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1 Introduction

Uncertainty is both a phenomenon that is an integral part of the human experience and a funda-
mental concept that spans a multitude of disciplines, including psychology, cognitive sciences,
mathematics, physics, engineering and machine learning. In the field of cognitive science, un-
certainty is often viewed from the perspective of decision making, where future outcomes are
difficult to predict due to unreliable or incomplete information, or due to unexpected changes
in the environment [1]. In the field of physics, uncertainty manifests itself at the most funda-
mental level, through Heisenberg’s Uncertainty Principle, which imposes a limit to the level
of precision with which the position and momentum of sub-atomic particles can be simultane-
ously measured [2]. In the engineering, uncertainty plays a role in modeling real-world systems,
where measurements that are noisy and have a higher degree of uncertainty, lead to less accurate
models.

From an information theory and a computational perspective, uncertainty is characterized by
probability distributions which quantify the likelihood of various outcomes, given incomplete
or noisy information [3]. In machine learning, however, models often rely on fixed represen-
tations, called embeddings, to represent information. While these fixed-point embeddings are
useful for many tasks, they fall short in capturing the inherent uncertainty about the data these
models encode. Representing these embeddings as a probability distribution, rather than a fixed
point, in an n-dimensional space, could be a way to mitigate this shortfall and enable machine
learning models to encode uncertainty.

This thesis aims to explore methods for encoding uncertainty in machine learning, focusing
on Large Language Models (LLMs) in particular. To achieve this, we make use of a Vari-
ational Auto-Encoder (VAE) architecture to learn a probabilistic latent representation of the
internal embeddings of LLMs. Our findings show that this architecture, in combination with
a Kullback–Leibler (KL) training objective designed to capture the inherent uncertainty, is a
promising method for encoding and estimating uncertainty for LLMs.

The rest of the chapter is organized as follows. In section 1.1 we introduce LLMs and provide a
brief overview of language-related tasks. We then discuss how uncertainty can be quantified in
section 1.2. Our contributions are summarized in section 1.3 and the thesis structure is presented
in section 1.4.

1.1 Natural Language Processing

Natural Language Processing (NLP) is a sub-field of artificial intelligence which focuses on
enabling computers to comprehend, manipulate and generate human language. In recent years,
LLMs, also referred to as foundational models, have revolutionized the field of NLP and have
gained widespread adoption due to their impressive performance across various language-related
tasks, ranging from comprehension to generation. These models have become an integral com-
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ponent in numerous real-world applications. This adoption was driven in particular by the de-
velopment of ChatGPT and other open-source models such as Llama 2 [4], which have shown
impressive capabilities to generate human-like text and solve complex tasks such as coding or
reasoning.

However, the widespread adoption of LLMs has also highlighted significant risks. These risks
include issues such as bias [5], safety [6] and hallucinations [7]. These are especially important
in instances where LLMs are deployed in applications, such as healthcare, legal advice or auto-
mated decision-making systems, where incorrect or misleading information can lead to serious
consequences [8].

1.2 Quantifying Uncertainty

Uncertainty quantification for deep learning neural networks, used in tasks such as classifi-
cation or image segmentation, is a relatively well established area of research [9]. Common
uncertainty estimation approaches can be broadly categorized in Bayesian methods or ensem-
ble methods. In contrast, uncertainty quantification in the context of LLMs is a relatively novel
area of research that is still under active development.

One approach to addressing some of the risks posed by LLMs, as suggested by Liu et al. [10],
is to enhance foundational models with uncertainty quantification capabilities. By providing
accurate estimates of an LLM’s confidence in the reliability of its generated response, users can
be empowered to make informed decisions about whether to trust the model’s output, thereby
mitigating issues such as the spread of misinformation or biases. Another potential advantage
of uncertainty estimation is the handling of out-of-distribution data. Such responses can be
flagged, based on the low model confidence, prompting for human intervention in automated
systems, or driving improvements in model training and leading to more robust LLMs.

Most common approaches for uncertainty estimation in LLMs rely on Bayesian methods or
make use of sampling [11]. Despite being effective, these methods are often computationally
expensive as they require multiple inferences for a given input, hindering scalability. Single-
inference methods, relying on output logits of an LLM, by means of using token probabilities
or entropy measures, are computationally efficient but fail to to fully capture the uncertainty of
LLM outputs [11]. Another approach involves prompting LLMs to self-verbalize their confi-
dence [12, 13]. While this approach has the advantage of working for black-box models, whose
internal model states are not accessible, it has been found that this method often performs
poorly, as LLMs tend to be significantly over-confident. More recently, approaches using the
intermediate hidden states of LLMs to infer uncertainty have shown promise, offering a good
trade-off between efficiency and performance [14, 15]. The major limitation is that these meth-
ods typically require access to internal model states, thus only working with white-box models.
However, research suggests that this type of methods can be adapted for use with black-box
models with limited loss in performance [10].
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1.3 Contributions

In this work, we propose Variational Auto-encoder for Latent Uncertainty Encoding (VALUE),
for encoding the uncertainty inherent to LLMs. We build upon basic notions of VAEs to learn
uncertainty-aware latent probabilistic representation of the internal states of an LLM, thus mod-
eling the uncertainty of the LLM’s responses within the latent space. The underlying intuition
is that a larger variance in the latent space for a generated sequence will correspond to a lower
confidence in the model’s response. The method uses a KL divergence-based uncertainty ob-
jective which allows the VALUE model to encode the uncertainty inherent to an LLM’s internal
states. We demonstrate that our proposed method is LLM-agnostic by evaluating it using both
an Open Llama 2 3B model and Meta’s Llama 2 7B model. Both the quantitative results and
the qualitative analysis showcases the VALUE model’s ability to represent uncertainty in the
learned latent probabilistic distribution, while maintaining the coherence and the quality of the
text generated by the LLM using the VALUE-processed hidden states.

1.4 Thesis Structure

An overview of the thesis is provided below, briefly mentioning each chapter’s objective.

Chapter 1 introduces the background, the motivation and the contributions of this thesis.

Chapter 2 presents a literature review covering LLMs, uncertainty and methods of estimating
uncertainty in LLMs. It also briefly introduces VAEs and covers related works that employ this
architecture for uncertainty estimation.

Chapter 3 provides the theoretical foundation for this thesis by covering the language mod-
eling task and the Transformer architecture specific to LLMs. In addition, it also covers the
underlying principles of VAEs.

Chapter 4 formalizes the VALUE approach and details the training objectives used.

Chapter 5 starts by presenting the dataset used, the process through which the VALUE model
has been trained and the metrics used to evaluate it. Next, it presents the main quantitative
results of the evaluation, followed by a brief qualitative analysis.

Chapter 6 presents some of the challenges encountered in the development of our model and
describes how these issues were mitigated.

Chapter 7 concludes the thesis and summarizes the contribution and the findings, while also
highlighting directions for future work.
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2 Literature review

This chapter provides an overview of LLMs and the current state of research in the field of
uncertainty quantification. Section 2.1 focuses on the evolution of LLMs, highlighting some
of the most important models and the innovations they have brought to the field, while also
briefly touching on evaluation and risks of LLMs. Section 2.2 addresses the topic of uncertainty
estimation in neural networks, with a specific focus on uncertainty estimation for LLMs, and
explores the use of VAEs for uncertainty quantification.

2.1 Large Language Models (LLMs)

This section outlines the evolution of LLMs, from the introduction of the foundational trans-
former architecture to the latest developments of models such as GPT and Llama, briefly men-
tioning some of the key innovations. The evaluation of LLMs is also covered in this section,
with commonly used evaluation metrics and benchmarks. Lastly, some challenges such as bias
and hallucinations are mentioned, as well as how uncertainty estimation could be used to miti-
gate these risks.

2.1.1 Evolution of LLMs

One of the most important developments of the last years, in the field of NLP, has been the intro-
duction of the transformers. The encoder-decoder architecture proposed by Vaswani et al. [16]
introduced several key innovations such as scaled dot-product attention, multi-head attention
and positional encoding. With this architecture, a text sequence is split into small units, called
tokens, which are processed in parallel. The parallel processing requires positional information
of the tokens inside the sequence, achieved by means of positional encodings. The attention
mechanism, which is essentially a matrix of token correspondence, allows transformers to cap-
ture contextual information. These developments allowed transformers to handle long-range
dependencies and efficiently process data in parallel, proving a significant advantage over recur-
rent neural networks (RNNs) which were widely adopted in NLP. The scalability and efficiency
of the transformer architecture enabled the development of LLMs.

LLMs are a class of artificial intelligence systems which are designed to process, understand and
generate human language. Such models are trained on large amounts of textual data, often in
an unsupervised manner, enabling them to learn linguistic patterns. The most important aspect
of LLMs is the concept of language modeling, which involves learning to predict a probability
distribution over a vocabulary. LLMs are able to perform a wide range of NLP tasks such as text
classification, summarization or translation. The scale of the models enabled LLMs to exhibit
emergent capacities, such as in-context learning or chain-of-thought reasoning, properties that
are not present in smaller NLP models [17].

Generative Pre-trained Transformer (GPT) - Open AI. Radford et al. [18] introduced GPT-
1, the first model in the GPT family of models. The model is autoregressive and is using a
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left-to-right decoder-only architecture. An autoregressive model generates text one token at a
time, based on all previous tokens. It is trained by means of a two-stage training process; the
first stage is an unsupervised pre-training with next token prediction as a task; the second stage
involves supervised, task-specific fine-tuning. Due to the model being trained on long text se-
quences, this enabled it to learn long-range dependencies. GPT-1 achieved state-of-the-art on
a number of various NLP tasks and demonstrated zero-shot capabilities. Radford et al. [19]
continued the development of GPT models, by introducing GPT-2. Their work highlighted the
positive effect of large and diverse datasets in improving model performance, alongside with
the importance of a larger number of parameters for the model. GPT-2 showed good zero-shot
capabilities and eliminated the need for downstream task-specific fine-tuning. Brown et al.
[20] made an important leap with the introduction of GPT-3. It keeps the same autoregressive
architecture of GPT-2 with minor changes, but significantly scales up the number of model pa-
rameters. One of the key contributions was the introduction of prompts as a way of eliciting
model-stored knowledge, enabling meta-learning and in-context learning. The model displayed
improved performance in zero-, one, and few-shot learning scenarios. GPT-3 also sparked im-
portant discussions about the bias, fairness, safety and misuse of LLMs [20].

Large Language Model (Llama) - Meta AI. Touvron et al. [21] introduced the first iteration
in the Llama family of models. Llama 1 relied on the original autoregressive transformer archi-
tecture, similar to the GPT family of models, however shifted focus on inference efficiency and
made use of publicly available data for training. Touvron et al. [4] later introduced Llama 2,
along with Llama 2-Chat fine-tuned for conversational use cases. The model closely resembled
the previous iteration but made use of an increased context window length. The key improve-
ment over the previous iteration stemmed from the training data, with a 40% increase in dataset
size and an improved data cleaning process. The chat-focused model was developed using
Supervised Fine-Tuning (SFT) and Reinforcement Learning with Human Feedback (RLHF),
optimizing the model for both helpfulness and safety of its answers. SFT involves training
the model in a supervised manner using labeled data to improve performance on certain tasks,
while RLHF is a reinforcement learning paradigm which enhances the model by making use of
human feedback to further refine and align the model with human expectations. More recently,
Llama 3 [22] was released with an increased vocabulary size and context window length. The
training dataset was significantly expanded compared to the previous iteration, amounting to 15
trillion tokens.

