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Chapter 2

Introduction

Language is the cornerstone of human communication, not merely a tool for convey-
ing thoughts but a lens through which we perceive and understand the world. The
developmental trajectory from an infant’s initial vocalizations to complex linguistic
expression illustrates the remarkable process of first language acquisition. In con-
trast, acquiring a second language, especially in later life, presents unique cognitive
challenges and fascinating neurological dynamics.

Secondary language learning hinges on two critical cognitive processes: compre-
hension (decoding and understanding linguistic input) and production (generating
coherent linguistic responses). These processes engage distinct yet interconnected
neural circuits, each presenting unique cognitive demands. While comprehension
involves semantic and syntactic decoding, production requires intricate neural or-
chestration for linguistic construction of thought.

Despite their fundamental role in communication, distinguishing the neural mech-
anisms underlying comprehension and formation difficulties has remained a signifi-
cant challenge in cognitive neuroscience. This thesis employs a sophisticated, non-
invasive EEG-based brain-computer interface to systematically identify and analyze
neural features and markers differentiating these cognitive states. By examining
spectral, topographical, and functional connectivity patterns across comprehension
and formation difficulties (relative to a baseline relaxed state), this research aims to
provide insights into secondary language acquisition mechanisms. The potential im-
plications extend beyond theoretical neuroscience, promising to enhance language
learning technologies and rehabilitation strategies for individuals with language-
related neurological conditions such as aphasia.

Keywords : language learning, brain-computer interfaces, neural markers
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Chapter 3

Literature Review

The intersection of neuroscience and language research represents a critical fron-
tier in understanding human cognitive processes. This literature review synthesizes
contemporary research at the forefront of neural science, language learning, and
advanced neuro-imaging techniques. It is structured to systematically examine the
following key domains:

• Neuroscience models of language processing

• EEG-based neural markers in language related tasks

• Experimental protocols in brain-computer interface (BCI) language studies

Although the neural mechanisms underlying language are not yet fully under-
stood, significant insights have been gained through studies of patients who have
experienced speech and language impairments due to stroke, aphasias, as well as
through behavioral and functional neuroimaging studies of healthy individuals. De-
spite extensive research on language processing, achieving a comprehensive under-
standing of its neural basis remains a challenge. In this study, we aim to explore this
limitation by investigating whether it is possible to distinguish between two states:
"Difficulty in Comprehension" (State 1) and "Difficulty in Formation" (State 2).

3.1 Neuroscience models of Language Processing

3.1.1 Dual Stream Model

Language processing has traditionally been explained through modular theories that
posit distinct and independent systems for production and comprehension [1]. These
theories often draw on clinical evidence, such as the Lichtheim–Broca–Wernicke
model, which attributes specific neural pathways to either production or compre-
hension [2]. Modular theory emphasizes the division of language comprehension and
production processes into two distinct pathways: dorsal and ventral streams [3].
According to this theory, the dorsal stream is involved primarily in the mapping of
auditory signals to articulatory representations and plays a crucial role in language
production. In contrast, the ventral stream is responsible for mapping auditory in-
put to semantic and syntactic representations, facilitating comprehension [4]. This
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bifurcation aligns with classical modular theories, which propose that language pro-
cessing occurs in specialized, independent circuits [1]. Evidence for this division
comes from neuro-imaging studies and lesion analyses. For instance, damage to
the dorsal stream, particularly in the posterior superior temporal gyrus and infe-
rior parietal lobule, often results in deficits in speech repetition and articulatory
planning [5]. Conversely, lesions in the ventral stream, including the middle and
inferior temporal gyri, are associated with impairments in semantic processing and
comprehension [6]. These findings reinforce the notion of distinct pathways for com-
prehension and response formation.

However, it can be argued that the Dual Stream Model oversimplifies the in-
teractive nature of language processing. Real-world communication often involves
simultaneous production and comprehension, challenging the strict separation of
these streams [7]. However, proponents of the model highlight its ability to explain
specific language deficits observed in aphasia and its alignment with well-established
anatomical and functional specializations [8]. Despite its modular framework, the
Dual Stream Model has been adapted to incorporate elements of integration. For
example, feedback loops between the dorsal and ventral streams allow for some de-
gree of interaction, such as semantic influences on articulatory planning [9]. This
adaptation addresses some criticisms while maintaining the core modular premise.
Although not agreed upon by the majority of neuroscientists, the Dual Stream Model
remains a good candidate to explain the differentiation between comprehension and
formation, offering a structured framework to understand the neural architecture un-
derlying secondary language acquisition. Although it may not fully capture the dy-
namic and predictive aspects emphasized by integrated models, it provides valuable
information on the anatomical and functional basis of comprehension and response
formation.

3.1.2 Integrated Model

Recent advances in neuroscience challenge the modular assumptions, advocating for
an integrated view where production and comprehension are interwoven [7]. Neu-
roimaging studies reveal significant overlap in brain regions active during both pro-
duction and comprehension tasks. For instance, Broca’s area, traditionally associ-
ated with production, is also activated during comprehension and even during silent
observation of speech-like movements [10, 11]. Neuroimaging studies show overlap-
ping activation patterns in areas such as Broca’s area and the auditory cortex during
both speaking and listening [10]. Furthermore, behavioral studies demonstrate the
dynamic nature of dialogue, where interlocutors often overlap in their contributions,
providing feedback and co-constructing meaning [12]. Such phenomena are diffi-
cult to explain through modular frameworks that assume sequential turn-taking.
The concept of forward modeling offers another rebuttal. Drawing from motor con-
trol theories, forward models enable individuals to predict the outcomes of their
actions and compare these predictions with sensory feedback [13]. As per the inte-
grated model, during language processing, speakers use forward models to generate
predictions of their utterances, while listeners employ covert imitation to predict up-
coming speech [7]. Behavioral experiments, such as the work by Heinks-Maldonado
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et al. [11], demonstrate that speakers predict and monitor their speech through for-
ward models, adjusting phonological output in real time. Similarly, Huettig and
Hartsuiker [14] observed that speakers use predictive monitoring to detect and cor-
rect semantic and phonological errors efficiently. This mechanism not only facili-
tates real-time adjustments but also explains how comprehension and production
processes mutually influence each other. Joint action frameworks further validate
the integrated model. In tightly coupled activities like conversation, interlocutors
coordinate their actions by predicting their own and others’ contributions [15]. This
predictive capability aligns with findings on mirror neurons, which activate dur-
ing both the execution and observation of actions, underscoring the shared neural
substrates for perception and production [16]. The neuroscience of language is in-
creasingly moving away from modular theories toward integrated models that em-
phasize prediction and mutual influence. The interwoven processes of production
and comprehension, supported by behavioral and neuroscientific evidence, provide
a robust framework for understanding language as a dynamic, interactive system.
This perspective not only resolves inconsistencies in modular theories but also aligns
with broader findings in cognitive neuroscience that reject the "cognitive sandwich"
model of separate perception, cognition, and action [17].

While the Integrated Model offers compelling insights, it faces criticisms that
highlight its limitations and areas requiring further empirical support. Critics argue
that the model may oversimplify complex cognitive processes by assuming that pro-
duction mechanisms directly influence comprehension without fully accounting for
the nuanced differences between these processes. Such an assumption may fail to
capture the specialized cognitive functions involved in either domain [9] [12]. The
model’s reliance on predictive coding as a central mechanism has also been ques-
tioned due to limited empirical evidence. While prediction plays a role in language
processing, its ubiquity and extent in naturalistic language tasks remain contentious.
Studies have shown that prediction effects often depend on specific experimental
conditions and task demands, suggesting that prediction may not universally un-
derpin all aspects of language comprehension and production [11,13]. Furthermore,
generating predictions in linguistically complex or ambiguous contexts imposes a
significant cognitive load, potentially limiting the practicality of prediction-based
models [9]. Another challenge lies in accounting for individual differences in predic-
tive abilities across populations. For instance, multilingual individuals or those with
varying linguistic proficiencies may exhibit divergent interactions between produc-
tion and comprehension processes, complicating the universality of the Integrated
Model [17]. Similarly, alternative explanations, such as priming or rapid integration,
could account for observed phenomena attributed to prediction, without necessitat-
ing the complex interactions proposed by the Integrated Model [15]. Lastly, the
model’s adaptability to multilingual or non-standard linguistic contexts remains un-
derexplored. Multilingual speakers, for instance, might rely on distinct neural or
cognitive mechanisms due to the interplay of multiple linguistic systems. This com-
plexity poses challenges to the generalizability of the Integrated Model [9] especially
for secondary language acquisition. Despite the criticisms, the Integrated Model con-
tinues to advance our understanding of interactive language processing. Addressing
these challenges through targeted empirical research and refining the model to in-
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corporate individual and contextual variability will enhance its explanatory power.
For this research, we critically evaluate the arguments presented by both the

Dual Stream and Integrated Models without making prior assumptions about which
model may prevail. Both frameworks may hold validity in addressing different facets
of language processing. To advance this inquiry, empirical validation is essential,
which necessitates developing a comprehensive experimental system. Such a system
would enable controlled experiments involving participants from diverse linguistic
and cultural backgrounds aimed at secondary language learning, as well as varying
abilities and difficulties, to rigorously test the predictions of each model.

3.1.3 Multilingualism and Developmental Language Learn-
ing

Comprehension difficulties in multilingual contexts often stem from insufficient lan-
guage input, inappropriate input, or challenges in language cognition. Learners may
struggle with understanding different accents, dialects, or cultural nuances [18]. For-
mation difficulties, on the other hand, typically involve challenges in language pro-
duction, such as pronunciation issues, grammatical errors, or difficulties in sentence
construction [19]. Bilingualism provides a unique perspective on the brain’s language
networks. Research shows that bilinguals exhibit more extensive activation in the
prefrontal cortex and anterior cingulate cortex, likely due to the cognitive control re-
quired to manage multiple languages [19]. Neuroimaging studies have revealed that
bilingual language switching recruits both language networks and cognitive control
areas [20]. This dual activation underscores the involvement of executive functions in
managing two language systems, which might explain the challenges bilinguals face
in rapidly switching between languages or maintaining separation between them.
Structural studies further show increased gray matter density in regions associated
with language control, such as the left inferior frontal gyrus and anterior cingulate
cortex [21]. These findings illustrate how multilingualism can shape the brain’s
language structures and their functions over time, reflecting neuroplasticity that en-
hances cognitive control but may also contribute to processing delays or interference
across languages [21].

Longitudinal studies on language development highlight the role of early language
exposure in influencing structural connectivity, particularly in the arcuate fasciculus,
a white matter tract connecting Broca’s and Wernicke’s areas [22]. Children exposed
to rich linguistic environments show enhanced connectivity in this tract, supporting
better phonological and syntactic processing as they develop [22]. Enhanced connec-
tivity in the arcuate fasciculus may reduce formation difficulties in early bilinguals,
providing further evidence of the long-term benefits of early linguistic exposure [21].
The age of acquisition and proficiency level play critical roles in shaping the neural
representation of languages. Early bilinguals often demonstrate no significant dif-
ference in brain activation for L1 and L2, whereas late bilinguals may show spatially
distinct activations in Broca’s area for L1 and L2 [23]. This distinction could ac-
count for the greater formation difficulties experienced by late learners, who must
recruit additional neural resources for L2 production [21]. However, proficiency has
also been argued to be a more decisive factor than age of acquisition [22]. High
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proficiency, regardless of age of acquisition, has been linked to native-like neural
representations, reducing comprehension and formation challenges [18]. Separating
the effects of multilingualism from other cognitive factors remains a significant chal-
lenge. Some studies suggest that the bilingual advantage in cognitive control may be
overstated or confounded by socio-cultural and educational variables [18, 22]. This
ongoing debate underscores the necessity for more controlled and rigorous research
to delineate these effects. Research that involves multilingualism must address the
roles of age of acquisition, proficiency, capacity to learn new language and cognitive
control to unravel the intricacies of multilingual language processing.

3.1.4 Disorders of Language

Language disorders encompass a range of difficulties in both comprehension and pro-
duction of language, affecting individuals’ ability to understand and express them-
selves effectively. These disorders can significantly impact academic performance,
social interactions, and overall quality of life [24]. Comprehension disorders, also
known as receptive language disorders, involve difficulties in understanding spoken
or written language. Individuals with comprehension disorders may struggle to fol-
low complex instructions, grasp abstract concepts, or interpret nuanced language
such as idioms or sarcasm. Research by Bishop et al. [24] suggests that children
with Developmental Language Disorder (DLD) often experience persistent difficul-
ties in language comprehension, which can lead to challenges in academic settings
and social interactions. These difficulties underline the critical need for targeted sup-
port and accommodations in both educational and social environments. Production
disorders, or expressive language disorders, manifest as difficulties in formulating
and expressing thoughts verbally or in writing. Symptoms may include limited vo-
cabulary, grammatical errors, and trouble organizing ideas coherently. A study by
Leonard [25] indicates that children with DLD often exhibit deficits in morphosyn-
tax, such as omitting grammatical morphemes or struggling with complex sentence
structures. These expressive challenges highlight the necessity of tailored interven-
tions to address specific deficits in language production.

These disorders are intricately linked to the research on learning disabilities,
particularly dyslexia. While dyslexia primarily affects reading skills, it is often
accompanied by broader language processing difficulties. Snowling and Hulme [26]
argue that dyslexia should be viewed as part of a continuum of language disorders,
rather than a distinct entity. Neuroimaging studies provide further evidence of the
biological underpinnings of language disorders. Friederici [27] demonstrates that
individuals with language disorders often show atypical activation patterns in brain
regions associated with language processing, such as Broca’s and Wernicke’s areas.
These findings underscore the neurobiological basis for observed difficulties in both
comprehension and production and point to potential biomarkers for diagnosis and
intervention.

