To achieve this, the H matrix is defined 
as: 

H = [C10|

𝑂3,5
−𝐼5
𝑂2,5

]  
Eq. 44 

where C10 is the 10 × 10 output matrix defined in Eq. 25, 𝑂3,5 and 𝑂2,5 are zero matrices [47] of 

dimension 3 × 5 and 2 × 5 respectively, and 𝐼5 is an 5 × 5 identity matrix while the negative sign 
indicates that the biases subtract from the raw measurements. The resulting discrete Kalman filter 
model [48] can be described by: 

𝛘[𝑘]=F𝛘[𝑘 − 1]+Pu[𝑘] + w[𝑘] 
z[𝑘]=H𝛘[𝑘] + v[𝑘] 

Eq. 45 

where w is the process noise of the system assumed to have a zero mean multivariate normal 
distribution [49], v is the additive sensor noise assumed to be zero mean Gaussian white noise [50], 
while z is the measurement of the true state the 𝛘. 

In Flight Phases I and II, the Kalman filter relies on measurements from the GNSS, accelerometer, 
and gyroscope sensors to estimate the state of the rocket, but during Flight Phase III, the primary 
navigation sensor switches from the GNSS to the ArUco marker-based Camera position estimation, 
which provides higher accuracy for position measurements near the landing site. The covariance 
matrices for process noise 𝑄, sensor 𝑅, and initial state error 𝑃0 are configured to reflect the 
characteristics of these sensors and the dynamics of the system, these matrices are described in detail 
in Appendix B. 
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▪ 𝑃0: Defines the initial uncertainty for the state vector, with smaller variances for position and 
velocity and higher variances for angular velocity and Euler angles. Biases are initialized with 
low uncertainty to reflect their assumed stability at the start of the flight. 

▪ 𝑄: Assumes small process noise for position, velocity, angular velocity, and Euler angles to 
model system dynamics accurately. 

▪ 𝑅: Incorporates GNSS position variances, which dominate the measurement noise for 
position. Reflects the variances of velocity and angular velocity measurements derived from 
accelerometer and gyroscope specifications and their combined noise power reflected in the 
Complementary Filter. Euler angles are obtained from the complementary filter, with noise 
derived as a weighted combination of accelerometer and gyroscope noise. 

3.2.3 Control Module Design 

The Control module is designed to replicate the real-world behavior of the control algorithms. It 
models the decoupled Longitudinal and Latitudinal controllers that manage thrust vectoring and 
engine throttle adjustments, incorporating system dynamics and response delays. Using separate 
controllers for the Longitudinal and Latitudinal dynamics simplifies the control design by allowing 
each controller to focus on a specific aspect of the rocket's motion. This separation reduces complexity 
and enables independent tuning of each controller, making it easier to optimize performance while 
also enhancing robustness, as disturbances in one axis, such as lateral wind gusts, can be handled 
locally without affecting the control of other axes [51]. Additionally, splitting the control into two 
simpler systems is computationally efficient compared to implementing a single, large multi-input 
multi-output controller. 

Decoupling the dynamics is justified by the weak coupling between the Longitudinal and Latitudinal 
motions under normal operating conditions. Linearizing the system around stable points, reveals that 
the coupling terms are small enough to be approximated as negligible. This allows each controller to 
operate independently without significant loss of accuracy. Furthermore, the rocket's physical design, 
with orthogonal alignment of forces and torques along principal axes, inherently supports this 
decoupling. The design parameters of the controllers and their stability are detailed in Appendix C. 

3.2.3.1 Longitudinal Controller 

The Longitudinal Controller for the rocket is implemented using LQR [52] with Integral Action [53] 
for trajectory tracking to stabilize and control the longitudinal dynamics by having the longitudinal 
states xlon  reach their setpoints by controlling their respective control-inputs ulon, these are defined as: 

xlon = [𝑥 𝑧 𝑢     𝑤 𝑞 𝜃]𝑇 
ulon = [𝜇𝑝 𝑇]𝑇 

Eq. 46 

The LQR design uses the linearized A and B matrices evaluated at each flight phase around operating 
points x𝟎.  

