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Abstract 
 

Introduction Breast cancer can be treated with neoadjuvant chemotherapy, which involves the 

use of chemotherapy before surgery. The main goal of this type of chemotherapy is to shrink 

the tumor and enhance the likelihood of achieving a pathologic complete response (pCR) 

following surgery. Despite the improvement of neoadjuvant chemotherapy in recent years, 

which has led to increased pCR rates in especially the Her2+ and triple-negative subgroups, 

reliable non-invasive biomarkers or imaging methods for the prediction of pCR are currently 

lacking.  

Methods A total of 291 patients from Deventer Hospital between June 2005 and August 2023 

were retrospectively enrolled. DCE-MRI features during the neoadjuvant chemotherapy were 

collected at three different time points, as well as clinical-pathological variables. For this 

purpose, a subset of DCE-MRI scans was used to evaluate two automatic, deep learning-based 

segmentation models: Zhang network and MAMA-MIA network. The radiological features 

were extracted with Pyradiomics, along with one intensity feature and delta features. All 

extracted features were used to train and test machine learning models for binary classification 

(pCR vs no pCR) and multi-class classification of the residual cancer burden score (RCB) 

(RCB-0 vs. RCB-1 vs. RCB-2 vs. RCB-3). For the binary classification, the model performance 

was assessed based on sensitivity, specificity, and the area under the curve (AUC). Accuracy 

and Cohen’s kappa was used for the multi-class classification model, along with sensitivity, 

specificity and AUC for a one-vs-all classification (RCB-0 vs RCB-1, RCB-2, RCB-3).  

Results This study showed that the MAMA-MIA network segments the breast tumors with the 

highest accuracy. Manual correction of the MAMA-MIA network segmentations was required 

for use in both clinical and research settings. The optimal trade-off between sensitivity and 

specificity for pCR and RCB-0  was achieved using the first two MRIs during the neoadjuvant 

chemotherapy, along with clinical and radiological data. For pCR and RCB-0 the model showed 

sensitivities of 0.75 and 0.81, and specificities of 0.83 and 0.80, respectively. The multi-class 

classification model for RCB showed an accuracy of 0.69 and a Cohen’s kappa of 0.51. 

Conclusion This study highlights the potential of combining clinical and radiological features 

with machine learning to predict pCR in breast cancer patients undergoing neoadjuvant 

chemotherapy. The publicly available deep learning segmentation networks are not robust 

enough for the Deventer Hospital MRIs, and it is therefore recommended to explore retraining 

them using the hospital's data. To optimize the prediction of pCR and RCB, it is recommended 

to expand the dataset, apply external validation, and explore deep learning approaches. Such 

advancements could lead to more accurate predictions of pCR, ultimately enabling more 

personalized breast cancer care. 

 

Keywords Breast cancer, Artificial intelligence, Prediction models, Multimodal prediction 
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1.1 Breast Cancer 
 

1.1.1 Classification of Breast Cancer 

Breast cancer ranks as the most commonly diagnosed cancer in women worldwide [1]. The 

Netherlands recorded 15,634 new cases of invasive breast cancer in 2023 [2]. Breast cancer can 

be subdivided into various subtypes based on the expression of hormone receptors such as 

estrogen (ER) and progesterone (PR), as well as the human epidermal growth factor receptor 2 

(HER2). Depending on the presence or absence of the receptors, breast cancer can be grouped 

into three primary subtypes: hormone receptor-positive breast cancer (HR+), Her2-positive 

breast cancer (Her2+), and triple-negative breast cancer (TNBC) (Table 1).   

 
Table 1 Subtypes of breast cancer. ER: estrogen receptor, PR: progesterone receptor, Her2: human epidermal 

growth factor, HR+: hormone receptor-positive breast cancer, Her2+: Her2-positive breast cancer, TNBC: triple-

negative breast cancer, FISH: fluorescence in situ hybridization (test for assessing the DNA of the breast tumor 

for amplification of HER2 gene) [3,4] 

Subtypes ER PR Her2 

HR+ + or - + or -  - 

Her2+ + or - + or - + or FISH amplification 

TNBC - - - 

 

1.1.2 Imaging Modalities in Breast Cancer  

The initial diagnostic imaging modality for breast cancer is a mammography. On 

mammography, radiologists assess abnormalities, such as architectural distortion, 

calcifications, asymmetry, and mass. Subsequently, an ultrasound-guided biopsy may be 

performed to obtain tissue samples for pathological examination [5]. This procedure is essential 

for not only confirming the diagnosis but also for evaluating the receptor status of the tumor. 

Determining the receptor status is crucial for guiding treatment decisions for the patient. 

Additionally, although breast magnetic resonance imaging (MRI) can help measure tumor size 

and assess treatment response, it is not conducted for every breast patient [6]. If an MRI is 

performed, the guidelines of the European Society of Breast Imaging (EUSOBI) recommend 

using a T1-weighted Dynamic Contrast-Enhanced (DCE) sequence. [7] In this sequence, a 

paramagnetic contrast agent is intravenously injected, altering the recovery time of water 

molecules in the body after exposure to a magnetic field, which adjusts the contrast in T1-

weighted images [8]. Analyzing changes in tissue contrast over time allows for determining the 

extent of tissue vascularization, interstitial space composition and lesion differentiation [6].  
 

1.1.3 Therapy  

The primary treatments for breast cancer can be divided into two categories: local- and systemic 

treatments [9]. The local treatments target a specific organ or a confined area of the body, such 

as surgery and radiotherapy [10]. On the other hand, systemic therapy refers to treatments that 

circulate through the bloodstream to reach and affect cells all over the body. These treatments 

are usually divided into three categories: (a) conventional cytotoxic chemotherapy, (b) 

hormonal agents, and (c) targeted therapy or immunotherapy [11]. The clinical indication for a 

specific treatment is determined based on several factors, for example, the tumor’s molecular 

subtype, the grade of the tumor, and the stage of the tumor [5,12,13].  

 

One important application of systemic therapy is neoadjuvant chemotherapy, which involves 

the use of chemotherapy before surgery [14]. This form of therapy is mainly considered in two 

specific types of breast tumors: Her2+ and TNBC. The main goal of this type of chemotherapy 

is to shrink the tumor and enhance the likelihood of achieving a pathologic complete response 
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(pCR) following surgery. A pCR signifies the absence of residual cancer in both the breast tissue 

and the lymph nodes. The chance of achieving a pCR is approximately 40% [15] for Her2+ 

tumors and 40-50% [16] for triple-negative tumors. The benefits of neoadjuvant systemic 

therapy, besides increased likelihood of reaching pCR, include a greater probability of breast-

conserving surgery and the removal of smaller tumor volumes during these procedures, leading 

to better cosmetic results [17]. 

 

1.1.4 Therapy Response Evaluation 

  

1.1.4.1 Radiological Complete Response  

The response evaluation assesses the effectiveness of the treatment regimen. In the case of 

neoadjuvant chemotherapy, this evaluation considers both the radiological and pathological 

response assessment. A radiological complete response (rCR) indicates the absence of visible 

tumor lesions on radiological imaging following neoadjuvant systemic therapy and is assessed 

by the radiologist. Patients with rCR presented a 3-year recurrence-free survival (RFS) of 

92.8% in all subtypes, in contrast to the 74.8% observed in the absence of rCR, across the entire 

breast cancer population [18]. Similarly, other research showed a 2.4-fold increase in risk of 

recurrence for patients without rCR compared to patients with rCR [19]. 

 

1.1.4.2 Pathologic Complete Response  

Neoadjuvant chemotherapy was initially developed to reduce tumor size, making surgical 

interventions easier and increasing the likelihood of complete tumor removal. In addition to 

this, achieving a pCR after chemotherapy is associated with improved survival outcomes. A 

pCR indicates the absence of residual cancer in breast tissue and lymph nodes after neoadjuvant 

chemotherapy upon examination of the resected tissue by the pathologist. Gampenrieder et al, 

suggest that patients achieving pCR generally experience better outcomes during follow-up. In 

a retrospective analysis encompassing all subtypes of breast cancer, the patients who achieved 

pCR had a significantly lower risk of recurrence of death, with a 3-year RFS of 94.4% compared 

to 78.3% for those without pCR [18]. Besides this, in HR+ breast cancer, the concurrence 

between rCR and pCR, is in general, about 30%, whereas it reaches approximately 50% in 

Her2+ breast cancer. Additionally, within Her2+ breast carcinomas, there are subgroups that 

respond differently to neoadjuvant chemotherapy, impacting rCR and pCR. For Her2+/HR- 

cases, indications suggest an 87% concurrence between rCR and pCR. In the case of 

Her2+/HR+, this concurrence is about 53% [20]. For TNBC, agreement between rCR and pCR 

is attained in nearly 30% [18].  
 

Various prognostic factors are recognized for guiding decisions regarding neoadjuvant 

chemotherapy. These factors encompass patient-related variables, such as age, performance 

status, and body mass index (BMI), as well as tumor-related variables, including tumor size, 

hormone receptor status, Her2 status, tumor grade, and lymph node status. Moreover, high 

levels of the Ki-67 protein [21], an increased number of micro ribonucleic acid (microRNAs) 

[22], and an increased number of tumor-infiltrating lymphocytes [23] are all associated with a 

greater likelihood of achieving pCR following neoadjuvant chemotherapy. 
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1.2 Study Aim 
                                                                                                            

Despite the improvement of neoadjuvant chemotherapy in recent years, which has led to 

increased pCR rates, especially in the Her2+ and triple-negative subgroups, reliable non-

invasive biomarkers or imaging methods for the prediction of pCR are currently lacking [24]. 

Additionally, there is only a 30% concordance between rCR and pCR in HR+ and TNBC breast 

cancer. Nowadays, the conformation of pCR can only be obtained through surgical resection of 

the breast tissue followed by a histopathological examination. For these reasons, this research 

will investigate the main question: How can artificial intelligence be used to predict a 

pathologic response based on clinical-pathological and radiological information among 

patients diagnosed with stadium I-III breast cancer receiving neoadjuvant chemotherapy?  

 

An artificial intelligence (AI) model capable of reliably predicting the pathological response in 

breast cancer patients after neoadjuvant treatment could further personalize the care of these 

patients. In the future, it may even be possible to safely omit surgery for some patients with a 

positive pCR prediction after chemotherapy. This approach would alleviate the patient’s 

physical and emotional burden. Additionally, it would lead to a reduction in healthcare costs. 

Moreover, during neoadjuvant chemotherapy, patients currently receive a fixed number of 

chemotherapy cycles; the assessment of radiological response during treatment does not alter 

this regimen. With the help of the AI model, the pathologic response can be monitored 

throughout treatment, enabling adjustments to the treatment plan and potentially reducing the 

number of chemotherapy cycles for each individual patient [20]. 
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2.1 Cancer  

 

The ability of cells to repair and renew themselves is essential for maintaining healthy tissues 

and organs in the human body. This process is regulated by a network of signaling pathways 

that control the cell cycle, DNA repair, and apoptosis. When these regulatory mechanisms are 

disrupted, it can lead to uncontrolled cell division, resulting in cancer [25]. 

Mutations in specific genes, namely proto-oncogenes and tumor suppressor genes, play an 

important role in this process, leading to uncontrolled cell division. Proto-oncogenes are genes 

responsible for producing proteins that stimulate cell growth and division. A mutation in a 

proto-oncogene results in an oncogene. This oncogene causes abnormal cell proliferation even 

without the presence of growth factors. Continuous stimulation of cell proliferation can lead to 

cell accumulation and tumor formation. On the other hand, tumor suppressor genes play a 

crucial role in inhibiting cell growth and promoting DNA repair or apoptosis in case of severe 

cell damage. Mutations in tumor suppressor genes can cause these genes to lose their regulatory 

functions. This allows damaged cells to survive and divide uncontrollably, contributing to tumor 

formation [25]. 

 

The concept of cancer has been further refined by the identification of the ‘hallmarks of cancer’, 

which describe the essential characteristics of cancer cells. According to Hanahan and Weinberg 

[26], these hallmarks include the following eight biological capacities (Figure 1):  

1. Sustaining proliferative signaling: cancer cells can produce their own growth signals or 

bypass growth signals. 

2. Evading growth suppressors: cancer cells ignore signals that would stop normal cells 

from growing. 

3. Resisting cell death: cancer cells can avoid apoptosis, allowing damaged cells to stay 

alive and multiply. 

4. Enabling replicative immortality: cancer cells can divide indefinitely by increasing 

telomerase activity, for example. 

5. Inducing or accessing vasculature: cancer cells promote the formation of new blood 

vessels to supply themselves with nutrients and oxygen. 

6. Activating invasion and metastasis: cancer cells can invade surrounding tissues and 

spread to other parts of the body. 

7. Reprogramming cellular metabolism: cancer cells alter the energy production and 

metabolic pathways to support rapid growth and survival, even under conditions that 

would be unfavorable to normal cells. This often involves a shift to aerobic glycolysis, 

allowing cancer cells to produce energy even in low-oxygen environments. 

8. Avoiding immune destruction: cancel cells have the ability to evade detection and 

elimination by the body’s immune system.  

 

In addition to the eight core hallmarks of cancer, two enabling characteristics have been 

identified [26]. These characteristics facilitate the emergence and persistence of the core 

hallmarks, helping to drive cancer progression and adaptation (Figure 1):  

1. Genome instability and mutation: Genomic instability fuels the mutation process, 

allowing cancer cells to rapidly acquire genetic changes that drive tumor progression. 

These mutations can affect key genes that control cell growth, death, and differentiation, 

providing cancer cells with the flexibility to adapt and survive under various conditions, 

such as during metastasis or treatment resistance. 

2. Tumor-promoting inflammation: Chronic inflammation in the tumor microenvironment 

acts as a key driver of cancer progression. Inflammatory cells and cytokines can promote 

tumor growth by supplying bioactive molecules such as growth factors, survival signals, 
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and pro-angiogenic factors. This inflammation aids in nearly every stage of cancer 

development, including proliferation, invasion, and metastasis. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In 2023, there were 128,927 new cases of cancer in the Netherlands [2]. The most commonly 

diagnosed types of cancer are breast, lung, prostate, colon, and rectal- cancer. Among women, 

breast cancer is the most frequently diagnosed cancer, with an incidence of 15,634 cases [2]. 

The four most prevalent types of breast cancer are [27]: 

1. Ductal Carcinoma In Situ (DCIS): DCIS is an early stage of breast cancer where 

abnormally growing epithelial cells are localized within the ducts of the breast. The 

cancer cells remain at their original location and have not invaded to other parts of the 

breast or body .  

2. Invasive Ductal Carcinoma (IDC): IDC originates in the ducts and is invasive. This 

means the cancer cells invaded to the surrounding breast tissue. IDC has the potential 

to invade further to other parts of the body via blood vessels or lymph nodes. 

3. Lobular Carcinoma In Situ (LCIS): LCIS originates in the lobules of the breast and is 

non-invasive. 

4. Invasive Lobular Carcinoma (ILC): ILC, like LCIS, starts in the lobules of the breast 

but has invaded into the surrounding tissue. 

For the early detection of breast cancer, the Netherlands uses a national breast cancer screening 

program, which is available to women aged 50-75 years. Every two years, these women are 

invited to undergo a mammogram, which is assessed by a radiologist using the Breast Imaging 

Reporting and Data System (BI-RADS) [28]. This classification includes the amount of 

fibroglandular tissue, background parenchymal enhancement, and the assessment category. The 

use of BI-RADS aids in the systematic evaluation of mammography images and supports 

decision-making regarding additional tests or treatments. 

