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Abstract

When an image is converted to the Fourier domain, it can
be represented by two components: amplitude and phase.
Inherently, phase data captures object shapes, which are
crucial for object detection. Therefore, applying data aug-
mentation in the phase domain has the potential to enhance
object detection models in ways unmatched by traditional
augmentation methods. However, despite significant suc-
cesses in image classification, the application of phase data
augmentation in object detection is sparse. This research
investigates the effectiveness of phase data augmentation
methods in enhancing object detection performance and ro-
bustness. Additionally, a novel method applying phase data
augmentation selectively within bounding boxes (BBoxes) is
introduced, which reduces computational overhead by only
applying the costly FFT operation on an area within bound-
ing boxes. Results show that integrating phase data aug-
mentation with default pipelines achieves slightly higher
mean average precision (mAP) in general and improves ro-
bustness against noise corruptions, though limitations were
observed under blur and other miscellaneous corruptions.
It was also observed that phase data augmentation had
the greatest effect on performance when applied to simpler
models on smaller datasets. Future research directions in-
clude optimizing hyperparameters, exploring complemen-
tary augmentation strategies, and further refining BBox-
specific augmentations for enhanced performance and ro-
bustness.

1. Introduction
In recent years, convolutional neural networks (CNNs)

have become significantly more robust, in part through the
application of frequency analysis [3, 19, 20]. More specifi-
cally, the importance of the phase spectrum of an image for
a robust vision system has become clear. Phase information
inherently has the ability to encapsulate shapes of objects,
as opposed to amplitude information, which primarily con-
veys textural details [3, 15]. The approach of applying data
augmentation using phase information has yielded notable

(a) Regular training image. (b) With phase data augmentation.

Figure 1. Illustrative depiction of the effects of phase data aug-
mentation (VIPAug-G) on object detection. The gray bands are
caused by the LetterBox transformation, which adds padding to
the training images to adjust them to the correct resolution with-
out losing any information.

successes in improving classification accuracy across both
standard and corrupted datasets [3, 11, 20].

Despite these advances in the use case of image clas-
sification, the exploration of frequency analysis within the
context of object detection remains sparse. Object detec-
tion, which is a critical component in applications such as
autonomous driving, necessitates high precision due to its
direct impact on safety and also operational efficiency. The
ability of phase data to capture shapes is particularly rele-
vant for object detection, where having more diverse shape
representations through phase data augmentation could en-
hance the model’s ability to detect and localize objects ac-
curately, and to do so in adverse conditions. Therefore, the
potential of phase data augmentation in this area is intrigu-
ing, given its proven benefits in classification tasks.

This project aims to bridge this research gap by investi-
gating the applicability and effectiveness of phase data aug-
mentation in the realm of object detection. The research
assesses whether proven phase data augmentation methods,
originally used in image classification, can improve object
detection performance, especially in challenging conditions
typical of real-world applications, such as adverse weather
conditions, with examples provided in Appendix A.



1.1. Research question

Following the identified research gap, this study aims to
research the performance of object detection models after
applying phase data augmentation. To achieve this, the fol-
lowing overarching research question is posed:

• How can the performance of varying object detection
models be enhanced by using phase data augmentation
methods?

In order to fully explore this research question, it is di-
vided into the following three sub-questions:

1. How do current phase data augmentation methods, as
used in image classification, affect the performance of
object detection models compared to visual data aug-
mentation methods?

2. Among existing phase and visual data augmen-
tation methods, which one, or what combination
thereof, maximizes the performance of object detec-
tion models?

3. Are there potential refinements (such as selective aug-
mentation) to current phase data augmentation meth-
ods that would improve the performance of object de-
tection models?

2. Related work

2.1. Object detection

Over the last decade, deep learning has greatly im-
proved object detection by learning directly from data,
rather than relying on preprogrammed rules or manually
crafted features [17]. Object detection architectures can be
broadly categorized into two main groups: CNN-based and
transformer-based approaches. CNN-based methods can be
further divided into one-stage and two-stage architectures.
One-stage (mostly anchor-free) models are known for their
simplicity and speed, while two-stage (mostly anchor-based
models) achieve higher accuracy by employing a region
proposal mechanism. In contrast, transformer-based mod-
els leverage attention mechanisms to enhance detection per-
formance, representing a more recent innovation in object
detection.

One-stage detectors are generally faster than two-
stage detectors, as they perform object classification and
bounding-box prediction in a single pass through the net-
work. This makes them more suitable for real-time appli-
cations, and also the architecture is simpler. When these
detectors operate without predefined anchor boxes, they are
referred to as anchor-free, which simplifies the model and
reduces the reliance on hyperparameters. For this category,
YOLOv8 [7] has been selected as a representative model,
as it was the most recent stable version of the most popular

one-stage anchor-free detector at the time of setting up this
research [18].

In contrast, two-stage detectors focus on accuracy and
precision. These models first generate region proposals (po-
tential object locations) and then classify those regions into
object categories, typically using anchor boxes to guide the
proposal stage. Faster R-CNN [16] is a prominent example
in this category, known for its anchor-based approach that
effectively balances detection quality with computational
efficiency. Although Faster R-CNN was initially considered
for this research, it was ultimately not used. Instead, the fo-
cus shifted to models optimized for real-time performance,
namely YOLOv8 and RT-DETR, where gains in efficiency
and robustness can make a more significant impact in prac-
tical applications that demand speed, than in models that
already prioritize accuracy.

