
lace.rs - work-stealing while
maintaining Rust safety guarantees

Daan Luth
University of Twente

Enschede The Netherlands

ABSTRACT
In task-based parallelism, work-stealing is an established method

for distributing a multithreaded computation. Lace is a concurrent

deque design intended for use in work-stealing. The Lace paper

comes with an implementation in C, but C does not guard against

many common multithreading problems like data races. The Rust

programming language aims to resolve these problems, but not

much literature exists on the performance of parallel algorithms

in safe Rust. We implement the Lace algorithm in safe Rust and

compare performance and scaling characteristics with a C reference

implementation, the Rayon library, our library using unsafe Rust,

and our library using a Chase-Lev deque. We found overhead for

the safe version to be around 4 times that of the unsafe version, and

8 times that of the C version. Scaling behaviour was similar to what

was reported in the Lace paper, except for the "fibonacci" bench-

mark. We achieved lower runtimes than Rayon on all benchmarks,

but the scalability of Rayon seems better for some benchmarks.

KEYWORDS
Task-based parallelism, Load balancing, Work-stealing, Lace, Rust

1 INTRODUCTION
As hardware manufacturers face a power wall, multi-core systems

have become ubiquitous. The challenge of effectively distributing

a computational workload across parallel processing units has in-

spired much research effort over the last decades.

In parallel programming, a computation may be split into fine-

grained "tasks" to be distributed across available threads. This para-

digm enables the programmer towritemulti-threaded programs in a

more familiar sequential imperative style using fork-join primitives:

subroutines can be tasks, and method call syntax can then be used

to instantiate them. The actual distribution of tasks across available

threads can then be done by a separate system. Frameworks like

Cilk-5 [9] and Wool [8] provide spawn and sync primitives which

create tasks and await their completion respectively.

Tasks may be distributed in various ways. Broadly, one can distin-

guish systems that map tasks to threads explicitly, implicitly, or

based on (expected) work patterns. Explicit mapping yields good

performance if the shape of the computation is predictable, but

some workloads do not have much predictable structure [20].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

42nd Twente Student Conference on IT, January 31st, 2024, Enschede, NL
© 2024 ACM.

Even if the structure is irregular, workloads may satisfy the fol-

lowing: If tasks are "spawned" from parent tasks, and must rejoin

those, then the computation graph is a tree. If tasks can then also

only start once all their arguments are available, the computation

is "fully strict", and can be scheduled optimally by a work-stealing

algorithm [4]. In work-stealing, idle processors process ("steal")

tasks from randomly chosen busy ones to even out the load. Fully

strict computations include a broad class of programs, notably those

with fork-join semantics, and work-stealing is widely used [20].

For work-stealing, worker threads need to keep track of a pool

of tasks to be executed. Task pools may be implemented using

a doubly-ended queue ("deque"), which can be used similarly to

a function call stack: spawned and sync’ed tasks are pushed and

popped at one end, and thieves typically steal from the other end.

While work-stealing is asymptotically optimal, frameworks should

endeavour to induce as little overhead on the computation as possi-

ble. Since the task deque is used in parallel by workers and thieves,

access to it must be coordinated. This can be a major source of

overhead, for instance, the "THE" protocol used by Cilk spends

about half of its time in a memory fence on architectures without

sequentially consistent shared memory [9]. Various deque designs

have been considered to decrease synchronization overhead.

Lace is a design by Van Dijk and Van der Pol [6] where the deque

is split into a shared and a private section. The "owner" thread

operates on the private section unsynchronized, and thieves steal

from the shared section. On the x86 architecture, this design only

requires one memory fence when shrinking the shared portion, and

a compare-and-swap operation when stealing.

The Lace paper includes an implementation as a C library. However,

C was designed before the current era of multiprocessor program-

ming, and the language does not help the programmer to prevent

multithreading problems such as data races. Rust attempts to solve

these problems by restricting the class of programs written in it

[14]. For cases where Rust is too restrictive, an "unsafe" mode exists

which allows the programmer to locally perform operations which

the compiler cannot prove safe [19, Ch. 19.1]. "unsafe" code may

violate safety invariants, and excessive use may indicate that the

programmer is "writing C in Rust" and disregarding safety. We refer

to Rust without use of "unsafe" as "safe". Rust uses an ownership

system, which gives the compiler more pointer aliasing informa-

tion when optimizing. This may lead to improved performance in

parallel settings, since the Rust compiler can assume uniqueness of

reference in places where a C compiler could not.

There is not yet much literature on the performance of parallel

algorithms in safe Rust. In recent work Abdi et al. ported 14 parallel

benchmarks from C++ to Rust and explored when the programmer

must use "unsafe" code [1], but they do not cover performance

characteristics and scaling behaviour in depth.

42nd Twente Student Conference on IT, January 31st, 2024, Enschede, NL Daan Luth

In this work, we present a case study
1
in implementing a work-

stealing system in Rust using minimal "unsafe" code while keeping

the API from the C Lace implementation. We compare performance

with an implementation using more "unsafe", an implementation

using a Chase-Lev deque, the C implementation, and the well-

known Rayon library. We pose the following research questions:

(1) How can the Lace algorithm be implemented in Rust with

minimal use of "unsafe" Rust?

(2) How does the performance of a Rust work-stealing library

using the Lace deque compare to existing Rust multiprocess-

ing solutions and the C implementation?

In section 2 we review work-stealing deque designs and existing

work-stealing frameworks. We also review literature on how con-

current shared state may be implemented in Rust. We introduce

relevant Rust semantics in section 3, and in section 4 we cover

details of the implementation process and setup of the empirical

evaluation. In sections 5 and 6 we present our results and analysis.

2 RELATEDWORK
2.1 Work-stealing deques
In 2001, Arora et al. [3] published the first non-blocking concurrent

deque for use in work-stealing. This "ABP" algorithm requires syn-

chronization for every steal and pop. The design uses a fixed-size

buffer, risking overflows. Work by Hendler et al. resolves this using

a deque backed by a linked list of small arrays [10]. A linked list

with one node per task is not used due to the larger memory and

allocation overhead [10], but this choice makes the algorithm more

complex. In [5], Chase and Lev present a simpler solution: A deque

backed by a circular buffer, which can be resized without the need

to update deque indices. This method relies on the indirection in-

troduced by mapping indices onto the circular buffer, and enables

reuse of buffer space previously used by stolen tasks.