Importantly, the research on language disorders highlights the need for targeted
and evidence-based interventions. Ebbels [28] proposes that interventions for chil-
dren with language disorders should focus on explicit teaching of language structures,
using visual supports and metacognitive strategies to enhance both comprehension
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and production skills. Systematic reviews, such as those by Norbury et al. [29],
have further emphasized the effectiveness of evidence-based practices in improving
syntactic and morphological skills in children with DLD. Further research is needed
to explore further the interconnections between various language-based learning dif-
ficulties to develop more effective and targeted support strategies. Consequently,
understanding the underlying neural phenomena—what occurs in the brain—and
incorporating EEG studies into this research are crucial to advancing our knowl-
edge and developing targeted approaches to find solutions to these conditions.

3.1.5 Neural Basis of Language Comprehension

Language comprehension relies on a complex interplay of neural regions and net-
works, each contributing to distinct aspects of processing. Research has elucidated
key brain areas and mechanisms responsible for decoding semantics, syntax, and
phonology, offering insights into the neural underpinnings of language comprehen-
sion [3,30]. The middle and superior temporal gyri (MTG/STG) are central to the
semantic network, showing robust responses to words over non-words and natural
speech over scrambled speech [31]. The MTG is primarily implicated in lexical re-
trieval and semantic processing, while the STG supports phonological decoding and
auditory processing [3]. Functional MRI studies confirm that these regions exhibit
consistent spatial organization across individuals, suggesting that innate cortical ar-
chitecture and anatomical connectivity shape these areas [31]. Evidence from neu-
roimaging and lesion studies highlights involvement of Broca’s area in processing
hierarchical syntax and resolving sentence ambiguity [30,32]. Patients with Broca’s
aphasia exhibit difficulties in understanding syntactically complex sentences, em-
phasizing the role of this region in both syntax and verbal working memory [33]
.Emerging evidence also points to the anterior temporal lobe (ATL) as contributing
to combinatorial semantic processing. The ATL integrates word meanings into co-
herent sentence structures, challenging earlier views that focused predominantly on
posterior temporal regions for semantic comprehension [34]. The N400 component,
an event-related potential (ERP), serves as a key marker of semantic processing. It
is sensitive to semantic incongruities, such as unexpected or contextually anoma-
lous words, reflecting real-time neural responses to meaning violations. The N400
aligns with the dual-stream model of language processing, where the ventral stream
is implicated in mapping sounds to meaning. Semantic networks exhibit small-world
structural properties, enabling rapid retrieval and integration of word meanings [35].
Prat and Just [36] describe three key facets of neural connectivity that support com-
prehension: neural efficiency (minimal activation for task execution), adaptability
(flexible reconfiguration with changing demands), and synchronization (integration
across regions).

The dual-stream model further underscores the complementary roles of different
pathways in language comprehension. The ventral stream supports semantic map-
ping and comprehension, while the dorsal stream aids in phonological processing
and syntactic integration [3].

Despite significant advancements, several challenges remain in understanding the
neural basis of language comprehension. Broca’s area, for example, is widely rec-
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ognized for its role in syntax, yet some researchers argue that its primary function
may extend to verbal working memory [33]. Additionally, although language is pre-
dominantly left-lateralized, evidence suggests that the right hemisphere contributes
to processing prosody, figurative language, and contextual integration [37]. These
findings challenge traditional models that focus solely on left-hemisphere dominance.
Individual differences also play a crucial role in comprehension abilities. Variability
in neural efficiency, adaptability, and synchronization among individuals highlights
the importance of personalized approaches to studying language processing [36].

Understanding the neural mechanisms underlying language comprehension is
vital for advancing theories of bilingualism, developmental language learning, and
disorders such as aphasia and dyslexia. Identifying specific neural markers and
pathways can inform targeted interventions aimed at mitigating language deficits
and improving comprehension outcomes [30].

3.1.6 Neural Basis of Language Formation

Language formation, encompassing both spoken and written production, relies on a
sophisticated network of brain regions that manage lexical retrieval, syntactic struc-
turing, phonological encoding, and motor articulation. Recent neuroimaging and
electrophysiological studies have expanded our understanding of these processes, of-
fering a nuanced perspective on the neural mechanisms underlying language produc-
tion [3]. Broca’s area, located in the left inferior frontal gyrus (IFG), is traditionally
associated with speech production but is now understood to play a critical role in
syntactic processing and rule acquisition. Grodzinsky and Friederici [38] demon-
strated increased activation in Broca’s area during artificial grammar tasks, indi-
cating its involvement in syntax formation. However, some researchers argue that
Broca’s area may serve broader cognitive control and working memory functions.
The left posterior middle temporal gyrus (MTG) is essential for lexical retrieval and
semantic processing. Binder et al. [6] emphasized its role in both comprehension and
production, while Sakurai et al. [39] highlighted its specialization in orthographic
retrieval for logographic writing systems, such as kanji, underscoring its significance
in written language production. Wernicke’s area, located in the posterior superior
temporal gyrus (STG), is traditionally linked to language comprehension but also
contributes to phonological encoding during production. Hickok and Poeppel [3]
proposed that this region acts as an interface between auditory representations and
articulatory motor programs, facilitating seamless language production. The ante-
rior temporal lobe (ATL) has emerged as a critical region for semantic integration
during language production. Patterson et al. [40] identified the ATL as a "seman-
tic hub," essential for combining conceptual information across modalities to form
coherent language.

Electrophysiological studies have shed light on the temporal dynamics of lan-
guage production. Early lexical access, occurring within 200–300 ms, is marked by
the P2 component, which reflects lexical retrieval processes sensitive to word fre-
quency and age of acquisition [41]. Semantic processing follows between 300–500
ms, with the N400 component signaling responses to semantic interference during
tasks like picture naming [42]. Finally, syntactic encoding occurs between 500–700
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ms, with the P600 component linked to the processing of complex syntactic struc-
tures [43]. The brain’s neural plasticity plays a pivotal role in language formation
and acquisition. Foster et al. [44] demonstrated EEG-based neural changes during
artificial language learning, showcasing how the brain adapts to new word-concept
mappings. Abutalebi and Green [45] proposed that second language acquisition
recruits additional neural resources, particularly in prefrontal regions, to manage
cognitive control and language switching. Individual variability in language net-
work organization presents significant challenges for developing universal models
of language formation [46]. Ecological validity remains another pressing issue, as
naturalistic language production paradigms must balance experimental control with
real-world relevance [47]. This is the theme underscoring our current research.

3.2 Experimental Protocols in Language BCI Stud-
ies

Brain-Computer Interface (BCI) research in language processing has increasingly
shifted its focus towards verbal stimuli, enabling more nuanced investigations into
the mechanisms underlying comprehension, production, and learning. This section
examines experimental protocols employed in language BCI studies, emphasizing
their relevance to the current research and discussing their strengths, limitations,
and challenges.

3.2.1 Language Comprehension Tasks

Language comprehension tasks in BCIs aim to investigate the neural processes in-
volved in understanding verbal stimuli, with a focus on semantic and syntactic
aspects. Traditional paradigms, such as semantic anomaly detection, are commonly
used to elicit the N400 component—a neural marker indicative of sensitivity to
semantic violations [48]. These paradigms shed light on how the brain processes
unexpected linguistic content. Similarly, sentence processing tasks that vary in
syntactic complexity reveal neural markers associated with syntactic comprehen-
sion [49]. While effective at isolating specific neural processes, such tasks often
simplify real-world linguistic interactions by excluding contextual elements.

To address this limitation, context-dependent comprehension tasks incorporate
broader contextual setups to examine how external information influences semantic
integration [50]. This approach improves ecological validity but introduces chal-
lenges in maintaining experimental control. Furthermore, complex sentence analy-
sis, which involves entire sentences instead of isolated words, enables the study of
advanced linguistic constructs [7]. However, the high cognitive load required for
such tasks can limit their generalizability across diverse populations. Thus, while
these tasks effectively capture semantic and syntactic processing, future studies must
balance ecological validity with methodological rigor to better reflect naturalistic
comprehension processes.

In our research, eliciting the N400 response is challenging due to the controlled
nature of comprehension and formation processes in experiments. Instead of struc-
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tured paradigms, participants are placed in more organic, real-world scenarios that
introduce difficulties in comprehension. This makes it hard to precisely identify the
timing and location of their challenges. Hence, the experiment design shifts toward
alternative neural markers, such as frequency bands, topographical distributions and
connectivity measures, which align better with our research objectives.

3.2.2 Language Production Tasks

Language production protocols in BCIs investigate the neural correlates of word re-
trieval, syntax construction, and motor planning. Picture naming tasks with seman-
tic interference, where participants name pictures while ignoring distractor words,
provide critical insights into lexical selection and semantic control [51]. These tasks
are highly specific but often focus narrowly on isolated word-level production, which
may not fully represent the complexities of sentence-level language generation.

Sentence completion tasks, where participants are asked to complete partially
presented sentences, provide a dynamic approach to examining predictive mecha-
nisms involved in language formation [7]. While effective, these tasks require metic-
ulous control over sentence complexity to elicit consistent neural responses. Main-
taining the validity of the elicited responses across various confounding variables is
crucial. For example, the neural response of an individual highly motivated to learn
Dutch may differ from that of someone with some knowledge of the language but
lacking motivation to learn it.

One of the primary challenges in production tasks is the interference caused by
motor artifacts, which remains a concern even in paradigms designed to mitigate
them. To address this, integrating EEG with complementary modalities such as eye-
tracking or electromyography (EMG) can enhance the reliability of these protocols.
Additionally, artifact detection and correction techniques must be applied during
preprocessing to account for these issues effectively. Ensuring participant engage-
ment through out the experiment is critical for obtaining robust data, as repetitive
tasks can lead to reduced focus and performance due to monotony. For example,
excessively long or monotonous tasks should be segmented into multiple sessions and
designed with varied scenarios to sustain the subject’s attention and engagement.

3.2.3 Language Learning Tasks

Language learning protocols in BCI studies monitor neural adaptations associated
with the acquisition of new linguistic structures. Statistical learning paradigms ex-
pose participants to artificial languages with hidden patterns, enabling researchers
to track neural changes as learners adapt to these patterns [52]. While effective
in controlled environments, translating findings to natural and real-world contexts
presents significant challenge in language based tasks. Errorless learning tasks,
which minimize initial errors, are designed to optimize learning while tracking neural
efficiency [53]. Although this approach reduces frustration and supports early-stage
learning, it may not accurately reflect real-world trial-and-error dynamics, where
errors often play a critical role in reinforcement learning. Interleaved practice tasks,
which alternate between linguistic elements, provide insights into neural flexibility
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and retention [54]. However, their applicability to complex linguistic constructs,
such as syntax and morphology, remains underexplored.

Although these protocols provide valuable insights into the neural basis of lan-
guage learning, they often lack real-time adaptation mechanisms tailored to individ-
ual learning trajectories. Incorporating adaptive feedback systems that adjust task
difficulty based on real-time EEG signals could enhance engagement and learning
outcomes. This is the ultimate objective of extending this research. Furthermore,
Language learning is a gradual progress, tracking long-term neural changes is essen-
tial for evaluating the efficacy of language learning interventions.

Recent BCI studies increasingly employ multimodal stimuli and real-time feed-
back to enhance task performance and user engagement. For example, neurofeed-
back with gamification incorporates game-like elements to maintain motivation and
focus [55]. However, achieving a balance between the cognitive demands of gamified
tasks and their engagement benefits presents a significant challenge. Adaptive dif-
ficulty adjustment, which dynamically modulates task complexity based on neural
markers [56], allows for personalization but requires advanced algorithms capable of
real-time data analysis and decision-making. While researchers often utilize exist-
ing markers such as the engagement index, workload index, or cognitive load indices
defined in the literature, there is a notable gap in research aimed at defining specific
features of an index tailored to measure difficulty in comprehension and language
formation during learning tasks. This is the contribution intended from carrying
out the current research. Multi-modal systems that integrate EEG with additional
sensors could improve accuracy but may also increase the complexity and cost of
experimental setups. The scalability of these protocols across diverse populations
remains a critical challenge. Developing universal calibration methods and opti-
mizing real-time signal processing pipelines are essential to ensure accessibility and
reliability in varied contexts. By addressing these limitations, BCI-based language
research can advance toward creating adaptive systems capable of supporting indi-
vidual differences in language processing and learning.
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Chapter 4

Problem Statement

Research integrating neuroscience and language has provided valuable insights into
the neural basis of comprehension and production. However, significant gaps persist
in our understanding of the dynamic interplay between these processes, particu-
larly in the context of multilingualism and language learning. While current models
provide a strong theoretical foundation, they often lack the ability to capture indi-
vidualized neural patterns and adapt to varying linguistic proficiency levels, limiting
their use in personalized learning environments. This graduation project addresses
two intertwined aspects:

• The empirical evaluation of the two types of difficulty states associated with
language learning, aiming to identify neural features associated with com-
prehension and production difficulties and assess their generalizability across
individuals and sessions.

• The constructive development of an EEG-based experimental system specifi-
cally designed to aid in this process.

This research is particularly relevant for individuals learning new languages, as
well as educators and cognitive scientists seeking to understand and optimize lan-
guage training strategies. It could further contribute to the development of person-
alized brain-computer interfaces (BCIs) for language learning support.