2.1.2 Metrics, benchmarks and challenges

Metrics. Surveys by Minaee et al. [17] and Chang et al. [23] describe how the evaluation pro-
cess of LLMs has also evolved over time. Initially, the focus has been on traditional NLP tasks
such as sentiment analysis, text classification, natural language inference (NLI), while later
the focus has shifted towards natural language generation (NLG) tasks such as summarization,
translation or question answering. More recently, driven in particular by the advancement of
dialogue-focused LLMs, there was a shift in evaluation towards reasoning, factuality, robust-
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ness, ethics and bias. The metrics used for evaluation are usually task specific. For instance,
ROUGE and BLUE scores are commonly used to measure the accuracy of text generation by
comparing the overlap between generated and expected texts. F1 score is the harmonic mean of
precision and recall and is often used in classification tasks. Area under the curve (AUC) is also
commonly used for classification tasks and is used to determine a model’s capability of distin-
guishing between classes across different threshold values. Expected calibration error measures
how well the predicted probabilities of a model align with the ground-truth probabilities, hence
measuring how well a model is calibrated.

Benchmarks. Common benchmarks for LLMs include: MMLU [24], general knowledge and
problem solving task covering 57 subject fields; AGIEvalEnglish [25], human-centric standard-
ized exams task, covering exams such as college entrance exams, law school admission or math
competitions; CommonSenseQA [26], question answering task with a focus on using back-
ground knowledge to answer common sense questions; Winogrande [27], common sense rea-
soning task, formulated as filling in the blank by choosing from 2 possible answers; Big-Bench
[28], benchmark consisting of more than 200 tasks spread across diverse topics, designed to be
beyond current LLMs capabilities; ARC-Challenge [29], complex reasoning task with a focus
on abstraction and skill-acquisition; TriviaQA [30], trivia-style question answering task; QuAC
[31], conversational-style question answering task with a focus of understanding and using the
context; BoolQ [32], yes/no question answering task with a focus on reading comprehension;
DROP [33], reading comprehension benchmark with tasks such as addition, counting and sort-
ing across text paragraphs.

Challenges. LLMs often encode bias present in the training data and can subsequently re-
produce or even amplify that bias when deployed in practical applications. The combination
of encoded biases and the mirage of coherent generated text can lead to the perpetuation and
reinforcement of stereotypes, or, when used in automated system, can lead to unfair and dis-
criminatory outcomes [5]. The potential of malicious uses is also of great concern in LLM
development. As discussed by Weidinger et al. [6], models can assign high probabilities to fac-
tually incorrect sequences of tokens, and because users may develop confidence in the outputs
of an LLM, there is a risk of models spreading misinformation. A different study [7] notes that
hallucinations of LLMs, can undermine the reliability and trustworthiness of language models.
Liu et al. [10] mentions that a potential approach to addressing this issue could be to incorpo-
rate uncertainty estimation with regards to the model’s outputs. These estimates can be used
to detect when the hallucination phenomenon occurs and prevent the model from outputting
misleading or fabricated information.

2.2 Uncertainty

This section addresses the topic of uncertainty estimation. It starts with an outline of the differ-
ent types and sources of uncertainty, followed by an overview of general methods for quantify-
ing uncertainty and their categorization. The focus then shifts to developments in uncertainty
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estimation, specifically for LLMs, covering heuristic approaches, such as the use of likelihoods
and entropy, sampling and perturbation methods, and verbalized confidence elicitation, as well
as approaches which leverage the hidden states of LLMs to train modules capable of quantify-
ing uncertainty. Lastly, this section covers the use of VAE networks for estimating uncertainty
mentioning approaches based on heuristics, sampling and the variation encoded in the latent
distributional representations of VAEs.

Uncertainty types. Due to neural networks becoming ubiquitous for various applications in
a real-world setting, building confidence in their predictions has gained a lot of attention from
researchers. Gawlikowski et al. [34] provide a survey article highlighting types, sources and
quantification methods for uncertainty in deep neural network, as well as the importance of cal-
ibration to ensure the applicability of uncertainty estimation methods. Hüllermeier & Waege-
man [35] categorized two types of uncertainty. Aleatoric uncertainty is intrinsic to the data
and is of stochastic nature. Epistemic uncertainty arises from the model and can be reduced
or eliminated by additional data. According to Gawlikowski et al. [34], sources of uncertainty
include variability in data, issues with data acquisition and measurement, flaws in model design
and training procedures, and the use of out-of-distribution data during inference.

Uncertainty estimation methods can be broadly categorized into four types. Single network
methods involve either training a neural network to estimate uncertainty, or including additional
components into a pre-trained network with the specific purpose of modeling uncertainty. For
example, Kirchhof et al. [36] introduced a pre-trained uncertainty estimation module for neural
networks in the space of computer vision. The module is trained as a separate head on top of a
backbone vision model and uses the outputs of the backbone model together with the loss val-
ues from a classification head to model aleatoric uncertainty. They use a ranking loss function
to train the uncertainty head, such that an input with a higher classification loss value is asso-
ciated with a higher uncertainty. Bayesian methods focus on learning a distribution over model
parameters and can be further sub-categorized into variational inference, sampling and Laplace
approximations approaches. Ensemble methods estimate uncertainty based on the variance of
predictions from multiple models trained independently. Test-time augmentation methods in-
volve the augmentation of data during inference and analyzing the resulting distribution over
the predictions in order to quantify uncertainty [34].

2.2.1 Uncertainty estimation in LLMs

Heuristic approaches. Huang et al. [11] explore several approaches of estimating uncertainty
in LLMs. The authors highlight challenges inherent to LLMs that prevent, to a certain ex-
tent, the adoption of uncertainty estimation techniques used for more general machine learning.
These challenges include the complexity of LLMs, making the use of neuron activations probing
methods prohibitively expensive; the black-box nature of many models, particularly concerning
training data, which prevents the use of out-of-distribution techniques; and the wide range of
tasks that LLMs are used for, requiring the development of more specialized methods. Fur-
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thermore, they select and evaluate a number of uncertainty quantification methods, focusing
on single-inference methods, based on likelihood and entropy, and multi-inference methods.
The multi-inference methods can be further sub-divided into sample-based methods, which
introduce stochasticity by means of higher temperature model values, and perturbation-based
methods, which generate different outputs by selecting different variations of high-entropy to-
kens. Their findings show that sample-based methods significantly outperform single-inference
methods in terms of uncertainty estimation, while perturbation-based methods show moderate
effectiveness but suffer high model-specificity. Xiong et al. [12] empirically evaluate the abil-
ity of LLMs to self-express uncertainty in the generated answers and showed that LLMs tend
to overestimate the confidence in their answers, similarly to Groot & Valdenegro-Toro [13].
Although certain strategies improve the uncertainty estimation, the self-verbalized uncertainty
elicitation approach performs worse than more traditional, white-box-style uncertainty estima-
tion approaches. Chen et al. [15] introduce a new approach to uncertainty estimation which
also uses hidden states of LLMs. They propose a new metric, ‘EigenScore’, which relies on
the self-consistency of LLM generations. The score is computed as the logarithm determinant
of the covariance matrix of the last-token embedding from the middle layer of the LLM across
several generated sentences. Their findings show that the middle layers outperform early or
final layers, and that using the hidden state of the last token is more effective than averaging the
hidden states of all generated tokens.

Trained modules. Azaria & Mitchell [14] leverage the hidden activations of an LLM to train a
classifier capable of detecting false statements, either provided as input to the LLM or generated
by the LLM. The authors also investigate which layers of the LLM are more effective to use for
assessing the truthfulness of statements and find that middle layers tend to outperform the final
layers. Their work highlights the the potential of using hidden states of LLMs for uncertainty
estimation. Liu et al. [10] present a supervised approach to uncertainty estimation for LLMs
by leveraging labeled datasets. They highlight the difference between uncertainty estimation
in traditional machine learning and LLMs, and argue that, due to the choice of loss function
for LLMs, the hidden activations corresponding to the prompt-response pairs should encode
information about the uncertainty of the generated response, information that would usually be
encoded in the output logits of a neural network. They perform a feature selection process to
significantly reduce the dimensionality of the hidden activations, by means of Lasso regression,
mutual information and Pearson correlation. The selected features are combined with a number
of logit-based features such as entropy and likelihood and used to train a random forest model
which predicts the level of uncertainty of the generated text sequence. Although the presented
supervised approach outperforms other unsupervised methods, it has the limitation of relying
on the availability of task-specific datasets.

2.2.2 Variational Auto-Encoders (VAEs)

The VAE was introduced by Kingma & Welling [37], and it is a neural network architecture that
comprises of an encoder and a decoder module. The encoder learns a probabilistic latent rep-
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resentation of the input data, while the decoder learns to reconstruct the data by sampling from
the latent distribution. The VAE is typically used as a generative model, in particular in the field
of computer vision, however there have been a number of works which employ the VAE for the
purpose of uncertainty estimation based on the intuition that the probabilistic representation can
also encode information about data uncertainty.

Heuristic approaches. Böhm et al. [38] adopt a generative approach to address the Bayesian
inverse problem of image reconstruction from corrupted data, by means of training a VAE on
uncorrupted data. The use of a VAE enables estimating the uncertainty by inferring the latent
distribution of the corrupted data, sampling from this distribution and using the decoder to ob-
tain a range of possible reconstructions. The uncertainty of the corrupted data correlates with
the variability of the reconstructed images.

Sampling. Belen et al. [39] train a network to classify ECG signals for the scope of detecting
Atrial Fibrillation. The authors use a VAE network to process the input data and learn a dis-
tribution over latent variables. Samples from the latent representation are then passed through
a multi-layer perceptron (MLP) to obtain a prediction. The uncertainty estimate is obtained
by computing the standard deviation of the classifier’s probability array after multiple passes
through the network. Lin et al. [40] adopt a similar approach for a computer vision classifi-
cation task. A VAE network is used to learn probabilistic latent representations from which
samples are taken and fed through an MLP classifier. A probability distribution for the output
classes, averaged over the samples, is then obtained. The final prediction is determined by se-
lecting the class with the highest average probability across the samples, while the uncertainty
estimate is given by the probability value for the predicted class.

Latent distribution variance. Catoni et al. [41] found that, in the context of image classifica-
tion, there is mis-calibration between uncertainty estimates encoded in the latent probabilistic
representations of VAEs and the informativeness of the classified images. To address this short-
coming, the authors propose an improved VAE architecture which introduces an additional
latent variable acting as a scaling factor on the probabilistic latent representations. The uncer-
tainty estimate is obtained by averaging the standard deviations of all latent variables in the
network. One of the important findings is that this new architecture can correctly assign high
uncertainty estimates to out-of-distribution data samples, unlike the standard VAE architecture.
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3 Preliminaries

This chapter covers the preliminaries necessary to understand our proposed approach. It starts
with an overview of LLMs in section 3.1, covering the language modeling task and the trans-
former architecture. Then, section 3.2 introduces the VAE model and covers the main theoretical
concepts behind this architecture.

3.1 LLMs

This section aims to provide an understanding of the key concepts about language modeling, as
well as a brief description of the key components underlying an LLM. It begins by discussing
the task of language modeling, including the core concepts of autoregressive language model-
ing, the training objective, the loss function and perplexity as an evaluation metric. Following
that, the transformer architecture, with the important mechanisms such as positional encoding,
attention and feed-forward layers is covered. An important thing to note is that, throughout this
work, we specifically make use the Llama 2 model architecture.

3.1.1 Language modeling

Language modeling (LM) is one of the core applications of NLP and a task performed by LLMs.
The main objective of LM is to predict the probability of word sequences. There are two main
approaches to the task of language modeling, namely masked language modeling and autore-
gressive language modeling.