For some workloads, the number of push and pop operations is

much greater than the number of steals. This may happen if the

computation tree has a roughly constant branching factor and little

variation in task duration; thieves steal tasks that are about as large

as those being executed by the worker they stole from so few steal

operations are required to even out the load. Here, one can trade

off increased steal overhead for reduced push/pop overhead. At
one extreme, Acar et al. [2] present a fully private design, where

tasks can only be stolen using a transfer cell. The deque owner then

moves tasks into the transfer cell when other threads become idle.

In this design push and pop operations require no synchronization.

In 2014, van Dijk and van der Pol presented Lace, which uses a

split deque [6]. The algorithm uses a single buffer, and keeps three

indices: tail, split and head, splitting the buffer into a shared

(tail to split) and a private (split to head) section. Thieves
atomically increment tail to steal tasks, and the deque owner

operates on the private portion of the deque without needing to

synchronize with thieves. Thieves request the owner to grow the

shared section if it is empty, and the owner may shrink the shared

section again if it runs out of work.

1
Source code and collected traces can be accessed using DOI 10.5281/zenodo.14713348

2.2 Existing Rust work-stealing Frameworks
We review some existing work-stealing frameworks and describe

notable design choices and features: In 2014 Linus Färnstrand pre-

sented the "ForkJoin" framework [7]. This framework uses an off-

the-shelf implementation of a Chase-Lev deque, and work-stealing

without leapfrogging. The library uses a separate pool for each

input-output task signature. This was done because the task objects

are generically typed, and so the pool containing them had to take

on the same generic type [7, p. 26]. This issue was also encountered

in this work, but resolved differently (4.1.1). To allow tasks to bor-

row data with lifetimes shorter than the lifetime of the thread pool,

ForkJoin uses unsafe code. The API presented is divided into three

"algorithm styles" (Reduce, Search, and In-place mutation), and re-

quires tasks to be broken up into a "task" and "join" stage. A notable

addition to the stealing code is a linear back-off algorithm, used to

limit the number of failed steal attempts and decrease contention.

Another framework created around 2015 is "jobsteal" [18], which

takes a more pragmatic approach regarding unsafe code. Task ob-

jects are either heap-allocated closures or "inlined" into the task

object as raw untyped closure data. While this does allow for a

single buffer to store tasks with arbitrary types, typing and life-

time guarantees must then be upheld by the rest of the framework.

Task objects are not put into the deque directly, but allocated in a

separate arena, and pointers to tasks are kept in the deque. This is

necessary because jobsteal uses a Chase-Lev deque which provides

no way for the owner to recover stolen task data. As for the API,

the library uses scopes, where tasks spawned in a scope are finished

before its end. Scopes are an effective way to denote when task

input lifetimes end, but their hierarchical structure makes it difficult

to use them in loops. For this, jobsteal features parallel iterators.

Rayon is a well-known and mature Rust parallelism library. The

library was initially developed by Matsakis, a core Rust developer

[1, 7], and has since been adopted into major Rust projects including

the standard rustc compiler. Other work ([1]) has also used rayon

as an assumed performant solution. Like "jobsteal", rayon uses

closures for tasks, has a parallel iterator API, and internally uses a

Chase-Lev deque from the "crossbeam_deque" library [16]. Besides

parallel iterators, Rayon also features scopes, and a "join" primitive

to spawn two tasks and wait for their results.

2.3 Shared-state concurrency in Rust
The Lace algorithm uses data accessed by multiple threads at once.

To store indices and flag values one can make use of Rust’s atomic

types, but these cannot be used for the backing buffer. The algorithm

guarantees uniqueness of access to buffer slots at any one time, but

the compiler cannot verify this. Due to the AXM principle it is not

straightforward to create mutable shared state in safe Rust. Some

work has been done to find appropriate abstractions.

In 2024, Hong et al. presented case studies in shared mutable state

in Rust in an operating systems context [11]. They identify six

patterns, among which the "Process-owned value" pattern seems to

best match the description of the deque buffer elements, since each

element is only accessed by one thread at a time. For this case, they

use an UnsafeCell and maintain the AXM invariant manually.

Yanovski et al. present a way to allow the compiler to statically

prove safety properties for access to an UnsafeCell [21]. Their

https://doi.org/10.5281/zenodo.14713348
https://github.com/rayon-rs/rayon

lace.rs - work-stealing while
maintaining Rust safety guarantees 42nd Twente Student Conference on IT, January 31st, 2024, Enschede, NL

approach involves creating a type-branded token, which can then

be used to access the contents of a correspondingly branded "Ghost-

Cell". The impossibility of copying the token ensures data is only

accessed by one thread at a time. This abstraction allows the com-

piler to prove safety, but does not impose any runtime overhead

[21]. Using this method to guard access to buffer elements would

require thieves to have access to one token for each task in the

private section. However, one must then ensure thieves only access

one of the tokens at a time - which is another version of the problem

we were trying to solve. Thus, this approach does not seem suitable

to control access to buffer elements.

Abdi et al. present a case study porting 14 parallel algorithm bench-

marks to Rust [1]. In their categorization, the Lace deque algorithm

falls into the "SngInd" category, since the backing array is accessed

using indices which are unique, but whose relation is too complex

for the compiler to prove safety. They suggest using runtime checks

and atomic or unsafe accesses to buffer elements.

In summary, existing work suggests using unsafe accesses in the

form of UnsafeCell or Cell, and guarding against bugs using

runtime checks or manually enforced invariants.

3 BACKGROUND: RUST
Rust statically guarantees the absence of data races and dangling

references [14]. This is done using an ownership and lifetime system,

and by prohibitingmultiple mutable references to data from existing

at once. We discuss relevant details of these systems:

In a program, every value has exactly one "owner" scope. This sys-

tem allows the compiler to deallocate ("drop") the value’s memory

when the owning scope ends, thus avoiding the need for garbage

collection or manual memory management [19, Ch. 4.1]. For in-

stance, a function (scope) takes ownership of its arguments.

Parts of a program (e.g. functions) may need access to data without

deallocating related memory when finished. For this, Rust has the

concept of "borrowing". A "borrow" of a value is a reference to it

[19, Ch. 4.2] which allows usage without taking ownership.

If data is borrowed and then dropped, the borrow reference would

be dangling. To prevent this, every value has an associated lifetime

[19, Ch. 10.3]. The compiler then verifies that no borrow "outlives"

the data it references. The largest lifetime, corresponding to the

runtime of the entire program execution, is called 'static.
Rust distinguishes betweenmutable and immutable variables.When

borrowing, a reference may also be declared mutable or immutable.