Research Question 1: What neural features (specifically topographi-
cal, bandpower, and connectivity measures) most effectively identify and
differentiate between language comprehension difficulties (State 1) and
language production difficulties (State 2) when assessed against a stan-
dardized baseline (State 0) in a single-subject, multiple-session study con-
ducted in naturalistic settings?

By integrating diverse feature types and conducting the study in a naturalistic
setting, we aim to enhance the ecological validity of the findings. The single-subject
approach (Participant P1) with multiple sessions (three in total) allows for an in-
depth examination of the identified features and their consistency over time while
reducing the influence of potential confounding factors.
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Research Question 2: Is there a trend in the identified neural features
when we replicate this across 12 subjects in a single-session study to of-
fer broader insights into the challenges associated with language learning,
namely (State 1 vs State 2)?

This question examines the applicability of the findings from Research Question
1. To evaluate their validity, it is essential to test them across multiple participants
(Participants P2 to P13) through a single-session study. Analyzing EEG signals from
diverse participants allows us to assess the consistency and reliability of the identi-
fied neural markers across varying linguistic backgrounds and proficiency levels. The
single-subject multi-session approach was chosen to enable a detailed examination
of intra-individual variability, while the multi-subject single-session study aims to
capture inter-individual differences. This study focuses solely on EEG-based mea-
sures and does not consider other neuroimaging modalities such as fMRI or MEG,
which could provide additional insights into the neural processes involved in lan-
guage learning.

Design Question: What are the design requirements for developing an
EEG-based experimental system aimed at conducting, analyzing and ad-
vancing BCI-based language research?

This question informs the development of a flexible and robust experimental
platform for EEG-based language research. The corresponding requirements are
outlined in the chapter titled "Design Research and Technical Specifications."
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Chapter 5

Materials and Methods

5.1 Participants and Recruitment
A total of 13 participants (7 females, 6 males; mean age = 24 years, SD = 2.00
years) were recruited. The participants were non-native Dutch learners with varying
proficiency levels (A0, A1, A2), which were determined through a pre-experiment
questionnaire. P1 participated in the primary study (RQ 1), which spanned three
sessions. Participants P2 to P13 took part in a single-session study (RQ 2). Due to
resource constraints, Study 2 included only 12 participants. To mitigate the effects
of a small sample size, a within-subject design was employed to maximize statistical
power by reducing inter-subject variability. The results were interpreted cautiously,
and the findings provided exploratory insights to guide future studies with larger
sample sizes.

• Inclusion criteria: Dutch language proficiency of at least A0, no history of
neurological disorders, normal or corrected-to-normal vision.

• Exclusion criteria: Participants with severe cognitive impairments or familiar-
ity with similar EEG studies.

The requirement of a minimum A0 Dutch proficiency was based on the neces-
sity for participants to interact with the app, which operates exclusively in Dutch.
During the pilot study, individuals without formal Dutch knowledge struggled with
comprehension and sentence formation. Their responses, limited to a few famil-
iar words, did not generate the data required for the study. Consequently, it be-
came necessary to screen participants based on this proficiency threshold to ensure
meaningful participation. Participants were selected after completing a screening
questionnaire designed to assess their familiarity with the Dutch language. Only
those who demonstrated at least an A0 level of Dutch proficiency were chosen for
the pilot study. This screening was implemented because, during the initial pilot
test, some participants were unable to form responses even with assistance and pro-
vided only single-word answers—an outcome that was not suitable for conducting
the experiment effectively.

Convenience sampling was employed, with efforts made to ensure a diverse range
of native languages among the participants. German speakers were excluded due
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to the linguistic similarity between Dutch and German. All participants provided
informed consent before taking part in the study. They were informed about the
study’s purpose, procedures, and their right to withdraw at any stage without any
consequences. The study was conducted in accordance with the ethical guidelines
of the University of Twente. By implementing this rigorous recruitment process,
the study ensured the inclusion of participants capable of meaningful engagement
with the experimental tasks, thereby enhancing the validity and reliability of the
collected data.

Proficiency Level #
A0 (Introductory) 4
A1 (Beginner) 5
A2 (Elementary) 3

Table 5.1: Participant distribu-
tion of language proficiency lev-
els.

Native Language #
Greek 2
Malayalam 1
Mandarin 1
Portuguese 1
Spanish 2
Italian 1
Tamil 3
Tigrinya 1

Table 5.2: Participant distribu-
tion by native languages

Participants’ Age #
21 2
23 2
24 2
25 3
26 2
27 1

Table 5.3: Participant distribu-
tion by age

Commitment Level #
Multiple times a week 5
Once a day 3
Not committed to a schedule 4

Table 5.4: Participant dis-
tribution by commitment
levels.

5.2 Device & Measurement
The Emotiv EpocX device was chosen for the acquisition of EEG signals due to
its 16-channel configuration, which facilitates a more refined and comprehensive
capture of brain activity. The EPOC X EEG headset, renowned for its professional-
grade data acquisition, operates with a 14-channel system, featuring the following
specifications:
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Figure 5.1: Emotiv EpocX De-
vice - Isometric View

Figure 5.2: Emotiv EpocX De-
vice - Top View

• Bandwidth: 0.16 – 43Hz, with digital notch filters at 50Hz and 60Hz

• Channels: AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4

• References: CMS/DRL references at P3/P4, with alternative left/right mas-
toid process

• Sampling Rate: 2048 Hz, internally downsampled to 128 SPS or 256 SPS
(user-configurable)

Figure 5.3: Emotiv EpocX Device - Channels

This selection was influenced by the extensive adoption of Emotiv devices in
neuroscience research. Specifically, the Emotiv EPOC, EPOC+, and EPOC-X mod-
els are widely utilized by researchers due to their reliability and ease of use [57].
The device is accompanied by software and a license that facilitates its connec-
tion to a computer. Additionally, a Python library (https://github.com/Emotiv/
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cortex-example/tree/mobile-example/python/lib) is available to enable inte-
gration with any Python program. To ensure the data was streamed via the LSL
connection, a custom-built LSL adapter was incorporated into the library. Further
details regarding this decision are provided in the design specifications section. The
device was used in wet-electrode configuration using a saline solution to improve
conductivity.

5.2.1 Experiment Setup

Participants were seated in a quiet, isolated room to minimize distractions and
maintain a controlled environment for EEG recording. A large display monitor was
employed to ensure the clarity of the presented information and to minimize unnec-
essary head movements. Participants were instructed to remove mobile phones and
electronic devices, including smartwatches, and keep them away from the experi-
mental setup.

Figure 5.4: Experiment Setup

Each participant interacted with the application displayed on a large monitor,
which was positioned at an optimal distance and height for comfortable engagement.
The application was designed to occupy only the central portion of the screen to
minimize head movements during interaction. The EEG device was positioned on
the participant’s head before the experiment, with the electrodes arranged with care
to ensure optimal placement and comfortable experience for the participant.
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5.2.2 Tasks

Participant Onboarding and Consent

At the start of the experiment session, each participant was provided with an in-
formed consent form detailing the study’s purpose, data confidentiality, and their
right to withdraw at any time. Participants reviewed and signed the form before
beginning the study to ensure they understood their role and the study’s objectives.
This also included an instructional document that detailed the experimental tasks.

During this walkthrough, the functions of two critical buttons—Unable to Com-
prehend and Unable to Formulate Response—were explained, and participants were
instructed on when and how to use these buttons to signal comprehension or re-
sponse formulation difficulties. Prior to the task sessions, participants were in-
structed to respond to the chatbot using complete sentences as much as possible.
Observations from pilot studies indicated that participants sometimes responded
with single words, limiting interaction. Participants were encouraged to prolong
conversations by asking questions or making comments, enhancing the volume and
richness of linguistic data while allowing flexibility in their responses. Participants
were encouraged to ask any questions they had. Additionally, a walkthrough of the
interface was provided before the experiment to help participants become familiar
with the experimental environment.

Pre-Task Mental State Assessment

All participants had refrained from consuming caffeine and food in the past hour
prior to the experiment. According to the questionnaire, none of the participants
reported feeling drowsy or sleepy.

Baseline Language Proficiency Assessment

To establish baseline language proficiency, participants completed a translation test
with two parts: (1) Dutch-to-English translation and (2) English-to-Dutch trans-
lation. This baseline aimed to determine each participant’s starting level in both
directions of language translation.

• Dutch-to-English Translation: Participants were presented with 20 Dutch
words or phrases to translate into English. The average score was 8 correct
translations, with a standard deviation of 3.

• English-to-Dutch Translation: Participants translated 20 English words
into Dutch, with an average score of 6.5 correct translations and a standard
deviation of 2.

These scores established a baseline measure of Dutch proficiency for each par-
ticipant, providing insights into individual starting points for comprehension and
production tasks.
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Baseline EEG Measurement

To record baseline neural activity, EEG measurements were conducted in a relaxed
state at multiple points throughout the session. This baseline procedure was re-
peated between every new scenario. Participants were instructed to relax without
engaging in any activity and to focus on a plus sign displayed in the center of the
screen for 10 seconds. This fixation task allowed the recording of stable attention
without cognitive interference, establishing a reference for analyzing neural patterns
in the task conditions.

Core Task Scenarios and Difficulty Levels

The main task involved interacting with an artificial agent (chatbot) across five
distinct scenarios:

• Scenario 1: Train Travel

• Scenario 2: Supermarket Shopping

• Scenario 3: Restaurant Ordering

• Scenario 4: Bank Inquiry

• Scenario 5: First Day at Work

Each scenario is structured according to three increasing levels of difficulty: Easy,
Medium, and Hard. These levels introduced progressively complex language inter-
actions within every scenario:

• Easy Level: The sentences generated by the chatbot involved simple vocabu-
lary based on CEFR A0 level, with sentences averaging 5 to 6 words, designed
to minimize cognitive load.

• Medium Level: This difficulty-level used sentences averaging 8 to 9 words
(following CEFR A1 standards) with moderately challenging vocabulary.

• Hard Level: Sentences in this difficulty level averaged 10 to 12 words (follow-
ing CEFR A2 standards) with advanced vocabulary and syntax, posing higher
cognitive demands.

The tasks were presented sequentially, progressing from easy to difficult; however,
this progression was not disclosed to participants in order to prevent expectation
biases. Figure ?? illustrates the progression across these difficulty levels. Each
difficulty level lasted 90 seconds from the initiation of user interaction. Once all
difficulty levels for a given scenario were completed, the next scenario began.
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Figure 5.5: Experiment tasks; A - Proficiency tests; B - Scenarios; C - LLM-
Generated Responses from clicking the assist buttons

Between scenarios, participants were presented with a rating scale to assess the
difficulty of the previous section. A baseline EEG was also collected between each
scenario. The ratings provided by the participants were used to calculate the cor-
relation between the actual difficulty of the interaction and the perceived difficulty,
ensuring the validity of the manipulations applied.

Figure 5.6: Chronological overview of tasks within a scenario
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Experimental Task Execution

Following the interface orientation and instructions, participants began interacting
with the chatbot. The tasks were conducted in the predefined sequence of difficulty,
while EEG data were collected throughout the session to capture neural responses
associated with language comprehension and production under varying cognitive
demands. Each response and any use of the Unable to Comprehend or Unable to
Formulate Response buttons were logged, enabling detailed analysis of comprehen-
sion and response formulation difficulties. This structured methodology ensured
consistent data collection across participants, allowing reliable comparison of EEG
patterns across baseline and task conditions, as well as across difficulty levels.

5.3 Analysis Pipeline

5.3.1 Data Loading and Cleaning

The data cleaning phase is a critical step to ensure that the analyzed signals are
clean, interpretable, and suitable for downstream analysis. The data cleaning pro-
cess in this study consists of the following components:

Figure 5.7: Steps taken for analyzing the collected EEG signals

Data Loading

The EEG data was collected during every session was saved into .edf format into
the local disk. The markers including text input, button clicks (telemetry) were
saved in a separate file with timestamps. During analysis this was loaded into the
jupyter notebook where the analysis was performed. Response to difficulty ratings
questionnaire was also recorded in a separate .csv file.
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Marker Alignment

After the files are loaded into the analysis pipeline, the timestamps from the signal
and from telemetry data are matched.A python package called mne was used for this
purpose. It provided the functionality to create mne.raw and mne.epochs objects by
combining the telemetry data and the raw signals captured during the experiment.

Outlier Detection and Drift Correction

Outlier Detection involves systematically identifying abnormal signal deviations that
do not have any particular pattern of activity. Outlier detection step is applied
across all 14 channels, Outliers are identified by applying a threshold defined as
a multiple of the standard deviation, specifically using a 3 SD threshold. This
approach captures significant deviations from the baseline signal, effectively isolating
sections of the EEG likely to contain noise rather than meaningful neural activity
[58, 59]. Baseline drift in EEG signals is corrected by applying a high-pass filter,
which effectively removes low-frequency components that are typically associated
with slow fluctuations and baseline instability. By utilizing a cutoff frequency, such
as 1 Hz, the filter ensures that only the neural activity within the relevant frequency
range is preserved. This preprocessing step is essential for maintaining the accuracy
and reliability of the EEG signals, particularly in tasks requiring stable baseline
measurements.