Masked language modeling (MLM) is used with models such as BERT [42]. During the train-
ing, tokens in the input sequence are replaced by a special “mask” token, and the model’s task is
to predict the masked token given the surrounding context. One particularity of this approach is
that the model has access to the context left of the masked token (all words preceding it) as well
as the context right of the masked token (all words succeeding it). As such, the model learns
a bidirectional representation, more specifically, a probability distribution over the vocabulary
for the missing token that is conditioned on both the left and right contexts.

Autoregressive language modeling is used with generative models such as GPT [18–20] and
Llama [4, 21, 22]. With this approach, the model predicts the most likely next token given a
sequence of tokens. Unlike MLM, the model learns to predict a probability distribution over the
vocabulary for the next token, in a sequence conditioned only on the left-hand context. Since
the model depends only on the previous tokens, the model learns to generate coherent text. The
generation is done in a sequential manner where, given an input sequence, the model predicts
the next likely token. The predicted token is appended to the original sequence, and this up-
dated sequence is used as input to predict the following token, this processes being repeated
iteratively until a special token that represents the end-of-sequence is generated, or if other con-
ditions are met, such as reaching the maximum specified number of tokens to be generated.
Different strategies can be applied during the generation process which will determine which
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token from the vocabulary will be selected. These are used as a mechanism to balance quality,
reproducibility or diversity of the generated text. Such strategies include “greedy decoding”
where the model always selects the highest probability token at each generation step, or “beam
search” where the model explores multiple candidate generated sequences and selects the one
with the highest overall probability, but can also include more complex decoding strategies. For
the reminder of the current work we will focus exclusively on autoregressive language models.

More formally, language modeling can formulated as computing the joint probability for a
given sequence of tokens x = (x1,x2, . . .xT ), which using the chain rule, can be formulated as
the product of conditional probabilities for each token in the sequence:

P(x) = P(x1,x2, . . . ,xT ) =
T

∏
t=1

p(xt | x1,x2, . . . ,xt−1) (1)

The training objective for an autoregressive language modeling task is to maximize the likeli-
hood of the given training data under the model parameters Θ. The likelihood is formulated as
the sum of log probabilities. Logs ensure numerical stability and avoid computational issues
such as underflow which arise due to working with very small probability values. The training
objective can be formulated as follows:

L =
T

∑
t=1

log p(xt | x1,x2, . . . ,xt−1;Θ) (2)

The loss objective used in this context is cross-entropy loss, which is a measure of the distance
between the predicted probability distribution ŷ and the true probability distribution y, over the
vocabulary V , for each predicted next token:

Lcross-entropy =− ∑
t∈V

yt log ŷt (3)

Metrics. Perplexity (PPL) is a metric used to evaluate the performance of a language model on
an unseen test dataset. It is defined as the exponentiated average negative log-likelihood of a se-
quence x= (x1,x2, . . .xT ). According to Jurafsky & Martin [43], perplexity can be considered,
more intuitively, as a “weighted branching factor” of a language model, which represents the
average number of words the model can select from at each step. A lower perplexity score cor-
relates with a model that is better at modeling language. However, one limitation of this metric
is its dependency on the model’s vocabulary, and test dataset used for evaluation it. Due to this
limitation, the metric can mainly be used to compare models which have the same vocabulary,
using the same test dataset.

PPL(x) = exp

(
− 1

T

T

∑
t=1

log p(xt | x1,x2, . . . ,xt−1;Θ)

)
(4)
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Figure 1: Transformer model architecture, from Vaswani et al. [16]. The architecture consists of an encoder block, on the left, and a decoder
block, on the right. The decoder block, used in LLMs such as Llama 2, consists of an embedding layer, a positional encoding module, multiple
stacked decoder layers and a combination of linear layer with a softmax activation. Each decoder layer consists of an attention mechanism
followed by a feed-forward network.

3.1.2 Transformers

The transformer model introduced by Vaswani et al. [16] has become the building block of
current NLP models, as well as more general machine learning models from areas such as com-
puter vision or time-series analysis. In particular, LLMs such as GPT [18–20] and Llama [4,
21, 22] make use of this architecture. An overview of the transformer architecture can be seen
in Figure 1.

While the original architecture is composed of both an encoder and a decoder block, we exclu-
sively focus on the decoder block, as the Llama model used in this work employs a decoder-only
architecture. A typical decoder block consists of an embedding layer, a positional encoding
module, multiple stacked decoder layers, and a final language modeling head. Furthermore,
it is worth noting that while the original transformer architecture includes an additional cross-
attention module in each decoder layer which incorporates information from the encoder block,
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the decoder-only model eliminates this cross-attention module. In the following paragraphs, we
briefly cover some of the key components of the decoder block: the positional encoding, the
attention mechanism and the feed-forward module.

Positional Encodings. The order of tokens in a sequence is very important for the task of
language modeling. To capture this positional information, the transformer architecture makes
use of “positional encodings” which are added to the input token embeddings to differentiate
between positions within a sequence. Llama 2 deviates from the original transformer archi-
tecture by employing relative rotary positional embeddings (RoPE) instead of fixed positional
embeddings. Additionally, Llama 2 applies the positional encoding at each decoder layer, as
opposed to the original architecture where the positional encoding is applied only to the input
embeddings.

Attention mechanism. One of the key innovations introduced by Vaswani et al. [16] is the
scaled dot-product self-attention mechanism. For a given token, the self-attention mechanism
computes a representation which is a weighted combination of all tokens in the sequence. For
decoder-only transformers, an additional mask is used, to ensure that each token can only attend
to earlier tokens in the sequence. The input token representation is projected into three matrices
that are learned: the query (Q), key (K) and value (V ). The queries and keys are used to compute
attention scores which determine the weight of each token’s importance. The value matrix is
then used to generate a representation for the input token, by taking the weighted combination of
the all tokens’ representations in the sequence. The attention mechanism is formalized in Equa-
tion (5) and a schematic representation can be seen in Figure 2. This approach has a significant
advantage over previous mechanisms used to capture long-range dependencies, such as RNNs,
because the attention mechanism can be parallelized, enabling faster computations, while ef-
fectively capturing both short- and long-range dependencies. Multi-head attention extends this
mechanism by using multiple self-attention heads. This allows the model to project the input
into multiple vector spaces, thus capturing different syntactic and semantic meaningful infor-
mation. These distinct representations are then concatenated together and processed further
in the decoder layer. Llama 2 replaces the multi-head attention mechanism with a grouped-
query attention mechanism introduced by Ainslie et al. [44], which is more efficient in terms of
computation during inference.

Attention(Q,K,V ) = softmax
(

QKT
√

dk

)
V (5)

Feed-forward network. After the attention mechanism in each decoder layer, the output passes
through a feed-forward network (FFN), which consists of two linear layers with a non-linearity
in-between.

Decoder layers also incorporate residual (skip) connections and layer normalization. Residual
connections allow the input to one sub-module, such as attention, to bypass that sub-module and
be added to its output. Layer normalization is applied to the output of a sub-module to rescale
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Figure 2: Schematic representation of dot-product attention, from Vaswani et al. [16], illustrating how the query (Q), key (K) and value (V )
matrices are used to compute attention scores.

it such that the representations maintain a zero mean and unit variance. One change that Llama
2 incorporates is that the normalization step is applied to the input of a sub-module, rather than
the output. Lastly, the output of the final decoder layer is passed through the language model-
ing head, which consists of a simple linear transformation, followed by a softmax layer. This
produces a probability distribution over the model’s vocabulary, enabling the model to predict
the most likely token that would follow the given sequence of tokens.

Transformers have gained a lot of traction in the field of NLP, becoming the default architecture
for a wide range of applications. However, the mechanisms through which these models store
information and encode factual associations remain sparsely explored. In this work, we propose
an approach that encodes the uncertainty level of these learned factual associations, such that
we can gain a better understanding of these processes, as well as improve the reliability and
interpretablity of transformers.

3.2 VAEs

This section provides a brief overview of the core concepts underlying the VAE. It begins by
briefly covering what an auto-encoder is, then continues by going more in-depth about the key
components of a VAE, the training objective and the loss function.
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Figure 3: Variational Auto-Encoder model architecture, from [46]. The architecture consists of an encoder block that learns a latent probabilistic
representation of the input data, and a decoder block that learns to reconstruct the input data by sampling from the latent representation.

Auto-encoders, first introduced by Rumelhart et al. [45], are a type of neural network that is
trained in an unsupervised manner to reconstruct its input, in the process learning a meaningful
latent (hidden) representation of it. An auto-encoder consists of two blocks, an encoder and a
decoder, both typically fully connected feed-forward neural networks. The encoder maps the
input data to a latent, usually lower dimensional space, while the decoder reverses the mapping
and reconstructs the original data from this latent representation.

Variational Auto-Encoders, introduced by Kingma & Welling [37], is an extension of the
original auto-encoder architecture, with a key improvement. Instead of learning a single latent
representation for a given input, the VAE learns a distributional latent representation. More
specifically, for an input x, the encoder block of a VAE learns a mapping of the input to a latent
probability distribution, characterized by a mean µ and a standard deviation σ. The input for
the decoder block is z, which is sampled from this learned latent probability distribution using
the variable ε as a parameter. The decoder then reconstructs the original input as x̂. A schematic
overview of this architecture can be seen in Figure 3.

More formally, a VAE models inputs xi ∈X , and aims to reconstruct each xi through a process
conditioned on a latent variable z. The latent variable z is sampled from a prior distribution
pθ(z) and each input xi is generated from a conditional distribution pθ(xi | z). This conditional
distribution corresponds to the probabilistic decoder block in Figure 3. As such, the goal of a
VAE is to maximize the likelihood of the given data, as defined by Equation (6).

pθ(xi) =
∫

pθ(z)pθ(xi | z)dz (6)

However, this likelihood is intractable and cannot be evaluated since it involves integrating
over all possible values of this latent variable z. To overcome this, a VAE estimates how z is
distributed given the observed data points X using the true posterior density:
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pθ(z | xi) =
pθ(xi | z)pθ(z)

pθ(xi)
(7)

Similarly to the likelihood, the true posterior is also intractable. In order to solve this issue,
the VAE will approximate the posterior distribution qφ(z | xi), which corresponds to the prob-
abilistic encoder block in Figure 3. The parameters θ and φ of the encoder and, respectively,
the decoder block need to be learned from the training data. This is done by maximizing the
evidence lower bound (ELBO), which is defined by Equation (8) [47].

LELBO(θ,φ,xi) =−DKL(qφ(z|xi) ∥ pθ(z))+Eqφ(z|xi)[log pθ(xi|z)] (8)

The ELBO is balancing two complementary objectives, corresponding to the two terms of the
equation. The first term in Equation (8) is based on the Kullback-Leibler (KL) divergence and
quantifies how close the posterior probability distribution qφ(z | xi) is to the prior pθ(z). The
second term in Equation (8) ensures that the input data can be accurately reconstructed, and it
is often referred to as the reconstruction loss. Typically, a loss function such as Mean-Squared
Error (MSE) is used for this objective.

In order to train a VAE model with common optimization methods such as Stochastic Gradient
Descent (SGD), by means of backpropagation, the model must be differentiable with respect
to the model’s parameters. Since the encoder and decoder blocks are typically feed-forward
neural networks which are differentiable, these pose no issues for backpropagation. However,
the sampling of the latent variable z is a stochastic process which is not inherently differentiable.
To overcome this issue, the VAE uses a change of variables called the “reparametrization trick”.
An additional random variable ε ∼ N (0,1), which is treated as an input, is introduced and used
to simulate the sampling of z from the distribution defined by mean µ and standard deviation
σ by computing z = µ+ εσ.
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4 Approach

This chapter starts with an overview of our approach, VALUE, in section 4.1 and is followed by
a brief explanation of the reconstruction and latent distribution objectives typical of a VAE in
section 4.2. Next, the proposed uncertainty objectives are presented in section 4.3 and, lastly, the
aggregated loss for uncertainty estimation used by the VALUE model is described in section 4.4.