To prevent data races, Rust enforces that there is never more than

one mutable borrow of any location [19, Ch. 4.2]. Moreover, a muta-

ble reference may not exist while an immutable reference does.This

is referred to as the "aliasing XOR mutability" (AXM) principle: The

compiler allows either multiple immutable aliases, or one mutable

alias, to exist; mutability implies a lack of aliasing.

The AXM principle strictly prohibits mutable shared state, but there

are cases where the borrow tracking is too granular and restrictive.

For these, Rust has "interior mutable" types [19, Ch. 15.5], whose

contents can be changed through a shared reference. These types

enforce the borrowing invariants at runtime.

To enable code reuse, Rust features traits [19, Ch. 10.2], which are

akin to interfaces in an object oriented language. A struct may

implement an arbitrary combination of traits. Two notable traits

are Send and Sync, which specify that a value may be sent between

threads, or accessed by multiple threads at once, respectively.

3.1 Semantics and Undefined Behaviour
When optimizing a program, the compiler must knowwhich seman-

tics it must uphold and which are "Undefined Behaviour" (UB) and

can be violated to gain better performance. When using unsafe code

to create concurrent shared state, one may want to create multiple

&mut references to a single location. However, having such refer-

ences at runtime is UB, because it violates the pointer aliasing rules

[12, Ch. 16.2]. When using &mut reference, the compiler assumes

that it is unique and so it could, for instance, constant-propagate a

value stored to it as the result of a later dereference. This optimiza-

tion could yield correctness violations if the data at the reference

is being mutated by a different thread. Instead, one can use raw

*mut pointers, which can alias arbitrarily with other references. [19,

Ch. 19.1] However, *mut pointer dereferences must be marked "un-

safe", and use of them to mutate a single data structure may not be

future-proof: Rust does not yet have an established pointer aliasing

model [12, Ch. 3.1], so undefined behaviour is defined by elision

as anything the official "rustc" compiler might violate. A formal

aliasing semantics which may become official is "Stacked Borrows"

by Jung et al. [13]. In this model, having multiple mutable shared

references (including raw pointers) to any location at any point

is UB, even if they are unused in the program [13]. To avoid the

possibility of our implementation invoking undefined behaviour in

the future, we obey these semantics.

4 METHODOLOGY
4.1 Implementation
While implementing the library, there is a trade-off between safety

and runtime speed, but to allow for fair comparison with existing

systems we had to optimize for speed. To strike a balance, we first

created a fast version of the library using an arbitrary amount of

"unsafe", and then rewrote it to use as little "unsafe" as possible.

To reduce overhead, we iteratively used the "perf" profiler to find

hot code paths, and rewrote the library to decrease the number

of instructions used in those paths and add shortcuts for common

cases. To this end we also implemented metrics for, among others,

the total number of tasks, steals, and split-point movements.

We initially optimized for the "fibonacci" benchmark. This is a

suitable benchmark to optimize for since tasks are small and so

library overhead dominates the runtime. However, the number of

steal operations is relatively low, so we later also optimized for

benchmarks with more steal attempts like "matmul" and "uts-t3l".
To avoid invoking undefined behaviour while using unsafe code, we

used the MIRI tool (0.1.0 (917a50a039 2024-11-15)). This also
ensures compliance with the Stacked Borrows semantics. MIRI was

run with only "-Zmiri-backtrace=full". To further avoid data

races we used the ThreadSanitizer tool. Since ThreadSanitizer does

not support procedural macros (see 4.1.4), we manually transformed

task functions into the expected form. We used Rust 2021 ("1.83.0
(90b35a623 2024-11-26)"), with cargo.

To facilitate porting and comparison of the benchmarks, we reused

the API from the C implementation. This introduces constraints,

most notably when implementing task objects.

42nd Twente Student Conference on IT, January 31st, 2024, Enschede, NL Daan Luth

4.1.1 Tasks. Implementing task objects using closures is a straight-

forward and idiomatic solution used by both "jobsteal" and rayon

[17, 18]. Closures allow the user to create tasks in a convenient ad-

hoc way. However, preliminary testing revealed closures have poor

performance compared to static function pointers. Using closures

as tasks does not offer any semantically new options over using

static methods, so we decided against using closures.

When using the system, a programmer should be able to mix tasks

with different signatures. This was implemented using Rust’s sup-

port for generic types. However, a problem arises when task objects

are stored in the deque buffer: The buffer would need to have a

generic type to reflect the task type (e.g. [Task<I,O>]). This would
limit the programmer to one kind of task signature per deque.

The idiomatic way to resolve this would be to use a Task trait

and store dyn Task objects instead. These keep a virtual method

table to specific Task<I,O> methods, similarly to a C++ object. To

extract task output data one could use a checked downcast to a

concrete type using the Any trait. However, use of Any requires the

generic parameters to have a 'static lifetime. So this approach

would not allow for task inputs with smaller lifetimes (i.e. borrows).

This problem was also found in [7, p. 25]; since our framework

aims to use a single thread pool and allow tasks use non-'static
borrows, some unsafe code will be needed [7]. The lifetime problem

exists fundamentally because the compiler is unaware of the LIFO

semantics of the deque: If a push()’ed task borrows a variable, the

compiler cannot tell that the borrow is dropped after the next call to

pop(), and so it requires the lifetime to be over-approximated to at

least that of the buffer. We resolved this by converting Task<I,O>
instances to opaque byte buffers. Lifetime and type semantics must

be upheld by provided abstractions and the library user.

This approach does present a different problem: If a type-erased

task is stolen, the thief does not know which type it originally had,

and so cannot take ownership of the input data and execute the

task. This was solved by keeping a pointer to a function that can

"unerase" the data to the correct type. This works like a virtual

method table, but only incurs the related overhead for steals.

To regain some safety, we could then introduce a runtime type

check by comparing the function pointer against what it should

be if the type is correct. This check provides as strong of a safety

guarantee as the usage of Any proposed earlier.

4.1.2 Deque buffer. The buffer backing the deque has to be

shared between threads but still mutable. This was achieved using

Rust’s UnsafeCell type, as suggested in [11, p. 8] and [1]. We

could lower the amount of unsafe code by using a Cell instead.

Under correct operation of the algorithm, no buffer slot can be

accessed from different threads at once, so the Cell requirements

are satisfied. The compiler cannot verify this on its own, so the

Syncmarker trait was used. Implementation of this trait is the only

use of "unsafe" code for the buffer. To implement leapfrogging, a

separate thief buffer is used to communicate about stolen work.

