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ABSTRACT
As smart home devices increasingly incorporate machine learning
applications, their resource constraints pose significant challenges
for deployment. This research investigates resource profiling to
better understand the requirements of machine learning applica-
tions in smart home devices under varying conditions. By analyzing
the effects of input size, model complexity, workload conditions,
and hardware platforms, we aim to understand how these factors
influence resource utilization and system performance. Controlled
experiments will focus on face recognition and speech recognition.
These applications were chosen for their relevance as representative
machine learning tasks in smart homes. They cover key areas like
security and accessibility, making them ideal for studying resource
demands. To capture performance across a range of hardware capa-
bilities, we will conduct testing on two hardware platforms, namely
the Raspberry Pi and a Desktop PC. The results will identify critical
resource requirements and offer insights for more efficient imple-
mentation of machine learning in smart home devices, enhancing
their capabilities and reliability.

ACM Reference Format:
Paul Florian, University of Twente, Enschede, Netherlands. 2025. Resource
Profiling for Smart Home Machine Learning Applications. In Proceedings
of the 42nd Twente Student Conference on IT . ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
As technology advances, smart home devices continue to evolve,
to the point where many are now incorporating machine learning
applications that significantly enhance user experiences. These ap-
plications are diverse and impactful, addressing key areas such as
security and accessibility. Face recognition, for example, provides a
cheap and effective home security solution by identifying people
entering or leaving the home with high accuracy. This can reduce
the need for costly traditional security systems, making advanced
protection more accessible [5]. Similarly, researchers have achieved
highly accurate speech recognition through deep learning tech-
niques, enabling effortless voice control of lights, speakers, and
other devices. This is especially beneficial for users with accessibil-
ity needs, who can now interact with their smart devices in a more
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natural and intuitive way [4]. By fundamentally changing how peo-
ple interact with their homes, these machine learning applications
are shaping the future of smart devices.

However, smart home devices are often constrained by limited
computational resources due to their small size and energy effi-
ciency requirements. On the other hand, machine learning appli-
cations often have high computational demands, making it chal-
lenging to run them on smart home devices. To be able to run these
applications, it is necessary to either scale up the devices to provide
greater processing power, or to offload the tasks to a more compu-
tationally powerful device, e.g., local smart hubs, edge servers, or
cloud servers [10].

Scaling up devices allows processing with minimal latency but is
often impractical due to higher energy consumption, costs, and size
limitations. Offloading tasks to cloud servers offers scalability but
can introduce latency [8] and privacy concerns. Edge computing
strikes a balance by offloading tasks to nearby hubs or servers, re-
ducing latency and bandwidth use while offering more power than
individual devices [9]. However, it also faces resource constraints
and potential bottlenecks in high-demand scenarios.

Strategically allocating resources is essential in all scenarios to
ensure that the specific needs of the machine learning applications
being implemented are met. Properly allocating resources where
needed has been shown to be very effective in optimizing resource
utilization and system performance [7].

In this research we aim to determine what resources are most
important to run these machine learning applications and to see
how these requirements change under different conditions. These
conditions include factors such as system load, hardware type, and
varying input sizes. Therefore, in this research we aim at addressing
the following research questions:

• RQ1: How does input size affect resource utilization of ma-
chine learning applications?

• RQ2: How does model complexity affect resource utilization
of machine learning applications?

• RQ3: How do workload conditions impact the performance
and resource utilization of machine learning applications?

• RQ4: How does application performance vary across hard-
ware platforms?

2 RELATEDWORK
Edge computing involves processing data closer to where it is gen-
erated, such as on smart devices or sensors, rather than sending it
all to a central cloud server. It has become essential for deploying
machine learning applications in smart homes, where resources
are limited. This approach helps reduce latency and saves on band-
width, allowing for quicker responses. Studies have highlighted
the role of hardware accelerators, input characteristics, and system
conditions in influencing performance.
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Zhou et al. [2] demonstrated that resource demands in machine
learning tasks vary by hardware type and workload, emphasizing
the need for profiling under different conditions. Liang et al. [3]
showed that while edge accelerators like the EdgeTPU improve
latency and efficiency, their performance declines with larger mod-
els or under high-concurrency scenarios. The PAIGE framework
by Liang, O’Keeffe, and Sastry [1] highlighted how input size and
workload stress impact hybrid edge-cloud architectures, stressing
the importance of understanding these dynamics for resource opti-
mization.