4.1 Variational Auto-encoder for Latent Uncertainty Encoding (VALUE)

In this section, we will outline the approach we propose for encoding uncertainty for an LLM.
A schematic overview of the architecture of our proposed approach can be seen in Figure 4.

Figure 4: Diagram of VALUE framework. The diagram shows the architecture of the VALUE model, as well as the VALUE-enhanced text
generation process for an LLM. Given a text sequence x of length T , we pass the last token of the input (xT ) to the LLM. We capture the hidden
state h from the last decoder layer of the LLM and process it with the VALUE model to obtain ĥ. We feed the hidden state ĥ back to the LLM,
pass it to the language modeling head (LM) and generate a new token (xT+1) on the basis of newly computed probability distribution ω̂ over the
LLM’s vocabulary V . This new token is then fed back into the LLM as a new input and the text generation process continues autoregressively
in the manner described above. The regular generation process of an LLM is shown for illustrative purpose and is only used for the harvesting
of hidden states used to train the VALUE model.
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The VALUE framework integrates a VAE model between the final decoder layer of an LLM
and the language modeling (LM) head. Throughout the reminder of this work, we use the terms
VAE model and VALUE model interchangeably. The VAE consists of an encoder and a decoder
block, each block being made up of a two layer MLP with ReLU activation, layer normalization
and dropout applied after each layer. The loss function of the VAE is updated, with respect to
a standard VAE model, with an additional uncertainty-focused objective in order to allow the
model to encode uncertainty in its latent representation. The uncertainty-focused loss term is
described in more detail in section 4.3.

The VAE model receives as input the hidden states hi from the LLM’s last decoder layer. After
being processed through the VAE, the output hidden states ĥi are injected back into the LLM, at
the same position from which they were harvested. These hidden states thus become the input
for the LM head which will select the next token to be generated, from a probability distribution
ω̂ over the vocabulary V of the LLM. An important thing to note is that, during the training of
the VAE model, both the input prompt tokens and the newly generated tokens are processed by
the VAE model. However, during inference, only the generated tokens are processed through
VAE, while the input prompt tokens are processed by the LLM in an unaltered manner.

The main processes behind the VALUE framework, namely the harvesting of hidden states, the
training of the VALUE model and the inference step of the VALUE framework, are detailed as
follows:

Hidden states harvesting. Given a token xi of a prompt input sequence x = (x1,x2, . . .xT ) of
length T and an autoregressive LLM Φ, we obtain the corresponding hidden state hi from the
output of the last decoder layer of the LLM, by processing each token xi through the decoder
layers of Φ: hi = Φdecoder(xi | x1,x2, . . . ,xi−1). Once the input prompt has been processed, the
LLM will generate new tokens in an autoregressive manner by sampling the next token xT+1

from the probability distribution ωT = ΦLM(hT ), obtained by processing hT through the LM
head of the LLM, until the end-of-sequence token is generated, or until the generation token
limit has been reached. All hidden states hi, both from the input prompt tokens and the gener-
ated tokens, together with the corresponding next token xi+1 are stored as a dataset that will be
used to train and evaluate the VALUE framework. This setup will allow the VAE model part of
the VALUE framework to efficiently learn to map the hidden states of an LLM to a probabilistic
latent space from which we can sample and generate new uncertainty-enhanced embeddings in
the original vector space of the LLM.

VALUE Training. At each autoregressive step, the LLM’s harvested hidden states hi, men-
tioned in the previous paragraph, are passed through the VAE. The encoder block of the VAE
will map these hidden states to a latent probabilistic representation, characterized by a mean
vector µi and a log variance vector σi. The VAE uses the “reparametrization trick”, where ε

is a scalar value sampled randomly from a normal distribution, in order to sample zi from the
latent probabilistic representation. This latent representation zi is then processed through the
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VAE decoder and mapped back to the embedding space of the LLM as ĥi. The training loss,
detailed in section 4.4 is computed, together with the gradients needed for the backpropagation
step. Lastly, the backpropagation step updates the VAE’s parameters, and the process continues
with a new training batch of harvested hidden states. We apply an early stopping mechanism
for the training process, based on the perplexity value of the LLM computed on the held-out test
subset. It is important to note that the parameters of the LLM are frozen, and thus not affected
by the backpropagation process.

VALUE Inference Once the VAE model is trained, it can be used together with the LLM for in-
ference. During the inference step, the VALUE framework generates text starting from an input
prompt. The prompt is processed by the LLM unaffected by any VALUE processing. Once the
prompt has been processed and new tokens start being generated, the VALUE model modifies
the hidden states of the LLM and consequently alters the generated text. The hidden state hi

from the LLM’s last decoder layer, corresponding to the last token xi of the input sequence is
processed through the VALUE model and mapped to a latent probabilistic representation. We
sample zi from this probabilistic representation using ε as an input parameter, and map it back
to the original embedding space of the LLM, as ĥi. This VALUE-processed hidden state is then
passed through the LM head to obtain a probability distribution ω̂i+1 over the LLM’s vocab-
ulary V . The next generated token xi+1 is sampled from ω̂i+1. The process is then repeated
in an autoregressive manner, until the end-of-sequence token is generated, or the new token
generation limit has been reached. In this formulation, σ defines a ‘region’ of uncertainty with
regards to the latent representation of the token to be generated and ε is used as an input param-
eter to control the level of uncertainty in the generation process. More specifically, ε directly
influences ω̂, with larger values producing more uniform, and uncertain, distributions over V .

The VALUE framework aims to leverage the properties of VAEs, particularly the ability of the
model to map the hidden states of the LLM to a probabilistic latent space, and in the processes,
encoding the inherent uncertainty of LLM-generated text. In order to achieve that, the model
needs to be trained using a well designed loss function, which encourages the VAE architecture
to encode uncertainty in its latent representations. As such, the loss function is made up of
the loss objective standard to a VAE, briefly covered in section 4.2, and an additional loss
objective which aims to encode uncertainty in the latent representations, covered in section 4.1.
The following sections provide a more in-depth explanation of the different objectives which
contribute to the loss objective central to the VALUE model.

4.2 Reconstruction and latent distribution objective

The standard objective for a VAE, as outlined in section 3.2, is ELBO. This objective comprises
two components: the reconstruction loss and the KL divergence loss. Minimizing both loss
terms is important to obtain an effective VAE model which can learn meaningful probabilistic
latent representations.
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4.2.1 Reconstruction loss

The reconstruction objective encourages a VAE model to reconstruct the original LLM hidden
activations with a high degree of accuracy. Therefore, we compute the MSE loss between the
input hidden states hi ∈ RD and the reconstructed output ĥi ∈ RD. The formula for MSE loss,
as used in our approach, is given by Equation (9), where D is the hidden dimension size. In
addition, an attention mask is applied during the computation of the loss such that only valid
tokens are considered for the calculation, while special tokens added by the tokenizer such as
beginning-of-sequence (BOS), padding (PAD) and end-of-sequence (EOS) tokens are ignored.
Minimizing this loss is vital for maintaining the coherence of the generation process in the LLM,
as reconstruction errors can be amplified further along in the sequence due to the autoregressive
nature of LLMs.

LMSE(hi, ĥi) =
1
D

D

∑
j=1

∥hi, j − ĥi, j∥2
2 (9)

4.2.2 KL divergence loss

The KL divergence objective is a regularization mechanism used to ensure a VAE maps its input
to a continuous latent space, that follows a predefined prior distribution. This term measures
the difference between the shape of the learned latent distribution and the shape of the prior
distribution. In our approach, we select a Gaussian distribution with µ= 0 and σ= 1 as the prior
distribution. The formula for the KL divergence loss term, as used in our approach, is given by
Equation (10), where D is the hidden dimension size. Similarly to the MSE loss, we also apply
an attention mask to exclude from the calculation the BOS, PAD and EOS tokens. Minimizing
this loss is important for maintaining a smooth latent space and a meaningful sampling process.

LKL(µi,σi) =
1
D

D

∑
j=1

(
−1

2
(
1+σi, j −µ2

i, j − eσi, j
))

(10)

4.3 Uncertainty objective

As mentioned in the beginning of this chapter, we adopt a VAE architecture with a modified
loss function which includes an uncertainty objective. The goal of this uncertainty objective is
to encourage the VAE model to encode uncertainty in its learned latent representations. Since
the VALUE framework uses the VAE model to process hidden states that are fed back into an
LLM - which then generates new tokens by selecting the most likely candidate based on the
probability distribution ω over the LLM’s vocabulary V - we also compute the altered proba-
bility distribution ω̂ over V using the VAE-processed hidden states ĥ during the training step
of the VALUE model. This modified probability distribution is used in the loss computation for
the uncertainty objective, the intuition behind this being that the uncertainty we aim to encode
is reflected in the probability distribution over the LLM’s vocabulary.
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The uncertainty objective must be influenced by the sampling process used to obtain z. Intu-
itively, when sampling from the latent space close to the mean of the distribution, we expect to
encode a low level of uncertainty. Conversely, sampling further away from the mean, we expect
to encode a higher degree of uncertainty. Thus, a “distance” metric is needed to indicate how
far away from the mean we sample. In a VAE model, the sampling process is determined by
“reparametrization trick”, which is controlled by the ε variable.

However, ε cannot directly be used as a distance metric as it is unbounded and can take both
positive and negative values. In our approach we transform ε to create a useful, bounded,
distance metric, as defined by Equation (11). By applying the hyperbolic tangent function
tanh we scale ε in the range of [−1,1]. Furthermore, by taking the absolute value, we focus
exclusively on the distance of the deviation from the mean, rather than also taking into account
the direction, effectively bounding the value in the [0,1] range. As such, εnorm can be effectively
used as a distance metric or, more precisely, as a scaling factor, which determines the degree of
uncertainty that should be encoded by the VAE.

εnorm = | tanh(ε)| (11)

In this section we present two candidate uncertainty-focused objectives, an entropy-based loss
and an uncertainty KL divergence loss. For clarification, this uncertainty-focused KL diver-
gence loss is different than the standard KL divergence loss used by a VAE model to regularize
the latent space, and is used in conjunction with this standard KL divergence loss. These two
approaches are evaluated and the final VALUE framework will adopt the best performing ap-
proach as the uncertainty objective used.

4.3.1 Entropy loss

This uncertainty objectives, defined by Equation (12), acts as a regularization term and is based
on the absolute difference between the current entropy H(ω̂i), calculated based on the LLM’s
vocabulary distribution ω̂i using the VAE-processed hidden states ĥi, and a target entropy value
Htarget(ωi), calculated on the basis of the original distribution ωi.

LUncertainty(ωi, ω̂i) =
∣∣Htarget(ωi)−H(ω̂i)

∣∣ (12)

The entropy H of a probability distribution is a measure of the average level of uncertainty
encoded by that distribution. The formula for entropy is given by Equation (13), where Pi(x j) is
the probability of outcome x j - in the context of the this uncertainty objective, Pi(x j) represents
the probability of token x j of the LLM’s vocabulary V being generated next, given the current
sequence of tokens x= (x1,x2, . . .xi).

H(ωi) =− ∑
j∈V

Pi(x j) logPi(x j) (13)
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The target entropy Htarget(ωi), defined in Equation (14), is an interpolation between the original
vocabulary entropy of the unaltered LLM H(ωi) and the maximum entropy value of a uniform
categorical distribution of the same size as the LLM’s vocabulary Huni f orm. The interpolation is
done using the εnorm parameter, described in the previous section. As such, when εnorm is close
to zero, meaning the latent value zi is close to the latent distribution’s mean, we want the target
entropy to be very similar to the original entropy. In contrast, when zi is sampled from the tail
ends of the latent distribution, we set the target entropy to be high, close to that of a uniform
distribution.