 

 

 

Figure 1 Hallmarks of Cancer. Figure taken from [26]. 
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2.2 Clinical and Radiological Variables 
 

Neoadjuvant chemotherapy followed by surgical removal of pathological tissue is one of the 

treatment options for breast cancer. The goal of neoadjuvant chemotherapy is to shrink the 

tumor as much as possible, making surgical removal easier and increasing the likelihood of 

complete tumor removal. In addition to this, achieving a pCR after chemotherapy is associated 

with improved surgical outcomes. This study examined how clinical and radiological variables 

can be integrated with artificial intelligence (AI) to predict pCR in breast cancer patients after 

neoadjuvant chemotherapy. Developing a predictive model that integrates clinical and 

radiological factors associated with pCR could support the personalization of treatment 

strategies. This study included clinical parameters, such as patient characteristics and tumor 

type, as well as radiological features derived from DCE-MRI. 

 

2.2.1 Clinical variables  

 
2.2.1.1 Prognostic Factors  

Various prognostic factors are recognized for guiding decisions regarding neoadjuvant 

chemotherapy. These factors can encompass patient-related variables, such as age, performance 

status, menopausal status, and BMI [29]. The performance status can be indicated by the 

American Society of Anesthesiologists Physical Status (ASA score). This scoring system works 

with a score of 1 to score 5, where score 1 represents a healthy patient and score 5 describes a 

patient who, without treatment, dies within 24 hours. In addition, tumor-related variables such 

as tumor size, hormone receptor status, Her2 status, tumor grade, and lymph node status are 

considered prognostic [30]. Mainly, Her2+ and triple-negative subtypes show better prognosis 

and favorable response rates after neoadjuvant chemotherapy than HR+ subtypes [31]. 
 
2.2.1.2 Blood profile   

The patient's blood profile may also influence the treatment’s effectiveness. For example, 

platelets not only contribute to tumor growth and spread but also play a role in reducing the 

efficacy of chemotherapy. They promote tumor proliferation by releasing growth factors, 

enabling tumors to counteract the effects of chemotherapy [32]. This decreases the effectiveness 

of the treatment and makes tumors more resistant to therapies. Furthermore, a reduced 

hemoglobin concentration can lead to hypoxia in tumors. Hypoxia stimulates the 

overexpression of genes involved in drug resistance, making tumors more resilient to 

chemotherapy. This occurs because hypoxia increases the activity of efflux pumps, which 

actively expel chemotherapeutic agents from tumor cells [33]. As a result, intracellular drug 

concentrations drop, further reducing the effectiveness of the treatment. 
 

2.2.1.3 Ki-67 and microRNA 

Yerushalmi et al. describe the Ki-67 protein as a prognostic factor. The Ki-67 protein is 

associated with cellular proliferation. As a result, a high level of Ki-67 correlates with a worse 

prognosis and it can be used to predict pCR after neoadjuvant chemotherapy [34,35]. Among 

histological grade characteristics, only the Mitotic Activity Index (MAI) was proven to be of 

prognostic value [36]. The MAI is the most widely used method to estimate mitotic activity and 

is defined as the number of mitotic figures in a given area of the tumor [37]. This, along with 

the extent of tube formation and nuclear pleomorphism is incorporated into the Bloom-

Richardson grading system.  

Also, sixty of the 123 microRNAs seem to have a possible association with prognosis and 

neoadjuvant response [22]. MicroRNAs are small, non-coding RNA molecules, which play a 

role in the regulation of gene expression. They bind to messenger RNA (mRNA) and can inhibit 
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the translation of mRNA to proteins or degrade the mRNA. As a result, they affect various 

biological processes such as differentiation, proliferation, and apoptosis [38]. Lastly, neutrophil 

count, lymphocyte count, neutrophil/lymphocyte ratio, and thrombocytes/lymphocytes ratio 

seem to have predictive value for pCR [32,39,40]. 

 
2.2.2 Radiological features 

Radiomics is a widely used approach for defining features in advance for a predictive model 

[41]. Radiomics aims to extract quantitative information from diagnostic images. These 

radiomics features are calculated based on the segmentation of the tumor. The features can be 

divided into three different categories [42] (Figure 2):  
1. Intensity features: first-order statistics features 

2. Shape features: shape-based features 

3. Texture features: gray level co-occurrence matrix features, gray level run length matrix 

features, gray level size zone matrix features, neighboring gray-tone difference matrix 

features, and gray level dependence matrix features.  

A systematic review and meta-analysis using MRI radiomics features for the prediction of pCR 

in breast cancer patients undergoing neoadjuvant chemotherapy shows a mean area under the 

curve (AUC) of 0.78 [43]. Nardone et al. conducted a systematic review that highlights several 

studies predicting pCR with delta radiomics, analyzing features at different acquisition time 

points, often before and after therapy (the so-called delta features) [44]. Guo et al. included 140 

patients who underwent DCE-MRI both before and after the first cycle of chemotherapy. This 

article showed that a prediction model with the features before the start of chemotherapy, the 

features after the first cycle of chemotherapy, and the delta features combined achieved an AUC 

of 0.87 [45].  

 

 

Additionally, a recent article demonstrates that MRI-based tumor shrinkage patterns (TSP) 

during neoadjuvant chemotherapy are associated with pCR [46]. This study included 362 

patients, with TSP classified into four categories: concentric shrinkage (CS), diffuse decrease 

(DD), decrease of intensity only (DIO) and stable disease (SD). Furthermore, the CS pattern 

was further specified as: simple CS, CS to small foci, and CS plus decreased enhancement. The 

DD was also further specified as: concentric shrinkage with surrounding lesions and residual 

multinodular lesions. TSP determination in this study was conducted by two breast radiologists. 

Results suggested that a DD pattern in HR+/Her2- patient strongly predicts pCR, while an SD 

pattern in Her2+ patients and triple negative patients suggested a non-pCR. 

 

 

Figure 2 Radiomics workflow: starting with image acquisition (in this study: DCE-MRI), followed by image 
segmentation and feature extraction. 
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2.3 Prediction Models 
 

2.3.1 Supervised learning  

Prediction models based on machine learning use predefined features to identify patterns in the 

data, which are then used to estimate the outcome variable—in this case, pCR in breast cancer 

patients. Machine learning algorithms can identify patterns through various approaches, 

including supervised, unsupervised, and semi-supervised learning. This study utilized 

supervised learning, where a function is optimized to map input features to outcome variables 

based on sample input-output pairs (Figure 3). To optimize this function, the data is typically 

divided into training and test sets (Figure 3). The training set is used to train the model, allowing 

it to learn underlying patterns and relationships between the input features and the outcome 

variable. The test set remains untouched during the training process and is used solely to 

evaluate the model’s performance. This ensures an unbiased assessment of the model's ability 

to generalize to new, unseen data. In addition to the train- and test set, the training set is often 

further subdivided into a primary training subset and a validation subset. The validation set 

plays a role in hyperparameter tuning. Hyperparameters—such as the number of neighbors in a 

K-nearest neighbors (KNN) model or the maximum depth of a tree in a Decision Tree (DT) 

model—are predefined settings. By using the validation set, different hyperparameter 

configurations can be tested to identify the optimal combination for achieving the best model 

performance [47].  

 

 

 

 

2.3.2 Machine learning algorithms  

Various machine learning models can be fit on the training set. Some commonly used 

approaches are [48]:  

• Naive Bayes: 

Naive Bayes (NB) is a probabilistic classifier based on Bayes’ theorem, which is a 

fundamental principle in probability theory (Equation 1) that quantifies the likelihood 

of a hypothesis by incorporating prior knowledge and updating it with new information. 

Besides this, the NB classifier used the assumption that features are conditionally 

independent given the class label.  

 

 

  

Figure 3 Supervised learning with splitting data into training set and test set. 
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𝑃 (𝐴|𝐵) =
𝑃(𝐵|𝐴) ∗ 𝑃(𝐴)

𝑃(𝐵)
 

 

(1) 

Equation 1 P(A|B): posterior probability – probability of event A occurring given event B, P(B|A): likelihood – 

probability of event B occurring given event A, P(A): prior probability – initial probability of event A occurring,  

P(B): marginal likelihood – total probability of event B occurring, regardless of event A 

Common variants of the NB classifier are, for example, the Gaussian NB classifier or 

the Bernoulli NB classifier. The Gaussian NB classifier works well for continuous data 

and assumes the features follow a Gaussian distribution. It uses the probability density 

function of a Gaussian distribution to calculate the probability of each feature given a 

class (Equation 2). The total probability for the class is calculated by multiplying the 

probabilities for all features. These feature probabilities, along with the prior probability 

of the class and the marginal likelihood, are combined using Bayes' Theorem. This 

process is repeated for each class, and the class with the highest posterior probability 

P(A|B) is selected as the predicted class. 

 
 

𝑃 (𝐵|𝐴) = (
1

√2𝜋𝜎2
) ∗

(𝑒−(𝑥 − 𝜇)2

2𝜎2
 

(2) 

Equation 2 P(B|A): likelihood – probability of event B occurring given event A, µ: mean of feature, σ: standard 

deviation of feature 

On the other hand, the Bernoulli NB classifier is designed for binary data and assumes 

that each feature follows a Bernoulli distribution. This classifier follows the same 

workflow as the Gaussian Naive Bayes classifier, but instead of using the probability 

density function for the Gaussian distribution, it uses the probability mass function for 

the Bernoulli distribution (Equation 3).  

 
 𝑃 (𝐵|𝐴) = 𝑝𝐵(1 − 𝑝)1−𝐵   

 

(3) 

Equation 3 P(B|A): likelihood – probability of event B occurring given event A, pB: indicator function 

• Logistic Regression: 

Logistic regression typically uses a sigmoid function to estimate the probabilities of a 

class, given the features (Equation 4). This sigmoid function transforms the linear 

combination of input features into a value between 0 and 1, which can be interpreted as 

probability.  The goal of training this model is to adjust the weights (b0, b1, b2 ….., bn) 

such that the predicted probabilities accurately represent the likelihood of the class. The 

predicted probability can be compared to a threshold to predict the actual class.   

 
 

𝑃(𝐴|𝐵) =
1

1 +  𝑒−(𝑏0,+𝑏1𝑥1+𝑏2𝑥2+⋯+𝑏𝑛𝑥𝑛) 
 

 

(4) 

Equation 4 P(A|B): probability of event A occurring given event B, b0: bias, b1,b2…bn: weights, x1,x2…x2n: input 

features 
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• K-Nearest Neighbors:  

K-Nearest Neighbors (KNN) is a supervised learning algorithm used for classification 

and regression. In KNN classification, a data point is classified based on the majority 

class among its k closest neighbors in the features space (Figure 4). For regression, it 

predicts the value based on the average of the values of its nearest neighbors. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

• Decision Trees: 

Decision Trees (DT) are supervised learning models commonly used for both 

classification and regression. In a decision tree, the model learns to make decisions by 

iteratively splitting the data into branches based on specific feature values. Each split is 

guided by decision rules that aim to separate the data in a way that increases the 

homogeneity of the resulting group. The tree structure begins at a root node and splits 

down through branches, where each internal node represents a feature-based decision. 

This process continues until the model reaches leaf nodes, which represent final 

predictions or outcomes (Figure 5).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Example of KNN with hypothetical data. In this case, the new data point is 
classified based on its four closest neighbors, resulting in a prediction of category 2. 
pCR = pathologic complete respons. 

Figure 5 Simplified example of a decision tree with hypothetical data. Each internal 
node represents a decision based on a feature, while the branches indicate the 
possible outcome of that decision. The leaf nodes represent the predicted class, 
depending on the input variable.  ASA score = American Society of Anesthesiologists 
physical status, pCR = pathologic complete response. 
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• Random Forest: 

Random Forest (RF) is an ensemble learning method that combines multiple decision 

trees to improve prediction accuracy. Ensemble learning is a technique in machine 

learning where multiple models are trained to solve the same problem. By combining 

the predictions from several models, ensemble learning aims to produce a more accurate 

and stable prediction than any single model could achieve. In the case of a random 

forest, each decision tree is built on a random subset of the data and features, which 

introduces diversity among the trees. This approach employs ‘parallel ensembling’, 

where multiple decision tree classifiers are trained simultaneously on different subsets 

of the dataset. The final prediction is made by aggregating the outcomes from all trees, 

typically through majority voting for classification or averaging for regression (Figure 

6).  

 

   
 

 

 

 

 

 
 

 

 

 

 

 

 

 

• Support Vector Machines: 

Support Vector Machines (SVM) is a supervised learning model and works by finding 

the optimal hyperplane that best separates the different classes in the feature space 

(Figure 7). This hyperplane is essentially a boundary that maximizes the margin between 

classes, where the margin is defined as the distance between the hyperplane and the 

nearest data point of each class. The nearest points are called support vectors, as they 

are the critical elements that define the margin and, therefore, the placement of the 

hyperplane. In cases where classes are not linearly separable, SVM can use a kernel 

trick to transform the feature space into higher dimensions, making it possible to find a 

separating hyperplane in this transformed space. This flexibility allows SVM to perform 

well even with complex and non-linearly separable data.  

 

 

Figure 6 Example of a random forest, where the outcome is determined by majority voting. ASA score = American 
society of anesthesiologist physical status, TD = tumor diameter, pCR = pathologic complete response. 



 

12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Gradient Boosting:  

Gradient Boosting is a supervised learning technique widely used for both classification 

and regression tasks. In gradient boosting, the model is built iteratively, where each new 

model (usually a decision tree) is trained to correct the residual errors—the differences 

between the predicted and actual values—from previous models. The process begins 

with an initial model, typically a simple decision tree, that provides a rough set of 

predictions. Each subsequent model then attempts to refine this by "boosting" the 

performance, focusing specifically on areas where the previous models performed 

poorly. This process of correcting errors continues iteratively, with the ensemble of 

models collectively improving prediction accuracy.  

 

During the training of machine learning models, optimization algorithms are used to optimize 

the model's parameters, such as the weights in a logistic regression model. One example of an 

optimization algorithm is Stochastic Gradient Descent (SGD). SGD is an optimization 

algorithm widely used in machine learning to minimize a loss function, which measures a 

model's performance. In SGD, the gradient represents the slope of the loss function, guiding 

how the model parameters should adjust to reduce error. Unlike traditional gradient descent, 

which uses the full dataset to calculate the gradient, SGD randomly selects a small batch or 

even a single data point at each iteration. This makes SGD faster but less stable, as it can cause 

the algorithm to oscillate around the optimal solution before converging. Another example of 

optimization algorithms is extreme gradient boosting (XGBoost), a variant of gradient boosting. 

This is an optimized version of gradient boosting that introduces several enhancements to 

improve speed, accuracy, and scalability. While it retains the iterative process of gradient 

boosting, XGBoost incorporates features like L1- and L2 regularization. L1 regularization adds 

a penalty proportional to the absolute values of the model's parameters. This can drive some 

parameters to zero, effectively performing feature selection by eliminating less important 

features. L2 regularization, on the other hand, adds a penalty proportional to the square of the 

parameters, which encourages smaller values but doesn't necessarily drive parameters to zero. 

This helps prevent the model from becoming too complex and improves its generalization 

ability to new data. Together, L1 and L2 regularization help improve model performance by 

making it more robust and less likely to overfit. 