Lastly, there are the transformer-based object detectors,
which are currently state-of-the-art and achieve the high-
est average accuracy on benchmark datasets, and most of
the new object detection models released are transformer-
based [1]. Originally used for NLP tasks, transformer-
based object detectors process an entire image as a sequence
of patches, using self-attention mechanisms to weigh the
importance of different parts of the image for identifying
and localizing objects with high precision. A disadvan-
tage is that currently most transformer-based object detec-
tors cannot meet real-time detection requirements [1]. Nev-
ertheless, this research will include RT-DETR (Real Time
DEtection TRansformer) [23], since it is designed specifi-
cally to address the limitations of real-time performance in
transformer-based models. It maintains the high accuracy
characteristic of transformer architectures while optimizing
for faster inference, making it suitable for real-time appli-
cations. Furthermore, the model is included in the Ultralyt-
ics pip package, enabling the reuse of the code implement-
ing the phase data augmentation methods in YOLOv8, thus
simplifying integration and comparisons between models.

2.2. Data augmentation

2.2.1 Traditional data augmentation

Data augmentation has been an essential and widely used
technique to improve the performance of all sorts of mod-
els by artificially increasing the diversity of training data,
to prevent overfitting, thus improving generalization perfor-
mance and robustness. Early approaches to data augmen-
tation were relatively simple, including geometric transfor-
mations like rotation, scaling, translation, and flipping of
images, i.e. visual augmentations [8].

As object detection tasks became more complex, with
the need to identify smaller, occluded, or highly varied ob-
jects within images, more sophisticated data augmentation
techniques were developed. Recent advancements have in-
troduced more complex augmentation methods, such as ran-



dom erasing [24], mixup [22], which involve altering image
regions to create new training samples. These methods not
only increase the variability of the training data, but also
encourage models to learn more robust feature representa-
tions [6, 21].

2.2.2 Phase data augmentation

In this report, phase data augmentation is defined as any
data augmentation method designed to encourage the model
to rely more on the phase component of the input data, in-
cluding approaches that explicitly alter the phase informa-
tion to achieve this goal. Recent advancements in using
phase information to improve the robustness and general-
ization of CNNs are highlighted in the following studies.
Amplitude-Phase Recombination (APR) fixes the phases
and replaces the amplitudes with those of other images [3].
The method consists of two main parts: APR-P and APR-
S. APR-P involves recombining the phase spectrum of one
image with the amplitude spectrum of another, thus creating
new training samples while maintaining the original phase
information to promote robustness. The amplitude from a
different image is used as a distracter. APR-S, on the other
hand, applies the recombination within a single image using
various transformations, ensuring that only self-contained
phase and amplitude information are used. Similarly, FACT
also fixes the phases but mixes the amplitudes with those
of other images to create new samples that aid in learning
more robust feature representations [19]. VIPAug focuses
on vital phases that contain domain-invariant features, by
selectively manipulating these phases to enhance model ro-
bustness across different domains [11]. The method con-
sists of VIPAUG-G, which adds finite variations sampled
from a zero-mean Gaussian distribution to vital phases, and
VIPAUG-F, which vital phases with those from fractal im-
ages, enhancing robustness to amplitude and phase fluctua-
tions.

2.3. Common corruptions

Object detection systems often operate in unpredictable
and challenging environments. These conditions introduce
various common corruptions that can significantly degrade
the performance of these systems. Common corruptions in-
clude, but are not limited to, weather conditions such as
fog, rain, and snow, as well as other environmental factors
like lighting changes, blurring due to motion or out-of-focus
cameras, and occlusions.

Studies have shown that these corruptions can adversely
affect the accuracy of object detection models. [10] inves-
tigated the impact of adverse weather conditions on object
detection related to autonomous driving, using YOLOv8,
highlighting the need for robust detection methods that can
handle such variability. Furthermore, [12] demonstrated

(a) No data augmentation. (b) Default data augmentation.

Figure 2. Representative example of a training image with the
default data augmentation method applied.

the importance of domain adaptation in object detection in
foggy weather conditions, further underscoring the suscep-
tibility of detection models to environmental corruptions.

Lastly, [14] provides an essential reference point for
evaluating object detection models under various image cor-
ruptions through its easy-to-use Robust Detection Bench-
mark. This benchmark offers tools to generate corrupted
datasets, such as COCO-C, by applying distortions like
noise, blur, and weather effects to datasets such as PASCAL
VOC and COCO. The study reveals that conventional mod-
els experience significant performance drops, maintaining
only 30% to 60% of their original performance depending
on the severity of the corruptions.

3. Methodology

3.1. Data augmentation methods

This subsection outlines the motivations and proposed
implementations for the data augmentation methods that
are selected to potentially enhance object detection perfor-
mance, grouping them into default (Figure 2) and phase data
(Figure 3) augmentation methods. As can be seen in (Fig-
ure 2a), only the LetterBox transformation was applied in
the experiments with no data augmentation, to ensure con-
sistent image sizes across all experiments.

3.1.1 Default data augmentation methods

The default data augmentation pipelines of YOLOv8 and
RT-DETR were used as default augmention baselines for
comparison with the state of the art. These pre-configured
pipelines use a variety of traditional transformations to in-
troduce variability in object positioning, scaling, and light-
ing:

• Mosaic combines four images into a single composite,
providing varied contexts and backgrounds for training
(p “ 1.0).



• RandomPerspective applies random scaling (between
50% and 150%) and subtle translations (maximally
10% of image width) to create perspective variations.

• RandomHSV modifies hue (±0.015), saturation (±0.7),
and brightness (±0.4) to add lighting variability.

• RandomFlip flips images horizontally to introduce
symmetry in the dataset (p “ 0.5).

• Albumentations adds diverse transformations to the
augmentation pipeline (p “ 0.01).

• LetterBox resizes images while maintaining their as-
pect ratio by adding padding (p “ 1.0).

These augmentations are standard in YOLOv8 and RT-
DETR, already offering robust data diversification and im-
proving model generalization. They serve as a more com-
prehensive baseline against which the impact of phase data
augmentation methods can be assessed.