Htarget(ωi) = H(ωi)+ εnorm · (Huni f orm −H(ωi)) (14)

4.3.2 Uncertainty KL divergence loss

This uncertainty objective employs an interpolation between two KL divergence terms, as de-
fined in Equation (15). The εnorm parameter is used as an scaling factor for this interpolation.

LUncertainty(ωi, ω̂i) = (1− εnorm) ·KLupper(ωi, ω̂i)+ εnorm ·KLlower(ωi) (15)

The first term, KLupper(ωi, ω̂i) defined in Equation (16), measures the KL divergence between
the current probability distribution ω̂i over the LLM’s vocabulary V and the unaltered probabil-
ity distribution ωi. The second term, KLlower(ωi) defined in Equation (17), computes the KL
divergence between the current probability distribution ωi and a uniform distribution U of the
same size as the LLM’s vocabulary V .

KLupper(ωi, ω̂i) = DKL(ω̂i ∥ ωi) (16)

KLlower(ωi) = DKL(ωi ∥ U) (17)

The intuition behind this uncertainty objective is similar to the one used for the entropy-based
objective, however, using the KL divergence rather than the entropy should provide a stronger
signal to the model, with the potential downside of being a harder constraint for the optimiza-
tion. The objective with this approach is not only to control the “quality” of the distribution -
that it should be more or less uncertain - but to also shape the distribution, such that it better
aligns with the desired target.

4.4 Aggregated loss for uncertainty estimation

The aggregated loss for the VALUE framework, as defined by Equation (18), integrates the re-
construction loss and the KL divergence loss of a typical VAE model, together with an additional
uncertainty loss. This aggregated objective guides the VALUE model to encode meaningful la-
tent representations of the LLM’s hidden states, which can then be accurately projected back
into the LLM’s embedding space, and which capture the inherent uncertainty of the LLM’s
generation process.
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LVALUE = (1− εnorm) ·λ1 ·LMSE(hi, ĥi)+λ2 ·LKL(µi,σi)+LUncertainty(ωi, ω̂i) (18)

The MSE loss term LMSE is scaled by (1− εnorm), which reduces the influence of the recon-
struction objective when samples are taken from the tail end of the latent distribution, allowing
the model to prioritize uncertainty. At the same time, this scaling ensures an accurate recon-
structions when samples are closer to the mean of the distribution. Furthermore, an additional
scaling term λ1, a hyper-parameter specific to the LLM used, is used to ensure that the MSE
term remains balanced in magnitude with the other loss components and, as such, does not
dominate the loss landscape.

The KL divergence loss term LKL is scaled by λ2, which is an annealing term. Following the
work of Kingma & Welling [48], this annealing strategy prevents the model from being stuck
in a local minima early in the training process. By gradually increasing the influence of the KL
term, the model is encouraged to optimize the reconstruction loss first, ensuring a more effective
training process. We investigate the effect of this annealing term in section 6.2.

The uncertainty loss term LUncertainty is defined as either the entropy-based term detailed in sec-
tion 4.3.1, or the KL divergence-based term described in section 4.3.2. This term, influenced
by εnorm, adjusts accordingly to encode different levels of uncertainty based on the samples’
distance to the mean of the latent distribution, and thus capturing the inherent uncertainty of an
LLM’s generation capabilities.
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5 Results

This chapter covers the details relevant to the training process, and the evaluation of our uncer-
tainty encoding approach for LLMs. The chapter starts with a brief description of the dataset
used in our work in section 5.1. Next, section 5.2 goes into detail about the training process
and choice of hyperparameters for the VALUE framework. The metrics used for evaluating
the VALUE model are described in section 5.3. The main quantitative results of our work are
presented in section 5.4. Lastly, a brief qualitative analysis is presented in section 5.5.

5.1 Dataset

We use CounterFact, introduced by Meng et al. [49], as the main benchmark. The dataset
contains factual knowledge in free-form partial sentence pairs. Originally designed to evaluate
methods for altering the factual associations learned by LLMs, this dataset is also suitable for
assessing an LLM’s ability to generate factually accurate text, and in turn, evaluate our model’s
ability to encode the uncertainty of the generated text.

The dataset contains 21919 text pairs, each representing a factual association between a subject
and a target, across 34 different types of relationships. For our research, we make use of the
prompts, subjects, and true targets fields from the original dataset. Each prompt describes a
type of relationship and contains a placeholder (a pair of curly brackets) for the subject, which
is replaced with the appropriate entity during the pre-processing of the dataset, making the state-
ment factually accurate.

Table 1 showcases examples of prompts, subjects and expected answers. The first column con-
tains different categories of relationships, while the second and third column contain a list of
subjects and, respectively, a list of the corresponding targets. The processed prompts are used
as inputs to the LLM for generating text. The true targets are used to evaluate the generated text
in order to asses the factuality and the uncertainty of the LLM.

Prompts Subjects True Targets
{} is located in [Vierlingsbeek, Helsinki, . . . ] [Netherlands, Europe, . . . ]

The domain of activity of {} is [Alan Turing, Edwin Hubble, . . . ] [logic, astronomy, . . . ]

{} was developed by [Internet Explorer 5, iPod, . . . ] [Microsoft, Apple, . . . ]

{} professionally plays the sport [Ryan Smyth, Otto Graham, . . . ] [hockey, basketball, . . . ]

Table 1: Examples of Prompts, Subjects, and True Targets from the CounterFact dataset. The curly brackets in the prompts indicate place-
holders where the subject must be inserted.
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5.2 Training

The training of the VALUE model is an important aspect of the current research. This sec-
tion covers the training process, as well as the configurations and hyperparameters for both the
VALUE model and the LLMs used. In our work, we train two versions of the VALUE model,
each using a different LLM. Both LLMs used are based on the Llama 2 architecture [4]: Open
Llama 2 3B, with 3 billion parameters, and Meta’s Llama 2 7B, with 7 billion parameters.

The first step of the training process is to pass CounterFact subject prompts to the correspond-
ing LLM, to generate the unaltered predicted targets and capture the hidden states used to train
the VALUE model. The settings used for Llama 2 3/7B to generate text can be seen in Table 2.
As the prompts contained in the CounterFact dataset are relatively short, a sequence limit of
30 tokens long was used for the text generation. The parameters were chosen in such a manner
that the generation process is deterministic, therefore no sampling is done and the temperature
of the LLMs is set to 0. Furthermore, we use Decoding By Contrasting Layers (DoLa) [50] as
a text generation strategy, to improve the factuality of the LLM. The parameters were chosen
to reduce repetitions and hallucinations for the short-answer task. We terminate the generation
process if a newline character or a period character is autoregressively generated.

Parameter Value

max length 30

do sample False

num return sequences 1

top p None

temperature 0

use cache True

dola layers "high"

no repeat ngram size 2

early stopping True

repetition penalty 1.2

stop strings ["\n", "."]

Table 2: LLM Generation Configuration Parameters

The prompts are first tokenized using the tokenizer corresponding to the selected LLM, then
batched and padded accordingly. For the training of the VALUE model, we generate text in
batches, based on the given prompts. We obtain the hidden states of the last decoder layer
of the LLM, together with the model’s logits, which we use to compute the entropy over the
LLM’s vocabulary. Within our training set-up, we capture and use additional metadata such as
the prompt length, the size of the padding, and the generated token ids. We cache the LLM’s
activations to the given prompts, which speeds up the training process of the VALUE model by
eliminating the need to recompute the hidden activations for each epoch of the training process.
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During the training loop, we process each batch of prompts, generated text sequences and their
corresponding hidden states through our VALUE model. For the uncertainty-focused training
objectives, the hidden states processed through the uncertainty-VAE are fed back into the LLM
as input for the language modeling head. New text sequences are then generated from these
variance-encoded hidden states. The new logits are used to compute a new probability distri-
bution over the vocabulary of the LLM. We use the new probability distribution to compute the
loss objective of the model. During training, we log the different loss values, and keep track
of the perplexity scores over the evaluation set. We employ early stopping when the average
perplexity on the evaluation subset begins to increase. We use the AdamW optimizer, together
with a cosine annealing scheduler. The relevant hyperparameters are shown in Table 3.

Hyperparameter Open Llama 2 - 3B Llama 2 - 7B

Batch Size 128 128

Learning Rate (lr) 1e-4 1e-4

Optimizer Weight Decay 1e-4 1e-4

Scheduler T 0 800 800

Scheduler eta min 5e-7 5e-7

KL Warmup (Epochs) 100 100

Latent Size 1500 3000

Reconstruction Weight 0.1 0.1

Table 3: Training Hyperparameters for Llama 2 (3B) and Llama 2 (7B).

5.3 Metrics

This section details the metrics used to evaluate the performance of the VALUE model and
quantify its ability to encode LLM uncertainty. These metrics aim to quantify the quality of
the generated text, the similarity between the original generated text and the VALUE-processed
generated text, as well as the alignment of the VALUE-processed generated text with the ex-
pected answers. Namely, we use the semantic similarity and BLEU score between the original
generated text and the VALUE-enhanced generated text, as well as the perplexity score, and
answer coverage.

SemScore Aynetdinov & Akbik [51] evaluates how closely the text generated by the VALUE-
processed hidden states matches, in semantic meaning, the original generated text. SemScore
uses an additional verifier small language model, fine-tuned specifically for measuring sentence
similarity, to encode the generated pieces of text and compute the cosine similarity between the
corresponding embeddings.

BLEU is a metric commonly used in machine translation and text generation tasks, providing a
measure of n-gram overlap between the VALUE-generated text and the original generated text.
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This metric is complementary to SemScore, as it measures the similarity between the two pieces
of text. However, BLEU does not take into account the semantics of the two texts but rather the
overlap between generated tokens.

Perplexity (PPL) is a metric commonly used to evaluate the performance LLMs. We discuss it
briefly in section 3.1.1. Furthermore, perplexity also correlates with the coherence of the gen-
erated text; i.e. a version of an LLM achieving a significantly higher perplexity than a different
version of the same LLM is likely to generate noisier text that is less coherent. In our evalu-
ation, we look at the difference between the perplexity of the original LLM on the evaluation
dataset and the perplexity of the VALUE-modified LLM. Ideally, we expect the difference in
perplexity to be as small as possible when we sample from the latent space of the VAE close to
the mean of the latent distribution, and we expect this difference to grow as we start sampling
further away from the mean.

Answer Coverage (AnsCov) is a simple metric that we employ to assess the factuality of the
generated text across the different ε values, which serves as an “uncertainty slider”, and is used
to sample from the latent distribution learned by the VALUE model. A generated sample obtains
an answer coverage score of 1 if the true target from the CounterFact dataset associated with
the prompt is present in the generated text and 0 otherwise. We average this score over the
prompts present in the evaluation set used for our VALUE framework.

5.4 Main results

This section covers the quantitative evaluation of the VALUE framework. In particular, we com-
pare the two uncertainty objectives described in section 4.3.1 and section 4.3.2 for the VALUE
model, and we evaluate them against a baseline consisting of a standard VAE architecture.
Furthermore, we evaluate our proposed approach using both the Open Llama 2 3B model, in
section 5.4.1, and with Meta’s Llama 2 7B model in section 5.4.2, in order to determine whether
the VALUE framework can be generalized to different LLMs. The main goal of this evaluation
is to quantitatively assess the effect of the uncertainty objective and, in turn, VALUE’s ability to
encode uncertainty. We are interested in investigating whether these capabilities do indeed arise
from the uncertainty objective, by comparing it to the baseline VAE architecture, and assessing
the text generation ability of VALUE-enhanced LLMs.