 

 

Figure 7 Example of a support vector machine. pCR = pathologic complete 
response. 
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2.3.3 Tree-Based Pipeline Optimization Tool  

The accuracy of classification tasks can vary significantly due to the wide range of model 

configurations and hyperparameter settings in machine learning. The Tree-based Pipeline 

Optimization Tool (TPOT) addresses this challenge by automating the search for the optimal 

model and hyperparameters. TPOT uses genetic programming (GP), an evolutionary algorithm, 

to optimize machine learning pipelines automatically (Figure 8). It begins by generating a 

random population of pipelines, each combining feature preprocessing operators (like the min-

max scaler and robust scaler) to modify the dataset, followed by supervised classification 

operators (such as logistic regression, k-nearest neighbor classifiers, decision trees, and random 

forests). TPOT also incorporates feature selection techniques, such as variance threshold, select 

percentile, and select family-wise error rate, to optimize the feature space. Besides this, TPOT 

also optimizes hyperparameters within the pipelines. Each pipeline is evaluated based on its 

performance (fitness), and the top performers are selected. These selected pipelines undergo 

crossover (combining elements of the best pipelines) and mutation (introducing random 

changes) to create new variations. This process is repeated across multiple generations, 

progressively evolving through natural selection principles to identify the most effective 

pipeline for the given problem. The primary goal of TPOT is to maximize classification 

accuracy by systematically evaluating and refining combinations of feature selectors, 

preprocessing techniques, models, and their respective hyperparameters [49,50]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.4 Deep learning models 

In addition to conventional machine learning approaches, deep learning models can also be 

used in predicting pCR and performing tasks such as tumor segmentation, feature extraction, 

and classification. Khan et al. described in a systematic review that various types of deep 

learning model architectures are used in the prediction of pCR in breast cancer patients, such 

as convolutional neural networks (CNN) like AlexNet, VGG13, VGGNet, and ResNet-50. 

These networks achieve an accuracy range of 77.2%-92.3% [51]. CNN is one of the most 

commonly used deep-learning models in medical imaging [51]. This network utilizes various 

layers: convolutional layers, pooling layers, and fully connected layers (Figure 9) [52]. The 

convolutional layer performs feature extraction; the pooling layer downsamples the dimensions 

in the features maps, reducing the number of features and minimizing the sensitivity to the exact 

spatial location of those features. The fully connected layers translate the extracted features into 

an output of the model [52]. In a CNN, it is possible to use different types of data as input, 

Figure 8 Genetic programming, an evolutionary algorithm, used by TPOT for optimizing machine learning pipelines. 
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known as a multiple-input CNN. This approach can incorporate both DCE-MRI from different 

time points and clinical data [53,54]. This can be achieved by using two parallel comparable 

sub-architectures for convolution and pooling. Subsequently, a flattened layer and 

concatenation can be applied before utilizing the fully connected layer [53].  

 

However, medical experts have concerns regarding the black box nature of AI. Additionally, 

patients have the right to get an understandable explanation of how a decision is made [55]. For 

these reasons, explainable artificial intelligence (XAI) can be used. This may involve 

techniques such as the use of a hot map, which highlights pixels relevant to the output of the 

model [56]. Figure 10 shows an example of a saliency map. This saliency map is initially used 

for tumor segmentation with the use of a neural network and was generated with the Gradient-

weighted Class Activation Mapping (Grad-CAM) algorithm. This algorithm examines how the 

outcome changes when the activations in the network are adjusted. In this way, it can determine 

which areas in the image have the most influence on the segmentation. 

 

 

 

  

 

 

 

 

 

 
Figure 10 Saliency analysis. A) mammogram with manually 
segmented lesion. B) saliency map for tumor segmentation. 
Figure taken from [56]. 

A B 

Figure 9 Convolutional Neural Network. The convolutional layers extract features, the pooling layers downsamples feature 
maps, reducing the number of features and minimizing spatial sensitivity,  while the fully connected layers map the features 
to the model's output. Figure taken from [52]. 
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3.1 Introduction 
 

The development and evaluation of a predictive model for pCR in breast cancer patients 

depends on both the quantity and quality of the data. It is expected that integrating multiple data 

sources will enhance the prediction outcome of pCR [57]. For this reason, both clinical-

pathological and radiological data will be collected. Radiological variables, such as tumor 

diameter and volume, can be calculated from segmented tumor lesions. Tumor segmentation 

can be performed manually using software like Slicer or ITK-SNAP [58,59]. However, these 

methods are time-consuming and prone to high inter- and intra-observer variability, depending 

on the tumor type and the observer's experience [60]. Such challenges have prompted the 

development of neural networks for automatic tumor lesion segmentation, leveraging deep 

learning architectures like U-Net [61–64]. 

                                                                                                                                    

Given these considerations, this chapter aims to address the following sub-questions: 

1. What data can be obtained within Deventer Hospital to develop a predictive model for 

pCR in breast cancer patients? 

2. Which publicly available automatic tumor segmentation tool is suitable for the MRIs 

acquired at Deventer Hospital? 

 

3.2 Material and Methods  
 

3.2.1 Study Population    

This retrospective single-centre analysis aimed to include all patients with stadium I-III breast 

cancer receiving neoadjuvant chemotherapy and surgical resection at Deventer Hospital. The 

exclusion criteria included: (1) patients with either no DCE-MRI of only one DCE-MRI, (2) 

irrecoverable missing values in clinicopathologic data, and (3) the presence of tumor in both 

breasts. All clinical- and pathological data was extracted from the electronic health records 

(HiX, version 6.2), and all radiology data was extracted from the Picture Archiving and 

Communications System (PACS).  

 

3.2.2 Clinicopathologic Data 

For all included patients the following clinicopathologic data was collected, if available: 

• ER, PR, and Her2+ receptor status 

• Tumor type  

• Tumor grade 

• TNM stage before treatment 

• Age at the time of diagnosis 

• Mean length, mean weight, and weight change relative to the starting weight before 

neoadjuvant chemotherapy 

• Menopausal status before neoadjuvant chemotherapy 

• ASA score before neoadjuvant chemotherapy  

• Number of cycli chemotherapy 

• Given cytostatic during neoadjuvant chemotherapy 

• Leucocytes, thrombocytes, and hemoglobin before neoadjuvant chemotherapy 

• Pathologic response   

All the clinicopathologic data were converted to numerical values using label encoding. One-

hot encoding was used for categorical variables that could belong to multiple categories within 

the same variable. This approach transformed these variables into separate binary columns. 
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The receptor status was determined after biopsy by pathological examination; the removed 

tissue was identified as positive for ER or PR receptor when >10% tumor staining for ER or PR 

was seen. Her2 was determined as positive by a 3+ score with immunohistochemistry, possibly 

confirmed by fluorescence in situ hybridization (FISH).  

 

Most clinical data were manually obtained from electronic health records. For the administered 

oncologic medicines per patient, raw data was acquired from the pharmacotherapeutic portal, 

which included all oncological medicines given to each patient. This data was filtered based on 

the date of the first MRI and the surgery date. The mean height, mean weight, and weight change 

relative to the starting weight were obtained from the institutional data desk of Deventer 

Hospital. The raw data were subsequently filtered by the date of the first and last administration 

of oncologic medicines per patient. Finally, raw data was obtained from the Deventer Hospital 

institutional data desk regarding hematological laboratory values. The laboratory values before 

the first administration of oncologic medicines were included in the database.       

 

It was not possible to determine the menopausal status of each patient with the information 

from the electronic health record before the start of neoadjuvant chemotherapy. For these 

patients, an estimate of the menopausal status was made using the following criteria [65]: 

• < 45 years = pre-menopausal 

• 45-55 years = peri-menopausal 

• > 55 years = post-menopausal   

 

For each patient, at least a binary pathologic response was available: presence or absence of 

pCR (1 vs 0). However, the new guideline residual cancer burden (RCB) (2020) allows for the 

categorization into four categories: RCB-0 (pCR), RCB-I (minimal residual disease), RCB-II 

(moderate residual disease), and RCB-III (extensive residual disease) [66]. The categorization 

depends on factors such as the size of the residual tumor bed and the number of positive lymph 

nodes. Using a newly developed method (Appendix A), a part of the responses was reclassified 

according to the most recent guideline RCB based on the already existing pathological reports.  

 

3.2.3 Radiological Data  

All MRI examinations before, around the midpoint, and after completing neoadjuvant 

chemotherapy were included. The image acquisition followed the standard clinical protocol of 

Deventer Hospital. The image data was automatically exported from the PACS system of 

Deventer Hospital as DICOM files.  

 

3.2.4 Tumor Segmentation 

For tumor segmentation in DCE-MRI, two publicly available deep learning networks were 

tested: the AI assistant tool developed by Zhang et al. [67] and the MAMA-MIA tool [68]. 

These deep learning segmentation networks were tested in a compute cluster with Graphics 

Processing Unit (GPU) at the University of Twente.  

 

The online available pre-trained network tool developed by Zhang et al. is based on 13,167 

DCE-MRI volumes obtained from seven medical centers. Zhang et al. reported a Dice 

Similarity Coefficient (DSC) of 0.72 [67]. The Zhang model was built on an Asian population, 

which tends to have denser breasts compared to the Western population. The model 

preprocessed the scans automatically; resampling to a voxel size of 1.0x1.0x1.0 mm3 and 

performing intensity normalization. The intensity normalization was performed by removing 

the top 1% of outliers from all image phases. Min-max normalization was applied to phase 2, 

which typically shows the strongest contrast enhancement. The minimum and maximum values 
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from phase 2 were used to normalize the other phases, scaling the intensity values between 0 

and 1 while preserving temporal intensity changes. The network could handle an arbitrary 

number of phases. 

 

The MAMA-MIA network is an online available pre-trained no-new U-Net (nnU-Net), trained 

using 1,506 DCE-MRIs with expert segmentations. The preprocessing steps included 

resampling to 1.0x1.0x1.0 mm3 and z-score normalization with the mean and standard deviation 

of all its phases. These preprocessing steps were not automatically done by the network. The  

DSC of this model as reported by its authors was 0.70 [68]. In this study, only contrast phase 2 

was used further because this phase was available for every patient and provided the clearest 

distinction of the breast tumor.  

 

For the validation of the two different segmentation networks, a visual inspection was initially 

performed by a technical physician in training. During the visual inspection, the focus was 

primarily on whether the model segmented the breast tumor at all and which structures the 

model over-segmented. Based on this inspection, the segmentations from the model with the 

best results were evaluated by a radiologist from Deventer Hospital. The radiologist assessed 

an initial 52 segmentations. These 52 scans were selected using the following criteria: 1) one 

patient per year and 2) for each year one patient with and one patient without pCR. The 

segmentation assessment was facilitated by a segmentation review module [69] in Slicer [70]. 

This review made it possible to score the segmentation between 1 (acceptable, no changes) and 

5 (bad image). In this segmentation review module, it was also possible to manually adjust the 

segmentation, resulting in a ground truth segmentation by the radiologist. This ground truth 

segmentation was used to compute a DSC score and Hausdorff distance (HSD) between the 

radiologist and the segmentation network. The DSC is a statistical measure that quantifies the 

overlap between two segmentations masks, and the HSD is another metric used to evaluate the 

spatial accuracy of the segmentation boundaries. The outcome of these scores determines if 

manual adjustments to the tumor segmentations are necessary. In consultation with the 

radiologist, the automatic segmentation model had to achieve a DSC score of at least 0.80; 

otherwise, a manual review and correction of every segmentation would be performed. Beside 

this, the volume of the radiologist's segmentations is plotted against the volume of the 

segmentations from the Zhang network, the MAMA-MIA network, and the manually adjusted 

MAMA-MIA network. The Pearson correlation coefficient (r) was also calculated to determine 

the linear correlation. 

 

3.3 Results  
 

3.3.1 Patient characteristics 

This retrospective single-centre analysis initially included 331 patients diagnosed with stage I 

- III breast cancer at Deventer Hospital between June 2005 and August 2023. A total of 291 

patients with complete clinicopathological records and at least two DCE MRI scans were finally 

included in this study (Figure 11). For 26 patients, the menopausal status was estimated based 

on age. The patient characteristics for the study population are listed in Table 2. For 187 

patients, it was possible to reclassify the binary response (pCR and no pCR) to RCB-score 

(RCB-0, RCB-1, RCB-2, and RCB-3).  
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Table 2 Patient characteristics. y = years, n = number, cm = centimeter, kg = kilogram, nL = nanoliter, mmol/L = mmol per 

liter 

Characteristics  Value 

Age at the time of diagnosis (y) 

     Median 

     Min – Max  

 

51 

27 - 79 

ER Receptor Status, n (%) 

     Positive 

     Negative 

 

180 (62%) 

111 (38%) 

PR Receptor Status, n (%) 

     Positive 

     Negative 

 

131 (45%) 

160 (55%) 

Her2+ Receptor Status, n (%) 

     Positive 

     Negative 

 

70 (24%) 

221 (76%) 

Tumor Type, n (%) 

    No Special Type  

    Invasive Ductal Carcinoma 

    Invasive Lobular Carcinoma 

    Other     

 

163 (56%) 

81 (28%) 

30 (10%) 

17 (6%) 

Tumor Grade, n (%) 

     I 

     II 

     III 

 

25 (8%) 

139 (48%) 

127 (44%) 

T stage before Neoadjuvant Chemotherapy, n (%) 

    T1 

    T2 

    T3 

    T4 

 

28 (10%) 

164 (56%) 

90 (31%) 

8 (3%) 

Figure 11 The cohort consisted of 331 patients diagnosed with breast cancer grade I - III at Deventer Hospital between 2005 
and 2023. Only patients with complete clinical-pathological data, at least two DCE-MRI scans and a single-breast tumor 
were included in the study. 
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N stage before Neoadjuvant Chemotherapy, n (%) 

    N0 

    N1 

    N2 

    N3 

 

 

132 (45%) 

127 (44%) 

12 (4%) 

20 (7%) 

Menopausal Status before Neoadjuvant Chemotherapy, n (%) 

    Pre-menopausal 

    Peri-menopausal 

    Post-menopausal 

 

123 (42%) 

41 (14%) 

127 (44%)  

ASA score before Neoadjuvant Chemotherapy, n (%) 

    1 

    2 

    3 

 

107 (37%) 

162 (56%) 

22 (7%) 

Mean Length During Neoadjuvant Chemotherapy (cm) 

   Median 

   Min – Max 

 

170 

150-183 

Start Weight (kg) 

   Median 

   Min – Max 

 

73 

48-130 

Mean Weight Change Relative to Start Weight before Neoadjuvant 

Chemotherapy (kg) 

   Median 

   Min – Max 

 

 

0.0 

-20 - 18 

Number of chemotherapy cycli (n) 

    Median 

    Min – Max 

 

13 

3 – 26 

Given oncologic medicines, n (%) 

    Atezolizumab 

    Bevacizumab 

    Carboplatin 

    Cyclophosphamide 

    Docetaxel 

    Doxorubicin 

    Epirubicin 

    Gemcitabin 

    Paclitaxel 

    Pertuzumab 

    Transtuzumab  

    Vinorelbine   

 

4 (1%) 

4 (1%) 

119 (41%) 

228 (78%) 

81 (27%) 

222 (76%) 

5 (2%) 

1 (0.3%) 

207 (71%) 

52 (18%) 

71 (25%) 

4 (1%) 

Leucocytes before Neoadjuvant Chemotherapy (/nL)  

     Median 

     Min – Max 

 

7.5 

3.2 – 19  

Thrombocytes before Neoadjuvant Chemotherapy (/nL)  

     Median 

     Min – Max 

 

277 

151- 548  

Hemoglobin before Neoadjuvant Chemotherapy (mmol/L)  

     Median 

     Min – Max 

 

8.5 

5.1 – 10  

 

 

3.3.2 Radiological data                                                                                                                  

Images were acquired on either GE Healthcare or Philips MRIs with a field strength of 1.5 or 3 

Tesla. For the DCE images, the gadolinium-based contrast agents Omniscan (GE Healthcare) 

or Clariscan (GE Healthcare) were used. For 33/291 (11%) patients, two DCE MRIs were 

available instead of three. The number of post-contrast phases following the intravenous 

injection of the contrast agent ranged from four to eight. The acquisition parameters of the MRIs 

are listed in Table 3.    
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Table 3 Acquisition parameters. All values are described in the following way: mode (frequency). 