3.1.2 Phase data augmentation methods

Amplitude-Phase Recombination (APR-S). APR-S was
the original phase data augmentation method, motivated by
”the powerful generalizability of the human”, stating that
reducing the dependence on the amplitude spectrum and
enhancing the ability to capture the phase spectrum can im-
prove the robustness of a model [3]. The generated samples
force the object detection model to pay more attention to the
structured information from phase components and keep ro-
bust to the variation of the amplitude. For simplicity, APR
for the Single Sample (APR-S) has been chosen, since it
is less memory complex and easier to implement. Further-
more, should this approach yield promising results, it would
be likely that APR-P and APR-SP would also be effective.

For each image in the training set, there is a p “ 0.5
probability that a Fourier transform is performed on the im-
age (I) and a visually augmented version of that image (rI),
Then the amplitude component of I is be recombined with
the phase component of rI and vice versa, and then returning
one of the two recombinations with a 50% probability.

Vital Phase Augmentation (VIPAug-G). VIPAug was
the most recently created augmentation method at the time
of setting up this research, introducing vital phases. VIPAug
encourages the model to depend on the phases over the am-
plitudes, specifically on the vital phases [11]. It identifies
vital phase components that are crucial for maintaining the
semantic integrity of images, by performing a 3D discrete
Fourier transform (DFT) on the input images to extract am-
plitude and phase spectrums. Vital phases are determined
by examining the amplitudes, with larger amplitudes indi-
cating a higher presence of domain-invariant features. Us-
ing a filter, these vital phases are identified across the spatial
and channel domains, creating a set of coordinates for each
vital phase. The parameters σvital and σnonvital denote the

(a) APR-S (b) VIPAug-G

Figure 3. Representative examples of a training image with a
phase data augmentation method applied.

standard deviation for the Gaussian distributions for vital
and non-vital phases, respectively. For this research, only
VIPAug-G was chosen for its flexibility and independence
from specific external images, allowing a straightforward
integration and effective phase perturbation through Gaus-
sian distribution instead of random fractal images. Similar
to APR-S, each training image has a p “ 0.5 probability of
being augmented with VIPAug-G.

Impact on models. Phase data augmentation primarily
influences the backbone of object detection models, as it
alters the structural and shape-related features of the input
images in the frequency domain. This leads to changes in
the feature maps extracted by the backbone, which are then
used by the head for bounding box prediction and classifica-
tion. While the backbone directly processes the augmented
data, the head benefits indirectly through improved feature
representations. Although YOLOv8 and RT-DETR might
share similarities in their backbones (C2f and HGBlock re-
spectively), their distinct head architectures (grid-based in
YOLOv8 and attention-based in RT-DETR) could result in
differing sensitivities to phase data augmentation.

Bounding box correction. Recombining the amplitude
and phase domains introduced the challenge of determin-
ing how and when to apply bounding box correction. This
issue arose because the phase data augmentations operate
by combining two separate domains, where different aug-
mentations that can either be spatial (e.g., translation or ro-
tation) or non-spatial (e.g., solarize or equalize), may be
independently applied to each domain. This can result in
inconsistencies between the transformed image and the cor-
responding bounding box annotations. Bounding box cor-
rection ensures that detections remain accurate when spatial
augmentations shift or distort object positions. However, in
non-spatial transformations, which modify image appear-
ance without altering object locations, correction is unnec-
essary. The application of different augmentations to am-



Training image I Recombined image I 1

Locate top left and
bottom right points

Apply APR-S
or VIPAug-G

on extracted region.

Recombine with I ,
with radial feathering

at every BBox.

Leave part outside of
BBoxes untouchted

Figure 4. A visualization of regional Bbox augmentation on a training image I . A mask is formed from the top left to the bottom right
most bounding box area. Therefore the ”costly” FFT operation will be performed on a smaller area, and will include fewer background
information. Afterwards, the augmented part is recombined with I to form I 1, using radial feathering in order to blend the borders.

plitude and phase domains can lead to scenarios where one
domain’s augmentation affects object placement while the
other does not, necessitating selective correction. Based on
empirical observations, the following guideline can be es-
tablished for when to apply bounding box correction in Ap-
pendix B. During the implementation process, an improve-
ment of 1 to 2 percentage points in mAP was observed on
COCO using a YOLOv8 model. As a result, bounding box
correction was used in all subsequent experiments.

3.2. BBox phase data augmentation

The current phase data augmentation methods are made
for image classification, and therefore are applied on im-
ages as a whole. However, in object detection, the train-
ing data contains predefined bounding boxes. Therefore, it
is possible to apply different intensities of augmentation to
the phase information per label, for example outside of the
boxes much more than inside, or vice versa. The strategy
chosen for implementing this region-specific augmentation
is as follows. The training image is segmented into two
masks, inside a bounding box and outside a bounding box.
Then phase data augmentation is applied from the top left
most bounding box to the bottom right most bounding box
in the inside-box mask, and recombined with the outside
bounding box mask. The method is visualized in Figure 4.

Formalized, mask M distinguishes between the inside
and outside of bounding boxes. Let I be represent an origi-
nal training image, and A the phase augmentation function,
which could be different for inside (Ain) and outside (Aout)

of the bounding boxes.

Mpx, yq “

#

1 if px, yq is inside any bounding box
0 otherwise

(1)

The augmented image I 1 can then roughly be defined as:

I 1px, yq “ Mpx, yq d Ainpx, yq`

p1 ´ Mpx, yqq d Aoutpx, yq (2)

Where x and y are the pixel coordinates, and d denotes
element-wise multiplication. The FFT computation in Ain
is computed only once on an area from pminpxq,minpyqq

to pmaxpxq,maxpyqq.
The objectives are twofold: to greatly reduce the area

where the FFT operation needs to be computed, thereby re-
ducing memory usage and improving speed, and to make
the objects stand out more prominently compared to the rest
of the training image. However, this idea introduces addi-
tional complexities and obstacles. When reblending the im-
ages, mismatched edges may occur where the two masks
meet, potentially confusing the model during training. Fur-
thermore, there is a risk that the model may overfit to the
artificial boundaries created by the masks, learning to rec-
ognize these boundaries rather than generalizing from ac-
tual object features. To solve this, a feathering technique
is applied at the boundaries between the inside and outside
masks to ensure a smooth transition that appears more natu-
ral to the model. A radial feathering technique is used, from
the center of the bounding box letting through the most, to
edges the least and the most of the original image is visible.