Artifact Correction and Bad Channel Rejections

Artifact Correction is aimed at detecting and excluding various artifacts from EEG
data. Specifically, the approach addresses ocular artifacts (such as eye blinks and
lateral eye movements, as well as), muscular and cardiac artifacts. First, the signals
were inspected visually. Eye movements were detected by identifying simultaneous
outliers in channels F9 and F10, which are positioned laterally to capture horizontal
eye movements. 5.8 Eye blinks, by contrast, are detected through sustained outliers
in the frontal channel FpZ, with the algorithm evaluating the duration of these devi-
ations to confirm blink artifacts. 5.8 Then, Independent Component Analysis (ICA)
was performed for artifact correction. ICA decomposes EEG data into statistically
independent components, facilitating the identification and removal of artifacts such
as ocular activity, muscle noise, and power line interference. This process produced
12 independent components, each representing a source of signal variance, which
may include both neural activity and non-neural artifacts.
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Figure 5.8: Outliers and Artifacts were identified first through visual
inspection; the red circle shows eye movement, and the blue marker
indicates eye blink artifacts.

Figure 5.9: ICA-based correction (before & after) is applied to the
signal; the red and purple colored lines represent the cleaned signal.

Montage and Referencing

The EEG signals were re-referenced to an average reference across all channels. This
approach was selected because average referencing minimizes the influence of any
single electrode, providing a balanced view of brain activity. By using this method,
the spatial distribution of potentials across the scalp is preserved, which is critical
for comparing activation patterns across different regions. Furthermore, average
referencing reduces the impact of noise artifacts localized to specific electrodes, en-
hancing signal quality.
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Filtering

To remove unwanted noise, the EEG data underwent a two-stage filtering process:

• Low-Frequency Filtering: A high-pass filter with a cutoff at 1 Hz was
applied to eliminate low-frequency drifts caused by sweat, movement, or envi-
ronmental factors.

• Notch Filtering: A notch filter at 50 Hz was used to suppress powerline
interference, a common source of noise in EEG recordings.

This dual-filtering approach ensured that the data retained neural oscillations rel-
evant to cognitive processes while minimizing the impact of artifacts and external
noise.

5.3.2 Epoching

The EEG data was segmented into epochs using event markers recorded during the
experiment. These markers were generated through the user interface when partic-
ipants interacted with assist buttons labeled “Not Able to Comprehend” and “Not
Able to Respond.” Each button press indicated a specific cognitive state: difficulty
in understanding the presented material or challenges in forming a response.

Figure 5.10: Epochs were created based on button clicks, with a duration of
2 seconds per epoch

To create epochs, a time window spanning from 3 seconds before the event marker
to 1.0 seconds before the marker was extracted. The final 1.0 seconds preceding the
button press were deliberately excluded to avoid contamination from movement-
related artifacts, such as hand movements used to operate the interface. This ap-
proach ensured that the epochs predominantly captured brain activity related to
cognitive processing rather than motor execution. A 2-second epoch length was
selected as it provided a sufficient window to analyze neural responses while main-
taining enough granularity for validation purposes. Furthermore, the 2-second win-
dow accounted for instances where participants re-read the presented words multiple
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times to verify comprehension. If they failed to comprehend, they pressed the "Not
Able to Comprehend" button. Similarly, the "Not Able to Respond" button was
pressed in cases of difficulty forming a response.

5.3.3 Baseline Computation

Baseline epochs were extracted to serve as a reference for comparisons with task-
related neural activity. Baseline epochs were created from participant’s neural rest-
ing state. These baseline periods were aligned with specific markers corresponding
to participants’ self-reported rest states. The baseline task was conducted three
times across the experimental session. Every epoch was tagged to a baseline signal
captured just before the task-induced changes in brain activity. Additionally, ar-
tifact detection algorithms (discussed in the previous section) were also applied to
exclude contaminated signals of any kind.

5.3.4 Power Analysis

Power spectral analysis was conducted to quantify neural oscillations across different
frequency bands, providing insights into cognitive processes related to language com-
prehension and production. The primary objective was to determine whether these
two states engaged similar or distinct brain regions. Power spectrum changes were
analyzed across theta (4–8 Hz), alpha (8–12 Hz), and beta (13–30 Hz) frequency
bands by comparing task conditions to baseline measurements. Power spectral den-
sity (PSD) was estimated using the Welch method, focusing on all, frontal, temporal
regions. Additionally, evoked potential analysis was performed to examine neural
responses over time, revealing that the frontal regions exhibited stronger activation
in both conditions. Visualizations, including bar plots comparing the bandpower
values against the baseline were generated to facilitate interpretation of results. For
RQ2, both parametric and non-parametric tests were conducted to confirm whether
the observed trends in the sample data could be generalized to a larger population.
These analyses provided a comprehensive understanding of the neural dynamics
associated with language-related cognitive processes.

5.3.5 Topographical Comparison

The topographical distribution of power provided insights into the spatial charac-
teristics of neural activation, highlighting the brain regions that exhibit increased
activity. This analysis was particularly valuable in language-related tasks, where
specific brain areas are associated with comprehension (e.g., temporal regions) and
production (e.g., frontal regions). To investigate these differences, topographical
maps were generated and compared across conditions, specifically analyzing each
state (State 1, State 2) relative to the baseline (State 0). This comparative analysis
offered an initial understanding of the key brain regions involved, guiding further
in-depth investigations.
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5.3.6 Connectivity Analysis

Functional connectivity was analyzed to gain insights into how different brain regions
interacted during tasks, revealing the network-level organization of neural processes.
This analysis was particularly valuable in language-related studies, where frontal
and temporal regions are known to collaborate in supporting comprehension and
production. Functional connectivity measures, such as coherence and the weighted
Phase-Lag Index (wPLI), were employed to assess the strength and stability of
communication between brain regions. Coherence, particularly imaginary coherence
and wPLI, was utilized to evaluate connectivity between regions involved in language
processing. Specifically, connectivity between the left frontal regions (e.g., F3, F7)
and the left temporal-parietal areas (T7, P3) was examined to identify network-level
differences between the two states of language processing.

Coherence analysis was performed to measure connectivity within specific fre-
quency bands, assessing the strength of functional interactions between brain re-
gions and identifying synchronized activity patterns. The Phase-Lag Index (PLI)
and weighted Phase-Lag Index (wPLI) were used to evaluate non-spurious phase
synchrony, minimizing the influence of volume conduction and highlighting genuine
neural interactions. Directed connectivity analysis was conducted using Granger
causality and transfer entropy to determine directional influences between regions.
This analysis aimed to establish whether frontal regions led activity in temporal ar-
eas during language production tasks. Granger causality evaluated how well the past
values of one time series (X ) predicted the present values of another (Y ), beyond
what could be predicted by Y ’s own past values. The lag parameter was set to cap-
ture temporal dependencies, with a lag of 20 indicating that the past 20 samples of
both X and Y were used to predict the present value. The connectivity analysis was
conducted across different frequency bands to investigate how the strength of direc-
tional interactions varied with frequency. These findings provided valuable insights
into the dynamic interplay between brain regions involved in language processing.
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Chapter 6

Design Research and Technical
Specifications

This chapter details the architecture, design, and technical implementation of the
web application developed for integrating Brain-Computer Interface (BCI) systems.

Technical requirements for the experiment platform

The experiment platform must meet several critical requirements to ensure reli-
able and accurate execution. It must provide low-latency data processing to handle
EEG signals with minimal delay, enabling real-time feedback to participants. Scal-
ability is essential, allowing the system to support multiple concurrent sessions to
accommodate group studies. A modular architecture is required to facilitate the
easy integration or replacement of experimental modules without substantial mod-
ifications to the core system. Ensuring data integrity and security is crucial, with
secure storage mechanisms that guarantee accessibility for post-experiment analy-
sis. Additionally, the platform should feature a user-friendly interface with intuitive
controls and visualizations to enhance participant interaction. Device compatibility
is also a key requirement, necessitating support for multiple EEG devices through
standardized protocols such as LSL and UDP.

Technical requirements for the analysis pipeline

The analysis pipeline must fulfill several criteria to ensure effective post-experiment
analysis. It should include automated data preprocessing techniques such as filter-
ing, artifact removal, and normalization to enhance data quality. Feature extraction
capabilities are essential, supporting the derivation of meaningful metrics, including
frequency bands, power spectral densities, and engagement indices. Reproducibility
is a fundamental requirement to maintain consistency across experimental sessions
and participants. The system should also provide comprehensive visualization op-
tions for both real-time and post-experiment data interpretation. Advanced statis-
tical analysis tools must be integrated to examine correlations between EEG signals
and experimental variables. Furthermore, the system should facilitate result export
in multiple formats, such as CSV, JSON, and PDF, to support reporting and data
sharing.
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6.0.1 Development of the Experiment Platform

Having these requirements in mind, the processing layer (back-end) was primarily
developed in Python, while the user interface layer (front-end) was constructed us-
ing ReactJS. Python was chosen due to its robust support and ecosystem for the
protocols utilized in the experiment. The Python backend leveraged FastAPI, a
high-performance web framework optimized for building APIs. The asynchronous
capabilities of FastAPI, combined with Python’s extttasyncio library, facilitated ef-
ficient handling of concurrent tasks across multiple threads, ensuring smooth system
performance under the high data throughput required for BCI-based applications.
ReactJS provided the flexibility necessary to customize the interface. The separa-
tion of logic and presentation layers was critical in making the system modular and
scalable for other types of BCI-based studies conducted in a chat-based environ-
ment. This approach also enabled iterative refinement and optimization throughout
the research process. The code for the developed system was made fully open-source
and uploaded to GitHub as a public repository.

Figure 6.1: Communication protocols used for the interaction between various
modules

The system employed two communication protocols to ensure seamless data flow:

• Lab Streaming Layer (LSL): Utilized for synchronization of EEG signals
and telemetry data, providing excellent real-time performance with a latency
of 0.1 milliseconds. All timestamps were converted to LSL time format, and
estimated time-correction offsets were applied for precise synchronization.

• WebSocket Protocol: Supported low-latency interactions (200 microsec-
onds) between the frontend and backend. This feature was essential for trans-
mitting conversational responses, engagement indices, and assistive features in
real time.

• RESTful API: Python endpoints were developed to handle incoming com-
mands from the user interface, such as initiating baseline processes, storing
questionnaire responses, and connecting/disconnecting the device.
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Data acquisition was meticulously managed through external scripts initialized
via the subprocess library, complemented by comprehensive logging mechanisms
implemented using the logging library. This ensured effective monitoring, detailed
debugging, and precise error reporting. The design enabled information exchange
between the logic layer and other components to occur on separate processes and
threads, ensuring a non-blocking computational workflow. The backend’s architec-
tural design (Figure 6.2) emphasized modularity, instantiated through specialized
Python classes: BufferManager, which handled real-time EEG signal buffering;
BaselineManager, which oversaw baseline calibration processes; and BCIManager,
which facilitated seamless device integration and advanced signal processing through
the implementation of a circular queue (FIFO) data structure. The ChatManager
class interfaced with an LLM to handle chat conversations. This clear separation
of functionality and communication resulted in a flexible and responsive system ar-
chitecture that effectively met the complex demands of the study. The application
enabled systematic storage of acquired EEG data in a structured, timestamped di-
rectory format (.edf, .fif), ensuring optimal data traceability and simplified retrieval.

Figure 6.2: Software modules developed for the purpose of conducting the
experiment

6.0.2 User Interface Module

The User Interface (UI) module served as the primary interaction point between the
user and the system. It consisted of two main components: the Chat Interface and
Event Telemetry. The Chat Interface facilitated user interaction with a chat agent
(LLM-based) that communicated exclusively in Dutch, simulating a conversational
environment for the experiment.
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The interface included free-text input at the bottom of the screen and assist
buttons labeled Not able to Understand (Button 1) and Not able to Respond (Button
2). As mentioned in the Methods section, participants clicked the Assist button
when they were in State 1 and State 2. The logic layer then interfaced with the
LLM to generate appropriate responses based on the history of the conversation and
the new user prompt. When participants clicked Button 1, they were provided with
vocabulary assistance, including English meanings of words used by the chatbot.
When Button 2 was clicked, suggested response options (with english translations)
were displayed with English translations.

The telemetry component was responsible for tracking and recording user inter-
actions with the UI. It captured events such as mouse clicks, keypresses (keyup and
keydown), and timestamps when new chat messages were presented. The times-
tamps of these interactions were relayed from the UI to the logic layer via the LSL
stream. User responses to ratings and pre- and post-questionnaires were also cap-
tured through this module. These telemetry data points were crucial for analyzing
user behavior and correlating it with EEG signals. Additionally, the UI provided
basic data visualizations to monitor brain signals, including frequency band activity,
ensuring connectivity and participant engagement. The UI layer also contained the
baseline section where the participants in between the various scenarios were pre-
sented with a screen with plus symbol in the middle of the screen and instruction to
relax and a countdown (10 seconds). The start of end timestamps were also relayed
back to the logic layer. This was then used during the analysis to subset the signals
for considering as baseline (reference signal)

6.0.3 Logic Module

Buffer Manager

The Buffer Manager utilized a custom-built data structure for efficient handling of
EEG data. It functioned as a circular queue with a variable buffer length (set to a
2-second time window in this study), allowing temporary collation of EEG signals
before saving them locally in .edf format. Other supported formats included .fif,
.npz, and .csv. The circular queue minimized memory usage and allowed real-time
Power Spectral Density (PSD) calculations. This component also made the logic
layer extensible for adaptive changes to the UI, if necessary in the future.