Parameter DCE 

Pixel spacing (mm) [0.70, 0.70] mm (68%) 

Slice thickness (mm) 2.2 mm (67%) 

Field strength 1.5 (82%) 

Echo time (s) 2.25 ms (50%) 

Repetition time (s) 4.77 ms (42%) 

Flip angle 10 ° (100%) 

 

3.3.3 Tumor Segmentation – Visual Inspection  

 

3.3.3.1 Zhang Network  

Figure 12 visualizes the tumor segmentation results for two cases using the Zhang network. In 

Figure 12A, the tumor in case 1 is indicated within the red circle. In Figure 12B, the tumor in 

case 1 is segmented adequately by the network, although a small area at the dorsal margin has 

been missed (see blue arrow in Figure 12B). Additionally, there appeared to be an over-

segmentation on the lateral side of the tumor (see orange arrow in Figure 12B). In Figure 12C, 

the tumor in case 2 is encircled with red. Conversely, Figure 12D demonstrates case 2, where 

the algorithm failed to segment the tumor and instead segmented a part of the pectoralis muscle 

(see yellow arrow in Figure 12D). The Zhang network was more likely to miss a tumor in the 

segmentation compared to the segmentation with the MAMA-MIA network. Additionally, in 

nearly every segmentation by the Zhang network, a nipple, breast contour, or part of the chest 

wall was segmented as the tumor.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
  

Figure 12 Tumor segmentation by Zhang Network. A) Case 1 with red circle around tumor B) Case 1 with tumor segmentation 
by the network in green, blue arrow indicates under segmentation and orange arrow indicates over segmentation by the 
network C) Case 2 with red circle around tumor D) Case 2 with segmentation by the network in green (pectoralis muscle 
instead of tumor). 

A B

 

D

 

C
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3.3.3.2 MAMA-MIA Network   

Figure 13 presents the tumor segmentation results for two cases using the MAMA-MIA 

network. In Figure 13A, the tumor in case 1 is indicated within the red circle. Figure 13B shows 

that the tumor in case 1, which was not segmented by the Zhang network, was successfully 

segmented by the MAMA-MIA network. However, it appears that the MAMA-MIA network 

slightly over-segmented towards the ventral side (see blue arrow in Figure 13B). Figure 13C 

shows the tumor in case 2 encircled in red. Figure 13D shows an accurate segmentation of the 

tumor in case 2. However, this case also showed the segmentation of normal breast tissue in the 

contralateral breast by the network (see orange arrow in Figure 13D).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.4 Evaluation of Tumor Segmentation by Radiologist 

  

During the segmentation review by the radiologist, it turned out that the pre-selection of the 

DCE-MRIs was not executed properly, leading to some patients’ MRIs being included after 

postoperative chemotherapy. As a result, the radiologist evaluated a total of 42 segmentations 

from the MAMA-MIA network in Slicer. The results are presented in Figure 14. The radiologist 

assessed 24/42 (57%) segmentations as acceptable, which means no or only minor adjustments 

were required. The remaining 16 segmentations were scored as unacceptable, requiring 

significant changes in the tumor segmentation by the radiologist.  

Figure 13 Tumor segmentation by MAMA-MIA Netwerk. A) Case 1 with red circle around tumor B) Case 1 with tumor 
segmentation by the network in green, blue arrow indicates over segmentation by the network C) Case 2 with red circle around 
tumor D) Case 2 with segmentation by the network in green, orange arrow indicates over segmentation in contra lateral 
breast. 

A
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D
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The DSC between the ground truth from the radiologist and the segmentations made by the 

Zhang network was 0.27, excluding 10 empty ground truth segmentations (these patients were 

classified as having a pCR). In these pCR cases, 10% of the network's segmentations were 

empty. The HSD between the radiologist and the Zhang network was 173 mm. On the other 

hand, the DSC between the ground truth from the radiologist and the MAMA-MIA network 

was 0.69, excluding the same 10 empty ground truth segmentations. In these empty cases, no 

segmentations from the network were empty. The HSD between the radiologist and the 

MAMA-MIA network was 129 mm. 

Based on these results, the segmentations from the MAMA-MIA network were manually 

adjusted by a technical physician in training, leading to an DSC of 0.85 between the radiologist's 

ground truth segmentation and the manually adjusted segmentation from the MAMA-MIA 

network. In 10 empty ground thruth segmentations, 50% of the segmentations that were 

manually adjusted, were also empty. The HSD between the radiologist and the manually 

adjusted MAMA-MIA network segmentations was 39 mm. Table 4 lists these results. 

 
Table 4 Segmentation review by radiologist. DSC = Dice Similarity Coefficient, HSD = Hausdorff Distance. 

Network  DSC HSD (mm) 

Zhang 0.27 173 

MAMA-MIA 0.69 129 

Manually adjusted MAMA-MIA 0.85 39 

 

Figure 15 presents the volume correlation curve, showing the segmentation volumes from the 

radiologist plotted against the segmentation volumes from the Zhang network, the MAMA-

MIA network, and the manually adjusted segmentations of the MAMA-MIA network. Figure 

15A showed that the Zhang network produced most of the time over-segmentation (r = 0.59). 

This over-segmentation was also observed in the segmentations from the MAMA-MIA 

network, with a correlation of r = 0.64 (Figure 15B). Figure 15C revealed a linear relationship 

between the radiologist's segmentations and the manually adjusted segmentations from the 

MAMA-MIA network (r = 0.91). In this case, six over-segmentations and one under-

segmentation were noted. 

  

Figure 14 Review of segmentations by radiologist as assessed on a 5-point likert 
scale. 
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Figure 15 Volume correlation curve between A) Radiologist and Zhang Network, B) Radiologist and MAMA-MIA network, 
and C) Radiologist and manually adjusted MAMA-MIA network. r = Pearson correlation coefficient.  

A 

B 

A 

C 
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3.4 Discussion 
 

3.4.1 Clinicopathologic data 

A total of 18 clinicopathological variables were included in this study. However, other 

clinicopathological variables could also have an impact on predicting pCR in breast cancer 

patients undergoing neoadjuvant chemotherapy. For instance, a high level of Ki-67 correlates 

with a worse prognosis and a lower chance of pCR [34,35]. Additionally, sixty of the 123 

microRNAs appear to be associated with prognosis and neoadjuvant response [22]. However, 

these variables could not be retrospectively determined from the Deventer Hospital data. 

Furthermore, data regarding the patient’s blood profile was collected. Not all this data was 

included in this study because it was difficult to determine the duration and number of 

chemotherapy cycles for each oncological treatment. The blood profile is determined for each 

patient before each chemotherapy cycle, blood test are typically not conducted after the final 

cycle. If the start date of the last cycle for each patient can be determined, it will be possible to 

match the blood values to these cycles. This would enable the analysis of changes in the blood 

profile over time, which could potentially serve as a predictive parameter for pCR. To analyse 

the relationship between blood values over time and the prediction of pCR, a mixed effects 

model could be applied, for instance. Additionally, it may be interesting to investigate whether 

a dose reduction impacts the likelihood of pCR. A dose reduction is typically performed when 

the blood profile for example shows neutropenia or thrombocytopenia. In such cases, it might 

be that the chemotherapy is more aggressive in the body, causing damage to healthy cells as 

well. These patients would always receive a dose reduction because the patient’s well-being 

takes priority over the outcome of the treatment. However, the impact of dose reduction on 

tumor response is not well understood in the literature, and it is uncertain whether dose 

reduction affects the likelihood of achieving a pCR after treatment. For instance, it could also 

be the case that a dose reduction, in combination with the other clinical-pathological variables, 

does not affect the chance of pCR, meaning that a dose reduction could be applied to this group 

of patients regardless. A dose reduction can help reduce the side effects of oncological 

treatments, which is beneficial for the patient's quality of life. However, it was hard to determine 

in the short term which dose belonged to each oncological treatment, making it impossible to 

calculate whether a patient received a dose reduction. With the already received data, the 

expertise of Deventer Hospital, and some extra time, it seems possible to determine the dose 

reduction per patient retrospectively.  

 

3.4.2 Radiological data 

In 33 patients, one DCE-MRI sequence is missing, which means that these patients only have 

two MRIs during the neoadjuvant chemotherapy. This may be due to a different scanning 

protocol used for these patients, primarily among those from 2005, 2006, or 2007. This scanning 

protocol does not include a DCE sequence. Another reason for the missing DCE-MRI 

sequences lies in the fact that for some patients the second MRI was performed shortly before 

the final chemotherapy cycle. In these cases, a third MRI is not conducted as it would be too 

close to the previous one. Additionally, the number of chemotherapy cycles varies per patient. 

The number of chemotherapy cycles per patient depends on the breast cancer subtype and the 

applicable guidelines at that time. Additionally, patients may participate in studies which can 

lead to variation in the number of chemotherapy cycles. In the TRAIN-3 study, for example, 

the number of chemotherapy cycles was determined based on the radiological response. When 

a radiological response was observed, the neoadjuvant treatment was discontinued, resulting in 

a minimum of three neoadjuvant chemotherapy cycles [20]. Furthermore, the development of 

toxicity during the neoadjuvant treatment can also influence the number of chemotherapy 
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cycles. Consequently, patients who underwent fewer chemotherapy cycles also had fewer 

MRIs. 

 

3.4.3 Segmentation networks 

Currently, the gold standard for tumor segmentation involves manual delineation by 

experienced radiologists [71]. This method is often associated with a high inter-observer 

variability and tends to be time intensive. In response to these challenges, various types of 

automatic deep learning segmentation models have been developed for breast tumor 

segmentation, with a DSC ranging from 0.61-0.98 [62,63,72]. Such models are trained to 

recognize patterns and features indicative of tumor presence, potentially providing faster and 

more consistent results compared to human experts. A notable drawback of the deep learning 

networks described in the literature is their limited availability, often due to financial constraints 

and privacy concerns regarding patients. Besides this, prior literature highlights the ongoing 

complexity of breast tumor segmentation, particularly on the DCE-MRI sequence. One 

significant challenge arises from the fact that contrast enhancement can occur not only within 

tumor regions but also in non-tumor tissues such as normal breast tissue and vessels [73]. This 

non-specific enhancement complicates the identification of tumor, especially when this tissue 

is situated adjacent to the tumor. Moreover, breast tumors exhibit considerable variability in 

their morphology and size; the tumor can be irregular in shape and can be heterogeneous in 

texture [62]. This variability complicates the segmentation task, as automated systems must be 

robust enough to handle a wide range of tumor characteristics.  

 

The Zhang network, when applied to Deventer Hospital data, does not meet the mentioned DSC 

range in the literature of 0.61 – 0.98 (DSC Zhang network 0.27). The visual inspection of the 

Zhang network's segmentation results revealed that the network often failed to segment clearly 

visible tumors. Additionally, in almost every segmentation, the nipple, breast contour, or part 

of the chest wall was erroneously included. It was expected that these structures would be 

segmented by the Zhang network because these structures appeared hyperintense on the DCE-

MRI. Due to this erroneous over-segmentation, the radiologist did not evaluate the Zhang 

network’s segmentations. The segmentation network has learned associations and features 

based on the training data. It is expected that the data from Deventer Hospital differs too much 

from this training data, preventing the network from effectively using the learned associations 

and features for tumor segmentation. This could be due to population differences, as the Zhang 

model was developed for an Asian population, which tends to have denser breast tissue 

compared to the Western population [67]. Furthermore, differences in imaging protocols could 

also contribute to this discrepancy, as the Zhang network was trained with a maximum of 6 

contrast phases, whereas Deventer Hospital's imaging data includes up to 9 contrast phases. 

Since the radiologist's evaluation was performed on the segmentations from the MAMA-MIA 

network, a ground truth segmentation was obtained. This ground truth was used to calculate the 

DSC and HSD between the radiologist and the Zhang network (Table 4).       

 

In contrast to the Zhang network, both the MAMA-MIA network and the MAMA-MIA network 

with manual adjustments, applied to Deventer Hospital data, achieve DSC values within the 

mentioned range of 0.61-0.98 in the literature (DSC MAMA-MIA network 0.69, DSC MAMA-

MIA network with manual adjustments 0.85). The radiologist evaluated the results of the 

segmentations performed by the MAMA-MIA network. Initially, the radiologist was supposed 

to assess 52 segmentations, with one patient having a pCR and another not, from each year. 

However, it turned out that the pre-selection of the DCE-MRIs was not executed properly, 

leading to some patients’ MRIs being included after postoperative chemotherapy. As a result, 

only 42 correct segmentations were evaluated. From the radiologist's evaluation, it was found 
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that 57% of the segmentations were acceptable (Figure 14). It was particularly notable that non-

tumor tissue in the contralateral breast was often included in the segmentation. Additionally, in 

cases of pCR, some tissue was also segmented. This can be explained by the fact that the 

training data always included tumor tissue, leading to a segmentation in every scan. For these 

reasons, the segmentations were manually corrected by a technical physician in training. This 

was done using the radiological reports, which highlighted the subjectivity in how radiologists 

classify breast tumors, depending on the radiologist's experience. Moreover, the radiologist 

cannot classify individual tumor cells on a DCE-MRI either. In addition, the manual 

adjustments of the tumor segmentations were performed by a trainee technical physician, not 

by a radiologist, so it cannot be expected that the segmentations meet the golden standard. As 

shown in Figure 15C, the comparison between the segmentations made by the radiologist and 

the trainee technical physician revealed six instances of over-segmentation and one instance of 

under-segmentation. 

 

3.4.4 Clinical relevance  

The findings emphasize that, while the Zhang network and especially the MAMA-MIA network 

show potential, they are not yet reliable for breast cancer segmentation in Deventer Hospital's 

DCE-MRIs without human oversight. The MAMA-MIA network is the closest to being 

applicable in both clinical and research settings, although the need for manual corrections still 

limits its efficiency and practicality. Given that it is uncertain whether online available networks 

are robust enough to perform effectively on data from Deventer Hospital, it may be worthwhile 

to consider retraining the available segmentation networks with the Deventer data. The 

segmentation networks could be retrained using the ground truth established by radiologists 

during the evaluation of the segmentation networks.  

 

3.5 Conclusion  
 

In this study, a total of 291 patients with complete clinicopathological records and with at least 

two DCE MRI scans were included. Examples of these clinicopathological variables include 

age, receptor status, menopausal status, ASA score, and given oncologic medicines. In addition 

to this clinical-pathological data, there was most of the time also access to three DCE-MRI 

scans per patient during the neoadjuvant chemotherapy process. Using these MRIs, this study 

also assessed the performance of two segmentation networks —the Zhang et al. network and 

the MAMA-MIA network—in detecting and segmenting breast tumors in DCE-MRI sequences. 

The results suggest that the Zhang et al. network was not accurate enough to consistently and 

reliably segment breast tumors in the Deventer Hospital data, often resulting in missed tumors 

(DSC 0.27, HSD 173 mm). The MAMA-MIA network, however, demonstrated a better 

performance for tumor segmentation (DSC 0.69, HSD 129 mm). Nevertheless, manual 

adjustments were necessary because the network tends to segment tissue in the contralateral 

breast. Further optimization will still be required for the clinical application of automatic tumor 

segmentation.                              
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4.1 Introduction  
 

The development of a predictive model for pCR in breast cancer patients using machine 

learning can include a wide array of methodologies and approaches. A key element in this 

process is the configuration of the dataset. Therefore, effectively addressing missing values [74] 

and making decisions about data preprocessing—such as normalization and class balancing 

[75] —are crucial for success. Alongside dataset management, various machine learning  

models can be trained, ranging from simple regression techniques to more complex algorithms 

such as decision trees, random forests, and support vector machines. However, the manual 

evaluation and fine-tuning of these models can be both time-consuming and resource intensive. 