4. Experimental design
4.1. Datasets

The datasets used for training, validation, and testing are
two of the most popular benchmark datasets for object de-
tection: PASCAL VOC and Microsoft COCO, see Table 1
for details. COCO 2017 (Common Objects in Context) [13]
features diverse images with detailed annotations for object
detection, segmentation, and captioning. The training and
validation sets include over 120,000 images and 80 object
classes. PASCAL VOC 2007 and 2012 [4] provide a wide
range of images across different scenes, featuring common
objects in varied poses and occlusions. They cover 20 object
classes, including vehicles, household items, and animals.
The datasets include over 16,000 images containing around
30,000 ROI-annotated objects. The combined dataset is
much smaller than COCO and has far fewer objects, and is
therefore used for the smaller-scale experiments. Further-
more, the dataset is more evenly split between training and
validation images, whereas COCO 2017 has a training-to-
validation ratio of approximately 24:1.

In order to evaluate performance on corrupted data, the
validation sets of both aforementioned datasets were used
to generate COCO-C and Pascal VOC-C (2007). These
corrupted datasets are generated using an image corrup-
tion library referenced in [14], which applied 15 types of
corruption at 5 increasing severity levels. The corruptions
include various forms of noise, blur, weather-related ef-
fects, lighting changes, and compression artifacts, simulat-
ing real-world conditions to test model robustness.

4.2. Preprocessing

For all data augmentation methods a consistent image
resolution is required. Since these techniques are computa-
tionally intensive, the chosen resolution should balance be-
tween computational cost and model performance, i.e. the
images should not be too large. Ultimately, a 224×224 res-
olution is chosen. This is a common resolution in computer
vision tasks, which also has been used in the studies of APR
and VIPAug.

4.3. Evaluation metrics

Evaluating the effectiveness of the different augmenta-
tion methods requires a comprehensive set of metrics that
cover all aspects, and accurately reflect the performance of
the models in terms of detection accuracy, localization pre-
cision, and computational efficiency. This section outlines
the metrics that are used to assess the object detection mod-
els trained with and without the applied phase data augmen-
tation techniques.

The mean average precision (mAP) is the primary met-
ric for evaluating the performance of object detection mod-
els. It calculates the average precision (AP) across all cate-

gories by taking the mean of the APs for each class.
The intersection over union (IoU) assesses object lo-

calization precision by measuring the overlap between pre-
dicted and actual bounding boxes.

The mean performance under corruption (mPC) is
used to assess benchmark performance on corrupted data:

mPC “
1

Nc

Nc
ÿ

c“1

1

Ns

Ns
ÿ

s“1

Pc,s (3)

Where Nc represents the number of corruptions and Ns

the number of severity levels of corruptions [14].
Furthermore, the relative performance under corrup-

tion (rPC) measures the how much the performance gets
worse under corruptions as opposed to under a clean perfor-
mance, noted as Pclean [14]. The rPC is defined as follows:

rPC “
mPC

Pclean
(4)

4.4. Full dataset experiments

For the experiments on both the benchmark datasets,
these are the models used for the:

• The YOLOv8 model is the pre-trained YOLOv8n.pt,
configured with a learning rate of 0.002 and cosine
learning rate scheduling over 250 epochs, with a batch
size of 64.

• The RT-DETR model was trained using
rtdetr-l.yaml, with a learning rate of 0.001,
for 250 epochs. While most models were trained
with a batch size of 64, certain experiments were
conducted with a reduced batch size of 32 to address
memory constraints. This difference in batch size is
not expected to significantly impact the comparability
of results.

Both models have a patience, also known as early stop-
ping value, of 100 epochs to prevent overfitting when results
are not improving. For reproducibility a fixed seed of 0 is
used.

No augmentation and default augmentation baselines.
The baseline experiments established the standard perfor-
mance of object detection models without any data augmen-
tation. This provides a reference point to assess the effec-
tiveness of different augmentation methods. Additionally,
for both models a default augmentation baseline was estab-
lished using the standard data augmentation pipelines that
belongs to each model for comparison.

APR-S and VIPAug-G standalone. For these exper-
iments, APR-S and VIPAug-G were tested as stan-
dalone augmentation methods. All default augmenta-
tions are disabled, only the LetterBox transformation



Table 1. Comparison of the benchmark datasets.

Dataset Classes Number of images Number of objects
Training Validation Total Training Validation Total

Pascal VOC 2007 20 2,501 2,510 5,011 6,301 6,307 12,608
Pascal VOC 2012 20 5,717 5,823 11,540 13,609 13,841 27,450
COCO 2017 80 118,287 5,000 123,287 860,001 36,781 896,782

was applied beforehand to ensure consistent image siz-
ing across the dataset. To implement this, YOLOv8 and
RT-DETR were modified by extending their respective
DetectionTrainer classes. Specifically by adding a
custom YOLODataset class that allows for the phase data
augmentation to happen at the end of the pipeline. The
code of APR and VIPAug were reused, and modified so that
they take a label class instead of a single image. This code
can be reused for any object detection model. The standard
deviations of the Gaussian distributions for VIPAug-G are
set to σvital “ 0.001 and σnonvital “ 0.014. This setup al-
lowed the evaluation of how these phase data augmentation
methods perform without the influence of the default tra-
ditional augmentations, providing insight into their isolated
effectiveness. Initial tests were conducted with and without
bounding box correction. As results showed improved per-
formance with bounding box correction, it was applied in
all subsequent experiments.