5.4.1 Llama 2 3B

In this section, we report results on three VALUE settings: BASE, VALUE-E and VALUE-KL.

BASE. Table 4 shows the evaluation metrics for the VALUE framework with Open Llama 2
3B, using a standard VAE reconstruction objective, without our introduced uncertainty terms.
Across metrics, we do not observe a significant variation as a function of ε. The generated text
remains consistent in terms of both semantic similarity to the unaltered LLM-generated text
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Metric Baseline ε =−3 ε =−2 ε =−1.5 ε =−1 ε =−0.5 ε =−0.25 ε = 0 ε = 0.25 ε = 0.5 ε = 1 ε = 1.5 ε = 2 ε = 3

AnsCov 0.33 0.302 0.301 0.300 0.298 0.300 0.301 0.300 0.300 0.300 0.299 0.299 0.299 0.299
BLEU - 0.532 0.532 0.531 0.532 0.532 0.532 0.532 0.532 0.531 0.531 0.532 0.532 0.532
SemScore - 0.613 0.614 0.615 0.613 0.614 0.613 0.613 0.614 0.614 0.614 0.614 0.613 0.613
PPL 15.897 31.154 30.775 30.616 30.468 30.374 30.335 30.306 30.268 30.250 30.232 30.258 30.284 30.378

Table 4: VALUE framework evaluation results for Open Llama 2 3B LLM with baseline VAE architecture (BASE). Metrics are reported across
different values of ε. As baseline, the unaltered LLM achieves a PPL score of 15.897 and a AnsCov score of 0.33.

Metric Baseline ε =−3 ε =−2 ε =−1.5 ε =−1 ε =−0.5 ε =−0.25 ε = 0 ε = 0.25 ε = 0.5 ε = 1 ε = 1.5 ε = 2 ε = 3

AnsCov 0.33 0.034 0.247 0.337 0.342 0.298 0.256 0.209 0.272 0.314 0.339 0.257 0.041 0.004
BLEU - 0.015 0.067 0.188 0.316 0.440 0.475 0.477 0.458 0.398 0.232 0.080 0.024 0.009
SemScore - 0.188 0.311 0.401 0.469 0.544 0.555 0.537 0.553 0.526 0.428 0.316 0.208 0.125
PPL 15.897 704.607 207.621 104.293 55.783 37.184 36.138 40.953 34.913 39.225 68.835 162.999 441.522 2889.647

Table 5: VALUE framework evaluation results for Open Llama 2 3B LLM with entropy-based uncertainty objective (VALUE-E). Metrics are
reported across different values of ε. As baseline, the unaltered LLM achieves a PPL score of 15.897 and a AnsCov score of 0.33.

Metric Baseline ε =−3 ε =−2 ε =−1.5 ε =−1 ε =−0.5 ε =−0.25 ε = 0 ε = 0.25 ε = 0.5 ε = 1 ε = 1.5 ε = 2 ε = 3

AnsCov 0.33 0.048 0.221 0.375 0.357 0.320 0.306 0.300 0.306 0.325 0.357 0.373 0.290 0.064
BLEU - 0.019 0.091 0.260 0.449 0.524 0.531 0.532 0.535 0.527 0.457 0.273 0.105 0.026
SemScore - 0.184 0.313 0.448 0.558 0.615 0.618 0.617 0.620 0.617 0.560 0.455 0.336 0.205
PPL 15.897 884.163 172.542 69.556 34.096 26.345 25.790 25.755 25.645 26.001 32.625 64.503 162.345 916.707

Table 6: VALUE framework evaluation results for Open Llama 2 3B LLM with KL divergence-based uncertainty objective (VALUE-KL).
Metrics are reported across different values of ε. As baseline, the unaltered LLM achieves a PPL score of 15.897 and a AnsCov score of 0.33.

and perplexity score, across the entire range of ε values. This method achieves a consistent PPL
value of around 30 across all ε values, while the original LLM achieves a lower perplexity score
of approximately 15. Furthermore, the AnsCov metric remains stable, with little variation as a
function of ε. The unmodified LLM achieves an AnsCov score of 0.33, which serves as a base-
line for all comparisons. The BASE method obtains a lower score of about 0.3, regardless of of
the value of ε, showing a slight degradation of in the factuality of the generated answers. These
results suggest that varying ε, in other words, sampling from different locations from the latent
distribution learned by the VAE architecture in the baseline VALUE framework, does not lead
to substantial downstream effects in the generated text. As such, the baseline BASE approach
lacks the ability to encode meaningful uncertainty information from the LLM.

VALUE-E. Table 5 shows the evaluation metrics for the VALUE framework with Open Llama
2 3B, using the entropy-based uncertainty objective. In contrast with the baseline method,
VALUE-E shows a clear variation in evaluation metrics across different values of ε. The met-
rics approximately follow a Gaussian distribution, which is consistent with the fact that the
posterior distribution qφ(z | x) of the latent representation learned by the VAE architecture is
approximated by the standard normal distribution. This method shows a varying level of per-
plexity as a function of ε, exhibiting really high values for perplexity when the absolute value
of ε is large. When the sampling occurs from the tail end of the latent distribution, the co-
herence and generation quality of the generated text drops significantly, as portrayed by the
extreme values of the PPL metric. VALUE-E achieves the lowest perplexities values around
ε =±0.25, values which are higher than for the BASE method. In terms of semantic similarity
(SemScore) and n-gram overlap (BLEU), VALUE-E achieves worse scores than BASE. These
results indicate that the VALUE-E method has a slightly degraded text generation capability
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when compared to the BASE. On the other hand, this method obtains a higher AnsCov score
than BASE, but only for specific values of ε. These results suggest that, while this method has,
to a certain extent, the capability of encoding uncertainty of an LLM’s text generation, it comes
at the cost of reduced overall quality of the generated text.

VALUE-KL. Table 6 shows the evaluation metrics for the VALUE framework with Open Llama
2 3B, using the KL divergence-based uncertainty objective. Similarly to the VALUE-E method,
VALUE-KL also exhibits a Gaussian-like variation in the evaluation metrics as a function of
ε. In terms of the PPL metric, the text generated by the VALUE-KL method achieves a lower
perplexity than the text generated with the BASE method, over a range of ε values, ranging
from −0.5 to 0.5, indicating that the KL divergence-based uncertainty objective of the method
is also positively contributing to the reconstruction objective. With higher values of ε, the per-
plexity increases significantly, in a similar manner to VALUE-E. With regard to the SemScore
and BLEU metrics, VALUE-KL is on par with the BASE method, for moderate values of ε

between −0.5 and 0.5, and significantly outperforms the VALUE-E method. These results in-
dicate that VALUE-KL method has the better text generation performance than the VALUE-E
approach. In terms of the AnsCov metric, while VALUE-KL is on par with BASE at ε values
between −0.25 and 0.25, it significantly outperforms it as ε grows in absolute value towards
1.5. Comparatively to the entropy-based uncertainty objective method, VALUE-KL achieves,
overall, better results for the AnsCov metric. Worth noting is that, while the other metrics for
VALUE-KL follow a largely Gaussian distribution, with the best values at ε = 0, the distribu-
tion for the AnsCov metric does not follow the same pattern. These results highlight the ability
of the KL divergence-based VALUE framework to encoded uncertainty of an LLM’s text gen-
eration in the probabilistic latent representation learned by the model.

In summary, the VALUE-KL approach obtains, overall, the best results, regardless of the met-
ric. Compared to the baseline BASE, our proposed method not only maintains the quality of the
reconstruction task but also encodes the uncertainty inherent in the generated text of the LLM.

5.4.2 Llama 2 7B

In this section, we report results on three VALUE settings: BASE, VALUE-E and VALUE-KL.

BASE. Table 7 shows the evaluation results obtained for the VALUE framework with Llama 2
7B, using a standard VAE reconstruction objective, without our introduced uncertainty terms.
The metrics for the BASE approach using the Llama 2 7B LLM show a higher variability as a
function of ε, compared to the same method using with the Llama 2 3B LLM. Moreover, the
distribution of the evaluation metrics follows a skewed distribution, where negative values of ε

affect the downstream generation of text to a higher degree than positive values of ε, which only
induce minimal variation in the metrics. Furthermore, the difference in perplexity between the
text generated with the BASE and the text generated using the unmodified LLM is significantly
larger than in the case of the BASE approach with the Open Llama 2 3B LLM. Focusing on the
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Metric Baseline ε =−3 ε =−2 ε =−1.5 ε =−1 ε =−0.5 ε =−0.25 ε = 0 ε = 0.25 ε = 0.5 ε = 1 ε = 1.5 ε = 2 ε = 3

AnsCov 0.30 0.259 0.277 0.278 0.284 0.292 0.294 0.295 0.294 0.296 0.295 0.292 0.291 0.284
BLEU - 0.359 0.387 0.396 0.406 0.413 0.416 0.416 0.417 0.417 0.416 0.415 0.413 0.410
SemScore - 0.434 0.457 0.465 0.475 0.481 0.482 0.483 0.483 0.483 0.482 0.479 0.476 0.466
PPL 81.866 156.201 152.514 151.338 150.212 149.133 148.602 148.093 147.685 147.306 146.707 146.049 145.480 144.880

Table 7: VALUE framework evaluation results for Meta’s Llama 2 7B LLM with baseline VAE architecture (BASE). Metrics are reported
across different values of ε. As baseline, the unaltered LLM achieves a PPL score of 81.866 and a AnsCov score of 0.30.

Metric Baseline ε =−3 ε =−2 ε =−1.5 ε =−1 ε =−0.5 ε =−0.25 ε = 0 ε = 0.25 ε = 0.5 ε = 1 ε = 1.5 ε = 2 ε = 3

AnsCov 0.30 0.161 0.204 0.219 0.241 0.253 0.255 0.260 0.294 0.314 0.315 0.306 0.296 0.155
BLEU - 0.276 0.304 0.314 0.319 0.323 0.323 0.322 0.315 0.300 0.252 0.190 0.139 0.041
SemScore - 0.346 0.385 0.398 0.407 0.414 0.414 0.414 0.417 0.407 0.380 0.358 0.335 0.263
PPL 81.866 165.857 156.766 153.428 149.895 146.371 144.265 141.948 141.081 141.474 150.680 171.894 205.450 318.760

Table 8: VALUE framework evaluation results for Meta’s Llama 2 7B LLM with entropy-based uncertainty objective (VALUE-E). Metrics are
reported across different values of ε. As baseline, the unaltered LLM achieves a PPL score of 81.866 and a AnsCov score of 0.30.

Metric Baseline ε =−3 ε =−2 ε =−1.5 ε =−1 ε =−0.5 ε =−0.25 ε = 0 ε = 0.25 ε = 0.5 ε = 1 ε = 1.5 ε = 2 ε = 3

AnsCov 0.30 0.146 0.281 0.323 0.326 0.309 0.305 0.302 0.305 0.311 0.327 0.325 0.313 0.227
BLEU - 0.038 0.094 0.181 0.279 0.359 0.368 0.370 0.369 0.365 0.313 0.231 0.153 0.054
SemScore - 0.259 0.326 0.366 0.408 0.443 0.447 0.448 0.448 0.446 0.420 0.383 0.354 0.290
PPL 81.866 403.609 210.457 169.145 147.384 137.888 136.041 135.230 135.375 136.590 143.757 157.624 181.351 279.212

Table 9: VALUE framework evaluation results for Meta’s Llama 2 7B LLM with KL divergence-based uncertainty objective (VALUE-KL).
Metrics are reported across different values of ε. As baseline, the unaltered LLM achieves a PPL score of 81.866 and a AnsCov score of 0.30.