To streamline this process, automated tools like tree-based pipeline optimization tool (TPOT) 

can be utilized. TPOT leverages genetic programming to optimize model selection and 

hyperparameter tuning [49]. Given the diverse options available for dataset settings and 

machine learning models, this chapter aims to address the following sub-question: Which 

dataset configuration and associated machine learning model achieve the best outcome for the 

prediction of pCR in breast cancer patients? 

 

4.2 Material and Methods  
 

4.2.1 Study Population  

Initially, this retrospective single-centre study used the same inclusion and exclusion criteria 

described in Section 3.2.1. For this study, the following additional exclusion criterion was 

applied: < 3 DCE-MRI. 

 

4.2.2 Feature Extraction 

The included 18 clinical-pathological features were listed in Section 3.2.2. For each included 

patient, the image data from the DCE-MRIs were exported from the PACS system of Deventer 

Hospital as DICOM files. For every included patient, three MRIs were available: MRI1, taken 

before the start of neoadjuvant chemotherapy; MRI2, taken during neoadjuvant chemotherapy; 

and MRI3, taken after neoadjuvant chemotherapy but before surgical tumor removal. The tumor 

was segmented in the DCE-MRI using the MAMA-MIA network. Each segmentation 

performed by the deep learning network was manually checked and, if necessary, corrected by 

a technical physician in training. Using the Python module PyRadiomics, 14 3D shape features 

were extracted from each tumor segmentation (Appendix B). During the manual segmentation 

review, a part of the sternum at the level of rib 5-6 was also manually segmented. The 

segmentation of the sternum was used to calculate the ratio in intensity between the tumor and 

the sternum, which was included as one intensity feature (Equation 5). When three MRIs were 

used for the classification model, the delta-radiomics for each feature were calculated by 

subtracting the feature value at MRI moment 1 from the value at MRI moment 3 (MRI1 – 

MRI3). When only two MRIs were used for the classification model, the delta-radiomics were 

calculated by subtracting the value of the first available MRI moment from the value of the 

second available MRI moment. 

 
 

𝐼𝑅 =
𝑀1

𝑀2
 

 

(5) 

Equation 5 IR: Intensity Ratio, M1: mean of tumor mask, M2: mean of reference mask 
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4.2.3 Statistical Analysis  

The statistical analysis was based on the variables before the start of the neoadjuvant 

chemotherapy. The Spearman Correlation Coefficient (SCC) was calculated to assess the 

strength and direction of the monotonic relationship between pairs of variables. Only variables 

with a SCC between -0.7 and 0.7 were included in the statistical analysis [76]. The normal 

distribution of the variables was assessed using the Shapiro-Wilk test for continuous variables. 

Subsequently, the Mann-Whitney U Test was used for the normally distributed continuous 

variables and the Student's T-Test for the non-normally distributed continuous variables. For 

the categorical variables, Fisher's exact test or Chi-squared Test was used, based on the 

frequency of each category in the cross table [77]. The minimum frequency threshold for each 

category was set at five. The Chi-squared test was used when the frequency in each cell was 

five or more, while Fisher's exact test was applied when the expected frequency in one or more 

cells was less than five [78]. In the univariate analysis, correction for multiple testing was 

performed using the Bonferroni method. Besides this, a multivariate analysis was conducted 

using multivariate logistic regression with a 5-fold cross-validation. For this purpose, the 

dataset was divided into training and test sets using an 80/20 ratio. Stratification was applied 

during this process, based on the pathological response (pCR or no pCR) and the date of the 

first DCE MRI (based on 3-year intervals). In the logistic regression, the class weight was set 

to balanced, which automatically adjusts weights for each class inversely proportional to their 

frequencies in the data. The logistic regression was evaluated with the sensitivity, specificity, 

and receiver operating characteristics (ROC) curve with AUC. For all statistical analyses, a p-

value smaller than 0.05 was considered statistically significant. The statistical analyses were 

carried out in Python 3.7 with SciPy and Statsmodels packages. 

   

4.2.4 Model Development and Validation 

For the development of the prediction model, the data for each model was divided into training 

and test sets using an 80/20 ratio. Stratification was applied based on the pathological response 

and the date of the first available MRI (based on 3-year intervals). Various models were trained 

using TPOT (Python 3.9.19), including binary classification (pCR vs no pCR) and multi-class 

RCB classification (RCB-0 vs. RCB-1 vs. RCB-2 vs. RCB-3). For this purpose, the compute 

cluster with GPUs from the University of Twente was used. In all analyses, the default 

parameters of TPOT were used.  

 

Different dataset configurations were applied for predicting both binary outcomes and multi-

class RCB outcomes. In model 1 and model 5 through model 9, three MRIs per patient were 

included (MRI1, MRI2, and MRI3). Model 5 normalized the radiological features, which 

ensured standardization of the values within a consistent range. This approach was expected to 

enhance the performance of the machine learning algorithms, as it prevented variables with 

larger scales from having an undue influence on the model and enhanced the model’s ability to 

learn patterns in the data. In model 6 through model 9, class balancing is performed. Class 

balancing was expected to help prevent overfitting on the majority class. In model 6, class 

balancing was performed using SMOTE, which added synthetic samples to the minority class. 

However, SMOTE relies on interpolation, which can create synthetic samples that closely 

resemble the original data. As a result, the model may have performed poorly on new data. For 

this reason, class balancing was also performed by random undersampling (model 8). 

Nevertheless, random undersampeling could increase the risk of losing important information 

or patterns in the data. Additionally, the removal of samples could resulted in the data failing to 

accurately represent the original distribution. In models 7 and 9, the effect of combining 

normalization with different class balancing methods was examined. Furthermore, the literature 

does not clarify whether all three MRIs taken during the chemotherapy trajectory are necessary 
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for predicting pCR in every breast cancer subgroup. For this reason, in models 2 through 4, 

only radiological features from two specific MRI time points were included (MRI1 and MRI2, 

MRI1 and MRI3, or MRI2 and MRI3). 

 

All models were trained and tested using clinical data, radiological data, and a combination of 

both. The best-performing dataset configurations were visualized with an ROC curve for the 

binary classification models (pCR vs no pCR). Model evaluation was based on sensitivity, 

specificity, and AUC. Binary classification models were tested on the entire dataset and within 

the three breast cancer subgroups: (1) HR+, (2) Her2+, and (3) TNBC. For the multi-class RCB 

classification models, evaluation metrics included accuracy and Cohen’s kappa. In the case of 

RCB-0 classification, the data was restructured into a binary one-vs-all format (RCB-0 vs RCB-

1, RCB-2, RCB-3). The best-performing configuration for RCB-0 was also visualized with an 

ROC curve and evaluated using sensitivity, specificity, and AUC. The optimal model for both 

binary classification (pCR vs no pCR) and RCB-0 classification was selected based on a trade-

off between sensitivity and specificity. 

 

4.3 Results  
 

4.3.1 Study Population  

This retrospective single-centre analysis included the same 291 patients with clinical-

pathological variables described in Section 3.3.1.  Various imputation methods were explored 

to estimate missing radiological features (n=33) of the patients with < 3 DCE-MRI (Appendix 

C). These methods proved insufficiently reliable and is not used in this study. Consequently, the 

extra exclusion criteria resulted in a cohort of 258 patients.  

 

4.3.2 Statistical Analysis  

The statistical analyses were conducted on the dataset after removing all patients with missing 

values in either clinical-pathological or radiological features.      

 

4.3.2.1 Clinical Data 

The SCC of the clinical data is presented in a heatmap in Appendix D. The highest correlation 

was found between doxorubicin and trastuzumab (-0.94) and between doxorubicin and 

cyclophosphamide (0.94). Following this, there was a correlation of 0.93 between the presence 

of the Her2+ receptor and trastuzumab. All the other clinical variables known before 

neoadjuvant chemotherapy had an SCC between -0.7 and 0.7. 

 

From the univariate analysis, the following significant values emerge: ER receptor, PR receptor, 

Her2 receptor, tumor type, and tumor grade. These features show an odds ratio in the 

multivariate logistic regression of 0.13, 0.81, 19.8, 0.92, and 2.5, respectively (Table 5). 
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Table 5 Statistical analysis of clinical features. OR = odds ratio, CI = confidence interval. 

 

The sensitivity and specificity in the logistic regression for the clinical features were 0.63 and 

0.75, respectively. The ROC curve showed an AUC of 0.77 (Figure 16). 

 

4.3.2.2 Radiological Data        

The SCC of the radiological data is presented in a heatmap in Appendix E. The highest 

correlation was logically observed between the voxel volume and mesh volume, with a 

coefficient of 0.99. This correlation was also found between the delta radiomics voxel volume 

and delta radiomics mesh volume. Additionally, an SCC of 0.99 was noted between the major 

axis length and maximum 3D diameter at MRI time point 3. Furthermore, there was a 

correlation of 0.98 between the voxel volume and surface area at MRI time point 3. Of the 

radiological variables known before neoadjuvant chemotherapy, only elongation, least axis 

length, and surface volume ratio had an SCC between -0.7 and 0.7. 

 

From the univariate analysis, the following significant values emerge: elongation and surface 

volume ratio. In the multivariate logistic regression, the elongation and surface volume ratio 

show odds ratios of 8.7 and 0.072, respectively (Table 6). 

 
Table 6 Statistical analysis of radiological features. OR = odds ratio, CI = confidence interval. 

 

The sensitivity and specificity in the logistic regression for the radiological features were 0.69 

and 0.44, respectively. The ROC curve showed an AUC of 0.55 (Figure 16).  

   

Characteristics Univariate 

analysis 

P value 

Multivariate  

analysis 

  

       OR                                        CI(95%) 

ER receptor < 0.001 0.13 0.035, 0.46 

PR receptor < 0.001 0.81 0.24, 2.8 

Her2 receptor  < 0.001 19.8 6.9, 56.8 

Age 1.0 1.0 0.95, 1.1 

Tumor Type < 0.001 0.92 0.77, 1.1 

Tumor Grade < 0.001 2.5 1.1, 5.7 

T before therapy 0.8257 1.4 0.9, 2.3 

N before therapy 0.2903 0.97 0.6, 1.5 

Menopausal state 1.0 0.89 0.4, 1.9 

ASA score 1.0 0.97 0.44, 2.1 

Mean length 1.0 0.98 0.92, 1.0 

Start weight 1.0 0.99 0.95, 1,0 

Leucocytes 1.0 1.0 0.82, 1.2 

Thrombocytes  1.0 0.99 0.99, 1.0 

Hemoglobin  1.0 0.73 0.42, 1.3 

Characteristics Univariate 

analysis 

P value 

Multivariate  

analysis 

  

       OR                                        CI(95%) 

Elongation 0.0001 8.7 1.1, 67 

Least axis length 0.92 0.99 0.96, 1.0 

Surface volume ratio 0.0089 0.072 0.0061, 0.85 

Ratio tumor sternum 0.8282 0.89 0.71, 1.1 
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4.3.2.3 Clinical- and Radiological Data                                                                                          

The heatmap in Appendix F illustrates the SCC between clinical and radiological features. 

The strongest correlation was observed between the surface area measured on MRI at 

timepoint 1 and the T stage before chemotherapy, with a coefficient of 0.59. Additionally, a 

correlation of 0.58 was found between the maximum 2D diameter measured on MRI at 

timepoint 1 and the T stage before chemotherapy. The correlations between each clinical- and 

radiological feature assessed, before neoadjuvant chemotherapy, ranged from -0.7 to 0.7. 

The odds ratios for these clinical and radiological features derived from the multivariate 

logistic regression are present in Table 7. 

 
Table 7 Statistical analysis of clinical and radiological features. OR = odds ratio, CI = confidence interval. 

 

The sensitivity and specificity in the logistic regression for the clinical features in 

combination with the radiological features were 0.63 and 0.75, respectively. The ROC curve 

showed an AUC of 0.73 (Figure 16). 

 
 

 

 

 

 

 

 

 

 

 

Characteristics Multivariate  

analysis 

  

       OR                                                         CI(95%) 

ER receptor 0.19 0.048, 0.73 

PR receptor 0.53 0.14, 2.0 

Her2 receptor  21 6.9, 61 

Age 1.0 0.94, 1.1 

Tumor Type 0.98 0.80, 1.2 

Tumor Grade 2.4 0.97, 5.9 

T before therapy 1.8 1.0, 3.2 

N before therapy 1.1 0.70, 1.8 

Menopausal state 1.2 0.52, 2.6 

ASA score 1.0 0.44, 2.4 

Mean length 0.98 0.91, 1.0 

Start weight 1.0 0.96, 1.0 

Leucocytes 0.99 0.81, 1.2 

Thrombocytes  0.99 0.99, 1.0 

Hemoglobin  0.71 0.39, 1.3 

Elongation 29 1.9, 449 

Least axis length 0.96 0.91, 1.0 

Surface volume ratio 0.31 0.0078, 0.89 

Ratio tumor sternum 0.85 0.59, 1.2 

Figure 16 ROC Curve clinical data, radiological data, 
clinical and radiological data. 
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4.3.3 Model Development and Validation 

 

4.3.3.1 Model Development  

Different dataset configurations were applied for predicting both binary outcomes (Table 8) and 

RCB outcomes (Table 9).  

 
Table 8 Data configuration for different prediction models with binary outcome (pCR vs no pCR). MRI1 was obtained before 

neoadjuvant chemotherapy, MRI2 was obtained during neoadjuvant chemotherapy, and MRI3 was obtained after neoadjuvant 

chemotherapy. N = normalization, OS = oversampling with SMOTE, US = randomly undersampling.  

Model Number 

of 

patients 

pCR No 

pCR 

MRI 1 MRI 2 MRI 3 N OS US 

1 258   77 181 X X X    

2 258   77 181 X X     

3 258   77 181 X  X    

4 258 77 181  X X    

5 258  77 181 X X X X   

6 342  161 181 X X X  X  

7 342   161 181 X X X X X  

8 168  74 94 X X X   X 

9 168 74 94 X X X X  X 

 

Table 9 Data configuration for different prediction models with RCB outcome (RCB-0 vs RCB-1 vs RCB-2 vs RCB-3). MRI1 

was obtained before neoadjuvant chemotherapy, MRI2 was obtained during neoadjuvant chemotherapy, and MRI3 was 

obtained after neoadjuvant chemotherapy. N = normalization, OS = oversampling with SMOTE, US = randomly 

undersampling.  