Combining default and phase data augmentation. Ad-
ditionally, APR-S and VIPAug-G were placed at the end
of the default augmentation pipeline, so that their contribu-
tions could be assessed in combination with traditional vi-
sual augmentations. This approach aimed to understand the
added value these methods brought to model robustness and
generalization when integrated into a more comprehensive
augmentation strategy. The reason why they are put at the
end, besides that is also how it is implemented in classifi-
cation, is to ensure that phase data augmentation is the final
step shaping the input image. The outcomes of all these
experiments provide the answer to sub-questions 1 and 2.

Regional phase data augmentation experiments. The
regional phase data augmentation method as described in
Section 3.2 was tested by picking the best performing phase
data augmentation method, and apply it inside bounding
boxes only. The previous experiments serve as a baseline
to be compared with.

In smaller scale experiments, multiple different intensi-
ties of recombination are applied inside the bounding boxes,
also varying different feathering techniques. to assess their
impact on model performance. Model performance will be
evaluated using the same metrics as the previous experi-

ments. The outcomes of these experiments provide the an-
swer to sub-question 3.

4.5. Robustness experiments

To evaluate the robustness of the trained models de-
scribed above, the COCO-C dataset was used. Each model
was validated across all corruption types at five severity lev-
els. For each corruption the same label file was used for the
labels of the images. The experimental pipeline involved
configuring datasets, copying label files, and running evalu-
ations. Metrics such as mAP and IoU were recorded in CSV
format for analysis. These experiments provided an insight
into how the addition of phase data augmentations impacts
the robustness of object detection models when exposed to
image corruptions.

4.6. Smaller scale experiments

To ensure a practical training process within a reasonable
time frame, the main experiments were conducted using a
relatively small image size of 224 ˆ 224 and YOLOv8n,
which is the smallest model in YOLOv8. However, rely-
ing solely on results from these constrained settings may
present a distorted view of the impact of phase data aug-
mentation. For instance, the augmentation may show a posi-
tive effect primarily because the baseline model is relatively
weak, while its benefits might diminish, or even reverse,
when applied to larger, more capable models. To further
explore how the image size and model size might have im-
pacted these results, additional experiments were run mul-
tiple times on the smaller VOC dataset, allowing for faster
testing with larger image sizes and more computationally
demanding models. To ensure reproducibility, fixed seeds
ranging from 0 to n (where n represents the number of ex-
periment repetitions) were used.

5. Results

5.1. Performance on standard datasets

Table 2 compares the different methods of augmentation
on two models. The input size has been set to 224ˆ224
for all models, to ensure fair comparison and not too long
computation times. For some RT-DETR models, the batch
size had to be reduced to 32 or even 16 for some models



Table 2. Results for YOLOv8n and RT-DETR-l across different augmentation methods on the COCO and VOC datasets. The models were
trained on COCO train2017 and Pascal VOC train2007 and train2012, and validated on COCO val2017 and Pascal VOC val2007. ”#Ep.
(best)” indicates the total training epochs, with the best-performing epoch with regards to mAP50-95 in parentheses. The highest value of a
column is highlighted in bold.

Augmentation method COCO 2017 Pascal VOC
#Ep. (best) Precision Recall mAP50 mAP50-95#Ep. (best) Precision Recall mAP50 mAP50-95

YOLOv8n
1. None 217 (117) 0.505 0.293 0.299 0.189 196 (96) 0.568 0.417 0.441 0.276
2. Default 250 (250) 0.529 0.325 0.338 0.221 250 (197) 0.697 0.589 0.643 0.451
3. Only APR-S 250 (200) 0.500 0.301 0.313 0.201 174 (74) 0.577 0.453 0.477 0.296
4. Only VIPAug-G 250 (163) 0.495 0.303 0.311 0.201 178 (78) 0.600 0.449 0.477 0.293
5. Default + APR-S 250 (250) 0.510 0.322 0.333 0.218 250 (250) 0.706 0.579 0.644 0.456
6. Default + VIPAug-G 250 (250) 0.519 0.319 0.332 0.216 250 (250) 0.698 0.584 0.648 0.456
7. BBox APR-S 250 (140) 0.495 0.299 0.307 0.195 223 (123) 0.605 0.457 0.481 0.302
8. BBox VIPAug-G 221 (121) 0.505 0.298 0.307 0.196 228 (128) 0.595 0.443 0.473 0.297
9. Default + BBox APR-S 250 (250) 0.532 0.324 0.339 0.222 250 (231) 0.696 0.604 0.653 0.458

10. Default + BBox VIPAug-G 250 (250) 0.527 0.320 0.339 0.222 250 (248) 0.683 0.597 0.650 0.457

RT-DETR-l
1. None 250 (98) 0.537 0.393 0.398 0.261 139 (39) 0.332 0.237 0.198 0.115
2. Default 250 (239) 0.674 0.485 0.524 0.362 250 (234) 0.728 0.606 0.658 0.466
3. Only APR-S 250 (177) 0.609 0.436 0.451 0.304 222 (122) 0.554 0.371 0.383 0.239
4. Only VIPAug-G 250 (181) 0.596 0.432 0.448 0.302 250 (152) 0.541 0.363 0.370 0.234
5. Default + APR-S 250 (249) 0.675 0.473 0.515 0.356 250 (250) 0.733 0.607 0.673 0.484
6. Default + VIPAug-G 250 (250) 0.668 0.472 0.512 0.353 250 (250) 0.720 0.610 0.664 0.477
7. BBox APR-S 250 (132) 0.591 0.426 0.438 0.293 242 (142) 0.518 0.341 0.352 0.215
8. BBox VIPAug-G 250 (172) 0.585 0.434 0.445 0.297 250 (194) 0.523 0.345 0.358 0.223
9. Default + BBox APR-S 250 (250) 0.666 0.482 0.520 0.358 250 (250) 0.736 0.613 0.669 0.479

10. Default + BBox VIPAug-G 250 (250) 0.669 0.482 0.521 0.360 250 (244) 0.745 0.582 0.655 0.468

due to memory constraints. For both models, on the Pas-
cal VOC dataset, higher performance over all metrics was
achieved using a combination of the default augmentation
and phase data augmentation. When the proposed augmen-
tation method was added to the default pipeline, a 1 percent-
age point improvement is observed. On the larger COCO
2017 dataset, the results were more similar when using the
default augmentation, showing no notable improvements by
adding phase data augmentation. Without the default aug-
mentation, the models trained with only phase data augmen-
tation were at least still better than no augmentation, but did
not beat the default augmentation method.