Alon = A([1, 3, 4, 6, 7, 9], [1, 3, 4, 6, 7, 9]) 
Blon = B([1, 3, 4, 6, 7, 9], [1, 3]) 

Clon = C([1, 3, 4, 6, 7, 9], [1, 3, 4, 6, 7, 9]) 

Eq. 47 

where, the notation A(𝑖, 𝑗)  refers to selecting the rows 𝑖 and columns 𝑗 from A with the indices being 
determined based on the arrangement of states and inputs in the full system matrices to extract the 
Alon matrix. The same procedure applies for the Blon and Clon using the indices provided for B(𝑖, 𝑗) and 
C(𝑖, 𝑗). The longitudinal state-space with the output y

lon
 is represented as: 

xlon[𝑘 + 1]=Alonxlon[𝑘]+Blonulon[𝑘] 
y

lon
[𝑘]=Clonxlon[𝑘] 

Eq. 48 

To compute the Klon discrete-time optimal LQR gain matrix for the Longitudinal Controller, integral 
states are introduced to track the cumulative error between the reference rlon and the output y

lon
, the 

state-space model of Eq. 48 is augmented to include the integral states resulting in the following 
augmented state-space model: 
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[
xlon[𝑘 + 1]

y
lon
[𝑘] − rlon[𝑘]

]
⏟          

x̃lon[𝑘+1]

= [
Alon 𝑂
−Clon 𝐼

]
⏟      

Ãlon

[
xlon[𝑘]

y
lon
[𝑘] − rlon[𝑘]

]
⏟          

x̃lon[𝑘]

+ [
Blon[𝑘]
𝑂

]
⏟    

B̃lon

ulon[𝑘] 

y
lon
[𝑘] − rlon[𝑘]⏟          

ỹlon
[𝑘]

= [−Clon 𝐼]⏟      
C̃lon

[
xlon[𝑘]

y
lon
[𝑘] − rlon[𝑘]

]
⏟          

xl̃on[𝑘]

 

Eq. 49 

The Longitudinal LQR controller matrix that minimizes the cost function: 

Jlon =∑(x̃lon[𝑘]
𝑇Q

lon
x̃lon[𝑘] + ulon [𝑘]𝑇Rlonulon[𝑘])

∞

𝑘=0

 
Eq. 50 

where Q
lon

 is a matrix which penalizes state deviations from the desired trajectory and Rlon is a matrix 

which penalizes excessive control effort. This const function is computed by solving the discrete-time 
Algebraic Riccati equation [54]. The optimal control law in discrete-time is: 

ulon [𝑘] = −Klonx̃lon[𝑘] 
Eq. 51 

3.2.3.2 Latitudinal Controller 

The design of the Latitudinal Controller is akin to that of the Longitudinal controller. The latitudinal 
states xlat  and their control-inputs ulat are defined as: 

xlat = [𝑦 𝑣 𝑟     𝜓]𝑇 
ulat = [𝜇𝑦 𝑇]𝑇 

Eq. 52 

The linearized latitudinal state transition matrix Alat and the control-inputs matrix Blat are extracted 
from the A and B matrices evaluated at each flight phase around operating points x𝟎.  

Alat = A([2, 5, 8, 10], [2, 5, 8, 10]) 
Blat = B([2, 5, 8, 10], [1, 2]) 

Clat = C([2, 5, 8, 10], [2, 5, 8, 10]) 

Eq. 53 

The latitudinal state-space representation is defined as: 

xlat[𝑘 + 1]=Alatxlat[𝑘]+Blatulat[𝑘] 
y

lat
[𝑘]=Clatxlat[𝑘] 

Eq. 54 

To create the LQR controller with Integral Action, the longitudinal state-space is augmented with the 
integral states resulting in the following state space model: 

[
xlat[𝑘 + 1]

y
lat
[𝑘] − rlat[𝑘]

]
⏟          
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y
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Eq. 55 

The Latitudinal LQR controller matrix that minimizes the cost function: 