AnsCov metric, the BASE method achieves a maximum accuracy score of 0.296, which is close
to the accuracy score of 0.30 obtained by the baseline Llama 2 7B LLM.

VALUE-E. Table 8 shows the evaluation metrics for the VALUE framework with Open Llama 2
7B, using the entropy-based uncertainty objective. In a similar manner to the Llama 2 3B LLM
setting, the VALUE-E method achieves a higher variability of the evaluation metrics compared
to the BASE approach. In terms of AnsCov, this method achieves a score of 0.26 at ε = 0 and a
maximum score of 0.315 at ε = 1. It is interesting to note that AnsCov metric is not symmetric
around ε = 0, the positive values of the parameter corresponding with higher accuracy, while
the negative values corresponding with lower accuracy. One possible interpretation of this out-
come is that the uncertainty is not encoded in the latent space as a function of distance from the
mean, but rather as a specific direction in the latent space. In terms of the PPL metric, the score
is slightly better than BASE.

VALUE-KL. Table 9 shows the evaluation metrics for the VALUE framework with Open Llama
2 7B, using the KL divergence-based uncertainty objective. The VALUE-KL approach achieves
better results across the board compared to the VALUE-E approach. Compared to BASE, it per-
forms better on the PPL metric, achieving a lower perplexity value of approximately of 135 at
ε = 0, as well as higher AnsCov value of 0.327 at ε = 1, however, it performs slightly worse in
terms of semantic similarity and n-gram overlap. The VALUE-KL method achieves an AnsCov
score of 0.302 at ε = 0 and a maximum value of 0.327 at ε = 1. Similarly, the distributions of
evaluation scores for VALUE-KL are also skewed, with positive values of ε generally correlat-
ing with better performance.
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The results obtained with the Llama 2 7B LLM further reinforce the patterns observed in the
results of the Llama 2 3B LLM. While the best results obtained by the uncertainty-based meth-
ods using Llama 2 7B are worse than their corresponding approaches with Llama 2 3B, both
VALUE-E and VALUE-KL achieve better results for the extreme values of ε = ±3. This in-
dicates that the generation capabilities are affected to a lesser degree by sampling from the
tail ends of the latent distribution, especially for the entropy based VALUE-E approach. The
VALUE-KL method employing the KL-divergence based uncertainty objective performs better
than both BASE and VALUE-E, when focusing on the AnsCov metric, over a wide range of
ε values. From the two uncertainty objectives, the KL divergence-based VALUE-KL method
achieved best performance across all metrics, being superior to the entropy-based VALUE-E
method.

These findings show that our proposed KL divergence-based approach VALUE-KL is success-
ful at encoding meaningful information, in the probabilistic latent representation learned by the
VAE architecture, about an LLM’s text generation uncertainty.

5.5 Qualitative results

This subsection presents qualitative results which showcase the text generation behavior of the
VALUE-enhanced LLMs, using the KL divergence-based uncertainty objective. We examine
text generated by both Llama 2 3B and Llama 2 7B models, when sampling from different re-
gions of the latent space by varying ε. Then, a brief discussion of the findings is provided in
section 5.5.1.

Table 10 shows an example of a prompt for which the unaltered LLMs generate the factually
correct answer. The VALUE-enhanced LLMs also generate factually correct answers for mod-
erate values of ε, however the generated text starts to deteriorate for more extreme values ε.
This effect is more noticeable for the Llama 2 3B model, which begins generating random char-
acters, while the Llama 2 7B still produces mostly coherent text. The consistency of the answer
across different ε values indicates that the model has a low degree of uncertainty in generating
this answer.

Table 11 provides an example of a prompt for which the LLMs generate text that is partly factu-
ally correct, both for the unaltered LLM setting, and for the VALUE-enhanced setting. Despite
the details, such as the years mentioned, being inaccurate, the model was still able to generate
text that matches the correct location of Paris, as present in the original dataset, or text that
matches the historically correct the place of work. While the answers are relatively consistent,
there is more variation in the generated text across ε values, compared to the previous example.
This can indicate a more moderate level of uncertainty encoded by the model. The deterioration
of quality of the generated text as ε takes more extreme values is consistent with the previous
example, where the Llama 2 3B model begins to generate nonsensical text and characters, while
the Llama 2 7B model still generates somewhat coherent text and more well-formed words.
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Prompt The mother tongue of Achille Varzi is
True Answer Italian

Epsilon (ε) Llama 2 3B Generated Text Llama 2 7B Generated Text

-3 Sicummary vessscri therapegin metab Italian although Italy belonged to Italy Empire founded
-2.5 Sicľ Italian although Italy belonged to Italy Empire founded
-2 Sicolinetti.— Italian although his ancestory has Italian Italian
-1.5 Italian. Italian but although his father Giuseppe lived in
-1 Italian. Italian.
-0.5 Italian. Italian.
-0.25 Italian. Italian.
0 Italian. Italian.
0.25 Italian. Italian.
0.5 Italian. Italian.
1 Italian. Italian.
1.5 Italian. Italian.
2 Sicolinetti.— Italian although his father Giuseppe lived in Milan
2.5 Sicialoghetti.— Italian although although Italy suffered several imperial imperial
3 Sicirtual neighbummary Palestineginscri Italian although Italy suffered several imperial imperial wars

Unaltered LLM Italian. Italian.

Table 10: Generated text comparison for Llama 2 3B and Llama 2 7B using the VALUE framework. The “Prompt” row shows the text passed
to the LLM and the “True Answer” row shows the text that is factually correct. Both “Prompt” and “True Answer” are part of the CounterFact
dataset. The and subsequent rows show generated text with the VALUE framework for specific values of ε. The “Unaltered LLM” row shows
the unaltered LLM output.

Prompt Pierre Laval worked in
True Answer Paris

Epsilon (ε) Llama 2 3B Generated Text Llama 2 7B Generated Text

-3 Geneva ——↑ ////CHANT PARTIC CONDIT WARR Paris alongside Ferdinand Baudlès Fichier Éditions Société Médiques Général Comité Rég
-2.5 GenevaÕĂÛÌ Paris during FranceÕ Première Résbrázky Médiadaçı̃Ě
-2 Brussels,... Paris during the Revolution whilst François Vieuil had occupied Sainte Sever Médéré
-1.5 Paris as secretary of the French Foreign Trade Committee until his Paris during the French Revolution after leaving Lyon where his family owned wine business
-1 the French Foreign Office until his resignation after France’ Paris during the French Revolution as secretary to Napoleon s secretary François Baud
-0.5 the French Foreign Office from 1924 to the French Ministry of Foreign Affairs from 1926 to
-0.25 the French Foreign Office from 1924 to the French Ministry of Foreign Affairs from 1926 to
0 the French Foreign Office from 1924 to the French Ministry of Foreign Affairs from 1926 to
0.25 the French Foreign Office from 1924 to the French Ministry of Foreign Affairs from 1926 to
0.5 the French Foreign Office from 1905 to the French Ministry of Foreign Affairs from 1926 to
1 the French Foreign Ministry until his resignation after France’ Paris during the French Revolution of 1 July ĚĂĂ
1.5 Paris as secretary of the French Foreign Trade Committee until his Paris during the French Revolution after leaving Lyon where his family owned wine business
2 Brussels diplomatform Roosevelt Diplimary Ambassadeshpread Polit Paris during the French Revolution after leaving Lyon where his uncle François Antoine Lé
2.5 Brussels.— Paris during the Revolution whilst Henri Gros started writing journal journète soir Éditions
3 Brussels bureaŭ※ Paris during FranceÕ Première Résbrázky Médiadaçı̃Ě

Unaltered LLM the French Foreign Office, and was a member of the the French diplomatic service from 1906 to

Table 11: Generated text comparison for Llama 2 3B and Llama 2 7B using the VALUE framework. The “Prompt” row shows the text passed
to the LLM and the “True Answer” row shows the text that is factually correct. Both “Prompt” and “True Answer” are part of the CounterFact
dataset. The and subsequent rows show generated text with the VALUE framework for specific values of ε. The “Unaltered LLM” row shows
the unaltered LLM output.

Table 12 showcases an example of prompt for which the VALUE model encodes a higher degree
of uncertainty for the generated answer. For the Llama 2 3B LLM, the generated text, both in the
unaltered form and the VALUE-enhanced form, is not factually correct and varies significantly
as a function of ε. For the Llama 2 7B model, the unaltered LLM is able to generate the factually
correct answer, while the VALUE-enhanced LLM, generates some answers that seem correct
for values of ε close to 0, however the words are incomplete or misspelled. As ε begins to
shift further away from 0, the quality of the answers deteriorate. This high variability in the
generated text for different ε values is an indication of high degree of uncertainty encoded by
the model. For extreme values of ε, the quality and coherence of generated text follows a similar
patter with the previous examples.
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Prompt Mosque of Uqba is located in
True Answer Tunisia

Epsilon (ε) Llama 2 3B Generated Text Llama 2 7B Generated Text

-3 Sebŭscri neighbÌ —— Sultan Sultan Mansbrázkyşı Municipkmalı Istikan Municipáš
-2.5 Kashŭlah Province Palestin neighbÌ southern Arab province Beit Muhammu Municipsime west east eastern hills border borders
-2 Dhárğı̂lah Abus.ı̄ southern Arab city Araqa situated approximately thirty kilometres west east south eastern coast
-1.5 Abu Ghūrah district near Damāqa village near Kh southern Egypt near Arab city Khuriya Mouqa village situated about thirty
-1 Al Qasir district near Abu Ghāı̄rah city the city center near Khazi Kasimi palace at the centre of ancient
-0.5 Al Qasir district, Abu Dhar al-G the city of Tunizia, about 3 km south west of the
-0.25 the city of Al-Kharaj, Saudi Arabia the city of Tunis, the capital of the Republic of Tunes
0 the city of Al-Kharaj, Saudi Arabia the city of Tunis, the capital of the Republic of Tunes
0.25 the city of Al-Kharaj, Saudi Arabia the city of Tunisa, near the town of Kebilès
0.5 Al Qasir district of Damascus, Syria. the city of Tunisa, near the town of Sabrah which was
1 Al Qasir district near Abu Ghāı̄rah city the city center near Khazi Kasimi palace.
1.5 Abu Ghūrah district near Damākhı̄ village near the city center near Khazi Kasimi palace near Shah Palace palace adjacent
2 Abu Harrı̄s. Muhammad Abuı̄lah Abdı̄ southern Egypt near Arab city Ras Mansura near coast west coast eastern coast
2.5 Dhammat Noklah cemetery ruins Abu Kashŭ southern Arab city Araquia Municipatial Municipality north Lebanon south eastern
3 Kashŭ※ southern Arab province Beit Muhammu Municipatial municipality situated approximately eleven kilometres west

Unaltered LLM the city of Al-Qa’im, Iraq. the city of Kairouan, Tunisia.

Table 12: Generated text comparison for Llama 2 3B and Llama 2 7B using the VALUE framework. The “Prompt” row shows the text passed
to the LLM and the “True Answer” row shows the text that is factually correct. Both “Prompt” and “True Answer” are part of the CounterFact
dataset. The and subsequent rows show generated text with the VALUE framework for specific values of ε. The “Unaltered LLM” row shows
the unaltered LLM output.

5.5.1 Hallucinations and correlations

One observation across the examples shown above, such as the one in Table 12, is that the text
generated using the VALUE framework includes hallucinations, as does some of the text gen-
erated with the unaltered LLMs. This behavior is expected, since our VALUE model maps the
hidden states of the LLM to a latent space, and through the sampling process from this latent
space and reversing the mapping, we effectively perform a traversal of the original embedding
space of the LLM. This traversal process caused by the VALUE model does not impose any
constrains on the LLM to maintain coherence or factual accuracy. As we vary the level of un-
certainty, by means of the ε parameter, the LLM generates more diverse text, which can include
hallucinations.