While previous studies have looked at hardware accelerators,
input characteristics, and workload stress in edge and hybrid sys-
tems, our work takes a broader approach by examining how input
size, model complexity, and hardware type together influence re-
source utilization. Unlike Zhou et al. [2] and Liang et al. [3], which
focus on specific scenarios or architectures, we aim to identify the
most critical resources across diverse conditions. This will provide
a deeper understanding of how to optimize performance for ma-
chine learning applications in smart home environments, especially
under varying workloads.

3 METHODOLOGY
The research relies on controlled experiments to systematically
test machine learning applications under varying conditions. The
experiments will measure how input size, model complexity, and
system load impact performance and resource utilization on differ-
ent hardware platforms.

3.1 Applications
We focus on two machine learning applications, representative of
smart home environments. Both applications are implemented in
JavaScript using Node.js.

Face recognition enhances smart home security by providing
secure, seamless access control. Its widespread adoption in home
security systems highlights its relevance as a representative appli-
cation. The speech recognition application processes .wav and .flac
audio files, comparing model outputs to ground truth transcripts.

Speech recognition enables hands-free control of smart home
devices, enhancing accessibility for users with disabilities. This
application was selected due to its widespread utility in user in-
teraction and specific resource demands in real-time processing.
The application first generates a JSON file containing known face
embeddings from a subset of our dataset. Afterward, facial embed-
dings are extracted and matched against known faces using cosine
similarity.

3.2 Software and Tools
This study employs multiple machine learning frameworks and
models optimized for edge computing. TensorFlow is utilized for
small operations such as image tensor conversion, while Vosk and
ONNX facilitate efficient model loading and processing.

For speech recognition, we selected Vosk en-us 0.22-lgraph and
Vosk small en-us 0.15. The former provides higher accuracy and
quality, whereas the latter is optimized for lightweight deployment
in constrained environments, as described in the official Vosk model
documentation [11]. Since bothmodels process full audio files, input

size variations were tested by adjusting audio length rather than
using additional models.

For face recognition, MobileFaceNet [13], FaceNet [12], and Ar-
cResFaceNet [14] were chosen based on efficiency and accuracy
trade-offs. MobileFaceNet, with around 1 million parameters, is
ideal for resource-limited devices due to its compact size and ef-
ficiency. FaceNet, at approximately 22 million parameters, was
included to assess performance at a larger 160×160 input resolu-
tion. ArcResFaceNet, the most computationally demanding with
around 65 million parameters, maintains the 112×112 input size
but features a more advanced architecture.

4 EXPERIMENTAL SETUP
In this part, we elaborate on our analysis. We conducted a compre-
hensive analysis taking into account various factors:

• Input Variability: Testing with datasets of varying input
sizes (e.g., different image resolutions, audio lengths).

• Model Complexity: Comparing lightweight (e.g., Mobile-
FaceNet) vs. complex models (e.g., ArcResFaceNet).

• System Load: Simulating multi-tasking by running a script
putting load on the CPU to simulate real-world usage.

4.1 Hardware
To analyze how hardware platforms affect resource utilization and
performance in machine learning applications, we will conduct
experiments on the following platforms:

• Raspberry Pi 4 model B: Represents low-power edge de-
vices typical of smart home systems. It is equipped with a
quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.8GHz and
4GB RAM.

• PC: Simulates a more powerful edge server environment. It
is equipped with a Ryzen 5 3600, 16GB 3200MHz RAM, and
an Nvidia RTX 3070.

4.2 Applications
4.2.1 Speech Recognition. Each test run under perf is conducted
using 1,000 audio files to ensure consistency in performance evalu-
ation. The datasets used for testing are:

• Google Speech Commands: Contains short, one-word
voice commands, representing small input sizes.

• LibriSpeech: Composed of full-sentence recordings from
audiobooks, representing larger input sizes.

4.2.2 Face Recognition. To evaluate performance, we selected the
Labeled Faces in the Wild (LFW) dataset, a widely used benchmark
for face recognition. LFW contains over 13,000 images collected
from the web, featuring diverse lighting conditions, poses, and im-
age qualities, making it a robust choice for real-world applications.
Performance measurements exclude the generation of the known-
Faces.json file, focusing only on the embedding matching process
while running the application under perf. The entire dataset is pro-
cessed during profiling, with images resized to match each model’s
expected input dimensions.
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4.3 Performance metrics
Performance is measured through CPU cycles, execution time, and
memory usage. CPU cycles indicate processor efficiency, execution
time ensures real-time feasibility, and memory usage helps identify
potential bottlenecks. A Python script runs the machine learning
applications under the perf utility, capturing relevant metrics such
as CPU cycles, execution time, and context switches.