4.1.3 Deque. The Lace deque could be implemented straightfor-

wardly using Rust’s support for atomic types. Shared variables and

the buffer were accessed through an Arc pointer. To prevent false

sharing due to overlap in cache lines between owned and shared

variables, we used the CachePadded type from "crossbeam-utils".

The design is depicted in UML-like notation in figure 1.

Worker
push(Task)
pop(): Task?

Stealer
steal(): Task?

Private State
head

o_split
o_allstolen

Shared State
split
tail

allstolen
buffer

Buffer
tasks: [Task]

thief: [ThiefID]
put(index, Task)
take(index): Task

1..*

Figure 1: Deque implementation diagram

4.1.4 API. The API exposed by our library mimics that of the C

Lace implementation (and, in turn, Wool [8]), and provides "spawn",

"sync" and "call" primitives. We added a "join" primitive for the

common "spawn-call-sync" idiom with two tasks. To use Rust meth-

ods as tasks we wrote a procedural macro ([19, Ch. 19.5]) called

lace_task, which works as in the following example:

1 #[lace_task]

2 fn fib(n: usize) -> usize {

3 if n < 2 { n } else {

4 let (x, y) = join!(fib(n - 1), fib(n - 2));

5 x + y

6 }

7 }

Gets rewritten to (macro definitions omitted for brevity)

1 fn fib(_worker: &mut Worker, n: usize) -> usize {

2 macro_rules! spawn, sync, call, join { ... }

3 if n < 2 { n } else {

4 let (x, y) = join!(fib(n - 1), fib(n - 2));

5 x + y

6 }

7 }

For comparison, in Rayon this could be written as

1 fn fib(n: usize) -> usize {

2 if n < 2 { n } else {

3 let (x, y) = rayon::join(

4 || fib(n - 1),

5 || fib(n - 2));

6 x + y

7 }

8 }

To uphold safety guarantees, "spawn" creates a zero-size token of

type SpawnToken<'task, I, O> to be consumed by "sync". The

lifetime parameter on the token encodes that values borrowed by

tasks must not be used while the token exists. For example, the

following yields a compile-time error:

1 #[lace_task]

2 fn f(_: &mut usize) {

3 let mut y = 4;

4 let tkn = spawn!(f(&mut y));

lace.rs - work-stealing while
maintaining Rust safety guarantees 42nd Twente Student Conference on IT, January 31st, 2024, Enschede, NL

5 y += 2; // error: use of borrowed value 'y'

6 sync!(tkn);

7 }

4.1.5 Rust atomic integer support. The Lace algorithm requires

thieves to do a compare-and-swap on the combination of the "tail"

and "split" variables and owners to set "split" independently. We

used a single AtomicUsize to store (split, tail), but Rust does
not straightforwardly allow atomic access to only the bits of the

split index.We used a fetch_xor((old_s ^ new_s) << 32) op-
eration to change the split point.

4.2 Empirical evaluation setup
To compare the implementation with existing systems, we reused

benchmarks from the original Lace paper. Performance was then

compared with the C Lace implementation, Rayon (version 1.10),
and our implementation using a Chase-Lev deque

2
. The C imple-

mentation uses the "random stealing" extension by default, where

workers steal from random victims if leapfrogging fails. We imple-

mented this extension the same way, and measurements were done

with this functionality enabled. While implementing the bench-

marks, we aimed to keep conditions the same between different

versions, such that the only free variable was the underlying library.

We encountered the following complications.

4.2.1 Comparison with the Chase-Lev version. The algorithm
by Chase and Lev was not designed with use of the deque as a call

stack in mind: There is no way for the owner to retrieve stolen

task results. We resolved this by heap- or arena-allocating task

structs and keeping raw pointers to these in the deque. The owner

then keeps another pointer in case the task is stolen. This scheme

allowed us to use an off-the-shelf implementation, but does impact

the comparison to the Rust Lace version due to overhead related to

allocations and pointer dereferencing. We considered augmenting

the Chase-Lev algorithm to support a call-stack API by using an age
tag with the top variable to avoid the ABA problem, as in the ABP

algorithm ([3]). However, this would add overhead to update the

tag when popping. It was unclear which of these overheads would

dominate, and the described algorithm change could be argued to

invalidate this comparison, so we did not pursue this option.

4.2.2 Comparison with the C implementation. When compar-

ing the Rust library with the C library, task bodies
3
may run at

different speeds in Rust and C. This limits our ability to draw con-

clusions about performance, since a speedup or slowdown may be

caused by the difference in task body code rather than a difference

between the libraries. This was mitigated by using C code from the

original Lace benchmarks for task bodies. This measure does not

impact the comparison between different Rust versions. The switch

at runtime between Rust and C does introduce some overhead, but

this seems to be negligible compared to the change from Rust to C,

so this measure helps to close the comparison gap.

4.2.3 Comparison with Rayon. Rayon supports parallel iter-

ators, but the C implementation does not. For some benchmarks

(notably N-Queens) we opted to use these as they represent an

2
From the "crossbeam-deque" crate, version 0.8.

3
By "body" we mean any work unrelated to bookkeeping for work-stealing.

idiomatic solution. This does introduce a difference in semantics:

rayon parallel iterators may spawn and sync tasks in any order,

where the benchmark using our library does not. We did not close

this gap, as it represents one in typical use of both libraries.

4.2.4 Differences induced by code placement. We found that

code reordering effects could significantly change performance for

the matmul benchmark: Enabling features only used by the parallel

Rust Lace benchmark like "leapfrog_random" produced a change

in the runtime of the sequential version as well
4
. To control for

this effect we recorded sequential execution times with (seemingly)

unrelated features enabled, and compute speedup factors relative

to the sequential version with the same features enabled.

5 RESULTS
5.1 Use of unsafe code
In the final version of our library, unsafe code is used in the follow-

ing ways:

• To assign the Sync trait to the backing buffer.

• To convert task objects to and from opaque byte buffers.

However, we found that overhead could be reduced significantly

by also using "unsafe" code in the following ways:

• To inline small task inputs into the task descriptor rather

than heap-allocating them. The inlining threshold used was

6 times a pointer size, like in the C implementation.

• Use of arena allocation to avoid heap-allocating larger task

inputs similarly improved performance.

• To read task data from the buffer without erasing it, using

std::ptr::write and std::ptr::read. Task data is only

read once so this optimization does not risk correctness.

In our artifact, these changes can be applied using the unsafe_task,
unsafe_arena, and unsafe_buffer feature flags respectively.