Jlat =∑(x̃lat[𝑘]
𝑇Q

latx̃lat[𝑘] + ulat [𝑘]
𝑇Rlatulat[𝑘])

∞

𝑘=0

 
Eq. 56 

where Q
lat is the latitudinal state cost matrix and Rlat is the latitudinal control cost matrix. The optimal 

feedback law for the Latitudinal Controller is computed as: 

ulat [𝑘] = −Klatxlat[𝑘] 
Eq. 57 

where Klat is the latitudinal feedback gain matrix. 
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4 Simulation Results  

Simulation runs were conducted using the devleoped co-simulation environment. As a simplification, 
no wind gusts or external disturbances were introduced into the test runs apart from the inherent 
noise characteristics of the sensors and the added process noise affecting the states. 

To address the research question, two distinct simulation runs were performed. In the first scenario, 
the GNC subsystem operated solely using data from the IMU and GNSS sensors. In the second 
scenario, the system was augmented with visual navigation data derived from the onboard camera 
detecting fiducial markers. For both scenarios the seed values for the noise level generators inside the 
Simulink environment were kept the same, thus ensuring the GNC would be tested against the same 
cases unbiased. Presented in Figure 24, is an image capture inside the UE5 environment showing the 
rocket in Flight Phase 3 with the GNC detecting the ArUco marker and heat from the rocket engine’s 
exhaust disrupting the image view around the landing pad. 

 

Figure 24: Image capture from the Camera inside the UE5  

Results from init test runs are show in Figure 25 and Figure 26, where the true and estimated 
positions along the three axes of the rocket in both scenarios are presented, with the end of the flight 
phases, landing leg deployment, landing leg latching and engine cutoff marked along the vertical axis.  

 

Figure 25: Estimated vs. True Position of the rocket using IMU+GNSS 
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Figure 26: Estimated vs. True Position of the rocket using IMU+GNSS+Camera 

As expected, the flight paths of the rocket up until the end of the Flight Phase 2 (marked as 
on the figures) are the same since the ArUco marker detection and position estimation 
starts from Flight Phase 3, until that point the Control module acts the same. Another observation 
which can be made is that the  happens later, this implies that the Navigation module 
is much more confident where the rocket is and thus lands later for a controlled touch-down. 

To have a better understanding of the results, Figure 27 presents only the flight path of the rocket 
from the beginning of Flight Phase 3 until touchdown. As it can be seen, the rocket is landing faster if 
the GNC is not using the Camera to get its position from the ArUco makers. Further analysis of the 
figure shows that the positioning with the Camera after 26.2 [𝑠] the position estimation has an added 
bias, this can be clearly seen on the  subplot. As described in 3.2.1.2, 
this is due to the fact that the ArUco marker disappear from the camera view at which point there is no 
positioning computed with it and thus the inertial navigation using only the IMU takes over to try and 
land the hopper at its designated position. 

 

Figure 27: Flight Phase 3 Estimated vs. True Position of the rocket  
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Figure 28: Comparison of RMSE, MAE and MaxAE between the GNC using the Camera (bar plot 1) 

and without using the Camera (bar plot 2)  

To deduce if the Camera used during the final Flight Phase improves the position estimation and its 
overall controlled landing of the rocket, statistical measures are presented in Figure 28, such as the 
Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Maximum Absolute Error 
(MaxAE) for each axis can be used between the estimated and the true positions. These metrics 
quantify how closely the estimated positions match the true positions, as it can be seen from the 
figure, using the Camera slightly improves the position estimation, this is especially true because the 
vertical positioning accuracy (as described in Table 4) of the GNSS unit of the MTi-7 is greater than 
those of the other axes. 