LLM Connector

The LLM Connector, implemented using the LangChain framework, enabled two es-
sential functionalities: 1. Generate conversational response from the LLM 2. Provid-
ing assistive content for the predefined assist buttons LangChain facilitated experi-
mentation with various large language models and enabled the integration of a stan-
dardized context document to ensure the reproducibility of experimental conditions.
This approach ensured a controlled conversational environment with consistent re-
sponses within the framework of a generative AI system. The llama3-70b-8192
model was utilized for the study. Developed by Meta, this family of large language
models (LLMs) consists of pretrained and instruction-tuned generative text mod-
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els with a parameter size of 70 billion. The Llama 3 instruction-tuned models are
specifically optimized for dialogue-based applications and have demonstrated supe-
rior performance compared to many open-source chat models on standard industry
benchmarks. This module was further enhanced with a Retrieval-Augmented Gen-
eration (RAG) implementation, incorporating a collection of documents containing
vocabulary aligned with official Dutch language proficiency levels A0, A1, and A2.
The LLM was prompted to generate text using a structured output format, which
was validated using Pydantic, a Python library for data validation and serialization
leveraging Python type hints. This validation process ensured that responses from
the LLM—both chat-based and assistive responses—adhered to a predefined for-
mat, allowing seamless rendering in the UI without requiring additional front-end
processing.

Real-Time Visualizer

The Real-Time Visualizer processed and displayed key EEG metrics such as fre-
quency band activity. This component provided experimenters with real-time in-
sights into participants’ cognitive states during the experiment.

Device and Program Configuration

This configurations of the experimental parameters, including device selection, buffer
durations, frequency band definitions, electrode selection, and data recording pref-
erences etc. were maintained separately. These configurations enable flexibility in
adapting the system to various experimental requirements. This came in handy
during the initial piloting to iterate over study design.

6.0.4 Experiment Module

The Experiment Module orchestrated the experimental conditions and dynamically
adapted scenarios and difficulty levels. It included the Scenario Planner, Ex-
perimental Telemetry, Baseline Manager, and Surveys and Questionnaire.
The Scenario Planner, inspired by PsychoPy, ran as a separate thread and managed
the execution of experimental tasks. It dynamically adjusted scenarios (e.g., trein,
supermarket, restaurant, bank, office) and their difficulty levels (EASY, MEDIUM,
HARD) during the study. The experimental flow was dictated by this planner,
ensuring precise control over scenario progression and participant exposure. The
telemetry component received the markers and subjective ratings provided by par-
ticipants through the UI during the experiment. It also logged scenario changes and
timestamps. Extensive logging provided a detailed dataset for debugging during ap-
plication development. The Baseline Manager recorded participants’ "relaxed state"
EEG signals before the initiation of each scenario. This allowed for calibration and
normalization of EEG data for subsequent tasks, providing a baseline reference for
analyzing cognitive state changes. Participants completed subjective rating scales
during the experiment, such as “How easy/difficult was the previous section on a
scale of 0 to 9?” These ratings validated whether the experimental manipulations
aligned with perceived difficulty. This analysis was covered in the discussion section.
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6.0.5 Recording Module

The Recording Module was responsible for data storage and retrieval. It comprised
the Local/Cloud Storage and the Data Loader. This storage component han-
dled the storage of all experimental data, including raw EEG signals, metadata, and
telemetry logs. Each session was organized in a dedicated folder structure, ensuring
traceability across multiple participants. The Data Loader aggregated session data
for post-processing and analysis. It collated EEG signals, metadata, and event logs,
loading them into memory for subsequent computational tasks. This module was a
critical component of the post-processing pipeline.
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Chapter 7

Results & Findings

7.1 Topographic Analysis of neural activity
The provided topographic maps depict the average evoked potentials (EPs) during
epochs involving comprehension difficulties (State 1, top row) and formation diffi-
culties (State 2, bottom row). These maps reveal clear differences in neural activity
patterns, spatial distribution, and timing across both conditions. The color scale is
set to a fixed minimum and maximum for accurate comparison. The first frame in
each of these scenarios, is the baseline average evoked potential.

Figure 7.1: Evoked Potentials Prior to Events of Interest During Single Study
based on RQ1 (Yellow dots shows regions of higher activation

The baseline condition (left-most columns) demonstrates minimal neural activa-
tion with a balance of positive (red) and negative (blue) potentials across the scalp.
This pattern suggests a relaxed or neutral cognitive state where no significant lin-
guistic or motor challenges occur. The observed baseline activity aligns with pre-
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vious studies where resting-state EEG presents low-amplitude, non-localized neural
signals. The average evoked potentials (EPs) observed during comprehension dif-
ficulties (State 1) exhibit distinct activation patterns, predominantly involving the
posterior regions and the right hemisphere. These observations provide insight into
the neural mechanisms underlying the processing of complex or ambiguous linguistic
input. As shown in the topographic maps, the right parietal and temporal regions
demonstrate increased positive activity (+µV , red zones) starting at approximately
−1.6 seconds before the button press, intensifying up to −1.2 seconds. This pattern
highlights the critical role of the right posterior temporal lobe and the parietal cortex
in attentional regulation and semantic integration. These regions are known to be
responsible for processing complex linguistic information and reallocating cognitive
resources for understanding. The posterior dominance observed here aligns with
theories suggesting that comprehension relies heavily on the integration of seman-
tic information and visuo-spatial attention. This may indicate participants engag-
ing posterior networks to comprehend or resolve linguistic ambiguity. Notably, the
frontal regions display relatively lower activation during comprehension difficulties
when compared to formation difficulties. This reduced frontal engagement aligns
with the nature of comprehension tasks, where executive planning and motor out-
puts are less prominent. Instead, the cognitive load is distributed to posterior brain
regions for semantic interpretation and memory retrieval. The progression of activ-
ity begins at around −1.8 seconds and peaks closer to the button press, reflecting the
cumulative cognitive effort required to process the linguistic input. The activation
patterns suggest that participants recruit posterior regions in a timely and spatially
coherent manner, leading up to the acknowledgment of comprehension difficulty.

The average evoked potentials during language formation difficulties demonstrate
a distinct right-lateralized fronto-temporal activation pattern, emphasizing the role
of the right hemisphere in linguistic planning and production. Increased positive ac-
tivity (+µV ) is evident in the right frontal cortex, particularly around −1.8 to −1.6
seconds before the button press. The negative activity (−µV ) in the left-frontal re-
gion is also observed. This activity likely reflects the engagement of Broca’s area (left
inferior frontal gyrus), a region critical for language production and the structuring
of linguistic outputs. The heightened fronto-temporal activation further supports
the theory that language formation relies heavily on executive functions and motor
planning. Negative potentials (−µV ) are observed in the central and parietal re-
gions, particularly between −1.2 and the button click. These areas correspond to
the sensorimotor network and are associated with the integration of motor planning
and execution. Such activity reflects the preparation for motor responses (e.g., but-
ton pressing) and the involvement of parietal regions in coordinating sensorimotor
processes.

7.2 Power Analysis
This section presents the observed changes in power spectral density (PSD) for
the two difficulty states (State 1, State 2) described in the methods section. The
step to compute the PSD from broadband signal is also detailed in the methods
section. The EEG power changes observed in the “Difficulty in Comprehension”
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(State 1) condition—namely, increased theta power, decreased alpha power, and
reduced beta power—are largely consistent with established cognitive neuroscience
findings. However, certain deviations, such as unexplained variations in theta power
during the condition “Difficulty in Formation” (State 2), merit further investigation.

7.2.1 Theta Band Analysis

Increased Theta Power: Overall and Specifically in Temporal Regions
Elevated theta power is strongly associated with heightened cognitive load and

working memory demands. [60] This increased Theta band PSD is particularly no-
table when observing the temporal channels during “Difficulty in Comprehension”
(State 1), which play a crucial role in attention and executive functions. Note that
it is not as differentiated in Frontal Channels where the means are only slightly
higher as compared to the baseline. This difference is shown (albeit the the extent
of difference is different across difficulty states (State 1 and 2), compared to base-
line (State 0) and it should be due to higher cognitive demands of the tasks vs the
relaxed state.

Figure 7.2: Average PSD in Theta Band All Channels

Figure 7.3: Average PSD in Theta Band Frontal Channels
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Figure 7.4: Average PSD in Theta Band Temporal Channels

State 1: Difficulty in Comprehension Unlike the alpha rhythm, the theta
rhythm does not exhibit substantial variations when averaged across all brain re-
gions, especially in the frontal channels. This localized increase in theta power
within the temporal regions underscores their critical role in language comprehen-
sion. The temporal lobes are particularly engaged in semantic processing, memory
retrieval, and the integration of linguistic information, processes that are fundamen-
tal to overcoming comprehension challenges.

State 2: Difficulty in Formation In the response formation state (State 2), it
is observed that the differences in theta power compared to the baseline state (State
0) are minimal, both in Frontal as well as Temporal Channels. However, when
analyzing (P2 to P13) the power spectral density (PSD) values display significant
variance across participants, which limits the ability to derive statistically robust
conclusions. This variability likely arises from the diverse challenges participants en-
counter during response formation. Examples include difficulty in recalling specific
words, constructing grammatically correct sentences, hesitations due to uncertainty
in linguistic expression, or issues with spelling. Such granular factors could poten-
tially introduce considerable variability in the PSD values. Existing literature on this
subject demonstrates that as task complexity increases, theta power rises accord-
ingly, reflecting the brain’s increased effort to process and retain information [61].
However, this is not apparent in the current research for theta bands.

7.2.2 Alpha Band Analysis

Alpha power reduction is widely regarded as an indicator of increased cortical acti-
vation and attentional engagement. Alpha rhythms (8–12 Hz) are dominant during
relaxed states but tend to decrease when the brain transitions to active cognitive
processing [62]. This phenomenon reflects a suppression of idling neural activity
as cognitive resources are allocated to task-relevant processing [63]. In this study,
the "Difficulty in Comprehension" condition (State 1) exhibits a notable decrease
in alpha power across almost all channels (Figure 7.28). This reduction aligns with
existing findings that suggest alpha desynchronization occurs during tasks requiring

37



significant cognitive effort, particularly during the processing of external sensory
inputs and attentional focus [64]. Conversely, "Difficulty in Formation" (State 2)
shows a relatively limited reduction in alpha power, particularly in the frontal re-
gions, indicating differences in neural engagement between the two states.

Figure 7.5: Average PSD in Alpha Band All Channels

Figure 7.6: Average PSD in Alpha Band Frontal Channels

Figure 7.7: Average PSD in Alpha Band Temporal Channels
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State 1: Difficulty in Comprehension Bottom-up processing involves the
brain’s response to external stimuli, requiring the allocation of resources to interpret
incoming information, particularly when comprehension fails. The temporal regions,
known for their role in semantic and auditory processing [6], display prominent al-
pha suppression. This finding aligns with previous research indicating that reduced
alpha activity corresponds to increased neural engagement for semantic integration
and attention [65].

The alpha desynchronization in comprehension challenges suggests that partici-
pants struggled to process external stimuli, requiring significant cognitive resources
to attempt resolution. This effect is consistent with Klimesch’s “functional inhibi-
tion hypothesis,” where alpha reduction reflects the release of inhibition in sensory
networks to facilitate active processing [65].

State 2: Difficulty in Formation In contrast, during response formation diffi-
culties, alpha power reduction is less pronounced, particularly in the frontal channels.
This observation may reflect differences in the nature of cognitive demands. Unlike
comprehension tasks, which involve bottom-up processing, response formation re-
lies heavily on top-down processes, including internal planning, word retrieval, and
syntactic structuring [66].

The frontal regions show limited alpha suppression, indicating continued engage-
ment of executive functions such as working memory and linguistic planning [67].
Additionally, the temporal channels may show residual alpha power, particularly
in the right hemisphere, which is often associated with non-verbal and creative
problem-solving [68]. This suggests that participants encountering formation diffi-
culties may rely on alternative cognitive strategies, such as searching for semantic
cues or constructing a mental framework for response generation. Hence, tracking
alpha activity for the rest of sample population in the temporal channel could be
worthwhile.

7.2.3 Beta Band Analysis

Reduced Beta Power: General Reduction Across Channels Beta rhythms
(13–30 Hz) are primarily associated with motor activity, sensorimotor processing
[69]. A reduction in beta power is often linked to the suppression of motor-related
processing and an increase in cognitive load. This suppression signifies that, in
cognitively demanding scenarios such as comprehension and formation difficulties,
the brain prioritizes cognitive and attentional processes over motor-related func-
tions [70, 71]. As expected, the average beta PSD values (across all channels) are
significantly lower than corresponding theta and alpha PSD values (across all chan-
nels). The boxplots in Figures 7.8 illustrate the average power spectral density
(PSD) for beta activity across all channels, and 7.9, 7.10 focus specifically on Alpha
oscillations in the frontal and temporal regions.
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Figure 7.8: Average PSD in Beta Band All Channels

Figure 7.9: Average PSD in Beta Band Frontal Channels

Figure 7.10: Average PSD in Beta Band Temporal Channels
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State 1: Difficulty in Comprehension During comprehension difficulties, a
slight reduction in beta power is observed across all channels (Figure 7.8). This
reduction is particularly prominent in the frontal channels (Figure ??). The frontal
suppression highlights reduced motor-related engagement and increased reliance
on higher-order executive functions for semantic integration and attention regu-
lation [72]. As comprehension tasks place a heavier load on bottom-up processing
of external inputs, beta suppression reflects the brain’s shift from motor networks
to cognitive processing pathways.

The temporal channels, which are critical for auditory and verbal processing and
semantic comprehension, show a moderate reduction in beta power (Figure 7.10).
This aligns with prior studies indicating beta suppression during auditory language
tasks requiring attentional focus [73]. Overall, beta suppression during comprehen-
sion difficulties demonstrates the brain’s effort to allocate resources to semantic and
linguistic interpretation while minimizing unnecessary sensorimotor engagement.