These results demonstrate that the phase data augmen-
tation methods can effectively complement traditional aug-
mentations, improving overall model performance slightly,
particularly on smaller datasets, but at the cost of longer
training times. It is also clear that in no way phase data
augmentation is sufficient on their own.

5.2. Robustness under corrupted conditions

The models from Table 2 were validated using the
COCO-C and Pascal VOC-C datasets to assess their robust-
ness under various corrupted conditions. Table 3 summa-
rizes the mPC and rPC values (Eq. 3 and 4 respectively)
for all corruption types. In general, the models trained
with both default and phase data augmentations achieved

Table 3. Robustness of YOLOv8 and RT-DETR models trained
with several augmentation methods on COCO-C and Pascal VOC-
C. The augmentation methods 1 to 10 correspond to the respective
order of Table 2.

Augmen-
tation
method

COCO-C Pascal VOC-C
clean corrupted relative clean corrupted relative

P mPC rPC P mPC rPC

YOLOv8n
1 0.505 0.378 0.749 0.568 0.400 0.704
2 0.529 0.414 0.783 0.697 0.537 0.771
3 0.500 0.412 0.824 0.577 0.457 0.792
4 0.495 0.406 0.821 0.600 0.470 0.784
5 0.510 0.435 0.854 0.706 0.589 0.834
6 0.519 0.433 0.834 0.698 0.590 0.845
7 0.495 0.396 0.800 0.605 0.466 0.771
8 0.505 0.391 0.774 0.595 0.454 0.763
9 0.532 0.428 0.805 0.696 0.569 0.818

10 0.527 0.429 0.814 0.683 0.572 0.837

RT-DETR-l
1 0.537 0.450 0.838 0.332 0.240 0.724
2 0.674 0.532 0.790 0.728 0.554 0.760
3 0.609 0.518 0.851 0.554 0.428 0.772
4 0.596 0.519 0.871 0.541 0.410 0.757
5 0.675 0.573 0.849 0.733 0.624 0.852
6 0.668 0.573 0.858 0.720 0.617 0.857
7 0.591 0.491 0.831 0.518 0.372 0.717
8 0.585 0.498 0.851 0.523 0.371 0.709
9 0.666 0.554 0.832 0.736 0.583 0.793

10 0.669 0.558 0.834 0.745 0.576 0.773



Figure 5. Aggregated mean mAP50for ten RT-DETR models trained with different data augmentation methods, validated on Pascal VOC-
C. The corruptions are grouped by noise, blur, and miscellaneous corruptions across five severities of increasing intensity. Phase data
augmentation methods show a significantly less steep drop in performance on noise corruptions as the severity increases, compared to the
default augmentation method. However, the BBox-specific phase data augmentation method (rightmost) is less robust to noise corruptions
than the standard phase data augmentation methods.

the highest precision and also were the most robust. To
further analyze trends, Figure 5 groups corruptions into
noise, blur, and miscellaneous corruption categories, pro-
viding a more detailed comparison of performance drops
across severity levels. As shown, the performance drop for
phase-augmented models is less steep under noise corrup-
tions, demonstrating their effectiveness in maintaining ro-
bustness. Models with phase data augmentations consis-
tently achieved higher precision scores for noise corruptions
compared to default augmentations, indicating improved ro-
bustness to high-frequency distortions. However, some of
these models performed worse under some blur corruptions,
with lower precision scores than their counterparts using
only default augmentations.

5.3. Smaller scale experiments

The smaller-scale experiments were conducted to exam-
ine the effects of image size and model size on performance.
These experiments were performed five times, and the re-
sults are averaged.

5.3.1 Impact of image size

Due to impact on training time of having a large image
size, the main experiments were performed with an image
size of 224 ˆ 224. However, additional tests with a larger
image size of 640 ˆ 640 were conducted to assess the ef-
fect of resolution on model performance. As shown in Ta-
ble 4, increasing the image size consistently improved mAP
metrics across both default and APR-S configurations. For
the smaller image size, the relative improvement of APR-S
compared to the default pipeline was 0.3% for mAP50and

0.7% for mAP50-95. In contrast, with the larger image size,
the relative improvement of APR-S increased to 0.6% for
mAP50and 1.1% for mAP50-95. This suggests that the ben-
efits of APR-S scale slightly more effectively with higher
resolution inputs, possibly due to the additional structural
detail present in larger images, which allows the model to
capture finer details, which in turn allows the phase data
augmentation to exploit this, but at the cost of a logarithmi-
cally increased training time.

Table 4. Averaged performance with different image sizes over
five runs.

Image
size

Default Default + APR-S
mAP50 mAP50-95 mAP50 mAP50-95

224 0.645 0.452 0.647 0.455
640 0.789 0.582 0.794 0.589

5.3.2 Impact of model size

The smaller dataset allowed for experimentation with larger
versions of YOLOv8, namely YOLOv8s and YOLOv8m,
see Table 5. Interestingly, YOLOv8m with APR-S under-
performed compared to the default version in terms of over-
all mAP metrics, despite achieving higher precision during
training. Specifically, the precision with APR-S reached
0.804, surpassing the default version’s maximum precision
of 0.792. This suggests that while APR-S may enhance
certain aspects of detection, it may not consistently im-
prove overall performance across all metrics, particularly
with larger models.