 

Figure 29: Comparison of EKF X Position Variance  

As stated before, further investigating the EKF position variance confirms that when the Guidance 
module commands the Navigation module to start using the ArUco marker data, the confidence of the 
rocket’s vertical position is increased (as shown in Figure 29) by the fast decrease in the position 
variance.  
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After the initial tests, a total of 100 Monte Carlo simulation runs were conducted to compare the 
performance of the GNC system in the two scenarios. This way the accuracy, precision and robustness 
of the landings are evaluated, this is done by changing the seed values for the noise generators of the 
sensor and process noises in the Simulink environment for each simulation run. Thus, a range of 
disturbances is simulated, allowing for a thorough assessment of the GNC's ability to ensure a stable 
and controlled landing under varying conditions. 

4.1 GNC Accuracy and Precision 

The accuracy and precision is evaluated based on the true 𝑦𝐸  lateral and true 𝑧𝐸 longitudinal positions 
recorded during the simulation runs. These measures were determined the following way: 

• Accuracy was determined by calculating the closeness of the average landing position to the 
target landing pad position, this was quantified as the Euclidean distance between the average 
landing position across all runs and the target landing pad position.  

• The precision, on the other hand, was calculated to measure the consistency of the landing 
positions across the simulation runs, this was evaluated as the standard deviation of the 
landing positions around the average landing position. 

Presented in Figure 30 are two areas shaded in red for the landings performed without using the 
Camera and in blue where the GNC used the Camera. 

 

Figure 30: Rocket landing positions on the landing area 

The shaded areas represent the most frequent areas where the rocket has landed, created by 
generating a convex hull from the recorded landing positions. As it can be seen on the figure above, 
the blue area has a smaller spread compared to the red area, indicating that the precision of the GNC, 
when it also uses the Camera, is greater as it resulted in precision of 0.42 [𝑚] compared to the 1.06 [𝑚] 
precision. As for the accuracy, the GNC performed yet again better when it had access to the Camera-
based positioning, as it averaged a 0.82 [𝑚] accuracy compared to 1.17 [𝑚]. 

Rocket Landing Positions 
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4.2 GNC Robustness 

To evaluate the robustness, the landing outcomes of the rocket were categorized into three distinct 
categories: crash-landing, fallen over after landing, and successful landing. This classification provides 
a qualitative measure of how well the GNC handles various noise conditions introduced during the 
simulations. The landing categories are defined as follows: 

• A crash-landing occurs when the rocket impacts the ground with insufficient control to 
decelerate and stabilize before touchdown. This outcome is identified if the rocket's true 𝑥𝐸  
position is below the height corresponding to the origin of the rocket plus the height gained 
from the fully deployed landing legs. Additionally, a crash-landing requires that the true 𝑢 

vertical velocity at impact to be less than −1.0 [
𝑚

𝑠
]. If these conditions are met, the rocket is 

considered to have crash-landed. 

• The fallen over after landing category represents a scenario where the rocket successfully 
lands but subsequently becomes unstable and tips over. This is determined by monitoring the 
𝜃 and 𝜓 rocket's Euler angles in the Flat-Earth reference frame at the end of the simulation. If 
the absolute value of either angle exceeds 7.5 [°], the rocket is classified as having fallen over, 
indicating that the rocket had deviated too much from the 0.0 [°] desired Euler angles at the 
end of the flight phase. 

• A successful landing occurs when the rocket touches down, decelerates effectively, and 
remains upright throughout the simulation. In this scenario, the rocket satisfies the altitude 
and velocity thresholds for landing without tipping over, maintaining the 𝜃 and 𝜓 Euler angles 
within ±7.5 [°]. 

The gathered data for the analysis of the landing, post rocket engine cutoff, was done by letting the 
UE5 physics engine run for an additional 5 [𝑠] with the final states of the rocket transmitted from 
Simulink. During this time period where the Control module was completely shut-down, allowed the 
UE5 to simulate the post touch-down states of the rocket and transmit these states back to Simulink.  

While there was not much of a difference between the landing accuracy, the robustness offers a better 
overview of the gained performance to use landing markers for rocket hoppers. The results of the 60 
simulation runs (presented Figure 31) demonstrate the significant impact of incorporating visual 
navigation data from the camera on the robustness of the GNC system.  