State 2: Difficulty in Formation During response formation difficulties, beta
suppression is less pronounced across channels compared to comprehension tasks,
particularly in the frontal regions (Figure 7.9). The relatively limited reduction in
frontal beta power suggests that motor-related processes—such as word retrieval,
sentence planning, and the preparation for articulation—remain partially active.
This reflects the brain’s concurrent reliance on cognitive and sensorimotor path-
ways during the construction of linguistic responses [?]. Contrary to expectations,
temporal regions (Figure 7.10) do not show significant changes in beta power. The
temporal lobes, particularly regions linked to Wernicke’s area in the posterior su-
perior temporal gyrus, are typically engaged in semantic retrieval [6]. However, the
absence of substantial beta suppression here may indicate that the task demands
of response formation rely more heavily on executive control and motor processes
managed by the frontal regions. This pattern aligns with findings that beta activ-
ity in temporal regions may be less sensitive to motor planning tasks compared to
cognitive challenges involved in comprehension [73].

This observed trend is consistent with the results from the topographical analy-
sis discussed in the previous section. Beta band suppression is often region-specific,
and while comprehension tasks activate posterior temporal areas to resolve meaning
from external stimuli, response formation tasks prioritize the integration of motor
planning processes in the frontal cortex [74]. This distinction highlights the brain’s
task-specific neural resource allocation as it switches from semantic processing dur-
ing comprehension difficulties to executive and motor engagement during response
formation challenges.

7.2.4 Development of Neural Markers

The development of quantitative neural indices provides a systematic and objective
method for detecting and differentiating cognitive challenges (State 1 and State 2) as
compared to baseline (State 0). Based on the previous sections, where power spectral
density (PSD) changes in theta, beta, and alpha bands were analyzed, two novel
indices are proposed: the Inhibited Language Comprehension Index (ILCI) for State
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1 (comprehension difficulty) and the Inhibited Language Formation Index (ILFI)
for State 2 (formation difficulty). These indices aim to address Research Question
1 (RQ1) by providing neural markers for comprehension and response formulation
challenges, enabling a possibility to classify the two states and interpretation of EEG
signals.

Neural Index for Quantifying Comprehension Difficulty

The "Difficulty in Comprehension" condition (State 1) is characterized by increased
theta power in the frontal regions and reduced beta power in the frontal regions.
Based on the observations from literature and the analysis performed above, the
Inhibited Comprehension Index (ILCI) is proposed to quantify comprehension chal-
lenges. The ILCI is defined as the ratio of theta power in the temporal channels to
the beta power in the frontal channels:

Inhibited Language Comprehension Index (ILCI) =
ThetaTemporal

BetaFrontal
(7.1)

A higher ILCI value indicates greater cognitive strain and comprehension im-
pairment, as theta increases and beta decreases. This metric effectively captures
the shift from motor processing to cognitive processing that occurs during com-
prehension difficulties. The temporal dominance of theta power underscores the
role of semantic retrieval and integration, while the frontal beta suppression reflects
reduced motor-related engagement, aligning with findings from previous analyses.

Neural Index for Quantifying Formation Difficulty

The "Difficulty in Formation" condition (State 2) presents a distinct neural signature
characterized by moderate frontal theta power indicating cognitive strain and active
executive processes and elevated alpha power in the temporal regions, particularly in
response to linguistic planning and retrieval processes. The presence of frontal theta
power suggests continued reliance on executive networks for top-down processes such
as word retrieval and motor planning [66, 74]. Simultaneously, alpha power in the
temporal regions highlights semantic processing demands and the brain’s attempt
to resolve linguistic construction challenges [65, 73].

To quantify response formation difficulties, the Inhibited Response Formation
Index (ILFI) is proposed. The ILFI is defined as the sum of theta power in the
frontal channels and alpha power in the temporal channels:

Inhibited Language Formation Index (ILFI) =
ThetaFrontal

AlphaTemporal
(7.2)

A higher ILFI value corresponds to greater cognitive effort and motor engage-
ment during response generation. The inclusion of temporal alpha power aligns with
evidence showing that alpha activity reflects the cognitive inhibition of competing
processes and semantic reconstruction during language formation tasks [62, 65]. Si-
multaneously, the frontal theta component reflects ongoing top-down executive con-
trol required for linguistic planning and motor preparation.This index captures the
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dual involvement of cognitive and semantic processes during formation difficulties. It
offers a quantitative neural marker for differentiating State 2 from both the baseline
(relaxed) state and comprehension difficulties (State 1).

7.2.5 Trend Analysis of the Proposed Neural Indices

In this section, the validity of the proposed neural indices, namely the Inhibited
Comprehension Index (ILCI) and the Inhibited Language Formation In-
dex (ILFI), is assessed across participants P2 to P13. The indices are evaluated
using EEG signals recorded from these participants and compared to the baseline
conditions. The analysis examines the robustness of these indices as neural markers
for cognitive difficulty states, using basic statistical tests.

How does ILCI Vary Across Participants? The analysis begins by evaluating
the components of the ILCI across participants. Specifically, the **theta power in
temporal regions** and the **beta power in frontal regions** are compared to their
baseline counterparts.

Figure 7.11 illustrates the temporal theta component during the comprehension
difficulty condition (State 1) for all participants. For most participants (except P5
and P7), the theta power in the temporal regions is **equal to or greater than
baseline**. This suggests that increased theta activity is a consistent marker of
comprehension challenges. However, the variance in theta power across participants
is relatively high. This variability may arise due to individual differences or con-
founding variables, such as varying levels of task engagement, fatigue, or external
distractions. These confounding factors will be further addressed in the discussion
section.

Figure 7.11: Theta Power in Temporal Regions for All Participants During
Comprehension Difficulty
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When analyzing the beta component in the frontal regions, as shown in Fig-
ure 7.12, the results indicate a **reduction in beta power** compared to the base-
line for most participants (except P6, P11, P12, and P13). This supports the hy-
pothesis that beta suppression in frontal channels could be indicative of cognitive
reallocation away from motor-related processes to support semantic and attentional
demands during comprehension difficulties.

Figure 7.12: Beta Power in Frontal Regions for All Participants During Com-
prehension Difficulty

To further validate the consistency of these observations, a direct comparison
of the theta temporal and beta frontal PSD components across all participants is
shown in Figure 7.13. This figure highlights the relative increase in theta power
and the suppression of beta power, reinforcing the relevance of these components
for quantifying comprehension challenges.
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Figure 7.13: PSD Comparison of Theta Temporal and Beta Frontal Compo-
nents During Comprehension Difficulty (P2 to P13)

How does ILCI Vary Across Conditions?

ILCI Validation for State 1: Comprehension Difficulty

The Inhibited Comprehension Index (ILCI) was computed for all participants dur-
ing comprehension difficulty (State 1). Figure 7.14 presents the Z-scores of ILCI
values relative to the baseline. For 9 out of 12 participants, the ILCI values during
comprehension difficulty are at least 1.09 standard deviations (SD) higher than the
baseline ILCI, with an average Z-score of 1.09. This signals that this marker could
potentially be explored further as a neural signature of comprehension difficulties.

Figure 7.14: Z-Scores of ILCI for All Participants During Comprehension
Difficulty
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From 7.14, it is evident that there is a possibility of the Condition ILCI (State
1) being higher than the Baseline ILCI (State 0). To investigate this further, we
first examine the Q-Q plot to visually inspect the sample distribution for normality.

Figure 7.15: ILCI - Comprehension Difficulty (State 1)

The Q-Q plot suggests that the data appears to be normally distributed. To
statistically validate this observation, the Shapiro-Wilk test is conducted with the
following hypotheses:

• H0: The data follows a normal distribution.

• H1: The data does not follow a normal distribution.

The results of the Shapiro-Wilk test for both State 0 and State 1 are as follows:
Baseline (State 0 ILCI): Test Statistic: 0.9745; p-value: 0.9516 (Since p >

0.05, the data is likely normal) Condition (State 1 ILCI): Test Statistic: 0.9365;
p-value: 0.4544 (Since p > 0.05, the data is likely normal). These results suggest
that the differences in ILCI values in State 0 and State 1 may follow a normal
distribution. However, it is crucial to note that failing to reject the null hypothesis
(p > 0.05) does not confirm normality; it only indicates insufficient evidence to
reject the assumption of normality. To further analyze the data, both parametric
and non-parametric tests were performed.

Parametric Test: Paired t-Test T-Statistic: -2.2911; p-value: 0.0427. Since
the p-value is less than 0.05, the null hypothesis is rejected, indicating that the ILCI
values during comprehension difficulty (State 1) are significantly higher than those
observed during the baseline condition (State 0). The negative T-statistic suggests
that the baseline values are generally lower than the condition values.

Non-parametric Test: Wilcoxon Signed-Rank Test Wilcoxon Statistic:
15.0; p-value: 0.0640. Since the p-value (0.0640) is greater than 0.05, we fail to
reject the null hypothesis. This suggests that there is no statistically significant
difference between the baseline and condition ILCI values based on the Wilcoxon
test. While the paired t-test indicated significance, the Wilcoxon test, which is more
robust to non-normal distributions, does not confirm a significant effect at the 5%
significance level.
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The results indicate that although there may be a trend, the evidence is not
strong enough to conclude a significant difference without assuming normality.

—

ILCI Validation for State 2: Formation Difficulty

The ILCI was also applied to the formation difficulty condition (State 2) to determine
whether it accurately identifies neural changes during this state. Figure 7.16 shows
the Z-scores of ILCI relative to the baseline. In contrast to comprehension difficulty,
the results for State 2 show that the ILCI fails to differentiate the formation difficulty
condition from the baseline for 6 out of 12 participants, with an average Z-score
of -0.94. Even among participants where the condition holds, the Z-scores are close
to baseline values.

Figure 7.16: Z-Scores of ILCI for All Participants During Formation Difficulty

The 7.16 shows that there is no a significant difference between the Baseline
(State 0) and Condition (State 2) in this case. The Q-Q plots 7.17 for both baseline
and condition ILCI suggest that the data points largely follow a normal distribution,
with some minor deviations.
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Figure 7.17: ILCI - Formation Difficulty (State 2)

The results of the Shapiro-Wilk test for both State 0 and State 2 are as follows:
Baseline (State 0) ILCI: Test Statistic: 0.9745; p-value: 0.9516 (p > 0.05, fail to
reject H0, data appears normally distributed). Condition (State 2) ILCI: Test
Statistic: 0.9517; p-value: 0.6621 (p > 0.05, fail to reject H0, data appears normally
distributed). Since both p-values are greater than 0.05, there is no strong evidence
to reject normality, indicating that the data can be considered normally distributed.

Parametric Test : Paired t-Test T-Statistic: 0.9735; p-value: 0.3512 (p
> 0.05, fail to reject H0) The paired t-test suggests that there is no statistically
significant difference between the baseline and condition ILCI values.

Non-Parametric Test: Wilcoxon Signed-Rank Test Wilcoxon Statistic:
31.0; p-value: 0.5693 (p > 0.05, fail to reject H0). The Wilcoxon test also indicates
no statistically significant difference between the baseline and condition values, re-
inforcing the conclusion from the paired t-test.

Both the parametric and non-parametric tests indicate that the difference be-
tween the baseline and condition ILCI values is not statistically significant (p >
0.05). This implies that any observed differences in the sample may be due to
chance rather than a systematic effect.

How does ILFI Vary Across Participants? The analysis begins by evaluating
the components of the ILFI across participants P2 to P13. Specifically, the theta
power in frontal regions and the alpha power in temporal regions are compared to
their baseline counterparts for State 2 (Formation Difficulty). Figure 7.18 illustrates
the temporal theta component during the comprehension difficulty condition (State
1) for all participants. For most participants (except P2, P6, P13), the theta power in
the frontal regions is equal to or greater than baseline. This suggests that increased
theta activity in frontal regions is a consistent marker of formation challenges. How-
ever, substantial variability is evident in theta power across participants, with P6
exhibiting particularly high variance. Such inconsistencies can likely be attributed
to factors such as individual variability, external disturbances during data collection,
participant fatigue or reduced focus, which can impact neural engagement.

When analyzing the alpha component in the temporal regions, as shown in Fig-
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ure 7.19, the results indicate a reduction in power compared to the baseline for 7
out of 12 participants (except P2, P6, P11, P12 and P13). The variance across
participants are also high. Hence, this component might not accurately represent
and distinguish formation difficulty (State 2). The reason for this unclear and needs
further investigation to identify if there is an underlying patterns so there is presence
of confounding variables at play.

Figure 7.18: Theta Power in Frontal Regions for All Participants During
Formation Difficulty

Figure 7.19: Alpha Power in Temporal Regions for All Participants During
Formation Difficulty
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To further validate the consistency of these observations, a direct comparison of
the theta frontal and alpha temporal components across all participants is shown in
7.20. This figure highlights the relative difference in theta power and the suppression
(albeit not a lot) of alpha power.

Figure 7.20: PSD Comparison of Theta Frontal and Alpha Temporal Com-
ponents During Comprehension Difficulty (P2 to P13)

How does ILFI Vary Across Conditions?

ILFI Validation for State 1: Comprehension Difficulty

The ILFI was first tested for comprehension difficulties (State 1) to determine if it
could identify neural signatures associated with this condition. Figure 7.21 presents
the Z-scores of ILFI relative to the baseline for all participants. Unlike the ILCI,
the ILFI does not exhibit significant deviations from baseline values.
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Figure 7.22: QQ Plot - ILFI - State 0 and State 1

Figure 7.21: Z-Scores of ILFI for All Participants During Comprehension
Difficulty

The Q-Q plots for both baseline and condition ILFI data suggest that the data
points largely follow a normal distribution with minor deviations.