5.2 Performance characteristics
The test machine has two Intel Xeon Silver 4314 processors, and

runs Ubuntu 22.04 LTS with kernel version 5.15.0-124. For each

combination of benchmark and worker count we took the median

of 20 measurements. Speed-up factors were computed relative to

sequential execution (𝑇𝑆) and execution with one worker (𝑇1).

The "safe" version is the base library using random leapfrogging.

The "unsafe" version also uses all extra features mentioned in 5.1.

We obtained the following runtimes.

safe Rust 𝑇𝑆 (s) 𝑇1 (s) 𝑇48 (s) 𝑇𝑆/𝑇48 𝑇1/𝑇48
fib-45 3.13 35.31 1.97 1.59 17.94

matmul-2048 4.89 4.92 0.37 13.14 13.21

queens-14 18.46 19.39 1.04 17.69 18.58

uts-t2l 21.19 24.74 1.09 19.37 22.61

uts-t3l 16.2 19.22 1.08 14.95 17.75

4
This is due to the way we organized the (Rust) benchmarks and library code: One

executable handled both sequential and parallel versions, and cargo feature flags were

used to enable or disable parts of the library, affecting the whole binary.

42nd Twente Student Conference on IT, January 31st, 2024, Enschede, NL Daan Luth

unsafe Rust 𝑇𝑆 (s) 𝑇1 (s) 𝑇48 (s) 𝑇𝑆/𝑇48 𝑇1/𝑇48
fib-45 3.13 9.29 0.5 6.3 18.7

matmul-2048 4.89 4.91 0.39 12.63 12.68

queens-14 18.55 18.93 1.02 18.21 18.59

uts-t2l 21.34 23.84 1.02 20.98 23.43

uts-t3l 16.74 17.75 0.94 17.79 18.86

Between these, we can see that library overhead (as measured on

fib) is higher for the safe version. This seems to be caused mainly

by the use of heap allocation of small task inputs; inlining task data

into the task descriptor largely eliminates the overhead:

safe +inlining 𝑇𝑆 (s) 𝑇1 (s) 𝑇48 (s) 𝑇𝑆/𝑇48 𝑇1/𝑇48
fib-45 3.13 11.19 0.53 5.91 21.11

matmul-2048 5.53 5.59 0.38 14.52 14.68

queens-14 18.66 19.45 1.03 18.05 18.81

uts-t2l 20.95 23.5 0.98 21.46 24.07

uts-t3l 16.06 17.73 0.95 16.91 18.66

Comparing with the C implementation, we see that absolute over-

head for the Rust version is larger, but scaling behaviour is similar

between the C and "unsafe" Rust versions.

C Lace 𝑇𝑆 (s) 𝑇1 (s) 𝑇48 (s) 𝑇𝑆/𝑇48 𝑇1/𝑇48
fib-45 2.17 4.38 0.25 8.65 17.41

matmul-2048 4.88 4.96 0.41 11.88 12.09

queens-14 15.46 15.26 0.82 18.96 18.72

uts-t2l 20.82 21.39 0.92 22.58 23.2

uts-t3l 15.7 15.47 0.83 18.81 18.54

The Rayon and Chase-Lev versions have greater overhead but seem

to scale better on the test hardware, especially for the fib bench-
mark. This is discussed further in section 5.3.

Rayon 𝑇𝑆 (s) 𝑇1 (s) 𝑇48 (s) 𝑇𝑆/𝑇48 𝑇1/𝑇48
fib-45 3.01 52.09 1.81 1.66 28.73

matmul-2048 5.53 5.59 0.55 10.03 10.15

queens-14 19.15 32.89 1.78 10.76 18.47

uts-t2l 21.24 25.4 1.18 17.99 21.52

uts-t3l 16.06 20.02 1.3 12.31 15.34

Chase-Lev 𝑇𝑆 (s) 𝑇1 (s) 𝑇48 (s) 𝑇𝑆/𝑇48 𝑇1/𝑇48
fib-45 3.12 54.04 1.81 1.72 29.85

matmul-2048 5.53 5.59 0.51 10.85 10.98

queens-14 19.02 20.05 1.1 17.26 18.2

uts-t2l 21.11 26.39 1.06 19.86 24.82

uts-t3l 16.53 20.84 1.13 14.68 18.5

Steal operations can fail in two ways: Either the deque was empty,

or the compare-and-swap ("busy") failed due to steal contention.

We recorded steal outcomes
5
for each benchmark at 48 workers.

Using median values over 50 runs to get the following table.

5
The Lace paper counts random and leap-frogging steals separately, we combine these.

benchmark #tasks

#steals

successful busy empty

safe Rust
fib-45 1836311902 8788 120 2255302

matmul-2048 449389 185886 2332 108877330

queens-14 27358552 3990 36 2021738

uts-t2l 96793509 34286 231 2969814

uts-t3l 111345630 3610010 40908 103433202

C Lace
fib-45 1836311902 7722 133 852365

matmul-2048 449389 199361 12432 670047466

queens-14 27358552 2541 14 249034

uts-t2l 96793509 27374 178 1616104

uts-t3l 111345630 3526804 30873 154021447

We found the number of "empty" steals to have large outliers for

the fib-45, matmul-2048, queens-14 and uts-t2l benchmarks.

We suspect this to be due to thread starvation.

5.3 The fibonacci benchmark
Because tasks are small, the "fib" benchmark is relatively sensitive

to library overhead. Using data for 1, 2, 4, 8, 16, 24, 32, 40 and 48

workers, we obtain the speedup and runtime graphs in figures 2 and

3. Although the overhead of the Rayon version is larger, its scaling

behaviour seems better. Unfortunately we did not have access to

more processors to find where this speedup curve flattens off.

0 10 20 30 40

0

10

20

30

40

Workers

S
p
e
e
d
u
p
(𝑇
1
/𝑇

𝑛
)

safe

unsafe

C Lace

Chase-Lev

Rayon

Figure 2: Speedup graph for fib-45.

The poor scaling behaviour of the Lace versions is contrary to what

was found in [6]. We discuss our investigation into this behaviour.

For the C implementation using 48 workers, we found the number

of successful leapfrogging operations for fib 50 to be much lower

than reported in the Lace paper. Most of the attempts to leapfrog

thieves failed due to the deque being empty. This, along with a

similarly low number of grow operations, suggests that workers

are slow to process split-point move requests. This could suggest

contention due to hyper-threading: The test platform has 32 phys-

ical cores, and uses hyper-threading to present 64 logical cores.