 

Figure 31: Post touchdown landing categories 

With the inclusion of ArUco marker-based positioning during the third flight phase, the GNC system 
achieved a 94% success rate for stable landings, compared to only 50% in the scenario without camera 
data. Additionally, no crash-landings occurred in the camera-assisted scenario, while 8 were observed 
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when relying solely on IMU and GNSS measurements. Furthermore, the number of instances where 
the rocket fell over after landing was significantly reduced from 17 to 3 with the use of visual 
navigation. These results underscore the ability of fiducial marker-based navigation to enhance 
landing stability and accuracy, particularly during the critical descent phase. 

 
Average Remaining Propellant 

Without Camera 1.86 [𝑘𝑔] 

With Camera 1.77 [𝑘𝑔] 

Table 6: Average Remaining Propellant 

Interestingly enough, the added accuracy, precision and robustness does not come with much of a 
cost. As shown in Table 6, throughout the 50 − 50 simulation runs the rocket had on an average 

around 1.80 [𝑘𝑔] of propellant remaining out of the 5 [𝑘𝑔] with the average propellant consumption 
when the GNC uses the Camera slightly higher than when it is not.   
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5 Conclusion 

The results of the simulations provide initial insights into the impact of incorporating fiducial marker-
based visual navigation on the GNC system's performance during the rocket's landing phase. The 
comparison between the two scenarios—using only IMU and GNSS data versus augmenting the 
system with camera-based position estimates—demonstrates significant improvements in accuracy, 
precision, and robustness when visual navigation is employed.  

In the Camera-assisted scenario, the GNC system achieved a 94% success rate for stable landings, 
compared to only 50% when relying solely on IMU and GNSS data. Furthermore, the number of 
instances where the rocket fell over after landing was reduced from 17 to 3, and no crash-landings 
occurred with the camera-assisted configuration. These results emphasize the ability of fiducial 
marker-based navigation to enhance landing stability and reduce variability, particularly during the 
critical final moments of descent. 

Metrics such as RMSE, MAE, and MaxAE also confirm that the addition of the camera improves 
position estimation accuracy, especially in the lateral and longitudinal axes. However, the results also 
highlight limitations in the current approach. When the ArUco marker disappears from the camera's 
field of view near the landing site, the system reverts to relying solely on the IMU data, leading to a 
loss of the additional accuracy gained from visual navigation.  



43 
 

6 Outlook 

While the integration of fiducial marker-based visual navigation has demonstrated potential for 
improving the accuracy and robustness of the rocket's GNC subsystem, several areas warrant further 
development to enhance its overall performance. One of the key limitations observed in the current 
design is the lack of onboard or online computation of controller gains. The GNC relies on pre-
computed gain schedules, which may not optimally handle scenarios involving heavier disturbances or 
unpredictable noise levels. Incorporating real-time gain adaptation, such as through adaptive control 
techniques or gain scheduling that continuously adjusts to changing flight dynamics, could 
significantly improve the system's ability to respond to unforeseen conditions, enhancing the rocket’s 
robustness during all flight phases. 

Additionally, the assumption that roll control is already implemented in the rocket introduces a 
simplification that may not hold for all designs or missions. While this assumption was valid for the 
scope of this thesis, addressing roll stability is crucial for a comprehensive GNC system. Future 
iterations of the rocket could explore implementing roll control mechanisms such as cold gas thrusters 
or jet vanes. Cold gas thrusters provide precise, rapid adjustments to stabilize roll but may add 
significant mass to the vehicle. Alternatively, jet vanes, which direct the exhaust flow for control 
authority, offer a lightweight solution but may require modifications to the engine design. The 
inclusion of a dedicated roll control subsystem would ensure full control over the rocket's six degrees 
of freedom, paving the way for more complex and dynamic mission profiles. 