Table 5. Averaged performance of varying model sizes over five
runs.

YOLO
model

#Param.
(M)

Default Default + APR-S
mAP50 mAP50-95 mAP50 mAP50-95

v8n 3.2 0.645 0.452 0.647 0.455
v8s 11.2 0.715 0.516 0.726 0.528
v8m 25.9 0.781 0.586 0.763 0.569

6. Discussion

The key findings of this research are that phase data
augmentations, such as APR-S and VIPAug-G, complement
traditional augmentation methods in object detection. Not
only by slightly enhancing mAP, but also improving the
robustness of object detection models, particularly under
noisy conditions. This highlights the potential of using aug-
mentations in the phase domain to refine feature representa-
tions, especially for detection tasks in challenging scenarios
like noisy or weather-impacted environments. In general,
models trained with these methods demonstrated consistent
improvements in mAP50-95compared to those trained with
only default augmentations, with gains of around 1 to 2 per-
centage point observed in specific configurations.

The error analysis thereafter was inconclusive, as no
clear pattern could be identified to explain where the phase
data augmentation outperformed the default model. In some
images, the default model performed better, while in others,
the phase-augmented model was better even when the im-
age content appeared to be similar. On average, the phase-
augmented model showed slightly better results, but the ab-
sence of a consistent trend makes it difficult to draw defini-
tive conclusions. This is exemplified in Figure 6, where
the model with arguably the worst class activation is the
only one that detects the correct instance. Additionally, as
shown in Table 2, phase data augmentation led to a decrease
in recall for most models. This suggests that while phase
data augmentation improves precision, it does not neces-
sarily validate the idea that it enhances detection by diver-
sifying shape variations. Instead, it appears to make the
model more conservative, focusing on avoiding false posi-
tives at the expense of missing more objects. For instance,
on the VOC 2007 dataset with YOLOv8n, the number of
detected instances decreased from 4,128 with default aug-
mentations to 3,707 with Default + APR-S, and 3,820 with
Default + BBox APR-S. Similarly, the average confidence
scores followed a similar pattern, dropping from 0.782 for
the default model to 0.772 for Default + APR-S, and further
to 0.764 for Default + BBox APR-S. These findings indi-
cate that phase data augmentation may over-regularize the
model, reducing its overall confidence and recall, instead
of allowing it to detect difficult-to-detect objects. However,
this might also be caused by the specific implementation

and the chosen hyperparameters used in this research.

The BBox phase data augmentation results are con-
sistent with prior work that demonstrated applying standard
augmentations specifically within bounding boxes can yield
slight performance benefits [2]. This underscores the po-
tential of targeted augmentations tailored to specific object
classes, which could be further refined by dynamically ad-
justing augmentation parameters based on the objects them-
selves, such as applying different intensities to objects that
the model does not detect well. Using BBox-only augmen-
tation is also promising from a computational perspective,
as it requires performing FFT operations on smaller area
rather than the entire image, thereby reducing computa-
tional overhead. However, the current approach has notable
limitations. First of all, the method performs worse than
the standard phase data augmentation in terms of corrup-
tion robustness. This could be because the reduced area of
the FFT operation and the feathering with the original im-
age introduce less variety in the augmented data, limiting
the ability to generalize to corruptions such as noise and
blur. Secondly, the radial feathering technique does not ac-
count for the distribution of features within the bounding
box and is applied uniformly from the center outward, po-
tentially missing critical details in non-central areas, where
the shape of objects are more likely to be defined. Besides
that, the current policy of deciding the part that gets aug-
mented is overly simplistic and can lead to inefficiencies,
particularly in the case of images with bounding boxes that
are located far apart from each other, near the edges of the
image. In such cases, the extracted area still encompasses
nearly the entire image, undermining the goal of reducing
the area of the FFT operation. A clustered approach, group-
ing closely positioned bounding boxes and calculating the
FFT per cluster, could address this issue and further im-
prove the efficiency of this approach. This approach would
also handle images with overlapping bounding boxes more
effectively. In the current implementation, feathering was
applied sequentially to each individual bounding box, but
applying it per cluster would be both computationally more
efficient and provide smoother transitions.

Regarding robustness, the improved performance of
phase-augmented models under noise corruption scenarios
is promising, suggesting that phase data augmentation en-
hances robustness to high-frequency distortions. However,
its practical utility in real-world applications remains un-
certain. Namely, if robustness to noise were to be a primary
requirement, explicitly training models with noise augmen-
tations might be a more direct and effective approach. It
is also possible that the observed robustness to noise is
solely due to the similarity between the effects of phase data
augmentation and random noise corruption, rather than an
inherent improvement in model robustness. Besides that,
phase data augmentations showed a slight but notable drop



(a) Ground truth and detected in-
stance by YOLOv8 model, trained
with Default + APR-S augmentation. (b) Default augmentation. (c) Default + APR-S. (d) Default + BBox APR-S.

Figure 6. Class activation mappings (CAM) on an example validation image using three differently trained YOLOv8 models. This figure
illustrates how each method can result in completely different areas of focus for detection.

in performance under blur corruptions in some cases, indi-
cating a limitation in addressing low-frequency distortions.

Optimal configurations for integrating phase data aug-
mentations remain a critical area for further investigation.
After all, some of the aforementioned limitations could
partly be attributed to suboptimal configurations, such as
the chosen hyperparameters or phase data augmentation set-
tings. Results indicate that factors such as image size and
model size influence the impact of phase data augmentation
on performance, which in turn indicates that phase data aug-
mentation might be more suitable on simpler models with
less training data. Also, this research did not explore com-
binations of phase data augmentation with other augmenta-
tion methods, such as mixup, which could potentially pro-
vide even more complementary improvements.