We tested the Rust Lace and Chase-Lev versions using 32 worker

lace.rs - work-stealing while
maintaining Rust safety guarantees 42nd Twente Student Conference on IT, January 31st, 2024, Enschede, NL

0 10 20 30 40

10
0

10
1

Workers

R
u
n
t
i
m
e
(
s
)

safe

unsafe

C Lace

Chase-Lev

Rayon

Figure 3: Median runtime (𝑇𝑛) for fib-45

threads pinned in a way so as to produce either minimal or maxi-

mal hyper-threading contention. We found that the Lace version

was more adversely affected by hyper-threading with a slowdown

factor of 2.2 compared to the Chase-Lev versions’ 1.4. This could

mean that the Chase-Lev version (and Rayon) can scale further with

hyper-threading. These findings partially explain the unexpectedly

poor scalability past 32 workers. We suspect caching effects may

also play a role: At 32 workers, we found the cache miss rate for

fib 50 to be ±60%. Use of the receiver-initiated deque by Acar

et al. implemented in [6] yielded cache miss rate of ±30% at 32

workers and a speedup of 34.12 at 48 workers. The cores on the

test system are spread across two sockets, which may exacerbate

the detrimental effects of a cache miss. Although the speedup at 48

workers using the receiver-initiated deque is larger, the absolute

runtime was greater than that of the C Lace version. This may imply

that all available parallelism is exhausted by the Lace versions, and

that the Chase-Lev version can scale further because it simply has

more overhead left to get rid of. Due to time constraints we could

not find conclusive reasons for the observed behaviour.

5.4 The UTS benchmark
Wemeasured runtimes for the UTS ([15]) benchmark using tree t3l,
resulting in the speedup graph in figure 4. On this benchmark the

absolute runtimes are ordered the same way as for fib. Scaling
behaviour up to 48 is better using our library than with Rayon.

These findings corroborate what was reported in [6].

5.5 The matmul benchmark
The runtime distribution (see figure 6) for the matmul benchmark

is somewhat unexpected: The safe Rust version is faster than the C

version. As noted in 4.2.4 this benchmark was especially sensitive

to spurious optimization, so it is unclear if this result is significant.

We found that enabling random leapfrogging increased runtime

for the matmul benchmark by around 1.4 times at 32 workers. The

number of non-leapfrogging steals increased to around a quarter of

all tasks. For this benchmark in particular, a random steal may have

0 10 20 30 40

0

10

20

30

40

Workers

S
p
e
e
d
u
p
(𝑇
1
/𝑇

𝑛
)

safe

unsafe

C Lace

Chase-Lev

Rayon

Figure 4: Speedup graph for uts-t3l.

the worker thread access part of the matrix that is not in its cache.

We found that enabling random leapfrogging lead to more cache

misses (±26% rather than ±18%), and suspect this to be the cause

for the performance difference. Turning off random leapfrogging

yielded the following runtimes:

safe w/o leap-random 𝑇𝑆 (s) 𝑇1 (s) 𝑇48 (s) 𝑇𝑆/𝑇48 𝑇1/𝑇48
fib-45 3.01 35.43 2.02 1.49 17.52

matmul-2048 5.53 5.63 0.29 19.32 19.7

queens-14 19.15 19.92 1.05 18.32 19.05

uts-t2l 21.24 24.66 1.1 19.37 22.49

uts-t3l 16.06 19 2.17 7.41 8.77

5.6 General remarks
Using the average speedup across each of the benchmarks we get

the graph in figure 5. On average, the libraries using the Lace deque

0 10 20 30 40

0

10

20

30

40

Workers

S
p
e
e
d
u
p
(𝑇
1
/𝑇

𝑛
)

safe

unsafe

C Lace

Chase-Lev

Rayon

Figure 5: Speedup graph for average.

42nd Twente Student Conference on IT, January 31st, 2024, Enschede, NL Daan Luth

scale better below 40 workers, but the Rayon and the Chase-Lev

versions overtake past this point. For the Lace versions we see

diminishing returns from 32 workers on. We suspect this to be

in part due to hyper-threading, as discussed in 5.3. Normalizing

fi
b-
45

m
at
m
ul
-2
04
8

qu
ee
n
s-
14

ut
s-
t2
l

ut
s-
t3
l

0.1

0.25

0.5

0.75

1

2

n
o
r
m
a
l
i
z
e
d
r
u
n
t
i
m
e

C Lace

unsafe

Chase-Lev

Rayon

Figure 6: Averages of median runtimes relative to those of
the "safe" Rust version, over all worker counts.

runtimes of the different library versions against our base library,

we get the bar plot in figure 6. As measured on fib, overhead for the
"safe" version is on average 3.8 times that of the "unsafe" version,

and 2.1 times larger for the unsafe version relative to the C version.

In earlier work the disuse of unsafe Rust increased runtimes by an

average factor of only 2.1 at 24 threads [1], suggesting the Lace

algorithm is particularly affected by this limitation. The runtime

difference between the sequential versions of safe Rust and C fib
is a factor of around 1.4, suggesting our library may be inducing

more overhead than necessitated by the change of language.

6 CONCLUSION
In this paper, we presented a case study implementing a work-

stealing algorithm in safe Rust, and compared performance with

existing multiprocessing solutions. We answered two questions:

RQ1 - How can the Lace algorithm be implemented in Rust with
minimal use of "unsafe" Rust? We could implement the algorithm

using five lines of "unsafe" Rust, conceptually handling two cases:

• (1 line) To implement Sync for the task buffer. This is un-

avoidable since the used Cell type does not implement Sync.
• (4 lines) To convert task objects to and from opaque byte

buffers. As discussed in 4.1.1 this could not be avoided except

by changing the library API, and we did not do so because it

would complicate performance comparison for RQ2.

We found that library overhead could be reduced significantly by

introducing "unsafe" code to avoid heap allocation of task inputs

and erasure of values only read once. We conclude that Rust’s

restrictions on data lifetimes and initialization status hamper both

performance and API expressivity for our case. The latter could be

improved with fairly little use of "unsafe".

RQ2 - how does the performance of a Rust work-stealing library using
the Lace deque compare to existing Rust multiprocessing solutions and
the C implementation? Our experiments show that the safe Rust

library achieves similar scaling behaviour to the C Lace implemen-

tation, but has around 8 times the overhead. We found that use of

"unsafe" code could reduce overhead down to around twice that of

the C implementation. The Rust library achieved lower absolute

runtime than Rayon on all benchmarks, and scaling behaviour up

to 48 workers was also better than that of Rayon for all benchmarks

with the exception of "fibonacci". Scaling behaviour between the

safe and unsafe Rust and C Lace versions was largely similar.