Finally, while this thesis focused on short, controlled flight tests with minimal external disturbances, 
the next steps should include testing the GNC system under more realistic environmental conditions. 
Introducing wind gusts, sensor drift over time, and varying levels of external noise in simulation or 
real-world testing would provide a clearer understanding of the system’s robustness. Such testing, 
combined with addressing the aforementioned limitations, would move the GNC design closer to 
operational readiness, ensuring its effectiveness across a broader range of scenarios. 
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A. Operating Points 

To linearize the equations of motion, the system is evaluated at small disturbances around equilibrium 
points corresponding to the end states of each flight phase. The operating points resented in Table 7, 
denoted as x𝟎, include the states and control inputs that define the rocket's behavior in hovering, 
lateral movement, and descent. 

 

Flight Phase I II III 

𝑥𝐸  [𝑚] 30 30 0 

𝑦𝐸  [𝑚] 0.1 0.1 0.1 

𝑧𝐸  [𝑚] 0.1 20 20 

𝑢 [
𝑚

𝑠
] 0.5 0.5 0.5 

𝑣 [
𝑚

𝑠
] 0.5 0.5 0.5 

𝑤 [
𝑚

𝑠
] 0.5 0.5 0.5 

𝑞 [
𝑅𝑎𝑑

𝑠
] 0.05 0.05 0.05 

𝑟 [
𝑅𝑎𝑑

𝑠
] 0.05 0.05 0.05 

𝜃 [𝑅𝑎𝑑] 0.0175 0.0175 0.0175 

𝜓 [𝑅𝑎𝑑] 0.0175 0.0175 0.0175 

𝑇 [𝑁] 𝑚 ⋅ 𝑔 𝑚 ⋅ 𝑔 𝑚 ⋅ 𝑔 

𝜇𝑝 [𝑅𝑎𝑑] 0.0175 0 0 

𝜇𝑦 [𝑅𝑎𝑑] 0.0175 0.0175 0.0175 

Table 7: Flight phase equilibrium points 

  



49 
 

B. Kalman Filter Covariance Matrices and Parameters 

The covariance matrices are constructed from the values presented in the tables below in a diagonal 
matrix, this essentially creates the assumption that the noises affecting the state variables are 
uncorrelated. 

 

State Variance 

Position (𝑥𝐸 , 𝑦𝐸 , 𝑧𝐸) 10 ⋅ 10−6 

Velocity (𝑢, 𝑣, 𝑤) 10 ⋅ 10−6 

Angular Velocity (𝑞, 𝑟) 10 ⋅ 10−6 

Euler Angles (𝜃, 𝜓) 10 ⋅ 10−6 

Accelerometer Biases (𝑏𝑢, 𝑏𝑣 , 𝑏𝑤) 5.0 ⋅ 10−2 

Gyroscope Biases (𝑏𝑞 , 𝑏𝑟) 5.0 ⋅ 10−2 

Table 8: Initial State Error Covariance Matrix 𝑃0 

 

State Variance 

Position (𝑥𝐸 , 𝑦𝐸 , 𝑧𝐸) 8.0 ⋅ 10−2 

Velocity (𝑢, 𝑣, 𝑤) 1.0 ⋅ 10−4 

Angular Velocity (𝑞, 𝑟) 2.0 ⋅ 10−6 

Euler Angles (𝜃, 𝜓) 1.0 ⋅ 10−6 

Accelerometer Biases (𝑏𝑢, 𝑏𝑣 , 𝑏𝑤) 1.0 ⋅ 10−6 

Gyroscope Biases (𝑏𝑞 , 𝑏𝑟) 1.0 ⋅ 10−5 

Table 9: Process Noise Covariance Matrix 𝑄 

 

Measurement Axis/State Variance 

Position (GNSS) 𝑦, 𝑧 16 

Position (GNSS) 𝑥 4 

Velocity (Accelerometer) 𝑢 1.310 ⋅ 10−5 

Velocity (Accelerometer) 𝑣,𝑤 2.007 ⋅ 10−5 

Angular Velocity (Gyroscope) 𝑞, 𝑟 1.440 ⋅ 10−5 

Euler Angles (Complementary Filter) 𝜃, 𝜓 0.98 ⋅ 1.440 ⋅ 10−5 + 2.007 ⋅ 10−5 ⋅ 0.0448 

Table 10: Sensor Noise Covariance 𝑅 for Flight Phase I and II 
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Measurement Axis/State Variance 