Model Number 

of 

patients 

RCB-0 RCB-1 RCB-2 RCB-3 MRI 1 MRI 2 MRI 3 N OS 

1 177 77 12 62 26 X X X   

2 177 77 12 62 26 X X    

3 177 77 12 62 26 X  X   

4 177 77 12 62 26  X X   

5 177 77 12 62 26 X X X X  

6 280 77 63 74 66 X X X  X 

7 280 77 63 74 66 X X X X X 

 

4.3.3.2 Binary Classification Models – Total cohort  

The results of the binary classification model are presented in Figure 17, 18 and appendix G. In 

these results, the entire test set is used for evaluation. Figure 17 shows that model 2 had the best 

ROC curve. Figure 18 illustrates that in models 1 through 7, regardless of which data type is 

used, specificity is higher than sensitivity. Models 5 through 9 show increased sensitivity 

compared to model 1 when using both clinical and radiological data. In models 8 and 9, the 

sensitivity and specificity for each data type were closer to each other compared to models 1 

through 7.  Besides this, the sensitivity in the different models ranged from 0.25 to 0.75, while 

specificity ranged from 0.67 to 1.00. The best trade-off between sensitivity and specificity was 

achieved with model 2, which used both clinical and radiological data, yielding sensitivity and 

specificity values of 0.75 and 0.83, respectively. The AUC for model 2 was 0.79. This model 

first applied an SGD classifier with a modified Huber loss. This classifier combines elements 

of logistic regression and SVM with SGD learning. The outcome of this classifier is scaled with 

a standard scaler and used in a new SGD classifier with a Hinge loss. This classifier applied a 

linear model similar to an SVM. The output of this second classifier is used as input to a 

Bernoulli NB classifier for final classification. 
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Figure 18 Sensitivity, specificity, and AUC of the binary classification model tested on the test set with the total cohort, 
categorized by clinical data (circle), radiological data (triangle), and the combination of clinical data and radiological data 
(square).  

Figure 17 Best ROC curves (clinical, radiological, or clinical and radiological data) for 
binary classification. 
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In this study, the binary classification model was also tested on the different breast cancer 

subtypes. All the results are presented in appendix H. There were only two pCR samples of the 

Hr+ subgroup, so no analysis was performed on this group. The sensitivity and specificity in 

the Her2+ subgroup ranged from 0.25 to 1.0. The best trade-off between sensitivity and 

specificity was achieved with model 6 or 7 which used both clinical and radiological data. This 

model achieved a sensitivity of 1.0 and a specificity of 0.75. The AUC for this model was 0.88. 

For the TNBC subgroup, the sensitivity ranges from 0.0-1.0 and the specificity ranged from 

0.30 – 1.0. The best trade-off between sensitivity and specificity for this subgroup was obtained 

with model 2, with clinical and radiological data. This model achieved a sensitivity and 

specificity of respectively 0.88 and 0.80. The AUC for this model was 0.84. 

 

4.3.3.3 RCB-score Models                                                                                                               

The highest accuracy and Cohen’s kappa, respectively 0.69 and 0.51, for the multi-class RCB 

classification model were achieved by model 2 (appendix I). For RCB-0 classification, a one 

(RCB-0) vs. all (RCB-1, RCB-2, RCB3) approach was used.  Figure 19 shows that model 2 had 

the best ROC curve for RCB-0 classification. Figure 20 and appendix J show the results of the 

RCB-0 classification model. Across all data types, sensitivity is generally higher than 

specificity. In models 6 and 7, sensitivity for all data types is lower compared to model 1. For 

RCB-0, sensitivity ranged from 0.50 to 1.00, and specificity ranged from 0.50 to 0.80. The best 

trade-off between sensitivity and specificity was achieved by model 2, using clinical and 

radiological data, with a sensitivity of 0.81, specificity of 0.80, and an AUC of 0.81. Model 2 

used a gradient boosting classifier for the classification. Appendix K (Figure 33) presents the 

confusion matrix for RCB-0 prediction with model 2 based on clinical and radiological data. 

There were four false positive samples. There were also three false negative samples: two were 

predicted as RCB-2, and one as RCB-3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19 Best ROC curves (clinical, radiological, or clinical and radiological data) 
for RCB-0 classification.  
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4.4 Discussion 
 

4.4.1 Radiological Features  

In this study, the focus was specifically on using only 3D shape features, calculated with 

Pyradiomics. Shape features refer to the geometric properties of a structure, such as size and 

shape. These characteristics are intrinsic to the structure itself and are not dependent on the 

pixel intensity values in the MRI. This approach is advantageous because the intensity of MRIs 

can vary across different acquisition times due to several factors, including MRI settings. By 

primarily concentrating on shape features, the analysis included stable and reproducible 

characteristics that are less sensitive to intensity fluctuations. This enables the tracking of 

biological changes, such as tumor growth, rather than technical variations. Furthermore, shape 

features can be linked to clinical relevance; for instance, patients who show a reduction in tumor 

volume during neoadjuvant chemotherapy often have a higher likelihood of achieving a 

pathological complete response (pCR). Additionally, a consistent decrease in tumor size is 

associated with a greater likelihood of pCR, particularly in the HR+ subgroup [46]. 

 

However, one intensity feature was included in this analysis: the change in intensity over time. 

When a tumor responds to neoadjuvant chemotherapy, necrosis can occur, leading to a decrease 

in the number of tumor cells and a reduction in the blood supply to the tumor. This response 

may be observed as a decrease in the intensity of the images. However, MRI intensities are not 

standardized, meaning that tissue can exhibit different intensity values across different scans. 

To ensure a reliable analysis using MRI intensity feature, tumor segmentation was normalized 

against a reference tissue, in this case, the sternum. The sternum is a tissue that absorbs little to 

no contrast agent, ensuring that this structure remains consistent in intensity across different 

scans. By dividing the average tumor intensity by the average sternum intensity, the tumor 

intensity was standardized. This normalization method minimizes variations in intensity 

between different scans.  

        

 

                                                                                                                                        

Figure 20 Sensitivity, specificity, and AUC of the multi class classification model for RCB-0, categorized by clinical data (circle), 
radiological data (triangle), and the combination of clinical and radiological data (square).  
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Besides this, the radiological features were calculated based on segmentations that are not 

entirely perfect. The segmentations made with the MAMA-MIA network achieved a DSC of 

0.69, indicating a discrepancy between the automated segmentation and the actual tumor size 

and shape. For this reason, a manual review was performed by a technician physician in 

training. The technician physician in training had no prior experience in evaluating breast tumor 

segmentations, which raises concerns about the quality of the tumor segmentation corrections. 

As a result, the calculated radiological features may differ from the actual tumor characteristics. 

Furthermore, the time intervals between the MRIs were not consistent across patients due to the 

varying chemotherapy regimens used for different subtypes of breast cancer. This variability in 

time intervals could also impact the radiological features, as tumor responses may change over 

time.  

 

4.4.2 Statistical analysis  

The clinical data showed a correlation between doxorubicin and trastuzumab (SCC 0.94). 

Besides this, doxorubicin and cyclophosphamide showed the same correlation (SCC 0.94). 

Additionally, there was a correlation between the presence of the Her2+ receptor and 

trastuzumab (SCC 0.93). The combination of the medications doxorubicin and 

cyclophosphamide can be used to treat all subtypes of breast cancer. Doxorubicin helps reduce 

tumor mass by damaging the DNA within tumor cells, preventing them from dividing and 

ultimately causing cell death. Cyclophosphamide works by adding an alkyl group to the DNA 

of the tumor cells, disrupting cell division and leading to cell death. On the other hand, 

trastuzumab is used specifically for Her2+ breast cancer, as it binds to the Her2 receptors on 

the tumor cells. This binding inhibits the signals that promote cell division, thereby slowing 

tumor growth. 

 

When conducting multiple statistical tests on the same dataset, the probability of obtaining at 

least one false positive result increases. For this reason, corrections were made for multiple 

testing. The Bonferroni correction is a stringent method that divides the established significance 

level (a) by the number of tests performed (b). As a result, each p-value must be smaller than 

(a/b) to be considered significant. While this approach reduces the risk of false positives, it 

increases the likelihood of false negatives, especially when a large number of tests are 

conducted. An alternative approach for the correction of multiple testing is the Benjamini-

Hochberg correction, which is based on the false discovery rate (FDR). Rather than applying a 

strict threshold for each test, this method ranks all p-values from lowest to highest and adjusts 

the threshold incrementally based on their rank. This allows for the detection of true effects 

even when a larger number of tests are performed, without a significant increase in false 

positives [79]. Given that this study did not involve a large number of tests, the Bonferroni 

method was chosen for correction for multiple tests. 

 

In the multivariate analysis, the odds ratio is one of the outcome parameters. The odds ratio is 

a measure of the association between an independent variable and pathologic response while 

controlling for other variables. An odds ratio of one indicates no association between the 

variable and the outcome; in this case, the probability of the outcome does not change with a 

variation in the independent variable. Among the statistically significant clinical variables, it is 

notable that the Her2+ receptor and tumor grade exhibit particularly high positive associations 

with odds ratios of 19.8 and 2.5, respectively. This is consistent with existing literature, which 

shows that the Her2+ receptor subgroup is more likely to achieve a pCR following neoadjuvant 

chemotherapy and tumors with a higher grade generally exhibit a more favorable response to 

neoadjuvant chemotherapy, further enhancing the chances of achieving pCR [80]. The 

statistically significant radiological variables, elongation and surface-to-volume ratio, show an 
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odds ratios of 8.7 and 0.072, respectively. This suggests a greater likelihood of achieving pCR 

when the tumor assumes a rounded shape. On the other hand, the analysis indicates that a higher 

surface-to-volume ratio decreases the probability of a pathologic response. A higher surface-to-

volume ratio can imply that the tumor has a more irregular or convoluted shape, or that it 

consists of a non-homogeneous mass divided into multiple parts. The findings are consistent 

with the literature, which states that round and oval tumors have a higher pCR rate compared 

to irregular tumors [81]. 

 

In both univariate and multivariate analyses, the variables PR and tumor type exhibit confidence 

intervals that include one. A confidence interval that spans one indicates uncertainty about the 

direction and strength of the relationship between the variable and the outcome, making it 

difficult to draw reliable conclusions in these cases. Furthermore, the wide range in the 

confidence interval, observed in certain variables, such as elongation, implied considerable 

variability in the data. This variability complicated the identification of a consistent association, 

as the observed effects may differ significantly across individual cases. To achieve a more 

robust and reliable OR, it would be necessary to increase the dataset. 

                                                                                           

4.4.3 Machine learning prediction models   

In this study, stratification was applied to pathologic response and the date of the first MRI. 

This approach ensures that the proportional class distribution of pathologic response and the 

date of the first MRI scan is maintained across the training and test sets. Stratification by 

pathologic response was essential because it was the primary outcome measure in this study. 

Ensuring that the proportional distribution of pathologic classes is preserved across the training 

and test sets prevents the model from being biased toward the majority class. Without this 

proportionality, the model might fail to generalize effectively, leading to unreliable performance 

metrics, particularly for the minority class. Besides this, the dates of the MRIs are from the 

period 2005-2023. Due to technological advancements, such as improvements in resolution and 

image processing algorithms, the quality of MRIs has increased during this period. Additionally, 

treatment methods themselves and their effectiveness have also evolved over the years. 

Stratifying by MRI date helps ensure that advancements in imaging technology and changes in 

clinical practices are evenly represented in the training and test sets 

 

The goal of this study was to predict the pathologic response, with the aim of providing 

personalized breast cancer care. Personalized care in this context might involve avoiding 

surgical removal of the breast tissue if the model can accurately predict the pCR after 

neoadjuvant chemotherapy. The evaluation of the models in this study took both sensitivity and 

specificity into account. A high sensitivity indicates that the model is effective in correctly 

identifying all patients with a pathological response, which align with the goal of this study. 

However, it is also important that the model exhibits high specificity, as this reflects its ability 

to correctly identify patients without a pCR. If the model fails to adequately predict non-pCR 

patients, it may falsely predict a pCR, potentially resulting in missing necessary follow-up 

treatment. For this reason, the optimal model performance involves a trade-off between 

sensitivity and specificity.  

                        

The various analyses in this study indicated that the models with the best trade-off between 

sensitivity and specificity for a pathologic prediction used both clinical-pathological and 

radiological data, which is consistent with findings in the existing literature. For example, Jung 

et al. used clinical and demographic variables to develop a machine learning model for the 

prediction of pCR following neoadjuvant chemotherapy. The study included a total of 1003 

patients. The clinical-pathological variables used in the machine learning model included age, 
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BMI, T-stage, N-stage before the start of chemotherapy, serum carbohydrate antigen 15-3, Ki-

67, and receptor status for ER, PR, and Her2+. A total of five different machine learning models 

were trained: gradient boosting machine, support vector machine, random forest, decision tree, 

and neural network. External validation of the gradient boosting machine classifier 

demonstrated a sensitivity of 72.8% and a specificity of 77.7% [82].  On the other hand, Fan et 

al. made a prediction model for pCR with radiomic features and included 57 patients. 158 

radiomics features were calculated from DCE-MRI prior to the start of neoadjuvant 

chemotherapy. Feature selection was performed using the wrapper subset evaluator. 

Subsequently, a logistic regression classifier was trained and tested using leave-one-out cross-

validation. This study achieved an AUC of 0.703 [83]. Additionally, Zeng et al. included 117 

patients to predict pCR based on both clinical and radiological characteristics. Several clinical-

pathological features were selected, such as receptor status and the Ki-67 index. Feature 

selection for these variables was performed using logistic regression. A total of 851 radiological 

features were calculated using radiomics, both prior to the initiation of neoadjuvant 

chemotherapy and after 2-4 cycles. Delta radiomics features were also computed. Feature 

selection for the radiological variables was conducted using the intraclass correlation 

coefficient, Pearson- or Spearman tests. The selected features were used in a logistic regression 

model to predict the likelihood of pCR. The combination of clinical-pathological and radiomics 

features resulted in a sensitivity of 0.875 and a specificity of 0.850 [57]. There are no studies 

that utilized clinical or radiological data to predict the RCB score. Beside this, it remains in this 

study uncertain whether all RCB outcomes align with reality. The conversion of a binary 

response to an RCB score was done using the method from Appendix A. However, this 

conversion method includes certain assumptions, making it unclear if all conversions are 

reliable. 

 

In this study, a multi-class prediction model was trained and tested with the RCB score as the 

outcome variable. A multi-class prediction model was chosen because accurately predicting 

each RCB class can be beneficial for the prognostic assessment. However, a binary approach 

was also applied in this study to evaluate the RCB-0 score. This approach used the one-vs-all 

method, comparing RCB-0 against RCB-1, RCB-2, and RCB-3. The specific focus on RCB-0 

was selected because RCB-0 is the most important class to predict in this clinical problem, as 

it corresponds to pCR. Predicting RCB-0 could indicate that surgical removal of breast tissue 

may not be necessary. In this specific clinical context, predicting the degree of residual disease 

(RCB-1, RCB-2, or RCB-3) is less relevant, as all patients without a pathological complete 

response will still require surgical treatment, regardless of which remaining RCB class they 

belong to. It is recommended to train and test a binary model using the one-vs-all (RCB-0 vs 

RCB-1, RCB-2, and RCB-3) approach in addition to the multi-class prediction model, as the 

results may differ from the approach taken in this study. 

 

It was initially hypothesized that normalizing the radiological features would have a positive 

effect on the performance of the machine learning models. Normalization ensures 

standardization of values within a consistent range, which was expected to enhance the model's 

ability to learn and recognize patterns. However, this hypothesis did not hold across for the 

binary and RCB-0 predictions (Model 5 Figure 17, 18, 19, 20). This could be due to the fact 

that TPOT also utilized machine learning models that are less affected by the scale of the data, 

such as DT and RF, which reduces the impact of normalization.  

In the prediction models with the binary outcome specificity was generally higher than 

sensitivity. This is likely due to the predominance of the no-pCR class in these models, which 

leads the model to be more effectively trained to accurately predict this class. However, for the 

RCB-0 class, there was a better balance between specificity and sensitivity, which is likely due 
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to the larger number of RCB-0 cases in the dataset compared to the other RCB classes. For this 

reason, balancing the outcome variable was applied with over- and undersampling. It was 

decided not to apply undersampling for balancing the RCB prediction models, due to the rarity 

of the RCB-1 class. In case of  the binary pCR classification, it was expected that balancing the 

outcome variable would enhance the sensitivity, as the pCR class represented the minority class. 