The results of the Shapiro-Wilk test for both State 0 and State 1 are as follows:
Baseline (State 0) ILFI: Test Statistic: 0.9683; p-value: 0.8692 (p > 0.05, fail to
reject H0, data appears normally distributed) Condition (State 1) ILFI : Test
Statistic: 0.9196; p-value: 0.3156 (p > 0.05, fail to reject H0, data appears normally
distributed)

Parametric Test : Paired t-Test T-Statistic: -0.7362; p-value: 0.4785 (p
> 0.05, fail to reject H0) The paired t-test suggests that there is no statistically
significant difference between the baseline and condition ILFI values.

Non-Parametric Test: Wilcoxon Signed-Rank Test Wilcoxon Statistic:
27.0; p-value: 0.6377 (p > 0.05, fail to reject H0). The Wilcoxon test also indicates
no statistically significant difference between the baseline and condition values, re-
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inforcing the conclusion from the paired t-test.
The parametric (paired t-test) and non-parametric (Wilcoxon test) tests indi-

cated that the difference between the baseline and condition ILFI values is not
statistically significant (p > 0.05). This implies that any observed differences in the
sample may be due to chance rather than a systematic effect.

—

ILFI Validation for State 2: Formation Difficulty

The ILFI was subsequently applied to the formation difficulty condition (State 2).
Figure 7.23 shows the Z-scores of ILFI relative to baseline across all participants.
While there is a slight upward trend for certain participants, the results remain
inconsistent.

Figure 7.23: Z-Scores of ILFI for All Participants During Formation Difficulty

The Q-Q plots for both baseline and condition (State 2) ILFI data suggest that
the data points largely follow a normal distribution with minor deviations.

The results of the Shapiro-Wilk test for both State 0 and State 2 are as follows:
Baseline (State 0) ILFI: Test Statistic: 0.9683; p-value: 0.8692 (p > 0.05, fail to
reject H0, data appears normally distributed) Condition (State 2) ILFI : Test
Statistic: 0.8978; p-value: 0.1738 (p > 0.05, fail to reject H0, data appears normally
distributed)

Parametric Test : Paired t-Test T-Statistic: -0.5847; p-value: 0.5717 (p >
0.05, fail to reject H0) The paired t-test suggests no statistically significant difference
between the baseline and condition (State 2) ILFI values.

Non-Parametric Test: Wilcoxon Signed-Rank Test Wilcoxon Statistic:
29.0; p-value: 0.7646 (p > 0.05, fail to reject H0). The Wilcoxon test also suggests
no statistically significant difference between the baseline and condition ILFI values,
reinforcing the conclusion from the paired t-test. Both the parametric (paired t-test)
and non-parametric (Wilcoxon test) tests indicated that the difference between the
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Figure 7.24: QQ Plot - ILFI - State 0 and State 2

baseline and condition ILFI values is not statistically significant (p > 0.05). This
implies that any observed differences in the sample may be due to chance rather
than a systematic effect.

—

7.3 Connectivity Analysis
The connectivity analysis investigates the functional and directional interactions
between brain regions during two task conditions: Comprehension Difficulty (State
1) and Formation Difficulty (State 2). This analysis focuses on two primary metrics:
Coherence (COH) and Phase Locking Value (PLV), which capture amplitude-phase
coupling and phase synchrony, respectively. Additionally, the subsequent section
will explore directional flow of information using Granger Causality (GC) and Time-
Reversed Granger Causality to further support these findings.

7.3.1 Coherence and Phase Locking Value

Coherence quantifies the phase consistency between two EEG signals across a given
frequency, providing a measure of functional synchronization and coupling. Higher
coherence values indicate stronger inter-regional communication, combining both
phase and amplitude information. In contrast, Phase Locking Value (PLV) exclu-
sively measures the stability of phase synchrony, independent of amplitude dynamics.
Together, these measures provide complementary insights into connectivity patterns.

Connectivity Patterns During Comprehension Difficulty (State 1)

The connectivity matrices for coherence and PLV during comprehension difficulty
are shown in Figure 7.25. Both measures were computed across three frequency
bands: theta (4–8 Hz), alpha (8–13 Hz), and beta (13–30 Hz). However, this analysis
focuses solely on the theta band, as it revealed the most significant variance in
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coherence values, whereas coherence in the alpha band remained relatively uniform
with no discernible patterns.

Figure 7.25: Comprehension Difficulty - Coherence and Phase Locking Value

The results indicate strong connectivity between the left temporal region (T7)
and frontal regions, particularly FC6, F4, F8, and AF4. This observation sup-
ports the involvement of frontal-temporal networks, which are crucial for language
comprehension, semantic integration, and attentional processes. Furthermore, high
coherence between T7 (left temporal) and P7 (left parietal) highlights an interplay
between temporal processing and parietal regions linked to working memory, align-
ing with previous literature on cognitive load [?, 73].

To determine if these trends persist across participants, coherence and PLV val-
ues were analyzed for participants P2 to P13. Figure 7.28 presents the results.
Coherence values indicate that for 8 out of 12 participants, the temporal-frontal
connectivity (T7 to frontal regions) remains strong, with COH values exceeding 0.5.
This suggests that amplitude-phase coupling is a relatively consistent feature during
comprehension difficulties. However, PLV values do not always align with the high
coherence observed; only 5 out of 12 participants exhibited strong phase synchrony
(PLV) along with high coherence values. This disparity indicates that while ampli-
tude coupling is present, phase consistency may be more variable across participants.
Therefore, while temporal-frontal coherence may hold promise as an identifying fea-
ture of comprehension difficulties, the inconsistent phase stability (PLV) reduces its
robustness. This observation highlights the need for further investigation to deter-
mine the reliability of temporal-frontal synchronization as a marker for State 1.
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Figure 7.26: All Participants - Comprehension Difficulty - COH and PLV
Analysis

Connectivity Patterns During Formation Difficulty (State 2)

The connectivity matrices for coherence and PLV during formation difficulty are
presented in Figure 7.27. Compared to comprehension difficulty, State 2 exhibits
an overall stronger coherence pattern across regions. This elevated connectivity is
particularly notable in bilateral frontal and temporal regions, reflecting heightened
synchronization across hemispheres.

Figure 7.27: Formation Difficulty - Coherence and Phase Locking Value

Significant connectivity is observed between the left frontal (AF3) and left tem-
poral (T7) regions, as well as between the right frontal (AF4) and right temporal
(T8) regions. Additionally, strong bilateral connections emerge between AF3 (left
frontal) and AF4 (right frontal) and between T7 (left temporal) and T8 (right tem-
poral). These patterns likely reflect increased top-down executive control during
response formation, involving cognitive processes such as lexical retrieval, motor
planning, and inhibition of irrelevant responses [74]. This heightened bilateral con-
nectivity may also indicate cognitive overload or neural recruitment as the brain
attempts to resolve task difficulties.

To assess whether these findings generalize across participants, coherence and
PLV values were averaged across the left (T7, AF3) vs right hemispheres (T8, AF4)
for participants P2 to P13 (Figure 7.28). For 8 out of 12 participants, coherence val-
ues exceed 0.5, indicating consistent amplitude-phase coupling across hemispheres.
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Furthermore, in 6 out of 12 participants, strong phase synchrony (PLV) is observed
alongside high coherence, suggesting that both amplitude and phase consistency
could contribute to bilateral frontal-temporal synchronization during formation diffi-
culties. For the remaining participants, PLV values are lower despite high coherence,
indicating variability in phase relationships. While bilateral connectivity appears to
be a promising feature for identifying response formation challenges, further studies
with larger sample sizes are needed to validate its robustness.

Figure 7.28: All Participants - Formation Difficulty - COH and PLV Analysis

7.3.2 Granger Causality

In this study, Granger Causality was applied to compare the directional interactions
between frontal and temporal brain regions across the two task conditions: compre-
hension difficulty (State 1) and formation difficulty (State 2). By quantifying the
flow of information (e.g., Frontal → Temporal vs. Temporal → Frontal), GC pro-
vides deeper insight into the neural mechanisms underlying language processing and
response generation. For this analysis, the epochs associated with the two states
(State 1 and State 2) were baseline-corrected (by subtracting the mean potential
from each channel respectively) and used for further analysis.

Granger Causality for Comprehension Difficulty Figure 7.29 shows the GC
analysis for State 1 (Comprehension difficulty) for both directions of information
flow. At theta-band frequencies (4–8 Hz, shaded blue), the GC values for the frontal
→ temporal direction are notably higher than the reverse (temporal → frontal).
This observation suggests that frontal regions exert significant control over tempo-
ral regions during cognitive processing associated with comprehension difficulties.
Theta-band connectivity in the frontal regions has been widely linked to executive
control and sustained attention. This result aligns with the increased cognitive
demands of language comprehension, which require top-down monitoring and inte-
gration of incoming linguistic information.
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Figure 7.29: Granger Causality Analysis for Comprehension Difficulty:
Frontal → Temporal vs Temporal → Frontal Connectivity

In the alpha band (8–13 Hz, shaded green), the directional influence stays similar
however the connectivity (in A.U.) are lower than theta bands. In beta band (13 to
30 Hz), there is a shifts in connectivity where as some lower beta band (13 to 20 Hz)
indicate a temporal dominance and higher beta band (25 to 30Hz) showing frontal
dominance. This indicates an interaction between bottom-up sensory inputs and
top-down cognitive regulation, reflecting the complexities of comprehension process-
ing. At beta-band frequencies (13–30 Hz, shaded orange), the frontal → temporal
connectivity shows renewed dominance, particularly in the higher beta range (20–25
Hz). This trend suggests that frontal regions may reassert top-down control during
later stages of cognitive processing, which may involve managing increased working
memory demands or resolving ambiguities associated with comprehension challenges
[?]. Beta activity in frontal regions has previously been associated with cognitive
regulation, motor preparation, and attentional modulation, all of which are relevant
for comprehension tasks.
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Figure 7.30: Comparison of Granger Causality (GC) and Time-Reversed
Granger Causality (TRGC) for Comprehension Difficulty

To verify the reliability of these directional influences, Time-Reversed Granger
Causality (TRGC) was computed as a control measure, as shown in Figure 7.30. The
Net GC (solid blue line) represents the true directional flow of connectivity. The Net
GC is calculated by subtracting GC (Frontal => Temporal) from GC (Temporal
=> Frontal). The TRGC (dashed red line) serves as a validation tool to identify
potential spurious causality caused by shared inputs or noise artifacts [?]. In the
theta and beta bands, the Net GC consistently exceeds the TRGC, reinforcing the
evidence for genuine directional interactions from frontal to temporal regions. At
certain frequencies, such as near 10 Hz and 15 Hz, the TRGC values approach the
Net GC, suggesting the presence of shared external sources or volume conduction
effects. However, the overall pattern demonstrates that the causal relationships
identified in the theta and beta bands are robust and not purely driven by artifacts.
Figure 7.31 provides the summary of findings based on State 1 epochs for P1.

Figure 7.31: Participant 1’s Connectivity Dominance based on Granger
Causality for State 1 (Comprehension Difficulty)

This analysis was extended with the remaining participants (P2 to P13). The
results from figure 7.32 to check for generalizing trend across sample population.
This result also aligns well with the findings from Power Analysis where we define
ILCI (Inhibited Language Comprehension Index) as a ratio of Theta (temporal) and
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Beta (Frontal). Hence, the GC analysis has extended the validity of our hypothesis
providing more evidence for the possibility of ILCI and GC dominance (in theta
and beta) as a generalizable neural signatures to identify language comprehension
difficulties.

Figure 7.32: Connectivity Dominance across Frequency Bands for Partcipant
P2 to P13

Granger Causality Analysis for Formation Difficulty The Granger Causal-
ity (GC) analysis for formation difficulty (State 2) investigates the directional flow
of information between the frontal and temporal brain regions. Figure 7.33 illus-
trates the GC values for both Frontal → Temporal (blue) and Temporal → Frontal
(orange) interactions across different frequency bands, segmented into theta (4–8
Hz), alpha (8–13 Hz), and beta (13–30 Hz) ranges.

Figure 7.33: Granger Causality Analysis for Formation Difficulty: Frontal →
Temporal vs Temporal → Frontal Connectivity

At theta frequencies (4–8 Hz), the temporal channels exhibits stronger connec-
tivity toward the frontal channels. In the alpha band (8–13 Hz) represented by the
green-shaded region, a near-equilibrium state emerges, with the curves for Frontal →
Temporal and Temporal → Frontal connectivity intersecting. This state of equilib-
rium suggests a balance between top-down executive control and bottom-up sensory
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processing, possibly indicating a transitional phase where the brain reorganizes in-
formation for motor planning and grammatical structuring [74]. At lower beta band
frequencies (13 to 21 Hz), the frontal region demonstrates slightly greater influence
on the temporal region, reflecting the recruitment of executive functions, such as
working memory and decision-making, to overcome the difficulty (Friston, 2011).
At higher beta band (25 to 30 Hz) Frontal connectivity again starts to dominate.
This dynamic interplay across bands highlights the shifting neural demands, with
temporal regions leading at lower frequencies for memory and sensory integration,
and frontal regions taking over at higher frequencies to manage executive control
and resolve formation difficulty. These findings underscore the importance of an-
alyzing multiple frequency bands and validating causality using TRGC to ensure
robust interpretations of neural connectivity during cognitive tasks.