7 FUTUREWORK
7.1 NUMA-awareness in victim selection
We found that performance for some benchmarks is impacted by

hyper-threading and cache contention. NUMA-aware victim selec-

tion when stealing could help to reduce these effects. We did not

implement this functionality due to time constraints.

7.2 Backoff algorithm to reduce steal contention
For the matmul benchmark performance was impacted by the rel-

atively large number of failed steal attempts. Preliminary testing

revealed that scaling behaviour could be improved using a backoff

algorithm to reduce steal contention (as done in [7]). However, such

an algorithm caused performance to decrease for other benchmarks.

Future work could investigate this further.

7.3 Augmenting the Chase-Lev algorithm
As described in 4.2.1 the option of augmenting the Chase-Lev algo-

rithm to support a call-stack API was not used. Future work could

explore this option and related performance aspects.

7.4 Difference between Chase-Lev and Rayon
For the queens, matmul and uts-t3l benchmarks there seems to

be a significant difference in scaling behaviour between our library

with the Chase-Lev deque and Rayon. This is unexpected since

Rayon internally uses the same Chase-Lev deque. Future work

could investigate this difference.

7.5 Optimal deque algorithm selection
In this work we found significant differences in scaling behaviour

between deque algorithms for some benchmarks. We did some ex-

periments to find the causes of these discrepancies, but future work

could investigate more deeply which deque algorithm can be used

to achieve optimal performance on a given class of workloads.

Similarly, one could investigate why some of these algorithms per-

form better or worse in the presence of hyper-threading.

8 AI DISCLOSURE
The author used ChatGPT ("GPT-4o mini") to learn about Rust

features useful for implementation. The author has not used any

suggested code verbatim, reviewed suggestions as needed, and takes

full responsibility for the content of this work.

lace.rs - work-stealing while
maintaining Rust safety guarantees 42nd Twente Student Conference on IT, January 31st, 2024, Enschede, NL

REFERENCES
[1] Javad Abdi et al. “When Is Parallelism Fearless and Zero-Cost with Rust?” en.

In: Proceedings of the 36th ACM Symposium on Parallelism in Algorithms and
Architectures. Nantes France: ACM, June 2024, pp. 27–40. isbn: 9798400704161.

doi: 10.1145/3626183.3659966. url: https://dl.acm.org/doi/10.1145/3626183.

3659966 (visited on 11/12/2024).

[2] Umut A. Acar, Arthur Chargueraud, and Mike Rainey. “Scheduling parallel

programs by work stealing with private deques”. In: SIGPLAN Not. 48.8 (Feb.
2013), pp. 219–228. issn: 0362-1340. doi: 10.1145/2517327.2442538. url: https:

//doi.org/10.1145/2517327.2442538 (visited on 01/25/2025).

[3] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. “Thread scheduling

for multiprogrammed multiprocessors”. In: Proceedings of the tenth annual
ACM symposium on Parallel algorithms and architectures. SPAA ’98. New York,

NY, USA: Association for Computing Machinery, June 1998, pp. 119–129. isbn:

978-0-89791-989-0. doi: 10.1145/277651.277678. url: https://dl.acm.org/doi/10.

1145/277651.277678 (visited on 01/25/2025).

[4] Robert D. Blumofe and Charles E. Leiserson. “Scheduling multithreaded com-

putations by work stealing”. In: J. ACM 46.5 (Sept. 1999), pp. 720–748. issn:

0004-5411. doi: 10.1145/324133.324234. url: https://dl.acm.org/doi/10.1145/

324133.324234 (visited on 01/25/2025).

[5] David Chase and Yossi Lev. “Dynamic circular work-stealing deque”. en. In:

Proceedings of the seventeenth annual ACM symposium on Parallelism in algo-
rithms and architectures. Las Vegas Nevada USA: ACM, July 2005, pp. 21–28.

isbn: 978-1-58113-986-0. doi: 10.1145/1073970.1073974. url: https://dl.acm.

org/doi/10.1145/1073970.1073974 (visited on 10/31/2024).

[6] Tom van Dijk and Jaco C. van de Pol. “Lace: Non-blocking Split Deque for

Work-Stealing”. en. In: Euro-Par 2014: Parallel Processing Workshops. Ed. by
Luís Lopes et al. Cham: Springer International Publishing, 2014, pp. 206–217.

isbn: 978-3-319-14313-2. doi: 10.1007/978-3-319-14313-2_18.

[7] Linus Färnstrand. “Parallelization in Rust with fork-join and friends: Creat-

ing the fork-join framework”. In: 2015. url: https://www.semanticscholar.

org / paper / Parallelization - in - Rust - with - fork - join - and - friends % 3A-

F%C3%A4rnstrand/df5a56d44a008530d66c9993040c83837829fcc8 (visited on

11/19/2024).

[8] Karl-Filip Faxén. “Wool-A work stealing library”. In: SIGARCH Comput. Archit.
News 36.5 (June 2009), pp. 93–100. issn: 0163-5964. doi: 10 . 1145 /1556444 .

1556457. url: https://dl.acm.org/doi/10.1145/1556444.1556457 (visited on

11/19/2024).

[9] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. “The implementation

of the Cilk-5 multithreaded language”. In: SIGPLAN Not. 33.5 (May 1998),

pp. 212–223. issn: 0362-1340. doi: 10.1145/277652.277725. url: https://dl.acm.

org/doi/10.1145/277652.277725 (visited on 11/20/2024).

[10] Danny Hendler et al. “A dynamic-sized nonblocking work stealing deque”. en.

In: Distributed Computing 18.3 (Feb. 2006), pp. 189–207. issn: 1432-0452. doi:

10.1007/s00446-005-0144-5. url: https://doi.org/10.1007/s00446-005-0144-5

(visited on 11/20/2024).

[11] Jaemin Hong et al. “Taming shared mutable states of operating systems in

Rust”. In: Science of Computer Programming 238 (Dec. 2024), p. 103152. issn:

0167-6423. doi: 10.1016/j.scico.2024.103152. url: https://www.sciencedirect.

com/science/article/pii/S0167642324000753 (visited on 11/14/2024).

[12] Introduction - The Rustonomicon. url: https://doc.rust- lang.org/nomicon/

(visited on 11/19/2024).

[13] Ralf Jung et al. “Stacked borrows: an aliasing model for Rust”. en. In: Proceedings
of the ACM on Programming Languages 4.POPL (Jan. 2020), pp. 1–32. issn: 2475-

1421. doi: 10.1145/3371109. url: https://dl.acm.org/doi/10.1145/3371109

(visited on 11/14/2024).