For the predictive models with a binary response (pCR vs no pCR) an increase in sensitivity 

was observed when employing both balancing techniques on the outcome variable (Figure 18, 

Model 6 and 8 ). Furthermore, it was expected that balancing the dataset would lead to a 

convergence of sensitivity and specificity, as each class would be equally represented. This 

effect was observed with undersampling (Figure 17, models 8 and 9), where sensitivity and 

specificity became more similar. This happens because undersampling reduces the number of 

instances from the majority class, which shifts the model’s focus toward the minority class. As 

a result, the model tends to achieve a more balanced performance between sensitivity and 

specificity. However, this effect was less pronounced with oversampling (Figure 17, models 6 

and 7). Oversampling with SMOTE generates synthetic data points by interpolating between 

existing instances of the minority class. While this helps balance the dataset, it can lead to 

overfitting, where the model becomes too specialized in recognizing these synthetic instances. 

Since synthetic data points may lack the variability of real-world examples, this can impair the 

model’s ability to generalize to new, unseen data. 

 

When a patient responds to neoadjuvant chemotherapy, the difference in tumor size is greatest 

between the MRI at timepoint 1 and the MRI at timepoint 3. For this reason, the delta radiomic 

features were calculated based on the MRI at timepoint 1 and timepoint 3. However, this study 

shows that predicting pCR provides the best trade-off between sensitivity and specificity when 

only the MRI from timepoint 1 and timepoint 2 are used for the radiological features, both in 

the binary predictions and RCB-0 classifications. This suggest that the initial chemotherapy 

response, for some reason, had more effect on the tumor than the later chemotherapy response. 

So, the MRI scans taken at time points 1 and 2 provide more meaningful information for 

predicting pCR compared to the MRI scans at time point 3. In these cases, it is expected that 

later tumor responses (observed between MRI timepoint 2 and MRI timepoint 3) are more 

consistently present, for example due to chemotherapy resistance. This uniformity in later 

response may limit its ability to distinguish between outcomes in pathologic response. To 

further investigate this result, it may be valuable in future research to retrain the other models 

using only the MRI from timepoint 1 and timepoint 2 in case of binary and RCB-0 predictions.  

 

An analysis was also conducted on the Her2+ and TNBC subgroups. However, the test 

population for these subgroups consisted of a relatively small number of patients, raising 

concerns regarding the reliability of the results. Besides this, it is expected that better results 

could be achieved by training separate models for each specific breast cancer subgroup. If more 

patients of each subgroup are included in future studies, the concordance between the model 

and the pathologist can be assessed. Currently, the concordance between rCR and pCR for the 

Her2+ subtype is estimated at 50%, while for the HR+ subtype and TNBC, the concordance is 

reported to be lower, around 30% [18]. To demonstrate the clinical value of the model, the 

concordance between the model and the pathologist must exceed the currently noted 

concordance between rCR and pCR. This would indicate that the model provides more reliable 

and accurate predictions compared to traditional radiological assessments, highlighting its 

potential in clinical practice. This is especially important in HR+ and TNBC subtypes, where 

the concordance between rCR and pCR is relatively low (30%). 
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Furthermore, for the clinical implementation of the machine learning predictive model for the 

pathological response in breast cancer patients, it is essential to collect more data and perform 

external validation. The current dataset is not sufficient to achieve the level of accuracy required 

for reliable clinical use. A larger dataset enables the model to learn patterns more effectively, 

improving its ability to identify complex relationships and make accurate predictions. Besides 

this, external validation is necessary to test the model’s performance outside the context of the 

initial data. This involves applying the model to data from different institutions or populations 

to assess its generalizability. Without external validation, it is difficult to determine whether the 

model's predictions can be trusted across different clinical environments.  

 

4.5 Conclusion  
 

In this study, 18 clinical-pathological variables were combined with 14 different 3D shape 

features and one intensity feature for the prediction of pCR. Besides this, the radiological delta 

features were also computed. This study suggests that, before the initiation of neoadjuvant 

chemotherapy, six statistically significant features can be identified: ER receptor, PR receptor, 

Her2 receptor, tumor type, tumor grade, elongation, and the surface-to-volume ratio. TPOT was 

used to train and test various dataset configurations. For both binary pCR prediction and RCB-

0 classification, the optimal trade-off between sensitivity and specificity was achieved using 

both clinical and radiological data. For the binary pCR and RCB-0 outcomes, the model that 

included MRI data from timepoints 1 and 2 (model 2) showed sensitivities of 0.75 and 0.81, 

respectively. The specificities for these outcomes were 0.83 and 0.80. For clinical 

implementation of the prediction models, it is recommended to train and test on a larger dataset 

and perform external validation. 
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5.1 General Summary  
 

This research aimed to investigate the potential of AI in predicting pCR in patients diagnosed 

with stage I-III breast cancer who are receiving neoadjuvant chemotherapy. Specifically, we 

investigated how clinical-pathological and radiological information can be leveraged to 

enhance predictive accuracy regarding treatment outcomes. For this study, a total of 18 clinical-

pathological variables have been included, which are important for understanding patient health 

status and tumor characteristics. These variables include for example receptor status (ER, PR 

and Her2+), tumor type, tumor grade, ASA score, and the number of chemotherapy 

cycles.                                                                                                                     

 

258 patients underwent a DCE-MRI before, during, and after the neoadjuvant chemotherapy, 

with a total of three scans per patient (MRI1, MRI2 and MRI3). This imaging modality is used 

for assessing tumor characteristics and response to therapy. Tumor segmentation was performed 

using two deep learning networks: the Zhang network and the MAMA -MIA network. During 

the evaluation of these networks, it was found that the MAMA-MIA network outperformed the 

Zhang network in terms of segmentation accuracy. The initial segmentation results yielded a 

DSC of 0.69 for the MAMA-MIA network, indicating a quite good level of agreement between 

the predicted and actual tumor boundaries. In contrast, the Zhang network showed in visual 

inspections that it often failed to segment the tumor accurately, which limited further application 

and evaluation. 

Following a manual review and necessary adjustments of the automatically segmented tumors 

by the MAMA-MIA network, the DSC improved significantly to 0.84.  

 

From the segmented tumors, a set of 14 3D shape features were calculated. Additionally, one 

intensity feature was calculated, which involved normalization against a reference tissue, the 

sternum. The statistical analysis was conducted on the features available at the start of 

neoadjuvant chemotherapy, identifying six features that were statistically significant in 

predicting pathologic responses: ER receptor, PR receptor, Her2 receptor, tumor type, tumor 

grade, elongation, and the surface-to-volume ratio.                                                                         

 

Various machine learning models were trained using TPOT, incorporating clinical, radiological, 

or both clinical and radiological data. In this process, a total of nine dataset configurations were 

used. The outcome variables were either binary (pCR vs no-pCR) or multi class (RCB-0, RCB-

1, RCB-2 or RCB-3). In case of the multi class models, a one-vs-all (RCB-0 vs RCB-1, RCB-

2, RCB-3) evaluation was also performed. For the binary outcome, pCR predictions appeared 

to have the best trade-off between sensitivity and specificity when employing combined data, 

with only radiological features from MRI1 and MRI2. The sensitivity and specificity achieved 

in this case were respectively 0.75 and 0.83. The multi-class prediction model for RCB showed 

the highest accuracy of 0.69 and Cohen’s kappa of 0.51 using clinical and radiological data 

from MRI1 and MRI2. The best trade-off between sensitivity and specificity for RCB-0 was 

also with combined data, where only radiological features from MRI1 and MRI2 were included. 

For this case, the sensitivity and specificity equals respectively 0.81 and 0.80. While the initial 

findings are encouraging, it is recommended to expand the dataset to facilitate more accurate 

predictions. Additionally, external validation is crucial for the clinical implementation of these 

predictive models.  
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6.1 Literature Review 
 

This study was the first study within Deventer Hospital focusing on predicting pCR in breast 

cancer patients undergoing neoadjuvant chemotherapy. For this reason, the decision was made 

to first explore the data using hand-crafted features extracted from segmented breast tumors, 

along with a machine learning-based prediction for pCR. Despite the fact that a machine 

learning-based prediction with TPOT also has a black-box nature, efforts were made to 

understand and explain as many aspects as possible in the prediction process. However, the 

results of this study showed that no optimal reliability can be achieved for predicting pCR with 

the method; sensitivity and specificity generally fluctuate in a range of 0.60–0.80. There are 

several ways to further improve the reliability of the pCR prediction. For example, more 

radiological features, such as texture features, could be added to the machine learning based 

prediction model. Additionally, deep learning models appear to have a positive effect on the 

reliability of pCR prediction in breast cancer patients:  

 

• Yungsong et al. set up a study comparing the performance of deep learning features and 

radiomics features in predicting pCR in breast cancer patients undergoing neoadjuvant 

chemotherapy [84]. These features were based on pretreatment DCE-MRI. For the deep 

learning analysis, a rectangular box of 128x128x3 was used to select three consecutive 

slices of the tumor that showed the largest cross-sectional area. Additionally, the data 

was normalized between 0-1, and data augmentation using rotation and flipping was 

applied. The features were extracted using a pre-trained CNN ResNeXt50. This network 

consisted of three fully connected layers, with the output being the probability of pCR. 

Kinetic and molecular information was added to the first fully connected layers. In this 

method, heatmap features can be extracted, allowing for better determination of the 

extent to which a deep learning feature influences the prediction of pCR, thereby 

enhancing the interpretability of the model. This study shows that the deep learning 

model, using a combination of image, kinetic, and molecular information, provides the 

best performance with an accuracy of 0.77. 
 

• Honygi et al. used a CNN to predict pCR, RCB, and the progression free survival in 

breast cancer patients undergoing neoadjuvant chemotherapy [54]. These predictions 

are made using longitudinal multiparametric MRI, demographic information, and 

molecular subtypes as input. In this study, the breast tumor is not segmented before the 

image is used as input into the deep learning model. Additionally, three different deep 

learning configurations are used for extracting the radiological features: 
 

a) Stacking method. This method overlays two MRI images from different time points. 

These stacked images are fed into a ResNet-based CNN model. This approach combines 

the images for feature extraction. 

b) Concatenation method. In this method, images from two time points are processed 

separately through the first layers of the neural network. The outputs of these layers 

(feature maps) are combined into one larger input. This larger input is processed further 

by the next layers. 

c) Integrated method. The two MRI images from different time points were fed through 

two separate convolutional branches of the network. Each branch processed one image 

independently. The result of this were two different feature maps. A pixel-wise operation 

was performed on the two feature maps: pixel-wise addition and pixel-wise subtraction. 

The results were combined and passed through the rest of the network. This way, the 



 

43 

 

network learned not only to process images from different time points but also how the 

images evolve in relation to each other, preserving temporal information completely. 

In each method, non-imaging features were first processed through three fully connected 

layers, and then concatenated with the image features extracted from the MRI images. 

Two fully connected layers processed the combined image and non-imaging features to 

predict the final clinical outcome. 

 

The integrated method shows the highest accuracy in this study, with a score of 0.81. 

 

• El Adoui et al. set up a study in which multiple CNN models were trained and tested for 

predicting pCR in breast cancer patients [53]. In each model, the volume of interest was 

cropped. When tumor segmentation was applied, the tumor within the volume of interest 

was segmented using a U-Net deep learning architecture. For combining pre- and post-

treatment MRI images, concatenation was performed, followed by fully connected 

layers. 

 

The following models were developed: 

1. Using only pretreatment examination with segmentation (single-input CNN) 

2. Using only posttreatment examination with segmentation (single-input CNN) 

3. Using only pretreatment examination without segmentation (single-input CNN) 

4. Using only posttreatment examination without segmentation (single-input CNN) 

5. Using both pretreatment and posttreatment examination with segmentation (multi-

input CNN) 

6. Using both pretreatment and posttreatment examination without segmentation 

(multi-input CNN) 

This study shows that the highest accuracy, 0.91, was achieved with model 6. 

 

• Gao et al. developed a Multi-model Response Prediction (MRP) system capable of 

predicting the response to neoadjuvant chemotherapy in breast cancer patients using 

real-world data [85]. This system was trained on pre-NAT mammogram images and 

longitudinal MRI scans. In addition to using imaging data, the system incorporates 

radiological, histopathological, personal and clinical (RHPC) information, which 

includes a variety of patient data types: radiological assessments, histopathological 

evaluations, personal patient information, and clinical data.  

 

The system utilized two separate models: 

1. iMGrhpc – this model used pre-NAT mammogram images combined with RHPC data. 

2. iMRrhpc – this model used longitudinal MRI scans and RHPC data. For the training of 

the MRI-based model, weights from a previously trained model on a large medical 

dataset were loaded. This technique, known as transfer learning, involves retraining (or 

fine-tuning) a model that has already been trained on similar medical imaging data with 

the specific MRI data for this project. 

 

Each model itself comprises two modules: 

1. A knowledge-learning module: this module attempts to predict RHPC information using 

only image features. This process is also known as cross-model knowledge learning. 

The aim of this module is to learn how RHPC features are associated with the images. 

This strengthens image feature extraction, allowing the model to better identify subtle 

details and patterns in the imaging data that are relevant to clinical characteristics. 
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2. A response prediction module: this module uses both RHPC and imaging information 

to predict the treatment response. 

The individual models, iMGrhpc and iMRrhpc, are combined into an MRP system. This 

integrated system enables a combined prediction by leveraging both RHPC data and 

imaging modalities (mammogram and MRI). The MRP system is trained on a cohort of 

2682 patients from the Netherlands Cancer Institute. Model performance is evaluated 

on an internal test set with 120 patients and three external test sets with diverse patient 

groups: 288 patients from Duke University, 85 patients from Fujian Provincial Hospital 

(FJPH), and 508 patients from the I-SPY2 study. 

 

The results of this study showed that the MRP system provides more accurate 

predictions of the response to neoadjuvant chemotherapy in the pre-NAT, mid-NAT, and 

post-NAT phases compared to the single-modality iMGrhpc and iMRrhpc models. In 

the external FJPH dataset, the MRP system showed a sensitivity of 0.75 and a specificity 

of 0.80 at the pre-NAT stage. For the post-NAT phase, the sensitivity and specificity of 

the MRP system was 0.75 and 0.73, respectively. 

 

The deep learning networks used for classification often have many parameters that are 

essential for the model to learn and extract features from the data. A substantial amount of data 

is typically needed to effectively train these parameters. In peripheral hospitals, this volume of 

data is often unavailable, so a pretrained network is typically used to set up a deep learning 

model [86]. This pretrained network can be fine-tuned with the data from the peripheral 

hospital—in this case, Deventer Hospital. However, for deploying a deep learning network to 

predict pathologic response in breast cancer patients following neoadjuvant chemotherapy, no 

pretrained network is currently publicly available.  

 

For the future perspective of this study involving deep learning networks with data from 

Deventer Hospital, the following steps are recommended: 

• Incorporating Clinical and Radiological Data: It is recommended to use both clinical 

and radiological data in predicting pCR in breast cancer patients undergoing 

neoadjuvant chemotherapy. Clinical data can be concatenated with radiological data 

prior to the fully connected layers in a deep learning network. Additionally, it is advised 

to include longitudinal MRI images. To combine the feature maps from multiple MRI 

time points, for example the integrated method of El Adoui et al. can be used.  

• Avoiding Tumor Segmentation in MRI Input Images: It is not recommended to segment 

the tumor in the MRI input images. The study by El Adoui et al. demonstrated that tumor 

segmentation does not add value to the prediction of pCR in breast cancer patients using 

deep learning imaging features. Omitting tumor segmentation not only saves 

considerable time but also reduces uncertainty in feature calculations, given that tumor 

segmentation does not have a perfect reliability. A rectangular box around the volume 

of interest could be used for deep learning feature extraction, as done by both Yungsong 

et al. and El Adoui et al. 