Figure 7.34: Comparison of Granger Causality (GC) and Time-Reversed
Granger Causality (TRGC) for Formation Difficulty

To verify the reliability of the directional influences observed in the Granger
Causality (GC) analysis, Time-Reversed Granger Causality (TRGC) was employed
as a control measure, as presented in Figure 7.34. The net GC (solid blue line) re-
flects the directional flow of information computed as the difference between Frontal
→ Temporal and Temporal → Frontal connectivity values. The TRGC (dashed red
line) provides a validation mechanism to detect potential spurious causality caused
by shared inputs, noise artifacts, or volume conduction effects [?]. In the theta
band (4 to 8 Hz), the TRGC values are notably higher than the net GC at several
frequencies, particularly between 5 Hz and 10 Hz. This suggests that the observed
connectivity at these lower frequencies may be influenced by shared sources or vol-
ume conduction, reducing the reliability of directional inferences. Despite this, the
net GC remains consistently positive in parts of the beta band, particularly be-
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tween 20 Hz and 30 Hz, where it clearly exceeds the TRGC values. This pattern
strengthens the evidence for a genuine top-down influence from frontal to temporal
regions during the later stages of response formation. The lower TRGC values in
the beta band indicate minimal artifact contamination, confirming that the causal
flow identified in this range is robust and not a result of spurious connectivity. This
aligns with the observed increase in Frontal → Temporal influence in the beta range,
which reflects executive control and motor-related planning processes essential for
response formation [74]. These results underscore the importance of using TRGC
to validate Granger Causality outcomes, ensuring that the directional flow observed
represents genuine neural interactions rather than artifacts. Figure 7.35 provides
the summary of findings based on State 1 epochs for P1.

Figure 7.35: Participant 1’s Connectivity Dominance based on Granger
Causality for State 1 (Formation Difficulty)

This analysis was extended to include the remaining participants (P2 to P13) to
evaluate the generalizability of the observed trends across the sample population.
As illustrated in Figure 7.36, theta band dominance in the temporal regions was
evident in only 6 out of 12 participants, indicating inconsistent results. A similar
observation was made for the beta band, where no clear dominance pattern could
be established across participants.

Figure 7.36: All Participants’ Connectivity Dominance based on Granger
Causality for State 2 (Formation Difficulty)

However, frontal dominance in the alpha band was observed in 7 out of the 12
participants, suggesting a more consistent trend. These findings, combined with
the earlier observation that the ILFI did not demonstrate a generalizable pattern
during power analysis, underscore the challenges in designing a reliable index for
identifying formation difficulties. Nevertheless, the consistent presence of alpha band
activity in the temporal regions across power and connectivity analyses suggests
that alpha (temporal) may be a promising candidate for further investigation. This
alignment highlights the potential relevance of alpha activity as a neural marker for
response formation difficulties, even though further validation across larger datasets
is necessary to confirm its robustness.
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Chapter 8

Discussion

8.1 Limited Generalizability of Neural Markers
The classification of the two difficulty states, though insightful, presents a few chal-
lenges. The causes of comprehension and formation difficulties (button clicks) var-
ied among participants. Subjective feedback collected during post-experiment in-
terviews revealed individual differences in cognitive strategies and task engagement.
For instance, Participant P3 mentioned, "I could not understand a word, but I some-
times still didn’t click the ’No Comprehension’ button as I could infer the meaning
from context." Similarly, Participant P5 stated, "I wanted to challenge myself to
respond in Dutch, so I avoided using the ’No Formation’ button." These individual
differences introduced variability in the experimental process, affecting the consis-
tency of data interpretation.

Behavioral and motivational factors such as temperament, learning attitude, and
perseverance contributed to the variability observed in EEG responses. To mitigate
such confounding factors in future studies, more comprehensive participant screening
and reduced task scope could be explored during further exploration.

8.2 Variability due to specific causes of difficulty
The underlying causes for the observed cognitive states, namely State 1 (Difficulty in
Comprehension) and State 2 (Difficulty in Formation), can vary significantly among
participants. In the case of comprehension difficulties (State 1), participants may
struggle due to an inability to understand specific words, multiple unfamiliar words,
or complex sentence structures. Similarly, response formation difficulties (State 2)
could arise due to challenges such as the inability to recall specific words, uncer-
tainty in constructing grammatically correct sentences, or hesitation in structuring
coherent responses. These varying cognitive challenges introduce considerable vari-
ability in the recorded EEG signals, as different neural pathways may be engaged
depending on the underlying difficulty.

Such inconsistencies are not restricted to State 2 but may also occur during com-
prehension tasks (State 1) and even in the baseline condition (State 0), where par-
ticipants exhibit elevated variance due to underlying cognitive or emotional states.
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These factors could contribute to significant variability across participants, impact-
ing the consistency and reliability of the defined neural signatures. Addressing such
variability presents a significant challenge, as language processing is inherently in-
dividualized and influenced by various cognitive factors. A potential approach to
managing this issue is to design experiments that deliberately induce specific chal-
lenges within a controlled environment to better isolate their effects. Additionally,
integrating EEG with complementary data sources, such as eye-tracking or behav-
ioral response patterns, can offer a more comprehensive perspective on the underly-
ing cognitive processes, facilitating a deeper understanding and disentanglement of
the sources of variability.

8.3 Limitations of the Interface and LLM Response
Participants provided critical feedback regarding the interface and the language
model response, which impacted their engagement and performance. Some partic-
ipants reported that the "Not able to respond" button provided overly simplistic
assistance, which was not always useful. Participant P6 noted, "I don’t find the
’Not able to respond’ button all that helpful; I preferred the green button as it pro-
vided the answer I was looking for." Additionally, some participants, such as P2 and
P3, excessively relied on the assist buttons, leading to inconsistencies in engagement
levels across trials.

Baseline proficiency tests indicated significant variability in participants’ Dutch
language skills. For example, Participant P7 scored lower in Dutch-to-English trans-
lation tasks compared to Participant P9, who exhibited significantly higher profi-
ciency across all difficulty levels. This variation resulted in different perceptions of
task difficulty, with some participants finding the tasks too challenging, while others
found them relatively simple. Future iterations of the experiment could incorporate
adaptive difficulty adjustment based on baseline proficiency scores to ensure a more
personalized learning experience.

The display of the difficulty rating scale after each scenario also posed challenges.
The rating prompt appeared a total of 15 times during the experiment, which some
participants found distracting. Participants such as P6 and P9 admitted to not
paying attention to the rating at times, as they were too focused on responding to
the chatbot. Others, such as P5, took excessive time (5 to 6 seconds) to deliberate
their difficulty rating, potentially disrupting the experimental flow. A revised imple-
mentation with fewer rating prompts or simplified scales (e.g., three levels instead
of ten) could improve the overall user experience.

During the pilot study, particularly in the "Easy" difficulty level, participants
completed conversations faster than anticipated, prompting a recalibration of task
difficulty for the main experiment to enhance engagement. Furthermore, some par-
ticipants indicated that the total number of scenarios could be reduced, as they
experienced fatigue towards the end of the 45-minute session.
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8.4 Scenarios and Difficulty Levels
The analysis revealed that neither the ILCI nor ILFI indices exhibited consistent
trends across varying difficulty levels. This lack of trend could be attributed to the
complexity of subjective cognitive effort and linguistic proficiency differences among
participants. A potential improvement in future studies could involve simplifying
the rating scale to three categories—Easy, Medium, and Hard—rather than the
current 10-point scale. This modification could facilitate more straightforward data
interpretation and enhance the reliability of difficulty level assessments.

Some participants expressed preferences for specific scenarios, with some offer-
ing more engaging content and opportunities for meaningful interaction. During
post-experiment feedback, several participants indicated that Scenario 4 (Banking)
was the least engaging, as they lacked the necessary vocabulary and struggled to
extend the conversation. This was particularly highlighted by Participant P1, who
participated in three separate sessions over two weeks. Although the pilot study had
indicated potential issues with engagement, the single-session nature of the pilot did
not fully capture the fatigue effects observed in the main study. The findings sug-
gest that scenario design should take into account participants’ familiarity with the
context and ensure that the conversational content remains engaging over multiple
sessions. Future iterations of the experiment could benefit from adaptive scenario
selection based on participants’ interest and proficiency levels.

8.5 Limitations of the Device
While the Emotiv EpocX is a suitable choice for this study, certain limitations re-
lated to its channel configuration must be acknowledged. The available channels
primarily favor frontal region data collection, with eight electrodes designated for
frontal measurements [AF3, F7, F3, FC5, FC6, F4, F8, AF4], whereas temporal and
parietal regions are represented by only two channels each [T7, T8] and [P7, P8],
respectively. This distribution ensures greater signal reliability for frontal regions;
however, it may compromise the accuracy and reliability of data obtained from the
temporal and parietal areas. A device with a higher density of electrodes, partic-
ularly in the temporal and parietal regions, would provide more granular data and
potentially yield more reliable estimates of the identified neural markers.

8.6 Future Considerations
Based on the limitations identified in the study, several recommendations can be
made for future experiments to enhance data validity and participant engagement:

• Increase the sample size to a minimum of 30 participants to ensure statistical
robustness and generalizability of the proposed neural indices.

• Implement difficulty scaling (of LLM Response) based on baseline proficiency.

• Redesign the assist feature (especially for State 2) to provide more contextually
relevant and dynamic support based on the user’s previous responses.
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• Simplify the core task and minimize cognitive interruptions wherever possible.

• Introduce shorter experimental sessions to mitigate fatigue and maintain par-
ticipant engagement throughout the study.

• Conduct longitudinal studies to track changes in neural responses over ex-
tended language learning periods.

• Machine learning-based feature selection, could have provided a more nuanced
understanding of the neural dynamics involved in language tasks

These improvements will not only strengthen the scientific rigor of the research
but also contribute to the practical implementation of EEG-based BCI applications
in language learning.
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Chapter 9

Conclusions

The findings of this study provide valuable insights into the neural mechanisms
underlying language comprehension and formation difficulties. These insights should
be interpreted within the constraints of the study’s fixed time frame. The following
neural markers were identified to address RQ1 and RQ2.

Comprehension Difficulty (State 1)

• Right parietal and temporal regions demonstrate increased positive activity.

• Increased theta band power, particularly in temporal channels.

• Decreased beta band power in frontal channels.

• Both parametric and non-parametric tests were conducted to establish that
ILCI could potentially be a valid index for identifying comprehension difficul-
ties.

• Strong connectivity between the left temporal region (T7) and frontal regions,
particularly FC6, F4, F8, and AF4.

• Coherence values indicate that for 8 out of 12 participants, the temporal-
frontal connectivity (T7 to frontal regions) remains strong, with COH values
exceeding 0.5.

• While temporal-frontal coherence may hold promise as an identifying feature
of comprehension difficulties, the inconsistent phase stability (PLV) reduces
its robustness.

• In the theta band, frontal regions exert significant control over temporal re-
gions during cognitive processing associated with comprehension difficulties.

• At beta-band frequencies, temporal connectivity shows renewed dominance,
particularly in the higher beta range (20–25 Hz).
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Formation Difficulty (State 2)

• Heightened fronto-temporal activation. Negative potentials are observed in
the central and parietal regions.

• Higher alpha band suppression in temporal channels.

• Higher theta band power in frontal channels.

• ILFI was not significantly different from the baseline; hence further investiga-
tion is necessary.

• Significant connectivity is observed between the left frontal (AF3) and left
temporal (T7) regions, as well as between the right frontal (AF4) and right
temporal (T8) regions.

• For 8 out of 12 participants, coherence values exceed 0.5, indicating consistent
amplitude-phase coupling across hemispheres.

• While bilateral connectivity appears to be a promising feature for identifying
response formation challenges, further studies with larger sample sizes are
needed to validate its robustness.

• Frontal dominance in the alpha band was observed in 7 out of the 12 partici-
pants.

The small sample size of 12 participants limits the generalizability of the pro-
posed neural markers. While results indicate that the markers shows potential in
distinguishing comprehension difficulties from baseline, further studies with a larger
sample size (>30 participants) are required to validate its applicability for reliable
brain-computer interface (BCI) applications. The experimental platform developed
based on the Design Question serves as a crucial infrastructure to support further
research in BCI-based language learning, enabling the replication and refinement of
experimental protocols to advance the field.

9.1 Implications for Language Processing
The findings of this study offer important contributions to the understanding of lan-
guage processing in the context of second-language acquisition. More broadly, the
insights derived from this research have practical implications for adaptive language
learning technologies. By leveraging the defined real-time neural markers defined
and explored in this study, it becomes possible to develop systems that dynami-
cally adjust task difficulty or provide tailored assistance based on learners’ cognitive
states. Such applications can bridge the gap between language pedagogy and neu-
roscience, enabling personalized learning experiences. Furthermore, the findings
contribute to the growing field of brain-computer interfaces (BCIs) for language re-
habilitation. The proposed indices could be employed to monitor and enhance the
progress of patients recovering from language-related impairments, such as aphasia,
by providing objective measures of their comprehension and production capabilities.
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9.2 Open Source Contribution
A significant outcome of this study is its contribution to the open-source com-
munity. The complete code, including the experimental design, data acquisition
pipeline, and analysis scripts, has been made publicly available on GitHub(https:
//github.com/venk12/unnamed). By sharing this repository,the research promotes
transparency and reproducibility, enabling other researchers to validate the find-
ings or adapt the tools for new applications. The modular architecture of the
system—spanning the user interface, logic module, and recording module—was de-
signed to support customization and scalability. These contributions underscore
the importance of open science in advancing the fields of neuroscience and human-
computer interaction.

9.3 Final Remarks
This thesis represents a step forward in understanding the neural basis of language
comprehension and formation, with implications for both theoretical neuroscience
and practical applications. By identifying distinct neural markers and proposing
quantitative indices, the research lays the groundwork for future studies exploring
the interplay between brain activity and language processing.
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