However, we can observe that the generated text, using the VALUE framework, exhibits a the-
matic consistency both across different values of ε, and with the original, unaltered generated
text. For instance, in Table 11, the generated text, across moderate values of ε, consistently ref-
erences French historical and political themes, associated with the subject of the input prompt,
despite the fact that some of the details are hallucinated. Similarly, in Table 12 the generated text
maintains a consistent geographic context, with references to various Arabic locations. These
patterns indicate that the LLM’s internal representations cluster semantically related concepts
in the same region of the embedding space.
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6 Challenges

The training process of the VALUE model posed several challenges that initially affected the
performance of the model and the quality of the generated text. This chapter covers the chal-
lenges encountered and describes the mitigation strategies employed. We discuss issues related
to the magnitude of the hidden states processed by the VALUE framework in section 6.1 and the
effect of using a KL annealing term in the training objective in section 6.2. Lastly, we discuss
the sensitivity of the model’s aggregated loss objective to imbalanced individual loss terms and
how to improve the model’s capability to encode uncertainty in section 6.3.

6.1 Clamping

One of the major challenges faced early in the development of the model was the poor qual-
ity of the reconstructed hidden states outputted by the VAE architecture, leading to noisy and
severely degraded generated text, when fed back into the LLM. The cause of this was traced to
the unaltered hidden states of the LLM for specific tokens. For both LLM used, special tokens
introduced by the tokenizer module of the LLM had corresponding activations vectors with
significantly higher magnitudes compared to the majority of the other tokens. Tokens such as
beginning-of-sequence (BOS) and end-of-sequence tokens (EOS) were associated with hidden
states that had a vector norm several orders of magnitude higher. In addition, Llama 2 7B LLM
had a number of other vocabulary tokens that exhibited the same issue, such as the newline
token and the period token.

Due to the choice of reconstruction objective loss function (MSE), which assigns more impor-
tance to the large differences between the input and output of the VAE architecture, this partic-
ularity of the LLM had a large impact on the quality of the reconstructed embeddings learned
by the VALUE model. To address this issue, we applied clamping to all hidden states captured
from the LLM, ensuring the vectors remained within the magnitude range of the regular tokens.
This approach was effective at preventing the outlier values dominating the reconstruction loss
and, as such, preventing the VALUE model to learn to reconstruct high quality embeddings.

Figure 5 illustrates the effect of our strategy on the quality of the model. For these experiments
we have used the baseline VALUE model, without the uncertainty objective, as the focus was
to improve the quality of the reconstructed hidden states. The orange line characterizes the
trained model without our proposed mitigation strategy, while the magenta line characterizes
the trained model which includes our mitigation approach. The recon loss and kl div loss rep-
resent the training losses of the model, while the val perplexity and val loss show the evaluation
metrics on the validation set. The plots show that by applying clamping to the hidden states, we
greatly reduce the reconstruction loss of the model and improve the KL divergence objective.
Furthermore, on the basis of the perplexity metric, we can observe a significant increase in the
quality of the generated text between the version without the mitigation strategy and the version
with the mitigation strategy.
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Figure 5: Effect of clamping of hidden states on the training and validation metrics for the baseline VALUE model. The x-axis represents the
number of training steps, and the y-axis shows the corresponding value for the metric shown in the plot. The orange line corresponds to the
model training without clamping, while the magenta line correspond to the model trained with clamped hidden states. The solid lines represent
the metrics with smoothing applied, while the faded lines represent the raw metric values without any smoothing applied.

However, there is a potential side-effect of this solution, namely that the VALUE model would
have difficulties generating tokens such as the end-of-sequence or period tokens, since the
VALUE model would not be able to accurately reconstruct those embeddings due to their ex-
treme activation values. Further investigation is needed to quantify the impact on the generation
of these aforementioned tokens.

6.2 KL Annealing

As mentioned in section 4.4, the reconstruction loss objective can be affected by the KL di-
vergence loss term of the VAE architecture, which can lead to a sub-optimal reconstruction
capacity of the model. One way to mitigate this issue, is to introduce an annealing term that
gradually increases the influence of this KL divergence loss term on the overall training objec-
tive. We have experimented with this approach for the VALUE model.

The results of the experiment can be seen in Figure 6. Two models have been trained following
the VALUE framework, without the uncertainty objective, as the goal of the experiment is to
focus on improving the quality of the reconstructed embeddings. The magenta line represents
the model trained using a KL annealing term λ2 that gradually increases from 0 to 1 over 100
training epochs, impacting the influence of the KL divergence loss term, while the dark blue
line shows a model trained without the annealing term. The graphs show that making use of
the annealing term leads to improvements in the reconstruction objective with negligible costs
with respect to the KL divergence objective. These improvements can also be observed in the
validation metrics, namely the perplexity and the overall validation loss. These findings show
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that introducing the KL annealing term in the training objective for the VALUE framework
is beneficial for improving the reconstruction quality of the LLM’s hidden states as well as
improving the quality of the generated text using the VALUE framework.

Figure 6: Effect of using a KL annealing term on the training and validation metrics for the baseline VALUE model. The x-axis represents the
number of training steps, and the y-axis shows the corresponding value for the metric shown in the plot. The dark blue line corresponds to the
model trained without the KL annealing term, while the magenta line corresponds to the model trained with the KL annealing term. The solid
lines represent the metrics with smoothing applied, while the faded lines represent the raw metric values without any smoothing applied.

6.3 Reconstruction Weight

Another challenge encountered was the sensitivity of the aggregated loss to the magnitudes of
the different composing terms. Early results have shown that the uncertainty-focused training
objectives had a minimal effect due to the difference in scale between the uncertainty loss term
and the reconstruction loss term. The reconstruction loss values were significantly larger than
the uncertainty loss values, and as a consequence, the optimization of the reconstruction objec-
tive over the uncertainty objective was prioritized. To mitigate this issue, the reconstruction loss
was weighted down by an additional term, λ1, the reconstruction weight, mentioned in Table 3.
To evaluate the effect of the reconstruction loss weighting, we have conducted experiments with
the VALUE-E and the VALUE-KL models, comparing scenarios with and without the recon-
struction loss weight.

Figure 7 shows the effect of the reconstruction weight on the entropy-based VALUE model.
The magenta line represents the model trained using λ1 = 0.1, while the green line represents
the model trained using λ1 = 1. Down-weighting the reconstruction objective increases the
unscaled reconstruction loss, but improves the KL divergence loss. However, the uncertainty
loss term (uncert loss entropy) is smaller for the model with a down-weighted reconstruction
objective, indicating that this model more effectively learns to encode uncertainty-specific infor-
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mation in the latent probabilistic representation. This is further reflected in the average entropy
value (vae entropy) of the VALUE model, where higher entropy values are achieved compared
to the model trained without scaling of the reconstruction loss. On the validation set, the model
trained using λ1 = 0.1 achieves a lower validation loss, which is expected given the scaling of
the reconstruction loss term. However, the perplexity score indicates that the generated text is of
lower quality than the one generated by the model trained with λ1 = 1. These results show that
down-scaling the reconstruction term enables the model to better encode uncertainty, however,
that comes with the disadvantage of reducing the quality of the generated text.

Figure 7: Effect of reconstruction loss weighting on the training and validation metrics for the VALUE-E model. The x-axis represents the
number of training steps, and the y-axis shows the corresponding value for the metric shown in the plot. The magenta line corresponds to the
model trained with a reconstruction weight of λ1 = 0.1, while the green line corresponds to the model trained with a reconstruction weight
of λ1 = 1. The solid lines represent the metrics with smoothing applied, while the faded lines represent the raw metric values without any
smoothing applied.

Figure 8 shows the results of a similar experiment for the KL divergence-based VALUE model.
The magenta line represents the model trained using a value of λ1 = 0.1, while the purple
line represents the model trained using a value of λ1 = 1. We observe a similar effect as
for the entropy-based model, more specifically, that the unscaled reconstruction loss is higher,
while the KL divergence loss, used for the regularization of the latent space, improves for the
model trained with λ1 = 0.1. The uncertainty loss (uncert loss kl) also shows a significant im-
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provement. The KL divergence (lower bound) between the uniform probability distribution and
the VALUE-processed probability distribution over the LLMs vocabulary, is also lower for the
model trained with the scaled-down reconstruction weight. While the validation loss follows a
similar pattern as for the entropy-based VALUE model, the perplexity score shows a slight im-
provement. This indicates that the stronger training signal provided by the uncertainty objective
not only improves the encoding of uncertainty by the model but is also beneficial to the quality
of the generated text.

Figure 8: Effect of reconstruction loss weighting on the training and validation metrics for the VALUE-E model. The x-axis represents the
number of training steps, and the y-axis shows the corresponding value for the metric shown in the plot. The magenta line corresponds to the
model trained with a reconstruction weight of λ1 = 0.1, while the purple line corresponds to the model trained with a reconstruction weight
of λ1 = 1. The solid lines represent the metrics with smoothing applied, while the faded lines represent the raw metric values without any
smoothing applied.

Based on these experiments, using a down-scaled reconstruction objective improves the ability
of the VALUE framework to encode uncertainty while maintaining an adequate quality for
the reconstructed hidden states, in particular for the method using the KL divergence-based
uncertainty objective.
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7 Conclusion

This work introduced the VALUE framework, which uses a Variational Auto-Encoder architec-
ture to learn uncertainty-aware latent probabilistic representations of an LLM’s hidden states.
Our model employs a novel training objective which combines the standard reconstruction ob-
jective and the KL divergence regularization objective typical of a VAE architecture together
with an additional KL divergence-based uncertainty term, focused on encoding the uncertainty
of an LLM. Our model processes the hidden state from the last decoder layer of an LLM, by
encoding them into a latent probabilistic space, sampling from the probability distribution based
on an ε parameter, which determines the deviation from the mean of the distribution, and feed-
ing them back into the LLM to generate text.

Our approach is LLM agnostic, and has been evaluated with the Open Llama 2 3B and Meta’s
Llama 2 7B models on the CounterFact dataset, demonstrating its capacity to encode un-
certainty. We have compared two uncertainty-focused training objectives one entropy-based
and one KL-divergence based, against a baseline VAE architecture. Our results show that the
KL divergence-based uncertainty objective outperformed both the baseline approach and the
entropy-based approach across a number of metrics such as Answer Coverage and Perplexity.
The texts generated with the VALUE framework show clear variations across a range of ε val-
ues, remaining coherent except when the samples are taken from the tail ends of the latent
probabilistic distribution.

In addition to the quantitative evaluation, we have performed a brief qualitative analysis which
further highlights the model’s ability to encode uncertainty. The analysis shows that the gen-
erated text varies noticeably as a function of ε when the LLM is uncertain about the answer to
the input prompt, while remaining consistent across a wide range of ε values, when the LLM is
confident and generates a factually correct answer for a given input prompt. These findings sug-
gest that our approach can be employed in future works to mitigate issues such as hallucinations
in LLM-generated text.

7.1 Future work

There are several direction for future work to fully utilize and further improve the capabilities
of the proposed VALUE framework. One potential improvement is the use of a larger and more
diverse dataset for the training of the VALUE model. In addition, longer and more complex
prompts, together with longer generated answers could be employed to improve the model’s ca-
pabilities. Another interesting area of experimentation is the use of VALUE framework together
with chat-based LLMs, thereby taking advantage of their meta-learning capabilities. Lastly, an
interesting expansion of our framework would be the development of an additional module that
makes use of the learned latent probabilistic representation to directly classify the level of un-
certainty of the LLM generated answer, avoiding the need for manually varying the ε parameter.
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