• Using a Pretrained Network: It is recommended to use a pretrained network so that the 

model can be fine-tuned on Deventer Hospital data. However, no pretrained network for 

this research question is currently available online. It is therefore advisable to reach out 

to other centers in the Netherlands that have a pretrained network for similar purposes 

and inquire about the availability of these models. Additionally, for clinical applicability, 

it will be important to consider the explainability of the model, for example, by using a 

saliency map.  
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• External Validation of the Network: In addition to internal validation with a test set, it 

is recommended to perform external validation. For a grant application, contact has 

already been made with Medisch Spectrum Twente and Ziekenhuisgroep Twente 

regarding the inclusion of more patients. 
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Appendix A – From binair pathological respons to RCB score: ‘The 

RCB translation method’ 
 

For calculating the RCB score, the following parameters are required : 

1. Primary tumor bed area 

2. Overall cancer cellularity (percentage of area) 

3. Percentage of cancer that is in situ 

4. Number of positive lymph nodes 

5. Diameter of the largest metastasis 

 

All pathology reports for the included patients of this study were reviewed to identify these 

necessary parameters, as they are sometimes mentioned in the report but without an RCB score 

calculation. In this way, it was possible to retrospectively establish an RCB score for a subset 

of patients. If a parameter is reported as a range (e.g., 10-50%), the RCB score is calculated 

using both the lower bound (in this case, 10%) and the upper bound (in this case, 50%) of the 

range. This results in two possible RCB scores for a single patient. If these scores are the same, 

the RCB score can be included in the database. If the scores differ, the pathologist must review 

the patient’s case to determine the accurate score. 

 

To validate the accuracy of this RCB translation method, tissue from 12 patients were collected 

so the pathologist could evaluate them using the standard scoring method. Simultaneously, the 

new RCB translation method was applied to these same patients. The results were as follows: 

• For 9 of the 12 patients, the same RCB score was obtained with both the standard 

method and the new RCB translation method. 

• The parameter ‘percentage of cancer that is in situ’ was found to be the most frequently 

ambiguous in the pathology reports. Among these 12 patients, the average value for this 

parameter was 15%. Consequently, it was decided to use a range of 1-30% when this 

parameter is unclear in the pathology report. 

 

 

  



 

53 

 

Appendix B - Radiomics 3D shape features  
 
Table 10 3D shape features, calculated with pyradiomics 

Feature Description  

Elongation Calculated as the ratio of the largest to the second largest 

principal component axes. This feature helps in identifying long, 

stretched shapes versus more compact ones   

Flatness  Calculated as the ratio of the smallest principal axis to the largest 

principal axis of the object. It is particularly useful for 

understanding the relative thickness or thinness of an object.  

Minor axis length The second largest axis length and is calculated using the second 

largest principal component. 

Least axis length  The smallest axis length and is calculated using the smallest 

principal component. This feature essentially measures the 

minimum spread or extent of the region in any dimension.  

Major axis length  The largest axis length and is calculated using the largest 

principal component. This axis is in the direction in which the 

object extends the most.  

Maximum 2D 

diameter column 

Defined as the largest distance in the row-slice plane  

Maximum 2D 

diameter row  

Defined as the largest distance in the column-slice plane   

Maximum 2D 

diameter slice  

Defined as the largest distance in the row-column plane 

Maximum 3D 

diameter 

The longest straight-line distance between any two points of a 

3D object.  

Mesh volume The 3D space enclosed by a surface mesh  

Sphericity A measure of the roundness of the shape of the segmentation 

relative to a sphere. The value of 1 indicates a perfect sphere.  

Surface area Total area of the outer boundary of a segmentation represented 

by its surface mesh 

Surface volume ratio Calculated by dividing the total surface area of the segmentation 

by the volume of the segmentation 

Voxel volume Volume of a 3D pixel  
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Appendix C – Imputation missing radiological features  
 

Introduction  

There were patients with one missing MRI (n=33), resulting in missing radiological features 

for these patients. Several strategies are available for dealing with missing values [74], 

including: 

1. Deletion of patients: removing patients with missing values can lead to a smaller dataset, 

but it preserves the integrity of the data. 

2. Imputation with simple statistical measures:  a common approach is to impute missing 

values using simple statistical measures, such as the mean or median. This method 

assumes that the imputed value is representative of the central tendency of the data.  

3. Machine learning techniques: another approach is the use of machine learning 

techniques to predict missing values. This method offers the potential to identify 

patterns and relationships within the data, potentially leading to more accurate 

imputations compared to traditional statistical imputations.  

 

Materials and method  

During this study, six imputations methods were tested. First, patients with an actual missing 

MRI were removed from the dataset (n = 33). The remaining dataset (n= 258) was split into a 

training set (60%), a validation set (20%) and a test set (20%). In both the validation and test 

sets, 20% of the data was randomly removed. The original pattern of missing data was 

preserved: either all variables from MRI time point 1 were missing, or all variables from MRI 

time point 2, or all variables from MRI time point 3. Subsequently, several methods were tested 

to estimate these created missing values [87] : 

1. Statistical parameters: mean, median, and most frequent 

2. Machine learning models: KNN, RF, and Bayesian. For hyperparameter optimization, 

the best set of hyperparameters was selected based on evaluation using the validation 

set. The following parameters were used: 

• KNN: number of neighboring data points (K) to take into account for the prediction 

equals 1, 2, 3, 5, 7, 10.  

• RF: the number of decision trees equals 10, 20, and 30; the tree depths equals 10, 20, 

and 30.  

• Bayesian: the limit of the number of iterations for optimal settings equals 10, 20, and 

30.  

For each imputed missing value, the absolute error was calculated. This absolute error is divided 

by the mean of the corresponding radiological feature. The mean percentage error was 

determined for each radiological feature.  

 

Results  

In Figure 21, the mean percentage errors from the six imputation methods for each radiological 

feature are visible. There were three DCE-MRI time points per patient, each with 14 

radiological features. The results indicate that for the majority of radiological features, the mean 

percentage error exceeds 10% across all imputation methods. However, there were exceptions: 

the median, most frequent, and RF imputation methods each have one radiological feature with 

a mean percentage error below 10%. Specifically, for the median and RF methods, this feature 

was the delta elongation feature, while for the most frequent method, it was the delta feature 

sphericity. 
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Discussion 

In this study, the dataset was too heterogeneous to justify reliable imputations using mean, 

median or most frequent values. The central tendency can be significantly influenced by outliers 

or extreme values, leading to imputed values that do not reflect the actual variability within the 

dataset. In this case, using imputation with a statistical measure could result in distortions, 

leading to incorrect conclusions. Additionally, attempts were made to predict the missing values 

using various machine learning models. These results were insufficient, likely due to the lack 

of sufficient data to enable the models to learn the correct patterns. It is expected that expanding 

the dataset, further optimization of hyperparameters and experimentation with different 

algorithms are necessary to improve the performance of the imputation of missing values with 

machine learning models. 
 

Conclusion 

Since no imputation method was able to estimate the majority of the radiological variables with 

a margin of error of less than 10%, it was decided to remove patients with missing radiological 

variables.  

A B 

C D 

E F 

Figure 21 Mean percentage error scatterplots for each radiological feature. There were 
three DCE-MRI time points per patient, each with 14 radiological features. The red line is 
a threshold line of 10%.  A: imputation with mean, B: imputation with median, C: 
imputation with most frequent, D: imputation with KNN prediction, E: imputation with  
RF prediction, F: imputation with Bayesian prediction. 
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Appendix D - Spearman correlation coefficient clinical data  
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 22 Heatmap SCC Clinical Data, Part I. 
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Figure 23 Heatmap SCC Clinical Data, Part II. 
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Figure 24 Heatmap SCC Clinical Data, Part III. 
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Appendix E - Spearman correlation coefficient radiological data 
 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 25 Heatmap SCC Radiological Data, Part I. 
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Figure 26 Heatmap SCC Radiological Data, Part II. 
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Figure 27 Heatmap SCC Radiological Data, Part III. 
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Figure 28 Heatmap SCC Radiological Data, Part IV. 
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Figure 29 Heatmap SCC Radiological Data, Part V. 
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Appendix F - Spearman correlation coefficient clinical data combined 

with radiological data 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 30 Heatmap SCC Clinical and Radiological Data, Part I. 
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Figure 31 Heatmap SCC Clinical and Radiological Data, Part II. 
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  Figure 32 Heatmap SCC Clinical and Radiological Data, Part III. 
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Appendix G – Results Binary Classification Model  
 
Table 11  Results of binary classification model 

Model Data Sensitivity Specificity AUC 

1 Clinical 0.31 0.83 0.57 

1 Radiological 0.44 0.92 0.68 

1 Clinical and Radiological 0.44 0.83 0.64 

2 Clinical 0.25 0.89 0.57 

2 Radiological 0.31 0.92 0.61 

2 Clinical and Radiological 0.75 0.83 0.79 

3 Clinical 0.31 0.83 0.57 

3 Radiological 0.50 0.86 0.68 

3 Clinical and Radiological 0.69 0.72 0.70 

4 Clinical 0.31 0.83 0.57 

4 Radiological 0.25 1.00 0.62 

4 Clinical and Radiological 0.38 0.83 0.60 

5 Clinical 0.31 0.83 0.57 

5 Radiological 0.44 0.89 0.66 

5 Clinical and Radiological 0.56 0.83 0.70 

6 Clinical 0.44 0.75 0.59 

6 Radiological 0.44 0.89 0.66 

6 Clinical and Radiological 0.56 0.78 0.67 

7 Clinical 0.44 0.75 0.59 

7 Radiological 0.50 0.78 0.64 

7 Clinical and Radiological 0.69 0.81 0.75 

8 Clinical 0.75 0.75 0.75 

8 Radiological 0.75 0.72 0.74 

8 Clinical and Radiological 0.69 0.76 0.68 

9 Clinical 0.75 0.75 0.75 

9 Radiological 0.75 0.75 0.75 

9 Clinical and Radiological 0.75 0.69 0.72 
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Appendix H – Results Binary Classification - Breast Cancer Subtypes 
 
Table 12 Results of binary classification model – Her2+ subgroup 

Model Data Sensitivity Specificity AUC 

1 Clinical 1.0 0.25 0.62 

1 Radiological 0.75 0.75 0.75 

1 Clinical and Radiological 1.0 0.50 0.75 

2 Clinical 1.0 0.25 0.62 

2 Radiological 0.50 1.00 0.75 

2 Clinical and Radiological 1.0 0.50 0.75 

3 Clinical 1.0 0.25 0.62 

3 Radiological 0.75 0.50 0.62 

3 Clinical and Radiological 1.0 0.25 0.62 

4 Clinical 1.0 0.25 0.62 

4 Radiological 0.50 1.00 0.75 

4 Clinical and Radiological 0.75 0.25 0.50 

5 Clinical 1.0 0.25 0.62 

5 Radiological 0.75 0.50 0.62 

5 Clinical and Radiological 1.0 0.50 0.75 

6 Clinical 0.75 0.50 0.62 

6 Radiological 0.25 1.00 0.62 

6 Clinical and Radiological 1.0 0.75 0.88 

7 Clinical 0.75 0.50 0.62 

7 Radiological 0.50 0.75 0.62 

7 Clinical and Radiological 1.0 0.75 0.88 

8 Clinical 1.0 0.50 0.75 

8 Radiological 0.75 0.50 0.62 

8 Clinical and Radiological 1.0 0.25 0.62 

9 Clinical 1.0 0.50 0.75 

9 Radiological 0.75 0.50 0.62 

9 Clinical and Radiological 1.0 0.50 0.50 
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Table 13 Results of binary classification model – TNBC subgroup 

Model Data Sensitivity Specificity AUC 

1 Clinical 0.12 0.80 0.46 

1 Radiological 0.25 0.80 0.53 

1 Clinical and Radiological 0.38 0.70 0.54 

2 Clinical 0 1.0 0.50 

2 Radiological 0.25 1.0 0.62 

2 Clinical and Radiological 0.88 0.80 0.84 

3 Clinical 0.12 0.80 0.46 

3 Radiological 0.25 0.80 0.53 

3 Clinical and Radiological 0.62 0.50 0.56 

4 Clinical 0.12 0.80 0.46 

4 Radiological 0.12 1.0 0.56 

4 Clinical and Radiological 0.38 0.80 0.59 

5 Clinical 0.12 0.80 0.46 

5 Radiological 0.25 0.80 0.53 

5 Clinical and Radiological 0.38 0.70 0.54 

6 Clinical 0.50 0.40 0.45 

6 Radiological 0.62 0.70 0.66 

6 Clinical and Radiological 0.50 0.50 0.50 

7 Clinical 0.50 0.40 0.45 

7 Radiological 0.62 0.50 0.56 

7 Clinical and Radiological 0.75 0.60 0.68 

8 Clinical 1.00 0.30 0.65 

8 Radiological 0.75 0.50 0.62 

8 Clinical and Radiological 1.00 0.25 0.62 

9 Clinical 1.00 0.30 0.65 

9 Radiological 0.75 0.50 0.62 

9 Clinical and Radiological 0.75 0.40 0.57 
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Appendix I – Results RCB Classification 
 
Table 14 Results of RCB classification  

Model Data Accuracy Cohen’s kappa 

1 Clinical 0.56 0.30 

1 Radiological 0.47 0.13 

1 Clinical and Radiological 0.61 0.38 

2 Clinical 0.58 0.34 

2 Radiological 0.64 0.41 

2 Clinical and Radiological 0.69 0.51 

3 Clinical 0.56 0.29 

3 Radiological 0.44 0.14 

3 Clinical and Radiological 0.53 0.26 

4 Clinical 0.56 0.29 

4 Radiological 0.58 0.32 

4 Clinical and Radiological 0.56 0.29 

5 Clinical 0.56 0.30 

5 Radiological 0.56 0.29 

5 Clinical and Radiological 0.61 0.38 

6 Clinical 0.53 0.29 

6 Radiological 0.44 0.10 

6 Clinical and Radiological 0.67 0.49 

7 Clinical 0.53 0.29 

7 Radiological 0.50 0.24 

7 Clinical and Radiological 0.56 0.32 
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Appendix J – Results RCB-0 Classification 
 
Table 15 Results of RCB classification – RCB-0 

Model Data Sensitivity Specificity AUC 

1 Clinical 0.88 0.70 0.79 

1 Radiological 0.50 0.70 0.60 

1 Clinical and Radiological 0.88 0.70 0.79 

2 Clinical 0.94 0.70 0.82 

2 Radiological 0.81 0.65 0.73 

2 Clinical and Radiological 0.81 0.80 0.81 

3 Clinical 1.00 0.60 0.80 

3 Radiological 0.50 0.70 0.60 

3 Clinical and Radiological 0.75 0.65 0.70 

4 Clinical 1.00 0.60 0.80 

4 Radiological 0.75 0.60 0.68 

4 Clinical and Radiological 0.94 0.60 0.77 

5 Clinical 0.88 0.70 0.79 

5 Radiological 0.56 0.70 0.63 

5 Clinical and Radiological 0.88 0.70 0.79 

6 Clinical 0.81 0.80 0.81 

6 Radiological 0.56 0.50 0.53 

6 Clinical and Radiological 0.81 0.75 0.78 

7 Clinical 0.81 0.80 0.81 

7 Radiological 0.50 0.75 0.62 

7 Clinical and Radiological 0.69 0.70 0.69 

 

  



 

72 

 

Appendix K – Confusion Matrix RCB Classification 
 

Figure 33 Confusion matrix for RCB-0. 