Position (Camera ArUco) 𝑥, 𝑦, 𝑧 0.025 

Velocity (Accelerometer) 𝑢 1.310 ⋅ 10−5 

Velocity (Accelerometer) 𝑣,𝑤 2.007 ⋅ 10−5 

Angular Velocity (Gyroscope) 𝑞, 𝑟 1.440 ⋅ 10−5 

Euler Angles (Complementary Filter) 𝜃, 𝜓 0.98 ⋅ 1.440 ⋅ 10−5 + 2.007 ⋅ 10−5 ⋅ 0.0448 

Table 11: Sensor Noise Covariance 𝑅 for Flight Phase III Camera-based positioning  

 

Measurement Axis/State Variance 

Position (Camera ArUco) 𝑥, 𝑦, 𝑧 1 ⋅ 10−3 

Velocity (Accelerometer) 𝑢 1.310 ⋅ 10−5 

Velocity (Accelerometer) 𝑣,𝑤 2.007 ⋅ 10−5 

Angular Velocity (Gyroscope) 𝑞, 𝑟 1.440 ⋅ 10−5 

Euler Angles (Complementary Filter) 𝜃, 𝜓 0.98 ⋅ 1.440 ⋅ 10−5 + 2.007 ⋅ 10−5 ⋅ 0.0448 

Table 12: Sensor Noise Covariance 𝑅 for Flight Phase III IMU-based positioning 
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C. Controller Design Parameters and Closed-loop Stability 

The penalty matrices of the LQI design are constructed from the values presented in the tables below 
in a diagonal matrix.  

As state variables have different units (e.g., [𝑚] for position and [
𝑚

𝑠
] for velocity), controller tuning was 

done by normalizing these such that their contributions to the cost function are comparable. For 
example: weighting of Velocity 𝑢 is done by setting the weight to the normalized maximum error 

which the controller should permit the state to deviate from, in case of Flight Phase I this is 0.6 [
𝑚

𝑠
], 

thus the weight is set to 
1

0.62
.  

To ensure that the rocket has a soft touch-down in Flight Phase III, the weight for the Integral of 
Position 𝑥𝐸 is set to a low value, this places less importance on the cumulative error correction, thus 

the controller prioritizes regulating faster changing states (e.g., velocities) more aggressively. This, in 
combination of setting the Thrust 𝑇 to a lower value than the maximum thrust capable of the Alpha’s 
HRE, makes the rocket hopper kill of its vertical velocity just before hitting the ground instead of 
constantly burning its propellant and climbing down at a slower rate. This technique is called 
retropropulsive landing, also known as suicide burn in the rocketry community.  

 

Penalized State Weight Value 

Position 𝑥𝐸  1 

Position 𝑧𝐸 1 

Velocity 𝑢 
1

0.62
 

Velocity 𝑤 
1

0.62
 

Angular Velocity 𝑞 

1

(0.5 ⋅
𝜋
180)

2 

Euler Angle 𝜃 

1

(2 ⋅
𝜋
180)

2 

Integral of Position 𝑥𝐸  2.5 

Integral of Position 𝑧𝐸  2.5 

Table 13: Flight Phase I Longitudinal State Penalty Matrix 𝑄 

 

Penalized Input Weight Value 

TVC Pitch 𝜇𝑝 
1

(0.5 ⋅
𝜋
180)

2 

Thrust 𝑇 
1

6002
 

Table 14: Flight Phase I Longitudinal Input Penalty Matrix 𝑅 
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Penalized State Weight Value 

Position 𝑦𝐸  
1

0.62
 

Velocity 𝑣 
1

0.12
 

Angular Velocity 𝑟 
1

(0.5 ⋅
𝜋
180

)
2 

Euler Angle 𝜓 

1

(2 ⋅
𝜋
180

)
2 

Integral of Position 𝑦𝐼 2 ⋅
1

0.62
 

Table 15: Flight Phase I Latitudinal State Penalty Matrix 𝑄 

 