Limitations and challenges that remain include the sub-
stantial memory overhead and longer training times intro-
duced by Fourier transforms. With a computational com-
plexity of Opn log nq, FFT operations can hinder scala-
bility, particularly for large datasets. Furthermore, for a
fairer comparison between models, when the batch size is
reduced, the learning rate could have been scaled propor-
tionally, using either linear scaling with

?
k or k [5, 9].

However, since an Adam optimizer was used, which adapts
the learning rate dynamically, this issue was partially miti-
gated. Moreover, bounding box-specific augmentations in-
troduced potential artifacts, such as mismatched edges be-
tween augmented regions. Feathering techniques helped
mitigate these issues, but further refinements are neces-
sary to ensure seamless integration and avoid confusing the
model.

Potential refinements and future work include con-
ducting a comprehensive sensitivity analysis to refine con-
figuration hyperparameters, particularly for bounding box-
specific augmentations. Then, improvements in blend-
ing techniques and combining with different augmentation
methods could further improve the practical utility and scal-
ability of (BBox) phase data augmentation methods.

7. Conclusion

This research investigated the applicability and effective-
ness of phase data augmentation for object detection mod-
els. By implementing and testing APR-S and VIPAug-G
on popular datasets COCO and Pascal VOC, it was demon-
strated that phase data augmentation methods can enhance
detection quality, particularly under noisy conditions. The
experiments showed that integrating phase data augmenta-
tion led to slight improvements in precision and mAP but
sometimes at the expense of recall. To address the support-
ing research questions:

How do current phase data augmentation methods,
as used in image classification, affect the performance
of object detection models compared to visual data aug-
mentation methods? Phase data augmentation methods,
such as APR-S and VIPAug-G, showed modest but consis-
tent improvements in mAP when applied to object detection
models, similar to the modest accuracy gains observed in
image classification tasks. However, phase data augmenta-
tions alone were not sufficient to achieve significant perfor-
mance gains, as their effectiveness was only apparent when
combined with visual augmentations.

Among existing phase and visual data augmentation
methods, which one, or what combination thereof, max-
imizes the performance of object detection models? The
combination of default visual augmentations with APR-S or
VIPAug-G mostly yielded the best performance. Phase data
augmentations alone improved compared to no augmenta-
tion, but were most effective when integrated with tradi-
tional visual augmentations, highlighting the importance of
a hybrid approach. Default augmentations added more spa-
tial and color variability, which in turn was amplified by the
phase data augmentation. The most effective configuration
was Default + APR-S, which provided slight but consistent
improvements across multiple metrics and datasets, partic-
ularly for smaller-scale experiments, and the best overall
robustness.



Are there potential refinements (such as selective aug-
mentation) to current phase data augmentation meth-
ods that would improve the performance of object detec-
tion models? Several potential refinements were identified.
The BBox-specific augmentation strategy demonstrated po-
tential by targeting phase augmentations within bound-
ing boxes, reducing computational overhead and training
time. However, the current implementation was found to
be too simplistic, and more sophisticated approaches, such
as cluster-based or object-aware strategies, could further en-
hance performance by tailoring augmentations to challeng-
ing instances or regions of interest.

The overarching research question posed by this research
was: How can the performance of varying object detec-
tion models be enhanced by using phase data augmen-
tation methods? This research demonstrated that integrat-
ing phase data augmentation methods into the augmenta-
tion pipeline can enhance the performance and robustness
of object detection models, particularly with limited model
size and or training data, provided that it is combined with
traditional augmentations. While the improvements were
relatively modest, they highlight the complementary nature
of phase augmentations in enhancing structural representa-
tions, especially when exposed to noise corruptions. Fur-
thermore, the research identified specific areas for refine-
ment, such as targeted application within bounding boxes,
that could unlock further potential for phase data augmen-
tations in object detection tasks.
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A. Corruption examples

(a) Gaussian noise.

(b) Motion blur.

(c) Snow.

Figure 7. Examples of a noise, a blur, and a miscellaneous corrup-
tion at severity levels 1 and 5, respectively.

B. BBox correction policy

Table 6. Both APR-S and VIPAug-G make use of two transforma-
tion in their augmentation process. The resulting image is a recom-
bination of the amplitude (A) and phase (P q of both transformed
images. This table indicates when bounding box correction should
be applied.

Recombination A(1st aug.),
P (2nd aug.)

A(2nd aug,),
P (1st aug.)

Both non-spatial
(e.g. solarize and equalize)

None None

1st non-spatial, then 2nd spatial
(e.g. solarize and translate-y)

2nd aug. None

1st spatial, then 2nd non-spatial
(e.g. translate-y and solarize)

1st aug. 1st aug.

Both spatial
(e.g. translate-y, translate-x)

Both Both

C. Robustness results per corruption

Table 7. mAP50-95for each corruption on COCO-C, averaged over
all severities, using YOLOv8n.

Corruption mAP50-95
Def. aug. Def. aug. + APR-S Relative

Impulse noise 0.077 0.130 68.48%
Gaussian noise 0.085 0.128 50.13%
Shot noise 0.091 0.134 47.24%
Defocus blur 0.162 0.185 14.13%
Glass blur 0.144 0.163 13.09%
Snow 0.099 0.111 11.95%
Zoom blur 0.062 0.067 9.36%
Frost 0.130 0.140 7.98%
JPEG compression 0.190 0.203 6.75%
Motion blur 0.140 0.148 5.89%
Elastic transform 0.197 0.198 0.48%
Brightness 0.199 0.200 0.48%
Pixelate 0.220 0.217 -1.37%
Fog 0.175 0.167 -4.08%
Contrast 0.119 0.110 -6.93%
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