To simulate system load, we use a Python script that utilizes the
multiprocessing module to generate a specified CPU load across all
available cores. Each core runs a busy-wait loop for a proportion
of time corresponding to the target load percentage. This approach
allows for testing various levels of system load (e.g., 0%, 50%, 100%)
to understand their effects on CPU cycles, execution time, and
memory usage. By doing so, we can analyze performance trade-offs
and identify potential bottlenecks in resource-constrained environ-
ments.

The Raspberry Pi runs Linux natively, while the PC uses WSL 2
to access profiling tools, ensuring compatibility in metric collection.

5 RESULTS
The effect of input size on resource utilization: To evaluate

how varying input sizes affect resource usage, we analyzed CPU
cycles and execution times in speech recognition using the Google
and Libri datasets, as well as face recognition models operating at
different input resolutions.

The results in this section are based on the measurements from
the PC platform, as it provides amore stable reference for evaluating
computational demands without the hardware constraints of the
Raspberry Pi.

Figure 1: CPU cycles for speech recognition.

Figure 2: Execution time for speech recognition.

5.0.1 Speech Recognition. Figures 1 and 2 show the effect of vary-
ing input sizes on CPU cycles and execution time in speech recog-
nition tasks. The Google dataset features shorter audio samples
and thus requires fewer computational resources compared to the
Libri dataset. For example, when using the small model, the Google
dataset consumed about 2.5 × 1012 CPU cycles with an execution
time of about 800 seconds, whereas the Libri dataset consumed
about 3.8 × 1012 cycles (about a 50% increase) with an execution
time of about 900 seconds (about a 10% increase). A similar pat-
tern emerges with the big model, where Google required about
1.1 × 1013 CPU cycles and roughly 2800 seconds, while Libri used
about 2.5 × 1013 cycles (about a 130% increase) and just over 5200
seconds (about an 80% increase in cycles). Execution time grew
notably with the longer Libri samples, indicating that larger or
more complex inputs significantly elevate resource consumption.

Figure 3: CPU cycles for face recognition.



TScIT42, 31 January 2025, Enschede, Netherlands
Paul Florian

University of Twente, Enschede, Netherlands

Figure 4: Execution time for face recognition.

5.0.2 Face Recognition. A similar trend is observed in face recog-
nition, where differences in input resolution and model size both
influence resource usage. Figures 3 and 4 show how varying input
sizes affect CPU cycles and execution time in face recognition tasks.
MobileFaceNet consumed about 5.3 × 1012 CPU cycles and took
about 170 seconds, whereas FaceNet required about 1.0×1013 cycles
and roughly 270 seconds, reflecting an increase of nearly 90% in
cycles and about 60% in execution time.

Even at the same 112×112 input size, ArcFaceResNet used about
1.8 × 1013 cycles with a runtime of about 460 seconds, consuming
over three times more cycles than MobileFaceNet. These results
suggest that while larger input dimensions increase resource de-
mands, model complexity and parameter count can have an even
greater impact, regardless of input size.

The effect of model complexity on resource utilization: Next,
we isolate the effect of model complexity by comparing smaller
and larger architectures under similar conditions. For this section
we also used the measurements from the PC platform, to not be
constrained by hardware limitations.

5.0.3 Speech recognition. On theGoogle SpeechCommands dataset,
the small model used about 2.5× 1012 CPU cycles and took roughly
800 seconds, while the bigmodel required about 1.1×1013 cycles and
about 2800 seconds, indicating around 4.3× more cycles and about
3.4× longer execution time. On the LibriSpeech dataset, the dispar-
ity grew even larger, with the big model consuming roughly 6.6×
more CPU cycles and taking about 6.6× longer to run than the small
model. These results demonstrate that bigger, more accurate speech
recognition models incur substantially higher computational costs.

5.0.4 Face Recognition. Similarly, face recognition models with the
same 112×112 input can vary widely in complexity. MobileFaceNet
used about 5.3 × 1012 CPU cycles (about 170 seconds), whereas
ArcFaceResNet reached about 1.8× 1013 cycles (about 460 seconds),
approximately 3.4× and nearly 3× higher, respectively. Comparing
FaceNet to ArcFaceResNet shows that ArcFaceResNet still con-
sumes about 1.8× more CPU cycles and takes about 1.7× longer,

underscoring that deeper architectures typically place greater de-
mands on resources than higher-resolution inputs alone.

The effect of workload conditions on resource utilization:
This section examines how increasing system load affects execution
time and CPU cycles for both voice and face recognition applica-
tions. We compare performance at different load levels (0%, 50%,
and 100%).