Penalized Input Weight Value 

TVC Yaw 𝜇𝑦 
1

(0.5 ⋅
𝜋
180)

2 

Thrust 𝑇 
1

1002
 

Table 16: Flight Phase I Latitudinal Input Penalty Matrix 𝑅 

  



53 
 

Penalized State Weight Value 

Position 𝑥𝐸  1 

Position 𝑧𝐸 1 

Velocity 𝑢 
1

0.62
 

Velocity 𝑤 
1

0.62
 

Angular Velocity 𝑞 

1

(0.5 ⋅
𝜋
180

)
2 

Euler Angle 𝜃 

1

(2 ⋅
𝜋
180

)
2 

Integral of Position 𝑥𝐸  2.5 

Integral of Position 𝑧𝐸  2.5 

Table 17: Flight Phase II Longitudinal State Penalty Matrix 𝑄 

 

Penalized Input Weight Value 

TVC Pitch 𝜇𝑝 
1

(0.5 ⋅
𝜋
180

)
2 

Thrust 𝑇 
1

6002
 

Table 18: Flight Phase II Longitudinal Input Penalty Matrix 𝑅 

 

Penalized State Weight Value 

Position 𝑦𝐸  
1

0.82
 

Velocity 𝑣 
1

0.32
 

Angular Velocity 𝑟 

1

(1 ⋅
𝜋
180)

2 

Euler Angle 𝜓 
1

(10 ⋅
𝜋
180)

2 

Integral of Position 𝑦𝐼 2 ⋅
1

0.82
 

Table 19: Flight Phase II Latitudinal State Penalty Matrix 𝑄 
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Penalized Input Weight Value 

TVC Yaw 𝜇𝑦 
1

(1 ⋅
𝜋
180)

2 

Thrust 𝑇 
1

1002
 

Table 20: Flight Phase II Latitudinal Input Penalty Matrix 𝑅 
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Penalized State Weight Value 

Position 𝑥𝐸  1 

Position 𝑧𝐸 1 

Velocity 𝑢 
1

0.72
 

Velocity 𝑤 
1

0.52
 

Angular Velocity 𝑞 

1

(0.5 ⋅
𝜋
180

)
2 

Euler Angle 𝜃 

1

(4 ⋅
𝜋
180

)
2 

Integral of Position 𝑥𝐸  0.01 

Integral of Position 𝑧𝐸  3 

Table 21: Flight Phase III Longitudinal State Penalty Matrix 𝑄 

 

Penalized Input Weight Value 

TVC Pitch 𝜇𝑝 
1

(1 ⋅
𝜋
180

)
2 

Thrust 𝑇 
1

2002
 

Table 22: Flight Phase III Longitudinal Input Penalty Matrix 𝑅 

 

Penalized State Weight Value 

Position 𝑦𝐸  
1

0.62
 

Velocity 𝑣 
1

0.12
 

Angular Velocity 𝑟 

1

(0.5 ⋅
𝜋
180)

2 

Euler Angle 𝜓 
1

(2 ⋅
𝜋
180)

2 

Integral of Position 𝑦𝐼 2 ⋅
1

0.62
 

Table 23: Flight Phase III Latitudinal State Penalty Matrix 𝑄 
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Penalized Input Weight Value 

TVC Yaw 𝜇𝑦 
1

(0.5 ⋅
𝜋
180)

2 

Thrust 𝑇 
1

1002
 

Table 24: Flight Phase III Latitudinal Input Penalty Matrix 𝑅 
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Figure 32: Flight Phase I Latitudinal Dynamics Closed-loop Stability 

 

 

Figure 33: Flight Phase I Longitudinal Dynamics Closed-loop Stability 
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Figure 34: Flight Phase II Latitudinal Dynamics Closed-loop Stability 

 

  

Figure 35: Flight Phase II Longitudinal Dynamics Closed-loop Stability 
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Figure 36: Flight Phase III Latitudinal Dynamics Closed-loop Stability 

 

 

Figure 37: Flight Phase III Longitudinal Dynamics Closed-loop Stability 
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