[14] Nicholas D. Matsakis and Felix S. Klock. “The rust language”. en. In: Proceedings
of the 2014 ACM SIGAda annual conference on High integrity language technology.
Portland Oregon USA: ACM, Oct. 2014, pp. 103–104. isbn: 978-1-4503-3217-0.

doi: 10.1145/2663171.2663188. url: https://dl.acm.org/doi/10.1145/2663171.

2663188 (visited on 11/04/2024).

[15] Stephen Olivier et al. “UTS: An Unbalanced Tree Search Benchmark”. en. In:

Languages and Compilers for Parallel Computing. Ed. by George Almási, Călin

Caşcaval, and Peng Wu. Berlin, Heidelberg: Springer, 2007, pp. 235–250. isbn:

978-3-540-72521-3. doi: 10.1007/978-3-540-72521-3_18.

[16] rayon-rs/rayon. original-date: 2014-10-02T15:38:05Z. Dec. 2024. url: https :
//github.com/rayon-rs/rayon (visited on 12/20/2024).

[17] Rayon: data parallelism in Rust · baby steps. url: https://smallcultfollowing.

com/babysteps/blog/2015/12/18/rayon-data-parallelism-in-rust/ (visited on

11/18/2024).

[18] robert. rphmeier/jobsteal. original-date: 2015-11-15T05:40:15Z. 2016. url: https:
//github.com/rphmeier/jobsteal (visited on 11/19/2024).

[19] The Rust Programming Language - The Rust Programming Language. url: https:
//doc.rust-lang.org/book/ (visited on 11/19/2024).

[20] Peter Thoman et al. “A taxonomy of task-based parallel programming technolo-

gies for high-performance computing”. en. In: The Journal of Supercomputing

74.4 (Apr. 2018), pp. 1422–1434. issn: 1573-0484. doi: 10.1007/s11227-018-2238-

4. url: https://doi.org/10.1007/s11227-018-2238-4 (visited on 11/04/2024).

[21] Joshua Yanovski et al. “GhostCell: separating permissions from data in Rust”. In:

GhostCell: Separating Permissions from Data in Rust (Artifact) 5.ICFP (Aug. 2021),
92:1–92:30. doi: 10.1145/3473597. url: https://dl.acm.org/doi/10.1145/3473597

(visited on 11/18/2024).

https://doi.org/10.1145/3626183.3659966
https://dl.acm.org/doi/10.1145/3626183.3659966
https://dl.acm.org/doi/10.1145/3626183.3659966
https://doi.org/10.1145/2517327.2442538
https://doi.org/10.1145/2517327.2442538
https://doi.org/10.1145/2517327.2442538
https://doi.org/10.1145/277651.277678
https://dl.acm.org/doi/10.1145/277651.277678
https://dl.acm.org/doi/10.1145/277651.277678
https://doi.org/10.1145/324133.324234
https://dl.acm.org/doi/10.1145/324133.324234
https://dl.acm.org/doi/10.1145/324133.324234
https://doi.org/10.1145/1073970.1073974
https://dl.acm.org/doi/10.1145/1073970.1073974
https://dl.acm.org/doi/10.1145/1073970.1073974
https://doi.org/10.1007/978-3-319-14313-2_18
https://www.semanticscholar.org/paper/Parallelization-in-Rust-with-fork-join-and-friends%3A-F%C3%A4rnstrand/df5a56d44a008530d66c9993040c83837829fcc8
https://www.semanticscholar.org/paper/Parallelization-in-Rust-with-fork-join-and-friends%3A-F%C3%A4rnstrand/df5a56d44a008530d66c9993040c83837829fcc8
https://www.semanticscholar.org/paper/Parallelization-in-Rust-with-fork-join-and-friends%3A-F%C3%A4rnstrand/df5a56d44a008530d66c9993040c83837829fcc8
https://doi.org/10.1145/1556444.1556457
https://doi.org/10.1145/1556444.1556457
https://dl.acm.org/doi/10.1145/1556444.1556457
https://doi.org/10.1145/277652.277725
https://dl.acm.org/doi/10.1145/277652.277725
https://dl.acm.org/doi/10.1145/277652.277725
https://doi.org/10.1007/s00446-005-0144-5
https://doi.org/10.1007/s00446-005-0144-5
https://doi.org/10.1016/j.scico.2024.103152
https://www.sciencedirect.com/science/article/pii/S0167642324000753
https://www.sciencedirect.com/science/article/pii/S0167642324000753
https://doc.rust-lang.org/nomicon/
https://doi.org/10.1145/3371109
https://dl.acm.org/doi/10.1145/3371109
https://doi.org/10.1145/2663171.2663188
https://dl.acm.org/doi/10.1145/2663171.2663188
https://dl.acm.org/doi/10.1145/2663171.2663188
https://doi.org/10.1007/978-3-540-72521-3_18
https://github.com/rayon-rs/rayon
https://github.com/rayon-rs/rayon
https://smallcultfollowing.com/babysteps/blog/2015/12/18/rayon-data-parallelism-in-rust/
https://smallcultfollowing.com/babysteps/blog/2015/12/18/rayon-data-parallelism-in-rust/
https://github.com/rphmeier/jobsteal
https://github.com/rphmeier/jobsteal
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/
https://doi.org/10.1007/s11227-018-2238-4
https://doi.org/10.1007/s11227-018-2238-4
https://doi.org/10.1007/s11227-018-2238-4
https://doi.org/10.1145/3473597
https://dl.acm.org/doi/10.1145/3473597

	Abstract
	1 Introduction
	2 Related work
	2.1 Work-stealing deques
	2.2 Existing Rust work-stealing Frameworks
	2.3 Shared-state concurrency in Rust

	3 Background: Rust
	3.1 Semantics and Undefined Behaviour

	4 Methodology
	4.1 Implementation
	4.2 Empirical evaluation setup

	5 Results
	5.1 Use of unsafe code
	5.2 Performance characteristics
	5.3 The fibonacci benchmark
	5.4 The UTS benchmark
	5.5 The matmul benchmark
	5.6 General remarks

	6 Conclusion
	7 Future Work
	7.1 NUMA-awareness in victim selection
	7.2 Backoff algorithm to reduce steal contention
	7.3 Augmenting the Chase-Lev algorithm
	7.4 Difference between Chase-Lev and Rayon
	7.5 Optimal deque algorithm selection

	8 AI Disclosure