Figure 5: CPU cycles comparison under load for speech recog-
nition.

Figure 6: Execution time comparison under load for speech
recognition.

5.0.5 Speech recognition. Figures 5 and 6 show the effects of sys-
tem load on CPU cycles and execution time in speech recognition
tasks. Under increasing system load, both small and big speech
recognition models showed significant increases in execution time.
On the Raspberry Pi, using the Google dataset, the small model’s
runtime rose from about 1300 seconds at 0% load to approximately
3300 seconds at 100% load, while CPU cycles remained relatively
stable. This suggests that the additional overhead was primarily
due to scheduling and context switching, which increased from
about 1.1 × 106 at 0% load to about 3.4 × 106 at 100% load, mean-
ing around a 3× increase. A similar but more severe pattern was
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observed with the Libri dataset, where the small model’s execution
time increased from about 700 to just over 3400 seconds under full
load. The big model also exhibited substantial slowdowns, with
higher scheduling overhead and context switching as workload
increased.

Despite the system load being applied equally across all CPU
threads, the PC experienced a much smaller relative increase in
execution time compared to the Raspberry Pi. However, on both
platforms, execution time increased significantly with higher model
complexity and larger input sizes, growing by about 1.5× on the
PC and roughly 2.5× on the Raspberry Pi under full load.

Figure 7: CPU cycles comparison under load for face recog-
nition.

Figure 8: Execution time comparison under load for face
recognition.

5.0.6 Face Recognition. Figures 7 and 8 show the effects of sys-
tem load on CPU cycles and execution time in speech recognition
tasks. By analyzing them, we observe that face recognition follows
the same trend, with progressively longer runtimes under heav-
ier system loads. MobileFaceNet, being comparatively lightweight,
experienced smaller relative increases than FaceNet or ArcFaceRes-
Net. In the more complex models, execution times escalated sharply

at higher loads, reflecting the compound effect of greater model
complexity and additional scheduling overhead.

Figure 9: Context switches comparison under load for speech
recognition.

Figure 10: Context switches comparison under load for face
recognition.

Performance across hardware platforms: System load had a
significantly greater impact on the Raspberry Pi compared to the PC,
particularly in terms of execution time, as shown in Figures 2 and
4. Across all tested conditions, execution times were consistently
lower on the PC, despite CPU cycle counts fluctuating between the
two platforms.

A notable difference between the two platforms was the behavior
of context switching under load. On the Raspberry Pi, context
switch counts increased sharply as system load increased, while on
the PC, context switches remained relatively stable across different
load conditions (Figures 9 and 10).

Additionally, CPU cycle measurements were more consistent
on the Raspberry Pi, whereas the PC exhibited greater variation
across runs, especially in face recognition tasks. These findings
indicate that execution time, context switching, and CPU cycle
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stability differ notably between the Raspberry Pi and PC, with the
Raspberry Pi showing greater sensitivity to system load.

6 CONCLUSION
This study explored how input size, model complexity, and system
load affect resource usage and performance in smart home machine
learning applications. We analyzed speech and face recognition
on a Raspberry Pi and a PC, testing different input sizes, model
complexities, and workload conditions.

Our results show that larger inputs and more complex models
significantly increase computational demands, leading to higher
CPU cycles and longer execution times. System load further am-
plified these effects, with the Raspberry Pi experiencing greater
slowdowns under heavy workloads, while the PC handled load
more efficiently, maintaining stable context switches and lower
execution times.

Interestingly, CPU cycle measurements were more consistent on
the Raspberry Pi but varied on the PC, particularly in face recogni-
tion tasks. This is likely due to dynamic frequency scaling (DVFS)
and cache behavior on the PC, where the CPU adjusts its clock
speed based on workload and thermal conditions. The Raspberry
Pi’s fixed clock speed and simpler architecture contributed to more
stable performance.

One limitation of this study is that each experiment was only
run once per condition. On the PC, factors like background pro-
cesses, cache effects, and dynamic scheduling can impact execution,
meaning repeated runs and averaging results could provide more
stable and reliable CPU cycle measurements. Future work should
account for this variability by incorporating multiple trials.

While WSL 2’s virtualization and Windows’ resource manage-
ment may introduce some additional variation, our findings suggest
that hardware-level factors, rather than OS scheduling alone, are
the primary cause of CPU cycle fluctuations. Future research could
explore alternative schedulers, hardware accelerators, and task of-
floading strategies to improve performance consistency. Addition-
ally, profiling power consumption, thermal behavior, and real-time
execution across a wider range of edge devices would help optimize
machine learning workloads for resource-constrained smart home
environments.
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